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Nonconservative Reflectionless Inverse Scattering and

Soliton Solutions of an Associated Nonlinear

Evolution System

By Yutaka Kamimura

Abstract. A nonconservative, reflectionless inverse scattering
problem is discussed on an energy dependent Schrödinger equation.
A scattering transform from the potential of the equation to the re-
flectionless scattering data is completely characterized by a function
induced from a Gelfand-Levitan-Marchenko equation, with an expres-
sion of the inverse scattering transform in terms of the function. Based
upon the inverse scattering theory, we establish an inverse scattering
method by which N -soliton solutions of a nonlinear evolution system
(Boussinesq system) are constructed.

1. Results

The objective of this paper is, firstly, to establish a reflectionless inverse

scattering theory on an energy dependent Schrödinger equation, and sec-

ondly, to apply the theory to an isospectral flow associated with the equation

for finding soliton solutions of the nonlinear evolution system. The energy

Schrödinger equation we are concerned with is

f ′′ + [k2 − (U(x) + 2k Q(x))]f = 0, −∞ < x < ∞.(1.1)

Here functions U(x), Q(x) on R are decreasing rapidly as x = ±∞, and

we assume that U(x) is real-valued and Q(x) is purely imaginary-valued.

Let ψ→(x, k) and ψ←(x, k) be the scattering solutions, namely, solutions of

(1.1) having the asymptotics:

ψ→(x, k) ∼
{

eikx + s12(k)e−ikx, x → −∞,

s11(k)eikx, x → +∞;

ψ←(x, k) ∼
{

e−ikx + s21(k)eikx, x → +∞,

s22(k)e−ikx, x → −∞.
(1.2)
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The solution ψ→(x, k) represents scattering of a free wave eikx coming from

−∞ scattered by the potential (U(x), Q(x)) with the transmitting wave

s11(k)eikx and the reflecting wave s12(k)e−ikx. Similarly ψ←(x, k) represents

scattering of the wave e−ikx from +∞. The inverse scattering problem is to

recover the potential (U(x), Q(x)) from the scattering matrix

S(k) =

(
s11(k) s12(k)

s21(k) s22(k)

)
, k ∈ R,

defined in terms of the transmission coefficients s11(k), s22(k), and the re-

flection coefficients s12(k), s21(k).

Unlike in the case Q(x) is real-valued, S(k) is not a unitary matrix in our

case where Q(x) is purely imaginary, in other words, the scattering for (1.1)

is not conservative. However it admits a coupled unitarity: S(k)S−(k)∗ = I,

where

S−(k) =

(
s−11(k) s−12(k)

s−21(k) s−22(k)

)
, k ∈ R,

denotes the scattering matrix for the potential (U,−Q). In addition, S(k)

has a conjugate symmetry: S(−k) = S(k).

Scattering is said to be reflectionless in the case

s21(k) = s12(k) = 0 for any k ∈ R.(1.3)

In the reflectionless scattering, the transmission coefficient s11(k)(= s22(k))

is a continuous function on R (see Lemma 2.2) and it can be analytically

continued to a meromorphic function in the upper half plane C+ having at

most finitely many poles kn, n = 1, · · · , N . Let f±(x, k) be the Jost solu-

tions of (1.1) with the asymptotic behaviors f±(x, k) ∼ e±ikx as x → ±∞.

Then, at the poles k = kn (bound states), there exist nonzero constants

d+
n (coupling constants) such that f−(x, kn) = d+

n f+(x, kn), n = 1, · · · , N .

Furthermore the transmission coefficient s−11(k) for (U,−Q) coincides with

s11(k) (see Proposition 2.3). Hence, in the reflectionless scattering, there ex-

ist also d−n �= 0 such that f−− (x, kn) = d−n f
−
+ (x, kn), n = 1, · · · , N , associated

with the Jost solution f−± (x, k) for the potential (U,−Q).

By means of coupling constant d±n , we define constant c±n by

c±n = −iResk=kns11(k) × d±n , n = 1, · · · , N,(1.4)
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which is a generalized concept of the norming constant used in the inverse

scattering theory for the standard Schrödinger case (Marchenko [25, 26],

Faddeev [8], Deift and Trubowitz [6]), namely, the case Q ≡ 0 in (1.1). One

can show that c±n are nonzero (complex) numbers by the Poisson formula.

In our reflectionless scattering the triplet {0, kn, c±n }, n = 1, · · · , N , are

employed as scattering data, in which 0 indicates merely the reflectionless

condition (1.3), kn ∈ C+, c±n ∈ C \ {0}. Given triplet {0, kn, c±n }, we define

N ×N matrices B± and column vectors v± by

B± =

(
c±�

e(ik�+ikj)x

ik� + ikj

)
, v± :=

(
c±�

eik�x

ik�

)
,(1.5)

and set

∆±(x) := det(I −B+B−)(1.6)

+ ( eik1x · · · eikNx )(I −B∓B±)̃ (B∓v± − v∓),

where I is the N ×N identity matrix, ( eik1x · · · eikNx ) is a 1×N matrix

and (I − B∓B±)̃ denote the cofactor matrices of I − B∓B±. With the

functions ∆±(x) defined above, the main result on the reflectionless inverse

scattering theory concerning (1.1) is stated as follows.

Theorem 1.1. A prescribed triplet {0, kn, c±n } is the scattering data

for some (U,Q) ∈ S ×S if and only if {0, kn, c±n } satisfies the following two

conditions:

(I) there exists a permutation σ ∈ SN such that kσ(n) = −kn, c
±
σ(n) = c±n ;

(II) ∆±(x) > 0 on R.

Under these conditions, (U,Q) is uniquely determined by




Q(x) = − 1
2i

d
dx (log ∆+(x) − log ∆−(x)) ,

U(x) + Q(x)2 = −1
2

d2

dx2 (log ∆+(x) + log ∆−(x)) .

(1.7)

Here S denotes the Schwartz class on R.

Some remarks on Theorem 1.1 are helpful at this stage:
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(1) A characteristic of (1.1) with purely imaginary Q(x) is a symmetry

s11(−k) = s11(k) on C+ with respect to the imaginary axis, which

stems from f±(x,−k) = f±(x, k) for each k ∈ C+. It follows from

this observation that the condition (I) in the theorem is necessary for

{0, kn, c±n } to be the scattering data for some (U,±Q). For this reason

the symmetric group SN acts in the theory. The bound states either

lie on or are symmetrically located with respect to the imaginary axis

in C+. In particular, if N is odd then an odd number of bound states

kn lie on the imaginary axis in C+.

(2) Linear algebra tells us that det(I −AB) = det(I −BA) and (AB)̃ =

B̃ Ã . This enables us to see that, under the requirement (I), the

functions ∆±(x) defined in (1.6) are real-valued functions on R. Hence

Q(x) defined firstly by inversion formula (1.7) is purely imaginary and

U(x) defined secondly by it is real.

(3) Conclusion in the theorem does not depend on a choice of function

spaces, since, although we chose to work on a wider class, e.g., under

condition (2.1), potentials U , Q are exponentially decaying as |x| → ∞
and so, belong necessarily to the Schwartz class S.

(4) Since the functions ∆±(x) are real on R and tend to 1 as x → +∞
due to Re ikn < 0, the condition (II) is equivalent to that ∆±(x) have

no zeros on R. By definition, ∆±(x) are entire functions. Hence

zeros of them are discrete. Whether ∆±(x) have zeros on R or not

is determined by a triplet {0, kn, c±n }, which is said to be regular if

neither ∆+(x) nor ∆−(x) has zeros on R, and is said to be singular

if either or both of these has zeros there. In the case {0, kn, c±n } is

singular no pairs (U,Q) of continuous potentials on R can realize a

prescribed scattering data {0, kn, c±n }.

(5) The reflectionless scattering for (1.1) with purely imaginary Q is com-

pletely controlled by functions ∆±(x); the range of the scattering

transform (U,Q) �→ {0, kn, c±n } (ST) as well as the inverse of it (IST)

is described by the functions.

(6) The potential (U,Q) determined from {0, kn, c±n } satisfies (see Propo-
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sition 3.3)

∫ ∞
−∞

Q(x)dx = 0,

∫ ∞
−∞

[U(x) + Q(x)2]dx = 4i

N∑
n=1

kn.

In particular, these quantities are independent of the constants c±n .

(7) If ikn < 0 and c+n = c−n > 0 for each n in a triplet {0, kn, c±n } then

∆+(x) = ∆−(x) = (det(I −B+))2 > 0 (see Corollary 3.8), and hence,

by (1.7), Q(x) ≡ 0, U(x) = −2 d2

dx2 log det(I − B+), which is a case in

the reflectionless inverse scattering theory on the standard Schrödinger

equation (Kay and Moses [22], Gardner, Greene, Kruskal and Miura

[9]); therefore Theorem 1.1 gives a generalization of the theory.

A mathematical research on inverse scattering theory for energy depen-

dent Schrödinger equation (1.1) was begun by Jaulent [13, 14], Jaulent and

Jean [15, 16]. They derived the following representation of the Jost solutions

f+(x, k) via the transformation kernel A(x, y) (see [15, Lemma 4.1]):

f+(x, k) = ei
∫ ∞
x Q(r)dreikx +

∫ ∞
x

A(x, y)eikydy, k ∈ C+.(1.8)

This representation is valid even in the case where U , Q are complex-valued

and A(x, y) is uniquely determined from (U,Q) as a (unique) solution of the

integral equation

A(x, y) =
1

2

∫ ∞
x+y

2

U(s)ei
∫ ∞
s Q(r)drds− i

2
Q

(
x + y

2

)
e
i
∫ ∞
x+y

2
Q(r)dr

(1.9)

+
1

2

∫ ∞
x+y

2

U(s)ds

∫ y+s−x

s
A(s, u)du

+
1

2

∫ x+y
2

x
U(s)ds

∫ y+s−x

y+x−s
A(s, u)du

+ i

∫ ∞
x

Q(s)A(s, y + s− x)ds

− i

∫ x+y
2

x
Q(s)A(s, y + x− s)ds, x ≤ y.

Transformation kernels are connected with scattering data via the so-called

Gelfand-Levitan-Marchenko (GLM) equations.
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Such an equation for (1.1) was found by [15], based on which the paper

established a recovery procedure of a pair of real U , Q from the scattering

matrix in the absence of bound states (N = 0). A complete solution in the

case N = 0 corresponding to [6] was obtained by Kamimura [19]. Inverse

scattering problem for (1.1) with bounds state is still open although the

problem for a single bound state was studied by Sattinger and Szmigielski

[31] as well as, recently, for the reflectionless case has been solved by [20].

The nonconservative case Q(x) is purely imaginary was extensively studied

by Aktosun, Klaus, and van der Mee [2, 3], where sufficient conditions for

the unique solvability of the associated GLM equation were obtained, and by

means of the knowledge, (U,Q) are recovered from scattering data including

information on bound states.

The proof of Theorem 1.1 is given in Sections 2, 3. In course of the

proof we find that the order of poles kn is one, namely, every pole kn,

n = 1, · · · , N , is simple.

As an application of Theorem 1.1 we have

Example 1.2. In the case N = 1, definition (1.6) becomes

∆±(x) = 1 − c∓1
e2ik1x

ik1
+ c+1 c

−
1

e4ik1x

(2ik1)2
,

where −2ik1 =: b > 0 and c±1 ∈ R due to condition (I). From asymptotic

behaviors of this function as x → ±∞, it turns out that c+1 c
−
1 > 0 is nec-

essary for (II) to hold. By an elementary discussion on quadratic functions

∆± of ebx

b > 0 it follows that condition (II) is satisfied if and only if c+1 > 0,

c−1 > 0. Then, by applying the inversion formula (1.7) to ∆± and observing

that ∆±∆±′′ −
(
∆±′
)2

= 2bc∓1 e
−bx∆∓, potential (U,Q) corresponding to

{0, k1, c
±
1 } is determined as

iQ(x) = −
e−bx(c+1 − c−1 )

(
1 − c+1 c

−
1
e−2bx

b2

)
(
1 +

2c−1 e−bx

b + c+1 c
−
1
e−2bx

b2

)(
1 +

2c+1 e−bx

b + c+1 c
−
1
e−2bx

b2

) ,(1.10)
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U(x) + Q(x)2

(1.11)

= −be−bx
c+1

(
1 +

2c−1 e−bx

b + c+1 c−1
e−2bx

b2

)3

+ c−1

(
1 +

2c+1 e−bx

b + c+1 c−1
e−2bx

b2

)3

(
1 +

2c−1 e−bx

b + c+1 c−1
e−2bx

b2

)2 (
1 +

2c+1 e−bx

b + c+1 c−1
e−2bx

b2

)2 .

If c+1 = c−1 > 0 then Q ≡ 0 and U are the reflectionless potentials with a

single bound state for the standard Schrödinger equation.

The latter half part of the present paper is devoted to a construction of

soliton solutions of {
ut + wx + uux = 0,

wt + uxxx + (uw)x = 0.
(1.12)

This evolution system, which is viewed as a Boussinesq system (see Broer [5],

Kupershmidt [24], Ablowitz and Clarkson [1]), is a recast of an isospectral

flow 


1
iQt − 6QQx − Ux = 0,

1
iUt − 4QxU − 2QUx + Qxxx = 0,

(1.13)

associated with energy dependent Schrödinger equation (1.1) via the trans-

formation

iQ = −u

4
, U = −w

4
+

u2

16
(1.14) (

⇐⇒ u = −4iQ, w = −4(U + Q2)
)
.

By this transformation, inversion formula (1.7) is rewritten as


u(x, t) = 2
∂

∂x

(
log ∆+(x, t) − log ∆−(x, t)

)
,

w(x, t) = 2
∂2

∂x2

(
log ∆+(x, t) + log ∆−(x, t)

)
,

(1.15)

where ∆±(x, t) are functions defined by (1.6) with c±n (t) = c±n (0)e∓4k2
nt.

Notice that (u(x, t), w(x, t)) is real because ∆±(x, t) are real-valued that

stems from the purely imaginaryness of Q.
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The following result (the proof will be given in Section 5) guarantees

that (u(x, t), w(x, t)) defined by (1.15) are solutions of (1.12).

Theorem 1.3. Let kn, c
±
n (0), n = 1, · · · , N , satisfy conditions (I), (II)

in Theorem 1.1 and set c±n (t) = c±n (0)e∓4k2
nt. Then (u(x, t), w(x, t)) defined

by (1.15) satisfies (1.12) as long as ∆±(x, t) > 0 on R.

The study on integrability of the Boussinesq system (1.12) was begun by

Kaup [21], in which soliton solutions of it can be found. In Kaup’s solutions,

w tend to nonzero constants as x → ±∞. On the other hand, our soliton

solutions defined by (1.15) tend to zero then. Originally Kaup’s solution

was found from the inverse scattering approach for a Schrödinger equation

with k2 + m2, m �= 0, in place of k2 in (1.1). Inverse scattering theory for

the Schrödinger equation has been developed by Tsutsumi [33], Sattinger

and Szmigielski [32], van der Mee and Pivovarchik [34]. Hirota [10] obtained

soliton solutions of the Boussinesq system as a reduction of solutions of the

first modified KP (Kadomtsev-Petviashvili) equation. Moreover Hirota [11]

established a way by which exact solutions of the Boussinesq system can

be obtained from solutions of the first modified KP equation in Wronskian

forms. Sachs [29, 30] used a Painlevé analysis, an expression via tau func-

tions (similar to formula (1.15)) to find rational solutions of the system. In

addition Matveev and Yavor [27] found a family of almost periodic solutions.

For related topics, refer to Alber, Luther, and Miller [4], El, Grimshaw, and

Komchatnov [7]. Among of these papers, soliton solutions in [10, 11] are

most closely related with solutions in the present paper. Although Hirota’s

solutions and our solutions defined by (1.15) are mutually different, we shall

discuss the difference and a similarity in detail in Section 6 of the present

paper.

Our strategy for constructing N -soliton solutions of (1.12) consists in an

inverse scattering method in Figure 1 based upon the scattering transform

(ST) and its inverse transform (IST) established in Theorem 1.1.

The inverse scattering method in Figure 1 will be established in Section

4 (see Proposition 4.1). The method means that if Cauchy problem (1.12)

admits a rapidly decreasing solution then it is constructed by (1.15). On the

other hand Theorem 1.3 asserts that the assumption can be dropped. The

proof will be given in Section 5 by checking that the pair (u(x, t), w(x, t))

of functions constructed above is indeed a solution of the Cauchy problem,
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Fig. 1. Inverse scattering method.

based upon an observation (Proposition 4.2) of a character of (1.13). It

follows from item (6) after Theorem 1.1 that our solution (u(x, t), w(x, t))

satisfies ∫ ∞
−∞

u(x, t)dx = 0,

∫ ∞
−∞

w(x, t)dx = −16i
N∑

n=1

kn (> 0).

Notice that the mass of wave w(x, t) is conserved as a positive quantity.

The Boussinesq system (1.12) can be interpreted as a model of wave

propagation of shallow water, where u = u(x, t) represents the velocity at

a horizontal displacement x and w = w(x, t) represents the elevation of

wave’s surface above the bottom. Actually, the first equation in (1.12) is

no other than the incompressible Euler equation ∂v
∂t + v · ∇v = −1

ρ∇p of

one-dimensional v = (u, 0) with ∇p = ρg ∂w
∂x , where ρ is the density, and the

second equation is understood as a dispersive version obtained by adding

the dispersion uxxx to the equation of the continuity ∂ρ
∂t +∇· (ρv) = 0, with

ρ ∝ w, provided that the gravity force dominates over capillary tension at

the surface (see Kamchatnov, Kraenkel and Umarov [18, page 356], see also

Korteweg and de Vries [23, page 2]).

The following corresponds to Example 1.2:

Example 1.4. The one-soliton solution of (1.12) is obtained by putting

c±1 = c±1 (0)e±b
2t (b = −2ik1 > 0, c±1 (0) > 0) and using transformation

(1.14). Then rewriting the resultant formula in terms of new parameters δ,

ρ ∈ R, in place of c±1 (0), defined by

ebδ =
b√

c+1 (0)c−1 (0)
, eb

2ρ =

√
c+1 (0)

c−1 (0)
,
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leads to the following representation:

u(x, t) = 2b
(eb

2(t+ρ) − e−b
2(t+ρ)) sinh b(x + δ)(

cosh b(x + δ) + eb2(t+ρ)
) (

cosh b(x + δ) + e−b2(t+ρ)
) ,(1.16)

w(x, t) = 2b2

(
1 + eb

2(t+ρ) cosh b(x + δ)(
cosh b(x + δ) + eb2(t+ρ)

)2(1.17)

+
1 + e−b

2(t+ρ) cosh b(x + δ)(
cosh b(x + δ) + e−b2(t+ρ)

)2
)

.

By an elementary calculus we see that (1) 0 < w(x, t) ≤ 2b2, where 2b2

is attained only at x = −δ for each t, (2) for t such that cosh b2(t + ρ) ≤
5
√

5
2 , the elevation w(x, t) has only one maximum 2b2, while, for t such that

cosh b2(t + ρ) > 5
√

5
2 , it has a local maximum (other than the maximum

2b2) located at two points x (symmetric with respect to x = −δ) such that

|b(x + δ)| = ±b2(t + ρ) + log 2 + o(1) as t → ±∞, (3) the local maximum is

monotonically decreasing (from 6
11b

2) to 1
2b

2 as t tends to ±∞. The wave

splits into three peaks as time evolves, which behave almost independently

(see Figure 2).

We find that the parts of peaks with small amplitude 1
2b

2 behave asymp-

Fig. 2. Profile of w(x, t) for b = 1, δ = 0, ρ = log
√

2 at t = −ρ, t = ρ+2, t = ρ+7. The
part of the right peak with the amplitude ≈ 1

2
b2 is well approximated by the wave

1
2
b2sech2 1

2
(b(x+ δ)− b2(t+ ρ)− log 2), going to +∞ with the propagation velocity b.
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totically (when |t| is going to ∞) such as the solitary, travelling wave
1
2b

2 sech2 1
2

(
b|x + δ| − b2|t + ρ| − log 2

)
with the propagation velocity b. For

t + ρ > 0, the velocity u(x, t) is positive (negative, resp.) if x + δ > 0 (if

x + δ < 0, resp.). This makes the peaks of w(x, t) with the height ≈ 1
2b

2

tend to ±∞ as time evolves.

Though w(x, t) is a soliton corresponding to one pole k1, it behaves

such as a 3-soliton. This curious phenomenon can be explained by a typ-

ical behavior of the velocity u(x, t) such as a boundary layer (see Figure

3). As is illustrated by the figure, for a fixed t, the velocity u(x, t) disap-

pears suddenly near a stationary point xs at which the right soliton w(x, t)

has a peak with amplitude ≈ 1
2b

2; so the front of the peak has almost no

motion, while the behind of it has a large motion. This makes a high ele-

vation, the peak of w(x, t). From a viewpoint of physical mechanism this

phenomenon can be understood as a sort of congestion on water motion

occurring based on an interaction between u(x, t) and w(x, t) in the sys-

tem (1.12). From a viewpoint of mathematical structure it can be expected

Fig. 3. Profile of (u(x, 100
27

), w(x, 100
27

)) at t = 100
27

for b = 9
5
, δ = ρ = 0. The velocity

u(x, t) takes the value b approximately at the stationary point x = xs of the soliton
w(x, t), in general.
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that w(x, t) corresponding to N poles k1, · · · , kN splits into (2N + 1) peaks

driven by boundary multi-layers of u(x, t), as time evolves.

A hierarchy of the system (1.13) was found by Jaulent and Miodek [17].

For example, the second system of the hierarchy is given by


Qt + Qxxx − 6UQx − 6UxQ− 30Q2Qx = 0,

Ut + Uxxx + 6QQxxx + 18QxQxx

−6UUx − 24QQxU − 6Q2Ux = 0,

(1.18)

(see [17, equation (5.2)], where our Q becomes 1
2Q). As was pointed out

there, if Q ≡ 0 then the 2m-th system of the hierarchy reduces to the m-th

order KdV equation, such as (1.18) reduced to the KdV equation; notice that
1
iQ and U are real and so physical variables. Our inverse scattering method

based upon Theorem 1.1 is applicable also to systems of the hierarchy: the

method enables us to construct certain soliton solutions of the systems.

2. Forward Scattering Theory

We assume, in (1.1), that U is real and Q is purely imaginary and, in this

section, we will work on (1.1) with the following conditions (see [19, 20]):

U(x) ∈ L1
2(R), Q(x) ∈ L1

1(R),

Q(x) is absolutely continuous, and Q′(x) ∈ L1
2(R).

(2.1)

Here L1
m(I) (m = 0, 1, 2, · · · ) denotes the set of measurable functions f(x)

such that
∫
I(1 + |x|m)|f(x)|dx < ∞. Let f±(x, k), k ∈ C+, be the Jost

solutions of (1.1), namely, solutions with the asymptotics

f±(x, k) = e±ikx[1 + o(1)],

f±(x, k)′ = ±ike±ikx[1 + o(1)], x → ±∞.
(2.2)

These solutions are analytic with respect to k in C+. It follows from the

uniqueness of the Jost solution that

f±(x, k) = f±(x,−k), k ∈ C+.(2.3)
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We denote the Jost solutions of (1.1) with −Q(x) instead of Q(x) by

f−± (x, k). Provided that U(x) is real, Q(x) is purely imaginary, we have

four solutions of (1.1):

f+(x, k), f−(x, k), f−+ (x, k), f−− (x, k),

by which, the scattering solutions ψ→(x, k), ψ←(x, k) in (1.2) are written as

ψ→(x, k) = s11(k)f+(x, k) = f−− (x, k) + s12(k)f−(x, k),

ψ←(x, k) = s22(k)f−(x, k) = f−+ (x, k) + s21(k)f+(x, k).
(2.4)

Since

W [f±(x, k), f−± (x, k)] = ∓2ik, k ∈ R \ {0},(2.5)

where W [f, g] denotes the Wronskian fg′ − f ′g, the coefficients s�j are de-

termined as

s11(k) = s22(k) = − 2ik

W [f+(x, k), f−(x, k)]
,

(2.6)

s12(k) = −W [f+(x, k), f−− (x, k)]

W [f+(x, k), f−(x, k)]
, s21(k) = −W [f−+ (x, k), f−(x, k)]

W [f+(x, k), f−(x, k)]
.

We pick out basic properties (see [2]) of the scattering matrix S(k):

Lemma 2.1. Let S−(k) denote the scattering matrix for potential

(U,−Q). Then:

(1) (Symmetry) s11(k) = s22(k).

(2) (Conjugate symmetry) S(−k) = S(k), k ∈ R, s11(−k) = s11(k),

k ∈ C+.

(3) (Coupled unitarity) S(k)S−(k)∗ = I.

A major difference between the case where both U(x), Q(x) are real

(see [20]) and the case where U(x) is real, Q(x) is purely imaginary con-

sists in the presence of singularities of the transmission coefficient s11(k) on

R. This difference stems from that the conservation S(k)S(k)∗ = I holds
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(conservative) in the former case and breaks down (nonconservative) in the

latter case. For this reason we hereafter need to assume that

W [f+(x, k), f−(x, k)] �= 0, k ∈ R \ {0}.(2.7)

In the reflectionless case this condition is fulfilled since s11(k)s−11(k) = 1 on

R by Lemma 2.1(3) and so, by (2.6) we have (2.7). From this observation,

we draw the following

Lemma 2.2. We assume (2.1). Then, in the reflectionless scattering,

(1) s11(k), s−11(k) are continuous functions on R.

(2) s11(k) can be analytically continued to a meromorphic function in the

upper half plane C+ having finitely many poles kn, n = 1, · · · , N .

(3) f+(x, 0) and f−(x, 0) are linearly dependent.

Proof. In the reflectionless scattering, s11(k)s−11(k) = 1 on R. This

is written as s11(k) = s−11(k)
−1

. Since the right-hand side is continuous on

R \ {0}, s11(k) is also continuous there. But s11(k) is originally continuous

at k = 0 (see [19, Lemma 2.2], which remains valid for purely imaginary-

valued functions Q). Hence it is a continuous function on R. Assertion (2)

follows from the asymptotic behavior

s11(k) = γ + O

(
1

k

)
, γ := e−i

∫ ∞
−∞ Q(r)dr, |k| → ∞(2.8)

(see [19, Lemma 2.3(1)]). Since s11(0) �= 0, from (2.6), we have W [f+(x, 0),

f−(x, 0)] = 0 (which is referred to as the exceptional case in [2]). This

proves assertion (3). �

Our study on reflectionless scattering is based upon the following

Proposition 2.3. Let U be real, Q be purely imaginary and assume

(2.1). Then, in the reflectionless scattering,

(1) Q(x) satisfies ∫ ∞
−∞

Q(r)dr = 0.
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(2) s−11(k) = s11(k) on C+, which is written as

s11(k) =

N∏
n=1

(
k − kn
k − kn

)mn

, k ∈ C+.(2.9)

in terms of poles kn and their orders mn, n = 1, · · · , N .

Proof. Let kn, n = 1, · · · , N , k−n , n = 1, · · · , N− be poles of s11(k),

s−11(k) and let mn, m−n be orders of the poles. Then, by the Poisson formula

and (2.8), we get, for k ∈ C+,

s11(k) = γ
N∏

n=1

(
k − kn
k − kn

)mn

exp

{
1

2πi

∫ ∞
−∞

log
∣∣s11(ζ)γ

−1
∣∣2

ζ − k
dζ

}
,

s−11(k) = γ−1
N−∏
n=1

(
k − k−n
k − k−n

)m−
n

exp

{
1

2πi

∫ ∞
−∞

log |s−11(ζ)γ|2
ζ − k

dζ

}
.

Since |s11(ζ)||s−11(ζ)| = 1 for ζ ∈ R, the product of s11(k) and s−11(k) yields

s11(k)s−11(k) =
N∏

n=1

(
k − kn
k − kn

)mn N−∏
n=1

(
k − k−n
k − k−n

)m−
n

, k ∈ C+.

Since, by Lemma 2.2(1), s11(k) and s−11(k) are continuous on R, this equality

still holds on R. This, together with s−11(k)−1 = s11(k) for k ∈ R, leads to

the following equality:

s11(k)

N∏
n=1

(
k − kn

k − kn

)mn

= s11(k)

N−∏
n=1

(
k − k−n
k − k−n

)m−
n

, k ∈ R.(2.10)

The function in the left side of (2.10) is analytic and bounded on the upper

half plane and that in its right side is analytic and bounded on the lower

half plane. In view of Liouville’s theorem in theory of analytic functions,

this implies that

s11(k)

N∏
n=1

(
k − kn

k − kn

)mn

= C, k ∈ C+,
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with some constant C. It follows from (2.8) that the constant must be

C = γ ∈ R. Hence, from (2.10), we have, for k ∈ C+,

s11(k) = γ

N∏
n=1

(
k − kn
k − kn

)mn

= γ

N−∏
n=1

(
k − k−n
k − k−n

)m−
n

.

Due to the uniqueness of the factorization, this implies that N− = N , and

that, by renumbering k−1 , · · · k−N , we get k−1 = k1, · · · , k−N = kN , m−1 =

m1, · · · ,m−N = mN , namely, that there exists a permutation σ ∈ SN such

that k−n = kσ(n), m
−
n = mσ(n). We thus have

s11(k) = e−i
∫ ∞
−∞ Q(r)dr

N∏
n=1

(
k − kn
k − kn

)mn

,

s−11(k) = ei
∫ ∞
−∞ Q(r)dr

N∏
n=1

(
k − kn
k − kn

)mn

,

(2.11)

for k ∈ C+.

On the other hand, from (2.4) and f−± (x, 0) = f±(x, 0), we get s11(0) =

±1. This, together with s11(0)s−11(0) = 1, leads to s−11(0) = s11(0) = ±1.

This is compatible with

s11(0) = e−i
∫ ∞
−∞ Q(r)dr

N∏
n=1

(
kn
kn

)mn

, s−11(0) = ei
∫ ∞
−∞ Q(r)dr

N∏
n=1

(
kn
kn

)mn

only if
∫∞
−∞Q(r)dr = 0. This, combined with (2.11), proves the lemma. �

The following properties of transformation kernels will be employed in

our work.

Lemma 2.4. Let U be real, Q be purely imaginary, assume (2.1), and

let A±(x, y) be transformation kernels for (U,±Q). Then:

(1) Functions A±(x, y), which belong to L1(x,∞)∩L∞(x,∞) as functions

of y for each x, are real.

(2) Potentials (U,±Q) and A±(x, x) are connected by
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A±(x, x) =
1

2
e±i

∫ ∞
x Q(r)dr

(∫ ∞
x

[U(r) + Q(r)2]dr ∓ iQ(x)

)
.(2.12)

Proof. By taking the complex conjugate of (1.8), using (2.3), and

taking the uniqueness of transformation kernels into account, it follows that

A±(x, y) = A±(x, y). This proves (1). By setting x = y in (1.9), we get

A±(x, x) ∓ i

∫ ∞
x

Q(s)A±(s, s)ds

=
1

2

∫ ∞
x

U(s)e±i
∫ ∞
s Q(r)drds∓ i

2
Q(x) e±i

∫ ∞
x Q(r)dr.

This gives an integral equation for each A±(x, x), which is solved as (2.12).

This proves (2). �

We consider the reflectionless scattering and set

F±(y) = −
N∑

n=1

c±n e
ikny, y ∈ R.(2.13)

in terms of the constants c±n defined in (1.4). It follows from the conjugate

symmetry in Lemma 2.1(2) that kn is a pole of s11(k) if and only if −kn is

a pole of it, and hence, that there exists a permutation σ ∈ SN such that

kσ(n) = −kn. By definition, such a permutation is uniquely determined and,

in view of ikσ(n) = ikn, the permutation is involutive: σ ◦ σ = Id, where Id

denotes the identity permutation. We mention that n is a fixed point of the

permutation, namely σ(n) = n, if and only if ikn < 0, namely kn lies on the

imaginary axis in C+.

Lemma 2.5. The followings hold:

(1) The constants c±n are nonzero numbers.

(2) The constants c±n for kσ(n) and kn are mutually conjugate : c±σ(n) = c±n .

(3) The functions F±(y) are real.
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Proof. It follows from (2.9) that Res k=kn s11(k) = 2imnIm kn. This

proves (1). By (2.3) we have d±σ(n) = d±n . Hence, by remembering definition

(1.4) and the conjugate symmetry s11(−k) = s11(k), we can draw (2). Since

σ is a permutation, from definition (2.13), we have

F±(y) = −
N∑

n=1

c±σ(n) e
ikσ(n)y = −

N∑
n=1

c±n eikny = F±(y).

This proves (3). �

Generally transformation kernels are related with scattering data via

GLM equations. Such integral equations can be deduced by a standard

calculus of residues (see [8], [26, Chapter 3.5], [20, Proposition 2.2]). In our

reflectionless scattering, the equation is given as follows.

Proposition 2.6. Suppose that U(x) is real, Q(x) is purely imaginary,

and assume (2.1). If {0, kn, c±n } is the scattering data for (U,±Q) then

F±(y) defined by (2.13) are related with A±(x, y) by the following, coupled

integral equation

A∓(x, y) −
∫ ∞
x

A±(x, r)F±(r + y)dr(2.14)

− e±i
∫ ∞
x Q(r)drF±(x + y) = 0, x ≤ y.

Proof. From (2.4), we get

s11(k)f−(x, k) − e−i
∫ ∞
x Q(r)dre−ikx(2.15)

= f−+ (x, k) − e−i
∫ ∞
x Q(r)dre−ikx, k ∈ R.

By Lemma 2.4(1), A−(x, y) is real. So, from (1.8), we have

f−+ (x, k) = e−i
∫ ∞
x Q(r)dre−ikx +

∫ ∞
x

A−(x, y)e−ikydy, k ∈ R.

Hence (2.15) becomes

s11(k)f−(x, k) − e−i
∫ ∞
x Q(r)dre−ikx =

∫ ∞
x

A−(x, y)e−ikydy, k ∈ R.
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This implies that the inverse Fourier transform of the left side is given by

A−(x, y) =
1

2π

∫ ∞
−∞

(
s11(k)f−(x, k)eikx − e−i

∫ ∞
x Q(r)dr

)
eik(y−x)dk, x < y.

It follows from Proposition 2.3, the transformation kernel representation

of f−(x, k): f−(x, k) = ei
∫ x
−∞ Q(r)dre−ikx −

∫ x
−∞A−(x, y)e−ikydy, and the

Riemann-Lebesgue lemma that

s11(k)f−(x, k)eikx − e−i
∫ ∞
x Q(r)dr = o(1),

as |k| → ∞ in C+. By Lemma 2.2(1), this function is continuous on R.

Let y − x > 0. Then, by means of the Jordan lemma in the calculus of

residues, we get

A−(x, y) = i

N∑
n=1

(Res k=kns11(k)) f−(x, kn)eikny

= i
N∑

n=1

(Res k=kns11(k)) d+
n f+(x, kn)eikny

= −
N∑

n=1

c+n

(
ei
∫ ∞
x Q(r)dreikn(x+y) +

∫ ∞
x

A+(x, r)eikn(r+y)dr

)
.

This gives an equation in (2.14) with F+. Another one with F− is deduced

similarly. �

In order to derive a recovery algorithm for (U,Q) of equation (1.1) from

the scattering data {0, kn, c±n }, we introduce functions Ĵ±(x, y) defined by

Ĵ±(x, y) := − 1

f+(x, 0)

∫ ∞
y

A±(x, s)ds, x ≤ y,(2.16)

for each x ∈ R such that f+(x, 0) �= 0. Note that f−+ (x, 0) = f+(x, 0) for

k = 0.

Proposition 2.7. Under the same assumption as in Proposition 2.6,

for each x ∈ R such that f+(x, 0) �= 0, functions J±(x, y) = Ĵ±(x, y) satisfy

the followings.
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(1) Relation

f+(x, 0)(1 + J±(x, x)) = e±i
∫ ∞
x Q(r)dr.(2.17)

(2) Integral equation

J∓(x, y) +

∫ ∞
x

J±(x, r)F±(r + y)dr(2.18)

+

∫ ∞
x

F±(r + y)dr = 0, x ≤ y.

(3) Formula

2J±y (x, x)

1 + J±(x, x)
=

∫ ∞
x

[U(r) + Q(r)2]dr ∓ iQ(x).(2.19)

Proof. (1) is immediate by setting k = 0 in (1.8) and using definition

(2.16). We integrate (2.14) and rewrite the resultant in terms of J±(x.y).

Then, by virtue of (2.17), we get

J±(x, y) +

∫ ∞
x

∂rJ
±(x, r)dr

∫ ∞
y

F±(r + s)ds

+ (1 + J±(x, x))

∫ ∞
y

F±(x + s)ds = 0.

By performing an integration by parts, this is written in the form (2.18).

Differentiating (2.16) with respect to y yields A±(x, y) = f+(x, 0)J±y (x, y).

Hence, substituting this and (2.17) into (2.12) we obtain (2.19). Notice that

relation (2.17) implies 1 + J±(x, x) �= 0 for x such that f+(x, 0) �= 0. �

The function F±(y) defined in (2.13) is a finite dimensional function.

Hence a GLM equation (2.18) gives a degenerate (finite dimensional) in-

tegral equation with unknowns J±(x, y) for each x ∈ R. Its Fredholm

determinant is given by

D(x) := det(I −B+B−),(2.20)

where B± are matrices defined in (1.5).

Proposition 2.8. Under condition (I) in Theorem 1.1, we have:
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(1) D(x) is real-valued functions on R, whose zeros are discrete.

(2) The functions

( eik1y · · · eikNy )(I −B∓B± )̃ (B∓v± − v∓)

are real-valued functions on R2.

(3) For each x such that D(x) �= 0, integral equation (2.18) is uniquely

solved as

J±(x, y) = ( eik1y · · · eikNy )(I −B∓B± )−1 (B∓v± − v∓), x ≤ y.(2.21)

Proof. Let Pσ be a fundamental matrix associated with σ. Since

σ ∈ SN is involutive, P−1
σ = Pσ It follows from definition (1.5) and condition

(I) that

B± = PσB
±Pσ, v± = v±Pσ.(2.22)

Accordingly

D(x) = det(I − PσB
+PσPσB

−Pσ) = det(Pσ(I −B+B−)Pσ) = D(x),

due to detPσ = ±1. This shows that D(x) is real. From this we obtain

D(x) = det(I − PσB
+PσPσB

−Pσ) = det(Pσ(I −B+B−)Pσ) = D(x),

since detPσ = ±1. It is clear from definition that D(x) is an entire function

of x. Hence zeros are discrete. This proves assertion (1).

By using the condition (I), (2.22), and (AB)̃ = B̃ Ã the complex con-

jugate of the function in (2) is written as

( eikσ(1)y · · · eikσ(N)y )(I −B∓B± )̃ (B∓ v± − v∓)

= ( eik1y · · · eikNy )Pσ(I − PσB
∓PσPσB

±Pσ )̃ (PσB
∓Pσ Pσv

± − Pσv
∓)

= ( eik1y · · · eikNy )Pσ (Pσ(I −B∓B±)Pσ)˜Pσ(B∓v± − v∓)

= ( eik1y · · · eikNy )(I −B∓B±)̃ (B∓v± − v∓).

This proves assertion (2).
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It follows from definition (2.13) that∫ ∞
x

J±(x, r)F±(r + y)dr

= −
∫ ∞
x

N∑
n=1

c±n e
ikn(r+y)( eik1r · · · eikNr )dr (I −B∓B± )−1 (B∓v± − v∓)

= −( eik1y · · · eikNy ) ×
∫ ∞
x




c±1 e
ik1r

...

c±NeikNx


 ( eik1r · · · eikNr )dr (I −B∓B± )−1 (B∓v± − v∓)

= −( eik1y · · · eikNy )

∫ ∞
x

(B±)′dr (I −B∓B± )−1 (B∓v± − v∓)

= ( eik1y · · · eikNy )B±(I −B∓B± )−1 (B∓v± − v∓).

This, together with

B±(I −B∓B±)−1 = (I −B±B∓)−1B±,(2.23)

leads to∫ ∞
x

J±(x, r)F±(r + y)dr +

∫ ∞
x

F±(r + y)dr

= ( eik1y · · · eikNy )
(
(I −B±B∓)−1B± (B∓v± − v∓) + v±

)
= ( eik1y · · · eikNy )(I −B±B∓)−1

(
B± (B∓v± − v∓) + (I −B±B∓)v±

)
= −( eik1y · · · eikNy )(I −B±B∓)−1(B±v∓ − v±)

= −J∓(x, y).

Therefore J∓(x, y) satisfies (2.18). Since D(x) is the Fredholm determinant

of the equation, it follows from the Fredholm alternative that this solution

is unique. �

If {0, kn, c±n } is the scattering data for some (U,Q) satisfying (2.1) then

we have two definitions of solutions to the GLM equation (2.18); the first

definition is (2.16), which is available for each x ∈ R such that f+(x, 0) �= 0,

and the second definition is (2.21) which is available for each x ∈ R such

that D(x) �= 0. Since D(x) is the Fredholm determinant of the equation, it
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follows from the Fredholm alternative that they are both equivalent to each

other, provided that f+(x, 0) �= 0, D(x) �= 0.

Concerning the solution J±(x, y) defined by (2.21), we have

Lemma 2.9. If D(x) �= 0 then 1 + J±(x, x) �= 0, and, for each x such

that D(x) �= 0,

d

dx
logD(x) = −

J±x (x, x) − J±y (x, x)

1 + J±(x, x)
.(2.24)

Proof. This lemma is obtained by a linear algebraic calculus similar

to that in [20, Lemma 3.3] (just replacement of J , J there by J±, J∓). �

We now let ∆±(x) be functions defined by (1.6). By Proposition 2.8(1),

(2), the function ∆±(x) are real. Moreover, due to (detA)A−1 = Ã , for x

such that D(x) �= 0, definition (1.6) is rewritten as

∆±(x) = D(x)(1 + J±(x, x)),(2.25)

in terms of J±(x, y) defined by (2.21). Notice that (2.25) is a straightforward

definition of ∆±(x), however, not valid unless D(x) �= 0.

Lemma 2.10. Assume that (U,Q) satisfies (2.1) and let {0, kn, c±n } be

its scattering data. Then, for any x ∈ R,

D(x) = f+(x, 0)∆±(x) e∓i
∫ ∞
x Q(r)dr,(2.26)

∆+(x) e−i
∫ ∞
x Q(r)dr = ∆−(x) ei

∫ ∞
x Q(r)dr.(2.27)

Proof. If D(x) �= 0, f+(x, 0) �= 0 then J±(x, y) = Ĵ±(x, y). Proposi-

tion 2.7(1) tells us that

f+(x, 0) �= 0 =⇒ f+(x, 0)(1 + J±(x, x)) = e±i
∫ ∞
x Q(r)dr.

On the other hand, by (2.25),

D(x) �= 0 =⇒ D(x)(1 + J±(x, x)) = ∆±(x).
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Accordingly, if D(x) �= 0, f+(x, 0) �= 0 then (2.26) holds. By Proposition

2.8(1) the set {x ∈ R |D(x) = 0} is discrete. Moreover, since f+(x, 0) is a

nonzero solution of f ′′ − U(x)f = 0, the set {x ∈ R | f+(x, 0) = 0} is also

discrete. Hence (2.26) holds for almost every x ∈ R. Since functions in

both sides of it are continuous, (2.26) holds for any x ∈ R. It follows from

(2.26) that (2.27) holds for each x such that f+(x, 0) �= 0. But both sides

of (2.27) are also continuous. Hence (2.27) holds for any x ∈ R. �

We next deduce formula (1.7).

Lemma 2.11. Assume that (U,Q) satisfies (2.1) and let {0, kn, c±n } be

its scattering data. Then (1.7) holds for each x ∈ R such that ∆±(x) �= 0.

Proof. By (2.26), if D(x) �= 0 then f+(x, 0) �= 0, and therefore,

J±(x, y) = Ĵ±(x, y). Since, by Proposition 2.7, Ĵ±(x, y) satisfies (2.19),

the function J±(x, y) defined by (2.21) satisfies (2.19) for each x such that

D(x) �= 0.

If D(x) �= 0 then, by (2.26), ∆±(x) �= 0. By (2.25), (2.24) we obtain

d

dx
log ∆±(x) = −

J±x (x, x) − J±y (x, x)

1 + J±(x, x)
+

J±x (x, x) + J±y (x, x)

1 + J±(x, x)

=
2J±y (x, x)

1 + J±(x, x)
.

This, combined with (2.19), shows that

d

dx
log ∆±(x) =

∫ ∞
x

[U(r) + Q(r)2]dr ∓ iQ(x)(2.28)

holds for each x ∈ R such that D(x) �= 0.

We now let x ∈ R be a point for which ∆±(x) �= 0. Note that, by

(2.27), ∆±(x) have zeros in common. Since the set {x ∈ R |D(x) = 0} is

discrete we may take a neighborhood of x where D(x) �= 0 and so (2.28)

holds. Hence, by taking the limit of (2.28) to x, we show that that (2.28) is

valid for x, namely, that (2.28) holds for each x such that ∆±(x) �= 0. Since

(2.28) is equivalent to (1.7), this proves the lemma. �

So far we are concerned with the forward scattering problem under as-

sumption (2.1). The conclusion on the forward problem is:
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Proposition 2.12. Conditions (I), (II) in Theorem 1.1 are necessary

for {0, kn, c±n } to be scattering data for some (U,Q) satisfying (2.1).

Proof. It suffices to show that (II) is necessary, because the necessity

of (I) was already shown in an observation just after definition (2.13) and

Lemma 2.5(2). It follows from (2.27) that

{x ∈ R |∆+(x) = 0} = {x ∈ R |∆−(x) = 0},

and the orders m± of a zero x0 (if it exists) are independent of ±. So, if there

were a zero x0 ∈ R of ∆+(x) then ∆±(x) = (x− x0)
m∆±0 (x) with analytic

functions ∆±0 (x) near x0 satisfying ∆±0 (x0) �= 0. Hence, by logarithmic

differentiation, we get

d

dx
log ∆±(x) =

m

x− x0
+

(∆±0 (x))′

∆±0 (x)
,

where
(∆±

0 (x))′

∆±
0 (x)

are analytic in some neighborhood of x0. Therefore from

(1.7), which is valid for x (�= x0) near x0 by Lemma 2.11, it follows that,

though Q(x) is still continuous at x0, U(x) is not integrable at x0. This con-

tradicts the assumption U(x) ∈ L1(R) in (2.1). Consequently if {0, kn, c±n }
is the scattering data for (U,Q) satisfying (2.1) then ∆±(x) �= 0 everywhere.

It is clear from definition (1.6) with Re ikn < 0 that ∆±(x) → 1 as x → +∞,

and hence ∆±(x) > 0 on R. �

Remark 2.13. In Lemma 2.11 we have proved (1.7) under the assump-

tion ∆±(x) �= 0. This assumption however can be dropped because, as

is shown in the proof of Proposition 2.12, if {0, kn, c±n } is the scattering

data for (U,Q) satisfying (2.1) then ∆±(x) �= 0 holds everywhere. Unlike

this, the assumption D(x) �= 0 employed in several propositions can not be

dropped. For instance, D(x) in Example 1.2 has a zero for each {0, k1, c
±
1 }

with b, c±1 > 0.

3. Inverse Scattering Theory

We now embark on the inverse scattering problem. Since we have inver-

sion formula (1.7), our task becomes to show that the scattering data for



676 Yutaka Kamimura

potential (U,Q) defined by the formula coincides with {0, kn, c±n }. Through-

out this section we assume that a prescribed triplet {0, kn, c±n } satisfies (I),

(II) in Theorem 1.1, where ∆±(x) are real functions on R defined by (1.6).

We begin with the following

Lemma 3.1. Let αn, βn, n = 1, · · · , N , be complex numbers.

(1) If αn + βm �= 0 for any n, m, then

∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1+βj

· · · 1
α1+βN

...
...

...
...

...
...

...
...

...
...

1
αN+β1

· · · 1
αN+βj

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣
=

∏
m<n

(αm − αn)
∏
m<n

(βm − βn)

N∏
m,n=1

(αm + βn)

.

(2) If αn + βm �= 0 for any n, m and αn �= 0 for any n, then, for each

z ∈ C such that z �= βn for any n,

N∑
j=1

βj
z − βj

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1

· · · 1
α1+βN

...
...

...
...

...
1

αj+β1
· · · 1

αj
· · · 1

αj+βN
...

...
...

...
...

1
αN+β1

· · · 1
αN

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)N
N∏

n=1

βn
αn

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1+βj

· · · 1
α1+βN

...
...

...
...

...
1

αj+β1
· · · 1

αj+βj
· · · 1

αj+βN
...

...
...

...
...

1
αN+β1

· · · 1
αN+βj

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣∣∣∣
×

(
1 −

N∏
n=1

z + αn

z − βn

)
.
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(3) If αn + βm �= 0 for any n, m and αn �= 0 for any n, then

N∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1

· · · 1
α1+βN

...
...

...
...

...
1

αj+β1
· · · 1

αj
· · · 1

αj+βN
...

...
...

...
...

1
αN+β1

· · · 1
αN

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∏
m<n

(βm − βn)
∏
m<n

(αm − αn)

N∏
m,n=1

(αm + βn)

(
1 + (−1)N−1

N∏
n=1

βn
αn

)
.

Proof. (1) is well-known as the Cauchy determinant. In what follows

we denote it by CN . To prove (2), let ϕ(z), ψ(z) be two polynomials with

degree N − 1 defined by

ϕ(z) :=
N∑
j=1

βj
∏
n
=j

(z − βn)

∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1

· · · 1
α1+βN

...
...

...
...

...
...

...
...

...
...

1
αN+β1

· · · 1
αN

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣
,

ψ(z) := (−1)N
N∏

n=1

βn
αn

CN

(
N∏

n=1

(z − βn) −
N∏

n=1

(z + αn)

)
.

For the proof of assertion (2) it suffices to show that ϕ(z) ≡ ψ(z). It is

easy to see that if βm = βn, m �= n, then ϕ(z) ≡ 0 ≡ ψ(z). Hence we may

assume that βn are mutually different.

By definition we get

ϕ(βj) = βj
∏
n
=j

(βj − βn)

∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1

· · · 1
α1+βN

...
...

...
...

...
...

...
...

...
...

1
αN+β1

· · · 1
αN

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣
.
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From (1) with βj = 0, we have

∣∣∣∣∣∣∣∣∣∣

1
α1+β1

· · · 1
α1

· · · 1
α1+βN

...
...

...
...

...
...

...
...

...
...

1
αN+β1

· · · 1
αN

· · · 1
αN+βN

∣∣∣∣∣∣∣∣∣∣
= (−1)N−1

N∏
n=1

(αn + βj)
∏
n
=j

βn

∏
n
=j

(βj − βn)

N∏
n=1

αn

CN .

Therefore

ϕ(βj) = (−1)N−1
N∏

n=1

(αn + βj)

N∏
n=1

βn
αn

CN .

If follows from the definition of ψ(z) that the right-hand side of this equals

ψ(βj). Hence ϕ(βj) = ψ(βj), j = 1, · · · , N . Since polynomials ϕ(z) and

ψ(z) with degree N−1 coincides at mutually different N points, we conclude

that ϕ(z) ≡ ψ(z). This proves (2). Assertion (3) is immediate from (2) with

z = 0 and (1). The proof is complete. �

By means of Lemma 3.1, we obtain asymptotic behaviors of ∆±(x) as

x → ±∞:

Lemma 3.2.

(1) The determinant D(x) = det(I −B+B−) is written as

D(x) = 1 + · · · + (−1)N
∏
m<n

(
ikm − ikn
ikm + ikn

)4 N∏
n=1

c+n c
−
n

(
e2iknx

2ikn

)2

.

(2) The functions

Γ±(x, k) :=

(
ik1e

ik1x

ik − ik1
· · · ikNeikNx

ik − ikN

)
(I −B∓B±)̃ (B∓v± − v∓), k ∈ R,

are written as

Γ±(x, k)

= · · · +
∏
m<n

(
ikm − ikn
ikm + ikn

)4 N∏
n=1

c+n c
−
n

(
e2iknx

2ikn

)2
(
−1 +

N∏
n=1

ik + ikn
ik − ikn

)
.
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(3) The functions ∆±(x) defined by (1.6) are written as

∆±(x) = 1 + · · · +
∏
m<n

(
ikm − ikn
ikm + ikn

)4 N∏
n=1

c+n c
−
n

(
e2iknx

2ikn

)2

.

In these representations, dots represent terms of o(1) as x → +∞ and of

o

(
exp

(
4

N∑
n=1

ikn x

))

as x → −∞. Moreover, in the case N = 1, they have the convention

∏
m<n

(
ikm − ikn
ikm + ikn

)4

= 1.

Proof. (1) Set

G :=




1
ik1+ik1

· · · 1
ik1+ikN

... · · · ...
1

ikN+ik1
· · · 1

ikN+ikN


 .

Then

det(−B+B−) = (−1)N
N∏

n=1

c+n c
−
n (e2iknx)2(detG)2.

Using Lemma 3.1(1) with αj = ikj , βj = ikj , we get

(detG)2 =
1

N∏
n=1

(2ikn)2

∏
m<n

(
ikm − ikn
ikm + ikn

)4

.(3.1)

This proves (1).

(2) Set, for 5, j = 1, · · · , N ,

ν∓�j = −
N∑

m=1

c±me 2ikmx

(ik� + ikm)(ikm + ikj)
, ρ∓� :=

N∑
m=1

c±me2ikmx

(ik� + ikm)ikm
− 1

ik�
.
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Then the 5j-component of I−B∓B± and the 5th component of B∓v±−v∓

are written as

(I −B∓B± )�j = δ�j + c∓� ν∓�je
ik�xeikjx, (B∓v± − v∓)� = c∓� ρ∓� e

ik� x.

Hence, from a cofactor expansion

(
u1 · · · uN

)
(a�j )̃




w1
...

wN


 =

N∑
j=1

uj

∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · w1 · · · a1N
...

...
...

...
...

aj1 · · · wj · · · ajN
...

...
...

...
...

aN1 · · · wN · · · aNN

∣∣∣∣∣∣∣∣∣∣∣∣
,

we obtain

Γ±(x, k)

=
N∑
j=1

ikj
ik − ikj

×

∣∣∣∣∣∣∣∣∣∣∣∣

1 + c∓1 ν∓
11e

ik1xeik1x · · · c∓1 ρ∓1 eik1xeikjx · · · c∓1 ν∓
1N eik1xeikNx

...
...

...
...

...
c∓j ν∓

j1 e
ikjxeik1x · · · c∓j ρ∓j e

ikjxeikjx · · · c∓j ν∓
jN eikj xeikNx

...
...

...
...

...
c∓Nν∓

N1 e
ikNxeik1x · · · c∓N ρ∓NeikNxeikjx · · · 1 + c∓N ν∓

NN eikNx eikNx

∣∣∣∣∣∣∣∣∣∣∣∣
=

N∏
n=1

c∓n e2iknx
N∑
j=1

ikj
ik − ikj

×

∣∣∣∣∣∣∣∣∣∣∣∣

(c∓1 )−1e−2ik1x + ν∓11 · · · ρ∓1 · · · ν∓1N
...

...
...

...
...

ν∓j1 · · · ρ∓j · · · ν∓jN
...

...
...

...
...

ν∓N1 · · · ρ∓N · · · (c∓N )−1e−2ikNx + ν∓NN

∣∣∣∣∣∣∣∣∣∣∣∣
,

from which we compute

the primary terms of Γ±(x, k)

= (−1)N−1
N∏

n=1

c∓n e2iknx ×
N∑
j=1

ikj
ik − ikj

×
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∣∣∣∣∣∣∣∣




c±1 e 2ik1x

ik1+ik1
· · · c±Ne 2ikNx

ik1+ikN
...

...
...

c±1 e 2ik1x

ikN+ik1
· · · c±Ne 2ikNx

ikN+ikN






1
ik1+ik1

·· 1
ik1

·· 1
ikN+ik1

...
...

...
...

...
1

ik1+ikN
·· 1

ikN
·· 1

ikN+ikN



∣∣∣∣∣∣∣∣

= (−1)N−1 detG

N∏
n=1

c+n c
−
n

(
e2ikn x

)2
×

N∑
j=1

ikj
ik − ikj

∣∣∣∣∣∣∣
1

ik1+ik1
·· 1

ik1
·· 1

ik1+ikN
...

...
...

...
...

1
ikN+ik1

·· 1
ikN

·· 1
ikN+ikN

∣∣∣∣∣∣∣ .

This, together with (3.1), yields (2), since, by Lemma 3.1(2) with αn =

βn = ikn, z = ik,

N∑
j=1

ikj
ik − ikj

∣∣∣∣∣∣∣
1

ik1+ik1
·· 1

ik1
·· 1

ik1+ikN
...

...
...

...
...

1
ikN+ik1

·· 1
ikN

·· 1
ikN+ikN

∣∣∣∣∣∣∣
= (−1)N detG

(
1 −

N∏
n=1

ik + ikn
ik − ikn

)
.

(3) By definition we have

∆±(x) = D(x) + ( eik1x · · · eikNx )(I −B∓B±)̃ (B∓v± − v∓)

= D(x) − Γ±(x, 0).

Hence subtracting (2) with k = 0 from (1) completes the proof. �

Proposition 3.3. Let {0, kn, c±n } be a prescribed triplet satisfying (I),

(II) in Theorem 1.1, and let U , Q are functions defined by (1.7). Then

(1) U , Q belong to C∞(R), and they are exponentially decaying as x →
±∞ with their derivatives. In particular, (U,Q) belongs to S × S.

(2) Q satisfies
∫∞
−∞Q(x)dx = 0. In addition,

∫∞
−∞[U(x) + Q(x)2]dx =

4i
∑N

n=1 kn.
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Proof. (1) As in Proposition 2.8(1), functions ∆±(x) defined in (1.6)

are real-valued on R. We define a constant κ by

κ :=

(∏
m<n

ikm − ikn
ikm + ikn

)4( N∏
n=1

1

2ikn

)2 N∏
n=1

c+n c
−
n = (detG)2

N∏
n=1

c+n c
−
n .

Then, from Lemma 3.2(3), we get expressions

∆±(x) = 1 + · · · + κ

N∏
n=1

e4iknx.(3.2)

It follows from (I) that (detG)2 > 0,
∏N

n=1 c
+
n c
−
n are nonzero, real numbers,

and so that κ is a nonzero real number. The number κ is positive if and

only if
∏N

n=1 c
+
n c
−
n is positive. In view of (3.2), real-valued functions ∆±(x)

tend to 1 as x → +∞, and moreover, tend to ±∞ as x → −∞ according to

±κ > 0. Consequently, if
∏N

n=1 c
+
n c
−
n < 0 then ∆±(x) must have zeros on

R, which contradicts the assumption (II). Thus

N∏
n=1

c+n c
−
n > 0,

under the assumption (II), and so, κ > 0. Since, by (3.2),

log ∆±(x) = 4

(
N∑

n=1

ikn

)
x + log (κ + O(eµx)) , x → −∞,

with some µ > 0, Noting that 4
(∑N

n=1 ikn

)
< 0, we prove (1).

(2) By (1.7) we get

e±i
∫ ∞
x Q(r)dr =

√
∆±(x)

∆∓(x)
.(3.3)

By letting x → −∞ in (3.3) and using (3.2), we get the first equality in

(2). Similarly, by letting x → −∞ in (2.28), we get the second equality

there. �

Let J±(x, y) be functions in the right side of (2.21), namely,

J±(x, y) := ( eik1y · · · eikNy )(I −B∓B± )−1 (B∓v± − v∓), x ≤ y.



Nonconservative Scattering and Soliton Solutions 683

Then, by (2.25) and (2.24), for each x such that D(x) �= 0,

d

dx
log ∆±(x) =

d
dxJ

±(x, x)

1 + J±(x, x)
+

d

dx
logD(x)

=
d
dxJ

±(x, x)

1 + J±(x, x)
−

J±x (x, x) − J±y (x, x)

1 + J±(x, x)
.

Therefore, for each x such that D(x) �= 0, functions Q(x), U(x) defined by

(1.7) are expressed as

Q(x) = − 1

2i

(
d
dxJ

+(x, x)

1 + J+(x, x)
−

d
dxJ

−(x, x)

1 + J−(x, x)

)
,(3.4)

U(x) = −1

2

d

dx

(
d
dxJ

+(x, x)

1 + J+(x, x)
+

d
dxJ

−(x, x)

1 + J−(x, x)

)

(3.5)

+
d

dx

J±x (x, x) − J±y (x, x)

1 + J±(x, x)
+ (iQ(x))2,

in terms of J±(x, y).

In order to rewrite (3.5) in a simpler form, we require:

Lemma 3.4. For each x ∈ R such that D(x) �= 0 and each z ≥ 0,

d

dx

J±x (x, x + z) − J±y (x, x + z)

1 + J±(x, x)
=

d
dxJ

±(x, x + z)

1 + J±(x, x)

d
dxJ

∓(x, x)

1 + J∓(x, x)
.

Proof. By differentiating (2.18) with respect to x, we get

J∓x (x, y) +

∫ ∞
x

J±x (x, r)F±(r + y)dr = (1 + J±(x, x))F±(x + y), x < y.

Provided that D(x) �= 0, this is solved as

J±x (x, y) = ( eik1y · · · eikNy )(I −B∓B±)−1 ×(
(1 + J±(x, x))B∓b± − (1 + J∓(x, x))b∓

)
,

where we put

b± :=




c±1 e
ik1x

...

c±NeikNx


 .
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Moreover, by differentiating (2.18) with respect to y, and performing an

integration by parts, we get

J∓y (x, y) −
∫ ∞
x

J±y (x, r)F±(r + y)dr(3.6)

= (1 + J±(x, x))F±(x + y), x < y,

which is solved as

J±y (x, y) = ( eik1y · · · eikNy )(I −B∓B±)−1 ×(3.7) (
−(1 + J±(x, x))B∓b± − (1 + J∓(x, x))b∓

)
.

Hence, for z ≥ 0,

J±x (x, x + z) − J±y (x, x + z)

1 + J±(x, x)
(3.8)

= 2( eik1(x+z) · · · eikN (x+z) )(I −B∓B±)−1B∓b±,
d
dxJ

±(x, x + z)

1 + J∓(x, x)
= −2( eik1(x+z) · · · eikN (x+z) )(I −B∓B±)−1b∓.

By a straightforward, linear algebraic computation (refer to [20, Proof of

Lemma 5.1]) for the right-hand sides of (3.8) with the aid of (2.23) we can

prove the lemma. �

From Lemma 3.4 with z = 0 and (3.4), expression (3.5) is recast as

U(x) =
1

4

(
d
dxJ

+(x, x)

1 + J+(x, x)
+

d
dxJ

−(x, x)

1 + J−(x, x)

)2

(3.9)

− 1

2

d

dx

(
d
dxJ

+(x, x)

1 + J+(x, x)
+

d
dxJ

−(x, x)

1 + J−(x, x)

)

for each x ∈ R such that D(x) �= 0.

We now define a function f0(x) that will play a role of the Jost function

f+(x, 0) by

f0(x) =
D(x)

∆±(x)
e±i

∫ ∞
x Q(r)dr =

D(x)√
∆+(x)∆−(x)

,(3.10)
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in light of (2.26), (3.3). It is clear from this definition that f0(x) = 0 if and

only if D(x) = 0.

Lemma 3.5. The function f0(x) defined by (3.10) satisfies f ′′0 (x) =

U(x)f0(x) on R.

Proof. In view of (2.25), f0(x) is written as

f0(x) =
1

1 + J±(x, x)
e±i

∫ ∞
x Q(r)dr(3.11)

for each x ∈ R such that D(x) �= 0. Hence, by using (3.4), the derivative

f ′0(x) can be computed as

f ′0(x) = −1

2

(
d
dxJ

+(x, x)

1 + J+(x, x)
+

d
dxJ

−(x, x)

1 + J−(x, x)

)
f0(x).(3.12)

Differentiating this and taking (3.9) into account, we get f ′′0 (x) = U(x)f0(x).

Since, under the assumption (II), functions f0(x), U(x) are in the class

C∞(R), this equality holds for any x ∈ R. �

We next define a function Ã±(x, y) for x ≤ y < ∞ by

Ã±(x, y) =
1√

∆+(x)∆−(x)
∂y ×(3.13)

(
( eik1y · · · eikNy )(I −B∓B±)̃ (B∓v± − v∓)

)
,

where ∂y denotes the differentiation with respect to y. It follows from

Proposition 2.8 that Ã±(x, y) are real-valued functions, under the assump-

tion (I). By definition, Ã±(x, y) are continuous functions on a closed region

{(x, y) ∈ R2|x ≤ y} with Ã±(x, ·) ∈ C∞[x,∞) ∩ L1(x,∞) for each x ∈ R,

under the assumption (II).

Assertion (2) of the following proposition, in which f±+ (x, k) play the

roles of f+(x, k) and f−+ (x, k) in the previous section, states that the func-

tions Ã±(x, y) defined by (3.13) are the transformation kernels for (U,±Q)

defined by (1.7).

Proposition 3.6. Let {0, kn, c±n } be a prescribed triplet satisfying (I),

(II) in Theorem 1.1 and let U , Q be functions defined by (1.7). Then:
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(1) Functions Ã±(x, y) defined by (3.13) satisfy

Ã∓(x, y)−
∫ ∞
x

Ã±(x, r)F±(r + y)dr− e±i
∫ ∞
x Q(r)drF±(x+ y) = 0, x ≤ y,

where

F±(y) = −
N∑

n=1

c±n e
ikny, y ∈ R.

(2) Functions f±+ (x, k) defined by

f±+ (x, k) = e±i
∫ ∞
x Q(r)dreikx +

∫ ∞
x

Ã±(x, y)eikydy(3.14)

become the Jost solutions of (1.1) with the potentials (U,±Q).

Proof. By definition of J± and (I − B∓B±)̃ = D(x)(I − B∓B±)−1

we get

( eik1y · · · eikNy )(I −B∓B±)̃ (B∓v± − v∓) = D(x)J±(x, y).

Hence it follows from (3.3), (2.25), (3.11) that

Ã±(x, y) = e±i
∫ ∞
x Q(r)dr

J±y (x, y)

1 + J±(x, x)
= f0(x)J±y (x, y),(3.15)

for each x ∈ R such that D(x) �= 0. It suffices to show assertions for each

x ∈ R such that D(x) �= 0 because Ã±(x, y) are continuous extensions of

the functions in right sides in (3.15).

(1) Multiplying (3.6) by the function f0(x), we get

f0(x)J∓y (x, y)

−
∫ ∞
x

f0(x)J±y (x, r)F±(r + y)dr − f0(x)(1 + J±(x, x))F±(x + y) = 0.

In view of (3.15), (3.11), this can be written in the form (2.14).

(2) By using (3.15), an integration by parts, and (3.11), expressions

(3.14) can be recast as

f±+ (x, k) = f0(x)

(
eikx − ik

∫ ∞
x

J±(x, y)eikydy

)
.(3.16)
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Hence, with the aid of Lemma 3.5, we obtain

(f±+ (x, k))′′ − U(x)f±+ (x, k)(3.17)

= 2ikf ′0(x)eikx − 2ikf ′0(x)

(∫ ∞
x

J±(x, y)eikydy

)′

− k2f0(x)eikx − ikf0(x)

(∫ ∞
x

J±(x, y)eikydy

)′′
.

The first derivative of
∫∞
x J±(x, y)eikydy can be computed as(∫ ∞

x
J±(x, y)eikydy

)′
(3.18)

= −2J±(x, x)eikx − ik

∫ ∞
x

J±(x, y)eikydy

+

∫ ∞
0

(J±x (x, x + z) − J±y (x, x + z))eikzdz eikx.

Differentiating this we have(∫ ∞
x

J±(x, y)eikydy

)′′

= −2

(
d

dx
J±(x, x)

)
eikx − k2

∫ ∞
x

J±(x, y)eikydy

+

∫ ∞
0

d

dx
(J±x (x, x + z) − J±y (x, x + z))eikzdz eikx.

But, by Lemma 3.4, (3.12) and (3.4), we obtain

d

dx
(J±x (x, x + z) − J±y (x, x + z))

=
d

dx

(
J±x (x, x + z) − J±y (x, x + z)

1 + J±(x, x)
(1 + J±(x, x))

)

=

(
d
dxJ

+(x, x)

1 + J+(x, x)
+

d
dxJ

−(x, x)

1 + J−(x, x)

)
J±x (x, x + z)

±
(

d
dxJ

−(x, x)

1 + J−(x, x)
−

d
dxJ

+(x, x)

1 + J+(x, x)

)
J±y (x, x + z)

= ±2iQ(x)J±y (x, x + z) − 2
f ′0(x)

f0(x)
J±x (x, x + z).
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Consequently

(∫ ∞
x

J±(x, y)eikydy

)′′

= −2

(
d

dx
J±(x, x)

)
eikx − k2

∫ ∞
x

J±(x, y)eikydy

± 2iQ(x)

∫ ∞
x

J±y (x, y)eikydy − 2
f ′0(x)

f0(x)

∫ ∞
x

J±x (x, y)eikydy.

By substituting this and (3.18) to (3.17), it follows from (3.16), (3.4), and

(3.12) that f±+ (x, k) satisfy, for each x ∈ R such that D(x) �= 0,

(f±+ (x, k))′′ + [k2 − (U(x) ± 2kQ(x))]f±+ (x, k) = 0.

The asymptotics f±+ (x, k) are immediate from Ã±(x, ·) ∈ L1(x,∞) and

Ã±(x, x) → 0 as x → +∞. �

We are now in a position to establish Theorem 1.1.

Proof of Theorem 1.1. The “only if” part was already proved in

Proposition 2.12. We will prove that the scattering data for (U,±Q) defined

by (1.7) are equal to the prescribed data {0, kn, c±n }.
Let S(k) and S−(k) be the scattering matrices for (U,Q) and (U,−Q),

respectively. In view of Proposition 3.6(2), the Jost solutions f±+ (x, k) for

(U,±Q) are given by (3.14) via Ã±(x, y) defined by (3.13). Since ±iQ(x),

Ã±(x, y) are real-valued, we have

f±+ (x, k) = e±i
∫ ∞
x Q(r)dre−ikx +

∫ ∞
x

Ã±(x, y)e−ikydy, k ∈ R.(3.19)

From (3.13), (3.3) we get

∫ ∞
x

Ã±(x, y)e−ikydy

= e±i
∫ ∞
x Q(r)dr 1

∆±(x)

(
ik1e

ik1x

ik − ik1
· · · ikNeikNx

ik − ikN

)
×

(I −B∓B±)̃ (B∓v± − v∓)e−ikx.
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Hence

f±+ (x, k)e∓i
∫ ∞
x Q(r)dreikx − 1(3.20)

= e∓i
∫ ∞
x Q(r)dreikx

∫ ∞
x

Ã±(x, y)e−ikydy =
Γ±(x, k)

∆±(x)
.

By Lemma 3.2(2) we have Γ±(x, k) = · · · + ω
∏N

n=1 e
4iknx, where we set

ω := (detG)2
N∏

n=1

c+n c
−
n

(
−1 +

N∏
n=1

ik + ikn
ik − ikn

)
.

This, together with (3.2), leads to

Γ±(x, k)

∆±(x)
=

· · · + ω
∏N

n=1 e
4iknx

1 + · · · + κ
∏N

n=1 e
4iknx

.

It follows from this formula that

Γ±(x, k)

∆±(x)
=

ω

κ
+ o(1),

d

dx

Γ±(x, k)

∆±(x)
= o(1), x → −∞,

with

ω

κ
= −1 +

N∏
n=1

ik + ikn
ik − ikn

.

Therefore, by (3.20) and (3.19),

f±+ (x, k)e−i
∫ ∞
x Q(r)dreikx =

N∏
n=1

k + kn
k − kn

[1 + o(1)],

d

dx

(
f±+ (x, k)e−i

∫ ∞
x Q(r)dreikx

)
= o(1).

as x → −∞ for each k ∈ R. But, by Proposition 3.3(2), i
∫∞
−∞Q(r)dr = 0.

Hence this implies that

f±+ (x, k) =
N∏

n=1

k + kn
k − kn

e−ikx[1 + o(1)],

f±+ (x, k) ′ = −ik

N∏
n=1

k + kn
k − kn

e−ikx[1 + o(1)]
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as x → −∞ for each k ∈ R. Since f±+ (x, k) satisfies the same equation as

for f∓− (x, k), it follows from the uniqueness of the Jost solution that

f±+ (x, k) =
N∏

n=1

k + kn
k − kn

f∓− (x, k), k ∈ R.

It is equivalent to(
N∏

n=1

k + kn
k − kn

)
f±+ (x, k) = f∓− (x, k), k ∈ R,

because, by (I),

(
N∏

n=1

k + kn
k − kn

)
=

N∏
n=1

k + kn

k − kn
=

N∏
n=1

k − kσ(n)

k + kσ(n)
=

(
N∏

n=1

k + kn
k − kn

)−1

, k ∈ R.

In view of (2.4), this implies that

s11(k) = s−11(k) =
N∏

n=1

k + kn
k − kn

, s12(k) = s−12(k) ≡ 0.(3.21)

By virtue of the coupled unitarity in Lemma 2.1, this yields

s21(k) = s−21(k) ≡ 0, k ∈ R.

In this way we have proved that scatterings for (U,±Q) defined by (1.7) are

reflectionless.

We now let c̃±n be constants defined by

c̃±n = −iResk=kns11(k) × d̃±n ,

where d̃±n are coupling constants such that f±− (x, kn) = d̃±n f
±
+ (x, kn) (cf:

(1.4)), and set

F̃±(y) :=
N∑

n=1

c̃±n e
ikny, y ∈ R.

By Proposition 3.6(2), functions Ã±(x, y) defined by (3.13) are transforma-

tion kernels for (U,±Q) defined by (1.7). Hence, by applying Proposition
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2.6 to Ã±(x, y), F̃±(y), it follows that

Ã∓(x, y) −
∫ ∞
x

Ã±(x, r)F̃±(r + y)dr − e±i
∫ ∞
x Q(r)drF̃±(x + y)(3.22)

= 0, x ≤ y.

On the other hand, by Proposition 3.6(1), the functions

F±(y) :=
N∑

n=1

c±n e
ikny, y ∈ R,

satisfy the same equation

Ã∓(x, y)−
∫ ∞
x

Ã±(x, r)F±(r + y)dr− e±i
∫ ∞
x Q(r)drF±(x+ y) = 0, x ≤ y.

Subtracting (3.22) from this equalities and then putting y = x, we have

F̃±(2x) − F±(2x)

= −e∓i
∫ ∞
x Q(r)dr

∫ ∞
x

Ã±(x, r)
(
F̃±(r + x) − F±(r + x)

)
dr.

It follows from definition of Ã±(x, y), assumption (II), and ∆±(x) → 1

as x → +∞ that, for each fixed a ∈ R, there exists M , λ > 0 such that

|e∓i
∫ ∞
x Q(r)drÃ±(x, r)| ≤ Me−λ(x+r), x ≥ a

2
.

Set t = 2x, ϕ(t) := |F̃±(t) − F±(t)|. Then, by the substitution s = r + t
2 ,

we get

ϕ(t) ≤
∫ ∞
t

∣∣∣∣e∓i
∫ ∞
t
2

Q(r)dr
Ã±
(
t

2
, s− t

2

)∣∣∣∣ϕ(s)ds

Hence, by ∣∣∣∣e∓i
∫ ∞
t
2

Q(r)dr
Ã±
(
t

2
, s− t

2

)∣∣∣∣ ≤ Me−λs, t ≥ a,

we obtain

0 ≤ ϕ(t) ≤ M

∫ ∞
t

e−λsϕ(s)ds, a ≤ t < ∞.
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It is easy to see from this that ϕ(t) ≡ 0, t ≥ a. Since a is arbitrary, this

implies that
N∑

n=1

c̃±n e
ikny =

N∑
n=1

c±n e
ikny, y ∈ R.

Since ikn are mutually different, we conclude that c̃±n = c±n , n = 1, · · · , N . �

In the proof above we have deduced (3.21). Noting that
∏N

n=1(k+kn) =∏N
n=1(k − kn) for k ∈ C by (I) and comparing (3.21) with (2.9), we have

proved the following:

Corollary 3.7. In reflectionless scattering for (1.1), every pole kn,

n = 1, · · · , N , is simple. Consequently, in the reflectionless scattering,

S(k) =

( ∏N
n=1

k+kn
k−kn 0

0
∏N

n=1
k+kn
k−kn

)
.

Our scattering theory involves the reflectionless scattering on the stan-

dard Schrödinger equation as a special case:

Corollary 3.8. Assume that ikn < 0, c+n = c−n =: cn > 0, n =

1, · · · , N . Then {0, kn, cn} is the scattering data for

U(x) = −2
d2

dx2
log det(I −B), Q(x) ≡ 0,

where B := B±.

Proof. By assumption, B+ = B−, v+ = v−, and so ∆+(x) = ∆−(x),

which we denote simply by B, v, ∆(x). The function ∆(x) is computed

(see [20, equation (7.4)]) as

∆(x) = det(I −B2) + ( eik1x · · · eikNx )(I −B2)̃ (B v − v)

= det(I −B)
(
det(I + B) − ( eik1x · · · eikNx )(I + B)̃ v

)
= (det(I −B))2.

Hence, by (1.7), we can prove the corollary. �
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4. Isospectral Flow and Inverse Scattering Method

An isospectral flow (1.13) associated with the energy dependent

Schrödinger operator

L := D2 − (U + 2kQ), where D :=
d

dx
, Q : purely imaginary,

can be derived by a manipulation (see [32, section 5]) of the Lax pair

1

i

d

dt
L = [A,L]

with the differential operator

A = 2(Q + k)D −Qx.(4.1)

Our inverse scattering method (see Figure 1) for (1.12), (1.13) is based

upon the following

Proposition 4.1. Suppose that (U,Q) = (U(x, t), Q(x, t)) with real U

and purely imaginary Q decreasing rapidly as x = ±∞, satisfies (1.13).

Then

(1) Time evolutions of the scattering matrices

S(k, t) =

(
s11(k, t) s12(k, t)

s21(k, t) s22(k, t)

)
, S−(k, t) =

(
s−11(k, t) s−12(k, t)

s−21(k, t) s−22(k, t)

)
,

of (1.1) with (U,±Q) = (U(x, t),±Q(x, t)) are given by

s11(k, t) = s11(k, 0), s−11(k, t) = s−11(k, 0), k ∈ C+,(4.2)

s12(k, t) = s12(k, 0)e4k2t, s−12(k, t) = s−12(k, 0)e−4k2t,
(4.3)

s21(k, t) = s21(k, 0)e−4k2t, s−21(k, t) = s−21(k, 0)e4k2t, k ∈ R.

In particular “reflectionless” is preserved in time evolution.

(2) In the reflectionless scattering, time evolutions of constants c+n (t),

c−n (t) in (1.4) are given by

c+n (t) = c+n (0)e−4kn
2t, c−n (t) = c−n (0)e4kn

2t,

where kn, n = 1, · · · , N , are poles in C+ of s11(k, t) which are t-

invariant by (4.2).
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Proof. In the proof we use the notation a(x) ∼ b(x), which implies

a(x) = b(x)[1 + o(1)].

(1) Let f± = f±(x, k, t) be the Jost solutions of (1.1) with (U,Q) =

(U(x, t), Q(x, t)), and define functions g± = g±(x, k, t) in x, t ∈ R, k ∈ C+

by

g± :=
1

i
ḟ± − (Af± ∓ 2ik2f±),(4.4)

where A is the operator defined in (4.1). We first show that

g± = 0, k ∈ C+,(4.5)

provided that (U,Q) satisfies (1.13). By applying the variation of constants

method to the equation

ḟ ′′+ + [k2 − (U(x, t) + 2k Q(x, t))]ḟ+

= (Ut(x, t) + 2k Qt(x, t))f+, −∞ < x < ∞,

it follows from (2.5) that ḟ+ = ḟ+(x, k, t) is expressed as

1

i
ḟ+ = − 1

2ik

∫ ∞
x

(
1

i
Ut(y, t) + 2k

1

i
Qt(y, t)

)
×(4.6)

f+(y, k, t)G(x, y, k, t)dy, k ∈ R,

where

G(x, y, k, t) := f+(x, k, t)f−+ (y, k, t) − f+(y, k, t)f−+ (x, k, t),

having properties

Gy(x, x, k, t) = −2ik, G(x, x, k, t) = 0.

We rewrite (4.6) as

1

i
ḟ+ = − 1

2ik

∫ ∞
x

(
1

i
Ut − 4QyU − 2QUy + Qyyy

)
(y, t) ×

f+(y, k, t)G(x, y, k, t)dy

− 1

2ik

∫ ∞
x

2k

(
1

i
Qt − 6QQy − Uy

)
(y, t)f+(y, k, t)G(x, y, k, t)dy

− 1

2ik

∫ ∞
x

(4QyU + 2QUy −Qyyy) f+(y, k, t)G(x, y, k, t)dy

− 1

2ik

∫ ∞
x

2k (6QQy + Uy) f+(y, k, t)G(x, y, k, t)dy.
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The third and fourth terms in the right-hand side is written as Af+−2ik2f+

by exactly the same computation (with f−+ (z, k, t) instead of f+(z, k, t)) as

in [20, section 8]. Therefore, for k ∈ R,

g+(x, k, t) = − 1

2ik

∫ ∞
x

(
1

i
Ut − 4QyU − 2QUy + Qyyy

)
(y, t) ×(4.7)

f+(y, k, t)G(x, y, k, t)dy

− 1

2ik

∫ ∞
x

2k

(
1

i
Qt − 6QQy − Uy

)
(y, t) ×

f+(y, k, t)G(x, y, k, t)dy.

This shows that if (U,Q) = (U(x, t), Q(x, t)) satisfies (1.13) then g+ satisfies

(4.5), because an analytic continuation to the upper half-plane retains this

functional relation. By observing that system (1.13) is invariant in the

transformation (x, t) → (−x,−t), it turns out that g− satisfies (4.5).

We next deduce a necessary and sufficient condition of g± for s11(k, t)

to be time-invariant. By (Af±)′ = 2(Q + k)f ′′± −Qxxf± + Qxf
′
±, we easily

verify that

det

(
Af+ Af−
f ′+ f ′−

)
+ det

(
f+ f−

(Af+)′ (Af−)′

)
= 0,

from which it follows that

det

(
g+ g−
f ′+ f ′−

)
+ det

(
f+ f−
g′+ g′−

)

= det

(
1
i ḟ+

1
i ḟ−

f ′+ f ′−

)
+ det

(
f+ f−
1
i ḟ
′
+

1
i ḟ
′
−

)

−
(

det

(
Af+ Af−
f ′+ f ′−

)
+ det

(
f+ f−

(Af+)′ (Af−)′

))

=
1

i

d

dt
W [f+, f−].

We have thus proved:

d

dt
s11(k, t) = 0(4.8)

⇐⇒ det

(
g+ g−
f ′+ f ′−

)
+ det

(
f+ f−
g′+ g′−

)
= 0, k ∈ C+.
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If (U,Q) satisfies (1.13) then g± = 0, and therefore, by (4.8), s11(k, t) is time-

invariant. Observing that system (1.13) is invariant in the transformation

(U(x, t), Q(x, t)) → (U(x,−t),−Q(x,−t)),(4.9)

we can see that s−11(k, t) is also time-invariant.

By (4.5) we get

1

i
˙f+ = 2(Q + k)(f+)′ − (Qx + 2ik2)f+, k ∈ C+.

Also, by using (4.9), we get

1

i
ḟ−− = 2(Q− k)(f−− )′ − (Qx + 2ik2)f−− , k ∈ C+.(4.10)

This enables us to compute, for k ∈ R,

1

i

d

dt
W [f+, f

−
− ] = det

(
1
i ḟ+

1
i

˙
(f−− )

(f+)′ (f−− )′

)
+ det

(
f+ f−−

1
i (ḟ+)′ 1

i

˙
(f−− )′

)

= −(Qx + 2ik2)W [f+, f
−
− ] + (Qx − 2ik2)W [f+, f

−
− ]

= −4ik2W [f+, f
−
− ].

Hence, remembering (2.6) and noting W [f+, f−] is invariant in t, we get

˙s12 = 4k2s12. Similarly we get ˙s−12 = −4k2s−12. We thus proved (4.3).

(2) We recall that, in the reflectionless scattering, s11(k, t) = s−11(k, t)

by Proposition 2.3(2). It follows from f−− (x, kn, t) = d−n (t)f−+ (x, kn, t) that

ḟ−− (x, kn, t) = ḋ−n (t)f−+ (x, kn, t)+d−n (t)ḟ−+ (x, kn, t) ∼ ḋ−n (t)eiknx, x → +∞.

By (4.10),

1

i
ḟ−− (x, kn, t) = 2(Q− kn)(f−− )′(x, kn, t) −Qxf

−
− (x, kn, t) − 2ik2

nf
−
− (x, kn, t)

= 2(Q− kn)d−n (t)(f−+ )′(x, kn, t) −Qxf
−
− (x, kn, t)

− 2ik2
nd
−
n (t)f−+ (x, kn, t)

∼ −4ik2
nd
−
n (t)eiknx, x → +∞,

from which we get ḟ−− (x, kn, t) ∼ 4k2
nd
−
n (t)eiknx as x → +∞. This, com-

bined with ḟ−− (x, kn, t) ∼ ḋ−n (t)f−+ (x, kn, t) as x → +∞, shows that ḋ−n (t) =



Nonconservative Scattering and Soliton Solutions 697

4k2
nd
−
n (t). This leads to c−n (t) = c−n (0)e4kn

2t. Similarly we can show c+n (t) =

c+n (0)e−4kn
2t. This proves (2). �

In the reflectionless scattering, we have a kind of converse for Proposition

4.1:

Proposition 4.2. Suppose that (U(x, t), Q(x, t)) is a potential whose

scattering data is {0, kn, c±n (0)e∓4k2
nt} for each t. If (U(x, t), Q(x, t)) satisfies

the first equation of system (1.13) then (U(x, t), Q(x, t)) is a solution of the

system.

Proof. As in the proof of Proposition 4.1, we use functions g± defined

in (4.4). By differentiating in t the transformation kernel representation

f±(x, k, t) = e±i
∫ ±∞
x Q(r,t)dre±ikx +

∫ ±∞
x

A±(x, y, t)e±ikydy,

substituting the resultant to definition of g±(x, y, t), and performing inte-

grations by parts, we have

g±(x, k, t) = ±
∫ ±∞
x

Qt(r, t)dr e
±i
∫ ±∞
x Q(r,t)dre±ikx

± 2iQ2e±i
∫ ±∞
x Q(r,t)dre±ikx

+

(
∓2i

∂

∂x
A±(x, x, t) + 2QA±(x, x, t) + Qxe

±i
∫ ±∞
x Q(r,t)dr

)
e±ikx

+

∫ ±∞
x

1

i

∂A±
∂t

(x, y, t)e±ikydy +

∫ ±∞
x

Qx(x, t)A±(x, y, t)e±ikydy

− 2

∫ ±∞
x

Q(x, t)
∂A±
∂x

(x, y, t)e±ikydy

∓ 2i

∫ ±∞
x

(
∂2A±
∂y2

+
∂2A±
∂x∂y

)
e±ikydy.

But, by differentiating

A±(x, x, t) = e±i
∫ ±∞
x Q(r,t)dr

(∫ ±∞
x

[U(r, t) + Q(r, t)2]dr ∓ iQ(x, t)

)
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(see formula (2.12)) in x, it follows that

∓ 2i
∂

∂x
A±(x, x, t) + 2QA±(x, x, t) + Qxe

±i
∫ ±∞
x Q(r,t)dr

= ±i(U + Q2)e±i
∫ ±∞
x Q(r,t)dr.

We have thus found the following, transformation kernel representation (in

the Faddeev form) of g±(x, k, t):

Lemma 4.3. For k ∈ C+,

g±(x, k, t)

=

(
m±(x, t)e±i

∫ ±∞
x Q(r,t)dr +

∫ ±∞
0

M±(x, x + z, t)e±ikzdz

)
e±ikx,

where

m±(x, t) = ±i

∫ ±∞
x

(
1

i
Qt − 6QQx − Ux

)
dx,

M±(x, y, t) =
1

i

∂A±
∂t

− 2Q(x, t)
∂A±
∂x

(x, y, t)

+ Qx(x, t)A±(x, y, t) ∓ 2i

(
∂2A±
∂y2

+
∂2A±
∂x∂y

)
(x, y, t).

Observing that m±(x, t) vanish, provided that (U,Q) satisfies the first

equation of system (1.13), we have the representation

f+(x, k, t)g−(x, k, t) − f−(x, k, t)g+(x, k, t)

=

∫ ∞
0

∃Ξ(x, z, t)eikzdz, k ∈ C+,

which is an analytic and bounded function on C+. In view of the Riemann-

Lebesgue lemma, it tends to zero as |k| → ∞ in ∈ C+. On the other

hand, it follows from definition (4.4), f−(x, kn, t) = dn(t)f+(x, kn, t), and

ḋn(t) = −4k2
ndn(t) that, for k = kn,

g−(x, kn, t) = dn(t)g+(x, kn, t).
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This implies that the analytic function has kn as zeros. Remembering that

kn are simple poles of s11(k) (see Corollary 3.7) leads to:

Lemma 4.4. For each fixed (x, t) ∈ R2, the function

φ(k) := is11(k) (f+(x, k, t)g−(x, k, t) − f−(x, k, t)g+(x, k, t))

is analytic and bounded on C+, which tends to zero as |k| → ∞.

In addition, we define functions g−± = g−±(x, k, t) on C+ by

g−± := −1

i
ḟ−± − (Ã−f−± ∓ 2ik2f−± ), Ã− := 2(−Q + k)D + Qx.

Then, in a similar way to that for Lemma 4.4, we have:

Lemma 4.5. For each fixed (x, t) ∈ R2, the function

φ−(k) := is11(k)
(
f−+ (x, k, t)g−−(x, k, t) − f−− (x, k, t)g−+(x, k, t)

)
is analytic and bounded on C+ tending to zero as |k| → ∞, provided that

(U,Q) satisfies the first equation of (1.13).

Two functions φ(k), φ−(k) are connected on the real line via a conjugate

relation. To see the relation, we note that, in the reflectionless scattering,

(2.4) is written as

s11(k)f±(x, k, t) = f−∓ (x, k, t), k ∈ R.

This property is passed on to g as:

s11(k)g±(x, k, t) = g−∓(x, k, t), k ∈ R.

This, together with s11(k)s11(k) = 1, leads to:

Lemma 4.6. For k ∈ R, φ(k) = φ−(k).

This lemma, together with Lemmas 4.4 and 4.5, shows that φ(k) is the

restriction to C+ of an analytic function on the whole plane C with the

condition φ(k) = φ−(k). But φ(k) is bounded on C, and therefore, by

Liouville’s Theorem, φ(k) is a constant in k. By letting |k| → ∞ it turns
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out the constant must be zero. We thus conclude that φ(k) ≡ 0 on C+. In

other words,

det

(
f+ f−
g+ g−

)
= 0, k ∈ C+.(4.11)

Differentiating this in x to get

det

(
f ′+ f ′−
g+ g−

)
+ det

(
f+ f−
g′+ g′−

)
= 0.

By using (4.8) this can be rewritten as

det

(
f ′+ f ′−
g+ g−

)
= 0.

This, combined with (4.11), yields

(
f+ f−
f ′+ f ′−

)(
g−
−g+

)
=

(
0

0

)
.

Since W [f+, f−] �= 0 for k ∈ R \ {0}, this means that g+(x, k, t) = 0 for

k ∈ R. From (4.7) we conclude that 1
iUt − 4QxU − 2QUx + Qxxx = 0. We

complete the proof of Proposition 4.1. �

Remark 4.7. In the case where Q(x, t) is real-valued, we can prove

the following: Let (U(x, t), Q(x, t)) be the potential determined from the

scattering data {0, kn, cn(0)e4ik2
nt}. If (U(x, t), Q(x, t)) satisfies Qt−6QQx−

Ux = 0 then it satisfies{
Qt − 6QQx − Ux = 0,

Ut − 4QxU − 2QUx + Qxxx = 0.

The proof is obtained in a similar manner to that in the proof of Proposition

4.2. It is just enough to replace 1
i
d
dt by d

dt , for instance, use Qt instead of 1
iQt.

We need only to see φ(k) defined by exactly the same form as in Lemma

4.4 can be continued analytically to the whole plane C by the symmetry

condition φ(k) = φ(k) by showing that φ(k) is real-valued on R. This makes

the proof easier than that for our case where Q(x, t) is purely imaginary.
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5. Soliton Solutions

In this section we will present the proof of Theorem 1.3. We require the

following

Lemma 5.1. Let c±n = c±n (t) satisfy d
dtc
±
n (t) = ∓4kn

2c±n (t), n =

1, · · · , N , and let J±(x, y, t) be a function defined by (2.21) with c±n = c±n (t).

Then, for each x such that D(x, t) �= 0,

(
∂2

∂x2 ± ∂
∂t

)
J±(x, x, t)

1 + J±(x, x, t)
= 2

∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)
.

Proof. We employ the following notation:

e =




eik1x

...

eikNx


 , te =

(
eik1x · · · eikNx

)
, b± :=




c±1 e
ik1x

...

c±NeikNx


 .

By setting z = 0 in (3.8) we have

∂
∂xJ

±(x, x, t)

1 + J∓(x, x, t)
= −2 te (I −B∓B±)−1b∓,(5.1)

which leads to

∂
∂xJ

+(x, x, t)

1 + J−(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J+(x, x, t)
(5.2)

= 4 te (I −B∓B±)−1(B∓)′ (I −B±B∓)−1b±.

Let K be a diagonal matrix whose 55-component is given by ik�. By differ-

entiating (5.1) in x and noting (B±)′ = B±K + KB±, we obtain

∂

∂x

∂
∂xJ

±(x, x, t)

1 + J∓(x, x, t)
(5.3)

= −4 te (I −B∓B± )−1(K + B∓KB±)(I −B∓B± )−1 b∓.
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Since

∂2

∂x2
J±(x, x, t) =

(
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

)
(1 + J±(x, x, t))(5.4)

+

(
∂

∂x

∂
∂xJ

±(x, x, t)

1 + J∓(x, x, t)

)(
1 + J∓(x, x, t)

)
,

from (5.2) and (5.3), we have

∂2

∂x2
J±(x, x, t) = 4 te (I −B∓B± )−1 ×(
(B∓)′(I −B±B∓)−1(1 + J±(x, x, t)) b±(5.5)

−(K + B∓KB±)(I −B∓B± )−1
(
1 + J∓(x, x, t)

)
b∓
)
.

In the case where c±n depend on t, (2.18) becomes a GLM equation

J∓(x, y, t)+

∫ ∞
x

J±(x, r, t)F±(r+y, t)dr+

∫ ∞
x

F±(r+y, t)dr = 0, x < y,

where

F±(y, t) := −
N∑

n=1

c±n (t)eikny.

By d
dtc
±
n (t) = ∓4kn

2c±n (t), we have

∂F±

∂t
= ±4

∂2F±

∂y2
.

Hence, differentiating the GLM equation once in t and twice in y, we find

an equation

J∓t (x, y, t) +

∫ ∞
x

J±t (x, r, t)F±(r + y, t)dr ∓ 4J∓yy(x, y, t) = 0,(5.6)

for unknown J±t (x, y, t). In view of (2.21),

∓ 4J∓yy(x, y, t) = ∓( eik1y · · · eikNy ) 4K2p±,

p± := (I −B±B∓ )−1 (B±v∓ − v±).
(5.7)
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This implies that (5.6) is an equation with w± := ∓4K2p± instead of the

last term
∫∞
x F±(r + y)dr =

(
eik1y · · · eikNy

)
v± in (2.18). Therefore,

equation (5.6) can be solved in the form (2.21) by replacing v± there by

w±. This discussion yields

± J±t (x, x, t) = 4 te (I −B∓B± )−1 ×(
−B∓K2 (I −B±B∓ )−1 (B±v∓ − v±)

−K2 (I −B∓B± )−1 (B∓v± − v∓)
)
.

Adding (5.5) to this, we have

∂2

∂x2
J±(x, x, t) ± ∂

∂t
J±(x, x, t) = 4 te (I −B∓B± )−1 ×(

(B∓)′(I −B±B∓)−1(1 + J±(x, x, t)) b±

−(K + B∓KB±)(I −B∓B± )−1
(
1 + J∓(x, x, t)

)
b∓(5.8)

−B∓K2 (I −B±B∓ )−1 (B±v∓ − v±)

−K2 (I −B∓B± )−1 (B∓v± − v∓)
)
.

Differentiating (2.21) in y and comparing the resultant with (3.7), we

get

−K(I −B∓B± )−1 (B∓v± − v∓)(5.9)

= (I −B∓B±)−1
(
(1 + J±(x, x, t))B∓b± + (1 + J∓(x, x, t))b∓

)
.

It follows from (5.9), (2.23), and B∓K + KB∓ = (B∓)′ that

− (K + B∓KB±)(I −B∓B± )−1
(
1 + J∓(x, x, t)

)
b∓

−B∓K2 (I −B±B∓ )−1 (B±v∓ − v±) −K2 (I −B∓B± )−1 (B∓v± − v∓)

= (B∓)′(I −B±B∓)−1(1 + J±(x, x, t))b±.

Hence, by (5.8), we arrive at(
∂2

∂x2 ± ∂
∂t

)
J±(x, x, t)

1 + J±(x, x, t)
= 8 te (I −B∓B± )−1(B∓)′(I −B±B∓)−1 b±.

This, combined with (5.2), shows that(
∂2

∂x2 ± ∂
∂t

)
J±(x, x, t)

1 + J±(x, x, t)
= 2

∂
∂xJ

+(x, x, t)

1 + J−(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J+(x, x, t)
.
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The proof is complete. �

Proof of Theorem 1.3. Due to Proposition 4.2 it is enough to show

that (U(x, t), Q(x, t)) transformed from (u(x, t), w(x, t)) via (1.14) satisfies

the first equation of (1.13). The first equation of (1.13) is however equivalent

to the first equation of (1.12). Hence it suffices to prove that (u(x, t), w(x, t))

defined by (1.15) satisfies ut + wx + uux = 0.

Due to (2.25), u(x, t) is written as

u(x, t) = 2
∂

∂x

(
log
(
1 + J+(x, x, t)

)
− log

(
1 + J−(x, x, t)

))
for each x such that D(x, t) �= 0. From this we get

1

8
u(x, t)2 =

1

2

(
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)
−

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

)2

.

Moreover, by (1.14), (3.4), (3.5) and Lemma 3.4, we have

1

4
w(x, t)

=
1

2

∂

∂x

(
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)
+

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

)
− ∂

∂x

J±x (x, x, t) − J±y (x, x, t)

1 + J±(x, x, t)

=
1

2

∂

∂x

(
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)
+

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

)

−
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

=
1

2

(
∂2

∂x2J
+(x, x, t)

1 + J+(x, x, t)
+

∂2

∂x2J
−(x, x, t)

1 + J−(x, x, t)

)

− 1

2


( ∂

∂xJ
+(x, x, t)

1 + J+(x, x, t)

)2

+

(
∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

)2



−
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)
.
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Adding these two equalities and using Lemma 5.1, we find that

1

4
w(x, t) +

1

8
u(x, t)2

=
1

2

(
∂2

∂x2J
+(x, x, t)

1 + J+(x, x, t)
+

∂2

∂x2J
−(x, x, t)

1 + J−(x, x, t)

)

− 2
∂
∂xJ

+(x, x, t)

1 + J+(x, x, t)

∂
∂xJ

−(x, x, t)

1 + J−(x, x, t)

= −1

2

(
∂
∂tJ

+(x, x, t)

1 + J+(x, x, t)
−

∂
∂tJ
−(x, x, t)

1 + J−(x, x, t)

)
= −1

2

∂

∂t
log

1 + J+(x, x, t)

1 + J−(x, x, t)

= −1

2

∂

∂t
log

∆+(x, x, t)

∆−(x, x, t)
,

for each x such that D(x, t) �= 0. Differentiating this in x and taking

(1.15) into account, we arrive at ut + wx + uux = 0 for each x such that

D(x, t) �= 0. Since the left-hand side is continuous, it holds for each (x, t)

as long as ∆±(x, t) > 0. The proof is complete. �

6. Concluding Remarks

Sections 2, 3 of the present paper have been devoted to an establishment

of the scattering theory for (1.1). Our success in proving Theorem 1.1

depends on our ability to overcome the obstacle that a GLM equation (2.18)

does not admit the solvability (see Remark 2.13). This means that, in the

reflectionless inverse scattering, the obstacle is not necessarily crucial. From

this point of view the present paper is quite different from [17], whose inverse

scattering methodis based on the solvability (see assumption [17, D4]) of a

GLM equation. This solvability is too strong for inverse scattering method

to be applicable for a wider class of integrable systems. The first observation

that the obstacle is not essential is found in [31], though the paper treated

the case with real Q.

A characteristic of the solution formula (1.15) for the Boussinesq system

(1.12) consists in the form

∆±(x, t) = 1 + · · · + (detG)2
N∏

n=1

e4iknx,(6.1)
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where (detG)2 is defined in (3.1) that is independent of t, as well as the

signature ±. This stems from the invariance c+n (t)c−n (t) = c+n (0)c−n (0) of the

Boussinesq system: dependence on t and the signature appears only in the

middle terms in (6.1). In particular, ∆+(x, t) �≡ 1, ∆−(x, t) �≡ 1 for each t.

It is of significance to ask a relation between soliton solutions of the

Boussinesq system (1.12) constructed by Hirota [10, 11] and them of the

present paper, because if we find some relation then the soliton solution

can be obtained also by the inverse scattering method from a pair (U,Q) in

(1.1) and so the solution admits two different approaches.

A candidate is found in Hirota [10, §2]. In the paper a way called “pq =

c” reduction was developed, by which soliton solutions of the Boussinesq

system (1.12) can be obtained from an N-soliton solution of the first modified

KP equation. Then (u,w) in the Boussinesq system (1.12) is written as

u(x, t) = 2[log(f/g)]x, w(x, t) = 4c + 2[log(fg)]xx(6.2)

with a constant c, under a replacement t → −t. Notice that (6.2) is a recast

of [10, equation (1.13) with (2.9b)] by our notation. Here f , g are defined

by [10, equation (2.3)], namely,

f := 1 +
N∑
i=1

pie
ηi

+

N∑
r=2

∑
i1<···<ir

∏
µ<ν

pi1 · · · pir
(piµ − piν )(qiµ − qiν )

(piµ − qiν )(qiµ − piν )
eηi1+···+ηir ,

g := 1 +
N∑
i=1

qie
ηi

+

N∑
r=2

∑
i1<···<ir

∏
µ<ν

qi1 · · · qir
(piµ − piν )(qiµ − qiν )

(piµ − qiν )(qiµ − piν )
eηi1+···+ηir ,

with ηi = (pi − qi)x1 + (p2
i − q2

i )x2 + (p3
i − q3

i )x3, i = 1, · · · ,N. Hirota’s

“pq = c” reduction guarantees that if piqi = c, i = 1, · · · ,N, and f , g satisfy

the bilinear equation

(D3
1 + 3cD2 −D3)g · f = 0

in the Hirota form (see Hirota [12]) then the pair (u,w) defined in (6.2)

with x2 = −t satisfies the Boussinesq system (1.12). In the case c �= 0,
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the element w of this solution tends to nonzero constant as x → ±∞; this

solution is different from our solutions defined in (1.15) in the present paper

because our solutions tend to zero as x → ±∞. On the other hand, the case

c = 0 is somewhat delicate, because in order for g, f to satisfy

(D3
1 −D3)g · f = 0,(6.3)

additional conditions besides piqi = 0, i = 1, · · · ,N, are imposed on p =

(p1, · · · , pN) and q = (q1, · · · , qN), as is shown in what follows.

In the case c = 0, the terms of f with r ≥ 2 disappear since pii · · · pir �= 0

means qiµ − qiν = 0 by assumption piqi = 0. Also the terms of g with

r ≥ 2 disappear. Furthermore, by the assumption, (D3
1 − D3)e

ηi · 1 =

(D3
1 −D3)1 · eηj = 0. Hence we get

(D3
1 −D3)g · f = (D3

1 −D3)

(
1 +

N∑
i=1

qie
ηi

)
·


1 +

N∑
j=1

pje
ηj




=
∑

i,j=1,··· ,N
qipj(D

3
1 −D3)e

ηi · eηj .

By renumbering, we may assume that

p = (0, · · · , 0, pM+1, · · · , pN), q = (q1, · · · , qM, 0, · · · , 0).

Then the equality above is written as

(D3
1−D3)g ·f =

∑
i≤M<j

qipj(D
3
1−D3)e

ηi ·eηj = −3
∑

i≤M<j

q2
i p

2
j (qi + pj) e

ηi+ηj ,

since (D3
1 − D3)e

ηi · eηj = −3qipj (qi + pj) e
ηi+ηj for i ≤ M < j. This

implies that, for (6.3), it is necessary that qi + pj = 0 for each i = 1, · · · ,M,

j = M + 1, · · · ,N. Accordingly p, q must be the forms

p = (0, · · · , 0,−q, · · · ,−q), q = (q, · · · q, 0, · · · , 0),

which lead to

ηi = −qx1 − q2x2 − q3x3, i = 1, · · · ,M;

ηi = −qx1 + q2x2 − q3x3, i = M + 1, · · · ,N.
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This shows that, in “pq = 0” reduction, if (6.3) holds then

f = 1 − (N − M)qe−qx1+q2x2−q3x3 , g = 1 + Mqe−qx1−q2x2−q3x3 ,

and therefore fg has zeros necessarily as x1 moves from −∞ to +∞ for

each x2 = −t, except for M = 0 or M = N. This shows that the solution

(u(x, t), w(x, t)) defined on the whole real x-line R of the Boussinesq system

(1.12) can be obtained by “pq = 0” reduction only in the case f ≡ 1 or

g ≡ 1, which is not the case with (6.1). We have thus proved that solutions

of the Boussinesq system (1.12) constructed from “pq = c” reduction and

our solutions by (1.15) are mutually different.

Another candidate is found in Hirota [11]. In the paper, Hirota treated

the Wronskians

τ := W [r1, · · · , rn] =

∣∣∣∣∣∣∣∣
r1

∂
∂x1

r1 · · · ∂n−1

∂xn−1
1

r1

...
...

...
...

rn
∂

∂x1
rn · · · ∂n−1

∂xn−1
n

rn

∣∣∣∣∣∣∣∣
,

τ ′ := W [r1, · · · , rn, rn+1],

with functions ri(x1, x2, x3) satisfying

∂

∂x2
ri =

∂2

∂x2
1

ri,
∂

∂x3
ri =

∂3

∂x3
1

ri, i = 1, · · · , n + 1,

to establish, in [11, §3], the theorem: if the Wronskians are symmetric,

namely,

∂

∂x1
r1 = r2, · · · ,

∂n

∂xn1
r1 = rn+1,(6.4)

then

u(x, t) = 2[log(τ ′/τ)]x, w(x, t) = 2[log(τ ′τ)]xx, x1 = x, x2 = −t,(6.5)

satisfy the Boussinesq system (1.12). This result can be regarded as a

“pq = 0” reduction for Wronskian forms, although no parameter p, q appears

explicitly. By applying this theorem to Wronskians of Hermite polynomials,

it was shown in [11, §2] that rational functions expected to be solutions of the
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Boussinesq system in Nakamura and Hirota [28] are actually the solutions

of it.

Apart from the Wronskians of Hermite polynomials, Hirota [11, Ap-

pendix B] treated the case

ri = eξi + eξ̂i , ξi = x0 + x1pi + x2p
2
i + x3p

3
i ,

ξ̂i = x0 + x1qi + x2q
2
i + x3q

3
i

(6.6)

to show that, in this case, τ gives the soliton solutions of the KP equation

in the usual form

ηi = ϕi + (pi − qi)x1 + (p2
i − q2

i )x2 + (p3
i − q3

i )x3,

where ϕi are constants. Therefore it can be expected that by applying

Hirota’s theorem to ri in (6.6) we can obtain n-soliton solutions of the

Boussinesq system (1.12). In the case (6.6), symmetry condition (6.4) is

somewhat strong because the condition leads to

ex0+x1pi+x2p2
i +x3p3

i + ex0+x1qi+x2q2i +x3q3i

= pi−1
1 ex0+x1p1+x2p2

1+x3p3
1 + qi−1

1 ex0+x1q1+x2q21+x3q31

for each (x1, x2) ∈ R2. For i = 2, by setting x2 = 0, we have

ex3p3
1ep2x1 + ex3p3

1eq2x1 − p1e
x3p3

1ep1x1 − q1e
x3q31eq1x1 = 0.

This is possible only if

p2 = p1 = q2 = q1 = 1

or

p1 = 0, q1 = q2 = p2, q1e
x3q31 = 2 (q1 = 0, p1 = p2 = q2, p1e

x3p3
1 = 2).

The former case is meaningless because r1 = r2 = · · · = rn+1. In the latter

case, by (6.4), we obtain

r1 = eξ1 + eξ̂1 = ex0(1 + 2q−1
1 ex1q1+x2q21 ),

ri = 2qi−2
1 ex0+x1q1+x2q21 , i = 2, 3, · · · .
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This implies that r2, r3,· · · are linearly dependent and so τ ′ = 0 for n ≥ 2.

Therefore we have only one-soliton solution defined by (6.5). The solution is

easily calculated from τ = W [r1] = ex0(1 + 2q−1
1 eq1x−q

2
1t), τ ′ = W [r1, r2] =

2e2x0q1e
q1x−q21t as

u(x, t) =
2q2eq

2te−qx

2 + qeq2te−qx
, w(x, t) =

4q3eq
2te−qx

(2 + qeq2te−qx)2
,(6.7)

where we set q := q1. Note that q > 0. The function u(x, t) tends to 2q > 0

as x → −∞. Accordingly the solution (6.7) is different from our solution

that tends to 0 as x → ±∞.

It is interesting that the solution (6.7) has a similar character to 1-soliton

solution in Example 1.4: w(x, t) is such as a water congestion driven by the

velocity u(x, t) like a boundary layer. As a matter of fact, the solution (6.7)

can be obtained by setting c−1 = 0, c+1 = 1
4q

2eq
2t with b = q in (1.10),

(1.11) via (1.14). It is however a formal manipulation since the form (6.1) is

robust. Therefore an inverse scattering theoretical approach to the Hirota’s

soliton solution is left to the future as a bidirectional subject. It should be

also noticed that the situation is different for other systems such as (1.18)

where the time invariance c+n (t)c−n (t) = c+n (0)c−n (0) becomes relaxed.
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