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Various hysteresis models for the reinforced concrete, especially simulating
iom

1itly flexural behaviour, are described: (a) Degrading Bilinear model, (b)
amberg-Osgood model, (¢) Clough model, (d) Bilinear Takeda model, (e) Takeda
model, (f) Hisada model, and (g) Degrading Trilinear model. Two types of damping

nsidered in the analysis; i.e., (a) constant mass-proportional damping, and (b)
rying instantaneous stiffness proportional damping. Hysteretic energy dissipation

index is defined to quantify the fatness of a hysteresis loop.
The

single-degree-of-freedom systems is studied. By choosing stiffness properties and

ect of different stiffness parameters on earthquake response of

hysteretic energy dissipation capa

y as similar as possible, the effect of different
hysteresis models on earthquake response waveforms and amplitudes is investigated.

Introduction

was more than twenty years ago when the second World Conference on
E 1quake Engineering was held in Tokyo in 1960. Many research papers were presented
study the elasto-plastic response of simple systems using then-developing digital
mputers, placing more emphasis on the development of numerical procedures for
nonlinear dynamic response analysis. When numerical methods were made easily available
to experimental investigators in the late 1960’s, many realistic hysteresis models were
developed by experimental researchers, leading a maze of hysteretic models, each
claiming the best of a kind, without understanding which hysteretic properties have a
significant influence on the earthquake response. The properties of a hysteresis model
were studied by those who developed the model. The effect of some hysteretic | |
characteristics on the response of single-degree-of-freedom systems was discussed by
Umemura (1973) and Tani et al (1975). ‘ }
This paper studies the effect of different hysteresis parameters on the earthquake
response. Hysteretic models used are limited to those which simulate dominantly flexural

behaviour of the reinforced concrete so as to limit the number of models.

2. Hysteretic Behaviour of Reinforced Concrete

A typical lateral load-deflection relation of the reinforced concrete is shown in Fig.

2.1. The curve was obtained from the test of a slender column (Otani and Cheung, 1981).
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Fig. 2.1 Hysteretic behaviour of reinforced concre

The behaviour was dominantly in flexure although the flexural cracks started to in
due to the effect of high shear before yielding. The yielding of the longitu
reinforcement was observed in cycle 3. The general hysteretic characteristics car
summarized as follows:

(a) Stiffness changed due to the flexural cracking of concrete and the te;
yielding of the longitudinal reinforcement (cycle 1);

(b) When a deflection reversal was repeated at the same newly attaine

d maxin

amplitude, the loading stiffness in the second cycle was noticeably lower than that ir

fisst cycle, although the resistances at the peak displacement were almost ident
(cycles 3 and 4). This reduction in stiffness is attributable to th

during loading in cycle 3

e formation of crac
, and also to a reduced stiffness of the longitudinal reinforcem
in cycle 4 due to the Bauschinger effect;

(c) Average peak-to-peak stiffness of a complete
maximum displacement. Note that the peak-to-peak stif

smaller than that of cycle 2, although the displacement amplitudes of the two cycles a

comparable. The peak-to-peak stiffness of cycle 5 is closer to that of cycles 3 and 4; anc

(d) The hysteretic characteristics of reinforced concrete
loading history.

cycle decreases with previou

ness of cycle S is significantly

are dependent on the

A hysteretic model for the reinforced concrete must

be able to represent the above
characteristics,

The observation is limited to a dominantly flexural behaviour of the
reinforced concrete.
If the reinforced concrete is subjected to high shear stress revers

als, or if the slippage
of the longitudinal reinforcement within the

anchorage area occurs, the force-deflection
curve exhibits a pronounced pinching. The hysteretic models of such behaviour w
be discussed in this paper.

Before static force-deflection relations are used in a dynamic analysis, the effect of
strain rate needs to be examined. Mahin and Bertero ( 19

summarized the strain rate
effect on member behaviour as follows:
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strain rates increased the initial yield resistance, but caused small
erences in either stiffness or resistance in subsequent cycles at the same displacement
plitudes; and

(b) Strain rate effect on resistance diminished with increased deformation in a
ain-hardening rang

that strain rate (velocity) during an oscillation is highest at low stress levels, and that
rate gradually decreases toward a peak strain (displacement). Furthermore, damage in

reinforced concrete reduces the stiffness, elongating the period of oscillation.

refore, the strain rate effect can be judged small on the earthquake response of a
il reinforced concrete structure. Consequently, the static hysteretic relationship can

tilized in a nonlinear dynamic analysis

Hysteretic Models for Reinforced Concrete
A hysteresis model must be able to provide the stiffness and resistance under any
ent history. Many hysteresis models have been developed. Some hysteresis
Is are elaborate, and include many hysteretic rules. Others are simple. The
tedness of a hystresis model indicates a larger memory to store the hysteretic
program, but does not necessarily lead to a longer computation time because the
licatedness of a hysteretic model requires simply many branchings. in a computer
ram, and only a few branches are referred to for a step of response computation.
Different hysteresis models representing dominantly flexural behaviour of the
forced concrete are briefly described in this section. The following definitions are
simplify the description of the hysteretic conditions:
loading = the amplitude (positive or negative) of resistance increases
without change in sign;
unloadi = the amplitude (positive or negative) of resistance decreases
without change in sign;
load reversal = the sign of resistance changes, and the response point crosses
the displacement axis;
primary curve = a resistance-displacement relation curve under monotonically
increasing load;
unloading point = a resistance-displacement point from which unloading has
started
The coordinates of a response point on a displacement-resistance plane are given by
(D, F), in which
D = displacement
F = resistance
It is assumed that the primary curve is symmetic about its origin. The primary curve is
represented by either “bilinear” or “trilinear” lines, with stiffness changes at “crack-

ing(C)” and “yielding(Y)” points.
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A hysteretic energy dissipation index (Ej) is used to express the amount eds the previous maximum displacement in either direction. The model is called a
hysteretic energy dissipation AW per cycle during a displacement reversal of equ

grading) bilinear” hysteresis model (Fig. 3.2). If the value of & is chosen to be zero,
amplitudes in the positive and negative directions;

unloading stiffness does not degrade with yielding. Normally, a value of constant a is
sted between 0.1 and 0.5 for the reinforced concrete. A smaller value of « tends to
a larger residual displacement. The degrading bilinear model does not dissipate

etic energy until the yielding is developed

| 2 FpuDpm 3.1

in which Fy, is the resistance at the peak displacement Dy, (Fig. 3.1). The value The hysteretic energy dissipation index of the degrading bilinear model is given by
index is equal to the equivalent viscous damping factor of a linearly elastic system

is capable of dissipating energy AW in one cycle under the “resonant steady-s 1-B) (u-p%(l
oscillation. . (1 =B +uB) (1 - By
Bilinear Hysteresis Model: At the initial development stage of nonlinear dyr

analysis, the elastic-perfectly plastic hysteretic model (elasto-plastic model) was us

many investigators. A finite positive slope was assigned to the stiffness after yieldin ratio of post-yielding stiffness to initial elastic stiffness; and

simulate the strain hardening characteristics of the steel and the reinforced conc # = ductility factor (ratio of maximum displacement to the initial yield

(Bilinear model), displacement).
When the degradation in stiffness was recognized in the behaviour of the reinf

uation is valid only when a ductility factor is greater than unity. Figure 3.3 shows
concrete, the loading and unloading stiffness K, was proposed to decrease with

lationship between the hysteretic energy dissipation index and the ductility factor
previous maximum displacement (Nielsen and Imbeault, 1970) in a form

0.10. The index increases rapidly when the ductility factor increases from 1.0 to

and peaks when the ductility factor ranges from 4.0 to 6.0. For a given ductility

the index increases with the decrease of the unloading stiffness degradation

reter. The hysteretic energy dissipation index of a regular bilinear model (¢=0)

hes as high as 0.33 at a ductility factor of 4.0,
i erg-Osgood Model: A stress-strain relation of metal was expressed by Ramberg
« = unloading stiffness degradation parameter (0 < a < 1.0) 1 Osgood (1943). Jennings (1963) introduced the fourth parameter to the model.
Ky = initial elastic stiffness; and

The initial loading curve of the model as modified by Jennings is expressed by
D =

previously attained maximum displacement in any direction

L . b
The unloading stiffness remains constant until the response displacement ar

¥ = exponent of Ramberg-Osgood model; and
n = parameter introduced by Jennings.

The initial tangent modulus is equal to (Fy/Dy), and the initial loading curve passes a
sint (Fy, (14n)Dy) for any value of y as demonstrated in Fig. 3.4. The shape of the
imary curve can be controlled by the exponent y from linearly elastic (y=1.0) to

elasto-plastic (y=2). For a larger value of 7, the behaviour becomes similar to that of the

bilinear model. Upon unloading from a peak response point (Do, Fo), the unloading,
load reversal and reloading branch of the relationship (Fig. 3.5) is given by

D-Dy _ F=F 7
2D, 2 :

Fig. 3.1 Hysteretic energy dissipation index Fig. 3.2 De
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ig. 3.3 Hysteretic energy dissipation index of
degrading bilinear model (8 = 0.10) g amberg-Osgood funct

until the response point reaches the peak point of one outer hysteresis loop,
The resistance at a given displacement can be computed by solving either Eq. 3.4
Eq. 3.5 by the Newton-Rapson’s iterative procedure.

The hysteretic energy dissipation index of the Ramberg-Osgood model is expresse

and is shown in Fig. 3.6 when the parameter 7 is unity. The model can dissipate some
hysteretic energy even if the ductility factor is less than unity. The index is sensitive to the
exponent y of the model, and the hysteretic energy dissipation capacity increases v
increasing value of the exponent.

Clough Degrading Stiffness Model: A hysteretic model with a trilinear primary cruve
was proposed by Hisada, Nakagawa and Izumi (1962) to represent the hysteretic

behaviour of a reinforced concrete structure (Hisada Model). The unloading stiffness
is kept equal to the initial elastic
hand,

stiffness despite of structural damage. On the other
the response point moves toward a maximum response point in the direction of
loading, simulating the stiffness degradation with deformation.

A similar model, with a bilinear primary curve, was proposed by Clough and
Johnston (1966), called the Clough model.

Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis

Fig. 3.6 Hysteretic energy dissipation index of

Hysteretic relation of Ramberg-Osgood model Ramberg-Osgood model

minor deficiency of the Clough model was pointed out by Mahin and Bertero

In Fig. 3.7.a, after unloading from point A, consider a situation in which

takes place from point B. The original Clouth model assumed that the response

should move toward the previous maximum response point C. This is not realistic.

Therefore, a minor modification was added so that the response point should move

an immediately preceding unloading point A during reloading. When the response

point reaches the point A, the response point moves toward the previous maximum point
C (Fig. 3.7.b).

The model was made more versatile in this paper by incorporating the reduction in

unloading stiffness K, with a maximum displacement in a form

in which,

a = unloading stiffness degradation parameter;

Ky = initial elastic stiffness; and

Dm = previous maximum displacement
Note that unloading stiffness in the positive and negative resistance regions are not the
same in this modified Clough model (Fig. 3.7.b) because the unloading stiffness degrades
with the maximum displacement attained in the direction. If the value of a is chosen to




() Original Model

Fig. 3.7 Clough degrading stiffness models

be zero, the unloading stiffness of the model remains equal to the initial elastic

The hysteretic energy dissipation index of the modified ( lough model is giver

{1-(1-B+up)u® [u}

in which

B = ratio of post-yielding stiffness to initial elastic stiffness; and

# = ductility factor (maximum displacement divided by yield displac
The equation is valid for a ductility factor larger than unity. The hysteretic
dissipation index and ductility relations are given in Fig. 3.8 for different valu
unloading stiffness degradation parameter. The Clough model can continuously diss:
hystertic energy even at a small amplitude oscillation after yielding

Takeda Model: Based on the experimental observation on the behaviour of a nu

of medium-size reinforced concrete members tested under lateral load reversals
to medium amount of axial load, a hysteresis model was developed by Takeda, So:
Nielsen (1970). Takeda’s model included (

a) stiffness changes at flexural crack
vielding, (b) hysteresis rules for inner hyste:

resis loops inside the outer loop, and
unloading stiffness degradation with deformation,

peak of the one outer hystersis loop. The unloading stiffness K is given by

in which

a =
Dy =

unloading stiffness degradation parameter; and

previous maximum displacement in the direction concerned,

The hysteresis rules are extensive and thorough (Fig. 3.9).

The hysteretic energy dissipation index of the Takeda model is expressed as

The response point moves towar

ig. 3.8 Hysteretic energy dissipation index of Clough model (8 = 0.10)

a
1+, /D) '57(1n;+“2} s
1+(F, | F,) u
ession is valid for a ductility factor greater than unity. The relationship between
ysteretic energy dissipation index and ductility is shown in Fig. 3.10 when the
ing stiffness is 10% of the yielding stiffness (Ky = Fy/Dy). The general trend

iilar to the one for the Clough model, although the index is positive when the
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ductility factor is unity

The primary curve of the Takeda model can be made bilinear simply by choos
cracking point to be the origin of the hysteretic plane. Such a model
“bilinear Takeda” model, similar to the Clough model except that the bilinear
model has more hysteresis rules for inner hysteresis loops (Otani and So
the response point moves toward an unloading point on the immediately outer
loop.

!
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Fig. 3.10 Hysteretic energy dissipation index of
Takeda model (5 = 0.10)

Degrading Trilinear Hysteresis Model: A model that simulates dominantly flexu
stiffness characteristics of the reinforced concrete was used extensively in Japar
(Fukada, 1969). The primary curve is of trilinear shape with stiffness chan
flexural cracking and yielding. Up to yielding, the model behaves in a manner the same
the bilinear model (Fig. 3.11.a). When the response exceeds a yield point, response

point follows the strain-hardening part of the primary curve (Fig. 3.11.b). Once unloa

takes place from a point on the primary curve, the unloading point is considered to be a

new “yield point™ in the direction. The model behaves in a bilinear manner between the
positive and negative “yield points” with degraded stiffness
This model has the following properties: (a) the stiffness continuously degrade

increasing maximum amplitude beyond yielding, (b) the hysteretic energy dissipation

large in the first load reversal cycle after yielding, and becomes steady in the following

cycles, (c) the steady hysteretic energy dissipation is proportional to the dis

amplitude, and the hysteretic energy dissipation index is constant independent of

displacement and post-yield stiffness.

The hysteretic energy dissipation index of a degrading trilinear model is given by

eresis Models of Reinforced Concrete for Earthquake Response Analysis

yielding stiffness ( = Fy/Dy); and
initial elastic stiffness ( = F/D¢).
endent of the displacement amplitude, but dependent on the stiffness
ratioes at cracking and yielding. Cracking point of this model controls the
of a hysteresis loop. Therefore, it is important to choose the cracking point taking
ount the degree of fatness of a hysteresis loop.
ysteretic energy dissipation index is shown in Fig. 3.12. The index increases

tional to the resistance ratio at cracking and yielding for a given stiffnes

Fig. 3.12 Hysteretic energy dissipation index of degrading trilinear model

Method of Analysis

Nonlinear response of single-degree-of-freedom (SDF) systems to earth-quake motion
was computed by a computer program (SDF), which currently has 14 different hysteresis
models in the library. Hysteresis models simulating flexural behaviour of the reinforced
concrete were used for this study.

Model Properties: The effect of different hysteresis model on earthquake response is

e investigated. Therefore, common force-deflection properties should be specified to

models so that the influence of different model hysteretic behaviour would be
clarified. However, some models (Takeda, Hisada, and Degrading Trilinear models)
have a trilinear primary curve under monotonically increasing load, and others (Bilinear,

Clough, and Bilinear Takeda models) have a bilineary primary curve. Consequently, the
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vield point and the post-yielding stiffness were chosen common among the mode

the cracking point was added to the models with a trilinear primary cur

The mass of an SDF system was arbitrarily chosen to be 1.00 ton s

overturning effect due to the mass’ side sway was not included in the analysis. A sei

hysteretic models were designed with “yield periods” (periods related to the s
stiffness at the yield point) of 0.10, 0.14, 0.20, 0.28, 0.40, 0.57, 0.80, 1.13, and 1.60

Earthquake response amplitudes are known to vary with the system’s period an
vield level. To make the comparative study easy, SDF systems with different perio
desired to produce comparable ductility ratioes (attained maximum displacement d
by the yield value). Hence, the Newmark’s design criterai (Veletsos and Newmark, 1
were adopted. Namely, the yield resistance of an SDF system was determined by

(a) dividing the maximum elastic enertia force by the allowable ductility fact
of the system if the system’s period is greater than 0.5 sec; and

(b) dividing the maximum elastic enertia force by a factor /241 if the sys
period less

The stiffn

than 0.5 sec.

of an elastic system was made equal to the “yielding stiffness
secant stiffness at the yield point) as shown in Fig. 4.1, and the damping factor was 5
cent of the critical. The allowable ductility factor of a nonlinear system was arbitr
assumed to be 4.0. In this manner, the yielding resistan
periods and different earthquake motions.

es were different for diffe

The post-yielding stiffness, Ky, was assumed to be 10 percent of the yield

stiffness; the uncracked stiffness, K¢, to be 2.0 times the yielding stiffness; and

cracking resistance to be one-third the yielding resistance (Fig. 4.1). These assumptio

were used to approximate the stiffness properties of a reinforced concrete structure

Displocement

Fig. 4.1 Determination of stiffness properties

Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis

Table 4.1 Hysteretic energy dissipation index
(Ductibity factor = 4)

Model Hysteretic Energy Dissipation Index

Clough Model (a = 0.5)
ar Model

0.5)

0.11
0.11
0.14
0.19
0.21
0.23
0.28
0.33

rading Trilin
Model («

Bilinear Model (a
Clough Model (a
Takeda Model (a = 0.0)
Ramberg-Osgood Model
Bilinear Model (a = 0.0)

0.0)

Unloading stiffness degradation parameter

The parameters of the Ramberg-Osgood model were chosen so that the resistance at

wable ductility should be the same as the other models; i.e., 7 = 1.0 and ¥ 79.

The hysteretic energy dissipation index of different models is listed in Table 4.1. The

factor is

ssumed to be 4.0. Note a large descrepancy among the models in the

ty to dissipate hysteretic energy under a steady-state condition. The unloading

ess degradation parameter & has an appreciable effect on the value of hysteretic
2y dissipation index.

i On the basis of experimental observation on one-story one-bay reinforced concrete
e models, Gulkan and Sozen (1974) proposed a simple expression for a “substitute

1ping factor” for use in equivalent linear response analysis. The expression is given as;

0.02 +02(1-1/Vn) (4.1)

The first term represents an elastic damping factor, and the second term the hysteretic
energy loss, which yields 0.10 at a ductility factor of 4, a value comparable to hysteretic
energy dissipation indices for the Clough, Bilinear Takeda and Takeda models with a =

0.5
Damping: Viscous damping was assumed in this study. The damping coefficient was
assumed to be made of two parts: one part proportional to the constant mass, and the

other proportional to the varying instantaneous stiffness;
C,M + C K
n which

C

= damping coefficient;

M = mass

and

K

instantaneous stiffness.

is defined in the following form,

an instantaneous apparent damping factor i, ,
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] ore, the entire 30-sec. record of the El Centro (EW) motion was used. The response
fldg 2 of the four records are shown in Fig. 4.3
Then, the apparent damping factor is expressed as rical Method: The equation of motion was solved numerically using the
hod (Newmark, 1959) with f=1/6 and y=1/2. Both the equation of
and the displacement-velocity-acceleration relations were satisfied only at the
e time step using an iterative procedure. In other words, the “overshooting” of the
As the stiffness degrades with damage, the apparent damping factor r d to the m esis curve was adjusted within the time step.
expected to increase and that related to the instantaneous stiffness tends to de: e A constant time increment of the numerical integration was taken either as
Earthquake Records: Four earthquake accelerograms from two California e entieth the initial elastic period or 0.02 sec., whichever was shorter. The former
quakes were used in this study: the NS and EW components of the 1940 EI Centro re
and the N21E and S69E components of the 1952 Taft record (Fig. 4.2), digitized
University of Illinois at Urbana-Champaign (Amin and 1966). Li
response spectra of these four records were studied using the entire duration and the
15-sec. portion of the records. The damped spectra were almost identical for a pe
range less than 2.0 sec. using either the entire duration or the first 15-sec. portion exc
for the El Centro (EW) record. Consequently, the response computation was termin
approximately at 15 sec. when the Taft (N21E), Taft (S69E), and El Centro (NS) recc

were used in the current study. On the other hand, the maximum response of so

PSEUDO-VELOGITY. (m/sec]

linearly elastic systems under the El Centro (EW) motion occurred after 15 se

EE T ———

(m/sec)

PSEUDO-VELOCITY.

A ‘ N |
ik

() Taft (N21E) 1952 motion (d) Taft (S69E) 1952 motion
Fig. 4.3 Response spectra of earthquake records

¢ factors = 0.00, 0.02, 0.05, 0.10, 0.20)
Fig. 4.2 Earthquake accelerograms (Damping factors = 0.00, 0.0
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was necessary to faithfully trace the hysteresis curve rather than the numerical sta
requirements. The latter criterion became necessary because the earthquake acce

grams were given at a 0.02-sec. interval.

Effect of Damping

Two types of viscous damping were considered in this study;i.e., (a) damping
cient proportional to the constant mass, and (b) damping coefficient proportion
varying instantaneous stiffness. The constant mass-proportional damping tends to y
increasing apparent damping factor with the degradation of stiffness, whereas the v
stiffness-proportional damping tends to decrease the damping effect. It is not reaso
to expect such increasing damping effect with stiffness degradation if an SDF syste
dissipates hysteretic energy during inelastic oscillation. However, the mass-propo
damping was found useful to exaggerate the damping effect. For a given eartt
motion, the degree of damping effect on the maximum response may depend on (a)
of damping, (b) period of vibration, (c) capacity of hysteretic energy dissipation, a
level of ductility demand. The effect of damping is studied from these viewpoints

Type of Damping: Mass-proportional damping is expected to be more effective
many cycles of oscillation occurs with highly degraded stiffness. On the cor
instantaneous stiffness-proportional damping is effective during oscillation in a s
ductility range. Attained ductility of Takeda models with an unloading s
degradation parameter & of 0.0 is shown in Fig. 5.1, in which the “yielding peri
changed from 0.14 sec The system with mass-proportional dam

produced small displacement response than those with stiffness-proportional dam

Fig. 5.1 Effect of mass-proportional and stiffness-proportional damping

F
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g the same initial damping factor. With an increase in the value of initial damping
the mass-proportional damping is more effective in reducing the response
litude. This tendency is larger for a shorter period system. The response amplitudes
stems with stiffness-proportional damping are not so sensitive to the increase in the
of initial damping factor partially attributable to the fact that the hysteretic energy
pation is appreciable when the unloading stiffness degradation parameter & was 0.0.
1 the initial damping factor is made of equal contributions of mass-proportional and
ess-proportional dampings, the mass-proportional damping tends to have a dominant
1ce on the maximum response.
Displacement response waveforms are compared in Fig. 5.2, for two types of
ng. The waveforms are generally similar. The effect of damping type is cospicuous
an unloading stiffness degradation parameter « is 0.5; i.e., the hysteretic energy
ition is small. The systems with stiffness-proportional damping produce a larger
d and Ductility Range: The effect of mass-proportional damping on maximum
1se is pronounce, and the mass-proportional damping was found useful to
ate the damping effect and clarify a general trend of the damping effect on

im response. Therefore, the mass-proportional damping is used here. Figure 5.3
the variation of maximum response with the amout of damping. The maximum
1se is reduced significantly with increasing damping amplitude in short-period
ms (Ty = 0.14 sec), but is not so much affected in long-period systems (T, = 1.13
sistance level was varied to study the effect of damping at different
y ranges. the general trend of decreasing response amplitude with logarithmically

ng damping amplitude is observed for both high and low ductility ranges.
Iysteretic Energy Dissipation Capacity: Some models have large hysteretic energy
sipation capacity, and others have very little capacity. The latter model can dissipate
tic energy only through viscous damping, hence its response amplitude is likely

d by the amount of viscous damping.

The effect of damping on the response amplitude of a Takeda model (a = 0.0) and a

Peak-Oriented model is studied in Fig. 5.4. The response point of the Peak-Oriented

MmE
() Takeda Model (@ = 0.0) (b) Takeda Model (a=

ig. 5.2 Effect of Damping Type on Response Waveforms — El Centro (NS) 1940 Motion, Ty = 040 sec. -
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0.0707 for a system with trilinear primary curve. In this manner, the damping factor
all the systems is made identical at the yielding period because the pre-cracking

ness of a trilinear primary curve is chosen twice the yielding stiffness.
nloading ffness Degradation Parameter: Some models use an unloading stiffness
dation parameter, which controls the fatness of a hysteresis loop and also the plastic
al deformation. It is not possible to determine the value of this parameter from the
and geometrical properties of a reinforced concrete structure. Normal range of

wrameter is 0.0 to 0.5, and a value of 0.4 has been often used for the reinforced

The effect of the value of the unloading stiffness degradation parameter on

1m response of Takeda models is shown in Fig. 6.1.a. Maximum response increases

n increasing value of the parameter, and this tendency is remarkable for shorter

3 Effect of damping with ductility and Fig. 5.4 Effect of damping with h I systems. As already seen in the study on damping effect, the system’s capacity

encigy dissipation capact through damping or through hysteresis) to dissipate kinetic energy has a

period
icuous influence on the maximum response of a short period structure. The same

hysteresis model moves toward a maximum response point in the loading direc ncy is observed in Fig. 6.1.b. When the yielding period of systems was varied from
the model behaviour is linearly elastic between the positive and negative max G0k
response points without any hysteretic energy dissipation. Once the response sponse waveforms of Takeda models under E1 Centro (NS) 1940 motion are
reaches a maximum response point, it moves on -the primary curve. The maxi ared in Fig, 6.2.4. The'Vislding neritkh of Ah SyAteins 504 seh:Thie yistd level was
response of the Peak-Oriented model at a yielding period of 0.14 sec. was too la 1 to be 0.6 times thit SETHE Finddd model: For's 1iias vallie of the parameter,
the yield resistance was increased by 50 per cent from the standard value to redu < amplitudes are larger both in the positive and negative directions, having comparable
response amplitude. olitudes in the two directions. For smaller values of the parameter, the system tends to
Note that the amount of damping has a larger influence on the response ducti e large amplitudes only in one direction. This is clearly observed in the hysteretic
Peak-Oriented models, especially in a short period range. The difference in ductility e shown in Fig. 6.2.c. Peak-to-peak stiffness in a low amplitude oscillation is lower

the two models was relatively small in a long-period range.

Summary Mass-proportional damping is effective in reducing the response
nonlinear system, especially in a short period range. Stiffness-proportional damping h
much less effect on the maximum response, especially when the model is capable

ssipating a large hysteretic energy. The effect of viscous damping is larger on maximu
response of a system with a smaller hysteretic energy dissipation capacity.

Although the mass-proportional damping was used in this section, it is not proba
to expect this form of damping from a real reinforced concrete structure. Therefore, the

ness-proportional damping is assumed henceforth in this paper.

Effect of Stiffness Parameters

Some stiffness properties are arbitrarily chosen in this study: for example, the r:

of cracking resistance to yielding resistance, the ratio of initial uncracked stiffness to the

vielding stiffness”, and post-yielding stiffness. The effect of these stiffness parameters
on earthquake response amplitudes is studied in this section
The damping is assumed to be of stiffness-proportional type. The maximum response (a) Unloading stiffness (b) Design criteria

of an SDF system is not so sensitive to the amplitude of initial damping factor. Therefore degradation parameter

Fig. 6.1 Maximum response with unloading stiffness degradation parameter and yielding period

an initial elastic damping factor of 0.05 is used for a system with bilinear primary curve,
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for a system with a larger parameter, causing a longer period of oscillation from a
mately 6.0-sec. in Fig. 6.2.a.

4.0 )

a MR oA
ol =t \\ A ) ;‘r vv

A\
\/
v v

(b) Hysteresis (« = 0.5) (c) Hysteresis (a

Fig. 6.2 Response waveforms and unloading stiffness degradation pa
El Centro (NS) 1940 motion, T, 0.4 sec.

The effect of the unloading stiffness degradation parameter is significant on respons
amplitude, response waveform, residual displacement, and hysteresis shape

Design Criteria: The Newmark’s design criteria (Veletsos and Newmark, 1960) were
adopted to determine the yield resistance assuming the allowable ductility to be 4.0
Figure 6.1.b shows that the attained ductility factor reaches as high as 17.1 for a system
with a 0.10-sec. yielding period. For a yielding period longer than 0.2 sec., attained
ductility factors are generally less than 8.0

Yield Resistance Level: The level of yield resistance is expected to be one major
factor to influence maximum response amplitudes. Figure 6.3 shows the variation of
maximum response with the level of yield resistance. As yield strength increases, an
attained ductility factor is significantly reduced, especially for a system with a short
vielding period: the required ductility was reduced to one half due to a 30 per cent
increase in the yield strength. It is important to note in Fig. 6.3 that the value of yield
displacement increased proportional to the level of yield resistance. Consequently the

maximum response amplitude did not decrease with the level of yield resistance so much

resis Models of Reinforced Concrete for Earthquake Response Analysis

e attained ductility did, although the 0.14-sec. period system showed a rapid increase
e displacement amplitude with the reduction in yield strength. The 1.13-sec. system
showed an increase in maximum displacement with decreasing yield strength, but
hed a peak at the standard yield resistance, and then gradually decreased its

num displacement amplitude.

o6 00 140 180
Yieid Strengtn/Skondord Shengtn

Fig. 6.3 Maximum response with yield resistance level

Response waveforms of Takeda models (& = 0.0) with different yield resistances are
pared in Fig. 6.4. The yield resistances are 0.70, 0.60, 0.47 times the standard yield
gth at a 0.4-sec. yield period under E1 Centro (NS) 1940 motion. The maximum

s largest for the weakest system. However, the peak amplitudes in the positive
for the strongest system since the lower strength systems produced

rection were lar

large residual displacement in the negative direction. This observation is not necessarily

rue for a general weak-strength system, but it is related to the unloading stiffness

adation parameter. A low value of the parameter, for example @ = 0.0, tends to cause

rge residual displacement with little elastic recovery during unloading.

Fig. 6.4 Response waveforms with different yield
resistance — EI Centro (NS) 1940, Ty, = 0.40 se
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The level of yield resistance has a significant effect on maximum response amplit
especially in a short-period range.

Post-Yielding Stiffness: The strain hardening of reinforcing bars will give a
positive stiffness even after the flexural yielding. Very smal post-vielding stiffn
been routinely used in Japan. The standard model in this paper assumes a 10 pe
the yielding stiffness as the post-yielding stiffness.

Maximum response of Takeda models is compared in Fig. 6.5 varying
stiffness. Maximum response decreases with an increasing post-yield stiffness,

in a short-period system, and insignificantly in a long-period system. Th

amplitude changes more with post-yielding stiffness when the post-yield stiffness

to 0.20 times the yield stiffness. For a high post-yield stiffness, less inelastic displ
is required to store a given magnitude of strain energy

20

Fig. 6.5 Maximum response with post-yield stiffness Fig, 6.6 Maximum response with initial stiffnes

Initial Stiffness: The initial stiffness was arbitrarily chosen in this paper to be 2.0

times the yielding stiffness. For a normal reinforced concrete member, the ratio of
initial to the yielding stiffnesses may vary from 1.5 to 4.0

Maximum response of Takeda models is compared in Fig. 6.6 varying the stiffness
ratio, keeping a cracking-to-yielding resistance ratio to be

ductility is greater than 4.0,

one-third. When an attained
the effect of initial stiffness is minimal. It is naturally ex
pected that the initial stiffness should influence maximum response amplitude if an
attained ductility is less than or around unity
Cracking Force Level: The effect of cracking

force level on maximum response
amplitude of Takeda models is studied in Fig. 6.7

The initial stiffness was kept to be
2.0 times the yielding stiffness. Little effect is observed when an attained ductility is
greater than 4.0 even in a short-period system,

Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis

> hysteretic energy dissipating capacity of a Degrading Trilinear model is known to
sitive to the choice of a cracking point relative to the yielding point. The effect of
g force level on maximum response amplitude of Degrading Trilinear models is
i in Fig. 6.8. An attained ductility factor decreases with an increasing cracking
evel, especially in a short-period system. This is another example to show that
wum response amplitude of a short-period system is significantly influenced by the

ility to dissipate kinetic energy through either damping or hysteres

rockng
Vied Force Vieing Force Leve

Maximum response with cracking force level  Fig. 6.8 Maximum response with cracking force level
Takeda model — degrading trilinear model

Response waveforms of Degrading Trilinear models are compared in Fig. 6.9.a

g the cracking force level. The two systems oscillate almost equally in the positive
egative directions. A system with a cracking-to-yielding force ratio of one-third
oscillates with larger amplitudes. The response waveforms are in phase up to 6.0 sec. from
e beginning, and then a low-cracking-force system starts to oscillate in a longer period.
By comparing hysteresis shapes of the two systems in Fig. 6.9.b and c, it can be seen that
a peak-to-peak stiffness of small-amplitude oscillation is lower for a low-cracking force
system. The hysteresis curves also indicate that no hysteresis energy is dissipated by the

TIME . sec

(a) Response waveforms
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(b) Hysteresis (Fo/Fy = 1/3 () Hysteresis (F/F

Fig. 6.9 Response waveforms and cracking force level of de

El Centro (NS) 1940 motion, 7y = 0.40 sec

rading trilinear mod

model until “cracking” occurs, and that a large hysteresis energy is dissipated
“cracking”, a property inherent to a bilinear model.
Ramberg-Osgood Exponential Parameter
The Ramberg-Osgood model has stiffnes
parameters different from the other models,
A parameter 1 introduced by Jennings (1963)
is set to be unity in this paper. The effect of an
exponent y on maximum response
is studied in Fig. 6.10. A Ramberg-Osgood
model becomes similar to a regular Bilinear
model when the exponential parameter increases,
A smaller value of the parameter makes the
post-yield stiffness steeper. A short-period
system has a tendency to increase its
maximum response with an increasing value Fig. 6.10 Maximum response with Ramt
of the parameter, whereas a long-period Osgood exponential params
system slightly decreases its response.
Response waveforms of Ramberg-Osgood models under E1 Centro (NS) 1940 motior
are compared in Fig. 6.11.a varying the exponential parameter. A system with a low value
of the parameter oscillated almost equally in

the positive and negative directions a
large amplitudes.

Residual displacement increases with an increasing value of the parameter, the effect
which is similar to that of the unloading stiffness degradation parameter of a Takeda
model. Dominant periods of vibration of a small-parameter system are longer than those

of a large-parameter system. Hysteresis relations of two Ramberg-Osgood models are
compared in Fig. 6.11.b and c. Note that a peak-to-peak stiffness

at a small-amplitude

Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis

(a) Response Waveforms

(b) Hysteresis (v (c) Hysteresis (y
Response waveforms and Ramberg-Osgood parameter
El Centro (NS) 1940 motion, Ty, = 0.40 sec. —

ation is lower for a larger-parameter system.

Summary: Maximum response amplitude of a short-period system (for example,

ling period less than 0.2 sec.) increases remarkably when the system has a low
pability to dissipate kinetic energy through hysteresis; ie., the unloading stiffness
eradation parameter and post-yielding stiffness of the Takeda model, or cracking force

evel of the Degrading Trilinear model has a significant influence on the maximum re-
nse amplitude of a short-period system.

When the unloading stiffness is larger, its displacement response waveform tends to
exhibit a larger residual displacement. This tendency is observed when the unloading
stiffness degradation parameter of the Takeda model is small or when the exponential
parameter of the Ramberg-Osgood model is large.

Response amplitude of a long-period system is relatively insensitive to the variation

f stiffness parameters except for the yield resistance level, which has a dominant effect
on attained ductility of nonlinear SDF systems.

The Newmark’s design method tends to cause a ductility much larger than the
allowable value in a short period range (say, a yielding period less than 0.3 sec). However,
this may be attributable to the usage of an idividual earthquake response spectrum in

designing SDF systems. If a smoothed design spectra, which gives the upper bound to
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most earthquake response spectra, is used in desi this problem r

i

Response of Different Hysteresis Models

The maximum resistance and acceleration response values are normally limi
the yield resistance of a hysteretic model. It is of more interest to study max
displacement response value. Maximum response amplitudes and response waveform
influenced by various stiffness properties. Different hysteresis models are expecte

respond to an earthquake motion in dissimilar manners. Response of different mc
compared in this section.

Maximum Response: Four earthquake records are used in this study: El Centro

(NS) and (EW), and Taft 1952 (N21E) and (S69E). Maximum response of six diff

hysteresis models is compared in Fig 7.1 using the standard stiffness

p
Hysteresis models are (a) Ramberg-Osgood model (y

3.79), (b) Degrading Bilir
model (& = 0.0 and 0.5), (c) Clough model (@ = 0.0 and 0.5), (d) Bilinear Takeda m
(a=0.0 and 0.5
(Fe/Fy =1/3).

, (¢) Takeda model (@ =0.0 and 0.5

and (f) Degrading Trilinear

An attained ductility factor is defined as the ratio of the maximum displacemen
the yield displacement. For a design procedure to be conservative, the attained duct

h model (a = 0.0 and 0.5)

factor should be less than the allowable ductility factor of 4.0. Note that the Newma

design criteria give a reasonable ductility demand from all six hysteresis models for a w

e of E1 Centro (NS) 1940 motion. The undamp:
yield period is a period associated with a seca

range of yielding periods in the c

t stiffness at the yield point. The

) Takeda model (a = 0.0 and 0.5) (f) Degrading trilincar model (F¢/Fy = 1/3)

Fig. 7.1 (Cont’d) Maximum response to different earthquake motions

uncracked period of an SDF system with a trilinear primary curve is approximately 70

per cent of the yield period.
(a) Degrading bilinear model (c = 0.0 and 0.5) -Osgood model (y
Fig. 7.1 Maximum response to different earthquake

Although the Newmark’s design criteria appear to be acceptable for the E1 Centro
tions
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(NS) 1940 motion, the other three earthquake motions caused attained ductility fact
much greater than the allowable value at various periods. In general, the design criteria a
not satisfactory in a very short-period range, for example less than 0.15 sec. Distri

of maximum response with periods is different from one earthquake motion to anothe
showing an irregular shape, although each hystersis model was designed on the basis
elastic response of individual earthquake motion. On the other hand, distributior
maximum response with periods is similar from one hysteresis model to another f
given earthquake motion, implying that maximum response amp

hysteresis models can be made comparable if hysteretic para

properly adjusted.

Maximum response amplitudes of the six models are compared in Fig. 7.2 in t
groups depending on the magnitude of hysteretic energy dissipation capacity per cyc
Hysteretic energy dissipation indices of these models are listed in Table 4.1. For the s
value of unloading stiffness degradation parameter, the Takeda and Clough models
comparable maximum response amplitudes. For an unloading stiffness degradat
parameter of 0.0, the regular bilinear model in general demands less ductility than t
Clough and Takeda models having the same parameter value. The hysteretic ene
dissipation index values of the Bilinear ( = 0.0) and Ramberg-Osgood models are la
than those of the Clough and Takeda models (&= 0.0) as listed in Table 4.1

For an unloading stiffness degradation parameter of 0.5, the Takeda, Clough
Degrading Bilinear models developed comparable ductility factors. The Degrad
Trilinear model also developed ductility factors similar in magnitude to those

i

e

8P

(2) Ramberg-Osgood, degrading bilinea (b) Degrading bilinear, Clough
Clough and Takeda models (« Degrading trilinear Models (a

Fig. 7.2 Maximum response of different models

Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis

st corresponding periods
herefore, maximum response amplitudes are not as sensitive to detail difference in
tic rules of these models, but rather are influenced by more basic characteristics of
esis loops, such as stiffness properties to define a primary curve and the fatness
retic energy dissipating capacity) of a hysteresis 10op.
a Bilinear Takeda Models: The hysteresis rules of the two models are
having a bilinear primary curve and allowing the usage of unloading stiffness
iation parameter. The basic difference of the two models is that the Bilinear Takeda
has more hysteresis rules so that a response point during loading should move
a peak response point of the immediately outer hysteresis loop.
Visplacement response waveforms and hysteresis loops of the two models are
7.3 The E1 Centro (NS) 1940 record is used for the response. The
¢ period of the two models is 0.4 sec., and the unloading stiffness degradation
seter is 0.5. The response waveforms and hysteresis shapes of the two models are
tical. The same observation was made for the two models using an unloading
ss degradation parameter of 0.0, Some difference in displacement waveforms of the

\odels appeared after 8.0 sec. from the beginning of the earthquake motion,

ally en the unloading stiffness degradation parameter is zero. When the

Bilinear Tokeda Mode
[
TIME. sec

(a) Displacement response waveforms

(b) Hysteresis (Clough model) (c) Hysteresis (Bilinear Takeda model)

Response of Clough and bilinear Takeda models
_ El Centro (NS) 1940 motion, Ty = 0.40 sec. -

Fig
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parameter is large, say 0.5, the area of a hysteresis loop becomes smaller, and not
variation of inner hysteresis loops can be made possible within the limited area.

This is another example to demonstrate a less effect of detailed hysteretic rul
the response amplitude and response waveform, as long as the stiffness paramete
define a primary curve and basic hysteretic parameters are chosen to be the same.

Response Waveforms and Hysteresis Relations: Resistance response nor
oscillates about its neutral axis, and its amplitude is limited by the yield resistanc

the other hand, displacement response does not necessarily oscillate about the

axis, but the residual displacement amplitude is easily shifted by the prop
a hysteretic model. Therefore, it is easy to study the effect of different hyste

properties in a displacement response waveform.

The E1 Centro (NS) 1940 motion was used for response computation
hysteretic models were used for comparison; ie., (a) Degrading Bilinear model (a
and 0.5), (b) Ramberg-Osgood model (y = 3,79), (c) Clough model (= 0.0 and 0.
Takeda model (& = 0.0 and 0.5), and (e) Degrading Trilinear model (Fo/Fy = 1/3)

yielding period of these models was arbitrarily chosen to be 0.4 sec., and the

resistance level was taken to be 60 per cent of the standard model to allow
inelastic action.
(b) Hysteresis Relations

Fig. 7.4 Response of fat-hysteresis systems
El Centro (NS) 1940 motion, Ty = 0.40 sec. —

o response amplitude was shown to be influenced by the fatness of a hysteresis

even if the stiffness properties of the primary curve are identical. Consequently, the

I
onse waveforms are compared among systems having a relatively fat hysteresis loop in
7.4, and among those having a relatively thin hysteresis loop in Fig. 7.5
In all fat-hysteresis systems (Fig. 7.4), maximum displacements were attained at 2.0

ec., and the second largest amplitude at around 5.3 sec. The Takeda model shows a

short-period oscillation at 1.0 sec., since only the Takeda model has a trilinear primary
curve among the models shown in this figure. The Bilinear model oscillates in a period
5 to 4.5 sec. attributable to the non-degrada-

shorter than the other models, between 2.
tion of stiffness with displacement amplitude. The Bilinear and Ramberg-Osgood models

developed residual displacements in the negative direction at 7.0 sec., whereas the Clough

and Takeda models developed positive residual displacement. The former two models
behaved in a manner different from the Clough and Takeda models. The latter two
v similar each other. The hysteresis relations of the four

response waveforms are ver
mberg-Osgood, Clough and Takeda models show

models are shown in Fig. 7.4.b. The Ra

similar hysteresis relations. ¥
Thin-hysteresis models (Fig. 7.5) show displacement reponse waveforms distinctly
ig. 7.4), oscillating regularly in larger

different from those of fat-hysteresis models (F'
ds. The degrading Bilinear model exhibited a behaviour

y in a waveform between 6.5 and 8.0 sec

amplitudes and ger perio
ement Response Waveforms plitudes and in longer p
erent from the other three models, especiall
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Clough, Takeda and Degrading Trilinear models produced displacement waveforms
similar one another. The hysteresis relations of the four models are compared in
Clough and Takeda models developed very similar hysteretic relations
ugh the Takeda model had a trilinear primary curve. This may be attributable to the
that a large-amplitude oscillation occurred at an early stage of the earthquake
In other words, the behaviour of Takeda and Clough models can be different if
oscillation continues for a long duration, or if the yielding does not occur during
thquake
Therefore, the Takeda model is more preferable to the Clough model, although the

nodel requires a larger memory in a computer to store the complicated hysteresis

A hysteresis loop of the Degrading Trilinear model appears to be thinner than the
model, but the Degrading Trilinear model can dissipate larger hysteretic energy
medium-amplitude oscillation.

e comparison of response waveforms of different hysteresis models points out the
itive nature of response waveforms to a minor difference in hysteresis rules, as
he same primary curve is used in conjunction with a comparable capacity to

hate hysteretic energy. If maximum response amplitude is known, before analysis, to
ch larger than the yield displacement, the Clough model can produce a response
orm similar to t of the complicated Takeda model. However, if that premise is

\aranteed, it is more conservative to use a hysteresis model with a trilinear primary

in the analysis of the reinforced concrete, recognizing the stiffness changes at

King and yielding; i.e. the Takeda model

Conclusions
The effect of dominantly flexural hysteretic models for the reinforced concrete on
rthquake response is studied by changing stiffness parameters. Hysteretic models
for study in this paper were (a) Degrading Bilinear model, (b) Ramberg-Osgood
del, (¢) Clough model, (d) Bilinear Takeda model, (¢) Takeda model, and (f) Degrading

Trilinear model.

T'wo types of viscous damping are used; i.¢., (a) constant mass-proportional damping,

(b) varying instantaneous stiffness-proportional damping. The mass-proportional
in reducing maximum earthquake response amplitude,
The stiffness-proportional damping is less effective,

damping is more effective

especially in a short-period system.
specially if a system is capable of dissipating a large hysteretic ener,
strong influence on earthquake

Some stiffness properties of a primary curve have a
response amplitude. The level of yield resistance has a significant effect on maximum
response amplitude of systems, especially in a short period range. The unloading stiffness

ols the unloading stiffness and fatness of a hysteresis

degradation parameter, which contr

loop, is another important parameter. Post-yielding stiffness has a medium influence in a
(b) Hysteresis short-period system. Initial stiffness and cracking force level of a Takeda model have little

Response of thin-hysteresis sy

El Cento (NS) 1940 motion, T
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influence on the maximum amplitude if the attained ductility factor is 4.0

the contrary, the cracking force level is an important parameter a Degrading T
model. A steep unloading stiffness tends to cause a large residual displacemen
stiffness and hysteretic properties need to be determined on the basis of
properties and geometry of the reinforced concrete.

If the stiffness properties of a primary curve and hysteretic energy dissi
capacity are properly selected, the maximum response amplitude does not
appreciably, nor does the response waveform from a hysteresis model
However, a complicated hysteresis model should not be penali
complicatedness simply requires a larger computer memory to store the program. S

model does not require a longer computation time,
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