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Abstract

For hypersonic aircraft, significant amount of flight trajectory and control system integration
is necessary in order to achieve requisite system stability and performance. This is due to
the dynamic coupling between flight path and attitude being more prevalent at hypersonic
speed. Furthermore, the operating flight conditions will vary significantly and the ability to
predict the aerodynamic characteristics can be marginal at best. To compensate for flight
condition changes as well as uncertainties in the system, a robust controller can be suggested.
However, the coupling between flight path and attitude still needs to be resolved in terms
of generating a control-oriented trajectory. Therefore, for hypersonic aircraft as well as any
vehicle with the aforementioned coupling, a simultaneous design method of trajectory and
robust controller is proposed by designing a control-oriented trajectory minimizing tracking
error and controller robust against flight condition changes as well as to the trajectory.

Simultaneous design of trajectory and robust controller is achieved by converting the
trajectory into a transfer function at each discretized segment of the trajectory and incorpo-
rating the identified trajectory transfer function to the structured H∞ controller design at each
iteration of the optimization. Maximum tracking error tolerance was specified and placed
as the nonlinear inequality constraint of the nonlinear programming problem solved by se-
quential quadratic programming. Maximum tracking error for tracking reference trajectory is
obtained by closed loop nonlinear simulation calculated at each iteration. The novel method
was tested on two example optimal control problem one in the field of aerospace and one
outside of aerospace field. The results are compared to the method where the trajectory and
robust controller are obtained separately and with the proposed method, objective function
showed improved results as well as the maximum tracking error decreasing while adding
robustness to the trajectory compared to the separated method. Finally, the proposed method
was applied to the Hypersonic Experimental Aircraft problem and successfully obtained a
control-oriented trajectory and robust controller for accomplishing mission requirements.
The obtained trajectory and robust controller was tested via Monte Carlo simulation for ro-
bustness against state uncertainties present during separation from the rocket and the mission
success rate was identified as well as valuable insights for increasing technical maturity.
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Chapter 1

Introduction

1.1 Research Background

As the market for commercial flight has seen increase over the years, 20 years into the future
the number is expected to double with passenger traffic expected to grow by an average rate
of 4.6% [13]. Within the growing commercial market, the consortium HIKARI (HIgh speed
Key technologies for future Air transport - Research and Innovation cooperation scheme)
has addressed a possible market (long range routes with sufficient business and first class
passenger traffic to sustain high speed operations) for high speed travel [11]. To meet the
expectations of the rising demand for intercontinental travel, Japan Aerospace Exploration
Agency (JAXA) is currently researching a hypersonic transport aircraft in pursuit for faster
and reliable flight system [75]. The aircraft is planned to be equipped with a hypersonic
pre-cooled turbo jet engine (PCTJ) under research and its target speed region is from take-off
to Mach 5. To make hypersonic flight of practical use, JAXA has set a hypersonic flight
experiment concept for the goal of realizing hypersonic transport aircraft. The concept
consists of a series of autonomous flight experiments using a launch vehicle to demonstrate
key hypersonic technologies.

The road map is broken into four stages of autonomous flight tests. The first stage
is the unmanned experimental launch vehicle, High Mach Integrated Control Experiment
(HIMICO), and its experiment objective is to test engine and aircraft system integration.
The second stage is the unmanned experimental launch vehicle, Hypersonic Experimental
Aircraft [42], and its experiment objective is to test for hypersonic cruise capability through
autonomous flight. Two PCTJ engines around 3[m] in length are placed on both sides of the
fuselage each producing roughly 1[kN] of thrust. The aircraft will be attached to the fuselage
of the NAL735 rocket. It will reach 100[km] altitude and detach from the rocket. Through
suborbital flight, the aircraft will accelerate until 50[kPa] of dynamic pressure is achieved for
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engine test conditions. Then, the aircraft will pitch up and will begin its hypersonic cruise
experiment at Mach 5. After the hypersonic experiment has been conducted, the aircraft will
descend to a lower altitude for subsonic flight. The third stage is the scaled up hypersonic
UAV and its objective is to test for intercontinental flight and the final stage is to introduce
the aircraft for commercial flight.

Autonomous flight will generally track a preplanned trajectory and the trajectory and
controller are designed separately offline which can then be evaluated for desired controller
performances preflight [29]. Knowing the control system behavior preflight through a series
of simulations is critical for determining the mission success in the presence of disturbances
or uncertainties and improves accuracy as well as confidence for the flight test. This was
also the case for experimental launch vehicles researched in the past and of the numerous
vehicles, NEXST[69] and X-43A[71] are well-known experimental launch vehicles which
conducted unmanned flight tests.

1. NEXST [69]
NEXST (National EXperimental Supersonic Transport) is a supersonic experimental
aircraft built for the purpose of improving advanced aerodynamic design technologies.
Three objectives were placed where one was to evaluate supersonic CFD analysis tools
to experimental data used for designing the natural laminar flow wing for the aircraft.
Second was to establish cranked-arrow wing, area-ruled fuselage, and warped wing
design methods. Third was to obtain knowledge and experience on unmanned aircraft
flight testing. A solid rocket booster NAL-735 was developed and used to carry the
airplane on the fuselage of the rocket to the target height and velocity. A total of two
flight test were conducted of which the first flight test failed due to electrical short on
the rocket causing the aircraft to separate from the rocket at ground level. The second
flight test was a success and the intended aerodynamic, structural, and flight dynamics
data were obtained.

2. X-43A [71]
X-43A is the first hypersonic aircraft to demonstrate airframe-integrated, scramjet-
powered sustained hypersonic flight. The objective of the experimental flight test was to
demonstrate and validate tools, test, and analysis techniques as well as to obtain design
methodologies of scram-jet powered hypersonic vehicles and data for aerodynamics and
flight control research. A total of three flight tests were conducted where the first flight
test ended in failure due to control system failure during the accelerated pull-up trajectory.
The failure was caused by excess control system gain inefficient for the preplanned
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trajectory resulting in divergent roll oscillation. Second flight test was a successful Mach
7 cruise and the third flight test being a successful Mach 10 cruise.

In this dissertation, the focus is on trajectory and controller design of the unmanned
second stage Hypersonic Experimental Aircraft. Although the target aircraft is the Hypersonic
Experimental Aircraft, it should be noted that the novel design method which will be
introduced in this dissertation can be applied to any unmanned vehicles and is not restricted
in the field of aerospace (i.e. naval architecture, etc.) since trajectory and controller design
are common technologies needed for realizing unmanned operations. This will be shown by
applying the proposed method to a speed boat problem (modified Zermelo’s problem).

When designing a trajectory for autonomous vehicles, general problem formulation
includes minimizing a cost function (e.g. tracking error, time, fuel consumption) while
subject to constraints (e.g. dynamic pressure, static margin) [19] and tracking performance
for the controller is verified subsequently. After obtaining reference trajectory the general
design method is to design a controller and based on the design points selected by the
control system designer, the nonlinear dynamics are linearized by, for example, perturbation
method assuming steady-state flight (i.e. nonlinear dynamics are usually linearized at there
cruising conditions). From there, the controller is designed to stabilize the closed-loop
system under a given set of requirements such as robustness against flight condition changes,
parameter uncertainties, gain and phase margins, rise time and overshoot tolerance, etc. One
possible method for attaining stability under flight condition changes and uncertainty is by
utilizing a robust controller and H∞ robust controller design has been shown to be robust
for flight condition changes as well as against uncertainties [25]. For this research, the
emphasis is placed on designing a controller with robustness against flight condition changes
and therefore the H∞ controller design is one possible method to be considered. After the
linearized controller is obtained, the controller is verified for performance via nonlinear
simulation of tracking the generated reference trajectory. Since the controller is linearized
at the their design conditions, depending on the trajectory the performance of tracking the
reference trajectory may decrease. Even with the robust controller the tracking performance
can differ depending on the flight condition and thus a redesign of the trajectory as well as the
robust controller design may be needed summarized in Fig.1.1. This calls for integrating the
design process of trajectory and controller via simultaneously designing the controller during
trajectory optimization for generating a control-oriented trajectory for autonomous vehicles.
The same may apply for autonomous hypersonic vehicles however, further evaluation is
needed to verify the interaction between trajectory and controller design.
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Fig. 1.1 Trajectory and Controller Design Problem.

1.2 Previous Works and Research Issues

In this section, a brief explanation of previous works regarding trajectory and controller
design method for hypersonic vehicles will be discussed to identify possible research issues
that arises during conventional method of designing trajectory and controller separately.

1.2.1 Case Studies on Hypersonic Experimental Aircraft

It is worth noting that the trajectory and controller design can differ depending on the aircraft
configuration (e.g. aerodynamic characteristics) and so a case study to evaluate the descent
trajectory for tracking performance was needed for hypersonic vehicles. In order to verify
the coupling between trajectory and controller for the Hypersonic Experimental Aircraft,
two case studies were conducted of the first case being a sensitivity analysis on trajectory
generation [36] and PID controller performance and second case on designing a robust
controller [38].

In the first case study of trajectory generation (flight path angle), the objective of the
paper was to evaluate the flight trajectory of the Hypersonic Experimental Aircraft during
descent for sensitivities to tracking performance. Furthermore, the flight trajectory with
the smallest fuel consumption over downrange ratio was analysed through parametric study
with the flight path angle γ being the parametric variable (γ = [−2,−4,−6,−8,−10]). (See
Appendix A for complete analysis). The conditions for the aircraft cruising at Mach 5 is trim
angle of 1.4[deg] and the altitude 25[km]. The target flight profile is to descend and pitch up
from cruising altitude of Mach 5 at 25[km] to Mach 0.8 at 6[km]. The controller for tracking
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γ was tuned through trial and error for high tracking performance. The reference trajectoy
was given in the form of a Bessel function where pitch down and pitch up duration were
tuned to meet the cruising conditions after descent. From the results, γ =−4 had minimum
fuel consumption per kilometer. When comparing the trajectory of γ = −4 and γ = −10
shown in Fig.1.2 and Fig.1.3 respectively, the tracking performance for tracking γ decreased
during descent as the flight path for descent became steeper. Here, the blue line represents
the system output, orange line is the reference input, black line represents steady-state flight
before the descent, green line is the descent duration for γ =−4, and red line is the constraint
placed on state variables. Based on the results, the controller can be tuned to meet controller
design requirements but the tracking performance was effected greatly by the reference
trajectory due to the angle of attack constraint placed on the system to prevent stall and
excess loading. Therefore, it was verified that interaction between flight path and attitude
control were significant for the Hypersonic Experimental Aircraft and depending on the
trajectory controller performance decreased.

In the second case study, a robust controller design for the Hypersonic Experimental
Aircraft model was conducted to evaluate the controller for stability and robustness against
flight condition changes in the assumed descent trajectory phase taken from the previous
case study (See Appendix B for complete analysis). For the controller design, the nonlinear
dynamic equations were linearized at steady-state flight conditions for each flight Mach
number in the descent trajectory. The constructed control system for tracking the reference
flight path angle for the Hypersonic Aircraft Model is shown in Fig.1.4. The system is an
SISO with the angle of attack as its command input u, e as error between output γ of y
and reference γ , We is the weighting function placed on the sensitivity function, K is the
controller, P is the plant model, and ∆e is a fictitious uncertainty block placed only to close
the loop. The plant models used for the control design are the LTI models obtained linearized
at steady-state flight conditions from Mach 5 to 2. From the results, a controller robust to
flight Mach number of 5 to 2 was designed and verified by having a stable doublet response
shown in Fig.1.5. However, as can be seen from the doublet response, the controller performs
differently at each Mach number where the overshoot becomes greater as the Mach number
increases. With the robust controller, robustness against flight condition changes is obtained,
but the performance can deviate significantly. The controller was designed separately without
considering the trajectory and depending on the trajectory tracking performance can decrease
as was seen in the previous case study. Therefore, integrating the robust controller design
method to have robustness against the trajectory was needed to generate a trajectory oriented
towards control (i.e. minimizing tracking error).
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Fig. 1.2 γ =−4 [deg] Trajectory Generation Result.

Fig. 1.3 γ =−10 [deg] Trajectory Generation Result.
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Fig. 1.4 Block Diagram of the Robust Controller Design.

Fig. 1.5 Doublet Response to Multiple Inputs.
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From the two case studies conducted on generating reference trajectory and designing a
robust controller, conventional design process of trajectory and robust controller design for
the Hypersonic Experimental Aircraft had the following characteristics:

a. Verified through nonlinear simulation that interaction between flight path and attitude
control are significant for the Hypersonic Experimental Aircraft as well and depending
on the flight path angle, severe overshoot can cause the performance of the controller to
decrease.

b. The robust controller was designed separately without considering the trajectory and
depending on the trajectory tracking performance may decrease verified through a doublet
response.

Therefore, it can be said that interaction between trajectory and controller performance
is prevalent for the hypersonic vehicle and simultaneously designing the controller during
trajectory optimization for generating a control-oriented trajectory has a possibility to improve
tracking performance.

1.2.2 Trajectory and Robust Controller Design of Hypersonic Vehicle

For a hypersonic aircraft it has been noted that intensive coupling between trajectory and
controller performance is present as mentioned in Ref.[65] where significant amount of
guidance and control system integration is necessary in order to achieve requisite system
stability and performance. This is due to the dynamic coupling between flight path and
attitude being more prevalent at hypersonic speed. The dynamic coupling is closely related
to the high dynamic pressure during hypersonic flight which causes exponential fluctuations
in the aerodynamic forces and moments of the vehicle. The prevalent interaction between
the trajectory and controller performance is a significant research issue when performing
hypersonic flight test. The trajectory and controller coupling was also the factor for the flight
test failure for the first flight of the X-43A flight test [79]. The X-43A Mishap Investigation
Board had the following statement:

Root Cause:
The X-43A HXLV failed because the vehicle control system design was deficient for the
trajectory flown due to inaccurate analytical models

As was the case for the X-43A, there is an limit on predicting the amount of uncertainties the
mission holds being in the states and analytical models since prediction of the control system
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deficiency was not possible in the preflight analyses. From the root cause of the failure,
it can be interpreted that depending on the trajectory flown the deficiency of the control
system could have been mitigated. The controller design impacts the final mission success
rate as with any other disciplines however, for hypersonic vehicles and with other vehicles
with a strong coupling between trajectory and controller, the burden on the controller can
be mitigated by considering a trajectory oriented towards controllability (control-oriented
trajectory). From this, a control-oriented trajectory with the least tracking error can lead
to higher tracking performance of the reference trajectory which is essential given that
unpredicted uncertainties can rise during actual flight test and can be a possible solution for
preventing control system failures as was seen for the X-43A. For a vehicle with intensive
coupling between flight path and attitude control, there is a possibility to increase tracking
performance through the simultaneous design of trajectory and controller generating a control-
oriented trajectory. There has been substantial research on designing a robust controller
separately from trajectory generation before flight with controller performance evaluations
[56, 70, 15]. Additionally, substantial research has been done generating optimal trajectories
separately from the controller design as well [12, 19, 10]. Few have integrated the design
process of trajectory generation and robust controller design, but was done using a online
design method [15]. Online method such as model predictive control poses a stability issue
for system in that it can ensure stability for a finite time (horizon) whereas stability for a
closed-loop system is only ensured for a infinite time system [60].

Therefore, continuing from previous studies as well as the case studies an offline method
to simultaneously design the trajectory and robust controller design for a control-oriented
trajectory can be effective in a scenario where intensive coupling between trajectory and
controller performance exists (i.e. trajectory minimizing tracking error and controller having
robustness against flight condition changes as well as to the trajectory). To incorporate the
trajectory details into the robust controller design to have robustness against the generated
trajectory, a method to transcribe the trajectory into a transfer function is needed. In H∞

controller design, the controller gains are optimized to minimize the H∞ norm of the system
for all frequencies. In the time domain, a step input can be expressed as an input of all
frequencies since the infinite sum of all frequencies of sinusoidal waves constitutes a step
wave form through Fourier series [62]. Therefore by applying a step input as the input
command and taking the trajectory flight path angle as the output, the trajectory can be
expressed as a transfer function through system identification and robust against flight
trajectory can be obtained as well. However, an approach for the simultaneous design of
trajectory and robust controller design utilizing the described system identification method
has not been conducted in previous works and development of such method is needed.
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Additionally, the vehicle flight profile typically has a wide velocity range from hypersonic
to subsonic. When designing a controller for hypersonic aircrafts, it has been stated by Ref.
[65] that the wide range of operating conditions calls for a controller robust for flight
condition changes and against aerodynamic uncertainties. The operating flight conditions
will vary and poses a heavy burden on the controller since the dynamics of the model
differ significantly with flight conditions. The controller needs to be able to handle model
differences accordingly to the reference trajectory however, the ability to predict the analytical
models (flight condition changes, aerodynamics, mass, vehicle configuration, structural
dynamics, actuators, sensors, etc) can be marginal at best. There exists model uncertainties
in almost every analytical model and for the controller to be robust or stable against these
uncertainties can be challenging since there is a trade-off between stability and performance
[34]. Designing a controller to be robust against large uncertainties usually decreases the
performance of the controller in that uncertainties can limit the frequencies in which the
controller is able to be tuned for high tracking performance [16]. To compensate for the
coupling between the trajectory and controller as well as the limit on performance a controller
can exhibit in the presence of uncertainties, physical optimization needs to be considered
regarding the sizing of the control surface. Controller can only perform under the existing
control surface thus control surface sizing can dramatically impact performance for tracking
reference trajectory. Providing robustness against flight condition changes and uncertainties
can lead to performance degradation which can be compensated by the physical modelling
of the control surface sizing.

Therefore, research issue of designing a trajectory and controller for hypersonic vehicle
can be summarized by the following:

1. Significant Coupling between Trajectory and Robust Controller:
Trajectory and robust controller design needs to be integrated due to the intensive coupling
arising from the high dynamic pressure during hypersonic flight as well as the need for
robust controller design due to the presence of significant flight condition changes where
the vehicle transitions from hypersonic to subsonic speed.

2. Sizing of Control Surface Needed for Increasing Tracking Performance:
Robustness against flight condition changes and uncertainties comes at the expense of
controller performance of tracking the reference trajectory. Therefore, physical modelling
of control surface sizing needs to be conducted to ensure satisfactory performance on
controller performance for the Hypersonic Experimental Aircraft as well.

Generating a optimal trajectory for the Hypersonic Experimental Aircraft consisting of
rocket launch, suborbital flight, hypersonic flight test, and descent through suborbital flight
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utilizing a simultaneous design method of trajectory and robust controller while optimizing
the control surface sizing for increasing controller performance, no examples of such has
been confirmed by the author. Therefore, obtaining a optimal solution to the problem and
gaining knowledge for the possibility of the design method as well as an insight on the
issues involved from the obtained results will contribute greatly to future research regarding
hypersonic flight tests and testing for vehicles with strong coupling between trajectory and
controller.

1.3 Research Objectives

Considering the research issues described in Section 1.2 where possible research area is
defined, the research objectives of the dissertation is divided into two points summarized
below of proposing a simultaneous design method for solving the coupling between flight
path and attitude and applying the novel method to the Hypersonic Experimental Aircraft
problem.

1. Development of Simultaneous Design Method of Trajectory and Robust Controller:
Propose a novel method to simultaneously design the trajectory and robust controller
by converting the trajectory into a transfer function at each discretized segment of the
trajectory and incorporating each identified transfer function to the H∞ controller design.
The proposed method is validated by successfully applying to 2 well-known optimal
control problems of which one is aerospace related and another being outside the field
of aerospace for showing applicability outside of aerospace field. The results are then
compared to the conventional method where the trajectory and robust controller are
obtained separately.

2. Application to Hypersonic Experimental Aircraft with Control Surface Sizing:
For hypersonic aircrafts, a strong coupling between trajectory and controller performance
exists as stated in the Section 1.2. Therefore, by using the novel method and incorporating
sizing problem of the control surface to the optimization, a reference trajectory and
robust controller as well as optimal sizing of the control surface will be obtained for the
Hypersonic Experimental Aircraft. The obtained trajectory and controller is evaluated via
Monte Carlo simulation of the uncertainties present during separation from the launch
vehicle.
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1.4 Layout of this Dissertation

This dissertation is organized as follows:
Chapter 1 provides the overview of the trajectory and controller design for unmanned

vehicles and addressing previous research as well as research issues in simultaneously
designing both trajectory and controller to provide the objective for this dissertation.

Chapter 2 describes the novel method of simultaneous design optimization of trajectory
and robust controller as well as key concepts of the proposed method.

Chapter 3 tests the proposed method against a aerospace related problem of simple rocket
launch problem and the Zermelo’s boat problem outside of the aerospace field. The validity
of the proposed method is illustrated through solving these example problem.

Chapter 4 applies the novel method developed in Chapter 2 to the Hypersonic Experi-
mental Aircraft problem where a control-oriented trajectory and a controller robust against
flight condition changes as well as to trajectory will be generated.

Chapter 5 evaluates the obtained trajectory and robust controller performance to state
uncertainties which is present during the separation stage between the rocket and the aircraft.
The trajectory and controller are tested for robustness against state uncertainties.

Finally, Chapter 6 provides the conclusion and summary of the results obtained in each
chapter as well as recommendations for future work.



Chapter 2

Simultaneous Optimization of Flight
Trajectory and Robust Controller

In this chapter, in order to satisfy the first objective of developing a simultaneous design
method of trajectory and robust controller a novel method is presented with advantages and
limitations. The proposed method is based on the combination of 1) a gradient-based opti-
mization method, 2) linear regression modeling, and 3) structured H∞ controller design. The
formulation of the optimal control problem and transformation into nonlinear programming
problem is described in Section 2.1. The system identification of each discretized trajectory
into its relevant transfer function is described in Section 2.2. Section 2.3 details the robust
controller design procedures for obtaining a controller robust against flight condition changes
and to the trajectory.

2.1 Method Outline

Simultaneous design of trajectory and robust controller is performed by handling the tra-
jectory as a transfer function to be implemented into the robust PI controller design. The
diagram for the overview of the proposed method (simultaneous system) is shown in Fig.2.1
and the flowchart of the optimization process is shown in Table 2.1.

The simultaneous method consists of nonlinear trajectory optimization, linear regression
modelling for converting the trajectory into a transfer function, and linear robust controller
design. The concept of nonlinear trajectory optimization is explained briefly in Section
2.2, for linear regression modelling in Section 2.3, and for linear robust controller design
in Section 2.4. With the obtained robust controller, nonlinear simulation of tracking the
reference trajectory r will be conducted at every iteration of solving the nonlinear optimization
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problem. The simultaneous system for tracking optimal trajectory is shown in Fig.2.2. Here,
u and P represents the control input and plant model respectively. The red blocks indicate the
optimization variable. The maximum error e from the nonlinear simulation will be evaluated
against the maximum error requirement placed as the nonlinear inequality constraint. With
the simultaneous method, a robust controller for flight condition changes and to the trajectory
can be obtained by the simultaneous design of trajectory optimization and controller design.

Fig. 2.1 Simultaneous Method Overview.

Fig. 2.2 Nonlinear Trajectory Tracking System for Obtaining Maximum Tracking Error.
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Table 2.1 Flowchart of the Proposed Method.

A. Nonlinear Trajectory Design
1) Transcribe optimal control problem to NLP problem with the
maximum tracking error of closed-loop system placed as a nonlinear inequality constraint

2) Discretize the trajectory into segments through direct shooting method
3) Solve the iteration of the NLP by SQP method

B. Linear Regression Modeling
4) Convert each segment of the trajectory to first order transfer function through
linear regression

C. Linear Robust Controller Design
5) Add converted transfer function after the reference input of the SISO system
6) Obtain LTI model for each n th Segment of the trajectory
7) Design structured H∞ controller for flight condition changes and to the trajectory
8) Obtain maximum error from tracking reference trajectory (Fig.2.2)
9) If the convergence criteria are not met, iterate from step 3)

2.2 Nonlinear Trajectory Design

For generating a optimal trajectory for a given object, the general method is to classify the
nonlinear trajectory design as a nonlinear optimal control problem. The nonlinear optimal
control problem uses nonlinear dynamics to represent the motion of the object and seeks to
find a control input to minimize a objective function under arbitrary constraints [10, 60, 47].

The general nonlinear optimal control problem can be solved by either indirect or direct
method. Indirect method is based on Pontryagin’s Maximum Principle (general form of
calculus of variations to be applicable for control problems) and optimized in a continuous
time or infinite-dimensional function space. From the Maximum principle, the conditions for
optimal control are obtained analytically, and solving for the state and control variables to
meet the maximum principle by numerical method yields the optimal solution. The obtained
results yield highly accurate solutions for the optimal control problem since no approximation
of the state and control functions were conducted [47]. However, the disadvantages are
that necessary conditions for optimality needs to be derived analytically which cannot be
fully automated and in most cases unpractical where state and control variables ranges in
significant number. On the other hand, by using a direct method, the problem will be solved
numerically without the use of the Maximum Principle and optimized in a discretized or
finite-dimensional function space. The discretized problem can be solved through nonlinear
programming (NLP) and can be automated to solve for a large number of state and control
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variables. Also, direct methods have better convergence to local optimum which is more
practical for complex problem and therefore, a direct method will be used.

Problem formulation for a general nonlinear optimal control problem [47, 60] is shown
in Eq.(2.1) with the trajectory assumed to have M number of phases t ∈ [tk

0, t
k
f ](k = 1, · · · ,M)

to represent discontinuity in state equation or constraints in the trajectory. Therefore, at the
phase boundaries, t l−1

f = t l
0(l = 2, · · · ,M) are satisfied with the state variable xxx(t) ∈ Rnx at

t ∈ [t0, t f ], control input as uuu(t) ∈ Rnu ,and time-independent static variable as ppp ∈ Rnp (e.g.
vehicle design variables).

objective function J(xxx(tk),uuu(tk), ppp, tk)

state equation ẋxx(t) = f k(xxx(t),uuu(t), ppp, t)

equality boundary constraints at t ∈ [t0, t f ] rrrk
eq(xxx(t

k),uuu(tk), ppp, tk) = 0

inequality boundary constraints at t ∈ [t0, t f ] rrrk
in(xxx(t

k),uuu(tk), ppp, tk)≤ 0

linear/nonlinear equality constraints CCCk(xxx(t),uuu(t), ppp, t) = 0

linear/nonlinear inequality constraints SSSk(xxx(t),uuu(t), ppp, t)≤ 0

(2.1)

Solving for xxx(tk),uuu(tk), ppp, tk which minimizes a Mayer type objective function will be
the nonlinear optimal control problem used for this study.

2.2.1 Direct Shooting Method

There are a variety of transcription methods to discretize the nonlinear optimal control
problem introduced in Eq.(2.1) to a nonlinear programming problem (NLP). Of the numerous
transcription methods, direct multiple shooting method [12] has been applied to numerical
examples of constrained and unconstrained two point boundary value problems [53] as well
as real world applications such as for two body orbit transfers or for projectile guidance using
a direct multiple shooting method [77, 68]. In this paper, a method of direct single shooting
method (DSS) and direct multiple shooting method (DMS) is applied for discretizing the
optimal trajectory. DSS integrates along a single segment while DMS integrates along
multiple segments simultaneously and is considered to be more flexible to complex problems.
When compared against direct collocation methods, at each iteration of the optimization
collocation methods approximates the trajectory into piecewise polynomials and is then
discretized to meet the dynamics [45], while the DSS and DMS integrates the dynamic
equation to piece together the trajectory at each iteration. The DSS and DMS satisfies
the dynamic equation constraints at each iteration by using sub-intervals to integrate the
dynamics in between discretized segments. This is preferred since the maximum error of
tracking the trajectory at each iteration of the optimization process will be evaluated and the
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trajectory should be physically feasible to attain (identification method explained in Section
2.3).

In Eq.(2.1), the state variables xxx(t) and control inputs uuu(t) are a function of t which
cannot be formulated into NLP. Discretization of uuu(t) is conducted by first equally dividing
the continuous time into N segments as shown in Eq.(2.2).

tk
0 < tk

1 < · · ·< tk
N−1 < tk

N = tk
f (2.2)

On each segment [ti, ti+1] (0 ≤ i ≤ N −1), the control input is denoted as uuui(t) shown in
Eq.(2.3).

uuui(tk) = [uk
i0,u

k
i1, · · · ,uk

i j, · · · ,uk
in, ] (2.3)

Where j (0 ≤ j ≤ n) represents the sub-segments at each segment. It should be noted
that a simplified version of DMS known as direct single shooting (DSS) method can be
expressed in the same context as DMS where DSS has only a single segment N = 1 with
n sub-segments. The control input can be defined as piecewise constant control ( j = 1),
piecewise linear controls or piecewise cubic spline controls ( j > 1).

The state variables are obtained by integrating Eq.(2.4) for the corresponding ui(tk), p
using 4th order Runge-Kutta method [7].

ẋxxi(t) = f k(xxxi(t),uuui(t), ppp, t) t ∈ [tk
i , t

k
i+1], 0 ≤ i ≤ N −1 (2.4)

In order to ensure continuity of the obtained state variables xxxi(t), Eq.(2.5) of initial value
problem (IVP) is introduced.

xxxi(tk
i+1;uuui(tk), ppp, tk

i )− xxxk
i+1 = 0 0 ≤ i ≤ N −1 (2.5)

Here, xxxi(ti+1;uuui(t), ppp, ti) denotes the final value xxx(ti+1) obtained as the solution to the IVP
on the segment [ti, ti+1] when starting at the initial value xxx(ti) and applying the control input
uuui(t) on [ti, ti+1]. As noted by Eq.(2.1), when different phases are introduced to the trajectory,
t l−1

f = t l
0(l = 2, · · · ,M) needs to be satisfied to ensure continuity which is summarized in

Eq.(2.6).

xxx0(t l
0;uuu0(t l), ppp, t l

0)− xxx f (t l−1
f ;uuu f (t l−1), ppp, t l−1

f ) = 0 (l = 2, · · · ,M) (2.6)

The boundary constraints from Eq.(2.1) is discretized into segments shown in Eq.(2.7) at
t ∈ [t0, t f ].
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equality boundary constraints rrrk
eqi
(xxxi(tk),uuui(tk), ppp, tk

i ) = 0 0 ≤ i ≤ N

inequality boundary constraints rrrk
ini
(xxxi(tk),uuui(tk), ppp, tk

i )≤ 0 0 ≤ i ≤ N
(2.7)

The nonlinear boundary constraints from Eq.(2.1) is discretized into segments shown in
Eq.(2.8) at t ∈ [t0, t f ].

linear/nonlinear equality constraints CCCk
i (xxxi(t),uuui(t), ppp, ti) = 0 0 ≤ i ≤ N

linear/nonlinear inequality constraints SSSk
i (xxxi(t),uuui(t), ppp, ti)≤ 0 0 ≤ i ≤ N

(2.8)

The optimal control problem from Eq.(2.1) resulting from application of the direct
multiple shooting discretization reads Eq.(2.9).

find XXX = xxxk
i (t),uuui(tk), ppp, tk ∈ [tk

0, t
k
f ]

min. F(XXX) =
i=0

∑
N

Ji(XXX)

s.t. G(XXX) =


rrrk

eqi
(xxxi(tk),uuui(tk), ppp, tk

i )

CCCk
i (xxxi(t),uuui(t), ppp, ti)

xxxi(tk
i+1;uuui(tk), ppp, tk

i )− xxxk
i+1

xxx0(t l
0;uuu0(t l), ppp, t l

0)− xxx f (t l−1
f ;uuu f (t l−1), ppp, t l−1

f )

= 0

H(XXX) =

[
rrrk

ini
(xxxi(tk),uuui(tk), ppp, tk

i )

SSSk
i (xxxi(t),uuui(t), ppp, ti)

]
≤ 0

(2.9)

Here, XXX ∈ Rn is the design variables, F(XXX) ∈ R is the objective function, G(XXX) ∈ RmE

is the linear and nonlinear equality constraints, and H(XXX) ∈ RmI is the linear and nonlinear
inequality constraints.

The key approach taken in the novel simultaneous method is that the maximum error ob-
tained from the tracking error using the controller obtained from the structured H∞ controller
design and is placed as a nonlinear inequality constraint. The NLP is solved by sequential
quadratic problem (SQP) algorithm and will be explained briefly in the next section.

2.2.2 Sequential Quadratic Programming Method

The sequential quadratic programming method (SQP) is a class of method to solve a nonlinear
programming by obtaining a local optimum and has arguably been considered one of the
most successful method for solving nonlinear constrained optimization problem [14]. The



2.2 Nonlinear Trajectory Design 19

method uses the second-order Taylor approximation of the Lagrange function around a local
point to find a feasible point for the next iteration of the optimization [60]. The objective
function is transcribed into a quadratic programming (QP) problem at each iteration and
easily solved through the Karsh-Kuhn-Tucker (KKT) condition sequentially thus the name.
The algorithm can be summarized in which it applies the Newton’s method to solve the
KKT equations. When solving for the Hessian, it is approximated through Quasi-Newton
method of Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which ensures the second-
order sufficient condition of optimality since the approximated Hessian will be positive
definite [60]. Consider now the optimization problem discretized by DMS from Eq.(2.9).
Eq.(2.9) is solved using fmincon MATLAB function available with comprehensive online
documentation.

The algorithm for the SQP is described as follows:

Step 1. Initialize:
Provide initial guess of XXX (0) as well as for the Lagrange multipliers λ

(0)
Ei

∈ RmE (i =

1, · · · ,mE), λ
(0)
I j

∈ RmI( j = 1, · · · ,mI). Here, set the iteration count K as 0 for initial

condition. The initial values for XXX (0) are given by the user and the initial value for
the Lagrange multipliers are generally zero vectors. For Eq.(2.9), the Lagrangian
function is given by Eq.(2.10) referenced from [60].

L(XXX (K),λ
(K)
Ei

,λ
(K)
I j

) = F(XXX (K))+λ
(K)T

Ei
Gi(XXX (K))+λ

(K)T

I j
H j(XXX (K)) (2.10)

Step 2. Evaluate Gradients:
From Step 2, the iteration of SQP begins. First, obtain the objective function value at
F(XXX (K)) and the equality and inequality constraint value at Gi(XXX (K)) and H j(XXX (K)).
Next, obtain the gradients of the objective function, the Jacobian matrices ∇Gi(XXX (K))

and ∇Hi(XXX (K)). Finally, calculate the gradient of the Lagrangian function shown in
Eq.(2.11).

∇L(XXX (K),λ
(K)
Ei

,λ
(K)
I j

) = ∇F(XXX (K))+λ
(K)T

Ei
∇Gi(XXX (K))+λ

(K)T

I j
∇H j(XXX (K)) (2.11)

Step 3. Assess Convergence:
Based on the assessment of whether the F(XXX (K)) has reached a local optimum and
has converged, iteration will terminate. Assessment of local optimum is based on the
first order necessary conditions of optimality referred to as the KKT conditions of
Eq.(2.12) referenced from [60] (The second order sufficient condition for optimality
will be discussed in Step 4). When the first order necessary conditions and second
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order sufficient conditions are met at XXX (K),λ
(K)
Ei

,λ
(K)
I j

, then the the local optimum is

achieved at XXX (K) for each iteration.

∇L(XXX (K),λ
(K)
Ei

,λ
(K)
I j

) = 0

∇Gi(XXX (K)) = 0

∇H j(XXX (K))≤ 0

λ
(K)T

I j
H j(XXX (K)) = 0 ( j = 1, · · · ,mI)

λ
(K)T

I j
≥ 0

(2.12)

When the KKT equations shown in Eq.(2.12) are satisfied as well as the conditions
shown in Eq.(2.13) are satisfied, then the optimization has converged with local
optimum obtained at XXX (K),λ

(K)
Ei

,λ
(K)
I j

is achieved.

∥Gi(XXX (K))∥∞ < εcon

∥H j(XXX (K))∥∞ < εcon
(2.13)

Here, ∥ · ∥∞ represents the infinity norm of a matrix. The optimization converges
when the step length and constraint tolerance εcon was below 1×10−15 and 1×10−2

respectively. Step length will be explained in Step 6.

Step 4. Update Hessian:
The second order sufficient condition for optimality is that the Hessian matrix be
positive definite. The Hessian HHH(K) in this study is approximated using BFGS
Hessian approximation known for producing positive definite Hessian approximation
[60] and is obtained by Eq.(2.14). For the initial iteration, unit matrix is used for
HHH(0).

HHH(K) = HHH(K−1)+
q(K)(q(K))T

(q(K))T s(K)
− (HHH(K−1)s(K))(HHH(K−1)s(K))T

(s(K))T HHH(K−1)s(K)

q(K) = ∇L(XXX (K),λ
(K)
Ei

,λ
(K)
I j

)−∇L(XXX (K−1),λ
(K−1)
Ei

,λ
(K−1)
I j

)

s(K) = XXX (K)−XXX (K−1)

(2.14)

Step 5. Solve QP problem:
The second-order Taylor approximation of the Lagrange function around XXX (K) is
conducted to find the step direction d(K) as well as λ

(K)
Ei

,λ
(K)
I j

for XXX (K+1) in the
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next iteration. Using the second-order approximation, the quadratic problem (QP)
subproblem for obtaining d(K) is represented in Eq.(2.15).

find d(K)

min. ∇F(XXX (K))d(K)+
1
2

d(K)T
HHH(K)d(K)

s.t. Gi(XXX (K))+∇Gi(XXX (K))d(K) = 0 (i = 1, · · · ,mE)

H j(XXX (K))+∇H j(XXX (K))d(K) = 0 ( j = 1, · · · ,mI)

(2.15)

Step 6. Perform Line Search:
The solution to the QP subproblem produces a vector d(K), which is used to form
XXX (K+1) of Eq.(2.16).

XXX (K+1) = XXX (K)+α
(K)d(K) (2.16)

Here, to find the step length α(K) to obtain XXX (K+1), another optimization is necessary
to find a sufficient decrease in the penalty function. The penalty function used by
[30, 63] are used shown in Eq.(2.17).

Fp(XXX (K)) = F(XXX (K))+ r j

[
i=1

∑
mE

Gi(XXX (K))+
j=1

∑
mI

max(0,H j(XXX (K)))

]
(2.17)

Here, r j is derived by Eq.(2.18) which was referenced from [63].

r j = (rK+1) j = max
j

(
λ j,

(rK) j +λ j)

2

)
( j = 1, · · · ,mI) (2.18)

For the initial value, the penalty parameter r0 j is initially set to Eq.(2.19) where ∥ · ∥
denotes the Euclidean norm.

r0 j =
∥∇F(XXX (K))∥
∥H j(XXX (K)))∥

(2.19)

By solving the optimization problem of Eq.(2.20), step length α(K) is obtained.

find α
(K)

min. Fp(XXX (K)+α
(K)d(K))

s.t. 0 ≤ α
(K) ≤ 1

(2.20)
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Once the value of d(K) and α(K) are obtained, XXX (K+1) for the next iteration is defined.
The SQP algorithm is repeated from Step.2 until the convergence criteria are met at
Step.3

2.3 Linear Regression Modeling

For the coupling between trajectory optimization and robust controller design, a method
to convert the trajectory into a transfer function was needed. In H∞ controller design, the
controller gains are optimized to minimize the H∞ norm of the system for all frequencies. In
the time domain, a step input can be expressed as an input of all frequencies since the infinite
sum of all frequencies of sinusoidal waves constitutes a step wave form through Fourier
series [62]. Therefore by applying a step input as the input command u(k) and taking the
trajectory flight path angle as the output, the trajectory can be expressed as a transfer function
through system identification. The process is depicted in Fig.2.3 where the left box indicated
as A and right box indicated as B represents Step A and B from Table 2.1 respectively. As
shown in Fig.2.3, a linear regression estimation method was used for the sample points in the
discretized n segment trajectory to a first order transfer function.

Fig. 2.3 Linear Regression Modeling for the Discretized Trajectory.

The problem formulation for single input single output system without noise of a system
with the response of y to input u is shown below [80].
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y(z−1) =
A(z−1)

B(z−1)
u(z−1) (2.21)

Here, A(z−1) and B(z−1) form the numerator and denominator for the transfer function
to be estimated. z−1 is the backward shift operator in the z domain. A(z−1) and B(z−1) are
the following polynomials in z domain [80]:

A(z−1) = 1+a1z−1 + · · ·+anz−n

B(z−1) = b0 +b1z−1 + · · ·+bm−1z−m+1
(2.22)

Here, the order of the numerator and denominator of the transfer function is denoted by
n and m. For first order systems where n = 0 and m = 2, Eq.(2.21) can be rewritten in the
following form:

y(z−1)

u(z−1)
=

A(z−1)

B(z−1)
=

a0
b1

b0
b1

z−1 +1
(2.23)

Eq.(2.23) can be converted into to following form by applying inverse z transform [61]:

y(k) =
a0

b1
u(k)− b0

b1
y(k+1) (2.24)

Here, k represents the sample points which are normalized by the maximum number to
represent a step input of 1 (i.e. u(k) is all 1 while y(k) is the trajectory normalized by the
maximum number since step response is not affected by scaling).

Eq.(2.24) can then be written in the following linear regression form (i.e. similar method
can be found in [81, 46]):

y(k) =
[
u(k) y(k+1)

] [ a0
b1

−b0
b1

]
(2.25)

Where the transfer function coefficients can be obtained by solving Eq.(2.25) for a0
b1

and
−b0

b1
. By substituting a0

b1
and −b0

b1
back to Eq.(2.23), the discrete time transfer function is

obtained shown in Eq.(2.26).

y(z−1)

u(z−1)
=

a0
b1

−b0
b1

z−1 +1
(2.26)
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After obtaining the linear regression model in discrete time, by using bilinear transfor-
mation shown in Eq.(2.27) to substitute s for z−1, the transfer function is converted into
continuous time transfer function [61].

s =
2(z−1 −1)
T (z−1 +1)

(2.27)

The identified first order continuous time transfer function is shown in Eq.(2.28) where c
is the numerator coefficient (gain) and τ is the denominator coefficient (time constant).

y(s)
u(s)

=
c

τs+1
(2.28)

The transfer function is implemented into the trajectory tracking system introduced in
the following section used for robust controller design. For obtaining a robustness against
the trajectory, all the discretized trajectory will be identified into the linear regression model
in the form of Eq.(2.28).

2.4 Linear Robust Controller Design

Recently, a method to obtain a robust controller with a structured controller (e.g. PI con-
troller) has been suggested by [6]. The robust controller design method used for this study is
conducted by following the structured H∞ controller design which involves solving a noncon-
vex and nonsmooth optimization problem. The standard or the nominal H∞ controller design
(as phrased in [6]) solves the algebraic Riccati equation [27] or Linear Matrix Inequality
(LMI) problem as stated in [6, 34], while the structured H∞ controller design is obtained
through optimization. The structured approach assumes the stabilizing controller to have the
same frequency domain representation as the nominal H∞ controller design [6]. Therefore,
the concept of H∞ control as well as nominal H∞ controller design will be briefly explained,
followed by the structured H∞ controller design.

2.4.1 H∞ Control

H∞ control is one of the established robust controller design methods available today. The
method can handle unknown parameters in a plant model as well as parameter uncertainties
in a relatively small fluctuation and design a stabilizing controller in its presence [34]. When
dealing with H∞ control, the problem is formulated by introducing a generalized plant model
P with a feedback controller and the system is shown in Fig.2.4. The generalized plant model
can be defined as a input-output system in Eq.(2.29).
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Fig. 2.4 Generalized Plant.

[
z
y

]
= P

[
w
u

]
=

[
P11 P12

P21 P22

] [
w
u

]
(2.29)

Here, w is a exogenous input representing any outside input originating from outside
of the system (i.e. reference input, disturbance, sensor noise, etc), z is a controlled output
representing a signal to be minimized by the controller (i.e. deviation, system output, etc). u
is the control input and y is the output of the system.

As depicted in Fig.2.4, in the nominal H∞ controller design the closed-loop generalized
plant model is stabilized by the feedback control of u = Ky. At the same time, the controller
is subjected to minimize the H∞ norm of transfer function from w to z by Tzw. Tzw is expressed
in the Eq.(2.30) obtained by substituting u = Ky into Eq.(2.29).

Tzw = P11 +P12K(I −P22K)−1P21 (2.30)

The H∞ norm of any transfer function is expressed as ∥ · ∥∞ and therefore ∥Tzw∥∞ is
expressed by Eq.(2.31).

∥Tzw(P,K;s)∥∞ = sup
0≤ω≤∞

σ̄(Tzw(P,K; jω))

σ =
√

λmax(M∗M)

(2.31)

Here, σ expresses the maximum singular value, s = jω for sinusoidal steady-state
response, sup represents the supremum or the maximum signal, λmax is the maximum eigen
value, M and M∗ are the complex matrix and the conjugate transpose of an complex matrix
respectively.

As noted in Section 2.4.1, nominal H∞ controller design uses either the method of
algebraic Riccati equation or Linear Matrix Inequality (LMI) problem [34]. Here, the method
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of algebraic Riccati equation is briefly explained referenced from [27]. For the generalized
plant introduced in Section 2.4, the state-space realization are shown in Eqs.(2.32).

ẋ(t) = Ax(t)+B1w(t)+B2u(t)

z(t) =C1x(t)+D11w(t)+D12u(t)

y(t) =C2x(t)+D21w(t)

(2.32)

Here, w(t) ∈ Rm1 is the disturbance vector, u(t) ∈ Rm2 is the control input, z(t) ∈ Rp1 is
the tracking error, y(t) ∈ Rp2 is the output, and x(t) ∈ Rn is the states. The equations from
Eqs.(2.32) can be organized into a state-space realization shown in Eq.(2.33) when [wT uT ]T

are the control inputs and [zT yT ]T are the outputs.

ẋ(t) = Ax(t)+
[
B1 B2

] [w(t)
u(t)

]
(2.33)

[
z(t)
y(t)

]
=

[
C1

C2

]
x(t)+

[
D11 D12

D21 0

] [
w(t)
u(t)

]
(2.34)

For simplicity, B =
[
B1 B2

]
,C =

[
C1

C2

]
, and D =

[
D11 D12

D21 0

]
.

Using Doyle’s notation from [27], Eq.(2.29) can be expressed into Eq.(2.35) as a transfer
function of Eq.(2.32).

P =

[
P11 P12

P21 P22

]
=

[
D11 D12

D21 D22

]
+

[
C1

C2

]
(sI −A)−1

[
B1 B2

]
=

[
A B
C D

] (2.35)

The following assumptions are made for deriving a stabilizing controller K referenced
from [27].

A1. (A,B2,C2) are stabilizable and detectable.

A2. vertically long column of D12 and horizontally long row of D21 is full rank.

A3. with the unitary transformation of w and z and scaling of u and y, the D12 and D21 is
defined by Eq.(2.36) matrix without the loss of generality.



2.4 Linear Robust Controller Design 27

D12 =

[
0
I

]
, D21 =

[
0 I

]
(2.36)

Additionally, D11 is divided into the following subsections.

D11 :=

(m1−p2)↔ p2↔
(p1 −m2) ↕

m2 ↕

[
D1111 D1112

D1121 D1122

]
(2.37)

A4. P12 from Eq.(2.29) defined in Eq.(2.38) has a full rank column.

rank

[
A− jωI B2

C1 D12

]
= n+m2 (2.38)

A5. P21 from Eq.(2.29) defined in Eq.(2.39) has a full rank row.

rank

[
A− jωI B1

C2 D21

]
= n+ p2 (2.39)

Next, the following matrices are defined for obtaining the Hamiltonian matrix used for
the solution to the algebraic Riccati equation:

R := D∗
1•D1•−

[
γ2Im1 0

0 0

]
(2.40)

R̃ := D•1D∗
•1 −

[
γ2Ip1 0

0 0

]
(2.41)

Here, D1• := [D11 D12], D•1 := [D11 D12]
T , and γ ∈ R is a prescribed value from the

equation ∥Tzw(P,K;s)∥∞ < γ . Solution to the algebraic Riccati equation are obtained by the
following Hamiltonian matrix X∞ and Y∞ assuming a stabilizing solution.

X∞ :=

[
A 0

−C∗
1C1 −A∗

]
−

[
B

−C∗
1D1•

]
R−1

[
D∗
•1B1C

]
(2.42)

Y∞ :=

[
A∗ 0

−B1B∗
1 −A

]
−

[
C∗

−B1D∗
•1

]
R̃−1

[
D∗
•1B1C

]
(2.43)
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By using Eq.(2.42) and Eq.(2.43), the "state feedback" and "output injection" matrices as
defined in [27] is defined in Eqs.(2.44) and (2.45).

F :=
(p1 −m2) ↕

p2 ↕
m2 ↕

 F11

F12

F2

 :=−R−1[D∗
1•C1 +B∗X∞] (2.44)

H :=
(p1−m2)↔ m2↔ p2↔[
H11 H12 H2

] :=−[B1D∗
•1 +Y∞C∗]R̃−1 (2.45)

Under the assumption that Theorem I (see Appendix A.1) from [27] is met, all rational in-
ternally stabilizing controller K satisfying ∥N∥∞ < γ for arbitrary N ∈ RH∞ can be expressed
by Eq.(2.46).

K := M11 +M12(I −NM22)
−1NM21 (2.46)

Where M is defined by the following matrix:

M :=

[
M11 M12

M21 M22

]
=

 Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0

 (2.47)

D̂11 :=−D1121D∗
1111(γ

2I −D1111D∗
1111)

−1D1112 −D1112 (2.48)

Here, D̂12 ∈ Rm2×m2 and D̂21 ∈ Rp2×p2 are any matrices satisfying the following:

D̂12D̂∗
12 := I −D1121(γ

2I −D∗
1111D1111)

−1D∗
1121

D̂21D̂∗
21 := I −D1112(γ

2I −D∗
1111D1111)

−1D∗
1112

(2.49)

as well as:

B̂2 := (B2 +H12)D̂12

Ĉ2 :=−D̂21(C2 +F12)Z

B̂1 :=−H2 +
ˆB2 ˆD−−112D̂11

Ĉ1 := F2Z + D̂11
ˆD−1
21 Ĉ1

Â := A+HC+ B̂2
ˆD−1

12 Ĉ1

Z := (I − γ
−2Y∞X∞)

−1

(2.50)
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The controller K assumed in Eq.(2.46) can be simplified assuming N = 0. Eq.(2.51) is
referred to as the central solution often used for controller design and has the same structure
as Eq.(2.30).

K = M11 = D̂11 +Ĉ1(sI − Â)−1B̂1 (2.51)

As can be seen from Eq.(2.51), the dimension of the central solution is equal to the
dimension of the plant model. In the general plant model, not only is the dimension of the
plant model considered but the weighting function is considered as well. Therefore, the
dimension of the controller is the total sum of plant model as well as the weighting function.
The dimension for the controller increases depending on the system, making implementation
and understanding of the controller difficult. Due to the nature of the controller having a high
dimension, for a more practical controller placing a structural constraint on the controller
(e.g. PI controller) is preferred.

2.4.2 Structured H∞ Controller Design

Structured H∞ controller design makes the controller to have same structure as a practical PI
(e.g. P, PI, PID, etc) controllers making ease of implementation while keeping a low-order
transfer function for better understanding which increases practicality [26, 52]. Here, the
method of structured H∞ controller design using nonsmooth optimization is briefly explained
referenced from [6]. The controller design is conducted by following the nominal H∞

controller design where for a closed-loop system of Tzw (input signal w to output signal
z) the objective is to minimize the H∞-norm (corresponds to maximum singular value
σ̄(Tzw( jω))[67]) such that the controller K stabilizes plant model P internally [26]. The
controller K is assumed to have the same frequency domain representation as Eq.(2.30) but
with constraint placed on the control structure. With the structural constraint K ∈ Kpi (i.e.
for PI controller) and the order of the controller being k (AK ∈ Rk×k), Eq.(2.30) is expressed
as Eq.(2.52).

K =CK(sI −AK)
−1BK +DK (2.52)

K is obtained through optimization and the formulation for the optimization problem is
summarized as follows:
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min . ∥Tzw(P,K;s)∥∞ = sup
0≤ω≤∞

σ̄(Tzw(P,K; jω))

s.t. K stabilizes P internally

K ∈ Kpi

(2.53)

The optimization problem of Eq.(2.53) is solved through steepest descent method [18]
where the H∞ norm is evaluated directly using the Hamiltonian bisection algorithm [17, 24]
with the subgradients obtained through Clarke’s subdifferential [20] and used to compute
the step length of the steepest descent method. The method in [6] is unique in that it
applies Clarke’s subdifferential to a closed-loop transfer function to be used by the steepest
decent method. Furthermore, the method is extended to the simultaneous optimization of a
finite family of closed-loop transfer functions. Therefore, the method of applying Clarke’s
subdifferential to nonzero transfer function as well as to a closed loop transfer function
and the steepest descent method will be briefly noted followed by a brief explanation for
stabilizing a finite family of closed-loop transfer functions.

The H∞ norm of a nonzero stable transfer function G(s) is expressed in Eq.(2.54) where
Eq.(2.54) is attained at frequency ω .

∥G∥∞ = sup
ω∈R

σ̄(G( jω)) (2.54)

Here, G( jω) =U ∑V H is the singular value decomposition. Let the first column of U
be u and the first column of V by v and by doing so, u = G( jω)v/∥G∥∞ can be expressed.
Here, the linear function φ = φu,v,ω is expressed as Eq.(2.55).

φ(H) = Re(uH( jω)v)

= ∥G∥−1
∞ ReTrvvHG( jω)HH( jω)

= ∥G∥−1
∞ ReTrG( jω)HuuH( jω)

(2.55)

Here, φ is continuous across all stable transfer function space H∞ and ∥ ·∥∞ is the infinity
norm. To be more general, Qu has a column whose orthonormal basis of the eigenspace
of G( jω)G( jω)H is related to the leading eigen value of λ1(G( jω)G( jω)H) = σ(G( jω))2.
Additionally, Qv has a column whose orthonormal basis of the eigenspace of G( jω)HG( jω)

is related to the leadin eigen value of λ1(G( jω)G( jω)H) = σ(G( jω))2. Here, Y ⪰ 0
defines Y is a semidefinite problem. For all Hamiltonian matrix Yv ⪰ 0,Yu ⪰ 0 where
Tr(Yv) = 1,Tr(Yu) = 1, the subgradient of ∥ · ∥∞ regarding G is expressed as Eq.(2.56).
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φ(H) = ∥G∥−1
∞ ReTrQvYvQH

v G( jω)HH( jω)

= ∥G∥−1
∞ ReTrG( jω)HQuYuQH

u H( jω)
(2.56)

With G(s) being a rational function and assuming finitely existing frequencies ω1, · · · ,ωp

where the supremum of ∥G∥−1
∞ = σ̄(G( jωv)) is attained, all subgradients of ∥ · ∥∞ regarding

G is expressed as Eq.(2.57).

φ(H) = ∥G∥−1
∞ Re

p

∑
v=1

TrG( jω)HQvYvQH
v H( jωv) (2.57)

Here, Qv has a column whose orthonormal basis of the eigenspace of G( jω)G( jω)H is
related to the leading eigen value of ∥G∥2

∞ where Yv ⪰ 0,∑p
v=1 Tr(Yv) = 1. For further details,

refer to [20, 5].
Next, assuming smooth operator G can be mapped onto the space H∞ for all stable transfer

function G, the Clarke’s subdifferential at x can be calculated for the composite function
f (x) = ∥G∥∞. Clarke’s subdifferential is calculated by Eq.(2.58).

∂ f (x) = G′(x)∗[∂∥ · ∥∞(G(x))] (2.58)

Here, ∂∥ · ∥∞ is the subgradient of the H∞ norm, G′(x)∗ is the adjoint of G(x) mapping
the dual of H∞ onto Rn where Rn is identified with its dual. The following will proceed to
compute the adjoint G′(x)∗ for a closed-loop transfer functions. The generalized plant model
in Section 2.4.1 will be used to obtain the closed-loop transfer function here.

For the generalized plant model shown in Eq.(2.29), the closed-loop transfer function is
obtained as Eq.(2.30). Here, the derivative T

′
zw(K) of T

′
zw at K is shown in Eq.(2.59).

T
′

zw(K)δK := P12(I −KP22)
−1

δK(I −P22K)−1P21 (2.59)

Here, δK is an element of the same matrix space as K. By using the chain rule from [20],
the subgradients ΦY of f at K can be expressed as Eq.(2.60).

ΦY := T
′

zw(K)∗φy ∈ Mm2,p2 (2.60)

Here, φ = φY is the subgradient of ∥ · ∥∞ of T
′

zw(K) meeting the requirements of Y ⪰
0,Tr(Y ) = 1. The adjoint T

′
zw(K)∗ acts on φY through Eq.(2.61).
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⟨T
′

zw(K)∗φY ,δK⟩=⟨T
′

zw(K)∗φyδK,φY ⟩
=∥Tzw(K)∥−1

∞ ReTr{(I −P22( jω)K( jω))−1

P21( jω)Tzw(K, jω)HQY QHP12( jω)

(I −K( jω)P22( jω))−1
δK( jω)}

(2.61)

Here, ⟨a,b⟩ represents the inner product of a and b. For the full derivation of Eq.(2.61),
refer to [6] and thus will be omitted. Finally, the Clarke’s subdifferential f (K) := ∥Tzw(k)∥∞

at K consists of all subgradients ΦY (Y ⪰ 0,Tr(Y ) = 1) and is expressed as Eq.(2.62).

ΦY =∥Tzw(K)∥−1
∞ Re{(I −P22( jω)K)−1P21( jω)Tzw(K, jω)HQY QHP12( jω)

(I −KP22( jω))−1}T
(2.62)

When Eq.(2.62) is expressed in finite number of frequencies from ω1, · · · ,ωq, Clarke’s
subdifferential f (K) := ∥Tzw(k)∥∞ at K consists of all subgradients ΦY (Y =(Y1, · · · ,Yq),Yv ⪰
0,∑q

v=1 Tr(Y ) = 1) and can be derived by Eq.(2.63).

ΦY =∥Tzw(K)∥−1
∞

q

∑
v=1

Re{(I −P22( jωv)K)−1P21( jωv)Tzw(K, jωv)
HQYvQHP12( jωv)

(I −KP22( jωv))
−1}T

(2.63)
Eq.(2.63) is a general form which can be applied to static, dynamic, structured, or matrix

fraction represented controllers. Using Eq.(2.63), the optimization problem Eq.(2.53) can
be solved through steepest descent method. Consider now the objective function shown in
Eq.(2.53) of minimizing f (x) = ∥G(x)∥∞ where x is K or the regrouped controller data and
G maps Rn smoothly into space H∞ of stable transfer function. The necessary condition
for reaching a optimal solution is 0 ∋ ∂ f (x) = G

′
(x)∗∂∥ · ∥∞(G(x)). Thus, the problem is

considered to be in the form of Eq.(2.64).

d =− g
∥g∥

, g = argmin{∥φY∥ : Y = (Y1, · · · ,Yq),Yv ⪰ 0,
q

∑
v=1

Tr(Y ) = 1)} (2.64)

Eq.(2.64) shows that the optimum solution is obtained when 0 ∋ ∂ f (x) or if 0 = ∂ f (x) at
x then x is changed dependent on the direction d of the steepest descent at x. Here, φY = ΦY

derived from Eq.(2.63). By vectorizing y = vec(Y ),Y = (Y1, · · · ,Yq), then ΦY can now be
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expressed as matrix vector product of ΦY = Φy. Eq.(2.64) can now be interpreted as a
semi-definite programming of Eq.(2.65) referenced from [6].

min . t

s.t.

[
t yT ΦT

Φy tI

]
⪰ 0

Yi ⪰ 0, i = 1, · · · ,q
eT y = 1

(2.65)

Here, eT y = 1 represents ∑i Tr(Yi) = 1 and the direction d of the steepest descent method
from Eq.(2.64) can be expressed as d =−Φy/∥Φy∥ where (t,y) is the solution of Eq.(2.65)
with y ̸= 0. The algorithm is summarized by the following:

Step 1. Evaluate Gradient:
if 0 ∋ ∂ f (x), then terminate. if not, then go to step 2.

Step 2. Solve Steepest Descent Problem:
solve Eq.(2.65) to obtain direction d of the steepest descent method at x.

Step 3. Perform Line Search:
perform line search to obtain steepest step of x+ = x+ td.

Step 4. Iterate:
rewrite x as x+ and repeat from step 1.

When using this approach, the optimization can fail to converge due to the nonsmoothness
of f . Modifications of the steepest descent method are discussed in [6] and details will be
omitted due to the modification being outside the scope of this dissertation.

Using the steepest descent method to solve Eq.(2.65), Eq.(2.53) is extended to minimizing
the H∞ norm for a finite family of closed-loop transfer functions T (k)

zw where k represents the
k-th plant model. Consider first a Laplace transformed transfer function of Eq.(2.32) from
input w to output z having the dimension of p1 ×m1 dimension, the transfer function matrix
of Tzw is expressed as Eq.(2.66).

Tzw =



p11 · · · p1 j · · · p1m1
... . . . ...

pi1
. . . pim

... . . . ...
pp11 · · · pp1 j · · · pp1m1


(2.66)
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Here, pi j represents the input from the j-th element of w to the output from the i-th
element of z. Now for a k-th plant model (k ∈ N) of T (k)

zw , the transfer function matrix of T (k)
zw

is expressed as Eq.(2.67) where n represents arbitrary integer 1 ≤ n ≤ k.

T (1)
zw =



p111 · · · p1 j1 · · · p1m11
... . . . ...

pi11
. . . pim1

... . . . ...
pp111 · · · pp1 j1 · · · pp1m11


...

T (n)
zw =



p11n · · · p1 jn · · · p1m1n
... . . . ...

pi1n
. . . pimn

... . . . ...
pp11n · · · pp1 jn · · · pp1m1n


...

T (k)
zw =



p11k · · · p1 jk · · · p1m1k
... . . . ...

pi1k
. . . pimk

... . . . ...
pp11k · · · pp1 jk · · · pp1m1k



(2.67)

Eq.(2.53) is solved using hinfstruct MATLAB function [26] where stability and perfor-
mance is obtained when ||Tzw(P,K;s)||∞ < 1 as is shown in [72]. Eq.(2.67) was used for the
multiple model approach [2] to obtain a common PI gain for k set of plant models Pk which
has been used by Ref. [70]. Structured H∞ controller design proposed here will therefore
be robust for multiple LTI models linearized at different flight conditions obtained through
linearizing a nonlinear model.

The constructed system for the H∞ controller design is shown in Fig.2.5. The system has
r being the reference trajectory, e being the tracking error, u being the control input, d being
the disturbance, and y being the output. The SITF in Fig.2.5 is the transfer function of the
converted trajectory for the nth segment in the trajectory. The controller structure is defined
as Eq.(2.68) where kp, ki are the tunable parameters of K and the integral controller uses
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a pseudo integrator (ε = 0.02) for this study. The control period for tracking the reference
input was fixed at 50[hz] (0.02 [s]) by referring to [52].

K = kp + ki
1

s+ ε
(2.68)

We and Wu blocks are the weighting functions used for shaping the transfer function from
r to e and r to y respectively. In Fig.2.5, Tzw from Eq.(2.53) has a following signals where w
denotes the reference and disturbance inputs (w = [r d]T ) and z denotes outputs from We and
Wu respectively (z = [ze zu]

T ). ∆e and ∆u represents the uncertainty variables where in this
study ∆e is a fictitious uncertainty placed only to close the loop and ∆u = 0 which considers
no uncertainties (∆e and ∆u where introduced by referring to Ref.[70, 52, 67]). It should be
noted that in this study, weighting functions We and Wu placed on the system were used as
tuning parameters and tuned through trial and error for the H∞ norm to be as close to 1 as
possible for high tracking performance (tuning method referred to Ref.[70]). Symbol We was
placed on the sensitivity function to minimize the error for increasing tracking performance.
Symbol Wu was placed on the complementary sensitivity function to minimize the command
input by referring to Ref. [56]. Performance and stability are obtained by tuning K by solving
Eq.(2.53) to meet the following equations as shown in [34].

∥WeS∥∞ < 1

∥WeT∥∞ < 1
(2.69)

The proposed system incorporates the trajectory information via SITF during the ro-
bust controller design which is expressed as a form of a mixed sensitivity problem. In a
mixed sensitivity problem [49], the general equation between the sensitivity function S and
complementary sensitivity function T holds as the following:

S+T =
1

1+PK
+

PK
1+PK

= 1 (2.70)

Eq.(2.70) is the general equation representing the trade-off between performance and
stability. Since the proposed method incorporates SITF into the system (Fig.2.5), Eq.(2.70)
is then expressed as a form of a mixed sensitivity problem with the following relation shown
in Eq.(2.71).

S+T =
1

1+PK
+

PK
1+PK

= SITF (2.71)

Since general robust controller design is conducted by expressing the design requirements
of Eq.(2.69) in terms of weighting functions 1

We
and 1

Wu
, the proposed system will be evaluated
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in terms of 1
We

and 1
Wu

as well. The proposed method can be defined as a form of a mixed
sensitivity problem compared to the conventional method using the general mixed sensitivity
problem. Therefore, in order to separate the transfer function from reference input to tracking
error between the proposed and conventional method, for the proposed method Eq.(2.72)
will be used.

Tr2e =
S

SIT F
(2.72)

The same will be applied to the transfer function from reference input to the plant output
and for the proposed method Eq.(2.73) will be used.

Tr2y =
T

SIT F
(2.73)

Fig. 2.5 Proposed System for Robust Controller Design Method.
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2.5 Advantages and Limitations

Primary advantages of the proposed method over the conventional method of designing the
trajectory and robust controller separately are given as follows:

1) Trajectory and robust controller are obtained simultaneously which can reduce the risk
of redesign since the stability and performance for the controller is guaranteed to the
obtained control-oriented optimal trajectory.

2) Robustness against the trajectory obtained from the optimal solution is obtained since
trajectory information is incorporated into the robust controller design through system
identification.

3) Flexibility in designing a trajectory specific to the tolerable maximum tracking error given
by the user since maximum tracking error is placed as nonlinear inequality constraint in
the NLP problem.

The proposed method has some limitations. First, the global optimal solution cannot be
necessarily found since the NLP problem is solved with a gradient-based optimizer (SQP)
and converges usually to a local optimum. Therefore, the problem is sensitive to the initial
conditions as well as scaling of the design variables. Second, in order to satisfy the nonlinear
inequality constraint of tolerable maximum tracking error, sufficient knowledge and tuning
of the weighting functions for the transfer function from r to e and r to y in the frequency
domain is desired and without proper tuning, the maximum tracking error cannot be achieved.
The second drawback can often be circumvented by designing the transfer function from r to
e to have higher performance at low frequencies (low frequencies are minimized compared
to high frequencies) since trajectory usually has moderate changes and relaxed performance
at higher frequencies since usually high frequencies are prone to noise. Additionally, the
transfer function from r to y should be designed with minimizing the high frequencies since
control input should be minimized to high frequency disturbances.



Chapter 3

Performance Comparison to Designing
Trajectory and Controller Separately

Following the development of the novel method in the previous Chapter, applicability
of the proposed method are identified by conducting the performance comparison to the
conventional method of obtaining a trajectory and controller separately to two example
problems. In Section 3.1, applicability of the proposed method to a benchmark aerospace
related optimal control problem is demonstrated through solving a modified rocket launch
problem. In Section 3.2, applicability of the proposed method to a optimal control problem
outside of the aerospace field is demonstrated through solving a modified Zermelo’s problem.

3.1 Modified Rocket Launch Problem

In order to test the proposed method (Simultaneous) for applicability to aerospace related
problems, the rocket launch problem [19] used commonly for optimal control example will
be used to compare against the conventional method of obtaining the controller separately
from the trajectory (Separated). The problem was modified to incorporate friction to the
dynamic model [37] since the model was not controllable in the sense that when making
an LTI model, matrix A in Eq.(B.1) did not have full rank where det|[B,AB]|= 0. The state
variables are horizontal velocity u, vertical velocity v, horizontal distance x, and vertical
distance y. The problem is a rocket launching from the ground to reach the target altitude y f

of 50 and v f of 0 while maximizing final horizontal velocity u f with the control input β and
is depicted in Fig.3.1. The SISO system tracks the reference v generated at each iteration of
SQP and has a feedback loop for obtaining maximum error emax against the output v. The
emax is then evaluated to meet the nonlinear inequality constraint.
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Fig. 3.1 Diagram of Rocket Launch Problem.

3.1.1 Nonlinear Trajectory Design

The nonlinear trajectory design will be evaluated for improving the objective function while
meeting the emax nonlinear inequality constraint placed on the NLP probem. The dynamic
equations used for trajectory optimization and closed loop nonlinear simulation are shown
in Eqs.(3.1). Here, k1=0.2 and k2=0.1 both represent the vertical and horizontal air friction
respectively. The closed loop nonlinear simulation tracks the reference v with a feedback
loop from the output v. Symbol a represents the constant acceleration and was fixed at 2.

u̇ = acosβ − k1v

v̇ = asinβ − k2v

ẋ = u

ẏ = v

(3.1)
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Formulation of the optimal control problem is as follows:

find state variables : X = [u,v,x,y]

control variables : β [deg]

min. −u f

s.t. state equations shown in Eqs.(3.1) of Section3.1.1

−90 ≤ β ≤ 90 [deg]

emax ≤ 0.99 (Unused in Separated method)

X0 = [0,0,0,0]

v f = 0

y f = 45

t f = 10

a = 2

(3.2)

The problem was discretized using direct single shooting method explained in Section
2.2.1. The problem was discretized into 10 sub-segments and the transfer function was
identified for each sub-segment in the trajectory at every iteration. At each iteration, for
the Simultaneous method the maximum tracking error was calculated through closed loop
nonlinear simulation and for the Separated method, optimal trajectory was obtained without
considering the emax as the nonlinear inequality constraint.

3.1.2 Linear Robust Controller Design

Both controllers obtained in the Separated and Simultaneous method through robust controller
design will be evaluated for stability, performance, and robustness against flight condition
changes of β as well as to the identified trajectories. The linear time invariant (LTI) model
was obtained by linearizing the equations u̇ and v̇ in Eq.(3.2) at two constant launch angle
conditions. The LTI model was constructed by linearizing the equations for the dynamic
equation at constant β of 20 [deg] and 80 [deg] through perturbation method. The state
equations are linearized about the steady state condition in the form of Eq.(B.1) (subscripts
for matrix A and B denotes the linearized β ).

ẋ = Aix+Biu

y =Cx
(3.3)
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where the new state variables obtained through perturbation are the following:

x = [∆u ∆v]T

y = [v]

u = [∆β ]

(3.4)

The LTI models linearized through the perturbation are shown in Eq.(3.5).

A =

[
−k1 0

0 −k2

]
, B =

[
−2sinβ0

2cosβ0

]
(3.5)

The LTI models for β = 20 and β = 80 [deg] are shown in Eq.(3.6) to (3.8).

A20 =

[
−0.2 0

0 −0.1

]
, B20 =

[
−0.69

1.8

]
(3.6)

A80 =

[
−0.2 0

0 −0.1

]
, B80 =

[
−1.9
0.35

]
(3.7)

C =
[
0 1

]
(3.8)

The system used for the Separated method in designing the robust controller is shown
in Fig.3.2. Here, reference r represents the optimal v and the system feedbacks the v output
denoted as y. The system is the same as in the Simultaneous method shown in Fig.2.5 except
that the identified trajectory (SITF) is neglected (i.e. explanation of each variables and blocks
are omitted, refer to 2.4.1). For the Simultaneous method, since the trajectory was identified
at each segment to be incorporated into robust controller design, robustness against the SITF
will be evaluated as well. The weighting functions We and Wu are shown in Eqs.(3.9) and
(3.10) which was tuned through trial and error to increase tracking performance. Robustness
against flight condition changes and to the trajectory was evaluated based on the step response
of the linearized steady state model (explained in section 3.1.2) and SITF for having high
tracking performance.
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We =
s+1

4s+0.08
(3.9)

Wu =
s+1

1.5s+2
(3.10)

Fig. 3.2 Conventional Robust Controller Design Method (Separated).

3.1.3 Simultaneous Design Results

The linear robust controller is evaluated for stability, performance, and robustness against
flight condition changes as well as to the identified trajectories as explained in section 3.1.2.
The nonlinear trajectory is evaluated for improvements in the objective function u f and
maximum tracking error emax. The results for the simulation are shown in Fig.3.3 to 3.15.
Table 3.1 shows the comparison of the cost function u f , control gains kp and ki, maximum
error emax and H∞ norm for the Simultaneous method compared to the Separated method
where the trajectory and controller are designed separately.

Table 3.1 Comparison of Results between Simultaneous and Conventional Methods.

Method Cost Function u f kp ki emax H∞ Norm
Separated 4.11 1.40 0.31 0.99 0.97

Simultaneous 4.73 1.55 0.28 0.80 0.99

For the linear robust controller design evaluation, both Separated and Simultaneous
methods had H∞ norm of 0.97 and 0.99 respectively which ensures stability and performance.
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This is also verified by the poles and gain plot for the sensitivity function S, transfer functions
from r to e denoted as Tr2e, and transfer functions from r to y denoted as Tr2y (transfer
functions defined in Section 2.4.2). From Fig.3.3 it can be seen that all poles for the
sensitivity function S and Tr2e are non-positive for both Separated and Simultaneous method
thus both systems has stability. From Fig.3.4, it can be seen that the gain plot of S and Tr2e for
both systems are below the weighting function 1/We ensuring performance and from Fig.3.5,
the gain plot of the complementary sensitivity function T and Tr2y are below the weighting
function 1/Wu meeting the design requirements. Fig.3.6 represents the step response of each
linearized β for both Separated and Simultaneous method. As can be seen from Fig.3.6, each
linearized β shows stable response ensuring robustness against flight condition changes to
linearized β . Fig.3.7 to 3.11 represents the response of the identified transfer function derived
from each segment in the optimized trajectory. vi represents the v in the trajectory at each
discretized ith segment and vimax represents the maximum value in the ith segment. vi/vimax

represents the normalized velocity at each discretized segment and was used as reference
step input. Therefore, each identified transfer function represents a segment in the optimal
trajectory. As can be seen from Fig.3.7 to 3.11, the proposed method has high tracking
performance and has a stable response for both linear models of β = 20 and β = 80 [deg]
ensuring robustness against the trajectory.

For the nonlinear trajectory design evaluation, from the trajectory obtained through
nonlinear trajectory design (Section 3.1.1) shown in Fig.3.13 and 3.15, it can be seen that
both Simultaneous and Separated methods have similar trajectory characteristics. Both
trajectories gradually decrease β to increase u. Since u is the cosine of β , as β decreases
u increases. By placing the maximum error derived from tracking error of the Separated
method as a nonlinear constraint, overall β was minimized thus increasing the cost function u
and reducing maximum error emax. This can be seen at t = 8 of where tracking error decreases
from 0.99 to 0.80 in Fig.3.12. The Simultaneous method improved the cost function, had
higher tracking performance, and robustness against flight condition changes as well as to
the trajectory were obtained.

From the obtained results, the novel method of simultaneous design of trajectory and
robust controller was successfully applied to a modified rocket launch problem typically
used for optimization examples in terms of the controller having stability, performance, and
robustness against flight condition changes. Furthermore, the Simultaneous method showed
superior results to the Separated method in terms of maximizing the objective function u f ,
minimizing the maximum tracking error emax, and adding robustness against the trajectory.
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(a) Separated.

(b) Simultaneous.

Fig. 3.3 Pole/Zero Map for Modified Rocket Problem.
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Fig. 3.4 Gain Plot of Tr2e for Modified Rocket Problem.
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Fig. 3.5 Gain Plot of Tr2y for Modified Rocket Problem.
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Fig. 3.6 Step Response Comparison for Modified Rocket Problem.
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Fig. 3.7 Response of SITF Inputs for Modified Rocket Problem (Segment 1 and 2).
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Fig. 3.8 Response of SITF Inputs for Modified Rocket Problem (Segment 3 and 4).
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Fig. 3.9 Response of SITF Inputs for Modified Rocket Problem (Segment 5 and 6).
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Fig. 3.10 Response of SITF Inputs for Modified Rocket Problem (Segment 7 and 8).
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Fig. 3.11 Response of SITF Inputs for Modified Rocket Problem (Segment 9).
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3.2 Modified Zermelo‘s Problem

In order to test the Simultaneous method for applicability outside the field of aerospace,
Zermelo’s problem [19, 10] of navigating a speedboat commonly used for optimal control
example will be used to compare against the conventional method of obtaining the controller
separately from the trajectory (Separated). The problem was modified to incorporate a
parabolic current distribution for adding complexity. The state variables are horizontal
distance x and vertical distance y (horizontal velocity dx = u, vertical velocity dy = v). The
problem shown in Fig.3.16 assumes a river with current distribution of 0.2y(y−10) in the
x-direction and −0.01x(x− 20) in the y-direction. The speedboat is accelerating at k to
reach the target coordinate y f of 10 and x f of 10. Find the optimal steering angle α while
maximizing k in a given time t f = 3. The SISO system tracks the reference v generated at
each iteration of SQP and has a feedback loop for obtaining maximum error emax against the
output v. The emax is then evaluated to meet the nonlinear inequality constraint.

Fig. 3.16 Diagram of Rocket Launch Problem.

3.2.1 Nonlinear Trajectory Design

The nonlinear trajectory design will be evaluated for improving the objective function while
meeting the emax nonlinear inequality constraint placed on the NLP probem. The dynamic
equations used for trajectory optimization and closed loop nonlinear simulation are shown
in Eqs.(3.11). The closed loop nonlinear simulation tracks the reference v with a feedback
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loop from the output v. Symbol k represents the constant acceleration which is maximized to
represent vehicle parameter optimization.

ẋ = 0.2y(y−10)+ k cosα

ẏ =−0.01x(x−20)+ k sinα
(3.11)

Formulation of the optimal control problem is as follows:

find state variables : X = [x,y]

control variable : α [deg]

vehicle parameter : k (acceleration constant)

min. − k

s.t. state equations shown in Eqs.(3.1)

0 ≤ α ≤ 90 [deg]

0 ≤ x ≤ 40

0 ≤ y ≤ 10

1 ≤ k ≤ 10

emax ≤ 0.665 (Unused in Separated method)

X0 = [10,0], X f = [10,10]

v0 = 1

t f = 3

(3.12)

The problem was discretized using direct multiple shooting method explained in Section
2.2.1. The problem was discretized into 4 segments with 10 sub-segments and the transfer
function was identified for each sub-segment in the trajectory at every iteration for the
Simultaneous method. At each iteration, for the Simultaneous method the maximum tracking
error was calculated through closed loop nonlinear simulation and for the Separated method,
optimal trajectory was obtained without considering the emax as the nonlinear inequality
constraint.

3.2.2 Linear Robust Controller Design

Both controllers obtained in the Separated and Simultaneous method through robust controller
design will be evaluated for stability, performance, and robustness against flight condition
changes of α as well as to the identified trajectories. The linear time invariant (LTI) model
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was obtained by linearizing the equations ẋ and ẏ in Eq.(3.11) at two constant steering angle
conditions. The LTI model was constructed by linearizing the equations for the dynamic
equation at constant α of 30 [deg] and 60 [deg] as well as constant acceleration k = 4 through
perturbation method. The state equations are linearized about the steady state condition in
the form of Eq.(3.13) (subscripts for matrix A and B denotes the linearized α).

ẋ = Aix+Biu

y =Cx
(3.13)

where the new state variables obtained through perturbation are the following:

x = [∆x ∆y]T

y = [v]

u = [∆α]

(3.14)

The LTI models linearized through the perturbation are shown in Eq.(3.15).

A =

[
0 2−0.4y0

−0.02x0 +0.2 0

]
, B =

[
−4sinα0

4cosα0

]
(3.15)

The LTI models for α = 30 and α = 60 [deg] are shown in Eq.(3.16) to (3.18).

A30 =

[
0 −1.11

−0.37 0

]
, B30 =

[
−2.00
3.46

]
(3.16)

A60 =

[
0 −1.55

−0.42 0

]
, B60 =

[
−3.46
2.00

]
(3.17)

C =

[
1 0
0 1

]
(3.18)

The system used for the Separated method in designing the robust controller has the same
structure as the rocket launch problem shown in Fig.3.2. Here, reference r represents the
optimal v and the system feedbacks the v output denoted as y. The system is the same as
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in the Simultaneous method shown in Fig.2.5 except that the identified trajectory (SITF) is
neglected (i.e. explanation of each variables and blocks are omitted, refer to 2.4.1). For the
Simultaneous method, since the trajectory was identified at each segment to be incorporated
into robust controller design, robustness against the SITF will be evaluated as well. The
weighting functions We and Wu are shown in Eqs.(3.19) and (3.20) which was tuned through
trial and error to increase tracking performance. Robustness against flight condition changes
and to the trajectory was evaluated based on the step response of the linearized steady state
model (explained in section 3.1.2) and SITF for having high tracking performance.

We =
s+2

5s+0.06
(3.19)

Wu =
s+1

1.6s+4
(3.20)

3.2.3 Simultaneous Design Results

The linear robust controller is evaluated for stability, performance, and robustness against
flight condition changes as well as to the identified trajectories as explained in section
3.1.2. The nonlinear trajectory is evaluated for improvements in the objective function k and
maximum tracking error emax. The results for the simulation are shown in Fig.3.17 to 3.26.
Table 3.2 shows the comparison of the cost function k, control gains kp and ki, maximum
error emax and H∞ norm for the Simultaneous method compared to the Separated method
where the trajectory and controller are designed separately.

Table 3.2 Comparison of Results between Simultaneous and Conventional Methods.

Method Cost Function k kp ki emax H∞ Norm
Separated 4.74 1.07 0.85 0.665 0.93

Simultaneous 4.82 1.09 0.83 0.663 0.99

For the linear robust controller design evaluation, both Separated and Simultaneous
methods had H∞ norm of 0.93 and 0.99 respectively which ensures stability and performance.
This is also verified by the poles and gain plot for the sensitivity function S, transfer functions
from r to e denoted as Tr2e, and transfer functions from r to y denoted as Tr2y (transfer
functions defined in Section 2.4.2). From Fig.3.17 it can be seen that all poles for the
sensitivity function S and Tr2e are non-positive for both Separated and Simultaneous method
thus both systems has stability. From Fig.3.18, it can be seen that the gain plot of S and
Tr2e for both systems are below the weighting function 1/We ensuring performance and
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from Fig.3.19, the gain plot of the complementary sensitivity function T and Tr2y are below
the weighting function 1/Wu meeting the design requirements. Fig.3.20 represents the step
response of each linearized β for both separated and Simultaneous method. As can be seen
from Fig.3.20, each linearized β shows stable response ensuring robustness against flight
condition changes to linearized β . Fig.3.21 to 3.23 represents the response of the identified
transfer function derived from each segment in the optimized trajectory. vi represents the v
in the trajectory at each discretized ith segment and vimax represents the maximum value in
the ith segment. vi/vimax represents the normalized velocity at each discretized segment and
was used as reference step input. Therefore, each identified transfer function represents a
segment in the optimal trajectory. As can be seen from Fig.3.21 to 3.23, the proposed method
has high tracking performance and has a stable response for both linear models of α = 30
and α = 60 [deg] ensuring robustness against the trajectory.

For the nonlinear trajectory design evaluation, from the trajectory obtained through
nonlinear trajectory design (Section 3.2.1) shown in Fig.3.24 and 3.25, it can be seen that
both Simultaneous and Separated methods have similar trajectory characteristics. Both
trajectories accelerate against the y-direction current since the initial starting α was fixed
at 0 [deg]. From there, the speedboat gradually increases α to increase vertical distance.
However, since the current is strongest at y = 5 and as the speedboat approaches y = 5 at
around t = 1.5, it gradually steers the to α = 0 [deg] due to the x f = 10 constraint. From
there, to gain vertical distance, the speedboat increases α again around t = 1.8 to reach
y = 10 target. When comparing the Separated and Simultaneous method, by placing the
maximum error for the simultaneous method derived from tracking error of the Separated
method as a nonlinear constraint, k was increased while decreasing the maximum error from
0.665 to 0.663 at t = 0.6. This was due to the increase in k since k is multiplied to α as
shown in Eq.(3.11) and thus resulted in greater control reducing maximum error. This can be
seen at around t = 0.6 of Fig.3.24a where it can be seen that for the Simultaneous method, v
has a larger curve compared to the Separated method and the maximum error emax decreases
from 0.665 to 0.663 in Fig.3.26. The Simultaneous method improved the cost function, had
higher tracking performance, and robustness against flight condition changes as well as to
the trajectory was obtained.

From the obtained results, the novel method of simultaneous design of trajectory and
robust controller was successfully applied to a modified Zermelo’s problem outside of the
aerospace field in terms of the controller having stability, performance, and robustness against
flight condition changes. Furthermore, the Simultaneous method showed superior results
to the Separated method in terms of maximizing the objective function k, minimizing the
maximum tracking error emax, and adding robustness against the trajectory.
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(a) Separated.

(b) Simultaneous.

Fig. 3.17 Pole/Zero Maps for Modified Zermelo’s Problem.
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Fig. 3.18 Gain Plot of Tr2e for Modified Zermelo’s Problem.
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Fig. 3.19 Gain Plot of Tr2y for Modified Zermelo’s Problem.
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Fig. 3.20 Step Response Comparison for Modified Zermelo’s Problem.
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Fig. 3.21 Response of SITF Inputs for Modified Zermelo’s Problem (Segment 1 and 2).
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Fig. 3.22 Response of SITF Inputs for Modified Zermelo’s Problem (Segment 3 and 4).
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Fig. 3.23 Comparison between Separated and Simultaneous Methods for Modified Zermelo’s
Problem (u and v).
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Fig. 3.24 Comparison between Separated and Simultaneous Methods for Modified Zermelo’s
Problem (x and y).
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3.3 Conclusion of Chapter 3

From the obtained results, the novel method of simultaneous design of trajectory and robust
controller were successfully applied to a benchmark aerospace related optimal control
problem as well as for a example problem outside the field of aerospace. The designed robust
controller had stability and performance with robustness against flight condition changes.
The proposed method showed superior results to conventional design method of separately
designing the trajectory and robust controller from the viewpoint of improving the objective
function, reducing the maximum tracking error placed as the nonlinear inequality constraint,
and adding robustness against the trajectory.



Chapter 4

Application to Hypersonic Experimental
Aircraft Problem

In this chapter, in order to satisfy the second objective of solving the Hypersonic Experimental
Aircraft problem, a simultaneous optimization of trajectory and robust controller design of
a experimental launch vehicle with pre-cooled turbojet (PCTJ) engines is conducted via
the proposed method. The PCTJ engine is a hypersonic airbreathing engines, and it can be
operated with high specific impulse value up to Mach 6 with the precooling system located
prior to its core engine. Optimization is executed to maximize flight time while subject to
minimizing tracking error to a specified value.

4.1 Hypersonic Experimental Aircraft Problem

The Hypersonic Experimental Aircraft problem is a problem to design a trajectory and
controller under flight constraints which maximizes hypersonic cruise duration as well as
descent time to increase downrange since the aircraft will be gliding with no thrust and
has to touchdown as close to the airstrip as possible for recovery. The experiment consists
of 4 phases of launch, suborbital flight, hypersonic cruise, and decent depicted in Fig.4.1.
The aircraft will be attached to the fuselage of the NAL735 rocket booster and launched to
100[km] in altitude (i.e. image of launch shown in Fig.4.2 ). The aircraft will detach from the
booster at 100[km] to start its suborbital flight to reach around 50[kPa] of dynamic pressure
for cruise test condition shown in Table.4.1 derived by refering to [42]. Then, the aircraft
will start pitch up to perform a hypersonic cruise experiment of Mach 5 at 25[km]. Upon
finishing the cruise experiment, the aircraft will start its descent for landing.
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Fig. 4.1 Hypersonic Flight Experiment Concept.

Table 4.1 Hypersonic Engine Test Conditions [42].

Mach Number M M ≥ 4
Dynamic Pressure Q [kPa] 49 ≤ Q ≤ 51
Angle of Attack α [deg] 0 ≤ α ≤ 6

Fig. 4.2 NAL-735 with Hypersonic Experimental Aircraft Configuration.
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To solve the Hypersonic Experimental Aircraft problem, the simultaneous method was
applied along with CFD analysis shown in Fig.4.3. The initial conditions of vehicle geometry,
mass, and propulsion parameters were predefined and CFD analysis were conducted to obtain
the aerodynamic coefficients for the designed Hypersonic Experimental Aircraft model to be
incorporated into the simultaneous method. The state variables are downrange d, altitude
h, velocity v, and flight path angle γ . For the Hypersonic Experimental Aircraft descent
problem, analysis for the sizing of the elevon were carried out in order to identify the effect
elevon size has on flight time. The elevon sizing was taken as a optimization variable A. The
trajectory optimization uses a three state nonlinear Eqs.(4.14) stated in the section 4.2 while
the nonlinear simulation to obtain emax uses five state Eqs.(4.15). The formulation of the
nonlinear problem is similar to the rocket launch example problem where the maximum error
emax is placed as nonlinear constraint taken from separated method from where the optimal
trajectory and controller are designed separately. The SISO system is identical to the system
shown in Fig.2.5. The system tracks the reference γ generated at each iteration of SQP and
has a feedback loop for obtaining maximum error γmax. The γmax is then evaluated to meet
the nonlinear inequality constraint. Finally, the control period for tracking the reference input
was fixed at 50[hz] (0.02 [s]) by referring to [52] and represents the optimal speed to move
the actuators.

Fig. 4.3 System Overview for the Hypersonic Experimental Aircraft Problem.
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4.1.1 Hypersonic Experimental Aircraft

The Hypersonic Experimental Aircraft (Fig.4.4 to 4.6 shows the overview, side, and top view
respectively) has been constructed with a waverider applied as its wing (waverider wing)
which utilizes shock created on the lower surface to obtain high L/D during hypersonic
cruise. Specifications are shown in Table 4.2 and design method of a conical waverider is
shown in Appendix C. The maximum elevon sizing was presumed to be maximum of 7.5%
and minimum of 2.5% total length of the wing for this analysis (Fig.4.7). The waverider
wing is defined as a wing which utilizes the shock wave attached to its leading edge forming
a compressed lower surface thus increasing L/D. Previous studies conducted so far through
the use of CFD validate the aerodynamic efficiency and the results suggest a relatively high
L/D at their given design conditions [36]. The model has been evaluated at low speed of
Mach 0.3 where CFD results stated sufficient lift was produced for low speed flight [36].

Fig. 4.4 Hypersonic Experimental Aircraft Overall View.
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Fig. 4.5 Hypersonic Experimental Aircraft Top View.

Fig. 4.6 Hypersonic Experimental Aircraft Side View.

Fig. 4.7 Elevon Area Comparison.
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Table 4.2 Aircraft Specification

Total Length [m] 9.6
Total Weight [kg] 803
Wing Span [m] 3.2
Wing Length [m] 5.8
Reference Wing Area [m2] 8.3
Center of Gravity [m] 60% from nose

4.1.2 NAL-735 Solid Rocket Booster Model

For the Hypersonic Experimental Aircraft problem, the aircraft will be attached to the
fuselage of the NAL-735 solid rocket booster [69, 64]. NAL-735 was developed on the base
of the SB-735 motor which is the side rocket booster of Japanese satellite launcher M3SII
with modifications specifically for launch experiments such as front and rear connection
and separation mechanisms for aircraft attachment [58]. The booster has a dimensions of
0.735[m] in diameter, 10[m] in length, and maximum gross weight of 5886[kg] and empty
weight of 2370 [kg] [69] producing around 250[kN] of thrust. Specifications are summarized
in Table 4.3. A CAD representation of NAL-735 based on Ref.[59] is shown in Fig.4.8 to
(4.9) of overall view and side and top view respectively. The launch angle γ0 was obtained
through trial and error of finding the set of γ0, burnout time and flight time to apogee of
reaching 100[km] in altitude at Mach 5. Launch conditions for the Hypersonic Experimental
Aircraft problem are summarized in Table.4.4.

Table 4.3 NAL-735 Solid Rocket Booster Specification.

Total Length [m] 10 [69]
Total Weight [kg] 5886 [69]
Fuselage Diameter [m] 0.735 [69]
Nozzle Cant Angle [deg] 2.9 [69]
Control Surface Area [m2] 3.6 [69]
Thrust [kN] 250 [64]
Isp 266 [59]
Max Burnout Time [s] 50 [64]
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Table 4.4 NAL-735/Hypersonic Experimental Aircraft Configuration Launch Conditions.

Launch Angle [deg] 46
Burnout Time [s] 36
Time to Apogee [s] 131
Target Altitude [km] 100
Target Mach 5
Gross Weight at Launch [kg] 6689

Fig. 4.8 NAL-735 Overall View.

Fig. 4.9 NAL-735 Side and Front View.

The dynamic equations used to model the trajectory of the Phase 1 launch is shown
in Eq.(4.1). The equation is the widely-known Tsiolkovsky’s equation for the velocity V
increment of a rocket in free space [73, 21, 35].

V =−gIsp ln(1−λ ) (4.1)
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Where g = 9.8[m/ss] represents the gravity constant, Isp is the specific impluse, and λ

represents the ratio between burned fuel at a certain time denoted as m(t) to the initial weight
of the rocket m0 expressed as Eq.(4.2).

λ =
[m0 −m(t)]

m0

=
Bt
m0

B =
dm
dt

=
F

Ispg

(4.2)

Under the assumption that the Lift and Drag are relatively small compared to the gravity
constant and thrust T is always parallel to V from Eq.(4.1), the equation of motion for γ̇ is
expressed by Eq.(4.3).

γ̇ =
−gcosγ

V
(4.3)

By solving for Eq.(4.3), it is possible to obtain analytical solution for a gravity assisted
turn for a rocket. Under the assumption of the Tsiolkovsky’s equation of constant B and
applying Eq.(4.1) to Eq.(4.3) and taking the integral, Eq.(4.4) is obtained.

ln
tan(π

4 −
r
2)

tan(π

4 −
r0
2 )

=
1
τ0

[k2(λ )− k2(λ0)] (4.4)

Here, T = 25000,m0 = 6689,τ0 = T/m0. k2(λ0) = 0 and k2(λ ) is expressed as Eq.(4.5)
obtained from least square fit between λ and k2(λ ) values shown in [35].

k2(λ ) = 0.92ln(λ )+4.3 (4.5)

(4.6)

Eq.(4.4) is solved for γ by Eq.(4.5).

γ =
π

2
−2tan−1

[
e

1
τ0
(k2(λ )−k2(λ0))+ln(tan( π

4 −
γ0
2 ))
]

(4.7)
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The state variables for the constant acceleration phase is shown in Eq.(4.8) where the
subscript (1a) denotes the constant acceleration phase. Downrange x and altitude y was
obtained from Euler integration [7] of u and v with time interval d = 0.1 and N = tb/d where
tb = 36 for burnout time. Initial values are x0 = 0 and y0 = 0.

u(1a)) = ẋ(1a) =V (1a) cos(γ(1a))

v(1a)) = ẏ(1a) =V (1a) sin(γ(1a))

x(1a)) = x(1a)
n+1 = x(1a)

0 +du(1a)
n , 0 ≤ n ≤ N −1

y(1a)) = y(1a)
n+1 = y(1a)

0 +dv(1a)
n , 0 ≤ n ≤ N −1

γ
(1a) =

π

2
−2tan−1

[
e

1
τ0
(k2(λ )−k2(λ0))+ln(tan( π

4 −
γ0
2 ))
]

(4.8)

For the trajectory of the rocket after constant acceleration or after fuel burn, the rocket
performs inertial flight and the dynamics are easily obtained by Eq.(4.9) and subscript (1b)
denotes the inertial flight phase. Flight time to apogee was obtained to meet the launch
conditions listed in Table.4.4 where t = 131.

u(1b) =V (1a)
f cos(γ(1b))

v(1b) =V (1a)
f sin(γ(1b))−gt

x(1b) = x(1a)
f +V (1b)t2 cosγ

(1b)

y(1b) = y(1a)
f +V (1b)t2 sinγ

(1b)− 1
2

gt2(1b)

γ = tan−1

(
u(1b)

v(1b)

)
(4.9)

Where x(1b)
0 = x(1a)

f ,y(1b)
0 = y(1a)

f ,u(1b)
0 = u(1a)

f ,v(1b)
0 = v(1a)

f ,γ
(1b)
0 = γ

(1a)
f to ensure conti-

nuity of the trajectory. The state variables for Phase 1 are summarized in Eq.(4.10).

x(1) =
[
x(1a),x(1b)

]
y(1) =

[
y(1a),y(1b)

]
u(1) =

[
u(1a),u(1b)

]
v(1) =

[
v(1a),v(1b)

]
γ
(1) =

[
γ
(1a),γ(1b)

]
(4.10)
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4.1.3 Aerodynamic Model

The aerodynamic model was derived by an unstructured three-dimensional CFD solver de-
veloped by JAXA known as FaSTAR [32] (Fast Aerodynamic Routine). A three-dimensional
flow-field around the model was calculated numerically. Numerical analysis was conducted
solving the three-dimensional compressible Navier-Stokes equation using finite-volume
method. The CFD conditions are summarized in Table 4.5. The viscous model effects were
estimated using SA-noft2 [8] and HLLEW [57] scheme for advection was used to accurately
capture shockwaves and discontinuities. Time integration was performed using MUSCL [74]
method with second-order spatial accuracy. The calculated Mach numbers are summarized
in Table 4.6. The total length of the aircraft was used as the reference length.

An automatic hexahedra grid generator Hexagrid [33] developed by JAXA was used
to create three-dimensional grids. Based on the input geometry (STL format), Hexagrid
generates unstructured mesh based on Cartesian mesh. A grid containing approximately 40
million cells in an 81 cubic meter domain was created for each model (Fig 4.10).

Fig. 4.10 Unstructured Mesh Generated by Hexagrid [33].

Table 4.5 CFD Conditions.

Governing Equation Navier-Stokes
Turbulence Model SA-noft2 [8]
Numerical Scheme HLLEW [57]
Volumetric Accuracy MUSCL [74]
Time Integration LU-SGS [66]
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Table 4.6 Sample Points.

Mach 0.3, 0.8, 2, 5
α [deg] 0, 5, 10
δe [deg] -15, 0, 15
A 0.025, 0.075

Interpolation of the aerodynamics to obtain the surrogate model of CL, CD and Cm was
conducted using least square method. The sample points used to generate the surrogate
model is summarized in Table 4.6. The least square method is used to interpolate for CL,
CD and Cm as function of α , Mach, δe, and elevon sizing A shown in Eqs.(4.11) to (4.13)
used for lift, drag, and moment calculation in Eqs.(4.14) to (4.15). The simulation uses U.S.
Standard Atmosphere Model for the air density and static temperature [1].

CL = 0.0196+0.0792A−0.0157M+0.0243α +0.0053δe (4.11)

CD = 0.0146+0.2008A−0.0052M+0.0006α +0.0001δe

+0.0026αA−0.0004αM+0.0001αδe

−0.0211MA−0.0001Mδe +0.0004α
2 +0.0006M2

(4.12)

Cm = 0.0011−0.0252A+0.0008M−0.0008α −0.0012δe (4.13)

4.2 Nonlinear Trajectory Design

The nonlinear trajectory is evaluated for the objective function value, maximum tracking
error emax, and the optimized elevon sizing. The dynamic equations used for trajectory
optimization considers moments by placing a static margin constraint. The longitudinal
equation of motion used to define the 3 state aircraft dynamics with assumption of a round
non-rotating earth as well as various variables are given by the nonlinear Eqs.(4.14) where
TN : thrust = 0 for the descent trajectory phase.
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ḋ =V cos(γ)

ḣ =V sin(γ)

V̇ =
TN cos(α)−D

m0
+gsin(γ)

γ̇ =
L+TN sin(α)

m0V
−
(

g
V
− V

r

)
cos(γ)

(4.14)

The closed loop nonlinear simulation implements the derivative of pitch rate and angle of
attack. After a trajectory is generated at each iteration of the optimization, γ will be set as
reference trajectory to be tracked to obtain emax. The longitudinal equation of motion used to
define the 5 state aircraft dynamics with assumption of a round non-rotating earth are given
by the nonlinear Eq.(4.15) where TN is 0 for the descent trajectory phase.

ḋ =V cos(γ)

ḣ =V sin(γ)

V̇ =
TN cos(α)−D

m0
+gsin(γ)

γ̇ =
L+TN sin(α)

m0V
−
(

g
V
− V

r

)
cos(γ)

α̇ = q− γ̇

q̇ =
Mcg

Iyy

(4.15)

where the aerodynamic force is obtained by the following:

L =
1
2

ρv2SCL

D =
1
2

ρv2SCD

Mcg =
1
2

ρv2Sc̄(Cm +Cmq
qc̄
2V

)

(4.16)

Here, the pitching moment is calculated taking in the effect of changes to α and pitch
rate. CL, CD, and Cm are obtained through CFD while the pitch damping derivative Cmq is
obtained by the following equation taken from [28]:
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Cmq =−2αwVH
lt
c̄

(4.17)

Here, αw is the derivative of CL with respect to α for the entire aircraft. It should well
noted that this is a rough estimation since normally the derivative for the horizontal tail wing
is used. VH is the tail volume taken from the CG to the end of elevon. lt is the distance from
CG to trailing edge of the elevon since the aircraft has elevon for control surface which is
attached to the wings.

The static margin (SM) was calculated using the following equation:

SM =
xac − xcg

cre f
(4.18)

xac = xcg − cre f
Cmα

(CLα +CD)cosα +(CDα +CL)sinα
(4.19)

The formulation for the nonlinear optimal control problem is shown in Eq.(4.20). The
structural limit of ±5[G] was placed as strict requirement to produce a trajectory with less
stress structural load. The aircraft is assumed to withstand ±10[G] referring to previous
supersonic experimental aircraft NEXST-1[43].
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find state variables : X = [d [m],h [m],v [m/s],γ [deg]]

control variables : α, δe [deg]

throttle : δt

phase duration : t(2)f , t(3)f , t(4)f [s]

elevon sizing : A [m2]

min. − [t(4)f − t(3)0 ]

s.t. state equations shown in Section V.B in Eqs.(4.14)

−5 ≤ load [G] ≤ 5

0 ≤ α [deg] ≤ 10

−15 ≤ δe [deg] ≤ 15

0 ≤ δt ≤ 1

−2 ≤ α̇ [deg/s] ≤ 2

static margin ≥ 0.01

emax [deg] ≤ 20

0.025 ≤ A ≤ 0.075

(4.20)

The constraints particular to each phase is summarized below. The constraint struc-
ture when applying phases to the trajectory is explained in Section 2.2.1, Eq.(2.9). The
optimization variables and objective function are identical for all phases.

Phase 1. Rocket Launch:
As stated in 4.1.2, the launch phase was derived analytically to meet the initial
conditions of Phase 2. The constraints particular for Phase 1 is stated in Eq.(4.21).
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The subscript (1) denotes the rocket launch phase.

s.t. X (1)
0 = [0,0,0,45]

X (1)
f = [216,100,1400,0]

t(1a)
0 = 0 [s]

t(1a)
f = 36 [s]

t(1b)
0 = 36 [s]

t(1b)
f = 131 [s]

m(1)
0 = 6689 [kg]

(4.21)

Phase 2. Suborbital Flight:
The particular constraints placed for the suborbital flight after separation from
NAL-735 is stated in Eq.(4.22). The subscript (2) denotes the suborbital flight
phase.

s.t. X (2)
0 = [216170,102110,1400,0]

X (2)
f = [d,23000,1500,0]

Q(2) ≤ 50 [kPa]

α
(2)
0 = 0 [deg]

(4.22)

Phase 3. Hypersonic Cruise:
The particular constraints placed for the hypersonic cruise after pitching up from
suborbital flight is stated in Eq.(4.23). The subscript (3) denotes the hypersonic
cruise phase.

s.t. X (3)
0 = [d,23000,1500,0]

X (3)
f = [d,23000,1500,0]

−0.2 ≤ γ
(3) [deg] ≤ 0.2

49 ≤ Q(3) [kPa] ≤ 51

(4.23)

Phase 4. Descent Flight:
The particular constraints placed for the descent flight after pitching up from
hypersonic cruise is stated in Eq.(4.24). The subscript (3) denotes the hypersonic
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cruise phase.

s.t. X (4)
0 = [d,23000,1500,0]

X (4)
f = [d,1000,102,0]

Q(4) ≤ 50 [kPa]

(4.24)

The problem was discretized using direct multiple shooting method. The problem was
discretized into 10 segments and the transfer function was identified for each segment in the
trajectory every iteration. At each iteration, the maximum tracking error emax was calculated
through nonlinear simulation using Eqs.(4.15).

4.3 Linear Robust Controller Design

The linear robust controller is evaluated for stability, performance, and robustness for flight
condition changes as well as to the identified trajectories. The linear time invariant (LTI)
model is obtained by linearizing the Eqs.(4.14) at different trim conditions in a reference
trajectory. In order produce a reference trajectory, a optimal trajectory obtained through the
separated method which does not consider tracking error e as nonlinear inequality constraint
was simulated. Therefore, the problem formulation for the nonlinear optimal control problem
is the same as Eq.(4.20) except e is not considered. The analysis was conducted for Phase
4 descent where flight Mach number changes occur rapidly in the descent trajectory (i.e.
from hypersonic speed of Mach 5 to subsonic speed of Mach 0.3). The reference trajectory
obtained through nonlinear optimization is shown in Fig.4.11 and Fig.4.12.

The reference trajectory from Fig.4.11 and Fig.4.12 considers only the longitudinal
dynamics since control laws are typically designed for longitudinal and lateral-directional
dynamics, as these dynamics are decoupled under most flight conditions [29]. This has
also been the case for a Generic Hypersonic Vehicle presented in [78]. Furthermore, in this
study only the flight path angle will be tracked for simplicity. Linearizing Eqs.(4.14) was
conducted by first considering the steady-state flight condition at each Mach number ( Mach
5 to Mach 0.8 ). The steady-state flight condition are summarized in Table B.1. Perturbation
is considered relative to steady-state flight with small angle assumptions to trigonometric
functions of perturbed angles (sin∆θ = ∆θ and cos∆θ = 1).
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Fig. 4.11 Time History of Downrange and Altitude in the Reference Trajectory.
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Fig. 4.12 Time History of Mach Number and γ in the Reference Trajectory.
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Table 4.7 Descent Trajectory Linearized Point.

Mach Altitude AoA γ Thrust δe
[km] [deg] [deg] [N] [deg]

5 25 5 0 3100 1.4
4 21 4 0 2700 0.8
3 17 4 0 3990 0.7
2 13 3 0 3880 0.1

0.8 3 3 0 3450 -1.0

The state equations are linearized about the steady state condition and is written in the
form of Eq.(B.1) where the new state variables are the following:

x = [∆α ∆h ∆γ ∆q ∆V ]T

y = [γ]

u = [∆δe]

(4.25)

The LTI models for Mach 5 to 2 are shown in Eq.(4.28) where (subscripts for matrix A and B
denotes the linearized Mach number).

A5 =


−0.5197 3.897×10−6 0 1 −4.111×10−6

0 0 1500 0 0
0.5197 −3.897×10−6 0 0 4.111×10−6

−69.03 3.933×10−4 0 −9.146 5.024×10−5

−106.4 9.788×10−4 −9.800 0 −4.585×10−3

 (4.26)

A4 =


−0.5513 3.458×10−6 0 1 −7.339×10−5

0 0 1200 0 0
0.5513 −3.458×10−6 0 0 7.339×10−5

−58.57 2.055×10−4 0 −9.701 7.835×10−4

−74.95 8.088×10−4 −9.800 0 −4.509×10−3

 (4.27)
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A3 =


−0.7286 5.714×10−6 0 1 −3.013×10−5

0 0 900 0 0
0.7286 −5.714×10−6 0 0 3.013×10−5

−57.91 3.298×10−4 0 −12.789 −1.907×10−3

−83.98 1.066×10−3 −9.800 0 −1.907×10−3

 (4.28)

A2 =


−0.8554 5.665×10−6 0 1 −6.232×10−6

0 0 600 0 0
0.8554 −5.665×10−6 0 0 6.232×10−5

−45.24 1.596×10−4 0 −14.99 −1.203×10−3

−53.96 9.246×10−4 −9.800 0 −1.554×10−2

 (4.29)

A0.8 =


−1.406 1.139×10−5 0 1 −4.529×10−6

0 0 240 0 0
1.406 −1.139×10−5 0 0 4.529×10−5

−29.65 8.571×10−5 0 −24.55 −3.293×10−3

−40.46 8.611×10−4 −9.800 0 −4.536×10−3

 (4.30)

B5 =


−0.1116

0
0.1116
−98.58
−9.674

 , B4 =


−0.1183

0
0.1183
−83.64
−7.285

 , B3 =


−0.1560

0
0.1560
−82.70
−9.196

 (4.31)

B2 =


−0.1828

0
0.1828
−64.61
−6.510

 , B0.8 =


−0.2995

0
0.2995
−42.34
−5.587

 (4.32)



90 Application to Hypersonic Experimental Aircraft Problem

C =
[
0 0 1 0 0

]
(4.33)

The maximum error to be placed as the nonlinear inequality constraint was evaluated by
the step response of the transfer functions from r to e obtained from Eq.(4.26) to (4.33) as
shown in Fig.4.13. The controller gains were obtained through robust controller design using
the same structure as Fig.3.2 where Kp =−2.5 and Ki =−1.9 respectively with elevon area
assumed to be 0.05.
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Fig. 4.13 Step Response of transfer functions from r to e for Hypersonic Aircraft Problem.

From Fig.4.13, it can be seen that maximum undershoot was around 0.9[deg] for Mach
0.8 followed by 0.5[deg] for Mach 2. For this analysis, maximum error is presumably to
occur during pitch-up in Phase 2. The Mach number decreasing to subsonic from Mach 5
was unlikely and therefore maximum undershoot for Mach 2 at 0.5[deg] was selected. With
the assumption of the flight path angle during suborbital flight being close to -40[deg], the
maximum error to be placed as the nonlinear inequality constraint was fixed at ±20[deg]
(±40 × 0.5). From here, the gain where the maximum error occurs can be calculated
20log(e/r) = 20log(20/40) =−14[dB]. Therefore, the weighting functions were tuned to
have a average close to −14[dB] in the low frequencies below 100 and gradually weaken the
tracking performance in the high frequencies above 100 since high frequencies are sensitive
to noise. The weighting functions We and Wu used for analysis are shown in Eq. (4.34) and
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(4.35). Using the same We and Wu, the performance of the designed controller is evaluated in
Section 5.3.

We =
1000s2 +6000s+3

6000s2 +375s+3.75
(4.34)

Wu =
25s+1

50s+200
(4.35)

4.4 Simultaneous Design Results

The linear robust controller is evaluated for stability, performance, and robustness for flight
condition changes as well as to the identified trajectories as explained in section 3.1.2. The
nonlinear trajectory is evaluated for the objective function value, maximum tracking error
emax, and the optimized elevon sizing. The results for the controller design are shown in Fig.
4.14 to 4.22 and trajectory results are shown in Fig.4.23 to 4.32. Table 4.8 summarizes the
critical factors from the results.

For the linear robust controller design evaluation, by using the simultaneous method the
H∞ norm of Tzw was 0.94 which ensures stability and performance. This is also verified by
the poles and gain plot for the transfer functions from r to e denoted as Tr2e and transfer
functions from r to y denoted as Tr2y (transfer functions defined in Section 2.4.2). From
Fig.4.14, it can be seen that all poles for Tr2e are non-positive thus the system has stability.
From Fig.4.15, it can be seen that the gain plot of Tr2e are below the weighting function
1/We ensuring performance and from Fig.4.16, the gain plot of Tr2y are below the weighting
function 1/Wu meeting the design requirements. Fig.4.17 represents the step response of
each linearized Mach number. As can be seen from Fig.4.17, each linearized LTI model
shows stable response ensuring robustness for flight condition changes to linearized Mach
number. Fig.4.18 to 4.22 represents the step response of the identified trajectory transfer
function SITF derived from each segment in the optimized trajectory. Symbol γi represents
the γ in the trajectory at each discretized ith segment and γimax represents the maximum value
in the ith segment. Symbol γi/γimax represents the normalized velocity at each discretized
segment and was used as reference step input. γ greater than 0.1 [deg] was incorporated into
the robust controller design since small γ will be similar to a steady state flight. Therefore,
each identified transfer function from γ1 to γ15 represents a segment in the optimal trajectory.
As can be seen from Fig.4.18 to 4.22, each identified transfer function has high tracking
performance and has a stable response for the linear models of Mach 5 to Mach 0.8 ensuring
robustness for trajectory. This is due to the proposed method implementing each γ in the
discretized segment is into the H∞ controller design.
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For the nonlinear trajectory design, optimal sizing of the elevon, objective function value,
and the maximum tracking error constraint will be evaluated. From the obtained trajectory
shown in Table.4.8, it can be seen the sizing of the elevon A was 0.048 which showed
decrease from the initial guess of 0.05. This was due to the tracking error nonlinear inequality
constraint where tracking error increased during pitch up maneuver near the start of Phase 3
shown in Fig.4.24. Since dynamic pressure was close to 0 upon separation at t = 0 in Fig.4.26,
any error accumulated during the time until pitch up could not be minimized resulting in a
trajectory where sudden peak in dynamic pressure occurred as altitude decreased depicted
in Fig.4.23. This resulted in the sizing of the elevon to decrease since the trajectory did not
need an increase in Cm to increase tracking control but decreased to keep the control from
overshooting. Adding to this, the optimization process was to increase flight duration so
in order to minimize CD, the size of the elevon were reduced where CD increase steadily
during Phase 4 descent seen in Fig.4.27. The trajectory cruises at 23[km] at the start of the
descent to gradually decrease velocity so as not to violate the dynamic pressure constraint
since the dynamic pressure is around 50 [kPa] at t(4)0 shown in Fig.4.23 and Fig.4.26. Since
the aircraft is gliding with no additional thrust as shown in Fig.4.30 where throttle and fuel
are zero, the aircraft gradually increases α to maintain sufficient lift while keeping the drag
at minimum seen in Fig.4.25. As a result, the trajectory overall has relatively high L/D for
a hypersonic aircraft of around 4. From Fig.4.31, it can be seen that the suborbital flight
starts at 224[s] and at 274[s] the aircraft performs a pitch up maneuver. Additionally, the
static margin and pitch rate constraints were satisfied as can be seen from Fig.4.29. From
the obtained tracking performance, hypersonic flight time resulted in 101[s] and 292[s] for
descent time covering 152[km] and 163[km] in downrange respectively. With the Phase 4
flight time, the downrange capable of being covered for the return flight back was 163[km]
of the 732[km] total downrange of the entire experiment. Finally, with the proposed method
maximum tracking error resulted in 5.5[deg] as can be seen in Fig.4.32 well below the
tolerable maximum tracking error meeting the design requirement.

With the proposed method, a control-oriented optimal trajectory satisfying the maximum
tracking error constraint of 20[deg] was achieved with the maximum tracking error being
5.5[deg]. Additional optimal sizing of the elevon decreased from initial 0.05 to 0.048 in order
to increase performance during pitch-up as well as to reduce drag. Furthermore, robustness
for flight condition changes to Mach number as well as to the trajectory was successfully
obtained and validated through pole placement, frequency response, and step response. For
the Hypersonic Experimental Aircraft problem, it was identified that a total of 101[s] of
hypersonic engine test was possible as well as the flight capability of flying 163[km] back to
the airstrip during descent.
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Table 4.8 Comparison of Results between Integrated and Separated Methods.

Phase 3 Phase 4 Elevon kp ki emax H∞ Phase 4
Flight Time Flight Time Sizing [deg] Norm Downrange

[s] [s] [%] [km]
101 292 0.048 -3.05 -1.44 5.51 0.94 163

Fig. 4.14 Pole/Zero Map for Hypersonic Aircraft Problem.

Fig. 4.15 Gain Plot of Tr2e for Hypersonic Aircraft Problem.
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Fig. 4.16 Gain Plot of Tr2y for Hypersonic Aircraft Problem.
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Fig. 4.17 Step Response for Hypersonic Aircraft Problem.
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Fig. 4.18 Response to SITF Inputs Against Mach Variance for Hypersonic Aircraft Problem
(Segment 1,2,3).

Fig. 4.19 Response to SITF Inputs Against Mach Variance for Hypersonic Aircraft Problem
(Segment 4,5,6).
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Fig. 4.20 Response to SITF Inputs Against Mach Variance for Hypersonic Aircraft Problem
(Segment 7,8,9).

Fig. 4.21 Response to SITF Inputs Against Mach Variance for Hypersonic Aircraft Problem
(Segment 10,11,12).
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Fig. 4.22 Response to SITF Inputs Against Mach Variance for Hypersonic Aircraft Problem
(Segment 13,14,15).
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Fig. 4.23 Time History of Downrange and Altitude in the Optimal Trajectory.
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Fig. 4.24 Time History of Mach Number and γ in the Optimal Trajectory.
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Fig. 4.25 Time History of Angle of Attack and δe in the Optimal Trajectory.
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Fig. 4.26 Time History of Dynamic Pressure and Load in the Optimal Trajectory.
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Fig. 4.27 Time History of CL and CD in the Optimal Trajectory.
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Fig. 4.28 Time History of Cm and L/D in the Optimal Trajectory.
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Fig. 4.29 Time History of Static Margin and Pitch Rate in the Optimal Trajectory.
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Fig. 4.30 Time History of Throttle and Fuel Consumption in the Optimal Trajectory.
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Fig. 4.31 All Phases in the Optimal Trajectory.
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Fig. 4.32 Tracking Error Time History for Tracking Reference γ .

4.5 Conclusion of Chapter 4

The novel method of simultaneous design of trajectory and robust controller was successfully
applied to the Hypersonic Experimental Aircraft problem in terms of the controller having
stability, performance, and robustness for flight condition changes as well as to the trajectory.
Furthermore, a control-oriented trajectory and optimal sizing of the elevon were obtained
satisfying the flight constraints while maximizing flight duration for performing hypersonic
engine test and descent flight. From the analysis, a possible Mach 5 engine test duration as
well as return to airstrip downrange capability limit were identified.



Chapter 5

Monte Carlo Simulation of Hypersonic
Experimental Aircraft Problem

In this chapter, in order to complete the second objective a Monte Carlo simulation is
conducted to evaluate the trajectory and robust controller obtained in the previous chapter
for robustness against state uncertainties present during separation from the rocket booster.
The system is evaluated focused primarily on the tracking performance of maintaining the
maximum tracking error under the specified value (i.e from Section 4.3) in the dispersed
trajectory. The system is also evaluated on the mission success rate along with statistics of
achieving each mission requirement. With the acquired data, mission success rate is identified
along with valuable insights to increase control performance is discussed.

5.1 Monte Carlo Simulation

In order to test the robustness of the obtained control-oriented trajectory and robust controller
against state uncertainties during separation of the rocket and aircraft, performing a Monte
Carlo simulation is one possible method. Monte Carlo simulation is frequently used for
launch vehicles during stage separation or during a phase [31, 50, 41, 9, 44, 71, 59]. This is
due to the stage separation having many uncertainties such as aerodynamic forces, direction
and attitude of the vehicle, sensor errors, and etc. Monte Carlo simulation applied to
trajectory analysis is a method of generating a variance of trajectories via random selection of
uncertainties. It can be used whenever the states or dynamics are not completely deterministic
as well as when the outcome is too complicated to model [31].
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5.2 Mission Requirements and Uncertainty Model

The evaluated mission requirements is taken from Table 4.1 in Section 4.1 and is summarized
in Table 5.1. The primary focus of the Monte Carlo simulation is to verify the mission
success rate on maximum tracking error e since the robust controller was designed where
only robustness against flight condition changes and to the optimal trajectory were considered.
With the primary focus on tracking performance, the hypersonic engine test conditions and
cruising requirements were placed as well. The dynamic pressure requirement for the
hypersonic engine test condition is relaxed since the system only takes the flight path angle as
reference and velocity controller was omitted for simplicity. Therefore, it was assumed that
velocity will decrease with the current controller thus resulting in dynamic pressure decrease.
Also, regarding the dynamic pressure during the descent from hypersonic to subsonic, the
dynamic pressure can exceed if sufficient deceleration is not attained. Therefore, a spoiler
is presumed to be equipped on the aircraft creating 3 times the CD value compared to
CD obtained through least square fit in Eq.4.12. Adding to the engine test condition, the
Hypersonic Experimental Aircraft is designed for cruising. Therefore, cruising condition of
flight path angle as well as altitude was placed along with the controller tracking performance
preset in Section 4.3.

The uncertainties taken into account for the Monte Carlo simulation is summarized in
Table 5.2 which was taken from previous supersonic experiment NEXST-1 of the same
vehicle size and separating from NAL735 rocket booster [41]. Variance is assumed to be
three times the standard variance σ and the nominal values were taken from the optimal
trajectory obtained in the previous section. The uniform distribution law was chosen to
reflect equal uncertainty occurrence inside the variance. A total of 200 simulation cases were
performed where the number of simulation cases were referenced from guidance and control
evaluation on supersonic experimental aircraft D-SEND#2 [44].

Table 5.1 Evaluated Hypersonic Experimental Aircraft Engine Test Conditions.

Mission Item Evaluated Mission Requirements
Maximum Tracking Error e [deg] |e| ≤ 20
Cruise Mach Number M(3) 4.0 ≤ M(3)

Dynamic Pressure Q(3) [kPa] 40 ≤ Q(3) ≤ 55
Angle of Attack α(3) [deg] 0 ≤ α(3) ≤ 6
Flight Path Angle γ(3) [deg] −0.5 ≤ γ(3) ≤ 0.5
Altitude h(3) [km] 22 ≤ h(3)
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Table 5.2 Uncertainties at Separation from NAL735 Rocket Booster.

Parameter Nominal Variance (±3σ ) Distribution Law
Altitude [km] 102 ±300 Uniform
Velocity [m/s] 1416 ±60 Uniform
Flight Path Angle [deg] 0 ±3 Uniform
Angle of Attack [deg] 0.35 ±3 Uniform

5.3 Results

The system is evaluated on the robust controller meeting the tolerable maximum tracking
error being robust against disturbing factors on the states during separation as well as mission
success rate statistics of achieving each mission requirement. Table 5.3 summarizes the
results of the Monte Carlo simulation statistics on each mission requirements. Table 5.4
summarizes the results of the Monte Carlo simulation on mission requirements from Table
5.1. The trajectory results obtained from the dispersion is shown from Fig.5.1 to 5.8. Fig.5.9
depicts the tracking error history for all trajectory dispersion. Finally, Fig.5.10 to 5.12 shows
the error distribution on each mission requirements.

From the Monte Carlo simulation results of tracking the optimal trajectory, the designed
controller having robustness against disturbing factors on the states are evaluated. As can
be seen from Table 5.3, the maximum tracking error for all cases had an average error of
8.7[deg] which meets the requirement of less than 20[deg]. The range in which the maximum
tracking error fluctuated was maximum value of 19.1[deg] and minimum value of 4.8[deg]
respectively. It can be seen that tracking error had standard deviation of 4.5[deg] which
states the tracking performance varied depending on the trajectory dispersion as can be seen
in Fig.5.9. The tracking error fluctuated mainly due to the aircraft pitching up or pitching
down uncontrollably upon separation from the rocket booster depending on the uncertainty
values. This can be seen in Fig.5.3 where there is an trend on the angle of attack pitching
up to maximum of 35[deg] if the initial angle of attack upon separation was positive and
the angle of attack pitching down up to minimum of -30[deg] if the initial angle of attack
was negative respectively. This was due to the dynamic pressure being nearly zero since
the altitude was at 100[km] where air density thin depicted in Fig.5.4. With the dynamic
pressure being zero, even with the aircraft having CL, CD, and Cm values shown in Fig.5.5
and Fig.5.6, no lift, drag, or pitching moment were produced as can be seen in Fig.5.7. This
resulted in the aircraft pitching up or down uncontrollably until sufficient dynamic pressure
was available for the elevon to have any effect. Due to this, if the angle of attack increased
or decreased close to 35[deg] or -30[deg] upon separation from the rocket booster, a spike
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in lift and drag occurred at t = 120[s] during pitch up at around 23[km] which caused the
tracking performance of the flight path angle controller to fluctuate during pitch up from
γ =−30[deg] which can be seen in Fig. 5.2. The fluctuation causes the velocity to decrease
and thus decreases the dynamic pressure. Furthermore, the decrease in dynamic pressure
contributed to a overshoot for tracking γ and caused a spike in load with maximum of around
16[G] depicted in Fig.5.4 which exceeds the assumed 10[G] structural limit. Therefore, to
reduce fluctuation in dynamic pressure as well as loading is to introduce thrusters for pitch
control during suborbital flight where there is no dynamic pressure. Expansion of a thruster
controller to the current control system is possible with the proposed method. Due to the
decrease in dynamic pressure, minor fluctuation in downrange and altitude was present as
can be seen in Fig.5.1. Nevertheless, robustness against uncertainties at separation from the
NAL735 rocket booster was obtained since the designed robust controller met the tracking
performance requirement of ±20[deg] for all cases.

Additionally, the designed controller meeting the mission requirement for achieving
engine test condition is evaluated. From Table 5.3, it can be seen that cruise mach number,
angle of attack, and altitude mission requirements are met for all 200 cases. Error distribution
of the three can be found on Fig.5.10 to 5.11. Notable aspect of the three are that the cruising
altitude had a variance from 22.3[km] to 26.6[km]. This was due to the tracking error caused
by the angle of attack deviation as explained in the previous paragraph. From Table 5.3, it can
be seen that the dynamic pressure has a 71.5[%] success rate. The dynamic pressure decreases
due to the flight dispersion of the flight path angle as previously stated. Nevertheless, as can
be seen from Fig.5.10, dynamic pressure ranged from 40[kPa] to 50[kPa] thus the mission
requirements were identified for having a 71.5[%] success rate.

From the results obtained, robustness against state uncertainties present during separation
was obtained with a 71.5[%] mission success rate for conducting hypersonic engine test
with the Hypersonic Experimental Aircraft. Additionally, a valuable insight to incorporate
thrusters to have control of pitch during suborbital flight was obtained which can be achieved
through the expansion of the proposed method utilizing the structured H∞ controller design
method.
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Table 5.3 Monte Carlo Simulation Statistics on Engine Test Conditions.

Statistics Cruise Dynamic AoA γ Altitude Maximum
Mach Pressure [deg] [deg] [km] Error

[kPa] [deg]
Maximum 5.02 52.4 3.12 0.518 26.6 19.1
Minimum 4.27 29.5 2.38 0.497 22.3 4.79
Average of Maximum µ 4.71 42.5 2.70 0.499 24.2 8.70
Std. Dev. of Maximum σ 0.194 6.19 0.199 0.0566 1.20 4.53
Individual Success Rate [%] 100 71.5 100 93.5 100 100

Table 5.4 Monte Carlo Simulation Results on Mission Success Rate.

Category Cases Probability P [%]
Mission Success 143 71.5
Mission Failure : Dynamic Pressure 57 28.5
Total 200 Pfail = 28.5

Fig. 5.1 Time History of Downrange and Altitude from Monte Carlo Simulation.
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Fig. 5.2 Time History of Mach Number and γ from Monte Carlo Simulation.

Fig. 5.3 Time History of Angle of Attack and δe from Monte Carlo Simulation.



5.3 Results 109

Fig. 5.4 Time History of Dynamic Pressure and Load from Monte Carlo Simulation.

Fig. 5.5 Time History of CL and CD from Monte Carlo Simulation.
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Fig. 5.6 Time History of Cm and L/D from Monte Carlo Simulation.

Fig. 5.7 Time History of Lift and Drag from Monte Carlo Simulation.
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Fig. 5.8 All Phases from Monte Carlo Simulation.

Fig. 5.9 Error Comparison for Tracking γ from Monte Carlo Simulation.
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Fig. 5.10 Error distribution of Dynamic Pressure and Mach Number.

Fig. 5.11 Error distribution of Angle of Attack and Flight Path Angle.
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Fig. 5.12 Error distribution of Altitude and Tracking Error.

5.4 Conclusion of Chapter 5

Robustness against state uncertainties present during separation was obtained as well as the
mission success rate for conducting hypersonic engine test with the Hypersonic Experimental
Aircraft. The primary cause in decreasing the success rate was identified to be the velocity
decrease during pitch up from suborbital flight causing a decrease in dynamic pressure. It
was also identified that significant spike in loading occurs due to the deviation from the
reference trajectory since no air is present for producing enough dynamic pressure during
suborbital flight. A valuable insight was obtained to incorporate thrusters to have control of
pitch during suborbital flight where sufficient air density is not obtained and elevon does not
function which can be done through the expansion of the proposed method.



Chapter 6

Summary

6.1 Conclusion

Within the growing commercial market for high speed travel and to meet the expectations of
the rising demand for intercontinental travel, hypersonic transport aircraft in pursuit for faster
and reliable flight system promotes the possibility in realizing the opportunity. In particular,
hypersonic aircrafts with airbreathing engines are expected to handle the flight profile of
aircraft-like operability where the aircraft will takeoff horizontally from an airstrip, climb to
cruising altitude, cruise at hypersonic speeds, and descent to perform landing maneuvers. An
essential effort for realizing such hypersonic aircraft is to conduct their trajectory and control
analysis early in the stage of development so as to clarify key concepts to meet specific
mission requirements and to facilitate the development of key technologies accordingly due
to the strong coupling between the reference trajectory and robust controller. This is a major
concern in designing hypersonic aircraft as well as with aerodynamics, thermodynamics,
structural dynamics, and etc. Trajectory and controller decides the behavior in which to
specify the constraints placed among the disciplines and should be considered as early as
possible. In order to handle these difficulties, the present study proposed a novel method of
simultaneous trajectory and controller design for obtaining a control-oriented trajectory and
robust controller for minimizing tracking error to promote mission success. Proposals were
given regarding a numerical technique for integrating the discretized trajectory segments into
the robust controller design through system identification and providing robustness against
flight condition changes and to the obtained optimal trajectory.

For the first objective concerning development of simultaneous design method of
trajectory and robust controller, in Chapter 1 a novel method to simultaneously design
the trajectory and robust controller by converting the trajectory into a transfer function at
each discretized segment of the trajectory and incorporating each identified transfer function
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to the H∞ controller design was proposed. At each iteration of the SQP, the tracking error is
obtained through closed-loop system of tracking the trajectory generated at each iteration and
evaluated to meet the nonlinear inequality constraint placed on the NLP problem. In Chapter
2, the proposed method is validated by successfully applying to 2 well-known optimal control
problems of which one is aerospace related and another being outside the field of aerospace
for showing applicability outside of aerospace field. For each example problem, the results
were compared to the conventional method where the trajectory and robust controller are
obtained separately and showed results where tracking error was reduced for the simultaneous
method thus generating a control-oriented trajectory.

For the second objective concerning application to hypersonic experimental aircraft
with control surface sizing, in Chapter 4 the proposed method was applied to the simulta-
neous design of trajectory and robust controller for the Hypersonic Experimental Aircraft.
Hypersonic aircrafts are known to have a strong coupling between trajectory and controller
performance. Therefore, by using the novel method along with optimal sizing of the control
surface, a reference trajectory and robust controller was obtained for the Hypersonic Experi-
mental Aircraft as well as optimal control surface sizing to increase tracking performance.
The obtained results ensured both a control-oriented trajectory and a controller robust against
flight condition changes as well as to generated optimal trajectory. In Chapter 5, the obtained
trajectory and controller was evaluated via Monte Carlo simulation of the uncertainties
present during separation from the rocket booster. From the statistical results, the tolerable
maximum tracking constraint was maintained for all cases and mission success rate was
identified for meeting engine test and cruise requirements. A valuable insight was obtained to
incorporate a thruster controller on the system to have control of pitch during suborbital flight
where sufficient air density cannot be obtained. This can be achieved through expanding the
control system design in the current framework of the proposed method.

By performing a simultaneous trajectory and controller design for obtaining a control-
oriented trajectory and robust controller, this dissertation provided an insight into the benefits
of integrating the design process and showing a potential simultaneous trajectory and robust
controller design methodology for the Hypersonic Experimental Aircraft. The obtained
results and experience can serve as guidelines to future trajectory and controller designs
of unmanned aircraft as well as to initiate a step towards the process of maturing technical
readiness of the system for actual flight tests.
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6.2 Novelties of the Present Research

For the sake of clarity, major novelties in the present research (i.e. the attempts that cannot
be found in previous researches) are enumerated below:

1) A method of simultaneous trajectory and controller design was developed for obtaining a
control-oriented trajectory and robust controller for minimizing tracking error.

2) The advantages over the conventional method of designing the trajectory and controller
separately were identified in terms of improving objective function and tracking perfor-
mance applicable to aerospace related and for fields outside of aerospace.

3) Simultaneous design of trajectory and controller along with sizing of the control surface
for the Hypersonic Experimental Aircraft was conducted.

4) Flexibility in expanding control system design to fit individual problems in the framework
of the proposed method.

6.3 Recommendations for Future Work

Based on the knowledge and lessons learned from the development of the the simultaneous
design of trajectory and robust controller as well as application to Hypersonic Experimental
Aircraft, in future studies the work carried out in this dissertation can be improved or utilized
by the following aspects in no particular order:

1) To improve the convergence of the optimization, a surrogate model may be created
before the simulation of identifying tracking error performance to predefined set of
reference trajectories. This may decrease calculation time since tracking error through
nonlinear simulation is calculated beforehand. Additionally, higher fidelity aerodynamics
model is necessary to improve maturity of the obtained results since the aerodynamic
interpolations were derived through least square fit. Such improvements can be obtained
by using Kriging’s method or by radial basis network interpolation while increasing the
amount of data points.

2) The current design philosophy is to conduct heuristic weighting function tuning through
loop shaping of the sensitivity and complementary sensitivity function for better un-
derstanding of the controller characteristics. Thus, extensive knowledge on frequency
domain tuning is required for obtaining satisfactory results. Therefore, the current pro-
posed method can be adjusted to be more user friendly by adding automatic tuning of the
weighting functions under a design objective of the individual problem.
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3) Uncertainties in the aerodynamics was not modeled in the current dissertation since
emphasis was placed on obtaining a controller robust to flight condition changes. This
was due to time restriction on deriving the aerodynamic characteristics only by CFD
for the Hypersonic Experimental Aircraft model and no wind tunnel experiments were
conducted to validate the uncertainties present. Furthermore, the actuator uncertainties
were not incorporated due to the complexity in modeling and further research is needed
to evaluate the effect modeling error has on the solution. Both aerodynamic and actuator
uncertainties are possible to be incorporated into the proposed method since H∞ controller
design was used for the robust controller design.

4) Expanding the problem formulation used in the current Hypersonic Experimental Aircraft
problem is needed to mature the technical readiness since the problem was simplified
due to time restrictions. Critical factors to be investigated are expanding the current
control system design to incorporate thruster controller for increasing mission success
rate, incorporate directional and roll dynamics to perform a a three dimensional analysis,
perform a design analysis on TPS for thermal protection, and compare the controller
performance to a gain scheduled controller.

5) Investigation of the trajectory of the booster while and after should be conducted since
improvements the current Monte Carlo simulation assumed that state separation un-
certainties existed on the aircraft itself and not effecting the trajectory of the rocket.
Particular attention should be paid to the interaction between the rocket booster and
aircraft and acquiring more insightful knowledge is indispensable for continuing on with
further research.



Appendix A

Case Study on Designing Reference
Trajectory

A case study is conducted to evaluate the flight trajectory of the Hypersonic Experimental
Aircraft for sensitivities to tracking performance. Furthermore, the flight trajectory with
the smallest fuel consumption over downrange ratio was analysed through parametric study
with the flight path angle γ being the parametric variable. The Hypersonic Experimental
Aircraft model was constructed using CFD and a surrogate model was created to interpolate
the coefficients to the aircraft dynamics. A controller was constructed with the angle of
attack and thrust being the control input to the aircraft model. From the results, the flight
path angle of -4deg had the smallest fuel consumption over downrange ratio and the tracking
performance decreased as the flight path angle became steeper due to the controller saturating
from the angle of attack limit.

A.1 Overview

Although many CFD has been conducted for the evaluation of cruise and low speed flight
for the Hypersonic Experimental Aircraft [40, 39], simulation of actual flight trajectory to
sensitivities in tracking performance as well as fuel consumption had not been conducted.
The aircraft model is still in need of thorough validation of its aerodynamics, however
a preliminary test on flight control is needed since the coupling between trajectory and
controller is prevalent for hypersonic aircrafts [65]. Due to this, the tracking performance is
assumed to be effected by the reference trajectory. Additionally, although the total amount
of fuel needed has not been finalized, limiting the fuel consumption is critical since liquid
hydrogen is used for fuel. Liquid hydrogen has a very high specific energy (MJ/kg) however, a
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very low energy density (MJ/L). This makes it hard to store large quantity of liquid hydrogen
in fuel tanks and fuel shortage may occur [54]. Therefore, evaluation on the trajectory
minimizing the fuel consumption over downrange ratio is necessary in the preliminary
analysis of the flight trajectory as well.

The objective of this case study is to construct a controller for the Hypersonic Experi-
mental Aircraft satisfying the constraints placed on the flight trajectory. Additionally, the
constructed controller was evaluated for sensitivities to tracking error with respect to the para-
metric reference γ input as well as to identify the smallest fuel consumption over downrange
ratio.

A.2 Reference Trajectory Generator

The flight profile was referenced from Fig.4.1 of Phase 4 where the aircraft starts its decent
after the hypersonic cruise experiment. For this case study, it was assumed that the aircraft
would decent from hypersonic cruising altitude of 25[km] to altitude of 6[km] for subsonic
flight. The reference for tracking in this case would be the reference trajectory given by the
parametric γ . The parametric γ evaluated in this research are γ =−2,−4,−6,−8,−10 [deg].
The γ inputs are given as a Bessel function and tuned to meet the target altitude of 6[km].

t2
γ̈ + t γ̇ +(t2 −n2)γ) = 0 (A.1)

Where t is time in seconds, γ is flight path angle [deg], n = 15 and is the integer order.
For the simulation, a longitudinal flight control system controlling the altitude and

velocity was constructed shown in Fig.A.1. Here, γtarget represents the target flight path angle

Fig. A.1 Controller for Tracking Reference Trajectory.

and vtarget represents the target Mach number respectively. Two controller were designed
each controlling the angle of attack (AoA) and thrust of the PCTJ engine. The parameters
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for the gain used in the PID controllers were set so as to have high tracking performance.
The aircraft dynamics used for the analysis are the nonlinear dynamics identical to Eq.(4.14).
The controller gains tuned for high tracking performance are summarized in Table A.1. The
aerodynamics and engine models used in the simulation are interpolated using a radial basis
function network (RBFN)[23] method shown in Fig.A.2. For the aerodynamic data, the
sample points are summarized in Table A.2 with the same numerical analysis conditions
as shown in Table 4.5 in Chapter 4 and defined as a function of Mach and angle of attack.
The solver FaSTAR developed by JAXA was used as well as the automatic grid generator
Hexagrid developed by JAXA as used in Chapter 4. Lastly, thrust has a maximum output
of 1600[N] at Mach 5 and 2000[N] at below Mach 0.8 which was derived referencing the
data provided by JAXA and defined as a function of thrust and altitude. The simulation
was conducted in a MATLAB/SIMULINK environment using U.S. Standard Atmosphere
model for the air density and static temperature. The initial conditions for the simulation
are summarized in Table A.3 where the simulation starts after the hypersonic cruise test.
Additionally, the trajectory constraints while the aircraft is descending is summarized in
Table A.4. The termination condition for the simulation was the derivative for the state
variables in Eq.(4.14) of ḣ, v̇, γ̇ ≤ 1×10−2 and subsonic cruise velocity after descent was
±0.4.

Table A.1 Angle of Attack and Thrust Controller Gains.

kpAoA kiAoA kdAoA kpthrust kithrust kdthrust
200 0 900 1000 -2 10

Table A.2 Aerodynamic Sample Points.

Mach Number 0.3, 0.8, 2, 4, 5, 6
Angle of Attack [deg] -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10

Table A.3 Initial Conditions for Phase 4.

Altitude h [km] 25
Mach Number 5
AoA [deg] 1.4
Pitching Moment 0
Thrust [N] 1535
Control Start ton [s] 500 ≤ ton ≤ 3600

Table A.4 Trajectory Constraints.

Load Fz [G] −5.5 ≤ Fz ≤ 5.5
Dyn. Pressure Q [kPa] Q ≤ 51
AoA [deg] −10 ≤ α ≤ 10
Thrust [N] Mach 5 ≤ 1600

Mach 0.8 ≤ 2000
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(a) CL Surrogate Model. (b) CD Surrogate Model.

Fig. A.2 Aerodynamic Interpolation Surface.

(a) Thrust Surrogate Model. (b) Isp Surrogate Model.

Fig. A.3 Engine Characteristics Interpolation Surface.
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A.3 Results and Discussion

Results for flight path angle of -4[deg] and -10[deg] are shown in Fig.A.5 and Fig.A.6
respectively. Fig.A.4 shows the downrange with respect to altitude and flight path angle with
respect to fuel consumption over downrange. From Fig.A.5, it can be seen that satisfactory
controller performance is achieved for γ =−4[deg]. From Fig.A.6, it can be seen that for
γ =−10[deg] the load factor constraint is violated. From Fig.A.5 and Fig.A.6, simulation
converges after descent maintaining cruising altitude and velocity but γ = −10[deg] took
longer to converge due to the tracking performance for tracking γ decreasing as the flight
path for descent became steeper. Here, the blue line represents the system output, orange line
is reference input, black line is steady-state flight before the descent, green line is descent
duration for γ =−4, and red line is constraint placed on the trajectory. Tracking performance
decreased for γ =−10[deg] due to the AoA restriction of ±10[deg] placed as an constraint
to prevent stall and the insufficient lift caused tracking performance to decrease. Additionally,
the velocity decreased since the velocity controller detects the velocity error from the input
Mach command thus increasing the thrust however, insufficient thrust occurred due to the
high angle of attack creating more drag. This drag creates a velocity overshoot which forces
the thrust controller to create more thrust consuming more fuel.

From the results, it can be concluded that fuel consumption over downrange had a
minimum value at γ =−4[deg] due to the decrease in tracking performance as the flight path
became steeper which then caused the velocity overshoot. Therefore, flight path angle should
be minimized as much as possible while meeting trajectory constraint.

Fig. A.4 Comparison Between h to Downrange and Fuel Consumption over Downrange to γ



A.3 Results and Discussion 123

Fig. A.5 Simulation Results of γ =−4[deg].

Fig. A.6 Simulation Results of γ =−10[deg].



Appendix B

Case Study on Designing Robust
Controller

A case study is conducted to design a robust controller for the Hypersonic Experimental
Aircraft and evaluated for stability and performance as well as robustness against flight
condition changes in the assumed descent trajectory phase taken from the previous case study
in Chapter A. The nonlinear dynamic equations were linearized using perturbation from
steady state flight at each flight Mach number of the descent trajectory. From the results,
robust controller was obtained meeting the control performance and a controller robust to
flight Mach number of 5 to 2 was constructed for the Hypersonic Experimental Aircraft
in the descent trajectory phase. Furthermore, it was identified that the controller performs
differently at each Mach number where the overshoot becomes greater as the Mach number
increases and performance decreases significantly.

B.1 Overview

To obtain a controller to stabilize the system in the presence of varying flight mach numbers,
one possible method is to introduce a robust controller [6]. Recently, there has been numerous
papers in H∞ controller design applied to aerospace vehicles[55, 22] by also placing a
structured constraint on the controller. Therefore, theoretically the same can be applied to a
hypersonic aircraft model to make the controller robust to varying mach number through H∞

controller design while inflicting a structured constraint on the controller. This makes the
controller to have same structure as a conventional PID making ease of implementation while
keeping a low-order transfer function for faster calculation time. However, a structured H∞
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controller design approach has not been conducted for the current second stage Hypersonic
Experimental Aircraft model.

The objective of this paper is to design a structured H∞ controller design for the Hyper-
sonic Experimental Aircraft model in the descent trajectory phase to be robust to varying
flight mach numbers and to evaluate the obtained controller to have stability and desired
control performance.

B.2 Robust Controller Design

For this case study, the robust controller design was conducted by referencing the γ =−4[deg]
trajectory generated from the previous case study from A for the Hypersonic Experimental
Aircraft. In order to conduct a robust controller design, a set of linear time invariant
(LTI) models were needed for the reference trajectory. The LTI models were obtained by
linearizing Eq.(4.14) at different flight conditions in the reference descent trajectory. The
reference descent trajectory had satisfactory tracking performance while minimizing the fuel
consumption over downrange. The LTI model was constructed by linearizing the equations
for the flight range of Mach 5 to Mach 2 in the descent trajectory phase. Linearization of
Eq.(4.14) was conducted by first considering the steady-state flight condition at each Mach
number ( Mach 5 to Mach 2 ). The steady-state flight condition are summarized in Table B.1
taken from the reference descent trajectory. Additionally, the aerodynamic characteristics at
the steady-state flight conditions were obtained by the surrogate model from the previous
case study shown in Fig.A.2 and A.3. Second, a perturbed flight is considered relative
to steady-state flight. The perturbed variables are summarized in Table B.2. Small angle
assumptions to trigonometric functions of perturbed angles were made (sin∆θ = ∆θ and
cos∆θ = 1). The state equations are linearized about the steady state condition and is written
in equation (B.1) (subscripts for matrix A, B, and C denotes reference Mach number).

ẋ = Aix+Biu

y =Cix
(B.1)

where the new state variables are the following;

x = [∆h ∆V ∆γ]T

u = [∆α]
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The LTI models for Mach 5 to 2 are shown in equations (B.2) to (B.5).

Table B.1 Steady State Condition

Mach Altitude AoA γ Thrust CLα

[km] [deg] [deg] [N]
5 25 1.6 0 1600 0.785
4 25 2.2 0 620 0.745
3 15 0.9 0 2600 1.3
2 11 1.0 0 4000 1.867

Table B.2 Perturbation Variables

State Perturbed
Variable State

Altitude r [km] r+∆r
velocity v [m/s] v+∆v

Angle of Attack a [deg] a+∆a
Flight Path Angle γ [deg] γ +∆γ

Thrust T [N] T +∆T

A5 =

 0 0 1.490×103

3.016×10−4 −0.029 −9.800
−1.116×10−6 1.046×10−5 0

 , B5 =

 0
−0.077
0.219

 (B.2)

A4 =

 0 0 1188.4
0.0001 −0.0013 −9.800

0 0 0

 , B4 =

 0
−0.0296
0.1657

 (B.3)

A3 =

 0 0 885
0.0004 −0.0070 −9.800

0 0 0

 , B3 =

 0
−0.0509
0.8823

 (B.4)

A2 =

 0 0 590.2
0.0007 −0.0166 −9.800

0 0 0

 , B2 =

 0
−0.0869
1.4874

 (B.5)

C =
[
0 0 1

]
(B.6)

The calculated LTI model(Theory) was compared against the nonlinear model as well
as the linearize command in MATLAB to validate its accuracy. A step response of γ=1deg
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from the trimmed state was compared for the theory, MATLAB linearized, and nonlinear
model. The results are shown in Fig.B.1 to B.4. The results show that LTI model for this
analysis show qualitative similarity thus LTI model(Theory) will be used to construct the H∞

controller.
Using the obtained LTI models varying in flight condition changes of flight Mach number,

the robust controller design will be conducted through the structured H∞ controller design.
The structured H∞ controller design will impose a PID structured constraint. The structured
H∞ controller design proposed here will be robust against flight condition changes of Mach
number variance which are the LTI models (equations (B.2) to (B.5) ) linearized at different
Mach numbers. Stability is achieved by ensuring equation B.7.

||Tzw(P,K;s)||∞ := sup
0≤w≤∞

|Tzw(P,K; jw)|< 1 (B.7)

Here, P represents the plant model, Tzw denotes the closed-loop transfer function from
reference input r to the output of We shown in Fig.1.4, || · ||∞ denotes the H∞ norm, and
K represents the controller. For a set of plant models representative of plant variations
during the descent trajectory, structured H∞ controller design is achieved by solving the
non-smooth optimization problem by using hinfstruct MATLAB function. The function
solves the non-smooth optimization problem of the following structure;

min . ∥Tzw(P,K;s)∥∞

s.t. K stabilizes P internally

K ∈ Kpid

(B.8)

This seeks to minimize Tzw with tunable parameters K. For multiple models hinfstruct
can be used by applying different models in the same manner as equation B.8 and Eq.(2.67)
shows the block diagram of structured H∞ controller design against multiple P models. The
constructed system for tracking the reference flight path angle for the Hypersonic Aircraft
Model is shown in Fig.1.4. The system is an SISO with the angle of attack (AoA) as its
command input and flight path angle (γ) as its output. The reference input is given as the
γ . The plant models used for the synthesis are the LTI models from equation (B.2) to (B.5).
The controller structure is defined as equation (B.9) where Kp, Ki, Kd ,and n are the tunable
parameters of K.

K = Kp +Ki
1
s
+Kd

ns
n+ s

(B.9)
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Fig. B.1 Mach 5 Theory, MATLAB linearized, and Nonlinear Dynamics Step Response
Comparison.

Fig. B.2 Mach 4 Theory, MATLAB linearized, and Nonlinear Dynamics Step Response
Comparison.
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Fig. B.3 Mach 3 Theory, MATLAB linearized, and Nonlinear Dynamics Step Response
Comparison.

Fig. B.4 Mach 2 Theory, MATLAB linearized, and Nonlinear Dynamics Step Response
Comparison.
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The weighting function (We) placed on the system as shown in Fig.1.4 was set so as for
the H∞ norm to be as close to 1 as possible for high tracking performance. We is defined
in Eq.(B.10). Since no weight function is placed for the command input, We was tuned to
meet control performance criterion as discussed in the next section. For the system shown in
Fig.1.4, hinfstruct minimizes Eq.(B.11) since Tzw denotes sensitivity function from w input
to z output. From Fig.1.4, Eq.(B.7) can be rewritten to Eq.(B.12).

We =
1.1s+1.15
1.2s+1.2

(B.10)

Twz =We
1

1+PK
(B.11)

∥∥∥∥We
1

1+PK

∥∥∥∥
∞

< 1 (B.12)

In order to evaluate the structured H∞ controller design for having robust stability and
desired control performance, a set of evaluation criterion was set. The evaluation criterion
(Table B.3) for the desired control performance was set by referring to Ref.[76] and checked
with doublet response of ±1deg γ since in the flight profile, AoA is expected change from
pitch up (positive AoA) to pitch down (negative AoA).

Table B.3 Evaluation Criterion

Desired Controller Performance
1) ∥Tzw∥∞ < 1
2) Poles of Try function is non-positive
3) Overshoot ≤ 40% of step input
4) 90% rise time ≤ 10 seconds
5) 10% settling time ≤ 30 seconds
6) AoA command input ≤±10 degrees
7) Stable Doublet Response with AoA ≤±10 degrees

B.3 Results and Discussion

The results are shown in Fig.B.6 to B.7 and Table B.4 summarizes the H∞ and PID gains
derived from the structured H∞ synthesis and Table B.5 summarizes the poles/zeros of each
transfer function. The results will be evaluated base on the criterion set in Table B.3.
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Table B.4 shows the obtained H∞ norm and can be seen to meet criteria 1) since ∥Twz∥∞ <

1. From Fig.B.5 it is evident that the frequency response of Try is below We as placed on
the sensitivity transfer function shown in equation B.11. Since the design procedure for the
structured H∞ synthesis involves tuning the weights placed on the system to have a H∞ norm
of less than 1, We was tuned to be close to 1 for better tracking performance. From Fig.B.5,
it can be seen that the We constraints were met. The poles for the complementary transfer
function Try (subscript number denotes mach number) are summarized in Table B.5 and can
be seen that all poles in the s-plane are non positive which states that the closed loop system
is stable for the linear models of mach 5 to 2 thus criteria 2) is achieved.

For the evaluation criterion for desired control performance, Fig.B.6 shows the step
response of the linear system in the time domain for Mach 5 to 2 and will be used to validate
a stable response. From Fig.B.6, it can be seen that all models converge thus having a stable
step response. Mach 2 and 3 has faster settling time compared to Mach 4 and 5. This is due
to the CLα of mach 4 and 5 being smaller than Mach 2 and 3 as can be seen from Table B.1.
This comes form the nature of hypersonic aircrafts where CL decreases and CD increases
with higher Mach number. Mach 5 has smaller settling time compared to Mach 4 since CLα

is smaller as can be seen from Table B.1. Table B.6 summarises the results for the desired
control performance for each Mach number. From Table B.6, all the criteria from criteria 3)
to 5) was achieved. Fig.1.5 in Chapter 1 shows the simulation results for doublet response
to multiple γ reference inputs. From Fig.1.5, it can be seen that all models converge thus
having a stable step response to γ reference inputs between ±1deg thus achieving criteria
7). From Fig.1.5, it is also evident that AoA command input is within ±10deg and criteria
6) is achieved as well. However, as can be seen from the doublet response, the controller
performs differently at each Mach number where the overshoot becomes greater as the Mach
number increases. With the robust controller robustness against flight condition changes is
obtained, but the performance can deviate significantly.

The objective for the case study is to design a robust for the designed Hypersonic
Experimental Aircraft model and to evaluate the controller for stability and desired control
performance at varying flight mach numbers in the descent trajectory phase. From the results,
all the criterion defined in Table B.6 were achieved. Therefore, evaluation results show
that the structured H∞ controller design was achieved and ensures stability at varying mach
numbers as well as meeting the desired control performance. Furthermore, it was identified
that the controller performs differently at each Mach number where the overshoot becomes
greater as the Mach number increases and performance decreases significantly.
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Fig. B.5 Frequency Response of Sensitivity Functions (Mach 5 to 2).

Fig. B.6 Mach 5 to 2 Step Response.

Fig. B.7 Mach 5 to 2 AoA Command Input.
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Table B.4 H∞norm and PID Gain

H∞norm Kp Ki Kd n (filter coeff.)
0.917 3.35 4.43 6.03 0.992

Table B.5 Pole/Zero of Transfer Function

Transfer Poles Zeros
Function

-2.5154 -0.4157 + 0.5462i
-0.2624 + 0.5614i -0.4157 - 0.5462i

Try5 -0.2624 - 0.5614i 0
-0.2228e-9 -0.0029

-0.0029
-2.0902 -0.4157 + 0.5462i

-0.2244 + 0.5467i -0.4157 - 0.5462i
Try4 -0.2244 - 0.5467i 0

-0.2577e-13 -0.0013
-0.0013
-8.4731 -0.4157 + 0.5462i

-0.3771 + 0.5621i -0.4157 - 0.5462i
Try3 -0.3771 - 0.5621i 0

-0.1636e-10 -0.0070
-0.0070

-14.0892 -0.3338 + 0.2664i
-0.1489e-10 -0.3338 - 0.2664i

Try2 -0.0165 0
-0.3933 + 0.5566i -0.0166
-0.3933 + 0.5566i

Table B.6 Desired Controller Performance Criterion Results

Mach overshoot rise time settling time AoA
≤ 40% ≤ 10sec ≤ 30sec ≤ 10deg

5 28% 2.1sec 22.3sec 2.2deg
4 32% 2.4sec 24.8sec 2.2deg
3 12% 0.8sec 10.8sec 2.2deg
2 8% 0.5sec 9.6sec 2.2deg



Appendix C

Conical Waverider Design Method

The waverider wing applied for the Hypersonic Experimental Aircraft depicted in Chapter 4
utilizes a conical waverider design philosophy since waveriders are know for there high lift
to drag ratio in hypersonic speeds. Here, the concept of generating a conical waverider is
briefly explained.

C.1 Inverse Design Method of Conical Waverider

Waveriders typically take on the shape of a wedge-like configuration (e.g. wedge, conical,
osculating, starbody,etc) and consists of a high-pressure lower surface and a low-pressure
upper surface in a hypersonic flow field. This pressure difference is the key concept the
waverider and is well known to have a lift to drag ratio (L/D) breaking the "L/D barrier"
as stated by Kuchemann [48]. Essential for exhibiting high L/D is for the shockwave to be
attached on the leading edge to maintain high pressure on the lower surface which can be
interpreted as the vehicle riding on the shockwave hence the name waverider.

In order to meet the requirements of an attached shock wave on the leading edge, wa-
veriders are frequently created using the inverse design method [51]. In this method, the
generating flowfield which will define the shape of the waverider is first specified with the
generating flowfield is simply being supersonic or hypersonic flow past a body (i.e. wedge
or cone are typically used and cone will be used in this disseratation). From the obtained
flowfield past a cone, the shape of the waverider is prescribed by the lower surface curve
(LBC) on the base plane. The lower surface of the waverider is created by starting from the
LBC and tracing the streamlines in the generating flowfield upstream until the shock wave
is intersected which is identical to defining the leading edge for the waverider. Finally, the
shape of the upper surface of the waverider is traced from leading edge to the base plane
parallel to the free stream direction. The unique approach taken for the inverse design method
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was that the leading edge angle between the upper surface and lower surface is predefined
and the design process is iterated to derive the shockwave angle needed to obtain the wedge
angle. This was conducted from an engineering standpoint of specifying enough thickness
on the leading edge to ensure manufacturing and tolerable thermal capability. The numerical
method for the design of a conical waverider is briefly explained by the following:

i) Assume arbitrary wedge angle x[deg], shockwave angle β < 90[deg], and free stream
Mach number M1.

ii) Calculate turning angle θ using Eq.C.1 referenced from [4] with κ = 1.4.

tanθ = 2cotβ
M1 sin2

β −1
M2

1(κ + cos2β )
(C.1)

iii) Calculate the Mach number after passing through the oblique shockwave denoted as
M2 using Eq.C.2.

M2 =
Mn2

sin(β −θ0)
(C.2)

Where Mn2 and Mn1 are defined by the following:

Mn2 =

√
2+(κ −1)M2

n1

2κM2
n1 − (κ −1)

Mn1 = M1 sinβ

(C.3)

iv) Calculate the velocity of the deflected stream after the oblique shock V from Eq.C.4.

V =
2

(γ −1)M2
2
+1 (C.4)

The radial and normal components of V , u and v respectively, are obtained by Eq.C.5
using the fact that tangential velocity at the oblique shock wave (i.e. perpendicular to
the normal velocity corresponding to Mn1 and Mn2) is the same on both sides of the
shockwave.
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u =V cos(β −θ)

v =−Mn2
√

(κRTs)
(C.5)

Here, Ts is the initial static temperature after the shockwave calculated using the
oblique shock relations and free stream static temperature Tin f shown in Eq.C.6.

Ts =
Tin f (1+0.5(κ −1)M2

n1)(2
κ

κ−1M2
n1 −1)

(κ +1)2 0.5
(κ−1)M

2
n1

(C.6)

v) Calculate the total enthalpy ht for obtaining local speed of sound a.

ht =
a2

in f

(κ −1)+0.5u2
in f

(C.7)

Here, ain f and uin f are the free stream speed of sound and radial velocity respectively
and by using Eq.(C.6) a is calculated by Eq.(C.8).

a =
√

(κ −1)(ht −0.5(u2 − v2)) (C.8)

vi) From the obtained equations, integrate the Taylor-Maccoll equation to obtain u and
v with respect to θ shown in Eq.C.9 taken from [3]. It should be well noted that the
obtained u and v are in spherical coordinates.

dv
dθ

=−
(2− v2

a2 )

(1− v2

a2 )
u− cotθ

(1− v2

a2 )
v

du
dθ

= v

(C.9)

Stop the integration when v = 0 which signifies the surface of the cone generating the
shockwave was reached.
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vii) Calculate the turning angle θwedge at v = 0 (equivalent to leading edge wedge angle)
and compare to the predefined target wedge angle x and iterate the above process until
θwedge = x. Otherwise repeat from step ii with β = β −0.01. Upon convergence, the
flowfield of the streamline is obtained after the defined oblique shockwave.

viii) After the flowfield has been obtained, the inverse design of the lower surface of the
waverider is conducted. Start at the LBC specified by the designer in the base plane
and obtain (x0,y0) Cartesian coordinates.

ix) Obtain the wedge angle θ from the vertex of the cone to (x0,y0). From θ , obtain the
corresponding u and v to be converted to Cartesian coordinates uc and vc through sin
and cos of θ .

x) Obtain the slope y = vc
uc

x and multiply dx = 0.1 to obtain the next coordinate of the
streamline (xn,yn).

xi) Repeat steps vii to ix until θ = β which is the leading edge of the waverider and thus
the lower surface is obtained.

xii) The upper surface is typically drawn to be parallel to the free stream and can be
modified by the designer to change the aerodynamic characteristics according to
desired requirements [51, 39].
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