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1 Abstract

Nowadays, Mobility as a Service (MaaS) as a

novel idea of urbanmobility framework has been

widely developed and provides convenience for

multiple transportation ways. However, though

among all sorts of transportation, subway takes

on the most travel pressure, and commuters still

face with difficulties concerning methods to ef-

ficiently move between homes and subway sta-

tions with less transportation pollution.

To address these challenges, in this paper, we

propose a novel MaaS shared bus sub-system

framework, which can optimize an integrated

subway station nearby shuttle bus route based

on passengers’travel demands, meanwhile ade-

quately taking the punctuality of the passengers

into account. Considering different business sce-

narios, the route planning is solved by proposed

methods based on ant colony optimization. A

real case experiment is applied to test the effi-

ciency of the shared bus system, which can be

served as a benchmark. Through the real case,

the ability of the system to reduce environmental

pollution is also demonstrated.

Keywords: Big Data, Bus Sharing, MaaS, Vehi-

cle Routing Problem

2 Introduction

Nowadays, Mobility as a Service (MaaS), a new

idea of urban mobility framework, has been ex-

tensively discussed and studied, which provides

convenience for users through fast response to

instant travel requests and efficient transporta-

tion planning. In traditional MaaS systems,

smart phone plays a significant role, which helps

with ordering new trips, checking for timeta-

bles and paying for fares. Smart phone is also

able to collect real-time location information and

movement trajectory continuously. Such mo-

bility big data can be utilized for local passen-

ger flow analysis and travel demand prediction,

which can help transportation service providers

automatically allocate capacities in specific time

and locations. Thus, with the assistance of mo-

bility big data, the MaaS system can be designed

more ingeniously. By extracting travel demands

from real human mobility data based on GPS

records, in this paper, we propose a novel MaaS

shared bus system framework. Inspired by the

”last mile” scene, the system provides an effi-

cient and environment-friendly solution for the

short-distance movement around the subway sta-

tion by arranging shared bus for different pas-

sengers. To be more specific, optimal route of



each shared bus is planned by establishing mid-

way bus stations, which takes operating costs,

the majority of the customers’ demands and the

uncertainty of punctual arrival into account. An

ant colony optimization algorithm based method

is developed to solve the route planning problem.

The system is also capable to receive temporary

requests raised by users through smartphone ap-

plication.

More than this, we provide a real case experi-

ment to test the efficiency of the shared bus sys-

tem. We extract commuting demands between

communities around subway stations and the sta-

tions. Based on the real travel demands, we an-

alyze the environmental pollution that can be re-

duced to demonstrate the significance of our pro-

posed system.

The Vehicle Routing Problems (VRPs) help

identifying routes for a set of customers with

fixed positions, and on this basis some further

problems like the Vehicle Routing Problem with

Time Windows (VRPTW) and The Dial-a-Ride

Problem (DARP) derive from the original VRP.

The series problems first started with the famous

Travelling Salesman Problem(TSP), described

as given a list of cities and their distance graph,

find a shortest route to cross all the cities then

returns to the place of departure with no other

repetitive visit. Tadei et al. and Huang et al.

explored stochastic conditions of TSP and VRP

respectively, showing the path selection leads to

significant savings of costs. Then with the rise of

more customer requests and travel demands, new

problems and solutions generated in the fields of

time constraints, travel economy and order ap-

pointed multiple destinations, etc. In 2010s, the

sharing economy soon spawned the appearance

of new public transportation methods like hitch

rides and the shared taxi. Nasser summarized

the exact, heuristic and metaheuristic methods

to solve VRPTW. In the field of customized bus

service, with multiple starting points and a single

destination, typically the problem can be summa-

rized as a School Bus Routing Problem. How-

ever, the researches on customized bus for sub-

way shuttle scenarios are rare particularly con-

sidering the high standard of customer comfort,

let alone the emission analysis comparing to typ-

ical transportations. These elements are vital in

the development of modernMaaS system and ur-

ban transportation construction, which is exactly

emphasized in our article.

3 Problem Description and Methodology

Our goal is to provide shared-bus service for

dense passenger flows to efficiently commute

from subway stations to their destinations. Pas-

sengers getting off from trains in subway stations

can take our service for the rest parts of their trips

by providing their destinations and expected ar-

rival time. We assume that each bus serves in a

certain period.



Figure 1: Overview of the MaaS Bus Sharing Sys-
tem.

Assume that U = u1, u2,…, uk denotes the

group of k passengers that get off from trains

and choose to take our service for the rest parts

of their trips, their corresponding destinations

D = d1, d2,…, dk and expected arrival times

t1, t2,…, tk could be collected. A graph G =

(V,E) is utilized to represent distance relations

between starting point of the bus and destina-

tions, where V = D∪ ps, ps is the starting point

of the bus and E is the shortest distance between

two points on the road network. The bus route

consists of n stations S = s1, s2,…, sn, si ∈ V .

In particular, the first station and the last station

are both the starting point, i.e., s1 = ps, sn = ps.

The standard speed of each bus can be repre-

sented as v. For a given departure time t0, the

arrival time of each station t1, t2,…, tn could be

computed iteratively by:

ti = ti−1 +
E(si−1, si)

v
, ∀i ∈ [1, n] (1)

In addition, it is not proper to let passengers ar-

rive too early or too late. We set a tolerance time

∆t to represent the maximum difference time be-

tween the arrival time that passengers could tol-

erate and their expected arrival time. Then for

any passenger ui who expect to get off at station

sj at t′ui
, we have:

t′ui
−∆t ≤ tj ≤ t′ui

+∆t, ∀ui ∈ U (2)

We use a modified Ant Colony Optimization al-

gorithm to solve our problem. We add the esti-

mation of punctuality of each ant into calculation

to guarantee the effectiveness.

4 Result and Analysis

Figure 2: The results of ACO by iteration.

The Fig.2 reveals the convergence of our pro-

posed ant colony optimization method. We

recorded the outputs of 500 iterations with 50

ants generated in each run, and the input for our

model are 20 requests, which was extracted ran-

domly in the dataset of Ikebukuro station.



Figure 3: Example of planned real-world routes.

Fig.3 demonstrates the planned route of 20 real

requests around Tokyo station. The red mark de-

notes the starting point of the bus, which is also

the subway station. Each green and yellow mark

represents a request from one person. The yellow

marks are passengers that are successfully deliv-

ered, and the green marks represent people who

cannot be sent in time and are not served. The

purple line denotes the route of the bus.

Figure 4: Distribution of results under uncertain
passenger punctual arrivals and certain punctual ar-
rivals.

We analyze the performance of our model in the

dimension of passenger punctuality. The Fig. 4

reveals the distribution of the results with uncer-

tain and certain punctual arrivals of the passen-

gers. In Fig. 4, we tested the ridership of one

bus with 40 passengers. The 40 passengers re-

main the same in each test as input. The cer-

tain punctual arrival denotes that the passengers

can always arrive at the designated pick-up po-

sition, and in uncertain punctual arrival scenar-

ios, we give each passenger a possibility of punc-

tuality, a random number between 0.5 and 1.0.

The blue dots in Fig. 4 represent the experi-

ment result of certain punctual arrivals. We can

see the delivered passenger number fall in be-

tween 10 and 14 when all passengers can arrive

in time. But when the uncertainty is given, the

ridership decrease sharply. The mean value of

ridership decrease from 13.44 to 8.13. When we

use the optimal ACO algorithm to take the uncer-

tainty into account beforehand, the mean value

rocket to 13.10, which was close to the result of

certain punctual arrivals. This shows that our

proposed method can effectively operate to de-

liver the most number of passengers under var-

ious real-world scenarios, bringing the best ser-

vice quality for customers and the highest earn-

ings for operators.
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