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Abstract

Speech emotion recognition (SER) is a fundamental task to detect the implied emotions from
speech signals. It is of great challenge in learning suitable affect-salient features for achieving
good performance. With the advent of deep learning (DL), many pieces of research con-
ducted on DL-based SER systems have shown extreme advantages. Among them, transformer
exhibited outstanding qualities in learning relevant representations associated with this task.
However, there are still several problems to deal with: 1) a normal transformer is only able
to process the uni-source input, 2) interaction between transformer and other DL structures —
convolutional neural network (CNN) and Long short-term memory (LSTM) are still needed to
be investigated, 3) there is often only one kind of input features in a transformer-based SER
system, which may cause limited knowledge. For the first problem, we attempt to use the
cross-attention transformer (CAT) to handle bi-source input. For better differentiation, we alias
the normal transformer model as self-attention transformer (SAT). Towards the second problem,
we propose two SER systems: integration of LSTM with SAT (ILSAT) and CAT for CNN and
LSTM sources (CL-CAT). While the former is to replace the positional encoding in SAT by
LSTM, the latter is for joint encoding of CNN and LSTM sources using CAT. Experimental
results conducted on the IEMOCAP dataset show that both our proposals can make a promising
improvement relative to the baseline system. To solve the third problem, additional acoustic
(multiple acoustic features) and textual features (multimodal features) are considered and fused
with previous input features by CAT, and corresponding SER systems SMW_CAT (S, M, W are
the abbreviation of log mel spectrogram, MFCC, and raw waveform data) and AT_CAT-SAT (A,
T are the abbreviation of audio and text) are proposed respectively. SMW_CAT has achieved a
73.80% WA and 74.25% UA, which outperforms existing state-of-art approaches. AT_CAT-
SAT has achieved a 73.64% weighted accuracy (WA) and 75.05% unweighted accuracy (UA),
where substantial improvement can be observed compared with SER systems with single modal
input. In addition, we exploit t-SNE to visualize the process of learning relative representations
in our systems.
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Chapter 1

Introduction

1.1 Research background

The speech signal gives us the most natural, intuitive, and speedy way to express ourselves
in daily life. This fact has motivated researchers to think of speech as an efficient method for
human-computer interaction (HCI). Although there have been tremendous efforts on speech
recognition which refers to the process of converting human speech into word sequences, it is
still difficult for machines to fully understand a person’s voice, since it carries not only explicit
linguistic information but also implicit paralinguistic information such as emotion. Emotion is
indispensable in the speech that can help the machine to better catch the intention of the speaker.
This has introduced a related research field, called speech emotion recognition (SER), which is
defined as detecting the emotional state of a speaker from his/her speech. SER is particularly
functional for a wide range of applications. For those systems of web movies and computer
tutorials, the response to the user should depend on the detected emotion. It is also useful for
in-car board systems where information on the mental state of the driver may be provided to
the system to initiate his/her safety. In call center applications and mobile communication, the
main objective of employing SER is to adapt the system response upon detecting frustration or
annoyance in the speaker’s voice [9].

Although SER has received substantial attention from both academia and industry because
of its practical importance, it is a challenging task, because emotions are subjective. There is
no common consensus on how to measure or categorize them, i.e. there exists no unanimously
accepted emotion model [1]. However, generic emotion models can be divided into two types,
namely discrete emotion models and dimensional emotion models. While the former mainly
defines emotions into limited categories, such as happy, angry, sad, and so on, the latter uses
two dimensions (valence-arousal) or three dimensions (valence-arousal-dominance) to describe
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1.2 Research objective

emotion. Because most of the existing SER systems focus on the former, in this thesis, we will
build our SER systems based on the discrete emotion model.

SER aims to identify the high-level affective status of an utterance from the low-level
features. It can be treated as a classification problem on sequences [13]. In the past, many
different methods were proposed, most of which extracted a large amount of complex low-
level handcrafted features (such as pitch, energy, etc) out of the utterance and then applied
conventional classification algorithms like Hidden Markov Model (HMM) [30, 17] and support
vector machines (SVM) [15]. In recent years, the appearance of deep learning has changed
this field in ways of extracting discriminative features. [13] proposed to use the segments with
the highest energy to train a deep neural network (DNN) model to extract effective emotional
information. [24] first used convolutional neural networks (CNN) to learn robust features for
SER and showed excellent performances on several benchmark datasets. [18] applied a long
short-term memory (LSTM) to learn long-range temporal relationships for SER. In [41], they
directly used raw audio samples to train a convolutional recurrent neural network (CRNN) to
build continuous arousal and valence space.

More recently, the application of attention-based deep-learning approaches has sprung up
in this task. In [6], attention layers were used to focus on the emotionally relevant parts and
produced utterance-level affective-salient features for SER. The authors of other researches
showed the efficiency of a neoteric deep learning model — transformer on the SER task
[38, 27, 36].

1.2 Research objective

The above works have promoted the progress in the research of SER, and the successful
application of the transformer has inspired us to extract related features from the speech signal.
However, some issues still need to be addressed. First, the interaction between the transformer
and two widely used deep learning models — CNN and LSTM lacks investigation. Second,
most current SER systems utilize only one kind of acoustic feature as input embeddings, which
may lead to limited knowledge. Third, emotion can be technologically captured and assessed in
a multimodal way, including not only speech signals but also facial expressions, physiological
signals, word recognition, brain signals, and so on [1].

To solve the three problems, the transformer model must be expanded, as it can only process
the uni-source input. Considering its peculiarity, we modify the transformer to deal with
bi-source input, named cross-attention transformer (CAT). For better differentiation, we alias
the normal transformer model as self-attention transformer (SAT).

2



1.3 Thesis organization

With SAT and CAT, we can deal with the issues. Towards the first issue, we propose
integration of LSTM with SAT (ILSAT) and CAT for CNN and LSTM sources (CL-CAT),
where the former is for replacing the positional encodings in SAT with LSTM by integrating
them in a parallel manner, and the latter is to use CAT to joint-encode CNN and LSTM. By
introducing three acoustic features — raw waveform data, log mel spectrogram, and MFCC,
we propose SMW_CAT (S, M, W are the abbreviation of log mel spectrogram, MFCC, and
raw waveform data) to solve the second problem. Eventually, for addressing the third issue,
AT_CAT-SAT (A, T are the abbreviation of audio and text) is proposed to take acoustic and
textual features as input embeddings. Experiments conducted on the IEMOCAP dataset [5]
show the effectiveness of these SER systems.

1.3 Thesis organization

This thesis is organized as follows: Chapter 2 introduces components in a traditional SER
system. Chapter 3 gives a review of some exemplary deep learning-based SER systems.
Chapter 4 describes the model architecture of SAT and CAT and the design of our proposals
in detail. Chapter 5 presents the experimental details, results, and analysis of the proposed
networks on the IEMOCAP dataset. Finally, Chapter 6 concludes the whole paper and points
out directions for some future works.
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Chapter 2

Components of Traditional Speech
Emotion Recognition System

2.1 Overview

As illustrated in Figure 2.1, a traditional SER system mainly consists of two parts: a front-end
processing module that extracts the appropriate features from the input speech data, and a back-
end classifier that predicts the underlying emotion. During the feature extraction stage, a speech
signal is converted into numerical values using various front-end signal processing techniques.
Extracted feature vectors have a compact form and ideally should capture essential information
from the signal. In the back-end, an appropriate classifier is selected according to the task
to be performed [21]. Besides, the definition of emotion is essential to construct a criterion
for SER. In this chapter, initially emotion models are introduced. Then feature extraction and
classification, the two core modules in conventional SER system, will be addressed.

2.2 Emotion Models

To successfully implement an SER system, emotion must be carefully defined and modeled.
From the psychological point of view, human emotions can be identified and grouped based on
emotion type, emotion intensity, and many other parameters, which can be all combined and
realized into emotion models. However, there are no unanimously accepted emotion models,
and it is still an open question in psychology. Based on different emotion theories, existing
emotion models can be divided into two classes: discrete and dimensional.

Discrete emotion models, also known as categorical emotion models, define emotions into
limited categories. Depicted in Figure 2.2 (a), the most widely used one is Ekman’s basic
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2.3 Feature extraction

Fig. 2.1 Block diagram of traditional SER system [21].

(a) Discrete emotion model (b) Dimensional emotion model

Fig. 2.2 Two kinds of emotion models.

emotion model [8], which is based on the six basic emotions: happiness, sadness, fear, disgust,
anger, and surprise. Other emotions are obtained by the combination of the basic ones. On the
other hand, dimensional emotion models define a few dimensions with some parameters and
specify emotions according to those dimensions. Two or three dimensions are used in most
dimensional emotion models — ‘valence’ (indicates the positivity or negativity of an emotion),
‘arousal’ (indicates the excitement level of an emotion) and ‘dominance’ (indicates the level
of control over an emotion) [33, 4]. A valence-arousal based dimensional emotion model is
shown in Figure 2.2 (b).

Since most of the existing SER systems focus on the discrete emotion model, the rest of
this paper will only be discussed based on it.

2.3 Feature extraction

In SER, one of the central research issues is how to extract discriminative, affect-salient features
from speech signals, i.e. features that are sensitive to emotion and invariant to nuisance factors
such as speakers and contents [9]. The performance of SER systems significantly relies on
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2.3 Feature extraction

Table 2.1 Four categories of speech features.

Prosodic features pitch, energy, duration

Spectral features Mel Frequency Cepstral Coefficients (MFCC), Linear Prediction
Cepstral Coefficients(LPCC), Log-Frequency Power Coefficients
(LFPC), Gammatone Frequency Cepstral Coefficients (GFCC),
formants

Voice quality fea-
tures

jitter, shimmer, harmonics-to-noise ratio (HNR), Normalized Am-
plitude Quotient (NAQ), Quasi Open Quotient (QOQ)

Teager Energy
Operator (TEO)
based features

TEO-decomposed frequency modulation variation (TEO-FM-Var),
TEO auto-correlation envelope area (TEO-Auto-Env), critical band
based TEO auto-correlation envelope area (TEO-CB-Auto-Env)

the selection of suitable features. This section first introduces types of acoustic features. Then
the extraction procedure of log mel spectrogram and MFCC features are explained in-depth,
as they are about to be used as input features in this paper. After that, the definition of global
features and local features will be discussed.

2.3.1 Categories of acoustic features

Generally, acoustic features in SER are grouped in four categories: prosodic features, spectral
features, voice quality features, and Teager Energy Operator (TEO) based features [1]. Table 2.1
shows examples of features belonging to each type.

It is common in SER to combine features that belong to different categories to obtain better
results. Over the many years of research, the focus has been placed on the selection of the ideal
set of descriptors for emotional speech. Some hand-crafted features sets such as eGeMAPS
[10], ComParE [44] were proposed. However, despite great research efforts, until now there is
still no consensus on the most appropriate features for precise and distinctive classification.

2.3.2 The feature extraction of log mel spectrogram and MFCC

As shown in Figure 2.3, the extraction of log mel spectrogram and MFCC basically includes
pre-emphasis, framing, windowing, Fast Fourier Transform (FFT), Mel-filter bank, and Discrete
cosine transform (DCT). The detailed description of each step is explained below.

6



2.3 Feature extraction

Fig. 2.3 Process of extracting log mel spectrogram and MFCC.

Pre-emphasis

When human speech is converted into a spectrum and observed, the energy of the high-frequency
component tends to be lower than that of the low frequency, thus more difficult to be caught.
The purpose of pre-emphasis is to reinforce the high-frequency part so that the raw speech
signal will have a relatively flattened energy distribution over the entire frequency range. Let
s(n) be the digitalized speech signal, pre-emphasis is calculated as follows. Usually coefficient
α is set to 0.95 or 0.97.

y(n) = s(n)−αs(n−1) (2.1)

Framing and windowing

Although the speech signal varies very fast over time, in a sufficiently short interval (generally
considered as 20 to 30 ms), it can be relatively stable, i.e. the speech signal has short-term
stability. These small intervals are called frames. Besides, in order to smooth the transition
between frames, there will be an overlap between the previous frame and the next frame, which
is known as frame shift, often being set to half of the frame length.

After framing, the next step is generally applying a window function to frames. While
breaking the signal into frames, if we directly chop it off at the edges of the signal, the sudden
fall in amplitude at the edges will produce noise in the high-frequency domain. Ordinarily, a
Hamming window is utilized to solve this problem, which can be formulated as:

w(n) = 0.54−0.46cos(
2πn

M−1
), 0≤ n≤M−1 (2.2)

where M is the window size.

7



2.3 Feature extraction

Fig. 2.4 Relationship between spectrum (top) and spectrogram (bottom) [40].

Then we can add it to each frame:

x(n) = y(n)w(n) (2.3)

Fast Fourier Transform (FFT)

We will convert the signal from the time domain to the frequency domain by applying the
Discrete Fourier Transform (DFT). For audio signals, analyzing in the frequency domain is
easier than in the time domain.

X(k) =
N−1

∑
n=0

x(n)e
− j2πnk

N , 0≤ k ≤ N−1 (2.4)

where N is the number of points used to compute the DFT. X(k) is called spectrum, and
X(k) of all frames is known as spectrogram. The relation between them is depicted in Figure 2.4.
In addition, normally Fast Fourier Transform (FFT) will be exploited to substitute DFT for
improving the calculation speed.
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2.3 Feature extraction

Mel-filter banks

The way our ears will perceive the sound is different from how the machines will perceive the
sound. Our ears have higher resolution at a lower frequency than at a higher frequency. So if
we hear sound at 200Hz and 300Hz we can differentiate it easily when compared to the sounds
at 1500Hz and 1600Hz even though both have a difference of 100Hz between them. Whereas
for the machine, the resolution is the same at all the frequencies. It is noticed that modeling
the human hearing property at the feature extraction stage will improve the performance of the
model. So we will use the mel-scale to map the actual frequency to the frequency that human
beings will perceive.

fMel = 1127ln(1+
f

700
) (2.5)

where f denotes the physical frequency in Hz, and fMel denotes the perceived frequency.
To implement this, the spectrum X(k) will pass through a set of band-pass filters Hm(k)

known as Mel-filter bank, resulting in the mel spectrum SMel(m). For the reason that humans
are less sensitive to change in audio signal energy at higher energy compared to lower energy,
and log function also has a similar property: at a low value of the input, the gradient of the
log function will be higher, but at high value of the input, gradient value is less, mel spectrum
is always represented on a log scale to mimic the human hearing system. Eventually, we can
obtain the log mel spectrum S(m).

S(m) = ln(SMel(m)) = ln

(
N−1

∑
k=0
|X(k)|2 Hm(k)

)
, 0≤ m≤M−1 (2.6)

Hm(k) =



k− f (m−1)
f (m)− f (m−1)

f (m−1)≤ k ≤ f (m)

f (m+1)− k
f (m+1)− f (m)

f (m)≤ k ≤ f (m+1)

0 others

(2.7)

where M is the total number of Mel-filter banks, f () is the list of mel-spaced frequencies.

Discrete cosine transform (DCT)

Since the Mel-filter banks are all overlapping, the filter bank energies are quite correlated with
each other. Therefore DCT is applied to the log mel spectrum S(m) for decorrelation and

9



2.4 Classification

produces a set of coefficients c(n), called Mel-Frequency Cepstral Coefficients (MFCC).

c(n) =
M−1

∑
m=0

S(m)cos
(

πn(m−0.5)
M

)
, n = 0,1,2, · · · ,C−1 (2.8)

where C is the dimension of MFCCs. As most of the signal information is represented by the first
few cepstral coefficients, the system can be made robust by extracting only those coefficients
ignoring or truncating higher order DCT components. In the task SER, the dimension of MFCC
is usually 13, 20, or 40.

2.3.3 Local features and global features

Based on the region of analysis used for feature extraction, features can be separated into two
types. Local features, also called short-term or frame-level features, are extracted from frames.
On the other hand, different statistical aggregation functions (such as mean, max, variance,
linear regression coefficients, etc.) are applied to every local feature over the duration of the
utterance, and results are concatenated into a long feature vector at the utterance level, which is
named global features, also known as long-term or utterance-level features. The role of these
global features is to roughly describe the temporal variations and contours of the different local
features during the utterance [26]. An example of obtaining global features from local features
will be described in Section 3.2.2.

There has been a disagreement on which local and global features are more suitable for
SER. The two kinds of features have their own advantages and disadvantages, it is hard to say
which is better. For instance, the number of global features is less than local ones, meaning
the application of cross-validation and feature selection algorithms to them are executed much
faster. However, temporal information present in speech signals is completely lost in global
features [9].

2.4 Classification

Once the features are extracted from speech data, models are trained on the extracted feature
set so that new instances can be classified based on the emotions they portray. There are many
different classifiers used as models to analyze emotions from data. Basically, traditional SER
systems can be realized at the frame level or at the utterance level.

In the frame approach, generative models like Hidden Markov Model (HMM) [30, 17] and
Gaussian Mixture Model (GMM) [35] are used to learn the underlying probability distribution
of local features of each emotional state and then a Bayesian classifier is trained using maximum

10



2.4 Classification

likelihood principle. HMM is a Markov process with the incapacity of observing the process
that generates states directly. Each state has a probability distribution over the possible output
tokens, and the current state at time t only depends on the previous state at time t− 1. The
internal behavior of HMM refers to the state sequence through which the model passes. GMM
is another probabilistic model which can be considered as a special continuous HMM that
contains only one state. The idea behind the mixture models is to model the data in terms of a
mixture of several components, where each component has a simple parametric form, such as a
Gaussian.

In the utterance approach, global features are calculated and utilized for training discrimina-
tive classifiers such as Support Vector Machines (SVM) [15] and K Nearest Neighbours (KNN)
[31]. SVM is a supervised classifier that finds an optimal hyperplane for linearly separable
patterns which has the maximum margin between data points of binary classes, i.e. to classify
multiple emotions using SVM, the problem will convert into a binary classification problem
in a high-dimensional space. KNN is another versatile classifier for estimating the likelihood
that a data point will become a member of one group or another based on what group the data
points nearest to it belong to. It is a lazy learning algorithm because it doesn’t perform any
training when supplying the training data.
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Chapter 3

Speech Emotion Recognition Systems
based on Deep Learning

3.1 Overview

In recent years, deep learning has achieved tremendous success in various domains such as
object detection [32] and dialogue systems [43]. It is part of a broader family of machine
learning methods that are characterized by a graded multi-layer structure. As mentioned in
Section 2.3, it is of importance to select efficient hand-crafted features for SER, but often
requires professional knowledge. The emergence of deep learning can help this task to learn
adaptive low-level features from raw data and high-level features from low-level ones in a
hierarchical manner nullifying the over-dependence of traditional SER models on the choice of
features [11].

In the early period of deep learning, generally the SER systems such as DNN-ELM [13]
and CNN-SVM [24] utilized neural networks to obtain representations from raw features, but
still used the classifier part like conventional ones. That means, we must train the deep learning
structures at the frontend for feature extraction in the beginning, and then train the classifiers at
the backend for final emotion categorization. This is called two-stage SER systems. As time
goes on, many end-to-end systems came forth with the advantage of training only one time.
Among them, the most widely used one is CRNN [22, 14, 23]. Meantime, some enhancement
techniques were proposed for further performance improvement, including attention mechanism
[6] and transfer learning. More recently, a novel deep learning model named transformer [42]
has caused the second ripples in the field. This chapter will briefly review exemplary systems
based on deep learning and describe the architecture of CRNN, attention mechanism, and
transformer in detail.
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3.2 Representative systems in early deep learning era

3.2 Representative systems in early deep learning era

3.2.1 Two-stage systems

In two-stage SER systems, deep learning architectures like deep neural network (DNN),
recurrent neural network (RNN), and convolutional neural network (CNN) are trained for
frontend feature extraction, followed by a backend emotion recognizer such as SVM and
extreme learning machine (ELM).

[13] proposed a DNN-ELM system for emotion recognition, as shown in Figure 3.1 (a).
Their idea is to split each utterance into frames and calculate low-level features at first. Because
emotions manifest in speech in a slow manner, i.e. they always exist in a long-range striding
over multiple frames, the input features use the current frame concatenated with few context
frames. Then DNN with three hidden layers is used to transform this sequence of features into
the sequence of probability distributions over the target emotion labels.

The system is trained by the following steps:

1. Train DNN by back propagation (BP) algorithm using cross-entropy loss. Then fix the
parameters of DNN.

2. Aggregate the output probabilities of each frame into utterance-level features using
simple statistics like maximum, minimum, average, percentiles, etc.

3. Train ELM is trained to classify utterances by emotional state.

To solve the shortcoming in [13] that the estimation of high-level features for the current
frame uses few context frames are not sufficient to cover the long-range contextual effect in
emotional speech, [18] proposed to replace DNN with RNN, thereupon they obtained the
RNN-ELM model. RNN extends the notion of typical feed-forward architecture by adding
inter-layer and self connections to units in the recurrent layer, it can effectively remember
relevant long-term context from the input features. In [24], the authors utilized CNN to learn
salient features to be used by an SVM for classification, where CNN is able to learn features
that are insensitive to small variations in the input speech which can help in disentangling
speaker-dependent variations as well as other sources of distortion. As depicted in Figure 3.1
(b), initially they used sparse auto-encoders to learn filters from spectrogram segments. Then
they convolved the learned filters with spectrogram fragments to produce feature vectors. The
feature vectors are mapped into two smaller feature vectors using a semi-supervised objective
function, which disentangled affect-salient features from other non-salient features. Finally, the
affect-salient features were used to train SVMs.
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3.2 Representative systems in early deep learning era

(a) DNN-ELM [13]

(b) CNN-SVM [24]

Fig. 3.1 Block diagram of two representative two-stage SER systems.

3.2.2 End-to-end systems

As time goes on, some end-to-end approaches based on deep learning have already arisen
[22, 12, 29, 46]. Compared with two-stage SER systems, one of their advantages is that
different modules are trained together instead of sequentially. Besides, they can avoid greedily
enforcing the distribution of intermediate layers to approximate that of labels, and more proper
representations can be obtained from the final layer [23]. Among these end-to-end systems,
the most typical one is convolutional recurrent neural network (CRNN) [22, 14, 23], which is
mainly a combination of CNN and RNN. The motivation is that they are complementary in
their modeling capabilities, as CNN makes a good fist at reducing frequency variations (i.e.
frequency modeling), and RNN is skilled at learning characteristics of data over long periods
of time (i.e. temporal modeling). Therefore, the idea of combining them to utilize the merits of
both comes naturally. A standard CRNN SER system is depicted in Figure 3.2.

Let S = [s1,s2, · · · ,sT ]
T be the input features from a speech utterance split into segments

in advance, where T represents the number of segments. The features are fed into a CNN
being convolved and pooled in several times and eventually we can obtain a flattened feature
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3.3 Enhancement Techniques

Fig. 3.2 Block Diagram of a standard CRNN SER system [23].

map C = [c1,c2, · · · ,cT ]
T . Next, a special RNN cell named Long short-term memory (LSTM)

is applied to learn long-term dependencies and contextual information by introducing the
gating mechanism. In RNN, every time step corresponds to a segment of the original audio
utterance. After getting the output R = [r1,r2, · · · ,rT ]

T , three pooling functions maximum,
average, minimum are applied to integrate over the time dimension resulting three global
features Omax,Oavg,Omin. Finally, they are concatenated together and pass through the fully
connected layer and softmax layer to predict the final probabilities of each emotion class.

C = CNN([s1,s2, · · · ,sT ]
T ) (3.1)

rt = LSTM(rt−1,ct), where t ∈ 1, · · · ,T (3.2)

Omax = max
1≤t≤T

rt (3.3)

Oavg =
∑

T
t=1 rt

T
(3.4)

Omin = min
1≤t≤T

rt (3.5)

3.3 Enhancement Techniques

3.3.1 Attention mechanism

One issue that appears to still puzzle researchers applying deep learning framework in SER,
is how to effectively balance the short-term characterization at the frame level and long-term
aggregation at the utterance level [26]. To get the global features, usually very simple and naive
aggregation functions such as mean and max are applied to each of the local features over the
duration of the utterance, which has shown in Figure 3.2. However, in fact, SER is related to
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3.3 Enhancement Techniques

(a) Overview of the whole system (b) Attention layer

Fig. 3.3 Block diagram of Attention-CRNN SER system [6].

utterance classification with emotional content being differently distributed over the signal, and
the emotion of the whole signal is a composition of emotions from different parts of the signal
[28]. Therefore, we need a technique to focus more on the emotional part and focus less on the
emotionless part of the whole utterance.

The emergence of attention mechanism [3] fulfills such a requirement. It ensures that the
classifier pays attention to specific locations of the given utterance based on attention weights
in each portion of the local features. A CRNN with attention layer [6] is depicted in Figure 3.3.

As shown in Figure 3.3 (b), at each time frame t, a softmax function is applied to obtain the
normalized importance weight αt which sum to unity:

αt =
exp(htW)

∑
T
τ=1 exp(hτW)

(3.6)

where W is a trainable weighted matrix, ht is the RNN output at time step t, htW indicates
a score for the contribution of frame t to the final utterance-level representation of the emotion.

The obtained weights are then used in a weighted average in time to obtain the utterance-
level representation:

c =
T

∑
t=1

αtht (3.7)
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3.4 Transformer

3.3.2 Transfer learning

SER extremely lacks training data. Currently, the most widely used SER database is IEMOCAP
[5] only comprises 10039 utterances, approximately a total of 12h. For those complicated
SER systems, a small amount of training data means easily overfitting, resulting in reduced
performance. One way to alleviate this data lacking issue is to transfer the knowledge learned
from data in other related tasks (source tasks) to the task at hand (target task), which is known
as transfer learning. In order to use transfer learning, the source model needs to be general
enough. The most common approach for transfer learning is to train a source model with a set
of source data [7] or use a pre-trained model [37], then use the learned knowledge as a starting
point on a related task.

3.4 Transformer

Although the appearance of the attention mechanism introduced in previous Section 3.3.1 can
let the model look at different parts of speech with different weights, there still exists a problem:
RNN families’ calculation is limited to be sequential, i.e. RNN related algorithms can only be
calculated from left to right or from right to left, causing

• The computation of time slice t depends on the result of t−1, which limits the parallel
ability of the model.

• In the process of sequential computing, information will be lost. Although gate structures
such as LSTM can alleviate the problem of long-term dependence to some extent, they
still do nothing to solve the phenomenon of special long-term dependence.

To solve the two issues above, [42] proposed transformer, which exploits the self-attention
mechanism to reduce the distance between any two positions in the sequence to a constant, as
shown in Figure 3.4 (b). In addition, it is not an RNN-like sequential structure, which means
better parallelism.

The calculation of self-attention can be divided into the following steps:

1. Obtain queries, keys, and values vectors through input sequential vector.

2. Compute the dot products of the queries of time t with all keys, divide each by
√

dk, and
apply a softmax function to obtain the weights on the values, where

√
dk represents the

dimension of queries vector.

3. Multiply the weights and values and sum them, producing the output vector of time t.
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3.4 Transformer

(a) Overview of the whole transformer

(b) Self-attention

(c) Multi-head attention

Fig. 3.4 Block diagram of transformer [42].

4. Calculate the output vector of other times along the steps above.

In practice, the calculation above can be done in matrix form for faster processing. Given
an input sequential matrix as X ∈ Rdt×d f , by multiplying with three different trainable weight
matrix WQ ∈Rd f×dk ,WK ∈Rd f×dk ,WV ∈Rd f×dv , we can obtain the set of queries Q ∈Rdt×dk ,
the set of keys K ∈ Rdt×dk , and the set of values V ∈ Rdt×dv . Then the self-attention can be
calculated as:

Z = Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V (3.8)

where variable Z ∈ Rdt×dv represents the attentional matrix.
Researchers found it beneficial to linearly project the queries, keys and values h times

with different weight matrix WQ,WK,WV respectively. Each of these projected versions
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3.4 Transformer

are then performed the attention function in parallel, yielding dv dimensional output values.
These are concatenated and once again projected by multiplying with another weight matrix
WO ∈ Rhdv×d f to obtain the final output OMHA ∈ Rdt×d f :

OMHA = MHA(Q,K,V) = Concat(Z1, . . . ,Zh)WO (3.9)

where Zi = Attention(QWQ
i ,KWK

i ,VWV
i )

By doing so, the self-attention can be further refined into another mechanism called multi-
head attention (MHA), illustrated in Figure 3.4 (c). It expands the model’s ability to focus on
different positions and gives the self-attention layer multiple representation subspaces.

Afterward, the output of the MHA layer is fed to a feed-forward neural network (FFN) to
further increase the representation capacity. In addition, a residual connection is added around
both MHA and FFN layer for solving the vanishing gradient problem in deep learning, followed
by a layer-normalization step:

Omid = LayerNorm(X+OMHA) (3.10)

O f inal = LayerNorm(Omid +FFN(Omid)) (3.11)

To address the crucial problem that transformer has little ability to capture sequential
sentences, it is required to add a positional encoding (PE). This means summing a sinusoid
function with a large period over the input before feeding it to the first layer. The intuition here
is that for any fixed offset k, PEpos+k can be represented as a linear function of PEpos, which
provides great convenience for the model to capture the relative position relationship between
sequential data:

PE(pos,2i) = sin

(
pos

10000
2i
d f

)
(3.12)

PE(pos,2i+1) = cos

(
pos

10000
2i
d f

)
(3.13)

where pos is the position of each sequential data in input features, i represents the ith dimension
of the input embedding of each data.

The whole transformer architecture is depicted in Figure 3.4 (a), which has an encoder part
and a decoder part. Note that in the field SER, we only make use of the encoder component to
get a better feature representation of the speech signal.
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Chapter 4

Proposed Models

4.1 Overview

Currently, many pieces of research have shown transformer’s outstanding qualities in learning
relevant representations associated with the SER task [38, 27, 36]. However, there are still
several problems to deal with.

The first problem is that a normal transformer is only able to process the uni-source input.
Considering its peculiarity, transformer can be modified for interacting with bi-source input.
We call this cross-attention transformer (CAT), which calculates queries from one source, and
keys and values from another source. For better differentiation, the ordinary transformer model
is aliased as self-attention transformer (SAT) in the rest of the paper. The detailed definition of
CAT and SAT will be introduced in Section 4.2.

The second problem is that the interaction between transformer and other deep learning
structures — CNN and LSTM is still needed to be investigated.

1. Although the appearance of transformer surpasses LSTM in most aspects, the lost location
information can only be compensated by constant coding, i.e. positional encoding (PE)
mentioned in Section 3.4. Since LSTM has a strong advantage for position relation, it is
reasonable to use it in place of PE. Towards this direction, we propose an SER system
called integration of LSTM with SAT (ILSAT), which will be mentioned in Section 4.3.1.

2. CNN and LSTM are skilled at frequency modeling and temporal modeling respectively
and two sources can be exactly obtained from them, so we utilize CAT to interact
and combine information from CNN and LSTM. The corresponding SER system is
named CAT for CNN and LSTM sources (CL-CAT), which is about to be introduced in
Section 4.3.2.
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4.2 Cross-attention transformer (CAT) and self-attention transformer (SAT)

The third problem is that there is often only one kind of input feature in an SER system (in
the case of our previous system, we choose log mel spectrogram), which may cause limited
knowledge. Therefore, we attempt to alleviate this problem in the following directions:

1. Besides log mel spectrogram (abbreviated as S), add MFCC (abbreviated as M) and
raw waveform data (abbreviated as W) as supplementary acoustic features, i.e. multiple
acoustic features. Based on this, a novel SER system named SMW_CAT is presented,
which will be explained in Section 4.4.

2. Besides audio features (abbreviated as A), add text (abbreviated as T) as additional
modal features, i.e. multimodal features. Based on this, another new SER system named
AT_CAT-SAT is presented, which will be explained in Section 4.5.

4.2 Cross-attention transformer (CAT) and self-attention
transformer (SAT)

The purpose of cross-attention transformer (CAT) is to find interactive information from two
different sources and associate the relevant and helpful part for emotion recognition in both
sources. The word “cross attention” represents transmitting information from one source
to another source according to the self-attention mechanism in transformer. Depicted in
Figure 4.1 (a), considering two different sources X and Y with input embeddings H(x) ∈ RTx× fx

and H(y) ∈ RTy× fy respectively, we can obtain queries, keys, values Q(x) ∈ RTx×dk ,K(x) ∈
RTx×dk ,V(x) ∈ RTx×dv,Q(y) ∈ RTy×dk ,K(y) ∈ RTy×dk ,V(y) ∈ RTy×dv from them through relevant
mapping matrices WQ(x) ∈ R fx×dk ,WK(x) ∈ R fx×dk ,WV (x) ∈ R fx×dv ,WQ(y) ∈ R fy×dk ,WK(y) ∈
R fy×dk ,WV (y) ∈ R fy×dv:

Q(x) = H(x)WQ(x), Q(y) = H(y)WQ(y) (4.1)

K(x) = H(x)WK(x), K(y) = H(y)WK(y) (4.2)

V(x) = H(x)WV (x), V(y) = H(y)WV (y) (4.3)

When Q(x),K(y),V(y) are fed into a transformer, it is responsible for learning the latent
representation from source X to source Y , denoted as CAT(x2y):
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4.2 Cross-attention transformer (CAT) and self-attention transformer (SAT)

(a) Cross-attention transformer (CAT) (b) Self-attention transformer (SAT)

Fig. 4.1 Block diagram of CAT and SAT.

O(x2y)
MHA = MHA(Q(x),K(y),V(y)) (4.4)

O(x2y)
mid = LayerNorm(H(x)+O(x2y)

MHA) (4.5)

O(x2y)
f inal = LayerNorm(O(x2y)

mid +FFN(O(x2y)
mid )) (4.6)

Similarly, when Q(y),K(x),V(x) are fed into another transformer, it is responsible for learning
the latent representation from source Y to source X , denoted as CAT(y2x):

O(y2x)
MHA = MHA(Q(y),K(x),V(x)) (4.7)

O(y2x)
mid = LayerNorm(H(y)+O(y2x)

MHA) (4.8)

O(y2x)
f inal = LayerNorm(O(y2x)

mid +FFN(O(y2x)
mid )) (4.9)

In summary, the whole CAT can be formulated as:

O(x2y)
f inal ,O

(y2x)
f inal = CAT(H(x),H(y)) (4.10)
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On the other hand, in the normal transformer model, queries, keys, and values are gained
from the same source, for better differentiation, it will be aliased as self-attention transformer
(SAT) in the rest of the paper. The architecture of SAT is shown in Figure 4.1 (b).

4.3 Fusion between transformer, CNN and LSTM

In this section, two approaches to utilizing network-based structures aggregated with trans-
former are proposed. We first integrate LSTM with SAT (ILSAT), trying to replace the function
of PE in the transformer with LSTM. Then we use CAT to combine the information obtained
from CNN and LSTM (CL-CAT).

4.3.1 Integration of LSTM with SAT (ILSAT)

As the PE in SAT is just a fixed positional representation of input features, initially we replaced it
by inserting LSTM between CNN and SAT. However, in our preliminary experiment, we found
this approach cannot work well. Therefore we propose to use a parallel combination of LSTM
and SAT instead of their cascaded structure, illustrated in Figure 4.2 (a). Suppose that the input
features (log mel spectrogram) are represented as a sequence of vectors X = [x1,x2, · · · ,xN ]

T ∈
RN× f , where N is the number of frames. Because of the image-like character of log mel
spectrogram, a designed CNN structure called Light CNN is used to convert it into a higher-level
abstraction. The detailed architecture of light CNN will be introduced in Section 5.2.2. After
passing through CNN, the output is flattened and reshaped into C = [c1,c2, · · · ,cN′]

T ∈ RN′× f ′

and then split into two flows to the subsequent models respectively. The first flow is to LSTM,
which is applied to make good use of the contextual information. We utilize the bidirectional
LSTM (BiLSTM), whose output at the current time step can be both learned from the previous
and next states. Also, the LSTM output can be regarded as additional position information.
After obtaining the sequential representation L = [l1, l2, · · · , lN′]T from LSTM, we take average
of them for eliminating the time dimension, resulting OLST M ∈ R f ′ . The second flow is to
SAT, in which the PE will be opened or closed to verify how much position information can be
obtained from BiLSTM. For the output from this flow, an average operation is conducted for
temporal aggregation, resulting OSAT ∈R f ′ . After that, two outputs are integrated together. We
try to utilize the following three strategies for fusion:

concatnation

O f inal = [OLST M;OSAT ] (4.11)
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4.4 CAT with multiple acoustic features

plus

O f inal = OLST M +OSAT (4.12)

trainable plus

O f inal = αAOLST M +αBOSAT

αA =
exp(WA)

exp(WA)+ exp(WB)

αB =
exp(WB)

exp(WA)+ exp(WB)
(4.13)

where WA and WB are trainable weight matrices.

4.3.2 CAT for CNN and LSTM sources (CL-CAT)

In Section 3.2.2, it is said that CNN and LSTM are complementary in their modeling capabilities.
Inspired by this, we propose to utilize CAT to joint-encoding these two sources. Depicted in
Figure 4.2 (b), the input features are fed into CNN and LSTM simultaneously. Considering
that a tremendous length of input features will affect the function of LSTM and bring more
parameters for training, we add an 1D temporal convolutional layer before LSTM not only for
ensuring that each element of the input sequence has sufficient awareness of its neighborhood
elements, but also for reducing the length of it. Let the source from CNN and LSTM be
H(C) = [h(C)

1 ,h(C)
2 , · · · ,h(C)

J ]T and H(L) = [h(L)
1 ,h(L)

2 , · · · ,h(L)
K ]T respectively. According to CAT

introduced in Section 4.2, we can obtain CAT(c2l) by calculating queries from H(C), keys and
values from H(L), and CAT(l2c) by calculating queries from H(L), keys and values from H(C).
Similar as ILSAT, outputs from CAT(c2l) and CAT(l2c) are averaged over time respectively.
Eventually, they are concatenated together to and pass through the fully connected layer and
softmax layer to obtain the final posterior probabilities of each emotion.

4.4 CAT with multiple acoustic features

Up to now, approaches to the fusion between transformer, CNN, and LSTM has been done, but
they still exist a critical issue: log mel spectrogram is selected as the only input feature, which
may cause limited acoustic knowledge. Towards this problem, in this section, we attempt to
append two other acoustic features — raw waveform data and MFCC. Since CAT is suitable for
joint-encoding outputs from different sources, it can be used for uniting these features. Hence
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4.4 CAT with multiple acoustic features

(a) Integrate LSTM with SAT (ILSAT)

(b) CAT for CNN and LSTM sources (CL-CAT)

Fig. 4.2 Block diagram of ILSAT and CL-CAT.

we propose a novel SER system named SMW_CAT, as shown in Figure 4.3, where S, M, W
are the abbreviation of log mel spectrogram, MFCC, and raw waveform data.

Encoder module

Given an utterance X(w) ∈ RT (w)×1, we can calculate the log mel spectrogram X(s) ∈ RT (s)× f (s)

and MFCC X(m) ∈ RT (m)× f (m)
according to Section 2.3.2.

For raw waveform data, a pre-trained wav2vec2 [2] model on the Automatic Speech
Recognition (ASR) task are adopted, which can be viewed as a case of transfer learning.
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4.4 CAT with multiple acoustic features

Fig. 4.3 Block Diagram of SMW_CAT.

Then BiLSTM layer is exploited for capturing the temporal information within the sequence,
resulting input embedding H(w) = [h(w)

1 ,h(w)
2 , · · · ,h(w)

T (w)′ ]
T ∈ RT (w)′× f :

X(w)′ = Wav2vec2(X(w)) (4.14)

h(w)
t = [

−−→
h(w)

t ;
←−−
h(w)

t ] = [
−−−−→
LSTM(h(w)

t−1,x
(w)′
t );

←−−−−
LSTM(h(w)

t+1,x
(w)′
t )], t ∈ 1, · · · ,T (w)′ (4.15)

The log mel spectrogram is fed into Light CNN for embedding extraction:

H(s) = LightCNN(X(s)) (4.16)

where H(s) ∈ RT (s)′× f
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4.4 CAT with multiple acoustic features

In the case of MFCC, we first apply a 1D temporal convolutional layer for capturing local
patterns and reducing length in time dimension, and then use BiLSTM layer to obtain the final
embedding H(m) = [h(m)

1 ,h(m)
2 , · · · ,h(m)

T (m)′ ]
T ∈ RT (m)′× f :

X(m)′ = 1DConv(X(m)) (4.17)

h(m)
t = [

−−→
h(m)

t ;
←−−
h(m)

t ] = [
−−−−→
LSTM(h(m)

t−1,x
(m)′

t );
←−−−−
LSTM(h(m)

t+1,x
(m)′

t )], t ∈ 1, · · · ,T (m)′ (4.18)

CAT based fusion module

In our preliminary experiment, among three features, input embedding of raw waveform data
achieved the highest accuracy, followed by MFCC, and log mel spectrogram was the lowest
one. Consequently, we propose to fuse from the best to the worst, i.e. utilize the fusion result
from the top two to increase the generalization performance of the last. Specifically, at first the
input embeddings of raw waveform data H(w) are combined with MFCC H(m) based on CAT,
then two outputs are normalized into the same length by 1D temporal convolutional layer and
concatenated together to be ready for the next fusion.

H(m2w),H(w2m) = CAT(H(m),H(w)) (4.19)

H(mw) = [1DConv(H(m2w));1DConv(H(w2m))] (4.20)

where H(mw) ∈ RT (mw)× f

Next is to adopt CAT to fuse H(mw) with the input embeddings of log mel spectrogram.
The two outputs are further interacted by two attention layers mentioned in Section 3.3.1 but
share the same projection matrix W(smw) ∈ R f×1, which can be regarded as a co-post attention
layer relative to the pre attention layer composed by CAT. Finally, we can get the representation
O(smw) ∈ R2 f before fully connected layer.

H(s2mw),H(mw2s) = CAT(H(s),H(mw)) (4.21)

O(s2mw),O(mw2s) = Co-PostAttention(H(s2mw),H(mw2s),W(smw))

=
T (s)′

∑
t=1

(
exp(h(s2mw)

t W(smw))

∑
T (s)′

τ=1 exp(h(s2mw)
τ W(smw))

)
h(s2mw)

t ,

T (mw)

∑
t=1

(
exp(h(mw2s)

t W(smw))

∑
T (mw)

τ=1 exp(h(mw2s)
τ W(smw))

)
h(mw2s)

t (4.22)

O(smw) = [O(s2mw);O(mw2s)] (4.23)
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4.5 CAT with multimodal features

Fig. 4.4 Block Diagram of AT_CAT-SAT.

4.5 CAT with multimodal features

Usually, emotion is expressed in a multimodal way, including speech, text, facial expression,
and so on. Considering an utterance “I really appreciate your kindness” labeled happiness
but spoke in a calm tone, it will be predicted as neutral if speech is the only exploited modal.
By joining the text modal, the word “appreciate” and “kindness” can be greatly helpful for
recognizing the utterance correctly, i.e. in this case, emotion is almost hidden in the linguistic
contents. Hence, it is evident that the performance of an SER system will be improved by taking
multimodal features as input. Besides, when fusing multimodal information, two types of
interaction should be thought over: the intra-modal interaction and the inter-modal interaction
[45]. Due to the characteristics of SAT and CAT, the former can be responsible for capturing
intra-modal dynamics, while the latter can learn inter-modal relations. Based on this theory,
we propose another new SER system called AT_CAT-SAT for two kinds of multimodal input
features — audio and text, as shown in Figure 4.4, where A, T are the abbreviation of audio
and text.

Encoder module

Support that the input acoustic and textual features are denoted as X(a) ∈ RT (a)× f (a) and
X(t) ∈ RT (t)× f (t) , respectively. In our experiment, we use log mel spectrogram as acoustic

28



4.5 CAT with multimodal features

features. The textual features are just a preprocessed sequence of words split according to the
blank space in the transcription of the utterance.

For audio data, the encoder for log mel spectrogram in Section 4.4 is conducted again, i.e.

H(a) = LightCNN(X(a)) (4.24)

where H(a) ∈ RT (a)′× f

For text data, word2vec [25] is used to embed each word, then BiLSTM layer is applied to
the embedded words, resulting input embedding H(t) = [h(t)

1 ,h(t)
2 , · · · ,h(t)

T (t)′ ]
T ∈ RT (t)′× f

X(t)′ = Word2vec(X(t)) (4.25)

h(t)
t = [

−→
h(t)

t ;
←−
h(t)

t ] = [
−−−−→
LSTM(h(t)

t−1,x
(t)′
t );
←−−−−
LSTM(h(t)

t+1,x
(t)′
t )], t ∈ 1, · · · ,T (t)′ (4.26)

CAT based fusion module

From the input embeddings of audio H(a) and text H(t), we can capture the inter-modal
interaction by CAT and the intra-modal interactions by SAT. After that, the two outputs from
CAT are further interacted by the co-post attention layer, and the two outputs from SAT
are further interacted by the uni-post attention layer respectively. Eventually, representation
O(at) ∈ R4 f before fully connected layer can be obtained.

H(a2t),H(t2a) = CAT(H(a),H(t)) (4.27)

H(a)′ = SAT(H(a)),H(t)′ = SAT(H(t)) (4.28)

O(a2t),O(t2a) = Co-PostAttention(H(a2t),H(t2a),W(at)) (4.29)

O(a)′ = Uni-PostAttention(H(a),W(a))

=
T (a)′

∑
t=1

(
exp(h(a)′

t W(a))

∑
T (a)′

τ=1 exp(h(a)′
τ W(a))

)
h(a)′

t (4.30)

O(t)′ = Uni-PostAttention(H(t),W(t)) (4.31)

O(at) = [O(a2t);O(t2a);O(a)′ ;O(t)′] (4.32)

where W(at),W(a),W(t) ∈ R f×1.
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Chapter 5

Experiments and Analysis

5.1 Overview

To evaluate the performance of our proposed models, we perform experiments on the IEMOCAP
benchmark dataset. In this chapter, the experimental setup is firstly described. And then, the
experimental results and analysis of the proposed models are presented.

5.2 Experimental setup

5.2.1 The IEMOCAP dataset

We evaluate all of our approaches on the interactive emotional dyadic motion capture (IEMO-
CAP) dataset [5], which is a standard benchmark dataset widely used for SER. It contains
approximately 12 hours of speech. There are 10 actors (5 males and 5 females) to perform
5 dyadic sessions and two actors are grouped in a single session. All the conversations are
separated into small utterances, labeled with the following emotions by at least three different
annotators: anger, disgust, excitement, fear, frustration, happiness, neutral, sadness, surprise,
and other, which have been evaluated by at least three different annotators. In our experiments,
ground truth label are obtained by majority voting resulting the distribution shown in Figure 5.1
(a). To stay consistent with most previous researches on IEMOCAP, only the following five
emotions were selected: anger, happiness, excitement, sadness, and neutral. Then happiness
and excitement are merged into single happiness category because of the similarity between
them. Therefore, totally 5531 utterances are exploited including 1103 anger, 1636 happiness,
1708 sadness, and 1084 neutral. We perform 10-fold leave-one-speaker-out cross-validation
strategy, i.e. in each validation, the total dataset is split into 8:1:1 training set, validation set, and
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5.2 Experimental setup

(a) Distribution of emotion labels (b) Distribution of utterance durations

Fig. 5.1 IEMOCAP [5] overview (ang, anger state; dis, disgust; exc, excitement; fea, fear;
fru, frustration; hap, happiness; neu, neutral; oth, other; sad, sadness; sur, surprise; and xxx,
emotions that cannot be acquired by majority voting).

test set according to the difference of speaker, respectively. The final performance is calculated
by taking the average of all test sets.

5.2.2 Implementation details

Due to the length distribution of IEMOCAP depicted in Figure 5.1 (b) and the input of our
systems, utterances are sampled at 16kHz, and then two splitting strategies are applied. For
experiments on ILSAT, CL-CAT, and SMW_CAT, we spilt each utterance into segments with a
length of 3 seconds. For experiments on AT_CAT-SAT, each utterance is normalized to 7.5
seconds. We use the modified utterances to obtain the log mel spectrograms and MFCC with
the window size of 40 ms and the frame size of 10 ms as input features to our model. The
number of filter banks in the log mel spectrogram is set to 128, and the number of MFCC is set
to 40. For textual features, the off-the-shelf transcription in IEMOCAP is used, i.e. the word
recognition error rate is regarded as zero. We first employ a tokenizer to split each utterance
according to the blank space. Then these words are embedded into a 300-dimensional vector
using the word2vec model. We assume a maximum of 30 words in each utterance.

We implement our model within the PyTorch framework. The detailed parameters of light
CNN are shown in Table 5.1. We use BiLSTMs with 64 hidden units followed by the dropout
layer with 0.5 dropout probability. For transformer models, all of them have 64 embedding
dimensions and 4 attention heads. The final fully connected layers consist of three linear
layers with output dimensions 256, 256, and 4, respectively. To train the model, we choose
cross-entropy loss as the loss function, and Adam with an initial learning rate of 0.00001
and 0.001 in the case with and without the pre-trained wav2vec2 model as optimizer. The
learning rate decreases by one-tenth every 10 epochs. The models are trained for at most 100
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5.2 Experimental setup

Table 5.1 Layer parameters of the light CNN model. T denotes the time dimension, F denotes
the frequency dimension, C is the number of input channels. Note that the BatchNorm and
Dropout layers are omitted in this table.

Layers Kernel size Stride Output shape
input – – T ×F×C

Convolution (1st) 3×3 1×1 T ×F×128

Pooling (1st) 2×2 2×2 T/2×F/2×128

Convolution (2nd) 3×3 1×1 T/2×F/2×128

Pooling (2nd) 2×2 2×2 T/4×F/4×128

Convolution (3rd) 3×3 1×1 T/4×F/4×64

Pooling (3rd) 2×2 2×2 T/8×F/8×64

Convolution (4th) 3×3 1×1 T/8×F/8×64

Pooling (4th) 2×2 2×2 T/16×F/16×64

Convolution (5th) 3×3 1×1 T/16×F/16×64

Pooling (5th) 2×2 2×2 T/32×F/32×64

Convolution (6th) 3×3 1×1 T/32×F/32×64

epochs with a batch size of 32. Besides, all the hyper parameters of our model are fine-tuned to
maximize the sum of WA and UA to be introduced in the next section.

To confirm the dominance of our proposals, we design several baseline systems. For
experiments on ILSAT and CL-CAT to be described in Section 5.3, we test the CNN connected
with SAT sequentially (C-SAT), which is regarded as Figure 4.2 (b) with LSTM removed.
Moreover, we insert LSTM into the middle of our baseline system to be utilized as another
baseline system (C-L-SAT). For experiments on SMW_CAT and AT_CAT-SAT which will
be discussed in Section 5.4 and Section 5.5, three types of baseline systems are designed:
X_SAT, XY_SAT, and XY_CAT, as depicted in Figure 5.2. X_SAT uses SAT to process input
embeddings from source X and applies an attention layer as uni-post attention to eliminate
the time dimension. XY_SAT can be regarded as the simple combination of the output from
X_SAT and Y_SAT. In XY_CAT, the interactive information from two different sources X and
Y are captured by CAT, and then two outputs are further integrated by the co-post attention
layer sharing weight, as mentioned in Section 4.4.
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5.3 Experiments on ILSAT and CL-CAT

(a) X_SAT (b) XY_SAT (c) XY_CAT

Fig. 5.2 Block diagram of three baseline SER systems, where X and Y are two different sources.

5.2.3 Evaluation metrics

With respect to the evaluation metrics for measuring the model performance, confusion matrix,
weighted accuracy (WA), and unweighted accuracy (UA) are employed in the experiments.
Confusion matrix depicts how each class is classified and misclassified. WA (also known as
overall accuracy) weighs each class according to the number of samples that belong to that class
in the dataset, it represents the classification accuracy over the entire dataset. UA gives the same
weight to each class, regardless of how many samples of that class the dataset contains, it can
better reflect imbalance among classes. The distinction between these two measures is useful
especially if there exist emotion classes that are under-represented by the samples. Suppose
there are N emotion categories c1,c2, · · · ,cN in total, where number of samples and correctly
predicted samples in each category is denoted as |c1|, |c2|, · · · , |cN | and T Pc1,T Pc2, · · · ,T PcN

respectively. Based on this, WA and UA can be calculated as:

WA =
∑

N
i=1 T Pci

∑
N
i=1|ci|

(5.1)

UA =
1
N

N

∑
i=1

T Pci

|ci|
(5.2)

5.3 Experiments on ILSAT and CL-CAT

Table 5.2 summarizes the property of ILSAT and our baselines in different conditions. In all
systems, opening the PE achieves higher performance than closing, verifying the usefulness of
it. However, far from obtaining a better behavior, simply inserting LSTM between CNN and
SAT brings about a little bit worse accuracy. Among the three fusion ways tested (concatenation,
plus, and trainable plus) in ILSAT, the first one shows the best result. In this case, the ILSAT
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5.4 Experiments on SMW_CAT

Table 5.2 Accuracy comparison among two baseline systems and our proposed ILSAT. PE
represents positional encoding in the transformer.

Model Fusion Mode PE WA(%) UA(%)

C-SAT
(baseline1) –

False 65.89 65.60

True 66.29 65.54

C-L-SAT
(baseline2) –

False 64.71 64.41

True 66.35 64.82

ILSAT

concatenation
False 67.12 67.29

True 68.01 67.49

plus
False 65.02 64.62

True 65.01 64.84

trainable plus
False 64.87 64.42

True 65.87 65.41

without PE exceeds the C-SAT with PE. This reveals that, by putting LSTM in the same position
as SAT and concatenating them together, it has the ability to replace the function of PE, and we
can focus more adequately on emotional parts of input utterances. Besides, when LSTM and
PE exist at the same time, the best performance can be obtained, which exceeds the baseline
models with 1.72% and 1.95% absolute improvements in WA and UA, respectively.

Depicted in Table 5.3, our CL-CAT model attains 67.32% WA and 67.26% UA, which
has an increase of 1.03% and 1.72% over the baseline C-SAT system. It clearly indicates the
efficacy of joint learning of the information from CNN and LSTM. Meanwhile, we explore
an ablation study to examine the contributions of different parts in the CL-CAT. We first
eliminate the CAT module, showing that it can bring 1.81% WA improvement and 1.27% UA
improvement. By dropping the CAT(l2c) and CAT(c2l) in IL-CAT, a decrease of 0.79%/1.94%
WA and 0.39%/2.34% UA can be observed respectively. This shows the importance of these
two modules in CAT. In addition, the performance becomes worse in the absence of CAT(c2l),
indicating it is more significant than CAT(l2c). Comparing the second row, the third row, and
the last two rows in the table, we can verify that mapping into a different model can certainly
bring elevation of performance.
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5.4 Experiments on SMW_CAT

Table 5.3 Ablation study on the CL-CAT.

Model WA(%) UA(%)
CL-CAT 67.32 67.26

C-SAT (baseline) 66.29 65.54
L-SAT 64.64 64.81

CL-CAT (w/o CAT) 65.51 65.64

CL-CAT (w/o CAT(l2c)) 66.53 66.87

CL-CAT (w/o CAT(c2l)) 65.38 64.92

5.4 Experiments on SMW_CAT

The experimental results of SMW_CAT and some comparing systems are summarized in
Table 5.4. When exploiting only one kind of acoustic input feature, W_SAT achieves the
highest accuracy, followed by M_SAT, and S_SAT is the lowest one. With MFCC as another
additional feature, the performance of SM_SAT exceeded both S_SAT and M_SAT. The same
conclusion can be drawn in the case of SW_SAT and MW_SAT, pointing to the effectiveness
of XY_SAT. By replacing the architecture of XY_SAT with XY_CAT, further improvement
in WA and UA can be observed. To better understand the contribution of different parts in
XY_CAT, we select SW_CAT as an example and replace the CAT and co-post attention with
the corresponding part in SW_SAT respectively. As can be seen from the results in the third
and fourth rows from the bottom, both parts bring increasement and neither of them exceeds
the performance of SW_CAT which exploits them concurrently. Utilizing all three features,
our proposal SMW_CAT achieves the best performance of 73.80% in terms of WA and 74.25%
in terms of UA.

To verify the effectiveness of the proposal, we further compare our system with other
currently advanced approaches. Experimental results of different methods are listed in Table 5.5.
SMW_CAT achieves the best WA and UA scores. It outperforms the best state-of-the-art method
[47] by absolute 0.1%WA increase and absolute 0.35% UA increase. The result gives the credit
to the excellent discrimination ability of CAT.

We also plot the confusion matrix and execute the t-SNE visualization on S_SAT, M_SAT,
W_SAT, and SMW_CAT, depicted in Figure 5.3 and Figure 5.4. From W_SAT to S_SAT, angry
is assembled worse and easier to overlap with other emotions, thus there exists a significant
degradation of 19.6%. On the other side, sad reaches a higher probability of being correctly
recognized due to the suppression in misclassifying with neutral. Considering when log
mel spectrogram is calculated from raw waveform data the phase info will be lost, it can be
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5.5 Experiments on AT_CAT-SAT

Table 5.4 Performance of our proposed SMW_CAT and several comparing systems. S denotes
log mel spectrogram, M denotes MFCC, W denotes raw waveform data, CPA denotes co-post
attention, UPA denotes uni-post attention.

Model WA(%) UA(%)
S_SAT 66.74 66.03

M_SAT 67.75 66.53

W_SAT 71.44 71.99

SM_SAT 68.31 68.15

SW_SAT 71.45 72.22

MW_SAT 72.93 73.78

SM_CAT 68.47 68.15

SW_CAT 72.43 73.55

SW_CAT (CAT→ SAT) 71.68 72.45

SW_CAT (CPA→ UPA) 71.99 72.97

MW_CAT 73.59 73.86

SMW_CAT 73.80 74.25

inferred that the absence of phase causes the above phenomena. From log mel spectrogram to
MFCC, higher-order DCT components are ignored, which corresponds to the slight vibration
in high quefrency. In M_SAT, happy achieves a performance improvement of 4.4% compared
with S_SAT because it gathers into a cluster far from other emotions in t-SNE visualization.
However, sad decreases to 66.9% as it becomes more scattered over the mapping space. In
our proposed SMW_CAT, seen in Figure 5.3 (d) and Figure 5.4 (d), the performance looks
like a complementarity and enhancement over S_SAT, M_SAT and W_SAT. In addition, the
misclassification probability among angry, happy and sad is relatively low, meaning that the
only bottleneck for our system is the confusion between neutral and them.

5.5 Experiments on AT_CAT-SAT

Table 5.6 shows the performance of our proposed AT_CAT-SAT and some comparing systems.
From the first two rows in the table, SAT with audio-only achieved a better result than SAT
with text-only, meaning that more emotion is implicated in acoustic features than in textual
ones. When these two modalities are combined by SAT for capturing intra-modal dynamics
and by CAT for learning inter-modal relations, corresponding to the third and fourth row in the
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5.5 Experiments on AT_CAT-SAT

Table 5.5 Comparison of our proposed SMW_CAT and previous state-of-the-art approaches on
the IEMOCAP dataset.

Model WA(%) UA(%)
CNN-BiLSTM [34] 68.8 59.4

Fusion-ConvBERT [19] 66.47 67.12

CNN_TF_Att.pooling [20] 71.75 68.06

Self-attention [39] 70.17 70.85

Co-attention [48] 71.64 72.70

MLT-Dnet [16] - 73.01

GLAM [47] 73.70 73.90

SMW_CAT (proposed) 73.80 74.25

Table 5.6 Performance of our proposed AT_CAT-SAT and several comparing systems. A
denotes audio, T denotes text.

Model WA(%) UA(%)
A_SAT 65.26 65.96

T_SAT 61.48 62.81

AT_SAT 72.72 74.13

AT_CAT 73.22 74.50

AT_CAT-SAT 73.64 75.05

table respectively, performance has obviously improved compared with unimodality systems,
i.e. A_SAT and T_SAT. It points out that both feature fusion strategies can make full use of the
multimodal features and gain complementarity. Besides, AT_CAT has a 0.5% WA and 0.37%
UA improvement than AT_SAT, indicating that more inter-modal interactions are modeled
than intra-modal ones. Eventually, if we model these two interactions simultaneously, the best
behavior of 73.64% WA and 75.05% UA can be obtained.

In detail, we compute confusion matrix to exploit accuracies for each emotional category,
depicted in Figure 5.5. Except for neutral, AT_CAT has a higher correctly recognition probabil-
ity in three other classes than both A_SAT and T_SAT. By introducing intra-modal interactions,
AT_CAT-SAT restrains confusion sets of angry→ neutral and neutral→ sad so that 10.3%
improvement on prediction of angry label and 4.1% improvement on prediction of neutral label
can be observed. From the t-SNE visualization shown in Figure 5.6, data distribution of happy
is more centralized, while sad and neutral is more scattered in T_SAT compared with A_SAT.
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5.5 Experiments on AT_CAT-SAT

Moreover, AT_CAT is able to exploit advantages and suppress disadvantages from the two
modalities, thus boundaries in the different emotions become clearer.

To understand the process of joint encoding information from audio and text more intuitively,
we analyze the attention weights in CAT. Figure 5.7 (a) shows a rightly recognized angry
utterance. We can see those words “vile”, “ill-tempered”, “wicked” that tend to hint the angry
emotion have a higher attention. Among them, the word “wicked” takes the determined position.
Besides, the word “wicked” is not only correlated to acoustic features when speaking itself
but also stronger relations with acoustic features when speaking “You ’re a vile” and “I never
see you again” are detected, which cannot be learned by forced alignment. Another precisely
predicted utterances labeled happy is depicted in Figure 5.7 (b). More glaring color is perceived
in the words “That’s amazing” and “Wow”, from which the underlying happy emotion can
be easily conjectured. While the words “That’s amazing” has an association with acoustic
features when speaking itself and “Wow”, the word “Wow” only concentrated on acoustic
features when speaking “That’s amazing”. These observations again indicate the superiority of
alignment automatically obtained by CAT. However, for the words “what are going to”, the
uncanny focus is given, especially for the word “what”. This eccentric phenomenon should be
further researched.
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5.5 Experiments on AT_CAT-SAT

(a) S_SAT (b) M_SAT

(c) W_SAT (d) SMW_CAT

Fig. 5.3 Confusion matrix of SER systems related to multiple acoustic features. (ang angry
state; hap happy; sad sad; neu neutral)

(a) S_SAT (b) M_SAT (c) W_SAT (d) SMW_CAT

Fig. 5.4 The t-SNE visualization of the last hidden layer in SER systems related to multiple
acoustic features.
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5.5 Experiments on AT_CAT-SAT

(a) A_SAT (b) T_SAT

(c) AT_CAT (d) AT_CAT-SAT

Fig. 5.5 Confusion matrix of SER systems related to multimodal features. (ang angry state;
hap happy; sad sad; neu neutral)

(a) A_SAT (b) T_SAT (c) AT_CAT (d) AT_CAT-SAT

Fig. 5.6 The t-SNE visualization of the last hidden layer in SER systems related to multimodal
features.
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5.5 Experiments on AT_CAT-SAT

(a) Attention weights of a sample utterance labeled angry and correctly predicted

(b) Attention weights of a sample utterance labeled happy and correctly predicted

Fig. 5.7 Visualization of attention weights from the final layer of CAT(a2t) in two sample
utterances. In each figure, the transcription (i.e. textual features) is drawn on the left of
attention weights, and the log mel spectrogram (i.e. acoustic features) is drawn at the bottom of
attention weights. We also add the forced alignment data for comparison. Words with higher
weight are emphasized in red color. Note that because of the pooling operation in light CNN,
each block contains not only the representation of the corresponding acoustic feature but also
its context elements.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this paper, we propose several SER systems exploiting self-attention transformer (SAT) and
cross-attention transformer (CAT), and then conduct experiments and analysis on them on the
IEMOCAP benchmark dataset over 4-class emotion classification.

First, the definition of SAT and CAT are introduced. SAT is the normal transformer that
can process the uni-source input by self-attention mechanism. While CAT, composed of two
transformer modules, is able to deal with bi-source input by cross-attention mechanism.

Second, towards interaction between the transformer and other deep learning structures, we
propose two kinds of SER systems. ILSAT, the model integrating LSTM with SAT in a parallel
manner, aims to substitute the positional encodings in SAT with LSTM. CL-CAT, the model
utilizing CAT to interact and combine information from CNN and LSTM, is presented grounded
on the complementarity between them. Experiment results show that both our proposals can
make a promising improvement relative to the C-SAT baseline system.

Third, considering the problem that there is often only one kind of input feature in previous
SER systems, we attempt to import additional acoustic features and joint encode them by CAT.
Based on this direction, a novel model called SMW_CAT is proposed, showing its effectiveness
not only in achieving the best performance of 73.80% WA and 74.25% UA beyond all of
comparing systems we designed but also in surpassing existing state-of-art approaches. We
also analyze the t-SNE visualization for viewing differences among three acoustic features in
an intuitive way.

Last, we discuss our AT_CAT-SAT, which exploits textual features from another modality. It
can model the intra-modal interaction and inter-modal interaction simultaneously. Experiment
results suggest its superiority over both uni-modal SER systems, achieving a 73.64% WA and
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6.2 Future works

75.05% UA. Besides, visualization of the attention weights in CAT indicates it can correlate
between affect-salient acoustic and textual features automatically.

6.2 Future works

For future works, we plan to:

• Find a dataset being collected in multi-languages and test the generalization ability of
our proposed SER systems to the cross-linguistic situation.

• Use the results of recognized text data by automatic speech recognition (ASR) instead of
zero word recognition error rate transcription to simulate the real-time case. Also, bring
in the visual features as the third modality and fuse it with acoustic and lexical features
according to the architecture of SMW_CAT.

• Train with more conditions such as continuous emotion labels and gender labels by
multi-task learning (MTL) to further improve the performance.
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