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Although the elastic modulus of a Gaussian chain network is thought to be successfully described by
classical theories of rubber elasticity, such as the affine and phantom models, verification experiments are
largely lacking owing to difficulties in precisely controlling of the network structure. We prepared well-
defined model polymer networks experimentally, and measured the elastic modulus G for a broad range
of polymer concentrations and connectivity probabilities, p. In our experiment, we observed two features
that were distinct from those predicted by classical theories. First, we observed the critical behavior
G ∼ jp − pcj1.95 near the sol-gel transition. This scaling law is different from the prediction of classical
theories, but can be explained by analogy between the electric conductivity of resistor networks and the
elasticity of polymer networks. Here, pc is the sol-gel transition point. Furthermore, we found that the
experimentalG − p relations in the region above C� did not follow the affine or phantom theories. Instead, all
theG=G0 − p curves fell onto a single master curve whenGwas normalized by the elastic modulus at p ¼ 1,
G0.We show that the effectivemedium approximation forGaussian chain networks explains thismaster curve.
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Understanding the elasticity of polymer networks, such
as rubbers and gels, is crucially important for materials
science and biophysics. The elastic modulus, which is one
of the most basic properties of rubber elasticity, has been
studied for several decades and is thought to be success-
fully described by the classical theories such as the affine
model and the phantommodel [1–3]. However, outstanding
problems are clearly observed when the classical theories
are applied to networks with topological defects or gelation
processes.
The first problem is that the classical theories of rubber

elasticity fail in describing the critical behavior near the sol-
gel transition, as pointed out by de Gennes [4,5]. The elastic
modulus G near the critical region is expected to follow a
power law: G ∼ jp − pcjf. Here, p and pc are the fraction
of bonds that connect neighbor sites and the percolation
threshold, respectively. The classical theories predict f ¼ 3
[3,4], whereas de Gennes and Daoud predict f ¼ 1.9 and
2.6, respectively [5,6]. The validity of these predictions
is still unclear [7] because experimental values of f are
very scattered, ranging from 2 to 4 [8–17]. One reason for
these scattered experimental values is that the connectivity
probability, p, is difficult to quantify experimentally.
Therefore, instead of jp − pcj, parameters such as time,
jt − tcj, or temperature, jT − Tcj, during the gelation
process have been used. Here, tc and Tc are defined as
time and temperature, respectively, at the critical point.
Though these approximations for jp − pcj should be valid

very near the critical point, the validity in the range in
which previous experiments were conducted is unclear.
The second problem can be seen in the absolute value of

G far from the critical region. In this region, the elastic
modulus is thought to be described by the affine, phantom,
or junction-affine models [1–3,18,19]. These theories are
summarized by the following equation:

G ¼ ½νðC0; pÞ − hμðC0; pÞ�kBT: ð1Þ

Here, C0, kB, T, ν, and μ are the initial polymer concen-
tration, Boltzmann’s constant, the absolute temperature, and
the number densities of elastically effective chains and
crosslinks, respectively. Note that ν and μ depend on C0

and p. The empirical parameter h has a value of 0 for the
affine model, 1 for the phantom model, and 0 < h < 1 for
the junction-affine model. This equation is important not
only because the network connectivity and parameters can
be evaluated from simple stretching measurements, but also
because several theories of elasticity and rheological proper-
ties can be constructed based on this relation [20–26].
Though Eq. (1) is a fundamental equation for the elasticity
of a polymer network, its validity has not been investigated
for a broad range of C0 and p values. Akagi et al. conducted
verification experiments of Eq. (1) by varying C0 only
around p ¼ 1, and showed that the experimental value of the
elastic modulus falls somewhere in between the two limits,
i.e., the phantom and affine models. However, they did not
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conduct experiments for a broad range of C0 and p values
and found no general correlation between G and network
defects. Owing to the uncertainty of Eq. (1), in most cases,
the affine model and phantom model are used for rubbers
and gels empirically.
One of the reasons why these problems remain unsolved

is the lack of precise and reliable experiments with
precisely controlled network parameters. Therefore, in
this Letter, we constructed well-defined model polymer
networks, and evaluated G for a broad range of both C0

and p. From these experiments, we determined the critical
exponent f in the critical region. Furthermore, our exami-
nation of the affine and phantom models showed that all the
G − p curves fell onto a single master curve, which cannot
be explained by the classical theories, when we normalized
G by the elastic modulus at p ¼ 1, G0.
Here, we used a model polymer network called Tetra-

PEG gel [27], which is formed by A-B–type cross-end
coupling of two tetra-arm poly(ethylene glycol) (Tetra-
PEG) units. Previous neutron scattering, NMR, and tearing
studies of Tetra-PEG gels [28–30] confirmed that (i) inho-
mogeneity of polymer concentration is largely suppressed,
(ii) elastically ineffective loops are reduced, and (iii) there
are no trapped entanglements because of the well-defined
prepolymer architecture. In a previous study [27], Tetra-
PEG prepolymers were equipped with N-hydroxysuccini-
mide (NHS) or amine groups. However, because the NHS
groups underwent spontaneous hydrolysis, the amine
groups remained unreacted in the system; this makes the
connectivity defects. In addition, the connectivity proba-
bility p could not be precisely evaluated by IR measure-
ments owing to the presence of the strong absorption of
dissociated NHS. Therefore, we newly prepared Tetra-PEG
gels using Tetra-PEG prepolymers modified with mutually
reactive maleimine (Tetra-PEG-MA) and thiol (Tetra-PEG-
SH) (Fig. 1). We evaluated the time dependence of G and p
using rheological and UV measurements.
Samples were prepared by mixing buffer solutions of

two kinds of four-arm star polymers, i.e., tetra-maleimide-
teminated PEG (Tetra-PEG-MA) and tetra-thiol-terminated
PEG (Tetra-PEG-SH) (Nippon Oil and Fat Co.). The
molecular weights, Mw, of Tetra-PEG-MA and Tetra-
PEG-SH were matched at 20 kg=mol. In order to control
the reaction rate, the polymers were dissolved in phos-
phate-citrate buffer and the pH of the buffer was (i) pH 3.8

for 10 and 20 mg=mL, (ii) pH 3.4 for 40 mg=mL, and
(iii) pH 2.6 for 60–120 mg=mL.
By definition, the connectivity probability p is the con-

nection probability between neighboring sites. Therefore, in
thisLetter,p is defined as the ratio between reactedmaleimide
and the total number of arm ends for Tetra-PEG-MA,
i.e., p ¼ f½MA�ð0Þ − ½MA�ðtÞg=4½Tetra-PEG-MA�. Here,
½MA�ðtÞ and [Tetra-PEG-MA] are the concentration of
maleimide at time t and the initial concentration of Tetra-
PEG-MA, respectively. To evaluate ½MA�ðtÞ, we measured
the time course of theUVspectrumat 310nm(JASCOV-630,
Nihon-bunko, Japan), as shown in Fig. 2. Here, the UV
absorption at 310 nm is assigned to maleimide, as demon-
strated in Fig. S1 (see Supplemental Material [31], Sec. I).
Some subreactions such as auto-oxidation of thiols and ring-
opening of maleimides are well known to occur in solution,
and could occur prior to or during hydrogel formation.
However, as discussed in Fig. S1, these subreactions are
much slower than the main reaction, i.e., the formation of a
thioether bond, and therefore we can neglect them. We
observed the decrease of maleimide to follow a second-order
reaction, as shown in Fig. S2. We estimated ½MA�ðtÞ from
A310ðtÞ, based on the proportional relation between these
parameters depicted in Fig. S2 (see Supplemental Material
[31], Sec. II).We alsomeasured the time course of the storage
elastic modulus (G0) and the loss elastic modulus (G00) at a
constant frequency (1 Hz) and a strain (2%) by using a
rheometer (MCR501, Anton Paar, Austria). The inset of
Fig. 2 shows the time courses of G0 and G00 during gelation
process (40 mg=ml). G0 crossed over G00 at around 5490 s,
and we assumed that this point corresponds to the sol-gel
transition point or the percolation threshold. The connectivity
probability at the percolation threshold, pc, was determined
as p at time when G0 and G00 crossed over in the rheological
measurements. From the UV measurements and rheological
measurements, we obtained a relation between G and p, as
shown below.
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FIG. 1. Structures for Tetra-PEG prepolymers.
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FIG. 2. Time dependence of the UVabsorbance at 310 nm for a
polymer concentration of 40 mg=mL. Inset: Time dependence of
the storage elastic modulus and the loss elastic modulus.
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Weplottedpc asa functionofconcentration,as shownin the
inset of Fig. 3. The dotted line in the inset corresponds to the
percolation threshold of a diamond lattice (pc ¼ 0.39). Note
that the overlapping concentration, C�, is around 40 mg=mL
according to our previous work [28]. We found that pc does
not depend on polymer concentration and is in close agree-
ment with the percolation threshold of a diamond latticewhen
the polymer concentration is near or above C�. These results
clearly confirm the ideality of Tetra-PEG gel, the accuracy of
the experimental data, and the validity of percolation theory
[36]. Note that the percolation threshold for a z ¼ 4 Bethe
lattice is 0.33, which indicates that this network is better
described by percolation theory than a Bethe lattice. Here, z is
the coordination number, i.e., the number of arms in a single
tetrapolymer. On the other hand,pc increasedwith decreasing
polymer concentration when the polymer concentration is
below 20 mg=mL. This increase of pc suggests that higher
connectivity is necessary for forming an infinite cluster
because the space is not fully filled with polymers below
20 mg=mL. G is plotted as a function of p − pc in Fig. 3.
It should be noted that this is the first experiment in which G
is plotted as a function of p − pc near the critical region.
According to previous studies [8,37],G0 strongly depends on
the frequency near the critical point, which is problematic
because the plateau values ofG0 are required for this analysis.
However, as demonstrated in Fig. S3, we confirmed that G0
does not depend on the frequency when p − pc > 0.03.
In addition, we observed a deviation from single power-law
behavior at p − pc ≥ 0.3 because this range is out of critical
region, as shown in a previous study [38]. Thus, we fitted G
to a power law for 0.03 ≤ p − pc ≤ 0.2 to evaluate f. The
value of the critical exponent f extracted from the figure is
1.95� 0.05. This result indicates that the elasticity of gels is
analogous to the conductivity of a resistor network, as
predicted by de Gennes [5].

Next, we focus on the region far from the sol-gel transition
point. First, we briefly reviewprevious results for the classical
theories of rubber elasticity, such as affine and phantom
models. As mentioned above, it is well established that the
elastic modulus falls somewhere in between the two limits,
i.e., phantom and affine models, as indicated by Eq. (1)
[1–3,18,19]. For example, Akagi et al. showed that phantom
model is valid around C� and around p ¼ 1, whereas
experimental elastic modulus values deviate from phantom
model and approach affine model as the polymer concen-
tration increases. In addition, in the previous study, the p
dependence ofGwas only examined in the region aroundC�
and the phantom model was found to reproduce the exper-
imental results well [39]. However, to the best of our
knowledge, the p dependence of G in the region well above
C� is poorly understood.Here, thep dependenceofG from40
to 100 mg=mL and 120 mg=mL is plotted in Figs. S4 and
4(a), respectively. In order to plot the theoretical predictions
for affine model and phantom models, we estimated ν and μ
by using treelike theory (see Supplemental Material [31],
Sec. IV). Note that 40 mg=mL is theC� value in this Letter as
determined in the previous study [28]. As shown in Fig. S4(a)
[31], the p dependence of G around C� is close to the
theoretical prediction of the phantommodel, as discussed in a
previous study [39]. However, as the concentration increases,
the experimental G − p relations gradually deviate from the
prediction of the phantommodel. Here, we definedG0 asG at
p ¼ 1 and evaluatedG0 values by a fitting to a linear function
for p > 0.8 and extrapolating to p ¼ 1. The extrapolated
values (G0) are plotted in the inset of Fig. 4(a) together with
the predictions of affine and phantom models. As shown in
the inset of Fig. 4(a), the elastic modulus aroundC� coincides
with the prediction of the phantommodel, whereasG0 values
deviate from the phantom model and approach the affine
model as the concentration increases. Note that these data are
highly reproducible, as shown in Fig. S5 [31]. This deviation
from the phantom model does not originate from trapped
entanglements because the tearing test proved that Tetra-PEG
gels have no trapped entanglements [28]. These results
agree with the previous observation that the elastic modulus
falls somewhere between the two limits, i.e., phantom and
affine models [18,19,28]. However, the classical theories
cannot predict where in this range the elastic modulus falls.
To explore this point, we normalized G by G0. As shown in
Fig. 4(b), all the G=G0 − p curves fall onto a single master
curve. This master curve cannot be explained by the classical
theories of rubber elasticity, as shown by the theoretical
predictions of G=G0 − p for the affine model and phantom
model plotted in Fig. S6(a) [31], which do not overlap
each other.
To understand this master curve, we examined the

effective medium approximation. EMAwas first developed
to describe the conductivity of bond-disordered conduct-
ance networks [40] and was subsequently extended to
describe diffusivity in porous media [41] and the elasticity
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of Hookean spring networks [42]. Recently, significant
progress in the EMA has allowed its application to non-
linear elasticity and the dynamical rheology of networks of
intracellar biopolymer [43–47]. In a previous study [39],
we generalized this EMA theory to the rubber elasticity of
Gaussian chain networks. In the EMA theory, we assume
that (i) a chain connecting node i to j has potential Uij ¼
g0l2ij=2 and (ii) the position of crosslinks can be determined
to achieve the force balance. Here, g0 and lij are the elastic
constant of a single chain and the distance between node i
and j, respectively. One should note the following two
points. First, the potential in this study is different from that
of a Hookean spring network, i.e., Uij ¼ g0ðlij − l0Þ2=2,

where l0 is the natural length of a Hookean spring.
Therefore, our system (l0 ¼ 0) belongs to a different
universality class from Hookean spring networks (l0 ≠ 0)
[48,49], but the same class as the electric conductivity
problem. Second, situation (ii) corresponds to the Kirchoff
law for the electric conductivity of resistor networks. The
main assumption in the EMA is that the bond-disordered
network has the same mechanical properties as a non-
disordered network with the renormalized elastic constant
gm, as depicted in Fig. 4(b). This value is determined by
requiring that the strain fluctuations of nodes in the
disordered network from nondisorder network should have
a zero average. From this assumption, the ratio of the elastic
modulus at p, G, to that at p ¼ 1, G0, should be equal to

G=G0 ¼ ðp − 2=zÞ=ð1 − 2=zÞ: ð2Þ

This approximation is valid far above the percolation thresh-
old because the strain fluctuation in the disordered network
from nondisordered network becomes quite large near the
percolation threshold and the mean-field approximation is
broken down as discussed in the previous studies [39,50,51].
As a result, EMApredictsG ∼ jp − pcj1 near the percolation
threshold, which is different from our experimental results.
Therefore, in this section, we focus on the region far above
the percolation threshold as mentioned above. As shown in
Fig. 4(b), the prediction of the EMA reproduces the master
curve of the G=G0 − p relation well. This excellent agree-
ment strongly indicates the validity of the EMA framework
and the strong correlation among many kinds of networks
such as polymer networks, Hookean spring networks,
conductance networks, and porous media.
One should note the relation between the classical theories

and the EMA. Importantly, when we focus on the p depend-
ence of normalizedG, the phantommodel coincides with the
EMA, whereas the affine does not. To visualize this point, the
theoretical predictions of G=G0 − p for the phantom model
and affine model are plotted with that of EMA in Figs. S6(b)
andS6(c) [31].Whenwe focusonC� concentration, forwhich
the phantom model should be applicable, there is no observ-
able difference between the EMA and the phantom model
although the EMA is not based on the classical theories of
rubber elasticity.Thispointwasoneof themain findings in the
previous study based on experiments looking only on C�
concentration and accompanying simulations [39]. On the
other hand, when we focus on theC0 > C� region, where the
affine model should be applicable, a difference between the
EMA and the affine model forp > 0.6 is observed, as shown
in Fig. S6(c), and we can distinguish which theories are valid.
This feature has not been pointed out or proved previously
owing to the lackof experiments for abroad rangeofC0 andp.
Finally, we examined generalization of the present

results to more disordered materials. In order to generalize
the present results, it is necessary to rewrite equations by
using ν or μ instead of p because ν or μ are experimentally
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accessible in disordered materials. According to our results,
the EMA states that G should always be proportional to
p − 2=z, (G ∝ p − 2=z). Moreover, the theoretical predic-
tion of G=G0 − p for the phantom model and the EMA
coincide, as depicted in Fig. S6(b) [31]. Because the ν − μ
term contributes to the p dependence of G in the phantom
model, the above coincidence implies that ν − μ is propor-
tional to p − 2=z (i.e., ν − μ ∝ p − 2=z). Therefore, G
should be proportional to ν − μ (i.e., G ∝ ν − μ). This
expression indicates that elastically effective loops play an
important role because ν − μ corresponds to the number of
elastically effective loops [3]. To summarize our Letter, G
can be described as

G ¼ ðν − μÞg1: ð3Þ
Here, g1 is a proportionally constant. Note that this g1 value
varies with the initial polymer concentration, C0, which is
different from the phantom model, where g1 ¼ kBT. This
functional form shown by Eq. (3) should be useful and
applicable for materials that are more disordered than the
Tetra-PEG system.
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