
東京大学大学院新領域創成科学研究科
社会文化環境学専攻

2022年度
修 士 論 文

顧客のパンクチュアリティ予測を備えたMaaS共有バスシステムの設計
MaaS Shared Bus System Design with Customer Punctuality Prediction

2022年 7月 15日 提出
指導教員 宋 軒 准教授

盧 文懌
Lu, Wenyi





Abstract

Nowadays, Mobility as a Service (MaaS) as a novel idea of urban mobility framework has been

widely developed and provides convenience for multiple transportation ways. However, though

among all sorts of transportation, subway takes on the most travel pressure, and commuters still

face with difficulties concerning methods to efficiently move between homes and subway stations

with less transportation pollution.

To address these challenges, in this paper, we propose a novel MaaS shared bus sub-system

framework, which can optimize an integrated subway station nearby shuttle bus route based on

passengers’ travel demands, meanwhile adequately taking the punctuality of the passengers into

account. Considering different business scenarios, the route planning is solved by proposed meth-

ods based on ant colony optimization. A real case experiment is applied to test the efficiency of

the shared bus system, which can be served as a benchmark. Through the real case, the ability of

the system to reduce environmental pollution is also demonstrated.

Keywords: Big Data, Bus Sharing, MaaS, Vehicle Routing Problem
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第 1章

Introduction

1.1 Background

Nowadays, Mobility as a Service (MaaS), a new idea of urban mobility framework, has been

extensively discussed and studied, which provides convenience for users through fast response to

instant travel requests and efficient transportation planning [1][2]. MaaS enables users to plan,

book, and pay for multiple types of mobility services through an joint digital channel. MaaS sys-

tem performs well in mega cities with multiple transportation ways [3]. Among all sorts of trans-

portation, subway takes on the most travel pressure [4]. Although subway system provides enor-

mous convenience, commuters still face with difficulties about how to efficiently move between

subway stations and destinations.[5]. Unfortunately, transportation policy makers and private-

sector transportation service providers seldom pay attention to these issues, which indicates that

there are still lots of chances to further decrease traffic pollution and save public transportation

resource[6][7].
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Fig.1.1: MaaS system concept.

As shown in Fig. 1.1[8], the traditional booking of tickets are various. From cash transac-

tions, prepaid transportation cards to online payment, the complicated methods bring trouble and

confusion to both local customers and tourists. The multiple ways of fee payment also restrict

the possibility of integrate all the transportation methods. The rise of MaaS breaks the issue by

allowing passengers to monitor the chose transportation method on the cellphone, from booking

to navigation, from credit payment to multi-transportation joint services. The MaaS has bring

convenience to customers greatly.

In traditional MaaS systems, smart phone plays a significant role, which helps with ordering

new trips, checking for timetables and paying for fares [9][10][11]. Smart phone is also able

to collect real-time location information and movement trajectory continuously. Such mobility

big data can be utilized for local passenger flow analysis and travel demand prediction, which

can help transportation service providers automatically allocate capacities in specific time and

locations. Thus, with the assistance of mobility big data, the MaaS system can be designed more

ingeniously.

With the development of technology, collecting personal GPS data becomes simpler and more

convenient, which shows great potential[12][13][14]. By extracting travel demands from real

human mobility data based on GPS records, in this paper, we propose a novel MaaS shared

bus system framework. Inspired by the ”last mile” scene, the system provides an efficient and
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environment-friendly solution for the short-distance movement around the subway station by ar-

ranging shared bus for different passengers. It is also capable of being deployed in other scenes in

city transportations, including commuting scenes and tourist scenes.

To be more specific, optimal route of each shared bus is planned by establishing midway bus

stations, which takes operating costs, the majority of the customers’ demands and the uncertainty

of punctual arrival into account. An ant colony optimization algorithm based method is developed

to solve the route planning problem. The system is also capable to receive temporary requests

raised by users through smartphone application.

More than this, we provide a real case experiment to test the efficiency of the shared bus system.

We extract commuting demands between communities around subway stations and the stations.

Based on the real travel demands, we analyze the environmental pollution that can be reduced to

demonstrate the significance of our proposed system.

Our contribution includes but not limit to:

1. We develop a novel MaaS shared bus sub-system framework, which can optimize bus

routes based on passengers’ travel demands.

2. We extract real passengers’ travel demands from big mobility dataset to test the efficiency

of the shared bus system.

3. We analyze the reducible pollution in the real case to demonstrate the potential of shared

bus system. We also explore how will different parameters affect the system performance.

The organization of the remaining sections is:

• Chapter 1 illustrates the background of the thesis and the related works of our problem.

• Chapter 2 describes the details of our proposed problem.

• Chapter 3 illustrates the proposed methodologies.

• Chapter 4 illustrates the experiment designs and the experiment results analysis.

• Chapter 5 illustrates the conclusions and future works.



第 1章 Introduction 4

1.2 Related Works

The Vehicle Routing Problems (VRPs) help identifying routes for a set of customers with

fixed positions [15], and on this basis some further problems like the Vehicle Routing Problem

with Time Windows (VRPTW) and The Dial-a-Ride Problem (DARP) derive from the origi-

nal VRP[16][17]. The series problems first started with the famous Travelling Salesman Prob-

lem(TSP), described as given a list of cities and their distance graph, find a shortest route to cross

all the cities then returns to the place of departure with no other repetitive visit[18][19]. Tadei

et al. and Huang et al. explored stochastic conditions of TSP and VRP respectively, showing

the path selection leads to significant savings of costs[20][21]. Then with the rise of more cus-

tomer requests and travel demands, new problems and solutions generated in the fields of time

constraints, travel economy and order appointed multiple destinations, etc. In 2010s, the sharing

economy soon spawned the appearance of new public transportation methods like hitch rides and

the shared taxi[22][23]. Nasser [24] summarized the exact, heuristic and metaheuristic methods

to solve VRPTW.

In the field of customized bus service, with multiple starting points and a single destination,

typically the problem can be summarized as a School Bus Routing Problem[25][26]. Schools in

some countries offer school buses to pick up students from their homes to school in the morning

and bring them back after school in the afternoon. The buses are not able to pick up the kids

directly from the front door of separate houses due to time costs and economy, thus the kids’
home positions are collected by the school bus office ahead of schedule, usually in the beginning

of every semester. Then multiple bus stations are selected for communities in which one or more

kids are living with different pickup time allocated for each station.

However, these methods of early decide origin-destination pairs are not appropriate in public

transportation traffic flow predictions. If samples of real-world user trajectories are collected and

processed to obtain authentic demands in subway-station nearby areas, new travel services may be

released for commuters to solve the home-station transportation issues. Chen et al.[27] proposed

an approach for bidirectional night-bus route planning based on a spreading algorithm. Tong et

al.[28] proposed a joint system considering the optimization of both passenger-to-vehicle assign-

ment and vehicle routing. Engelen et al.[29] presented a new method of dynamic insertion for

buses combining a demand forecast algorithm to effectively reduce the rejection of passengers
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and the waiting times. Guo et al.[30] proposed a time-dependent urban bus routing methodol-

ogy explicitly considered the flexibility of paths with a hybrid meta-heuristic algorithm. Kong et

al.[31] designed a two-stage approach for subway shuttle bus route planning, composed of travel

requirement prediction and dynamic route planning. However, the researches on customized bus

for subway shuttle scenarios are rare particularly considering the high standard of customer com-

fort, let alone the emission analysis comparing to typical transportations. These elements are

vital in the development of modern MaaS system and urban transportation construction, which is

exactly emphasized in our article.
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第 2章

Problem Description

In this chapter we intend to make a brief description to our problem. The overview of our

problem can be summarized as Fig. 2.1.

The Fig. 2.1 demonstrates two different patterns in bus operation modes. The bus starts from

the depot near high traffic flow targets, say train station for instance, at 7:00. Both buses in pattern

one and pattern two receive five candidate passenger requests. In Fig. 2.1(a), the bus abandoned

the passenger 5’s request at 7:20 and chose to pick the other four passengers continuously, while

in Fig. 2.1(b), the bus chose a new route with a complete different visit sequence of the passengers

because of the change in expect pick-up times.
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(a)Bus operation pattern one

(b)Bus operation pattern two

Fig.2.1: Overview of the MaaS Shared Bus System.

Our goal is to provide shared-bus service for dense passenger flows to efficiently commute from

subway stations to their destinations. Passengers getting off from trains in subway stations can

take our service for the rest parts of their trips by providing their destinations and expected arrival
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time. We assume that each bus serves in a certain period.

To optimize the bus route, the first step is to decide midway bus stations, which should be con-

sidered thoroughly to reduce the walking distance of passengers and guarantee the restriction of

expected arrival time. Since some of the passengers may alight in the same area or district, not all

the destinations are chosen as midway stations. Then an optimal route should be planned based

on the results derived from the first part, which is an one-origin multiple-destination vehicle rout-

ing problem. The vehicle starts from one starting station at a given time, each vehicle containing

dozens of passengers heading to different destinations, and some of the passengers are supposed

to alight at the same station at the same time. Each mid-way bus station will be passed only once,

and every mid-way station will be attached to a certain alight time.

Assume that U = u1, u2,⋯, uk denotes the group of k passengers that get off from trains and

choose to take our service for the rest parts of their trips, their corresponding destinations D =

d1, d2,⋯, dk and expected arrival times t1, t2,⋯, tk could be collected. A graph G = (V, E) is

utilized to represent distance relations between starting point of the bus and destinations, where

V = D ∪ ps, ps is the starting point of the bus and E is the shortest distance between two points

on the road network. The bus route consists of n stations S = s1, s2,⋯, sn, si ∈ V . In particular,

the first station and the last station are both the starting point, i.e., s1 = ps, sn = ps. The standard

speed of each bus can be represented as v. For a given departure time t0, the arrival time of each

station t1, t2,⋯, tn could be computed iteratively by:

ti = ti−1 +
E(si−1, si)

v
,∀i ∈ [1, n] (2.1)

In addition, it is not proper to let passengers arrive too early or too late. We set a tolerance

time ∆t to represent the maximum difference time between the arrival time that passengers could

tolerate and their expected arrival time. Then for any passenger ui who expect to get off at station

s j at t′ui
, we have:

t′ui
− ∆t ≤ t j ≤ t′ui

+ ∆t,∀ui ∈ U (2.2)

Meanwhile, the passengers may get absence from the scheduled pick-up position. We use a

punctuality coefficient θp to evaluate the possibility of arrival in-time.

Obviously, it is impossible to carry all passengers under the restrict limitations. So we set up an
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objective function to maximize the passengers to be delivered through the bus system, ultimately

maximize the income of the service provider, which can also be achieved through decreasing the

mileage of the buses. Thus, we utilize both passenger numbers and path length as the optimization

parameters to establish the objective function.
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第 3章

Methodologies

In this section we tend to formulate an overview of the methodologies. We discuss the route

planning procedure and the detailed algorithms used under the base of ant colony algorithms.

3.1 Ant Colony Optimization

Ant colony optimization is a meta-heuristic algorithm, designed specifically for solving combi-

natorial optimization problems. This probabilistic technique was inspired by a nature phenomenon

that some ants wandering on the ground randomly to search for food, and when the food is found,

they will leave pheromone on the trail back to their nest. The successors then prefer to follow

the trail rather than move randomly, while reinforcing the concentration of the pheromone. The

pheromone evaporates overtime, reducing its attractive strength gradually if the ants who follow

the trail failed to bring back food continuously.

The original ants may take two separate paths from the same start to the same destination.

Assume that ants all move in the same speed, ants who take the longer path will cost longer time.

The pheromone left in the longer path is supposed to evaporate more than other trails, leading

the possibility of choosing the shorter path higher for the next ant. Through iteration, ants will

eventually find the shortest path between destinations. In our problem, the ant system is described

as following:

1. Ants are moving around on the road network as shared buses, and each ant has speed
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limitations in different roads according to local laws.

2. Each ant that successfully delivers passengers to their destinations is considered as s-ant,

no matter how many passengers they delivered in total.

3. The pheromone left by each s-ant is computed according to multiple indexes, including the

total distance the ant went through and the number of delivered passengers.

The pheromone will be updated after each iteration. The old pheromone will evaporate by a

ratio set in advance, and then the newly generated pheromone will be added. In the first batch,

an amount of N ants will be deployed to the original station, and since no former information is

given, the possibilities of moving to station Vi is:

P(0, i) =
1
m
,∀i ∈ [1,m] (3.1)

After the first batch, some routes are evaluated with higher pheromone for shorter path and

more delivered passengers. In the next turn, these stations will be more easily chosen as the next

station than other stations. After each iteration, pheromone is updated according to the ant that

delivered the most passengers to their destinations within the shortest path. For iteration k among

the total iteration times M, assume the best ant has a route:

Rk = {W1,W2,W3, ..,Wn}, k ∈ (1, 2, 3⋯M),Wn ∈ V (3.2)

The total number of delivered passengers is:

Pask =

n∑
i=1

D(Wi) (3.3)

The total distance of path is:

Disk =

n−1∑
i=1

di,i+1 (3.4)

Then the new pheromone graph is updated by:
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Phe(Vi)k =

Phe(Vi)k−1 × µ + Q×D(Vi)
Disk

, if Vi ∈ Rk

Phe(Vi)k−1 × µ, if Vi < Rk
(3.5)

The coefficient Q tends to balance the influence from the passenger number and the total dis-

tance of the path. Since after each iteration, existed pheromone will evaporate a certain percent-

age, the proportion of the surplus pheromone is denoted by µ. After adequate iterations, the ants

will gradually find the most efficient path to deliver the most of the passengers within their time

constraints, while taking the shortest route.

3.2 Ant Route Search Algorithm in ACO

Algorithm 1 Single Ant Route Search Algorithm FindRoute(G(V, E), Phe[Vi], t0)

Require: The graph of distance between each pair of candidate positions G(V, E); The expected

arrival time of each candidate ti; The pheromone graph Phe[Vi]; The start time of the ant t0;

The maximum time difference between actual arrival time and expected arrival timeδtmax; The

ant speed v.

Ensure: The delivered passenger number n and the path Path

1: Set an array tablei ← True for each candidate, n← 0, Path← Empty, temporary time t ← t0

2: // Find a path to deliver passengers

3: while table not all False do
4: Randomly pick i in open-table if Phe[i] = True

5: δt = E(Vi,Vtemp)
v

6: if |t + δt − ti| ≤ δtmax then
7: n+ = 1

8: t+ = δt

9: Path.append(Vi)

10: tablei = False

11: Vtemp = Vi

12: end if
13: end while
14: return n, Path;

Each ant follows the Algorithm 1 to move step by step until it no longer finds a feasible candi-
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date position, under the strict time-window restrictions and the influence from the past pheromone

to the surrounding environment. However, a single ant may not be able to discover the global opti-

mal solution, thus adequate ants are necessary. The algorithm 2 describes the top-level conceptual

model of ant dispense and pheromone update.

3.3 Pheromone Update Algorithm and Global Best Route
Search Algorithm in ACO

For the punctuality of the passengers, we use a concept of passenger pool to describe this part.

The passenger pool includes a certain number of passengers, each passenger in the pool is a

candidate, and have attributes of:

1. Request pick-up time

2. Request pick-up position

3. Expect destination subway station

4. Maximum tolerance time

5. Punctuality of arrival

The punctuality is used to describe whether the passenger can arrive at the request pick-up position

in time. The passenger pool is dynamic for real-time update, especially the punctuality before the

depart of the bus. When the punctuality of a passenger is too low, the passenger may be absent with

high probability, thus be deleted from the candidate passenger pool. In our proposed algorithm,

the pheromone update is decided by the actual served passenger number rather than responded

requests number. The result of our algorithm then will converge to choose those passengers with

high possibility of punctuality.

Basically, we make improvements on traditional ACO algorithm in ways below:

1. We use the time consuming for the ant from one node to another to restraint the waiting

time of the passengers, and thus guide the route searching regulations of the ants

2. We add the passenger punctuality into consideration, the visited positions and the picked-

up passengers are calculated respectively. In pheromone update procedure and the best

ant searching, we use the ant with the most delivered passenger number as an objective
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Algorithm 2 Pheromone Update and Best Route Search Algorithm

Require: The graph of distance between each pair of candidate positions G(V, E); The number

of ants s; The start time of the ants t0; The pheromone graph Phe[Vi]; The iteration times M

The evaporate ratio µ

Ensure: The delivered passenger number n and the path Path

1: Initialize pheromone graph ∀Phi[Vi] = 1, n← 0, Path← Empty

2: // In iteration times, generate n ants, each ant finds its best route

3: for k = 1 to M do
4: // Iteration times

5: for j = 1; j < s; j + + do
6: // Ant number

7: p, Pathtmp = FindRoute(G(V, E), Phe[Vi], t0)

8: if n ≤ p then
9: // Update global optimal result by different standards.

10: // The n can represent the visited station numbers or the actual onboard passenger

numbers, considering the certainty of punctual arrivals of the customers

11: n = p

12: Path = Pathtemp

13: end if
14: end forDisk =

∑len(Path)
i=1 dPath[i],Path[i+1]

15: //Pheromone Update by temporary best route

16: for ∀Vi do
17: if Vi < Path then
18: Phe[Vi]∗ = µ
19: end if
20: if Vi ∈ Path then
21: Phe[Vi] = Phe[Vi] ∗ µ + Q∗D(Vi)

Disk

22: end if
23: end for
24: end for
25: return n, Path;
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function.

These improvements in ACO makes it possible to analyze the influence made by our proposed

scenario: passengers have different punctuality. These methods help us to balance between not

leaving the passengers with a much longer waiting time and maximizing the income of the bus

operator companies by picking up the most number of the passengers.
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第 4章

Experiment Result and Analysis

In this section, we test the robustness of the proposed system under a real-world scenario. Then

We test the flexibility of our system by considering possible changes in real-world operations.

We also analyzed our proposed system with the uncertainty of punctual arrival of the passengers.

Finally, we analyze the environmental pollution that can be reduced to highlight the importance

of a well-designed shared bus system.

4.1 Experimental Set up

A real world scenario is usually in a large or mega city with multiple transportation modes. To

construct the benchmark, we extract passengers’ travel demands from a big mobility dataset in

Tokyo, Japan. The original dataset is a part of “Konzatsu-Tokei (R)” Data provided by Zenrin

DataCom INC. “Konzatsu-Tokei (R)” Data refers to people flows data collected by individual

location data sent from mobile phone under users’ consent, through Applications provided by

NTT DOCOMO, INC. Those data is processed collectively and statistically in order to conceal

the private information. Original location data is GPS data (latitude, longitude) sent in about every

a minimum period of 5 minutes and does not include the information to specify individual[32][33].

※ Some applications such as“docomomap navi” service (map navi・local guide).

After several pre-processing including map matching, travel mode detection and stay point

clustering, we collect the crowd flow, in which people just get off the subway and tend to move

to next destination. Considering the size of our raw dataset, we pick five major subway stations
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and their surrounding areas in Tokyo, Japan as target study sites: Ikebukuro, Shibuya, Shinagawa,

Shinjuku and Tokyo. The morning peak between 7:00 am and 8:00 am is selected as target period.

Of each station, the crowd flow involves more than fifty-thousands’ passengers in the target period.

The Fig. 4.1 demonstrates the distribution of the samples in our dataset. The red dots are part of

the locations of the train stations in Tokyo city, while the green points are the collected requests

near the stations. The five red dots with outer black circles are the chosen 5 stations.

Fig.4.1: The distribution of the dataset and the studied stations.

Based on the mobility pattern of the crowd flow, we sample and generate passengers’ requests

for taking bus, in which their expected arrival time are set as their ground truth arrival time. We set

the default request number of each bus as 20. If requests are too many for a single bus, one delivery
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turn will take more than 40 minutes, making some of passengers wait too long on the bus. On the

other hand, less requests lead to less income for operators while the operating expense decrease

inconspicuously.

The default tolerance time for passengers is set as 3 minutes. The tolerance time can be set

longer if we intend to deliver more passengers, or shorter if we intend to provide the most precise

service for passengers. More information about the practical operation can help to optimize the

benefits of our service.

The default number of buses is set as 3, which means three buses can carry passengers at the

same time. The target period is divided into 6 slices with 10 minutes. As shown in Fig. 4.2, three

buses set out alternately and get back to the subway station after all passengers being delivered.

Then the bus pick up another batch of passengers and and set out at the beginning of next ten

minutes slice. For instance, a bus sets out at 7:00 am, at which time it carries passengers whose

expected arrival time is in the 0-10 min slice,10-20 min slice or 20-30 min slice. After delivering

all passengers and getting back at 7:35 am, the bus sets out again at 7:40 am to deliver new

passengers whose expected arrival time is between 7:40 am and 7:50 am.

Fig.4.2: The operation patterns of shared buses.

The experiment is conducted on a PC with 8-core 4.0GHz CPU and 16 GB of RAM, using

Google Map as a demonstration board and all results are stored in a look-up table.
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4.2 Experimental Results and Analysis

Fig.4.3: The results of ACO by iteration.

The Fig.4.3 reveals the convergence of our proposed ant colony optimization method. We

recorded the outputs of 500 iterations with 50 ants generated in each run, and the input for our

model are 20 requests, which was extracted randomly in the dataset of Ikebukuro station. In Fig.

4.3, the small red triangles are the outputs of the equivalent distances, since we use the consumed

time to replace the expression of total distance. We can see that the algorithm gives an initial

result of 56, and through iteration the minimum value declined to 51 after around 150 iterations.

After that, the results tend to be stable. The changing curve prove that our algorithm is capable of

solving the proposed problem and performs a valid optimal effect in discovering a shortest route.



第 4章 Experiment Result and Analysis 20

(a)Simulation case

(b)Real-world case

Fig.4.4: Examples of planned bus routes.

Fig.4.4 visualize two simulated routes of a bus as an example. The red mark denotes the starting

point of the bus, which is also the subway station. Each green and yellow mark represents a request
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from one person. The yellow marks are passengers that are successfully delivered, and the green

marks represent people who cannot be sent in time and are not served. The purple line denotes the

route of the bus. In Fig. 4.4(a), we randomly generated 50 travel demands with different positions

as destinations in Tokyo city, and also randomly set their expected arrival time within one hour to

examine the validity of our route planning algorithms. Fig. 4.4(b) demonstrates the planned route

of 20 real requests around Tokyo station.

Tab.4.1 reveals two metrics to measure the performance of the system for different stations,

including delivery ratio and time difference. Delivery ratio is defined as the number of delivered

passengers dividing the total number of requests. Time difference denotes the absolute value of

the difference between actual time of delivery and passengers’ expected arrival time.

Under default conditions, the average delivery ratio varies from 0.159 in Shinagawa station to

0.329 in Shinjuku station, mainly caused by indeterminacy factors like the distribution distinction

of the requests between different stations. The average time difference in different stations is

relatively similar, which verifies the consistency of our algorithm.

Fig.4.5: Distribution of results under 2 to 6 minutes maximum tolerance time. The thick red

dotted line represents the mean value, and the thin red lines represent the quartiles.

When the maximum tolerance time gets longer, it is obvious that delivery ratio and time differ-

ence both increase. On the one hand, longer tolerance time gives the bus higher fault tolerance
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rate, which makes it possible to carry more passengers; on the other hand, more passengers in-

evitably make the average waiting time longer. Fig. 4.5 demonstrates the violin plot of the average

time difference distribution with different maximum tolerance time. From the figure we can see

that the average time difference usually lies at around half of the maximum tolerance time, which

proves that our algorithm can effectively ensure the delivery time.
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(a)Average ridership with different number of buses

(b)Average ridership with different maximum tolerance time

Fig.4.6: Average ridership with different number of buses.

We also visualize the change trend of average ridership (or delivered passengers) with different

parameters in Fig. 4.6. In (a), the number of buses is different. As more buses are put into use,
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more passengers will be delivered, which is observable when bus number is less than 4. However,

when more than 5 buses are put into use, the final bus starts at 7:40 due to our preset bus operation

patterns, so it will only receive passenger requests between 7:40 and 8:00, which is 10 minutes less

than former buses, thus carrying less passengers. In (b), the maximum tolerance time is different.

Similar with Tab. 4.1, the increase of maximum tolerance time makes the buses possible to carry

more passengers, and the sufficient tolerance time leads to stable increase in final ridership.

Fig.4.7: Distribution of results under uncertain passenger punctual arrivals and certain punctual

arrivals.

We analyze the performance of our model in the dimension of passenger punctuality. The

Fig. 4.7 reveals the distribution of the results with uncertain and certain punctual arrivals of the

passengers. In Fig. 4.7, we tested the ridership of one bus with 40 passengers. In each test, we

generate results of:

1. Experiment of 40 passengers with certain punctual arrival using incipient ACO algorithm

2. Experiment of 40 passengers with uncertain punctual arrival using incipient ACO algorithm

3. Experiment of 40 passengers with uncertain punctual arrival using optimal ACO algorithm

The 40 passengers remain the same in each test as input. The certain punctual arrival denotes
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that the passengers can always arrive at the designated pick-up position, and in uncertain punctual

arrival scenarios, we give each passenger a possibility of punctuality, a random number between

0.5 and 1.0. The blue dots in Fig. 4.7 represent the experiment result of certain punctual arrivals.

We can see the delivered passenger number fall in between 10 and 14 when all passengers can

arrive in time. But when the uncertainty is given, the ridership decrease sharply. The mean

value of ridership decrease from 13.44 to 8.13. When we use the optimal ACO algorithm to take

the uncertainty into account beforehand, the mean value rocket to 13.10, which was close to the

result of certain punctual arrivals. This shows that our proposed method can effectively operate

to deliver the most number of passengers under various real-world scenarios, bringing the best

service quality for customers and the highest earnings for operators.
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Fig.4.8: (a)average MaaS bus CO emission in grams while using gasoline, (b)average MaaS

bus NMHC emission in grams while using gasoline, (c)average MaaS bus NOX emission in

grams while using gasoline (d)average MaaS bus PM emission in grams while using gasoline,

(e)average MaaS bus CO emission in grams while using diesel, (f)average MaaS bus NMHC

emission in grams while using diesel, (g)average MaaS bus NOX emission in grams while using

diesel, (h)average MaaS bus PM emission in grams while using diesel,(i)average car CO emission

in grams while using gasoline, (j)average car NMHC emission in grams while using gasoline,

(k)average car NOX emission in grams while using gasoline, (l)average car PM emission in grams

while using gasoline

Then we compute and compare the traffic pollution generated by shared bus and private car. The

emission standard we use is from the regulation made by Ministry of the Environment [34]. We

use the emission standard made before 2009 and the trajectory data is from 2011. Therefore, all

of the vehicles meet the standard. The emission standard provides the general emission coefficient

that can be utilized to compute the quantity of pollutants including CO, NMHC, NOX and PM

based on the travel distance. In this study, we use 1.92 g/km (CO), 0.08 g/km (NMHC), 0.08 g/km

(NOX) and 0.007 g/km (PM) as the emission coefficient for private cars and gasoline buses; 0.84

g/km (CO), 0.032 g/km (NMHC), 0.11 g/km (NOX) and 0.007 g/km (PM) for diesel buses.
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As shown in Fig. 4.8, we separately compute the emissions of our shared bus using gasoline and

diesel as energy source, and then compute the emission of a scenario that if all potential passengers

move to their destinations by private gasoline cars. The numeric results are the average of 300

times 3-bus operations with requests between 7:00 am and 8:00 am in grams. The emission

of Shinagawa case tends to be higher due to longer average operation distance, but opposite in

average private car usage. Buses using diesel have a higher emission load than using gasoline in

NOX, but less in CO, NMHC and PM emission. However, no matter which kind of energy supply

is used for buses, the pollution is much less compared to gasoline cars in all metrics.
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第 5章

Conclusion and Future Works

5.1 Conclusion

In this paper, we propose a shared bus system for commuters delivery with meta-heuristic meth-

ods to solve the route planning problem. We take the punctuality of buses into consideration to

explore the delivery quality under different maximum tolerance time. We also take the punctual-

ity of the customers into consideration to explore the effectiveness of our system under different

scenarios. Our service is tested by extracted real-world travel demands in Tokyo to demonstrate

the robustness and feasibility. Compared with normal travel by private cars, our bus service is

environmental friendly, producing much less emission in CO, NMHC, NOX and PM.

The contribution of this paper includes:

1. We proposed a modified algorithm basing on the original Ant Colony Optimization method

to accommodate different customer demands indexes like the waiting time of the passen-

gers in bus sharing industry.

2. We take the punctuality of the customers into consideration to verify our algorithm under

the demonstrated scenario, leaving further possibilities in future collaborative designs.

3. We explored the relationship between bus ridership and passenger waiting times, trying to

find a balance between ridership and customer satisfaction.

4. We use real-world travel demands to examine the feasibility of our proposed bus-sharing

system. Our simulation shows that our proposed modified ACO algorithm can largely

increase the ridership of the buses compared with original ACO.
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We used real-world data collected from different railway stations in Tokyo city in order to

eliminate the influence of randomness, and our results also verified the feasibility of our designed

process.

5.2 Future Works

Still, this work is the early stage of MaaS guided shared transportation services. It remains space

for improving the algorithm in promoting the accuracy in station-path matching and decreasing

the possibilities of detour. One other optimizing direction is to take both delivering and picking

up services into consideration to advance the income of bus service operators and also provide

more comfortable services for commuters.

Another aspect of our future direction is the passenger punctuality prediction. In our work the

discussion of this part is partly based on our assumptions and simulations. With more authentic

data of passenger demands and other supplementary information to get the punctuality with higher

accuracy, the system may get better designs and become more convincing.

Our aim is to maximize the passenger delivered for bus operator companies, but when we

consider our scenario is the customers’ prospective, we may switch to enhance the comfort level

for passengers. For example, we may set the truck to reach at the destined railway station before

a certain time so that the passengers can catch up the train. Meanwhile, decreasing the total

operation time for passengers to stay on the bus is another way to improve the comfort of the

customers.
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