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The equation of state of the osmotic pressure for linear-polymer solutions in good solvents is universally
described by a scaling function. We experimentally measure the osmotic pressure of the gelation process
via osmotic deswelling. We find that the same scaling function for linear-polymer solutions also describes
the osmotic pressure throughout the gelation process involving both the sol and gel states. Furthermore, we
reveal that the osmotic pressure of polymer gels is universally governed by the semidilute scaling law of
linear-polymer solutions.
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Flexible linear polymers in good solvents provide not
only the basis of polymer physics [1,2], but also a
remarkable example of the notion of universality of critical
phenomena in statistical physics [2,3]. Their macroscopic
collective properties are independent of the microscopic
details of the system and are described by a small number of
parameters, because of the great length of polymer chains.
Such systems belong to the OðnÞ-symmetric universality
classes (n ¼ 1, 2, 3 corresponding to the Ising, XY, and
Heisenberg classes, respectively) found in many systems,
ranging from those of soft and hard condensed-matter
physics to high-energy physics [4]. The above linear-
polymer solutions correspond to the limit of n → 0
(self-avoiding walks) in three dimensions [2,4], for which
the critical exponent (the excluded volume parameter)
ν ≃ 0.588 can be computed using three independent meth-
ods:Monte Carlo simulations [5,6], the ϵ-expansionmethod
[7], and the conformal bootstrapmethod [8,9]. Furthermore,
not only the critical exponents but also the asymptotic
scaling functions themselves can be experimentally
measured, such as the osmotic pressure [10,11] and the
correlation lengths of density fluctuations [12].
We focus on the equation of state (EOS) of osmotic

pressure for (electrically neutral) flexible linear polymers in
good solvents, which is universally described by the
following scaling function [10,11,13–16]:

Π̂ ¼ fðĉÞ; ð1Þ

where Π̂≡ ΠM=ðcRTÞ is the reduced osmotic pressure, and
ĉ≡ c=c� is the reduced polymer concentration normalized by
the overlap concentration c� ≡ 1=ðA2MÞ. Here,M, R, T, and
A2 are the molar mass, gas constant, absolute temperature, and
the second virial coefficient, respectively. The above definition
of c� is proportional [17] to the conventional definition of the
overlap concentration c�g ≡ 3M=ð4πNAR3

gÞ, at which the
polymer chains begin to overlap to fill the space. Here, NA

and Rg are the Avogadro constant and the gyration radius of
the polymer chain, respectively.
For branched polymer solutions, it was reported that

each EOS of regular star polymers with up to 18 arms
exhibited only minor differences from the universal EOS
(1) of linear polymers [11,17–19]. Here, ĉ≡ c=c� is the
only universal scaling parameter (up to multiplication by a
constant) [17]. Hence, c=c�g is not a universal scaling
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FIG. 1. Universal EOS of osmotic pressure for polymer
solutions and gels in a good solvent. Main image shows the ĉ
dependence of Π̂ in a log-log plot. Inset: the ĉ−1 dependence of
Π̂ ĉ1=ð1−3νÞ. The triangles represent two kinds of linear polymers
[poly(styrene) (PS), where M ¼ 51–1900 kg=mol [11], and poly
(α-methylstyrene) (PMS), where M ¼ 70.8–1820 kg=mol [10] ]
in toluene solutions. The triangles converge to the universal EOS
(1) (black solid curve), which is asymptotic to the van ’t Hoff law
(Π̂ ¼ 1) as ĉ → 0 and to the scaling law in Eq. (3) as ĉ → ∞
(black dotted lines). The black circles represent the four-branched
polymer [poly(ethylene glycol) (PEG)] solutions of M ¼ 10 and
40 kg=mol. The orange-filled circles represent the sol samples
that emulate the gelation process with varying degrees of
connectivity (p ¼ 0; 0.1;…; 0.5) at a constant concentration
(c ¼ 20 g=L). The red star in the inset corresponds to the gel
samples.
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parameter because c�g=c� ¼ 3
ffiffiffi
π

p
Ψ� includes the interpen-

etration factor Ψ�, which is nonuniversal for a number of
arms (e.g., Ψ� ≃ 0.24 and 0.44 for linear and four-branched
polymer solutions, respectively [20,21]). Figure 1
demonstrates that the different kinds of linear-polymer
solutions and four-branched polymer solutions converge to
a universal EOS (1). In the dilute regime (0 ≤ ĉ < 1), each
molecular chain is isolated to sufficiently describe the
universal EOS (1) through virial expansion [1],

Π̂ ¼ fðĉÞ ¼ 1þ ĉþ γĉ2 þ � � � ðfor 0 ≤ ĉ < 1Þ; ð2Þ

where γ ≃ 0.25 is the dimensionless virial ratio [1,10]. In
the semidilute regime (ĉ > 1), the molecular chains inter-
penetrate, and the universal EOS (1) is asymptotic to the
semidilute scaling law [2,13]

Π̂ ¼ fðĉÞ ≃ Kĉð1=3ν−1Þ ðfor ĉ ≫ 1Þ; ð3Þ

where K ≃ 1.1 and 1=ð3ν − 1Þ ≃ 1.31 because ν ≃ 0.588.
In this Letter, we experimentally investigate the osmotic

pressure of polymer gels throughout the gelation process,
which involves both the sol and gel states. We measured the
osmotic pressure via osmotic deswelling in external poly-
mer solutions [22–24]. Our findings are summarized in
Fig. 1; the universal EOS (1) describes the osmotic pressure
of both the sol (orange-filled circles) and gel (red star)
states with only minor variations, although each system
during the gelation process comprises highly branched
polymer networks. When gelation proceeds at a constant
concentration c, the average molar massM increases and c�

decreases. Thus, both Π̂ and ĉ continuously increase along
the universal EOS (1) in the sol state. After the gelation
(i.e., the sol-gel transition), because polymer gels corre-
spond to M → ∞ and c� → 0, both Π̂ and ĉ diverge to
infinity in the gel state. According to the semidilute scaling
law described by Eq. (3), Π̂ ĉ1=ð1−3νÞ remains constant in the
gel state (red star in the inset of Fig. 1). Our findings, which
elucidate the universal laws governing osmotic pressure,
are not only conceptually important for statistical physics,
but also practically useful for soft-matter physics. These
results are essential for the applications of polymer sol-
utions and polymer gels, which can swell by imbibing
solvents.
To statically emulate the gelation process, we nonstoi-

chiometrically tuned themixing fractions s (0 ≤ s ≤ 1=2) of
two types of precursor solutions in an AB-type polymeri-
zation system (schematics in Fig. 2). Here, s is the molar
fraction of the minor precursors to all precursors. We define
the connectivity p (0 ≤ p ≤ 1) as the fraction of reacted
terminal functional groups, assuming the reaction is com-
pleted. By tuning s in accordance with p ¼ 2s [25,26], we
can obtain a desired p. Before gelation (0 ≤ p < pgel),
polymer chains crosslink to form a polydisperse mixture of
highly branched polymers with increases in the average

molar massM. After gelation (pgel ≤ p ≤ 1), these polymer
networks cross-link to complete the reaction as the elasticity
increases.
Based on our findings displayed in Fig. 1, we illustrate

the “nonreduced” osmotic pressure Π during the gelation
process in Fig. 2. Unlike the sol state, the gel state has
elastic contributions to the total swelling pressure (Πtot).
According to Flory and Rehner [27], Πtot consists of two
separate contributions as Πtot ¼ Πmix þ Πel, where Πmix
and Πel are the mixing and elastic contributions, respec-
tively. We regard Πmix as the osmotic pressure in the gel
state, because Πmix corresponds to the osmotic pressure in
the sol stateΠ. As the connectivity p increases at a constant
concentration c, Π in the sol state decreases because the
chemical reaction decreases the number density of the
molecules. After gelation,Πmix reaches a constant; polymer
gels are always in a semidilute regime with an infinite
molar mass.
Materials and methods.—For the model system of AB-

type polymerization in gelation, we used a tetra-arm poly
(ethylene glycol) (tetra-PEG) gel that is synthesized by the
AB-type cross-end coupling of two tetra-PEG units of
equal size [28]. Each end of the tetra-PEG is modified
with mutually reactive maleimide (tetra-PEGMA) and thiol
(tetra-PEG SH). We dissolved tetra-PEGMA and tetra-PEG
SH (Nippon Oil & Fat Corporation) in a phosphate-citrate
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FIG. 2. Osmotic pressure of the samples emulating gelation
process. The samples were prepared at a constant polymer
concentration (c ¼ 60 g=L) and molar mass of precursors
(M ¼ 10 kg=mol). By measuring Πtot and G, we obtained
Πmix ¼ Πtot þG in the gel state. As the connectivity p increases,
Π and Πtot decrease, and Πmix remains constant (blue curves).
After gelation (pgel ≤ p ≤ 1), the elasticity (red curve) increases.
Here, p (0 ≤ p ≤ 1) is controlled by nonstoichiometrically
mixing two types of precursors in an AB-type polymerization
system. Gel samples with a low connectivity (pgel ≤ p < 0.7)
were difficult to characterize, because of the outflow of small
polymer clusters.
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buffer with an ionic strength and pH of 200 mM and 3.8,
respectively. For gelation, we mixed these solutions with
equal molar massesM and equal concentrations c in various
mixing fractions s.We kept each sample in an enclosed space
to maintain humid conditions at room temperature
(T ≃ 298 K) to allow completion of the reaction.
We prepared the four-branched polymer (precursor)

solutions (p ¼ 0) by dissolving tetra-PEG MAwith molar
masses of M ¼ 10 and 40 kg=mol and initial concentra-
tions c0 ¼ 20–120 g=L. Herein, we define the polymer
concentration (c0 and c) as the precursor weight divided by
the solvent volume, rather than by the solution volume, to
extend the universality of the EOS (1) to higher concen-
trations (see Supplemental Material, Sec. S1 [29]). We
prepared the sol and gel samples that emulate the gelation
process by dissolving precursors withM ¼ 10 kg=mol. For
c0 ¼ 20 g=L, we set p ¼ 2s ¼ 0.1, 0.2, 0.25, 0.3, 0.35,
0.4, and 0.5 (sol samples). For c0 ¼ 40, 60, 80, and
120 g=L, we set p ¼ 2s ¼ 0.1, 0.2, and 0.3 (sol samples)
and 0.7, 0.8, 0.9, and 1 (gel samples). Section S2 of the
Supplemental Material describes the determination of these
measurement ranges [29].
We measured the osmotic pressures in the sol samplesΠ,

using controlled aqueous poly(vinylpyrrolidone) (PVP,
K90, Sigma Aldrich) solutions, whose concentration
dependence of osmotic pressure Πext was measured by
Vink [31] (Supplemental Material, Sec. S3 [29]). As shown
in the schematic in Fig. 3(a), each solution sample was
placed in a microdialyzer (MD300, Scienova) that had a
semipermeable membrane with a mesh size of 3.5 kDa. We
immersed each dialyzer in an aqueous polymer (PVP)
solution at a certain concentration cext with stirring.

Subsequently, each system achieved equilibrium at
Π ¼ Πext. (The achievement of swelling equilibrium was
assured. See Supplemental Material, Sec. S4 [29].) At that
time, each solution sample was changed in weight and
concentration from its initial to equilibrium states, as
represented by W0 → W and c0 → c, respectively.
Assuming a constant weight density and small deformation
for the sample, we calculate c as c ¼ c0=Q, where Q ¼
W=W0 is the equilibrium swelling ratio. In examining the
gelation process (e.g., Fig. 2), we evaluated Π of the “as-
prepared” (i.e., Q ¼ 1) sol samples at equal concentrations
c ¼ c0 with various values of p. Measuring Q for various
cext and interpolating the cext dependence of Q as a linear
function, we determined cext and Πext such that each sol
sample maintained its weight (Q ¼ 1) and concentra-
tion (c ¼ c0).
To evaluate the parameters M and c� from Π ¼ ΠðcÞ,

which were measured at each p, we used square-root plots
[1], as shown in Fig. 3(a). From the virial expansion (2), we
have Π̂ ¼ ½1þ ĉ=2þ ðγ − 1=4Þĉ2=2�2 þOðĉ3Þ. Together
with γ ≃ 1=4 (Supplemental Material, Sec. S5 [29]) for
certain few-branched polymer solutions, we have

ffiffiffiffiffiffiffiffiffi
Π=c

p
≃ffiffiffiffiffiffiffiffiffiffiffiffiffi

RT=M
p ½1þ c=ð2c�Þ� for small c=c�. Thus, the intercept
and slope of each fitting line in Fig. 3(a) give M and c�,
respectively, for each p. The obtained M and c� values are
consistent with the scaling prediction of c� ∼M1−3ν

(Supplemental Material, Sec. S6 [29]).
We measured the osmotic pressure in the as-prepared gel

samples Πmix via osmotic deswelling. As shown in the
schematic in Fig. 3(b), we immersed each gel sample
directly in the external aqueous polymer (PVP) solutions of
various concentrations cext, because the surfaces of the gels
function as semipermeable membranes. Subsequently, each
gel sample swelled or deswelled toward equilibrium at
Πmix þ Πel ¼ Πext, changing its weight and concentration
from the as-prepared to equilibrium states as represented by
W0 → W and c0 → c, respectively. The equilibrium
swelling ratio Q ¼ W=W0 was measured and interpolated
as a linear function of cext for each gel sample [examples
are given in Fig. 3(b)]. Using the cext dependence of Q, we
evaluated cext and Πext such that each gel sample
maintained its weight (Q ¼ 1) and concentration
(c ¼ c0). (This method is the same as the above method
to determine Π of the as-prepared sol samples.) Assuming
Πel ¼ −G [32], we evaluated Πmix ¼ Πext þG for
each as-prepared gel sample, where G is the shear modulus
as measured by rheometry (Supplemental Material,
Sec. S7 [29]).
Results and analysis.—The main panel in Fig. 4(a)

shows the c dependence of the osmotic pressure in both
the unreacted four-branched polymer solutions (p ¼ 0) and
the reaction-completed polymer gels (p ¼ 1). The experi-
mental results for the former and latter agree with the
universal EOS (1) for linear-polymer solutions and with
the semidilute scaling law Π ∝ c3ν=ð3ν−1Þ, respectively, in
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FIG. 3. Osmotic deswelling in external polymer solutions, used
to measure Π and Πmix, in (a) sol and (b) gel samples,
respectively. For each plot, the precursors are M ¼ 10 kg=mol.
Each line is the least-squares fit to the data for each p. (a) Square-
root plots of Π of sol samples on c0 ¼ 20 g=L for p ¼ 0, 0.1, 0.2,
0.25, 0.3, 0.35, 0.4, and 0.5. We immersed samples with a
microdialyzer in external polymer (PVP) solutions. We can
determine Π, because Π ¼ Πext at equilibrium. (b) Equilibrium
swelling ratio Q of gel samples on c0 ¼ 60 g=L for p ¼ 0.7, 0.8,
0.9, and 1 in the external polymer (PVP) solutions. We directly
immersed samples in external solutions of various concentrations
cext. We can determine Πmix, because Πmix ¼ Πext þG at
equilibrium.
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the wide concentration range c. With an increase in c, Π in
the polymer solutions (black curve) is asymptotic toΠmix in
the polymer gels (red line). This asymptotic relationship
suggests that Πmix of polymer gels is governed by the
semidilute scaling law described in Eq. (3) with K ≃ 1.1 for
polymer solutions.
The inset in Fig. 4(a) shows the p dependence of Π and

Πmix throughout the gelation process (0 ≤ p ≤ 1). In the sol
state (0 ≤ p < pgel),Π decreases as p increases, because the
average molar mass M increases. As c increases, the extent
of the decrease in the osmotic pressure itself decreases. In
particular, for c ¼ 120 g=L, Π and Πmix are constant
throughout the gelation process (0 ≤ p ≤ 1), because the
precursor solution is in the semidilute regime even at p ¼ 0.
In the gel state (pgel < p ≤ 1), Πmix is constant, even when
p increases. In general, the osmotic pressure is dependent
and independent of the average molar mass in the dilute and
semidilute regimes, respectively [2]. Thus, the constant Πmix
in the gel state (pgel < p ≤ 1) indicates that polymer gels are
always in the semidilute regime, because of the infinite
molar mass of the polymer networks.
We can interpret Π during the gelation process in the sol

state (0 ≤ p < pgel) according to the universal EOS (1). By
usingM and c� evaluated in Fig. 3(a) at each p, we changed
the state variables (from c and Π to ĉ and Π̂), yielding
the orange-filled circles in Fig. 1. Remarkably, the

osmotic pressure of the gelation process in the sol state
(p ¼ 0; 0.1;…; 0.5) is described by the universal EOS (1)
of polymer solutions, although these systems continue to
form multibranched polymer clusters. Considering this
finding in tandem with the semidilute scaling law observed
in the gel state (Πmix ∝ c3ν=ð3ν−1Þ), it is expected that Π̂mix in
the gel state (pgel < p ≤ 1) conforms to the semidilute
scaling law given by Eq. (3) of linear-polymer solutions
[red line in Fig. 4(a)] with K ≃ 1.1.
Based on this expectation, we propose a universal EOS

of osmotic pressure Πmix for polymer gels as

K ¼ Π̂mix

ĉ1=ð3ν−1Þ
≡Mc�1=ð3ν−1ÞΠmix

RTc3ν=ð3ν−1Þ
; ð4Þ

where K ≃ 1.1. We note that Π̂mix ĉ1=ð1−3νÞ is finite,
although both ĉ≡ c=c� and Π̂mix ≡ ΠmixM=ðcRTÞ diverge
to infinity, because gels correspond to infinite molar mass
M → ∞ and c� → 0. In Fig. 4(b), we demonstrate that
Π̂mix ĉ1=ð1−3νÞ converge to the universal value K ≃ 1.1,
which is independent of p and c, after gelation
(pgel ≤ p ≤ 1). Therefore, in the inset of Fig. 1, the gel
state is positioned at ð1=ĉ; Π̂mix ĉ1=ð1−3νÞÞ ≃ ð0; 1.1Þ (red
star). We obtained Fig. 4(b) by setting a constant value for
Mc�1=ð3ν−1Þ and substitutingΠ and Πmix [shown in the inset
of Fig. 4(a)] into Eqs. (3) and (4), respectively. (Further
details are given in Sec. S6 of Supplemental Material [29].)
This procedure demonstrates that we can determine Πmix
for any polymer gel by measuring the nonuniversal para-
meter Mc�1=ð3ν−1Þ.
Concluding remarks.—We experimentally measured the

osmotic pressure of polymer gels throughout the gelation
process. We find that the universal EOS (1) of osmotic
pressure for linear-polymer solutions describes the osmotic
pressure throughout the gelation process involving both the
sol and gel states (Fig. 1). In the sol state, both Π̂ and ĉ
continuously increase according to the universal EOS (1)
with an increase in the average molar mass (orange-filled
circles in Fig. 1). In the gel state, the osmotic pressure
of the polymer gels is universally governed by the semi-
dilute scaling law (4) [red star in Figs. 1 and 4(b)]. Here,
both Π̂ and ĉ diverge to infinity, because the gel state
corresponds to the average molar mass M → ∞ and the
overlap concentration c� → 0. In addition, we have
demonstrated that Eq. (4) enables the determination of
Πmix for any polymer gel by measuring a nonuniversal
parameter Mc�1=ð3ν−1Þ.
Our results provide a new system for demonstrating

universality in statistical physics because the universal EOS
(1) relates to the OðnÞ-symmetric universal classes [4]. In
addition, a universal EOS and universal thermodynamics
are of great interest to those studying strongly correlated
fermions [33]. Our findings can stimulate research in
these fields.
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FIG. 4. Osmotic pressure during gelation process. The molar
mass of precursors is M ¼ 10 kg=mol, corresponding to the
overlap concentration c� ≃ 58 g=L at p ¼ 0. (a) Osmotic pres-
sure in the unreacted four-branched polymer solutions (black
circles) and in the reaction-completed polymer gels (red-filled
circles). The former and latter agree with the universal EOS (1)
(black curve) and with the semidilute scaling law Π ∝ c3ν=ð3ν−1Þ
(red line), respectively. Here, 3ν=ð3ν − 1Þ ≃ 2.31 because
ν ≃ 0.588. The black dotted curve is the virial expansion (2)
up to the third-order terms. As p increases (green triangles),
Π decreases in the sol state (0 ≤ p < pgel) and remains constant
in the gel state (pgel < p ≤ 1). Inset: osmotic pressure during
the gelation process at a constant polymer concentration
c ¼ c0 ¼ 40, 60, 80, and 120 g=L. The green triangles
(c ¼ 40 g=L) are the same as those in the main panel. The blue
circles (c ¼ 60 g=L) are used in Fig. 2. (b) Connectivity (p)
dependence of Π̂ ĉ1=ð1−3νÞ. The symbols and data are the same as
those in the inset of (a). In the gel state, Π̂ ĉ1=ð1−3νÞ converge to the
universal value K ≃ 1.1, which is independent of p and c.
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