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Chapter 1

Introduction

1.1 Background

Single-handed riding behavior is omnipresent, usually transient, but always jeopardizing (Fig.

1.1). It threatens every road user with surged risk of bicyclist-involved crushes. The global annual

death toll of cyclists is estimated to reach 40 thousand [1]. Improper maneuvering behaviors

are a key contributing factor behind this unacceptably high number. For instance, engaging in

distracting secondary tasks during cycling is shockingly prevalent [2] and contributes to driver

error, sometimes resulting in tragedies [3].

Single-handed cycling weakens riding balance and delays braking responses, and the cognitive

load of smartphone operations exacerbates the mental burden of cyclists and undermines their

visual sensitivity to roadside objects [4]. In Japan, inappropriate steering caused an average of

1,500 bike-involved accidents each year in the 2010s [5]. Accident numbers are expected to climb

higher with fast-growing markets for bike-sharing and bike-based food delivery services. Tradi-

Figure 1.1 Illustration of cycling behaviors in our scope (from left): Normal, Hand-Drop,
Phone-Tab, Take-from-Pocket
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tional efforts to mitigate traffic hazard has their own limitation, which usually includes legislation,

infrastructure plan, and manufacture design. Research has suggested that impulsive distracted

behavior of cyclists is not likely to reduce by legislation alone[6]. On the other hand, the ad-

vanced driver assistance system (ADAS) has been introduced to automobiles, which efficiently

enables collision avoidance instrumental collision avoidance systems. Nonetheless, cyclists could

expect the above vehicle-born systems to be neither installed on most motor vehicles nor on their

own bicycles, since ADAS usually require expensive LiDAR and camera sensors, along with the

power supply and computing resources. These facts highlight the need for a ubiquitous, real-time

method of safety-checking single-handed cycling.

Modern smartphones have versatile functions, such as environmental sensors, data processors,

and instant feedback. These rich functions allow human activity recognition technologies to be

deployed to smartphones without any additional devices. For example, based on the function,

numerous smart safeguard solutions for automobiles [7, 8] and micro-mobility vehicles [9] have

been proposed. These studies suggest that using smartphone functions can encourage cycling

safety. However, the detection of single-handed cycling has not yet been addressed. Collecting

single-handed riding events using a smartphone will allow the provision of numerous services to

prevent dangerous riding in the future data-enhanced mobility society. The crucial challenges that

we aimed to address are detailed below:

Subtle Difference Extraction: Empirically, The differences between the movement pattern of

single-handed cycling and that of two-handed cycling may be neglectable. Biomechanics research

[10] indicates that upper limbs contribute no more than 2.5% to the output work of the crank,

which concurs to comments from some experiment participants. It is challenging for our model

to extract representatives that are sensitive to hand-drop-caused movement pattern change from

motion signals mixed with noises from terrain and normal maneuver changes.

Constrained Data Collection: We have to build a user-independent method since we cannot

ask new users to perform dangerous single-handed cycling for personalization. Moreover, as the

status quo, we cannot find any public data resources concerning single-handed cycling. In our own

experiment, the experiment volume of dangerous cycling behavior has to be compressed, which

makes the feature extraction more challenging.

Adaptability and Robustness: A key point for practicable cycling inspection is the reliability

with complex terrains and across user-dimension. Thereby our system needs to extract the co-

herence in both-hand and single-handed cycling scenarios and be adaptive to common urban road

surfaces such as asphalt road and pavement.
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1.2 The Objective and Method of this Study

In this study, we propose DoubleCheck, a single-handed cycling detection method. Our

proposed method predicts double-handed and single-handed cycling conditions using

smartphone-embedded motion sensors using a vector autoregressive (VAR) machine-learning

model and a wavelet scattering network. Our demonstrably effective approach (§ 3.2.3)

collects time-frequency-domain features via lightweight computing from input motion data.

We evaluated the performance of the proposed method using motion data from 22 participants

during bicycle riding on two road surfaces. The resultant F1-score of 0.97 for the accuracy

of determining cycling hand(s) and 0.69 for distraction recognition validate DoubleCheck’s

practical safety-checking capability (§ 4).

The contributions of this work are summarized as follows:

• A method for single-handed cycling monitoring using a smartphone

• A feature extraction scheme using the wavelet scattering network and vector autoregression

model

• A model performance evaluation and recommended future directions
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Chapter 2

Related Works

With the spread of micro-mobility vehicles (e.g., bicycles), research promoting their operational

safety has been increasingly performed. These studies used built-in cameras, motion sensors,

and microprocessor units of smartphones and wearable devices to detect unsafe behaviors during

bicycle operations [11, 12, 13]. These ubiquitous devices have the potential to provide a common

safety-alerting platform for bicyclists worldwide. In this section, we summarize related studies

about single-hand bike-riding detection from the viewpoint of handlebar grip recognition, cyclist

monitoring, and environmental detection using embedded mobile sensors.

2.0.1 Handlebar Grip Detection

It is simple to leverage embedded tactile sensors or dynamometers to detect whether the cyclist

is holding the bicycle handlebar. Such sensors have been demonstrably effective in kinematic

research [14, 15, 16]. Nevertheless, their simple implementation makes them susceptible to tam-

pering and cheating in real-life situations. Dancu et al. produced the Gesture Bike [17], which

leverages a depth camera mounted at the front of the bike. Bonilla et al. [18] employed two

gyroscope-embedded wearable devices for similar purposes. Unfortunately, these techniques re-

quire cyclists to equip their bikes with expensive instruments or to wear at least one smartwatch

in bicycling or driving [19], which is less prevalent than navigation smartphones.

2.0.2 Bicyclist Maneuver Monitoring

Bicycle steering monitoring has long attracted attention in the field of human-computer interac-

tion research. The scope of such research consists of maneuvering dynamics, physiological data

[20], and body gestures. Our work follows this stream and is inspired by extant work in this field.

For example, Miah et al. [21] proposed an accuracy-augmented positioning algorithm based on
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the fusion of sensors and models. This work highlighted the bike’s specific low-dimensions-of-

freedom kinetic properties, which aided our feasibility analysis (3.1). [22] leveraged a handlebar-

borne smartphone to build a method of tracking basic braking and turning behaviors. Usami et

al. [23] refined this idea with better recall in turning recognition by employing noise cancellation

and feature extraction techniques. While only regular maneuvers were concerned in the above

works, BikeMate [24] is most similar to our work. It took a step forward towards a more complex

scope of standing pedaling, retrograde riding, and lane-weaving. Their framework demonstrates

the capability of the smartphone to monitor evident actions with individual-level characteristics,

meanwhile subtler ones such as single-handed cycling remain unexplored.

2.0.3 Bicycling Surrounding Detection

External-oriented systems can handle the fast-changing traffic contexts faced by cyclists while

supporting real-time environmental adaptability for smart cycling. In particular, they detect geo-

graphic information composed of traffic dynamics, terrain conditions [25], air quality, etc. Many

related tools are supported by data crowdsourcing to provide services without prior knowledge

[26]. A collaborative geographic enrichment structure developed by Verstockt et al. [27] auto-

matically annotates road and terrain taxonomies based on gathered-on-the-ride motion recordings

and position data, enabling geographic web services. Bil et al. [28] introduced a dynamic comfort

index of cycling routes, achieving a strong correlation coefficient of -0.94 via subjective evalua-

tions. BikeL [29] can sense and visualize street-light statuses using a smartphone ambient light

sensor. CycleGuard [30] leverages an acoustic-based approach to detect and warn of potential

right-hook collisions. Our work inherits the lessons learned from these detection capabilities to

extend the service to multiple road surfaces.

In contrast to the aforementioned works, we envision a long-lasting background service that rec-

ognizes bicyclist steering behaviors while detecting surrounding road conditions to deter single-

handed cycling. The input to DoubleCheck comprises merely simple IMU motion readings, avoid-

ing usage of battery-draining GNSS sensors and web service communications and processing.
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Chapter 3

Detection Method for Single-Handed
Riding Using Smartphone

3.1 Motivation & Feasibility Study

Single-handed cycling behaviors can help model successive errors that cause crashes and near-

crashes [31]. Examples of single-handed cycling include tapping a smartphone mounted on the

handlebar (Phone-Tap), taking something out of one’s pocket (Take-from-Pocket), or taking a hand

off the handlebars for resting (Hand-Drop). See Fig. 1.1.

Research has suggested that impulsive distracted behavior of cyclists is not likely to be reduced

by legislation alone, and effective strategies include constraining proximate characteristics such as

constraining phone accessibility[6]. Granted, existing research has proposed systems that monitor

the motion of bicycles and their operators using dedicated tools and/or wearable devices. How-

ever, even with these systems, the detection of single-handed cycling has not yet been realized,

and there are major restrictions on suitable equipment and installation locations.

If we could collect single-handed cycling event data, the information could be used to provide

just-in-time suggestions for preventing dangerous cycling behaviors. Moreover, the suggestion

could be refined with a detailed categorization of single-handed cycling. For example, there is no

doubt that the alert for Phone-Tap should be more imperative than that for Hand-Drop. Similarly,

left-handed cycling should be warned more intensely than right-handed cycling for those right-

handed people. Therefore, the objective of this research is to propose a single-handed cycling

detection method that satisfies the following requirements:

• Hand Detection: The exact cycling hand(s) must be automatically detected on different

road profiles.
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Figure 3.1 Spectrogram of motion signals for double- and single-handed cycling on road and pavement.

• Distraction Recognition: Types of single-handed cycling must accurately reflect ground-

truth cyclist behaviors.

• Practicability: The capability is restricted to the built-in IMU sensor of an off-the-shelf

smartphone for real-time detection and classification of single-handed cycling.

3.1.1 Mechanics of Single-Handed Cycling

The handlebar hand grip is one of the three points of physical contact between a cyclist and the

bicycle being operated. Although the upper limbs have little to do with crank-power output, they

help stabilize bicycle direction and balance via the trunk and back muscles and the contralateral

arm muscles [32]. The peak force applied to a handlebar can exceed 70 Newtons under normal

cycling conditions [33]. Therefore, it is reasonable to infer that handlebar control is jeopardized

when one of the two anchors (hands) is removed. Moreover, biomechanical studies have proven

that altering the hand position on bend handlebars coincides with changes in major body positions

during cycling [34]. Specifically, reaching down to grasp the lower drop-bar causes a 77% greater

anterior pelvic tilt angle and an 11% greater trunk flexion angle than when grasping the top flat

bar [35]. Meanwhile, the top limit of pressure on the seat could shrink by more than 20% (same

crank capacity for both hand positions) [36]. This implies that a cyclist engaging in potentially

distracting and unbalanced behaviors based on diverse hand trajectories may easily lead to unique

motion patterns in the bike, including the handlebars.
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3.1.2 Motion Data from Single-Handed Cycling

For an initial investigation of the capacity of motion sensors in commodity smartphones, we

asked one male volunteer who was proficient in cycling to perform two-handed and left-handed

cycling on roads and pavements for about 100 m, respectively, with a smartphone (Google Pixel

3a) in the handlebar mount. Because stability is most noticeable in lateral movement and yaw ro-

tations (owing to the limited kinematics of cycling [21]), we illustrate the spectrum of motion data

along the two axes in Fig. 3.1, from which two observations were drawn: 1) under the same road

conditions, the acceleration signal of left-handed cycling tends to enjoy denser power than the

two-handed mode over 15 Hertz, and so does the angular speed signal over 5 Hz. Similar patterns

are found in our comparison between cycling on roads and pavements; 2) the power increment

of left-handed cycling is much more evident on pavements than on roads. The profile devel-

oped from this test supports the feasibility of detecting single-handed cycling and road profiles

simultaneously, and it corroborates the dangers of unbalanced single-handed cycling, regardless

of proficiency.
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3.2 System Design

In this study, we proposed an approach for detecting single-handed cycling detection, called

DoubleCheck. Our method uses motion sensors on an off-the-shelf smartphone with machine

learning. The scope of single-handed events in this study includes four types of cycling behav-

iors: two-handed cycling and three types of single-handed cycling. Note that we choose to utilize

IMU signals rather than a screen-touch event for Phone-Tap to make our method more practi-

cal. Because smartphone applications are usually prohibited to listen to touch events in other

applications. In addition, from our scope, we exclude other common single-handed cycling activ-

ities, such as, holding an umbrella and reaching for bottles, due to their unaffordable risk in our

experiment.

Figure 3.2 presents DoubleCheck’s basic design, including the three steps used to estimate

whether the rider is single-hand cycling. In the first step, DoubleCheck collects motion data from

an off-the-shelf smartphone (see Section 3.2.1). In the second step, the raw data collected from the

motion sensor are smoothed, sliced, and streamed into the AR model and the wavelet scattering

network for the data processing step. Section 3.2.2 describes the data preprocessing method, and

Section 3.2.3 presents our method of discovering the vibration patterns of cycling based on the

two extracted features from time and frequency domains. Then, during the detection step (see

Section 3.2.4), a support vector machine (SVM) classifier is trained to identify the road surfaces

and the exact hand(s) being used for bike steering. If a single-hand cycling event is detected, the

module further estimates the activity of the spare hand. We realized our method by MATLAB.

3.2.1 Data Collection

To build a classification model using supervised machine learning for single-handed cycling, we

prepared labeled motion data for single- and double-handed cycling. To compile the dataset, we

assembled a test bike mounted with an off-the-shelf smartphone (Google Pixel-3a equipped with

Android 11 OS), a capacitive touch sensor (SKU-6515 [37]) and a cycling log camera (VR-220

[38]).

The test bike is presented in Fig. 3.3. To accumulate motion data, DoubleCheck collected

acceleration and gyroscope data from the smartphone mounted to the handlebar. The smartphone

was marginally inclined horizontally along the roll and yaw axes for more discrete measurements.

The DoubleCheck application was created using Flutter and the Dart language, and the collected

sensor data were saved into a local comma-separated value (CSV) file.
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Figure 3.2 DoubleCheck workflow.

The Raspberry Pi-controlled tactile sensor collected ground-truth gripping events. It was con-

nected to copper wires buried in the handlebar. The Raspberry Pi (RPi) program was written in

Python3 and partially derived from the Bare Conductive Library. The ground-truth acquisition

procedure is illustrated in Fig. 3.3. The touch status was recognized by capacitance readings from

the tactile sensor and validated by watching cycling log videos. During cycling, the touch data

and motion readings were continuously collected by the RPi, transmitted to the smartphone via a

mobile hotspot, and stored in CSV-format files. The sample rate of all sensors was 80 Hz. Ad-

ditionally, the RPi recorded 60-fps cycling log videos with millisecond timestamps for post hoc

analysis.

3.2.2 Pre-processing

The raw motion readings contained intrinsic noise from the hardware, as well as acute dis-

turbances from road surfaces. Thus, we first smoothed the data with a Hempel filter, a moving

median filter that replaces the outliers with the local median. Here, an outlier is defined as a

value of more than k times the local deviation away from the local median in a length-l window.

These settings were made empirically (l = 13 and k = 9) to allow for the precise removal of

disturbances. We then sliced the data using the sliding-window method with different lengths.

The hand-detection window size was 40 samples (0.5 s), and the distraction-recognition window

comprised 80 samples. A 20-sample-length overlap was implemented in both situations. Usually,

there is a trade-off that longer sliding window size with more information would result in greater



Chapter 3 Detection Method for Single-Handed Riding Using Smartphone 11

10:24:21 10:24:2210:24:24
50

100

150

200

250

To
uc

h 
S

ig
na

l

Touch
Ground Truth

Road Surface 
Ground Truth

Time 
Sync

RasPi Sync Flag

Recd. Stopwatch

IMU Demo.

SSH Cmd.

Motion Data

Y
Z

X

Figure 3.3 Data collection platform, including hardware, dataflow and user interface.

classification accuracy with lower time solution. We further investigates the impact of sliding

window length in Sec. 4.2

3.2.3 Feature Extraction

Next, we applied the VAR model and wavelet scattering network models to yield representative

subtle features from the motion reading. Previous studies have employed similar techniques in

electrocardiogram-derived cycle heartbeat recognition applications [39, 40]. Similarly, periodic

circular movement components can be derived when monitoring bicyclist data. We Regarding the

time-frequency domain analysis, the short-time Fourier transform (STFT) and wavelet transform

(WT) were compared for use in our time-frequency analysis. Notably, the STFT is less sensitive

to abrupt frequency fluctuations that occur when cyclists change positions, such as removing a
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Table 3.1 Feature selected.

Model Features

VAR Coefficients of Lag-4 {Ai}
Wavelet Min, max, average skewness of each path, varience of all

hand during cycling. It is also more computationally intensive than WT, resulting in faster battery

consumption and higher response latency when deployed on mobile platforms. Therefore, the

WT-based method was chosen.

Vector Autoregressive Model

The VAR model is a classical stochastic process method used for time-series analysis. Accord-

ingly, in a stationary time series of a variable vector {wt}, the value of step s, ws, is linearly related

to the values of all elements in latest p steps before step s:

ws =

p∑

i=1

Aiws−i + εs

The formula represents a Lag-p VAR model with a coefficient matrix set, {Ai}, (i ≤ p), where

Ai stands for a constant n-by-n matrix for the latest i step values. n is the length of vector ws.

Note that {εs} is a zero-mean white-noise term. After attempts with multiple p, we found that two

order-3 & Lag-4 models of separated accelerometer and gyroscope input achieved the best result;

hence, we configured our method with such settings. A maximum likelihood-based approach is

adopted to estimate model coefficients[41]. Noted that through the pilot study in Section 3.1.2

we found the acceleration date fits the stationary criteria, while the angular speed data can only

fit it after being differentiated. Therefore we take the accelerometer data and the differential of

gyroscope data as input for VAR model. This does not apply to the wavelet scattering network.

Wavelet Scattering Network

A wavelet network was proposed [42] to carry out a wavelet time scattering decomposition so

that steady features from time sequences can be analyzed while maintaining category divergence.

It consists of a repeated process using three operators (i.e., wavelet transform, modulus, and av-

eraging) in every node of a tree structure. There are some similarities between wavelet scattering

networks and deep neural networks. However, the coefficients of the former are predefined in

filters rather than trained. For hand detection, we applied an order-one network with a filter bank

containing three wavelets per octave. From each time window, a scattering coefficient matrix was
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Figure 3.4 DoubleCheck’s neural network layout.

produced with a size of 5 × 10, representing five scattering paths in each of the 10 temporal slots.

For distraction recognition, the filter bank was expanded to eight wavelets per octave, and the

coefficient matrix size was increased to 13 × 8. A more complicated network is possible with

prolonged window lengths. However, for this experiment, we employed only the Gabor wavelet

in the filters.

Overall, we adopted 144 features for every hand-detection time window and 192 for distraction-

recognition ones. Table 3.1 lists the features extracted for each axis of acceleration and angular

speed.

3.2.4 Detection

We chose an SVM with a cubic polynomial kernel to classify the three cycling handgrip situa-

tions (i.e., left, right, and two). The SVM classifier is lightweight enough to be battery-friendly,

and it categorizes scattering and AR coefficients effectively [40, 42].

Once single-handed cycling is detected, a lightweight neural network classifier would

be leveraged to identify the distraction cycling activities of Take-from-Pocket and Phone-

Tab. The combined CNN-RNN network is demonstrated to be effective in the processing

of time-frequency features of IMU signal [43]. Fig. 3.4 presents the architecture of Dou-

bleCheck’s BiLSTM-based neural network design. Our network possesses only 4 layers to

meet the requirement of the mobile platform. We input the data in forms of 6 × (12 + 28)

(Num axes × (Num AR f eatures per axis + Num wavelet f eatures per axis)).
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Chapter 4

Evaluation of DoubleCheck in
Campus Study and Limited Urban
Road Study

As claimed in Section 3.1, we endeavor to detect single-handed cycling behaviors in a real-time

manner by DoubleCheck. Thus there comes the question regarding the usability and robustness

of our method:

How efficient is DoubleCheck in Q1: detecting single-handed cycling behavior, Q2: extended

scope in determining the exact cycling hand(s), and recognizing distraction cycling behaviors?

We respond to the above questions with evaluation of hand detection and distraction recogni-

tion.

4.1 Experiment Protocol

Comprehensive experiments have taken more than 2 months to construct the dataset. Our cy-

cling experiment is permitted by the Institutional Review Board (IRB) of the Center for Spatial

Information Science, the University of Tokyo.

Campus study

We invited 22 participants (13 males and 9 females) to join our experiment. All of them possess

single-handed cycling skills. Before formal data collection, the participants were briefed on the

task, route, and cycling safeguards. All of them were allowed a few minutes of test rides. The

safety measures taken included the provision of helmets and protections for elbows, hands, and

knees. We also adjusted the saddle height of the test bike for every rider according to their stature.
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Pavement
(Hand DT.) (H. DT.) (Dist. Recog.)

(a) Routes for Campus Study.

Urban Asph.
(Hand Detection)

(b) Route for Limited Field Study.

Figure 4.1 Experiment routes and road surfaces for Hand Detection (Left, Both, Right-handed
Cycling) and Distraction Recognition (Take-from-Pocket, Smartphone Tap). For every route,
the participant is asked to ride equal times in two directions.
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The controlled experiment route was only within our university campus, composed of an asphalt

section and a pavement section (Fig. 4.1a). The flagstone-paved pavement path is somewhat

rugged and risky so the arrangement contains only a straight path while for the asphalt road, there

are eight left turns and another eight right turns. Both contain manholes.

Overall, each of the participants performs several cycling behaviors on our test bike:

Hand Detection: Left-hand cycling on road (Left-R), left-hand cycling on pavement (Left-

P), normal cycling on road (Both-R), normal cycling on pavement (Both-P), right-hand cycling

on road (Right-R), right-hand cycling on pavement (Right-P). Noted that during single-handed

cycling, the rider is asked to drop the spare arm naturally beside his or her body unless otherwise

explained.

Distraction Recognition: Taking from Pocket (Take-from-Pocket), Smartphone Tap (Phone-

Tap). Our recording smartphone stays mounted on the handlebar. All distraction cycling is carried

out on the asphalt road as a proof-of-concept experiment.

A whole process takes one person about an hour with three to four minutes of cycling for each

cycling behavior. Intervals for rest take two to five minutes or more time if the cyclist is tired. In

total, we have sorted and labeled cycling data for about 6.5 hours long. The ratio of asphalt road

and pavement sections are roughly equal. The recording application is later found to have crashed

several times during cycling behaviors that involved smartphone usage. Consequently, we suc-

cessfully collected all 22 persons’ data for hand detection and 14’s for distraction recognition.

The data is labeled by signals from the tactile sensor (Fig. 3.3). We manually proofread all

the labels with the cycling log video. Our tactile sensor works for the better part of experiments.

The latency of hand switching between the touch signal and video frame is within 80 milliseconds

with proper configuration.

Limited Urban Road Study

After fine-graining parameters and collecting training data, we materialized the trained model as

a smartphone application. Another 5 participants (3 Males and 2 Females) are invited to evaluate

the integrated application. However, participants were only asked to implement normal cycling

on road in real city roads outside the campus due to safety concerns.

4.1.1 Metrics in Evaluation

The assessment of our model in the following part is through 10-fold cross-validation (10-Fold)

and leave-one-member-out cross-validation (LOMO). The former helps to enable a benchmark fu-

ture works around single-handed cycling issues. While the latter evaluates the model’s inter-user
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(a) Comparison with other classifiers (10-Fold). (b) Per subject performance (LOMO).

Figure 4.2 Outcome of Hand Detection (Single vs. Both).

generalizability, which in this context strongly relates to the real-world performance since Dou-

bleCheck can require no amount of single-handed cycling data from a new user for personaliza-

tion. The assessment metric computed in the cross-validation includes recall, precision,F1-score,

and false position rate (FPR). A model with higher recall in prediction would overlook fewer

single-handed cycling events, whereas one with high precision would make detection where most

of the detected single-handed events were actually happening at that time. The F1-score averages

the value of recall and precision. Additionally, low FPR stands for nearly no false alarm being

made from normal double-handed cycling.

4.2 Q1: Hand Detection: Single vs. Both

4.2.1 Overall Performance of Campus Study

We first explore the accuracy of our method’s core objective: binary classification. We leverage

10-Fold to evaluate the SVM in comparison with other recurring methods in human activity recog-

nition researches: Decision Tree, Logistic Regression, Naive Bayesian, kNN, Random Forest,

and Perceptron. The result in Fig.4.2a displays two massages: 1) the SVM outperforms the else

approaches with higher F1-score and should be adopted in hand detection; 2) methods like Per-

ceptron also reach high accuracy, further proving our extracted features are effective. For LOMO,

the F1-score of DoubleCheck also exceeds 0.97. Fig. 4.2b displays the detailed performance. The

worst case happens with the 21st participant whose F1-score is 0.92, proving our system to be an

effective check against single-handed cycling across the individual variety, satisfying the intrinsic

requirement of user independence in practical dangerous cycling detection.
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Time Series Frequency Combined

(a) Comparison of feature extraction method (LOMO). (b) Visualization of extracted features with t-SNE.

Figure 4.3 Performance of feature extraction method of DoubleCheck.

4.2.2 Credits of VAR and Wavelet Scattering Network (WSN)

In this section, we evaluate how DoubleCheck benefits from the VAR and WSN models. As

the account in Sec. 3.2.3, we utilize the vector autoregressive model and wavelet scattering net-

work to retrieve temporal and frequency features related to movement pattern changes brought

by single-handed cycling. We draw the t-Distributed Stochastic Neighbor Embedding (tSNE) of

the extracted features of All participant’s data in Fig. 4.3b. The figure indicated most of the mo-

tion data of double-handed cycling and single-handed cycling have been clearly separated by our

method. Furthermore, to validate the effectiveness of these two approaches, we implemented two

other baseline feature extraction methods in respective to the temporal and frequency domain:

• BikeMate: BikeMate[24] is the most similar related system also targeting dangerous cy-

cling behavior. Its feature extraction method for IMU signal computes a vector of five

features for each axis of accelerometer and gyroscope: sum, standard deviation, average

absolute difference, binned distribution, and distance for the greatest correlation coeffi-

cient.

• Fast Fourier Transform-Based: We derived the power spectrum of the sliding window data

through FFT and calculated same features for WSN listed in Table 3.1.
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We trained SVM models mentioned in Sec. 3.2.4 by derived features from single and both

methods. The models were evaluated models with LOMO. Fig. 4.3a presents the differences in

performance. For these two sets of temporal-frequency methods, the concatenation of features has

generally boosted accuracy. The combined features of BikeMate and the FFT-based land both the

average precision and recall more than 0.82, which is more than 10% below the result of either

WSN or VAR and thus clearly outperformed. Tabel 4.1 displays more detailed results with varying

window lengths. We can tell that the VAR model is more competitive in terms of the average F1-

score of 0.93 with only data of 0.3-second length (24 samples). However, the F1-score collapsed

and FPR exploded suddenly when the window length is reduced to 0.1 second. While the WSN

helps the combined model maintain a practical F1-score of 0.85.

4.2.3 Credits of Accelerometer and Gyroscope

To apprehend how each sensor contributes to the detection of single-handed cycling, we broke

down the Campus Study data by source sensor and trained models with separated data. In general,

data of angular speed from gyroscope could singly achieve a satisfying F1-score above 0.90 with

the sampling rate in the sampling rate of 32Hz. Table. 4.2 shows the result of the ablation study

for each sensor. We observed that gyroscope-only input in 32Hz could achieve an F1-Score more

than 0.9 and an FPR under 0.1 in single-handed cycling detection. Acceleration data is not as

competitive but also enables detection with F1-scores and FPR in this standard in a 60Hz sam-

pling rate. The combination of both sensors would bring steady growth in F1-score and more

significantly, a suppression in FPR, demonstrating each sensor is useful. We can conclude that

DoubleCheck is compatible with cheap devices with only the accelerometer. However, devices

with 6-axis IMU could enjoy better performance.

4.2.4 Impact of Sliding Window Size

Given the excellent performance under the designated configuration in Sec. 3.2, a question

could naturally come to viewers what would be the least amount of data DoubleCheck needs to

achieve various levels of performance. Usually, a shorter window means higher temporal resolu-

tion at the cost of decreased accuracy. Therefore, a balanced choice is needed. We applied a range

of window sizes with 0.5 overlap rate to the Campus Study data sampled at 80Hz and trained and

assess the model in the LOMO way. The method performance with varying sliding window sizes

is shown in Table. 4.1. Overall, our method exhibits robustness with a decreased amount of input.

The hand detection holds an F1-score over 0.91 with windows longer than 0.2 second (16 points
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Table 4.1 Performance of hand detection under different window sizes (LOMO).

VAR Only(%) WSN Only(%) Combined(%)

Sliding Win. F1-Score FPR F1-Score FPR F1-Score FPR

0.1s 38.35 525.67 82.38 21.43 85.39 18.29

0.2s 88.61 14.37 85.64 18.46 91.64 10.33

0.3s 92.85 08.36 88.35 14.84 94.45 6.72

0.4s 95.53 5.22 89.83 13.05 96.37 4.37

0.5s 96.71 3.82 92.05 9.98 97.30 3.25

0.6s 97.70 2.70 95.23 6.24 98.25 2.31

1.0s 98.37 1.89 96.59 4.73 98.78 1.63

Table 4.2 Performance of hand detection under different sampling frequencies (LOMO).

Acc. Only(%) Gyro. Only(%) Six-Axis(%)

Samp. Rate F1-Score FPR F1-Score FPR F1-Score FPR

16Hz 72.34 37.31 80.97 23.64 83.20 21.40

20Hz 76.03 33.22 86.47 16.66 88.49 14.32

32Hz 81.21 24.43 91.79 9.90 93.09 8.38

40Hz 82.44 23.10 91.98 9.72 93.47 8.05

50Hz 87.90 14.90 93.45 7.75 95.45 5.66

60Hz 91.67 9.86 94.86 6.14 96.88 3.89

80Hz 92.95 8.35 95.17 5.67 97.28 3.27

of samples). On the other hand, there is FPR and F1-score improvement in small steps along the

window length growth from 0.2s till the investigated range, and the best performance is reached

with 0.99 and 0.02 under the window length of 1.0 second. We considered a window length of

0.5s as accurate enough in both time resolution and detection rate and adopted it in our method.

4.2.5 Impact of Sampling Rate

In this section we look into the influence of different sampling rates on the performance of hand

detection. A lower sampling rate stands for less power consumption and usually performance

compromise. We trained models upon FIR filter-resampled data from the Campus Study with

0.5-second window. Table 4.2 presents the hand detection performance of DoubleCheck under
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Table 4.3 Performance of hand detection under Limited Urban Road Study.

Experiment subject Sub 1 Sub 2 Sub 3 Sub 4 Sub 5

FPR(%) 4.82 3.60 2.11 4.36 13.76

various sampling frequencies from 16 to 80Hz. The results indicate that our method can indeed

identify single-handed cycling with a promising F1-score of 0.88 and an FPR of 0.14 even with a

low 20Hz sampling frequency, enabling the implementation in some battery-restrained embedded

platforms. We considered an F1-score of 0.95 and FPR 0.6 as accurate enough to alleviate the

risk of overfitting, especially for the controlled simulation experiment. Therefore we chose 50Hz

as the sampling rate in the prototype integration of DoubleCheck later used in the Limited Urban

Road Study.

4.2.6 Impact of Road Surface

Fig. 4.2b shows the capability comparison of DoubleCheck on asphalt and pavement (4.1a). For

all participants except one, the method yields better results on the pavement. The outcome accords

with our analysis in Section 3.1.2that rugged road surfaces tend to amplify single-handed cycling-

brought differences in movement features. However, the classifier still attains high accuracy on

asphalt road with an average F1-score of 0.97. The curve displays the robustness of our method

to different road surfaces.

4.2.7 Performance of Limited Urban Road Study

The above analysis of Campus Study has validated the performance of DoubleCheck in the

detection of single-handed cycling under simulated conditions. To answer the question about the

ecology validity, we next peek into the robustness of our method under real-world traffic scenarios

by analyzing the data from the Limited Urban Road Study. Note that we could only calculate the

FPR due to the constrained data collection with only double-handed cycling. Table. 4.3 displays

the per-participant performance. The average FPR is 0.06. Though it seems close to that of the

Campus Study result in Table 4.2, the error rate of fake alarms exploded in Subject 5. One reason

to attribute this is that after checking the video, we found Subject 5 experienced a short range of

traffic jams, while the other subjects were cycling with relatively smoother traffic. This motivates

us to conduct more real road studies with less controlled conditions to assess and improve the

actual performance in the future.
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Table 4.4 Precision, recall, F1-score, and false positive rate of exact cycling hand(s) detection
(Left vs. Right vs. Both).

Left Both Right

Metrics 10-Fold LOMO 10-Fold LOMO 10-Fold LOMO

Precision(%) 93.19 90.01 95.56 93.85 94.51 92.58

Recall(%) 92.91 90.35 95.4 93.06 95.07 93.58

F1-score(%) 93.05 90.22 95.48 93.45 94.79 93.08

FPR(%) 2.72 3.7 3.76 4.99 1.86 2.42

4.3 Q2: Extended Scope

Having reached satisfying precision in the binary case, we seek to make a more detailed expla-

nation of cycling hand detection with our method for extracting its potential for extended applica-

tions proposed in Sec. 5.1.1.

4.3.1 Hand Detection: Left vs. Right vs. Both

We re-labeled the data with the exact hand used in cycling and ran the LOMO validation. The

results are shown in Table 4.4, from which we can observe that DoubleCheck is fully capable to

determine the exact hand(s) used in cycling with values of precision and recall exceeding 0.94 at

10-Fold and 0.92 at LOMO. Moreover, the false positive rates (FPR) in both cases are kept below

0.05.

Next we analyze how the user diversity would influence the performance of the hand detection.

Since the accuracy of triple classification is overall high, we carry out a six-class classification

(Left vs. Right vs. Both, Road vs. Pavement) to better expose the user dimension differences. The

F1-scores are 0.89 (10-Fold) and 0.84 (LOMO). We conduct a survey within our participants after

the experiment, about their cycling proficiency based on five categories (Novice, Intermediate,

Strong Intermediate, Proficient, Very Proficient). The whole personnel possesses no less than the

second level (0:1:8:7:6). As presented in Fig. 4.4a, If we quantify the categories from 1 to 5,

an observation can be drawn that the closer a user’s proficiency is to the average level―around

category Proficient in this case―the better his or her classification result in LOMO tends to be.

This accords with the mechanism of LOMO.

We have 13 male and 9 female cyclists in the Campus Study and the average result of the two
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(a) (b)

Figure 4.4 User study of Hand Detection
(Left vs. Right vs. Both, Road vs. Pavement).

Figure 4.5 Performance of Distraction
Recognition Under D.

genders is plotted in Fig. 4.4b, where we could see the system accuracy is nearly the same for

males and females. The male scores are slightly higher in the median. One possible explanation

is the gender imbalance in training sets has resulted in the bias of our model.

4.3.2 Distraction Recognition Result

Given the high accuracy in hand detection, particularly the binary classification, we evaluate

the distraction recognition given the single-handed cycling scenario. For the training dataset, a

proper portion of samples from classes Left&Right-R composes the class Hand-Drop. Recognition

performance is presented in Fig. 4.5 The average F1-score in 10-Fold is 0.69. The numbers drop

to 0.57 in LOMO. The results imply that the distraction behaviors within our scope can somehow

affect motion patterns, yet the differences may be very blurred and unstable regarding our current

recognition scheme. We need to further improve our understanding of the behavior features. The

greatest confusion is between class Take-from-Pocket and Hand-Drop. One explanation is that the

former contains the process of fetching and returning stuff, during which the rider’s eyes are not

necessarily taken off from the road. Consequently, their balance tends to be as less affected as

Hand-drop.
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Chapter 5

Discussion and Conclusion

5.1 Discussion and Future Works

Having evaluated the performance of our system, we would further discuss interpretations, lim-

itations, and future improvements in this section.

5.1.1 Opportunities for DoubleCheck

Bike Integration

Our method provides a detection service from a handlebar-borne IMU using a smartphone and

an RPi for processing. We predict that IMU capabilities will be sufficiently adapted to smart-

phones soon, which will further minimize the hardware burden. This would be particularly useful

for bike-sharing services, as long as the bikes are instrumented with IoT devices such as the pro-

cessing and communication units in advance. Detected hazardous single-handed cycling behav-

iors could also be used to trigger acoustic alerts to nearby vehicles with the proper speaker equip-

ment. The collected data could also assist forensic and accountability efforts for bike-involved

accidents.

Turning Light Switch

The use of bike-mounted turning lights also qualifies as a single-handed event. Hence, it would

be useful to use DoubleCheck in place of physical switches, considering the tool’s precise riding

hand identification (e.g., hand signaling). Doing so would require new hardware, but it would

reduce distraction even further.
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Upper-Limb Muscle Tension as Input

DoubleCheck demonstrated that changes in control ability based on upper-limb activity are

distinguishable when using an IMU and our machine-learning approach. The possibility of in-

tegrating hand-grip and muscle tension measures should also be explored, as it may serve as a

convenient interaction method that does not require single-handed cycling.

5.1.2 Limitations

This is one of several gap-filling advancements toward achieving the challenging mission of

ubiquitous cycling safety monitoring and alerting. Notably, DoubleCheck has several limitations

that future works should remedy.

The main shortcoming of this research is the shortage of field studies. Realistic cycling environ-

ments and diverse behaviors create far more complexity than was accounted for in our controlled

environment. For example, bicycle types, velocities, gear ratios, slopes, and off-road terrains were

not considered. They will certainly have a strong influence on cycling movement patterns. Dou-

bleCheck should be made more robust to such variables. Moreover, we noticed that it is more

difficult to successfully categorize the road conditions of subjects who routinely ride fast. Fur-

thermore, our participant count was too small to offer comprehensive generalizations. For these

reasons, future studies should be conducted on a larger scale and in open environments.

The limited scope of this study could also be identified as a drawback. Furthermore, the ac-

curacy of classifying the distraction activities of the spare hand should be improved. Additional

behaviors, such as holding an umbrella, making a hand-held phone call, reaching for bottles, and

drinking are no less pervasive than the ones analyzed in our study (Fig. 1.1). However, such

single-handed activities may employ motions too far away from the handlebars, making hazard

prediction less accurate and testing more dangerous. Future work should employ simulated ki-

netic data for these reasons. Various motion pattern discrepancies should also be investigated for

improved accuracy. Additional platforms, such as modern wrist-worn sensing devices, are strong

candidates for accurately detecting hand actions [19].

To the best of our knowledge, DoubleCheck is merely available for detecting ongoing danger.

The production and analysis of steering logs would provide an improved approach to reinforcing

cyclist vigilance, as trips could be reviewed, and mistakes could be quantified. To achieve this,

a logic filter is needed to rule-out spurious data from cycling anomalies. Furthermore, by using

GPS tracking data alongside those already captured, it may be possible to predict the probability

of single-handed cycling based on location.
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5.2 Conclusion

In this paper, we proposed DoubleCheck: a smartphone-based cycling aid focusing on single-

handed cycling and enabling hand detection and distraction recognition. We leveraged an em-

bedded tri-axial accelerometer and gyroscope to acquire motion readings and introduced an AR

model with a wavelet scattering network, which yielded representative cycling activity. Exper-

iments with 22 subjects demonstrated the performance of our system with an F1-score of 0.97

for the accurate detection of cycling hand(s) and with a score of 0.69 for accurately identifying

distracted cycling behaviors. We further investigated the influence of user diversity on system

performance and provided future opportunities for DoubleCheck. We envision that our work will

facilitate safer bicycle commuting with no more than a software update on a smartphone, and it

will shed light on future schemes for mobile riding interactions.
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