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Chapter 1

Introduction

This chapter is part of an unpublished paper, and thus is not included in this abridged dis-

sertation.



Chapter 2

Building blocks of feature-line

extraction

2.1 Mechanism of feature-line extraction

This thesis focuses on view-independent ridge-valley-like feature lines. As mentioned pre-
viously, ridge-valley lines [26] are loci of points where principal curvatures attain local
extrema along corresponding principal directions of curvature. At an arbitrary point on the
surface illustrated in Fig. 2.1 (left) along one of two principal directions of curvature (in-
dicated by a purple line), the principal curvature is always zero. The principal curvature
along the other principal direction of curvature (indicated by a navy arrow) attains its max-
imum somewhere on a ridge line. Such local extrema are traced by locating zero-crossings
of derivatives of curvatures, that is, third-order derivatives. When viewed from the top, the
principal direction of curvature (indicated by a navy arrow) is clearly roughly perpendicular

to the nearby ridge and can be oriented toward the nearby ridge line (see Fig. 2.1 right).
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Fig. 2.1 Feature lines can be generalized as the loci of points where a certain geometric prop-
erty I, such as principal curvature, attains local extrema in a corresponding critical direction
t, such as the principal direction of curvature. The geometric property I increases along
critical directions. The value of [ is indicated by the color intensity.

Similarly, apparent ridges [17] are the local extrema of view-dependent principal curvatures
along corresponding view-dependent curvature directions, and suggestive contours [11] are

the local extrema of radial curvatures along corresponding radial directions.

In a nutshell, the geometric properties exploited in these feature-line extraction algorithms
may vary; however, they share an underlying logic. Given a certain form of geometric prop-
erty I and a direction t that we refer to as “critical direction,” both defined over mesh vertices,
a set of feature lines can be defined as the loci of points where the geometric property / attains
its local extrema (or other special values) in its corresponding critical direction t. Similar
to the relation between the principal direction of curvature, principal curvature, and ridge
lines, such a direction should be roughly perpendicular to (i.e., it can be oriented toward)
the nearby feature line, as illustrated in Fig. 2.1 (right). We can also see that the geometric

property I increases along critical directions.

Throughout this thesis, we will refer to the geometric property I and the critical direction t

as the two building blocks of feature-line extraction.
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2.2 Acquisition of the two building blocks of feature-line extrac-

tion

To extract feature lines, that is, to extract points on feature lines over mesh edges, a scalar
field and a direction field—directions that can be oriented toward (and are ideally roughly
perpendicular to) potential nearby ridges or valleys—over the entire mesh are required (see
Fig. 2.2). In this chapter, we explore acquisition of these two building blocks of feature-line

extraction.

Fig. 2.2 Feature lines are determined by the sequence of points (highlighted in red) sampled
over mesh edges. The locations of these points are decided jointly by critical directions t’s
(navy arrows) and geometric properties I’s over mesh vertices. The value of / is indicated
by the color intensity.

Most existing algorithms for extracting feature lines on meshes in object-space are based on
the classical definition of curvature in a discrete differential geometry context. Noticeably,
for most feature-line extraction algorithms proposed so far, both geometric properties and
critical directions are derived from high-order derivatives. Typically, these differential in-
variants must be approximated using discrete differential geometry. By creating a hierarchy
of meshes with different levels of detail and estimating differential invariants from them,
many existing algorithms for feature-line extraction, including [26], can efficiently extract
feature lines of increasingly large scales. They are relatively fast to compute but essentially

sensitive to surface noise and mesh tessellation.
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Effort has also been made to extract curvature information from the viewpoint of integral in-
variants. Alliez et al. [1] introduced an operator that integrates (averages) a curvature tensor
over a neighborhood of a central point. To obtain a smooth curvature tensor field, this op-
erator considers a relatively large neighborhood. Later, Yang et al. [35] and Pottmann et al.
[27] proposed an integrals-based definition of both principal curvatures and principal direc-
tions of curvature at a given resolution level r. This method can be considered an extension
of [23], which exploited integral invariants to estimate the curvature of planar curves. Given
neighborhoods constructed by kernel balls or spheres centered on a given surface with radius
r, curvature information can be estimated via principal component analysis (PCA) of such
neighborhoods. At the same time, geometric properties, such as volume or spherical area
bounded by the kernel ball or sphere and the surface’s interior, are related to mean curvature
and thus have specific geometric implications. Notably, [12] presented methods for curva-
ture estimation directly from point clouds by constructing and analyzing various covariance

matrices defined over local neighborhoods.

For the rest of this chapter, we will review several differential invariants and integral invari-

ants from which both the geometric property and the critical direction can be derived.

2.2.1 Differential invariants

Without loss of generality, we focus on curvature, the most commonly employed differential
invariant in the context of feature-line extraction. Defining curvature on discrete surfaces is
never trivial. According to [29], existing methods for estimating curvature can be roughly

categorized into three groups:

(a) Patch-fitting methods, which essentially fit parabolas to surface samples (vertices);

(b) Normal curvature-based methods, which essentially fit circles to surface samples (out-

going mesh edges of a vertex);

(c) Tensor-averaging methods, which calculate the average of curvature tensors over a

tiny surface patch.
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While (a) and (b) could work on 1-ring neighborhoods of mesh vertices, they proved to
become unstable on meshes with degenerate configuration. Rusinkiewicz [29] proposed a
more robust method (see Appendix A.2.2). Directional derivatives of surface normals along
the directions of mesh edges are turned into a set of linear constraints on the elements of
the per-facet curvature tensors II (the matrix of the second fundamental form; see Appendix
A). These elements are computed using least squares. The per-vertex curvature tensors are
then estimated as a weighted average of the per-facet curvature tensors of its adjacent facets.
Since a per-vertex normal is estimated as the weighted average of its adjacent facet normals,
it turns out that reliable estimation of curvature requires geometric information of at least

2-ring neighborhoods of mesh vertices.

For the vertex in the center (highlighted in red) of Fig. 2.3, its 2-ring neighborhood includes
all the facets present in the image. As a result of curvature tensors averaging, the original
surface patch could be considered “smoothed” to the shape indicated by the dashed lines,
and consequently only one feature line in the center would be extracted instead of two on
both sides of the central vertex. Each of these two feature lines is defined over only two
strips of mesh elements, that is, on a scale smaller than the neighborhood size intrinsically

specified by the geometric property.

Fig. 2.3 Feature lines of comparatively small scales are “smoothed out” when extracted with
curvature.
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2.2.2 Integral invariants

Following the notation of [35], we begin by considering an oriented surface ® and the 3D

domain D bounded by ®.

D

Fig. 2.4 A 3D illustration of a kernel ball centered on surface ®.

For a specific point p € @, a kernel ball B,.(p) and a kernel sphere S,.(p) = 0B,(p), both
centered on p with radius r, can be constructed. N;(p) = D n B,(p) and N¢(p) = D n
S.(p) are referred to as the ball neighborhood and the sphere neighborhood (see Fig. 2.5),
respectively. For an arbitrary integration domain I1, we denote its indicator function by
1(x), that is, 1(x) = 1 if x € IT and 13(x) = O otherwise. The geometric properties,
that is, the integral invariants obtained by integrating the indicator function over N/ (p) and
N, (p), are referred to as the surface area descriptor and the volume descriptor, respectively

[28].

The critical directions corresponding to such geometric properties are the principal direc-
tions of curvature, which according to [35], can be derived by PCA of the sphere or ball
neighborhoods. PCA of the ball or sphere neighborhoods centered on point p generates cor-

responding covariance matrices, eigenvectors of which can serve as principal directions of
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curvature and the surface normal vector at p. Indeed, telling which is which among the three

can be difficult.

Fig. 2.5 A 2D conceptual illustration of a sphere neighborhood (left) and a ball neighborhood
(right) centered at point p on surface ® (see Fig. 2.4). Both are highlighted in green.

Apart from integral invariants defined over sphere or ball neighborhoods, which are reported
to exhibit robustness and be consistent with classic settings of curvature [35], we consider

ambient occlusion [22, 5], an integral invariant defined from the viewpoint of “visibility.”

Ambient occlusion is a technique for simulating diffuse indirect illumination in a 3D scene, a
simplified version of “obscurance” [39]. Ambient occlusion at a point on a surface is usually
defined as the cosine-weighted percentage of the hemisphere where incoming ambient light
cannot reach that point. Alternatively, instead of the entire scene, we can consider ambient
light in a bounded region within distance » from the point when computing its ambient oc-
clusion [4, 21]. Bavoil et al. [4] borrowed the concept of horizon mapping [25], which was
previously defined to create realistic shadows, and proposed an image-space horizon-based
approach to ambient occlusion approximation. A horizon map in this context is a precom-
puted table of elevation angles that lists, for a point on the mesh, the elevation of the horizon
in a sampled collection of directions (denoted by azimuthal angles) when viewed from that
point. As a horizon map and ambient occlusion are closely related, [36] defined a so-called
“direction of maximum occlusion” based on the intuition that a nearby valley is more likely

to appear in the direction with higher elevation angle, that is, a nearby “mountain.” It is the
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direction with maximal elevation angle and possibly maximal occlusion over the horizon

map.

Fig. 2.6 The horizon viewed from a mesh vertex. The horizon is drawn in red. The inter-
section curve of the surface and the hemisphere is highlighted in light green. The surface
normal vector at the vertex is drawn with a blue line. The (visible part of the) kernel ball is
filled in with olive green. Reproduced from [16].

As we have mentioned, the feature lines of comparatively small scales are usually “smoothed
out” when extracted with curvature. Fortunately, as integral invariants can be defined over
smaller neighborhoods than differential invariants, we can resort to them for extracting fea-
ture lines of small scales, that is, to derive the geometric property and critical direction

required for feature-line extraction from the viewpoint of integral invariants.

We focus on ambient occlusion or “horizon-based” occlusion and its corresponding criti-
cal direction, that is, the direction of maximum occlusion. They prove more reliable than
surface area or volume descriptors and corresponding critical directions defined over ball or
sphere neighborhoods (see Appendix B.2). A practical definition of the amount of ambient

occlusion A(p) at a point p with a surface normal vector n(p) usually takes the form

A(p) = % /Q (1 - V(P o)) - ®)do.
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Here, V is the visibility function over the normal-oriented unit hemisphere Q. It returns 0
if a ray starting from the point p in direction @ intersects with the surface itself and returns
1 otherwise. Nevertheless, we do not have to adhere to cosine-weighted ambient occlusion
for our application. Inspired by the concept of ambient occlusion and in order to distinguish
it from its original definition in physics, we define the occlusion at the point p on the mesh
as the ratio of the normal-oriented hemisphere with a radius r occluded by its surroundings.
Instead of ray casting, we take a purely geometric approach, as the horizon is essentially
determined jointly by the intersection curve of the surface and the normal-oriented hemi-
sphere, and the central projection of visible contour edges onto the hemisphere (see Fig.
2.6), whichever has a larger elevation angle when viewed from p at a certain azimuthal an-
gle. The horizon map A at p becomes a function that associates an azimuthal angle with
an elevation angle. Letting elevation angle at azimuthal angle 6 be h(6), the amount of

occlusion at p can be obtained by integrating the horizon map:
1 2z
Occlusion = —/ sin(hp(9))d9.
2r 0

A discrete horizon map can be created by sampling from the horizon at N, azimuthal direc-

tions. We can approximate the amount of occlusion at p from its horizon map as follows:

Ny,
1 . 2rwi
Occlusion = — sin(h,(=)). 2.1
Na ,Z‘ PN,

Meanwhile, the direction of maximum occlusion can be estimated by locating the direction
with maximum elevation angle from the “smoothed” horizon map. The original horizon map
may consist of a series of sharp peaks or even plateaus from which it would be extremely
difficult to deduce a meaningful critical direction. Therefore, we have to smooth out those
peaks to figure out the roughly average direction of a cluster of summits. In particular, we
smooth horizon maps by discrete Fourier transform: after discrete Fourier transform, terms
of high frequencies (noises) are removed and a “smoothed” horizon map (see Fig. 2.7) can

be obtained by applying inverse discrete Fourier transform.
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Fig. 2.7 Horizon maps before (the blue curves) and after (the orange curves) “smoothing.”
The direction of maximum occlusion (indicated by the red lines) is then defined as the di-
rection with the maximum elevation angle over the “smoothed” horizon map. Note its dif-
ference from the single direction with the maximum elevation angle in the original horizon
map (the dashed line in magenta). Reproduced from [16].

To extract feature lines with occlusion, for a vertex (a green dot in Fig. 2.8) adjacent to a
sharp crease, its neighborhood size should be large enough to reach its nearest, most “salient”
adjacent edge (highlighted in orange in Fig. 2.8) to ensure that the critical direction (a red
arrow) at the vertex points to the edge. A local neighborhood size smaller than that, such
as that indicated by the purple circle around the vertex in Fig. 2.8, would leave the vertex
without a meaningful critical direction or point to some unpredictable direction as a result
of trivial perturbation of surface normals. We refer to neighborhood size determined in this

way as the minimum local neighborhood size.

Appendix B.1 presents a framework for defining critical directions from the viewpoint of

integral invariants.
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Fig. 2.8 The minimum local neighborhood size (the blue circle) ensures the definition of a
meaningful critical direction at the vertex (highlighted in green) adjacent to a sharp crease
and consequently enables extraction of feature lines over the crease. Reproduced from [16].



Chapter 3

A novel line-tracing strategy

3.1 Line-tracing in related work

As mentioned in Section 2.1, a common method [11, 26, 17] for locating the local extrema
of a certain geometric property / (e.g. principal curvatures) over mesh edges is locating
the zero-crossings of the directional derivatives of the property along corresponding critical

directions t’s (e.g. principal directions of curvature).

3.1.1 Their mechanism

Intuitively, if critical directions ts along a mesh edge undergo an arbitrarily radical change, it
is impossible to predict how t behaves over the edge or if the edge contains a local maximum.
Also, as critical directions at mesh vertices are supposed to be roughly perpendicular to
nearby feature lines (see Fig. 2.1), if a mesh edge is crossed by a roughly “straight” feature
line, critical directions at both end vertices of the edge should be perpendicular to it (see

Fig. 2.2), that is, the critical directions at both end vertices should be parallel.

For this reason, we limit the scope of our discussion for the moment to cases in which critical

directions at both end vertices and anywhere between them on an edge are relatively constant

13
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(ignoring vector orientation). Ideally, we assume that the critical directions t(u) and t(v) at
both end vertices u, v of an edge [u, v] are roughly parallel, pointing in opposite directions:
t(u), t(v) and the edge [u, v] lie approximately in the same plane, which is also an unspoken

starting premise of the aforementioned existing methods.

There can be no more than one maximum over an edge. Typically, detecting a local maxi-

mum over the edge [u, v] is a two-step process:

(1) Detecting the zero-crossing of the directional derivative DI,

(i1) Verifying if the extremum is a maximum.

Note that the critical directions t’s at u and v are oriented to point to directions with positive
derivatives along which the geometric property is supposed to increase. For (i) and (ii),

Ohtake et al. [26] accordingly adopted a 2-step maxima test:

e t(u)-t(v) <0

Intuitively, if an edge [u, v] contains a local maximum or, equivalently, a feature line crosses
the edge, t(u) and t(v) should “point to” each other (see Fig. 3.1 left), entailing that they
point in opposite directions simply because, if they point in roughly the same direction (see
3.1 right), the nearby feature line (which is expected to lie within the shaded area) is unlikely

to cross the edge [u, v] in the first place.

e tu)-(v—u)>0andt(v)-(u—v) >0

“Pointing to” each other also implies that the angle between the critical direction and the
edge at both end vertices, @ and f, is acute. This test ensures that the extremum attained
over the edge [u, v] is indeed a maximum, ruling out cases when t(u) and t(v) point to
different nearby feature lines (see Fig. 3.2 right), in which there are clearly no intersections

between feature lines and the edge.



CHAPTER 3. A NOVEL LINE-TRACING STRATEGY 15

t(u)

t(u)'y,
AN . / B

Fig. 3.1 A test for detecting the zero-crossing of DI shared by both [26] and [17], which
checks if critical directions at both end vertices are pointing in opposite directions.

t(u)y

u/<; T v 'Bo/t(v)

Fig. 3.2 A test for maxima suggested in [26] that checks if both a and f are acute.

Note that in both [26] and [17], for (i), the existence of a zero-crossing of DI, the direc-
tional derivative of the geometric property / along the critical direction t, is confirmed by
checking if the angle between t(u) and t(v) is obtuse. After that, Judd et al. [17] devised
a slightly different test that eliminates minima after zero-crossing lines are drawn. They
dropped a perpendicular from each vertex to the zero-crossing line (a line connecting two
zero-crossings in a mesh triangle) and checked if the angle between the critical direction to
the perpendicular at each vertex was acute (see Fig. 3.3 down). This test proves more robust
than the one suggested by Ohtake et al. [26], which in effect substitutes the edge direction

for the perpendicular.
The location of the zero-crossing is then interpolated using the magnitude of the directional
derivatives at both vertices:

B | DI @)|| v+ || DI (V)| w
D@ + DI

3.1)
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3.1.2 Their defects

Evidently, when the angles (or their supplementary angles) between the critical direction
and the edge at both end vertices u and v are relatively small, the aforementioned maxima
tests can be trusted to make the right decision about the existence of a local maximum over

the edge [u, v] (see Fig. 3.3 top).

t(u)\ . t(v)
u / \‘\ / v l/u/»/ !
" t(u)
L2
t((v)
T tw

Fig. 3.3 Tests for maxima: [26] checked if both angles between critical directions and the
edge were acute (top); [17] checked if the angle between the critical direction and the corre-
sponding perpendicular was acute at all three vertices of a mesh triangle (down). Both tests
make the right decision when these angles (or their supplementary angles) are relatively
small.

Cause of fragmentation

However, ridge-valley lines fragment when at least one of the two angles between the edge
and the critical directions at the end vertices is obtuse (see Fig. 3.3 top right). The maxima
test of Ohtake et al. [26] becomes unreliable when the critical directions at the end vertices
are almost perpendicular to the edge direction. This can be verified in Fig. 3.4 left, in which
a potential maximum over [u, v] was missed. The maxima test of Judd et al. [17] is more

robust. Nevertheless, line fluctuation causes failure in the maxima test, which eventually
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leads to line fragmentation. Note that in Fig. 3.4 right, with a local maximum over [u, V]
“pulled” away from where a potential feature line should lie (the shaded region), a zero-
crossing line almost parallel to t(u) is generated and later eliminated due to the obtuse angle
between the critical direction and the corresponding perpendicular at u, which results in

maxima test failure.

Fig. 3.4 Maxima tests of [26] and [17] may result in fragmentation (left and right) and fluc-
tuation (right) of lines.

Cause of fluctuation

So far, we have discussed how existing algorithms determine the existence of local maxima
over mesh edges, which tends to result in line fragmentation. The location of such a local
maximum over an edge [u, v], however, is completely based on the magnitude of directional
derivatives D;I at both end vertices (see Eq. 3.1), which can be defined as the amount of

change in [ per unit of distance along t.

Clearly, Eq. 3.1 is based on the unstated assumption that the change of DI is approximately
linear over the entire edge [u, v], implying that critical directions t's along an edge are

relatively constant (ignoring vector orientation) (see Section 3.1.1).
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The red curves in Fig. 3.5 and Fig. 3.6 illustrate how the geometric property I changes along
amesh edge [u, v]. If ] attains its local maximum somewhere along the curve (corresponding
to the red dot), the directional derivative DI at that point should be zero. We assume that
the change of the magnitude of DI is approximately linear over the entire edge [u, v]. Then,
according to Eq. 3.1, the local maximum should be located closer to the vertex with a smaller

DI (in terms of magnitude).

I D (V)
D¢l (u)

7T

[IDe] (w) ||t (u)
u

—v
1Del (V)11 (v)

Fig. 3.5 When the unstated assumption holds, the location of a local maximum over a mesh
edge [u, v] can be estimated with Eq. 3.1.

Consider the case when a potential feature line (which is expected to lie roughly in the shaded

region in Fig. 3.4 right) is almost parallel to the mesh edges.

On both edges [p, q] and [p, s], D;I at p is smaller than D[ at the other end vertex. As a
result, the local maxima over these two edges should be located closer to p. Nonetheless,
the location of the maximum over [u, v] may be “pulled” toward v when v is associated with
a directional derivative smaller (in terms of magnitude) than both q and s. This could occur
when v is far enough from the potential feature line that the change of D;I in the vicinity of
v cannot be regarded as linear (see Fig. 3.6); that is, when the aforementioned assumption

does not hold any more.
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[ Del (V)

1Del ()l Cw).
u : &

\
1D (W[ t(v)

Fig. 3.6 When the unstated assumption does not hold, estimation of a local maximum over
a mesh edge [u, v] based on Eq. 3.1 can no longer be trusted. Dots in orange and red
correspond to the estimated and expected locations of the local maximum, respectively.

Noticeably, in both maxima tests, the existence of local maxima depends solely on critical
directions, and the locations of local maxima rely solely on the magnitudes of directional
derivatives. While the critical direction t indicates the direction along which the geomet-
ric property [ is supposed to increase in value, the directional derivative yields the rate of
that increase along t. Observation of frequent fluctuation and fragmentation suggests the

necessity of incorporating another indicator into the line-tracing strategy.

3.1.3 An attempt to reduce fragmentation

Yoshizawa et al. [37] pointed out that typical ridge-valley line-extraction algorithms [26]
tend to result in line fragmentation. They offer a “gap-jumping” strategy for connecting
close, disconnected lines in situations similar to those demonstrated in Fig. 3.7, when the
angles between end-segments and the segment connecting the two end-points are within a

certain range (@ < %,/} < %ﬁ’ < %),
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This requirement is likely to be satisfied when two end-segments are roughly parallel. How-
ever, not only are these thresholds for angles determined empirically, but nearby line seg-

ments are connected almost exclusively according to their positions.

That is to say, although this strategy may be able to produce pleasing results on some oc-
casions, it fails to deal with the root cause that gives rise to fragmentation, which we have

covered in depth, and hence lacks the theoretical ground to be a fundamental cure.

Fig. 3.7 Left: a situation in which it is desirable to connect two nearby lines. Right: angles
a, f,y are used to measure when gap-jumping is necessary. Reproduced from Fig. 4 of [37].

3.2 Proposed method

Since ridge-like lines turn into valley-like lines by reversing the surface normals, without
loss of generality, the discussion hereafter focuses on extracting valley-like feature lines with
different sets of geometric properties and critical directions. Following the mechanism of
existing ridge-valley-like line extraction [26, 17], the feature lines of interest can be defined

as the loci of points where certain geometric properties attain their maxima.

3.2.1 Theidea

If a mesh edge [u, v] contains a local maximum—that is, a feature line crosses the edge—

it is self-evident that a feature line (segment) exists in the 1-ring neighborhood of both end
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vertices. Recall that by definition, the critical direction t in the ideal case is perpendicular
to the nearby feature line [15]. In other words, starting from the end vertex v, somewhere
along t(v), the value of  should attain a maximum as we reach the nearby feature line at
location p,. Needless to say, py is the nearest maximum accessible from v and is located in
a small-enough neighborhood centered on v. Similarly, for vertex u, its nearest maximum

P, should be somewhere along t(u) (see Fig. 3.8 left).

Since both p,, and p, are located on the nearby feature line, the line passing through them
can be considered the approximate feature line in the vicinity of the mesh edge [u, v]. Once
again, assuming t(u) and t(v) are roughly parallel, whether edge [u, v] contains a local max-

imum now becomes whether edge [u, v] intersects with the line passing through p, and

Py-

Therefore, instead of the linear interpolation of directional derivatives, we consider locating
maxima over mesh edges via the linear interpolation of the nearest maxima of mesh vertices.

Our proposed method is premised on the following assumption:

o For a mesh vertex v, the nearest maximum p, in its vicinity along its critical direction

t(v) can be located.

Since critical directions t’s along edge [u, v] are roughly parallel, p,,, p, and the edge can be
considered approximately coplanar. If p,, and p, are not on the same side of the edge [u, V]
(see Fig. 3.8 left), the local maximum over the edge can then be located at the intersection
of the line segment [p,,, py] and the edge [u, v]. If, on the contrary, p, and p, are located on
the same side of [u, v], the only possible intersection of the edge [u, v] and the line passing
through p, and p, falls on the extension of the edge (see Fig. 3.8 right); that is, the edge [u,

v] does not contain a local maximum.
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Fig. 3.8 Detecting and locating local maxima over a mesh edge via interpolating the nearest
maxima of vertices when critical directions at end vertices are parallel. A local maximum
exists over the edge [u, v] when p,, and p, are located on different sides of the edge (left).
Otherwise, the edge [u, v] does not contain a local maximum (right).

By introducing the locations of the nearest maxima for mesh vertices, our proposed method
for line-tracing is expected to generate lines with less fragmentation (see Fig. 3.9 right) and

fluctuation (see Fig. 3.10 right) than existing algorithms.

Fig. 3.9 Left: Failure in the maxima test of Ohtake et al. resulted in fragmentation of lines.
Right: Our proposed method is expected to accurately detect and locate the local maximum
over edge [u, v]. The shaded region indicates where a potential feature line is expected to
lie. The critical directions at mesh vertices are illustrated with blue arrows. The length of a
blue arrow is proportionate to the magnitude of D,/ at that vertex. Green dots indicate the
estimated nearest maxima of mesh vertices.



CHAPTER 3. A NOVEL LINE-TRACING STRATEGY 23

Fig. 3.10 Red lines specify feature lines generated with the strategy of Judd et al.[17] (left)
and our proposed method (right).

3.2.2 The algorithm for our line-tracing strategy

Fig. 3.11 demonstrates the pipeline of our line-tracing strategy. We now address the details

of the algorithm.

Detection & Location

Estimation Detection & .
L Line
Inout of nearest Estimation of tracin Output
P maxima per local maxima 9 p
per facet
vertex per edge

Algorithm 1 Algorithm 2

Fig. 3.11 Pipeline of our proposed method.

Estimation of the nearest maxima for mesh vertices

By definition, if a feature line exists in the vicinity of a mesh vertex v along the critical

direction t(v), the geometric property / should increase (in terms of absolute value) until
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it reaches a peak value at the point closest to v on the feature line and decrease thereafter.
Therefore, it is intuitive to fit a quadratic function f(s) to such a geometric property along
the critical direction t over the vicinity of v. Assuming t(v) is a unit vector, for N, vertices
ViVas Vi, in the neighborhood of v and itself, fit f(s) to the geometric property I by

minimizing the following cost function:

Ny

> ow (Itvy) - 760)°, (3.2)

i=0

[Ivi-vl

where vg =v,s; = (v, —v)-t(v), w; =e o (see Fig. 3.12).

Fig. 3.12 Local fitting of f(s) to the geometric property I in the vicinity of the mesh vertex
v along t(v).

After this local fitting of f(s) to the geometric property, we can locate the nearest maxi-

mum p, along t(v), which maximizes f(s), S € [Syin> Smax). Where s,,;, and s, are the

minimum and maximum of 5; (i =0, ..., N f), respectively. In our implementation, the size
of the neighborhood over which such fitting is performed depends on the type of geometric

property utilized in feature-line extraction. In other words, we plug into 1-ring and 2-ring
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neighborhoods when occlusion and curvature are employed, respectively. By default, ¢
takes the value of the Euclidean distance between the mesh vertex and its nearest adjacent

vertex.

Algorithm 1 presents the details of the procedure for estimating the nearest maxima for mesh

vertices.

Algorithm 1: Estimating the nearest maxima for mesh vertices

input : A polygonal mesh, geometric properties I’s, and critical directions t’s
defined at all mesh vertices
output: Nearest maxima of all mesh vertices

foreach vertex v of the mesh do

X « {vy, vl,vz,...,va} ;

Fit f(s) to I over X (quadratically) by minimizing Eq. 3.2;

if f is convex then
L Fit f(s) to I over X (linearly) by minimizing Eq. 3.2;

Find and store the nearest maximum p, of v along t(v) over X where f(s),
S € [Sin> Smax > attains its maximum;

Detection & estimation of local maxima over mesh edges

Similar to existing methods, our proposed method is based on the assumption that critical
directions t’s are roughly parallel along an edge [u, v]; that is, t(u) and t(v) are parallel so

that the line segment [p,,, py] and the mesh edge [u, v] are approximately coplanar.

Nevertheless, [p,, py] and [u, v] often do not lie exactly in the same plane, ruling out the
possibility of any intersection between the two. Assuming that both t(u) and t(v) are unit
vectors, we rotate critical directions t(u) and t(v) slightly by the same amount until they

become
e Wot® o, -t 3.3)
[[t(u) — t(v)|| [lt(v) — t(w)]|
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respectively. Now ¢ and d become parallel, pointing in opposite directions (see Fig. 3.13
right). The points p,’ and p,’, the projection of p, and p, onto ¢ and d, respectively, are

checked to see if the mesh edge [u, v] contains a local maximum (see Fig. 3.13 left).

pa, Y
\*hb
N
s.\\\\ —t(v)
l'( N A t(ll)
u S 1
N 1
~ |
\\p 1
u L N v :
N 1
\/\ /
pt/ Pv !

¥
t(v) —tW ¢(wv)

Fig. 3.13 When p,,, p, and the mesh edge [u, v] are not coplanar, find a local maximum over
the edge [u, v] at the intersection of [u, v] and [p,’, p,’] (left). t(u) and t(v) are rotated
slightly to a common direction, which is equivalent to the average of t(u) and - t(v) (right).

A local maximum over the edge [u, v] is then detected and determined as illustrated in Fig.
3.8. If the edge contains a local maximum p, obviously /AAp,'pu ~ /\p,’pv. The similarity

of these two triangles leads to

lp—ull _ [Ipa"—ul _
P =¥l ~ oy =]

A.

We can then approximate the location of p with linear interpolation.

a1 e v e v

= = (3.4)
Rz PV EY PR



CHAPTER 3. A NOVEL LINE-TRACING STRATEGY 27

Algorithm 2 specifies the procedure of estimating local maxima over mesh edges in detail.

Algorithm 2: Estimating local maxima over mesh edges
input : A polygonal mesh, geometric properties I’s, and critical directions t’s
defined at all mesh vertices and the estimated nearest maxima of all mesh
vertices
output: Local maxima over mesh edges

foreach edge [u, v] of the mesh do

p, < location of the nearest maximum of u;

p, < location of the nearest maximum of v;

Rotate t(u) and t(v) to ¢ and d, respectively, based on Eq. 3.3 so that they
become strictly parallel;

p,’ < Projection of p, onto ¢ ;

p,’ < Projection of p, onto d;

if line segment [p,’, p,’] intersects the edge [u, v] then
L Compute and store the location of the intersection based on Eq. 3.4 as the

local maximum over the edge;

else
L There is no local maximum over the edge;

Tracing lines per mesh facet

We iterate over each mesh facet to connect the local maxima over its edges, forming one line

segment of a feature line. This process creates a “network” of feature lines.

For a mesh edge to contain a local maximum, the critical directions at both its end vertices
should be roughly parallel, and the nearest maxima of both end vertices should lie on differ-
ent sides of the edge. Therefore, notably, triangles with one local maximum over each edge
are theoretically non-existent. However, the assumption of parallel critical directions along
amesh edge is often violated in the vicinity of “junctions.” The topic of tracing lines in such

cases will be revisited in Section 3.3.4.
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3.3 Experiments

3.3.1 Evaluation criteria

A set of extracted feature lines can be regarded as a graph whose vertices correspond to points
sampled over mesh edges. A single feature line corresponds to one connected component in
the graph. Therefore, given such a graph, we apply the following qualitative criteria to the

evaluation of feature lines:

e Average length of lines

- The average length of all connected components in the graph, which can easily
be obtained given the total length and number of lines. Intuitively, line frag-
mentation creates more lines and consequently a shorter average length. Longer

average length indicates less fragmentation, in other words.
o Average fluctuation of lines

- The average deviation of extracted feature lines from straight lines. Specifi-

J
(-, . .
%, where 6, is the angle between each pair of con-

nected edges in the graph and J is the total number of such angles. Frequently,

cally, it is defined as

“wiggling” lines are obviously with larger deviation of lines on average; that is,

smaller average deviation indicates less line fluctuation.

3.3.2 Rendering with geometric properties

As the term “feature-line extraction” may be used in a broad sense (see Fig. ??) from Chapter
4, we use “rendering” instead to refer specifically to the process from detection and location

of local maxima over mesh edges to line tracing over mesh facets (see Fig. 3.11).

Recall that the two building blocks of feature-line extraction are the geometric property
and the critical direction. The following terms require clarification, as they will appear

repeatedly in experiments starting from Chapter 3.
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e Rendering with curvature

— Rendering with the principal curvature and the principal direction of curvature;

— Feature lines to be extracted are the loci of the points where the principal curva-

ture attains local extrema along the principal direction of curvature.
e Rendering with occlusion

— Rendering with the occlusion and the direction of maximum occlusion;

— Feature lines to be extracted are the loci of the points where the occlusion attains

local maxima along the direction of maximum occlusion.

3.3.3 Results

Fig. 3.14 and Fig. 3.15 compare two strategies for tracing valley lines. A model is rendered
with valley lines based on the same pair of geometric property and critical direction but with

different strategies for tracing local maxima over mesh edges.

Fig. 3.14 employs a differential invariant, the principal curvature, and the principal direc-
tion of curvature, while Fig. 3.15 is based on the occlusion and the direction of maximum
occlusion. In both figures, the results generated by tracing the zero-crossings of directional
derivatives are shown on the left, and lines traced via our proposed method—interpolating
the nearest maxima of mesh vertices—are shown on the right. Directional derivatives of
occlusion are defined similarly to the directional derivatives of view-dependent curvature in

[17].

Our proposed method can generate coherent lines without fragmentation (outlined with red
boxes) or fluctuation (outlined with blue boxes) in areas where typical ridge-valley line-
extraction algorithms, such as that of [26], fail. Specifically, our proposed method is effective
under unfavorable conditions, such as when critical directions are almost perpendicular to

mesh edges (see Fig. 3.14 right).
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Fig. 3.16, Fig. 3.17, and Fig. 3.18 illustrate a few more comparison examples !. Our pro-
posed method generally outperforms existing methods when expected feature lines almost
coincide with mesh edges (see the red boxes in all the corresponding figures), that is, when
critical directions are almost perpendicular to mesh edges. As Table. 3.1 demonstrates, in

most cases, it generates longer lines with less fluctuation on average.

Table 3.1 Comparison of line-tracing strategies

Number of lines ~ Average length ~ Average Fluctuation

Models

rtsc ours rtsc ours rtsc ours
casting (Fig. 3.14) 46 32 0.305 0.503 0.271 0.239
jack o’lantern (Fig. 3.16) 138 81 8.651 15.201 0.125 0.111
pedestal (Fig. 3.17) 34 29 19.206 23.524 0.0668 0.0720
moai (Fig. 3.18) 71 24 23921 172566 0.173 0.160

3.3.4 Discussion

An evident limitation of this strategy is its assumption that critical directions at both end
vertices are roughly parallel. As visible in Fig. 3.16-Fig. 3.19, in which edges violating
the assumption are highlighted in orange, such edges are mostly located near “junctions” of

multiple valleys or randomly over almost flat regions.

Naturally, our proposed line-tracing strategy is not applicable to cases of critical directions
changing radically along an edge, a limitation shared by existing feature-line extraction al-
gorithms. This could occur when the edge is in the vicinity of a potential “junction”; that
is, there are actually more than one nearby valleys. Our strategy may result in undesirable

artifacts, as we can observe in Fig. 3.15 right (bounded by a yellow box).

'The models are from https:/free3d.com (jack o’lantern, moai) and https://www.turbosquid.com (Roman
pedestal).
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Consider a parallel test that checks if critical directions at both end vertices of a mesh edge are
far from parallel and excludes edges that violate the assumption. Fig. 3.19 compares feature
lines extracted with and without the parallel test. Lines happen to join near “junctions” (see
the orange boxes in Fig. 3.19) without the parallel test, with longer length on average but

also more fluctuation.

Table 3.2 Comparison of feature lines in Fig. 3.19

Parallel test w/o w/
Number of lines 6 29
Average length 115.116 23.524
Average fluctuation | 0.0978  0.0720

We now examine how well the assumption works in reality. Consider a rotated cosine wave
surface patch whose ground truth for feature lines is a circle of radius # that is explicitly
computable (see Fig. 3.20 left). As shown in Table 3.3 and Table 3.4, of the mesh edges
crossing the feature line, which is an approximation of the ground truth with a mean squared
error of 0.00688, 100.00% have differences in critical directions less than %”, 92.68% have
differences less than ;—Z, and 73.17% have differences less than %. A smaller tolerance to the
differences in critical directions gives rise to more fragmentation of lines. For this surface
patch, a tolerance of %” is large enough to ensure extraction of lines without fragmentation.
In our implementation, we find a tolerance of % generates reasonably good results in terms
of average length and average fluctuation for models listed in Table 3.1.

Table 3.3 Verification of the assumption for the rotated cosine wave model with low resolu-
tion (see Fig. 3.20 left)

z‘z_n‘z‘n

4 9 36 6

Ratio of mesh edges | 100.00 | 100.00 | 92.68 | 73.17

Tolerance ‘

satisfying the assumption
among edges crossing the

feature line (%)
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Ground truth is usually absent in the context of feature-line extraction, so the concepts of
average length and average fluctuation are our major evaluation criteria for feature lines. For
the following simple analytical surfaces (see Fig. 3.20, Fig. 3.21, and Fig. 3.22), however,

the ground truth of feature lines is explicitly computable.

Fig. 3.20 A rotated cosine wave model of different resolutions rendered with valley lines:
low (left), medium (middle), and high resolution (right). Short random lines are filtered by
length. Both the total and average length of the ground truth are 19.739 (272).

Both Table 3.4 and Table 3.6 demonstrate that feature lines with smaller mean squared error,
which are better approximations of ground truth, generally have smaller average fluctuation

and longer average length.

Table 3.4 Comparison of extracted feature lines in Fig. 3.20

Low Res Medium Res High Res

MSE 0.00688 0.000230  4.565x 107>
Number of lines 1 1 1
Average length 19.581 19.719 19.713
Avg fluctuation 0.325 0.131 0.0580

When short random lines are not removed completely (see Fig. 3.21), as the number of lines
increases, their average length decreases considerably. The average length of lines proves to

be a meaningful indicator of line fragmentation.

In other words, the quality of feature lines can be improved by removing shorter lines or

lines with more fluctuation.
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Fig. 3.21 A rotated cosine wave model of different resolutions rendered with valley lines:
low (left), medium (middle), and high resolution (right). Short random lines are not filtered
completely.

Table 3.5 Comparison of extracted feature lines in Fig. 3.21

Low Res Medium Res High Res

MSE 1.00991 1.114 1.477
Number of lines 7 7 7

Average length 4.0139 4.267 4.635
Avg fluctuation 0.354 0.318 0.302

Fig. 3.22 A cube model of different resolutions rendered with ridge lines: low (left), medium
(middle), and high resolution (right). The edge length of the cube is 2.
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Table 3.6 Comparison of extracted feature lines in Fig. 3.22

Low Res Medium Res High Res

MSE

Number of lines
Total length
Average length

Avg fluctuation

3.755% 1070 5.401x107° 9.002 x 1077

15 17 17
15.563 17.531 18.765
1.0375 1.0312 1.103
0.135 0.0559 0.0253
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Chapter 4

Feature-region classification &

separation

This chapter is part of an unpublished paper, and thus is not included in this abridged dis-

sertation.
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Chapter 5

Overall comparison & Discussion

This chapter is part of an unpublished paper, and thus is not included in this abridged dis-

sertation.
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Chapter 6

Conclusion and future work

This chapter is part of an unpublished paper, and thus is not included in this abridged dis-

sertation.
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Appendix A

Differential Geometry

As differential properties, including curvatures, are important indicators of surface geome-
try, we provide a brief overview of their definitions on 3D surfaces—either smooth surfaces
or polygonal meshes—to facilitate understanding their implications in feature-line extrac-

tion.

Generally, the term “differential geometry” refers to the study of geometric problems using
the techniques of differential calculus, integral calculus, linear algebra, etc. This section

introduces the basics of differential geometry by referring mainly to [18], [9] and [10].

A.1 Curvature of planar curves

For a smooth planar curve y among a myriad of circles through any point p € y, there is a
circle that best approximates it—that is, that shares the same tangent direction with y at p.

This is known as the osculating circle, and its radius R is called the radius of curvature.

Intuitively, the reciprocal of R, 1/R, indicates the curvedness of the curve y, that is, how
much it deviates from a straight line, so it is called the “curvature” of curve y: the more the

curve bends, the bigger the curvature.
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Definition A.1 (Osculating circle, radius of curvature, curvature). For an arbitrary point
p on a planar curve y, the circle through p that best approximates y is called the osculating

circle, its radius R the radius of curvature. The reciprocal of R is called curvature.

Fig. A.1 The osculating circle (filled in gray) of the curve y approximates y the best at p.
Reproduced from [10].

A.2 The Geometry of Surfaces

Consider a parameter plane with coordinates (#, v) and a connected region D. A surface S

can thus be parameterized in the following form:
S(u, v) = (x(u, v), y(u, v), z(u, v)) (A.1)

where x, y, and z are functions with infinite continuous derivatives. In other words, the
geometry of the surface S can be described through a map f from D in the Euclidean plane

R? to (D), which is a subset of R3.
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Note that for the Jacobian matrix of S,

xu xU
Yu Yo
zZ, Z,
or equivalently,
ox  Ox
v
9
ou ov
9z 9z
Ju  Jv

Its two columns S, and S, or, interchangeably, % and % are both tangent vectors of the
surface, and they are not necessarily perpendicular. That the plane spanned by S, and S, is a
tangent plane of S is self-evident; that is, S, and S, form a vector basis for the tangent plane.
Consequently, for every point (1, v) in the parameter plane, there is a corresponding tangent
plane at S(u, v) of surface S. Both the tangent plane and the surface share the same normal
vector n, which is determined by the cross product of S, and S, at the point S(u, v) (see
Fig. A.2). As aresult, the normal only depends on the first-order derivatives of the surface
parameterization, and the tangent plane is often called the “first-order approximation” of the

underlying surface around the point.

For an arbitrary curve y on surface S, there is a corresponding planar curve

u=u(),v=0v (A.2)

on the parameter plane with ¢ as the curve parameter, which is not necessarily the arc length.

The curve y could be expressed in the form

y(@®) = yu@, v()) (A3)
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Fig. A.2 A tangent plane of the surface S spanned by tangent vectors S, and S,,, with surface
normal n. Reproduced from [9]

Consider the tangent vectors along y. As y C S, they could be expressed based on the chain

rule:

y'(t): ﬂ— %ﬂ'i‘ a_yﬂ

- - Su 4+ S A4
di  oudi | ovdi ult + Syv (AD

To find the length of such a tangent vector of y, we introduce the inner product.

GOy =1y ®I?
S.:S, S,-S, || «
W | V]
S,:S, S, Sy v

., | EF u
-+l g o)lv

= Eu'> +2Fu'v' + Gv'?
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in which

E=S,-S.F=8,-S,,G=S,-S,. (A.5)

The length of the curve segment on y when ¢t moves from « to f is thus

B B 2 2
VEw? + 2Fu'v + Gudr = \/E(@) +2F@@+G(@) dt
N N dt dt dt dt

p
- / VEdu® + 2Fududv + Gdv2di
(4

Definition A.2 (First fundamental form). The quadratic form
I=Eud?+2Fu'v +Guv'* (or Edi®+2Fdudv + Gdv?) (A.6)

is called the first fundamental form of the surface.

Furthermore, as mentioned previously, any tangent vector lying in the tangent plane of S
at point p could be expressed as a linear combination of S, and S, at that point, such as

&S, +1S,, where (&, ) is the coordinate of the vector on the tangent plane.

Suppose a; and a, are one pair of tangent vectors at p, that is, a; = &S, + 1S, a, =

&Sy + 1,S,. Consider the inner product of a; and a,:

S,-S, S,-S
(a.a,) = [§ ’11][ Lo U“@}

S,-S, S,-S, 1y

el o]

For clarification, the 2 X2 matrix
E F
(A7)
F G
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is called the matrix of the first fundamental form. It is also expressed with I under some

occasions.

Recall that the normal of a surface, that is, the normal of the tangent plane of the surface,
only depends on the first-order derivatives of the surface parameterization. For second-order
derivatives of the surface, once again, we return to the space curve y(u (¢), v (¢)) on surface
S with the aforementioned parameterization and further examine the behavior of the tangent

plane of S (the normal n of S) when the point of tangency moves around a tiny surface patch.

Definition A.3 (Second fundamental form). The quadratic form
II=Lu'?+2Mu'v' + N> (or Ldi® +2Mdudv + Ndv?) (A.8)

is called the second fundamental form of the surface, in which

L=-S, n,, M=-S,-n,=-S,-n,, N=-S,-n,. (A.9)
Similarly, the 2 X2 matrix
L M
(A.10)
M N

is called the matrix of the second fundamental form or the second fundamental tensor.

It is also sometimes expressed with II.

A.2.1 Curvature of smooth surfaces

Let us consider an arbitrary point p on a smooth, closed surface. Unlike the case of a curve,
understanding the curvature of a surface can be much more complicated, as it can bend

sharply along one direction while being completely flat along another, such as a cylinder.

In fact, the curvature of a surface is typically defined in terms of the curves contained in it.
Consider a plane containing both a, an arbitrary tangent vector of the surface at p, and n,

the normal of the surface at p. This plane intersects the surface, and the curvature k of this
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intersection curve (a normal curve) is called the “normal curvature” of the surface in the

direction a (see Fig. A.3).

Fig. A.3 Intersection of a surface with a normal plane, the tangent to the intersection curve
being a. Reproduced from [9]

Generally, multiplying the second fundamental tensor II by any vector in the tangent plane

gives the derivative of the surface normal in that direction,

Ila = D,n, (A.11)

which is a vector in the tangent plane.

As the normal curvature at any given point p could be regarded a function of the tangent
direction at that point, we are interested in when this function gains its extrema, that is, when
the surface bends the most. Suppose that unit vectors X; and X, indicate the directions along
which we find, respectively, the maximum and minimum normal curvatures «x; and k,. These
directions and their corresponding normal curvatures are thus called the “principal directions

(of curvature)” and “principal curvatures” of the surface at p, respectively. Noticeably, the
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normal curvature fluctuates smoothly with tangent direction on a smooth surface, ranging

from K to k5.

The mean curvature and Gaussian curvature are closely related quantities (with especially
meaningful interpretation on discrete surfaces). While the former is simply the arithmetic

mean of two principal curvatures, the latter is the square of their geometric mean.

Definition A.4 (Mean curvature, Gaussian curvature). For an arbitrary point p on a
smooth surface, let k| and k, be principal curvatures of the surface at p. Given

K|+ K,

H = :
2

K =« K, (A.12)

, H and K are the mean curvature and Gaussian curvature of the surface at p, respectively.

The Gaussian curvature measures the spherical spread of the surface normal, while the mean
curvature can be considered the average of dihedral angles. Therefore, they are also called

intrinsic and extrinsic curvatures, respectively.

A.2.2 Curvature of discrete surfaces

In a discrete differential geometry setting, reliably estimating per-vertex curvature [29] re-

quires geometric information of at least 2-ring neighborhoods of mesh vertices.

First, per-vertex normals are estimated as the weighted averages of the per-facet normals of
neighboring facets. The contribution of the facet Apyp;p, to vertex p; (i = 0, 1, 2) (see
Fig. A.4) is specified by weight,

sin 6;

w, =—— (A.13)
P ey lllle ol

with all indices taken mod 3. A coordinate system (u,,, v,,) in the tangent plane of each vertex

p is then constructed.
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Given Equation A.11, the directional derivatives of surface normals along the directions
of mesh edges are turned into a set of linear constraints on the elements of the per-facet

curvature tensor II (see Fig. A.4).

n,

P1

Fig. A.4 Directional derivatives of surface normals along directions of mesh edges turned
into a set of linear constraints on the elements of II. Reproduced from [29]

| o | 2| M2 (A.14)
| -V [ | mp—mny) v |

| & || Momm)n (A.15)
| e;-v [ | ng—my)-v |

e 2 (A.16)
€ -V (n; —ng)-v

Here, (u,v) makes an orthonormal coordinate system on the plane determined by facet

Apoplpz. The elements of II—L, M, and N—can then be solved using least squares.
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For each vertex p (with a coordinate system of (u,, v,,) for the tangent plane at p) of a facet,
assuming the facet and vertex normals are equal, re-express per-facet curvature tensor Il in

terms of (up, Vp) as

L, M
{ PP ] (A.17)
My, Np
, in which
—_n T _n T _ v T
Lp =u, IIup,Mp =u, IIVp,Np =Vp IIVp. (A.18)

When the facet and vertex normals are unequal, first, one of the coordinate systems is rotated

to be coplanar with the other, around the cross product of their normals.

Per-vertex curvature tensors are then defined as the weighted averages of the re-expressed
per-facet curvature tensors (Eq. A.17) of neighboring facets with “Voronoi area” weighting,

that is, the portion of the area of a neighboring facet that lies closest to a vertex.



Appendix B

Defining Critical Directions from

Integral Invariants

B.1 A Framework for Defining Critical Directions from the view-

point of Integral Invariants

Consider a local neighborhood N’ (p) of size r for a specific point p on a surface, that is, a
Euclidean disk centered on p, which can be constructed by the intersection of the surface
and a kernel ball or sphere with a radius r. In our previous work [15], we explored the
possibility of leveraging N"(p)’, the mapping of N"(p), for definition of critical directions.
It aims to suggest a solution to the problem according to the nature of N"(p)’. Considering
the mapping N"(p)’ of N"(p) onto other geometries (e.g. a plane), we need a “normal”
vector of N"(p) to perform orthogonal projection. Intuitively, this “normal” can be defined
as the normal vector of the plane, onto which the orthogonal projection of the disk or its
boundary, that is, the intersection curve, attains its maximum area or perimeter, respectively.
While Table B.1 names several types of spherical curves that can be derived from N'(p),
Table B.2 summarizes the approaches that can be taken to determine critical directions over

projections of these spherical curves.
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Table B.1 A framework for defining critical directions over local neighborhoods

N'"(p) derived | Geometric implication | Approaches to obtain critical direc-

from the disk of N"(p)’ tions

(@) The surface | ——

patch (of the mesh)
e PCA of the surface patch
within the kernel

ball e PCA of the volume bounded by
the surface patch and the kernel
ball

(b) Spherical

curves (c) The intersection curve e PCA of the spherical curves

of the kernel sphere with )
e PCA of the spherical area
the mesh )
bounded by the spherical curve

(d) The horizon viewed i o o
e Find the critical direction over

the spherical convex hull (SCH)
(e) The boundary of the of (e)

from p

Gauss map of (a
P ) e Find the critical direction from

the circular sequence of eleva-
tion angles (in sampled direc-
tions de-noted by azimuthal an-

gles), which is defined:

1. Based on the “normal” de-
rived from the spherical

curve itself

2. Based on the “normal” de-

fined otherwise
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(c) The intersection curve refers to a sequence of arcs, each of which can be defined exactly

as the intersection of a triangle of the mesh with the kernel sphere

(d) The “horizon” for a given point p on a surface over N’ (p) can be regarded as the boundary

of the visible spherical area over a kernel sphere of radius » when viewed from p.

(e) To define the critical direction from the Gauss map of a disk, we focus on the spherical
area bounded by the boundary of the Gauss map. We can construct the spherical convex hull

of the spherical area, which is a spherical polygon whose sides are segments of great circles.

Table B.2 Defining critical directions from N”(p)’ derived from (b)

N'(p) derived | Geometric implication | Approaches to obtain critical direc-

from (b) of N"(p)’ tions

Projection of (b) | A planar curve on the

along the direction | tangent plane at p e PCA of the planar curve gener-
of the “normal” ated by projection

onto the tangent

e PCA of the area bounded by the

plane at p
planar curve

e Find the critical direction over

the convex hull of the planar

polygon

e Find the critical direction from
the circular sequence of dis-

tances (from the planar curve to

p)

Inspired by the “rotating caliper” method [31], which is originally designed for planar poly-
gons, we can define “diameter” and “width” for a spherical convex hull in a similar manner.

In this case, we look for a pair of great circles that can enclose the spherical convex hull. In
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the meantime, based on the “center” of the spherical convex hull, that is, the aforementioned
“normal” of the disk, we can easily decide the direction with the largest/smallest expansion

or aspect ratio over the spherical convex hull of G(N"(p)).

B.2 Comparison of Integral Invariants

Fig. B.1 The casting model shaded with (from left to right): the occlusion (with occluding
contours), the surface area descriptor, the volume descriptor (both the surface area descriptor
and the volume descriptor are scaled to match the occlusion).

Three different integral invariants-the occlusion, the surface area descriptor, and the volume
descriptor-are compared in Fig. B.1. Critical directions corresponding to the occlusion are
almost perpendicular to the valley, hence generating the longest and smoothest line segment
among the three over the same region (see Fig. B.2 left). Critical directions corresponding
to the volume descriptor, however, fail to exhibit such desirable behavior (see Fig. B.2 right).
This may be because the radius of the kernel ball, that is, the minimum local neighborhood
size (see Section 2.2.2), is too small for it to achieve the accuracy required for feature-line
extraction. Accuracy of the surface area descriptor in this sense lies somewhere between

(see Fig. B.2 middle).

We can see that out of the three, the occlusion generates the most coherent and smoothest
lines. It is also the easiest to compute and manipulate, as it can be estimated with sufficient

accuracy with a much smaller neighborhood than the others.
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