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Abstract 

A mechanochromic polymer, polydiacetylene, changes color upon ligand binding, being a popular material in 

biosensing. However, whether it can also detect ligand functions in addition to binding is left understudied. In 

this work, we report that the polydiacetylene can be used to determine the net charges and the mode of actions 

(carpet model, toroidal pore model etc.) of antimicrobial peptides and detergents via EC50 and Hill coefficients 

from the colorimetric response dose curves. This opens a potential for a high-throughput peptide screening by 

functions, which is difficult with the conventional methods. 



Introduction 

Polydiacetylene (PDA) is a mechanochromic 

polymer that switches its color from blue to red and 

emits fluorescence when it is stimulated by external 

perturbations1-2. Significant efforts have been made 

in the past decades to develop PDA colorimetric 

sensors for the detection of temperature3-6, pH7-8, 

ions9-10, mechanical stresses11-13, ligands14, 

antibodies15, aptamers16-17 etc. For the recognition of 

a specific molecule, often the headgroup of the PDA 

is functionalized, so that it specifically binds to the 

ligand of interest. After the calibration of the 

colorimetric response against the concentration of the 

ligand in solution, PDA can be used as a colorimetric 

binding assay18-19.    

In contrast, Jelinek group has discovered that 

different kinds of antimicrobial peptides stimulate 

PDAs embedded in phospholipid bilayers at a various 

level in the absence of such a specific interaction20-21. 

This indicates that the PDA color reflects the nature 

of the lipid-peptide interactions, opening a potential 

use of PDA as a functional assay. This work has been 

further expanded towards the membrane 

interaction/penetration assay for drug screening, 

where the colorimetric dose curves were categorized 

and linked to the mode of action of drugs22. Being 

inspired by these works, recently, we have shown that 

the PDA peptide chromism is linked to the solid-to-

liquid phase transition of the diacetylene 

monomers23-24. 

In this work, to find which peptide functional 

parameters can be extracted by the PDA color change, 

we analyzed the colorimetric dose curves of PDA 

vesicles made of 10,12-tricosadiynoic acid (TRCDA) 

and 1,2-dioleoylsn-glycero-3-phosphocholine 

(DOPC) for different types of antimicrobial peptides 

and detergents. This systematic study revealed that 

EC50 (the ligand concentration producing the median 

effect of 50%) was correlated to their net charge and 

the Hill coefficient (a parameter that represents the 

steepness of the curve and is associated with the 

cooperativity of the ligand) was linked to the model 

of the peptide-lipid interactions (e.g. carpet model, 

toroidal pore model). This suggests a potential of 

PDA as a facile colorimetric assay to screen peptides 

for their electric charges or by functions. In addition, 

we will also show a proof-of-principle of an 

antimicrobial peptide cooperative effect (synergy or 

antagonism) detection by PDA.  

Materials and methods 

For a detailed summary of the materials and methods 

used in this study, see Supporting Information. 

Results and discussions 

Dose curves from the colorimetric response were 

obtained against 7 peptides and detergents. To 

compare the PDA chromism stimulated by different 

types of peptides and detergents, PDA suspension 

made of 75% TRCDA + 25% DOPC was incubated 

with LL-37, melittin, PGLa, Magainin 2, IAPP, C12E8 

and CHAPS at different concentrations and their UV-

VIS spectra were measured (Figure 1a, b). DOPC 

was added to form homogenous vesicle suspension 

and to improve the sensitivity towards antimicrobial 

peptides and detergents20, 23, 25-26. Colorimetric 

response (C.R.), which is the quantification of the 

PDA color by taking the intensity ratio between the 

blue peak at 645 nm and the red peak at 545 nm, 

commonly used for the PDA analysis, was extracted 

from these spectra and plotted against the peptide 

concentrations (Figure 1c). Each molecule yielded a 

different dose curve as it reflects its unique 

interaction with PDA. The potency is the highest for 

LL37, whereas CHAPS is especially low. In addition, 

the shape of the dose curves also varies from 

molecules to molecules. To understand these details 

quantitatively, EC50 and Hill coefficients were 

extracted from these dose curves (Figure 2a, b). 

EC50 exponentially decays with the peptides’ net 

charge. First, we found that EC50 is inversely 

correlated with the peptides’ net charge (Figure 2a). 

The binding mechanism between lipids and 

antimicrobial peptides has been extensively studied 

before and has been mainly explained by the 

combination of the Gouy-Chapman theory 

(concentration of peptides immediately above the 

membrane surface due to the electrostatic attraction 

between the peptides and the membrane) and the 

partition equilibrium. Antimicrobial peptides are 

generally cationic, thus attracted to the anionic 

carboxyl headgroups of PDA (net charge -1 per 

monomer), elevating their local concentration right 

above the PDA surface. This concentration right 

above the PDA surface cM can be expressed by the 

following equation27.            



 
Figure 1: a, UV-VIS spectra of PDA suspension made of 75% TRCDA + 25% DOPC in HEPES buffer solution (150 mM NaCl, pH7.4) 

when LL-37, Magainin 2, and CHAPS were added at different concentrations. b, Photographs of these PDA suspensions. Note that the 

concentrations in each well correspond to the ones indicated in (a). c, Colorimetric response (C.R.) calculated from these UV-VIS 

spectra plotted against the peptide concentrations.

𝑐M = 𝑐f𝑒
−𝑧𝐹0𝜓0/𝑅𝑇 ,        (eq. 1) 

where cf is the peptide concentration in bulk solution, 

z is the peptide charge, F0 is the Faraday constant, 0 

is the surface potential linked to the membrane 

charge density, R is the gas constant, and T is the 

temperature. When a negatively charged bilayer (0 

< 0) is incubated with peptides at a fixed bulk 

concentration cf at T, the peptide concentration right 

above the bilayer cM exponentially grows as a 

function of the peptides’ net charge z (> 0). This 

explains why elevating z shifts EC50 towards lower 

concentrations, because it increases cM, making the 

molecule more potent. This argument assumes that 

the equilibrium constants between bilayers and 

peptides at nanoscale are in the same order of 

magnitude for all the tested molecules, whereas the 

intrinsic affinity is predominantly governed by z. By 

fitting the data in Figure 2a with the following eq. 1’ 

(eq. 1 solved for cf) 

𝑐f = 𝑐M𝑒
𝑧𝐹0𝜓0/𝑅𝑇 ,           (eq. 1’) 

where cf (EC50 in y axis) and z (net charge in x axis) 

are the variables, R = 8.31 JK-1mol-1, T = 293 K, F0 = 

9.65 x 104 Cmol-1 are the constants, cM and 0 are the 

open parameters, we obtain cM = 1058 ± 10 M and 

0 = - 26 ± 1 mV (see Figure S1 for the details). The 

order of magnitude of this surface potential value is 

reasonable for bilayers made of a mixture of TRCDA 

(net charge -1) and DOPC (net charge 0) as the one 

estimated for 100% POPS (1-palmitoyl-2-oleoyl-sn-

glycero-3-phospho-L-serine) bilayers (net charge -1) 

has been reported as - 103 ~ -158 mV28-29. This 

implies that the above-mentioned assumption is 

probably correct, where the intrinsic affinity of 

peptides to bilayers is mainly governed by z, although 

other factors such as a difference in the 

hydrophobicity in each peptide also plays a role in 

details30. Previously in an effort to study the 

membrane affinity of drugs with PDA, Wei and 

coworkers have shown that log(EC50) extracted from 

PDA dose curves and the intrinsic partition 

coefficient log(Km) present a linear correlation.31 In 

another study, Katz and coworkers have shown a link 

between the drug-membrane interactions and EC50 of 

PDA dose curves22. These previous works also 



 

Figure 2: EC50 (a) and Hill coefficients (b) were extracted from the dose curves in Fig. 1c and plotted against the net charge and the 

peptide types respectively. Note that the Hill coefficient (5.16) extracted from the dose curve of IAPP is a rough estimate due to the lack 

of data points in higher concentrations. c, The particle size estimated by dynamic light scattering (DLS) at EC50 induced by peptides or 

detergents. 

support that PDA color change well corresponds to 

the affinity of the molecules. 

Hill coefficients are linked to the mode of action of 

each molecule. Hill coefficient reflects the slope of  

the dose curves and is a parameter used to describe 

the cooperativity of ligand-receptor binding. n > 1 

and n < 1 suggest positive and negative 

cooperativity32-33, respectively. Antimicrobial 

peptides and detergents are known to have such a 

cooperativity, where their oligomerization in 

membranes initiates a certain function such as pore 

formation34 or bilayer destruction35. The strength of 

the cooperativity depends on their mode of action. 

For example, a peptide that forms a pore as a 

monomer is expected to have no cooperativity in its 

function, whereas the one that forms a pore as an 

oligomer via the barrel-stave or the toroidal model is 

expected to have a higher cooperativity. The ones 

that destroy membranes via the carpet model or the 

detergent model, where many peptides self-assemble 

into peptide-lipid complexes, are expected to have 

even higher cooperativity as the number of peptides 

that are involved in their functions is larger. 

Therefore, we hypothesized that the Hill coefficients 

extracted from the C.R. dose curves may be 

connected to the mode of action of each peptide. To 

study this hypothesis, first we summarize the known 

functions of each peptide and detergent in following. 

Magainin 2 and PGLa, isolated from the skin of 

African frog Xenopus laevis, are a well-known 

couple that exhibit a broad spectrum of antimicrobial 

activity. Both peptides adopt toroidal model in 

various compositions of phospholipid bilayers as 

evidenced by x-ray scattering36 and 31P and 2H solid-

state NMR spectroscopy37. Melittin is the main 

component of honeybee venom. Although its mode 

of action is still under debate, toroidal model and 

barrel-stave model are the two main proposed models.  



 

Figure 3: (a) Photographs and (b) UV-VIS spectra of PDA suspension made of 75% TRCDA + 25% DOPC in HEPES buffer solution 

(150 mM NaCl, pH7.4) when melittin, α-hemolysin and their mixture were added at different concentrations. c, Dose-effect curves of 

different couples of peptides and detergents.

Toroidal model has been supported by neutron 

scattering38 and transmission electron microscopy39. 

Barrel-stave model has been supported by Raman 

spectroscopy40 and solid-state 31P and 13C NMR38, 41. 

LL37, the only cathelicidin-derived peptide found in 

humans, has been reported to adopt the carpet-like 

mechanism by various methods. For example, a 

characteristic peak shifting in 31P solid-state NMR42 

and the dichroic ratio RATR and the lipid-order 

parameter f calculated from attenuated total 

reflectance Fourier-transform infrared 

spectroscopy43-44 have both indicated that LL-37 is 

surface localized and does not penetrate into the 

hydrophobic core of the membrane, which is 

compatible with the carpet model. Human islet 

amyloid polypeptide (IAPP) is known to form defects 

in membranes and induces cell death in amyloidosis. 

It has different aggregation stages such as low and 

high-number oligomers, protofibrils up to amyloid 

fibrils, where each aggregation state presents unique 

interaction with membranes. Oligomeric states seem 

to form toroidal pores, supported by an 

asymmetrically pyrene-labeled vesicle assay45, 

differential scanning calorimetry (DSC) and solid-

state NMR46-47, whereas amyloid fibrils destroy 

membranes by creating a larger defects. In our 

experiment, we do not know the aggregation stage of 

IAPP, thus the mode of action can be anything 

between toroidal model to membrane destruction by 

amyloid fibril. C12E8 and CHAPS are two kinds of 

detergents that destroy membranes by micellization, 

which is called detergent model. Size and shape of 

the formed micelles caused by CHAPS have been 

investigated by small-angle x-ray scattering48 and 

molecular dynamics simulations49, whereas that of 

C12E8 have been studied by 2H and 31P NMR50.  



Table 1: Comparison of our results and the literatures. Calculated synergistic factor is indicated in parenthesis. The error bars in the 

combination index originates from the used C.R. value for the analysis (see Figure S2). Used lipids in the experiments reported in the 

literature is also indicated in parenthesis.

 

Peptide couples Our results Literature 

Melittin + α-hemolysin Synergy (0.67±0.04) - 

Magainin 2 + PGLa Synergy (0.65±0.02) Synergy (BBPS)51 

Magainin 2 + IAPP Synergy (0.68±0.01) Synergy (DOPG)52 

CHAPS + C12E8 Synergy (0.92±0.02) Synergy (POPC)53 

Magainin 2 + C12E8 Synergy (0.78±0.07) Additivity (POPC, POPG)53 

LL37 + HNP1 Antagonism (1.09±0.01) Antagonism (POPC)54 

The comparison between Hill coefficients obtained in 

our experiment and the known function of 

peptide/detergent shows that Hill coefficients and the 

peptide functions are in a good correlation as 

expected (Figure 2b). Molecules with higher Hill 

coefficients are mainly linked to the detergent or the 

carpet model, whereas the ones with lower Hill 

coefficients are correlated with the toroidal or the 

barrel-stave model. This implies that PDA can be 

used as a functional assay to screen peptides’ mode 

of action in a high throughput manner. 

Dynamic light scattering shows net-charge 

dependent aggregation. To study the aggregation 

behavior after mixing PDA and peptides, the samples 

were characterized by dynamic light scattering (DLS). 

The hydrodynamic diameter of TRCDA vesicles 

were 222  3 nm and 274  8 nm before and after 

polymerization, respectively. When peptides and 

detergents were added at each EC50, the 

hydrodynamic diameter changed into 219  2 nm, 

233  2 nm, 724  17 nm, 1191  20 nm, 2349  72 

nm, 1280  118 nm, and 979  24 nm for CHAPS, 

C12E8, IAPP, magainin, PGLa, melittin, and LL37, 

respectively (Figure 2c). First, the reason for the lack 

of aggregation for CHAPS and C12E8 is due to their 

zero net charge. As the net positive charge of the 

molecule increases, the aggregation was induced 

because their positive charges help with bridging 

negatively charged PDAs for forming large 

complexes. However, the aggregation peaks at PGLa 

(+4) and declines for melittin (+5) and LL37 (+6). 

This may be because their attachment to PDA 

inversed the PDA’s zeta potential into positive, 

which rather counteracted the aggregation by 

electrostatic repulsion. EC50 changed monotonically 

against the net charge (Figure 2a) in contrast to the 

aggregation (Figure 2c). This suggests that EC50 

managed to capture the charge of the molecules 

despite the different aggregation levels in the samples. 

PDA assay indicated a predictability for the 

peptide synergistic effects. Next, we studied the 

PDA dose curves, where two types of peptides 

(detergents) are mixed at 1:1 molar ratio for an 

attempt to detect synergistic (cooperative) effects. 

Cooperative effects or synergy among antimicrobial 

peptides55-73, where mixing different types of 

peptides boosts their antimicrobial efficiency, has 

garnered attention as a possible approach to improve 

their potency especially in the context of antibiotic 

resistance and because of its underlying interesting 

mechanism. In some cases, two kinds of peptides 

seem to interact in membranes, either enhancing or 

suppressing their ability to destroy bilayers, thus 

modulating their toxicity54, 56, 74-79. However, only 

several couples have been discovered to present such 

an interesting effect due to a lack of high-throughput 

methods to screen cooperative functions of peptides 

in bilayers. As a first step to investigate whether the 

PDA assay can be used for the cooperative function 

screening, we measured PDA dose curves from 6 

peptide (detergent) couples; melittin + -hemolysin, 

magainin 2 + PGLa, magainin 2 + IAPP, magainin 2 

+ C12E8, C12E8 + CHAPS, LL37 + HNP1 (Figure 3a-

c), and their combination index were analysed (see 

SI). In brief, the combination index method analyses 

dose curves from individual compounds and that 

from their mixture for clarifying whether the effect 

from the mixture presents synergy (combination 

index < 1), antagonism (combination index > 1), or 

just an additive effect (combination index = 1), often 

used to evaluate combination therapies80-81. These 

couples were selected as their cooperative effects 



have been previously investigated by vesicle leakage 

assays and the results have been reported in the 

literatures. For example, magainin 2 and PGLa have 

cooperatively induced a leakage of calcein from 

bovine brain phosphatidylserine (BBPS) vesicles51; 

The mixture of IAPP and magainin 2 has led to a 

leakage of fluorescent dextrans from DOPG vesicles 

and the inhibition of bacterial growth52; CHAPS and 

C12E8 have exhibited a synergistic activity of calcein 

leakage in POPC vesicles53; On the other hand, the 

mixture of magainin 2 and C12E8 has shown just an 

additive membrane permeabilization, studied by 

calcein leakage from POPC+POPG vesicles53; LL37 

and HNP1 have antagonistically minimized 

cytotoxicity by protecting membranes from lysis, 

studied by fluorescence recovery after 

photobleaching (FRAP) with POPC bilayers and by 

cytotoxicity studies with eukaryotic cells54.  

The extracted combination index from the analysis is 

shown in Table 1 together with their known 

cooperative functions from the literatures. The result 

from the PDA assay has a moderate matching with 

the one from the literature. Especially, the fact that 

the activity of the rare antagonistic couple (LL37 + 

HNP1)54 was recapitulated by the PDA assay is 

noteworthy. Magainin 2 + C12E8 were predicted as 

synergy in the PDA assay, whereas they have been 

reported to show additivity in the literature. This 

suggests the limitation of the PDA functional assay, 

where what the PDA color change reflects is not 

exactly the same as the function that is captured by 

vesicle leakage assays. In addition, for the magainin 

2 + C12E8 couple, the Hill coefficient of their mixture 

(3.28) became rather close to that of C12E8 (3.15) than 

magainin (2.02), which is also visible by looking at 

the slopes of the dose curves in Figure 3c. Based on 

our observation that the Hill coefficient is linked to 

the mode of action, this may suggest that their 

combined function is similar to that of C12E8, 

although further studies are required for the 

confirmation.   

Conclusions 

In conclusion, we found that EC50 and Hill coefficient 

from PDA dose curves, when PDA is incubated with 

antimicrobial peptides or detergents, are linked to 

their net electric charge and bilayer interaction 

mechanism, respectively. EC50 and Hill coefficient 

are the two key parameters that identify dose curves 

and are often used for the analysis of high-throughput 

assays. Conventionally, the experimental 

determination of net charges or mode of actions of 

antimicrobial peptides typically requires much 

cumbersome techniques such as zeta-potential 

measurements, isothermal titration calorimetry, 

circular dichroism, vesicle leakage assays, or 

membrane conductance measurements, which 

consumes lots of expensive peptides and could take a 

few months to obtain data. In comparison, the 

presented colorimetric PDA assay was performed 

with the standard plate reader that enables an 

automatic acquisition of 96 spectra (with 96 well 

plate), opening a potential for high-throughput 

peptide screening by electric charges and functions.  
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