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Abstract 
 

Proteins are inherently dynamical molecules that undergo large-scale conformational changes to 

exert its functions. To investigate the high anisotropic nature of protein dynamics, Molecular 

dynamics (MD) simulation is an essential computational tool that can elucidate the conformational 

transitions of proteins, providing time-dependent information on protein fluctuation at atomic 

resolution. However, observing conformational changes relevant to biological functions remains a 

challenge because these events tend to occur stochastically in a time scale longer than feasible MD 

simulation time. To overcome this difficulty, many enhanced conformational sampling methods have 

been proposed. However, some of the methods require an external force to enhance the 

conformational transition, which does not necessarily guarantee that the obtained trajectories follow 

the lowest energy pathway. Other methods do not need such external forces but may require pre-test 

of simulations to determine the simulation parameters which can be cumbersome. Therefore, an 

enhanced sampling method that can simulate protein conformations relevant to biological functions 

without external forces and does not require cumbersome parameter setting is attractive. In addition, 

a method that can simulate protein conformations starting from a single structure without the prior 

knowledge of other conformational states can be valuable.  

 

This thesis focuses on the development of a new enhanced conformational sampling method, 

edge expansion parallel cascade selection molecular dynamics (eePaCS-MD), to investigate the 

large-amplitude collective motions of proteins with a focus on domain motions. eePaCS-MD is an 

efficient adaptive sampling method which does not require prior knowledge of the conformational 

transitions or external forces to enhance the conformational sampling. eePaCS-MD takes advantage 

of the fact that large-amplitude fluctuations of many proteins can be described in terms of only a few 

principal components (PCs). In this method, multiple independent MD simulations are iteratively 

conducted from initial structures randomly selected from the vertices of a multi-dimensional PC 

subspace with new initial velocities to help the simulated system to overcome the energy barrier. 

This subspace is defined by an ensemble of protein conformations sampled during previous cycles of 

eePaCS-MD. The edges and vertices of the conformational subspace are determined by solving the 

“convex hull problem”.  

 

The conformational sampling efficiency of eePaCS-MD was assessed for the open-close 

transitions of glutamine binding protein, maltose/maltodextrin binding protein, and adenylate kinase. 

The free energy landscape of open-to-closed conformational transitions of glutamine binding protein 

was obtained by constructing a Markov state model from trajectories generated by eePaCS-MD. The 
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obtained free energy landscape showed an energy barrier separating the open and closed states where 

the open state was suggested to be energetically more favorable than the closed state. To further 

enhance the conformational sampling efficiency, eePaCS-MD was combined with accelerated MD, 

where the total computational cost of observing the open-close transitions can be reduced at most 

36% compared to the original eePaCS-MD method. eePaCS-MD is expected to offer 1-3 orders of 

magnitude shorter simulation time compared to conventional MD simulation. 
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Chapter 1 

Introduction 
 

1.1 General Introduction 

 

Biomolecules are essential for all living organisms which are involved in many biological functions 

required to maintain life. Biomolecules include various macromolecules such as proteins, lipids, 

carbohydrates, and nucleic acids, as well as small molecules represented by natural products and 

metabolites. Therefore, their structural and dynamical properties are not simply important to 

understand the fundamental mechanism of life, but also relevant for industrial purposes such as in 

the field of therapeutic medicine, as proteins have been implicated in many human diseases.
1,2

 

 

Among the important biomolecules, proteins are responsible for regulating the cellular 

environment, playing critical roles in the body. For example, membrane proteins can receive and 

transmit signals during cell-to-cell communications and transport molecules in and out of cells to 

maintain the cell environment. Messenger proteins, such as hormones, can act as chemical 

messengers that aid the communication between different cells and tissues. Enzyme proteins cause 

biochemical reactions necessary to coordinate our bodily functions such as digestion and muscle 

contraction. Antibodies are proteins that bind to specific particles, such as viruses and bacteria, and 

protect the body from harmful infections. Fibrous proteins help maintaining the shape of cells and 

tissues with rigidity and elasticity. 

  

The diverse functions of proteins are strongly correlated with their unique three-dimensional 

(3D) structures. Protein chains are biopolymers composed of more than 20 different amino acids, 

each of which indicates a unique structural feature. The protein structures are often referred to four 

distinct structures (primary, secondary, tertiary, and quaternary structure) regarding their structural 

aspects. Primary structure refers to the amino acid sequence. Secondary structure is the local 

structure element or motif, such as α-helices and β-sheets, being maintained by hydrogen bonds of 

local amino acids. Tertiary structure is the overall shape of a protein which is generally stabilized by 

various attractive interactions, such as hydrophobic interactions and salt bridges. Quaternary 

structure is a complex structure formed by several protein molecules.  

 

Currently more than hundred thousand 3D structures of proteins in atomic resolution are solved 
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using various experimental methods, such as X-ray crystallography and nuclear magnetic resonance 

etc., giving insights into their biological functions.
3,4

 Since proteins are inherently dynamical 

molecules that undergo conformational transitions which occur at a wide range of timescales (Figure 

1.1), it is essential to study their dynamical behaviors;
5–7

 especially the large-scale conformational 

changes as they are relevant to biological functions.
8–10

 The highly anisotropic nature of protein 

dynamics is the key to efficiently induce the conformational change in macromolecular crowded 

environments.
11

 Proteins exist in an ensemble of conformations around their native states that can be 

characterized by a rugged-free energy landscape with many local energy minima.
12

 Hence, 

conformational change relevant to biological functions are considered as slow processes because 

multiple energy barriers must be crossed to induce the conformational change.  

 

Experimental techniques can provide insights into their dynamical properties but it may be 

difficult to provide the necessary detailed information about the underlying conformational 

ensembles. Molecular dynamics (MD) simulation has been widely used to elucidate the 

conformational transitions of proteins, providing time-dependent information on protein fluctuation 

at atomic resolution. However, observing conformational changes relevant to biological functions is 

challenging because these events tend to occur stochastically in a time scale longer than feasible MD 

simulation time. Furthermore, the computational cost of MD simulations will increase with the 

system size. To overcome this difficulty, many enhanced conformational sampling methods have 

been proposed. For example, Targeted-MD
13,14

 can enhance the conformational transitions of 

two-end states where subset of atoms is guided towards the product state via a steering force but the 

obtained transition pathway may not necessarily follow the lowest energy pathway.
14

 In 

multicanonical MD,
15,16

 a weight function is introduced so that the probability distribution of the 

potential energy is uniform, leading to a random walk in energy space. Although this method allows 

the system to overcome potential energy barriers and explore a wide range of phase space, pre-test of 

simulations are required to determine the optimal weight. Replica exchange MD
17

 is another widely 

known enhanced sampling method where independent simulations of the same system (replicas) 

with slightly different ensemble conditions, such as temperatures, are periodically swapped between 

replicas to efficiently overcome the energy barriers. However, the number of replicas will increase as 

the system size increases and require more computer resource to achieve efficient sampling.
18

  

 

Although each enhanced sampling method has its own strength and is useful in different 

situations, a method that can simulate protein conformations relevant to biological functions without 

external forces and does not require cumbersome parameter setting is attractive. In addition, a 

method that can simulate protein conformations starting from a single structure without the prior 

knowledge of other conformational states can be valuable, for example situations where a novel 
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protein structure is solved and its conformational transitions are unknown. 

 

This thesis focuses on the development of a new conformational sampling method, edge 

expansion parallel cascade selection molecular dynamics (eePaCS-MD),
19

 to investigate the 

large-amplitude collective motions of proteins with a focus on domain motions. eePaCS-MD is an 

efficient adaptive sampling method that does not require prior knowledge of the conformational 

transitions or external forces to enhance the conformational sampling. eePaCS-MD takes advantage 

of the fact that large-amplitude fluctuations of many proteins can be described in terms of only a few 

principal components (PCs).
11,20,21

 The high sampling efficiency of eePaCS-MD is achieved by 

repeating multiple independent short MD simulations from structures that are rigorously located at 

the edge of a multi-dimensional PC subspace with new initial velocities which helps the simulated 

system to overcome the energy barrier.
22

 

  

eePaCS-MD is expected to help generate new mechanistic hypotheses and support experimental 

work to further validate the hypotheses. For example, one can remove a bound ligand from an 

experimentally determined protein structure and then simulate the bound and unbound systems, or 

replace the bound ligand with other ligands, to see how ligand binding affects the protein dynamics 

and its functions.
23,24

 Conformational sampling of proteins in their apo state can be also useful to 

investigate possible protein conformations and search for novel binding sites to develop new 

therapeutic drugs.
25

 In addition, one can mutate one or more amino acid residues in the protein to 

explain or predict the effect of mutations.
26,27

 The molecular environment of a simulated protein, 

such as salt concentration and pressure, can be changed to address how protein dynamics and its 

functions are affected by the molecular environment.
28,29

 

 

1.2  Thesis Outline 

Chapter 2 – Methodology and Analysis of Molecular Dynamics Simulations 

This is the introductory chapter of the thesis and presents background information about molecular 

dynamics simulations regarding empirical force fields, numerical integration, thermostats, and 

barostats. It also describes enhanced sampling techniques and general analysis methods used in 

molecular dynamics simulations. 

  

Chapter 3 – Edge Expansion Parallel Cascade Selection Molecular Dynamics 

This is the main chapter of the thesis where edge expansion parallel cascade selection molecular 

dynamics (eePaCS-MD) is proposed as an efficient conformational sampling method.
19

 Cartesian 

coordinate principal component analysis (PCA) is utilized to select the initial structures for 
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resampling. The conformational sampling efficiency of eePaCS-MD was assessed for the open-close 

transitions of glutamine binding protein, maltose/maltodextrin binding protein, and adenylate kinase. 

The free energy landscape of open-to-closed conformational transitions of glutamine binding protein 

was obtained by constructing a Markov state model from trajectories generated by eePaCS-MD. 

Furthermore, combinations of eePaCS-MD with accelerated MD can further enhanced the 

conformational sampling efficiency by at most 36%. eePaCS-MD is expected to offer 1‒3 orders of 

magnitude shorter simulation time compared to conventional MD simulation.  

 

Chapter 4 – Comparison of eePaCS-MD Utilizing Cartesian Coordinate PCA and 

Distance-based PCA 

In this chapter, conformational sampling efficiency of eePaCS-MD using Cartesian coordinate PCA 

and Cα distance-based PCA (dPCA) is compared. The open-close transitions of adenylate kinase 

were investigated to assess eePaCS-MD utilizing two different PCA methods. The conformational 

sampling efficiency of eePaCS-MD was not affected by choice of the PCA method. Considering the 

computational complexity of dPCA which quadratically scales with the number of atoms, I have 

concluded that eePaCS-MD utilizing Cartesian coordinate PCA as the first choice of the PCA 

method, although the optimal choice will depend on the target. 

 

Chapter 5 – Conclusions and Perspectives 

A summary of my thesis and future perspective is given about this research area. 
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Figure 1.1: Typical timescale of protein dynamics.  
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Chapter 2 

Methodology and Analysis of Molecular 

Dynamics Simulations 
 

In this chapter, general introduction to molecular dynamics (MD) simulations and the computational 

techniques widely used to analyze trajectory data are introduced. Section 2.1 introduces the basics of 

MD simulations, such as empirical force fields, numerical integration and statistical ensembles. 

Section 2.2 discusses enhanced sampling methods to overcome the time limitation of conventional 

MD simulations where biomolecular processes of interest often exceeds the simulation time obtained 

by simple brute force simulations. Section 2.3 introduces computational techniques to analyze 

trajectory data. 

 

2.1 Introduction 

2.1.1 General introduction to molecular dynamics simulations 

 

Molecular dynamics (MD) simulation is a computational approach widely used to elucidate the 

conformational transitions of biomolecular systems, such as proteins and nucleic acids, providing 

time-dependent information of protein dynamics at atomic resolution.
30–32

 MD simulations can 

capture a wide variety of important biological processes, including conformational change,
8,23

 ligand 

binding,
33,34

 and protein folding.
35,36

 The conformational sampling is driven by numerically 

integrating the Newtonian equations of motion: 

 

𝑚𝑖

𝑑2𝒓𝑖
𝑑𝑡2

= 𝐅𝑖 , 𝑖 = 1,2,⋯𝑁 (2.1) 

𝑭𝑖 = −
𝑑𝑈

𝑑𝒓𝑖
, 𝑖 = 1,2,⋯𝑁 (2.2) 

 

where 𝒓𝑖 and 𝑚𝑖 represent the position and mass of atom 𝑖, respectively, 𝑭 is the force which is 

derived from a given potential energy function 𝑈(𝒓1, 𝒓2,⋯ , 𝒓N), and 𝑁 is the total number of 

atoms of the system. The potential energy function is given by a set of parametrized functions called 

empirical force fields which will be discussed in Section 2.1.2.  
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The first all-atom MD simulation of a protein was performed in the late 1970s where bovine 

pancreatic trypsin inhibitor consisting of 58 residues was simulated in vacuo, for less than 10 ps.
37

 

Over the past years, improvements in algorithms, software, and computer hardware have allowed 

simulations of microsecond to millisecond timescales for systems with tens of thousands of atoms in 

solvated conditions.
23,35,38,39

 Furthermore, simulations under cellular crowded environment provide 

the new atomic insights to how biological systems dynamically behave in reality.
40

 The biomolecular 

system is often prepared from X-ray crystallography, nuclear magnetic resonance (NMR), 

cryo-electron microscopy, or homology modeling data. Experimentally solved protein structures are 

collected and distributed by the Worldwide Protein Data Bank (wwPDB),
3,4

 which stores more than 

160,000 structures to date and ~10,000 new structures are deposited annually (Figure 2.1). The 

advances in computational and structural biological field have led the use of MD simulations in the 

drug discovery industry, such as validation of ligand binding poses,
41

 cryptic pocket predictions,
42,43

 

and protein-ligand binding free energy calculations.
44–46

 

 

2.1.2 Potential energy function of biomolecular systems  

2.1.2.1 Empirical force fields 

 

Empirical force fields are sets of parameterized functions of atomic coordinates used to calculate the 

potential energy of a biomolecular system.
47–50

 The force fields are parameterized by fitting and 

reproducing results of quantum mechanical calculations and experimental measurements. Commonly 

used force fields for biomolecular systems, such as AMBER,
51

 CHARMM,
52

 and OPLS
53

, 

incorporate a similar functional form which consists of bonded and non-bonded energy terms 

(Figure 2.2). A general functional form of a force field is shown in Equation (2.3) and (2.4).  

 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑏𝑜𝑛𝑑𝑠 + 𝑈𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 + 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠 + 𝑈𝑣𝑑𝑤 + 𝑈𝑒𝑙𝑒 (2.3) 

 

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
𝑘𝑏(𝑟𝑖𝑗 − 𝑟0)

2

𝑏𝑜𝑛𝑑𝑠

+ ∑
1

2
𝑘𝜃(𝜃𝑖𝑗𝑘 − 𝜃0)

2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
1

2
𝑘𝜑[1 + cos(𝑛𝜑𝑖𝑗𝑘𝑙 − 𝛾𝑛)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑
1

2
𝑘𝜔(𝜔𝑖𝑗𝑘𝑙 −𝜔0)

2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+∑4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑖<𝑗

+∑
𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖𝑗
𝑖<𝑗

 

(2.4) 

 

The bonded terms describe the interaction potentials between set of atoms that are covalently 

bonded, which include bond-stretching ( 𝑈𝑏𝑜𝑛𝑑𝑠 ), bond angle-bending ( 𝑈𝑎𝑛𝑔𝑙𝑒𝑠 ), dihedral 

(𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠), and improper torsion (𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠) terms. The bond-stretching term is expressed as a 
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harmonic potential which corresponds to the first term in Equation (2.4), where 𝑘𝑏 is the force 

constant, 𝑟𝑖𝑗 is the distance between two atoms 𝑖 and 𝑗, and 𝑟0 is the equilibrium bond distance. 

The bond angle-bending term is expressed similarly to those of the bond-stretching term. The 

dihedral angle is comprised of four consecutively connected atoms. A Fourier type expansion, as 

expressed as the third term in Equation (2.4), is used to characterize the dihedral potential where 𝑘𝜑 

is the dihedral force constant (amplitude), 𝑛 is dihedral periodicity, and 𝛾𝑛 is a phase of the 

dihedral angle 𝜑𝑖𝑗𝑘𝑙. Unlike the bonded and angle terms, the torsion term can have multiple energy 

maximum and minimum, and the torsion energies are often not so high to allow small deviations 

from an equilibrium structure. An improper dihedral is a special type of dihedral term used to 

maintain planarity in a molecular structure or to prevent transition to a configuration of opposite 

chirality, e.g., stereochemistry of a chiral carbon atom. The improper term can be expressed similarly 

to those of bonded and angle terms with a harmonic potential energy function. It is worth noting that 

improper dihedral term can be treated using the dihedral term when the periodicity is 𝑛 = 2 and 

phase is 𝛾𝑛 = 180. 

 

The non-bonded energy terms consist of two terms; the van der Waals interaction (𝑈𝑣𝑑𝑤) and 

the electrostatic (𝑈𝑒𝑙𝑒) interaction. The van der Waals interaction is composed of repulsive and 

attractive interaction which is represented as a 6-12 Lennard-Jones potential given by: 

 

𝑈𝑣𝑑𝑤(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (2.5) 

 

where 𝜀𝑖𝑗 and 𝜎𝑖𝑗 represents the depth of the potential well and the distance at which the potential 

is zero, respectively, which are evaluated according to a mixing rule.
48

 For example, in AMBER and 

CHARMM force fields, 𝜀𝑖𝑗 and 𝜎𝑖𝑗are evaluated by geometric and arithmetic means, respectively. 

This approach is referred to as the Lorentz/Berthelot mixing rule as shown in Equation (2.6). 

 

𝜀𝑖𝑗 = (𝜀𝑖𝑖𝜀𝑗𝑗)
1
2⁄  

𝜎𝑖𝑗 =
1

2
(𝜎𝑖𝑖 + 𝜎𝑗𝑗) 

(2.6) 

 

Alternatively, OPLS force field applies the geometric mean for both 𝜀𝑖𝑗  and 𝜎𝑖𝑗 , thus other 

methods have been discussed elsewhere.
54

 The 𝑟−12 describes the pauli exclusion which is a 

short-range repulsion force due to the overlap of electronic orbitals, required to prevent atoms of 

opposite charges from collapsing by the electrostatic attraction. The 𝑟−6  describes the weak 
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attractive force between two atoms due to interactions between permanent and induced dipoles. 

These interactions include the permanent dipole ‒ permanent dipole (Keesom), permanent dipole ‒ 

induced dipole (Debye), and induced dipole ‒ induced dipole (London). The induced dipole ‒ 

induced dipole interaction is also known as the dispersion interaction which is due to the 

instantaneous dipoles arising from fluctuations in the electronic distribution. The electrostatic 

(Coulomb) interaction between two charged atoms 𝑄𝑖 and 𝑄𝑗 is expressed as: 

 

𝑈𝑒𝑙𝑒(𝑟𝑖𝑗) =
𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖𝑗
 (2.7) 

 

where 𝜀0 is the vacuum dielectric permittivity. In theory, multipole expansion, e.g., dipole and 

quadrupole, is required to accurately represent the quantum mechanical electrostatic potential. 

However, empirical force fields try to approximate this multipole expansion by assigning point 

charges localized at the nuclei of atoms, in order to reproduce the same electrostatic potential that 

would be given by the true electronic structure and electron density distribution. 

 

2.1.2.2 Non-bonded exclusions 

 

In practice, empirical force fields exclude the interactions between atoms separated by two- and 

three- consecutively covalent-bonding atoms (so-called 1-2 and 1-3 interaction) because they are 

redundant with the bond-stretching and angle-bending terms to reproduce the bond and angle 

geometries. However, the 1-4 interactions are usually kept to better reproduce the torsion barriers, 

for example by scaling down the 1-4 interaction of the van der Waals and electrostatic interactions. 

 

2.1.2.3 Treatment of long-range interactions 

 

The calculations of non-bonded pairwise interactions (van der Waals and electrostatic interactions) 

are the most time-consuming part of the simulation. A smooth truncation scheme can be applied to 

drive the non-bonded interactions to zero at a finite distance using cutoff distances to reduce the total 

computational cost. This may be acceptable for van der Waals interactions because pairwise 

interactions decay quickly with respect to 𝑟−6 where 𝑟 is the distance between the interacting 

atoms. However, electrostatic interactions are fundamentally long-range and the contributions of 

energies and forces in the system from such a distant range can be non-trivial, hence severe errors 

can arise from neglecting electrostatic interactions beyond some cutoff distance. In practice, 

electrostatic interactions are widely calculated by introducing a periodic boundary condition which 

tiles repeating copies of the system. This makes it possible to include all long-range interactions by 



10 

 

summing over the real and reciprocal space using Particle-mesh Ewald (PME) method,
55

 where the 

periodicity is used to take into account long-range electrostatic interactions including those of 

particles with their own periodic images. 

 

2.1.3 Numerical integration 

2.1.3.1 Verlet and velocity Verlet algorithms 

 

To propagate the system, one starts with assigning an initial velocity to each atom. The initial 

velocity is usually assigned based on the Maxwell-Boltzmann distribution:  

 

𝑝(𝒗𝑖) = (
𝑚𝑖

2𝜋𝑘𝐵𝑇
)

3
2
exp(−

𝑚𝑖𝒗𝑖
2

2𝜋𝑘𝐵𝑇
) (2.8) 

 

where 𝑚𝑖 and 𝒗𝑖 = (𝑣𝑖
(𝑥)
, 𝑣𝑖
(𝑦)
, 𝑣𝑖
(𝑧)
) are the mass and velocity of atom 𝑖, respectively, 𝑘𝐵 is 

Boltzmann constant, and 𝑇 is the given temperature. After the initial velocity assignment, the 

system is propagated by numerically integrating the Newtonian equations of motion. One of the 

most widely used numerical integrator is the velocity Verlet algorithm
56

 which is a modification of 

the original Verlet algorithm.
57

 The essential idea is to divide the integration step into small steps, 

each separated by a fixed time step ∆𝑡, and assumes that the positions and dynamics properties can 

be approximated in Taylor series expansion.  

 

The Verlet algorithm considers the sum of the Taylor expansions corresponding to forward and 

reversed time steps of ∆𝑡. 

 

{
 

 𝒓𝑖(𝑡 + ∆𝑡) = 𝒓𝑖(𝑡) + ∆𝑡𝒓𝑖̇(𝑡) +
∆𝑡2

2!
𝒓𝑖̈(𝑡) +

∆𝑡3

3!
𝒓𝑖⃛(𝑡) + 𝑂(∆𝑡

4)

𝒓𝑖(𝑡 − ∆𝑡) = 𝒓𝑖(𝑡) − ∆𝑡𝒓𝑖̇(𝑡) +
∆𝑡2

2!
𝒓𝑖̈(𝑡) −

∆𝑡3

3!
𝒓𝑖⃛(𝑡) + 𝑂(∆𝑡

4)

 (2.9) 

 

When these two expansions are added and rearranged, the equations give us: 

 

𝒓𝑖(𝑡 + ∆𝑡) = 2𝒓𝑖(𝑡) − 𝒓𝑖(𝑡 − ∆𝑡) +
∆𝑡2

𝑚𝑖
𝑭𝑖(𝑡) + 𝑂(∆𝑡

4) (2.10) 

𝒓̇𝑖(𝑡) =
𝒓𝑖(𝑡 + ∆𝑡) − 𝒓𝑖(𝑡 − ∆𝑡)

2∆𝑡
+ 𝑂(∆𝑡2) (2.11) 
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Equation (2.10) and (2.11) corresponds to the Verlet algorithm. Note that higher-order terms in the 

Taylor expansion are ignored for both positions and velocities. Although the velocities can be 

calculated with a second-order accuracy, i.e. 𝑂(∆𝑡2), this is inconvenient as it may introduce some 

additional error in the energy and other properties which depend on the velocity. Another potential 

drawback is that positions are obtained by adding a small term, 
∆𝑡2

𝑚𝑖
𝑭𝑖(𝑡), to much larger terms 

which may lack numerical precision and give rise to substantial round off errors. 

 

A related and more commonly used method is the velocity Verlet method where the positions 

and velocities are given by: 

 

𝒓𝑖(𝑡 + ∆𝑡) = 𝒓𝑖(𝑡) + ∆𝑡𝒗𝑖(𝑡) +
∆𝑡2

2𝑚𝑖
𝑭𝑖(𝑡) + 𝑂(∆𝑡

4) (2.12) 

𝒗𝑖(𝑡) = 𝒗𝑖(𝑡 − ∆𝑡) +
∆𝑡

𝑚𝑖

𝑭𝑖(𝑡) + 𝑭𝑖(𝑡 − ∆𝑡)

2
 (2.13) 

 

This method is mathematically equivalent to the original Verlet algorithm, except the positions and 

velocities are given at the same time. The global error associated with the velocity Verlet algorithm 

is at the fourth order for the position, which is same as the Verlet algorithm. However, the precision 

is not influenced by the velocity as Equation (2.13) is equivalent to Equation (2.11). The round off 

errors can be minimized because the positions and velocities at 𝑛∆𝑡 can be obtained by first 

summing the small terms over 𝑛 steps, and then add-on to the larger terms.  

 

𝒓𝑖(𝑡 + 𝑛∆𝑡) = 𝒓𝑖(𝑡) + ∆𝑡∑𝒗𝑖[𝑡 + (𝑘 − 1)∆𝑡]

𝑛

𝑘=1

+
∆𝑡2

2𝑚𝑖
∑𝑭𝑖[𝑡 + (𝑘 − 1)∆𝑡]

𝑛

𝑘=1

 (2.14) 

𝒗𝑖(𝑡 + 𝑛∆𝑡) = 𝒗𝑖(𝑡) +
∆𝑡

𝑚𝑖
∑

𝑭𝑖[𝑡 + (𝑘 − 1)∆𝑡] + 𝑭𝑖(𝑡 + 𝑘∆𝑡)

2

𝑛

𝑘=1

 (2.15) 

 

2.1.3.2 Choice of time step 

 

The choice of time step ∆𝑡 is important to achieve numerical stability and efficient sampling. If a 

large time step is used, the motion of molecules becomes unstable due to big errors occurring in the 

integration of equation of motion. If the time step is too small, then long computational time will be 

required to propagate the motion. The size of a time step is constrained by the time scale of the 

highest frequency motion in the system, which is typically the bond vibrations involving the 

hydrogen atoms. In general, time step of 1 fs (10
-15

 sec) is commonly used which is a magnitude 
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lower than the fastest time scale in the system. However, for computational efficiency, longer time 

step of 2 fs can be applied by constraining the hydrogen bond lengths and treating the water 

molecules as rigid body using algorithms such as SHAKE
58

 and SETTLE.
59

 Furthermore, recent 

advances in algorithms can provide even longer time step of ~4 fs.
60

  

 

2.1.4 Application of MD simulations in NVT and NPT ensembles 

2.1.4.1 Statistical ensembles 

 

In classical mechanics, a state is a specific microscopic configuration of a system in a phase space. A 

certain state can be characterized by positions 𝒒 and momenta 𝒑 variables of the system. The 

Hamiltonian, 𝐻, which describes the total energy of the state is given by: 

 

𝐻(𝒒, 𝒑) =∑
𝑝𝑖
2

2𝑚𝑖

𝑁

𝑖=1

+ 𝑈(𝒒) (2.16) 

 

where the first term is the kinetic energy and 𝑈(𝒒) is the potential energy. A statistical ensemble is 

a collection of various states of an equilibrium macroscopic system under constraint conditions such 

as temperature, pressure, and volume. There exist different ensembles with different characteristics 

and some of the physically important ensembles are:  

 

Microcanonical ensemble (NVE) 

Microcanonical ensemble (NVE) is the statistical ensemble where the number of particles 𝑁, 

volume 𝑉, and energy 𝐸 are constant. This ensemble is an approximation for an isolated system 

which cannot exchange energy or particles. The probability of all microstates of an isolated 

equilibrium system is considered equal and is given by: 

 

P(𝒒,𝒑) ∝ δ[𝐻(𝒒, 𝒑) − 𝐸] (2.17) 

 

Canonical ensemble (NVT) 

Canonical ensemble (NVT) is the statistical ensemble where the number of particles 𝑁 and volume 

 𝑉 in the system is fixed, but the system is coupled to a heat bath (reservoir) at temperature 𝑇. 

Different microstates of the system can have different energies. The probability of finding a 

microstate 𝑖 with energy 𝐸𝑖 is given by: 

 

P(𝒒,𝒑) ∝ exp(−𝛽𝐸𝑖) (2.18) 
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where 𝛽 = 1 𝑘𝐵𝑇
⁄  and 𝑘𝐵 is the Boltzmann constant. The averaged observable quantity A is given 

by: 

 

〈𝐴〉 =
∑ 𝐴𝑖exp(−𝛽𝐸𝑖)𝑖

𝑍
 (2.19) 

 

where 𝑍 = ∑ exp(−𝛽𝐸𝑖)𝑖  is the partition function and 𝐴𝑖 is the microscopic property at state 𝑖. 

 

Isothermal-isobaric ensemble (NPT) 

Isothermal-isobaric ensemble (NPT) is the statistical ensemble where the number of particles 𝑁, 

pressure 𝑃, and temperature 𝑇 are fixed, and allows the volume 𝑉 and the energy to fluctuate. The 

isothermal-isobaric ensemble is one of most widely used ensembles as most of the real experiments 

are carried out under controlled conditions of temperature and pressure. The probability of finding a 

microstate 𝑖 with energy 𝐸𝑖 is given by: 

 

P(𝒒, 𝒑) ∝ exp{−𝛽(𝐸𝑖 + 𝑃𝑉)} (2.20) 

 

Grand canonical ensemble (𝛍VT) 

Grand canonical ensemble (μVT) is the statistical ensemble where the volume 𝑉, temperature 𝑇, 

and chemical potential 𝜇 are fixed, but the number of particles and energy can exchange with the 

surrounding bath. This ensemble is particularly applicable to systems such as chemical reactions 

where the number of particles varies. The probability of finding a microstate 𝑖 with energy 𝐸𝑖 is 

given by: 

 

P(𝒒,𝒑) ∝ exp(−𝛽𝐸𝑖 + 𝜇𝛽𝑁𝑖) (2.21) 

 

2.1.4.2 Thermostats and Barostats 

 

Let us first consider a Hamiltonian system described by Equation (2.16). The Hamiltonian’s 

canonical equation, which is the generalized form of Newton’s equations of motion, is given by: 

 

𝑑𝑞𝑖
𝑑𝑡

=
𝜕𝐻

𝜕𝑝𝑖
=
𝑝𝑖
𝑚𝑖

 (2.22) 

𝑑𝑝𝑖
𝑑𝑡

= −
𝜕𝐻

𝜕𝑞𝑖
= −

𝜕𝑈

𝜕𝑞𝑖
 (2.23) 
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When the Hamiltonian system is simply solved using numerical integration discussed in Section 

2.1.3, the generated ensemble is an NVE ensemble since 
𝑑𝐻

𝑑𝑡
= 0 where the total energy is 

conserved. This is not the desired ensemble for biomolecular systems because it often makes sense 

to simulate systems used for experimental measurements, such as those at constant temperature and 

pressure. Generally, if such conditions are to be maintained, some thermostat and barostat algorithms 

need to be employed.
61

 

 

Thermostats: 

 

The temperature of a molecular dynamics simulation and the kinetic energies can be related using 

the equipartition theorem which is given by: 

 

〈∑
1

2
𝑚𝑖𝒗𝑖

2

𝑁

𝑖=1

〉 =
3

2
𝑁𝑘𝐵𝑇 (2.24) 

 

where the angle brackets indicate the time-averaged quantity. When the temperature is calculated 

from a single snapshot, this quantity is referred to as the instantaneous temperature. The 

instantaneous temperature is not always equal to the target temperature but undergoes fluctuations 

around the target temperature. There are several methods employed by the thermostat algorithm to 

control the temperature.  

 

One of the simplest thermostats to implement is the velocity rescaling method.
62

 This method 

scales the velocities so that the temperature reaches the desired temperature. However, this approach 

does not allow fluctuations in temperature and the generated samples are isokinetic ensemble rather 

than the canonical ensemble. Berendsen thermostat,
63

 also known as the weak coupling thermostat, 

is similar to the velocity rescaling approach but the temperature is allowed to slowly approach the 

target temperature. The velocities are scaled with a certain interval, such that the rate of temperature 

change is proportional to the difference in temperature, i.e., 
𝑑𝑇

𝑑𝑡
= −

1

𝜏
(𝑇 − 𝑇0), where 𝜏 is the 

relaxation time which determines how tightly the temperature bath and the system are coupled 

together and 𝑇0 is the target temperature. The scaling factor is given by: 

 

𝜆 = 1 +
∆𝑡

2𝜏
(
𝑇0
𝑇
− 1) (2.25) 
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Although the Berendsen thermostat allows temperature fluctuations, the generated ensembles are not 

precisely the canonical ensemble.  

 

An alternative approach is the Langevin thermostat
64

 which controls the temperature to a 

reference temperature by inserting friction and stochastic terms in the equation of motion. The 

Langevin dynamics is given by: 

 

𝑚𝑖

𝑑2𝒓𝑖
𝑑𝑡2

= 𝐹𝑖 −𝑚𝑖𝛾𝑖
𝑑𝒓𝑖
𝑑𝑡

+ 𝑅𝑖(𝑡) (2.26) 

 

where 𝛾𝑖 is the collision frequency which determines the strength of the coupling to the heat bath. 

The stochastic force 𝑅𝑖(𝑡) is assumed to be uncorrelated with the positions and velocities of the 

particles and to be Gaussian with a mean zero and variance given by: 

 

〈𝑅𝑖(𝑡)𝑅𝑗(𝑡 + 𝜏)〉 = 2𝑚𝑖𝛾𝑖𝑘𝐵𝑇𝛿𝑖𝑗𝛿(𝜏) (2.27) 

 

The Langevin equation is known to achieve isothermal condition; however, the collision frequency 

is an effective friction coefficient of the system and should be carefully considered to maintain the 

temperature without significantly perturbing the dynamics of the system, where the dynamics will 

become microcanonical when 𝛾𝑖 = 0. 

 

Another widely known approach is the Nosé-Hoover thermostat
65–67

 which utilize an extended 

system to control the temperature. The general idea is to consider the heat bath as part of the system 

by introducing a fictious coordinate 𝑠 , associated with an effective mass 𝑄  and conjugated 

momentum 𝑝𝑠 of 𝑠. The equation of motion utilizing Nosé-Hoover thermostat is given by: 

 

𝑚𝑖

𝑑2𝒓𝑖
𝑑𝑡2

= 𝑭𝑖 −𝑚𝑖𝜉
𝑑𝒓𝑖
𝑑𝑡

 (2.28) 

𝑑𝜉

𝑑𝑡
=
𝑔𝑘𝐵
𝑄

(𝑇(𝑡) − 𝑇0) (2.29) 

 

where 𝜉 is a friction coefficient defined as 𝜉 =
𝑝𝑠

𝑄
, 𝑔 is the number of degrees of freedom of the 

system, 𝑇(𝑡) is the instantaneous temperature defined as 𝑇(𝑡) =
1

𝑔𝑘𝐵
∑

𝒑𝑖
2

𝑚𝑖

𝑁
𝑖=1  and 𝑇0 is the target 

temperature. Although the Nosé-Hoover thermostat is known to produce the canonical ensemble, the 
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temperature may be poorly controlled when the effective mass 𝑄 is too large, thus the dynamics of 

the system will become microcanonical when 𝑄 → ∞. 

 

Barostats: 

 

The pressure can be measured using the virial theorem: 

 

𝑃 =
2

3𝑉
(〈𝐸𝑘〉 − 〈𝛯〉) (2.30) 

 

where 𝑉 is the volume of the system and 𝐸𝑘 is the kinetic energy. 𝛯 is the internal virial for 

pair-additive potentials and is given by: 

 

𝛯 = −
1

2
∑𝒓𝑖𝑗
𝑖<𝑗

∙ 𝑭𝑖𝑗 (2.31) 

 

𝑭𝑖𝑗 is the force on particle 𝑖 due to particle 𝑗, and 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗. These formulas give pressure as 

a time-averaged quantity and the instantaneous pressure is calculated using a single snapshot. The 

pressure will not always be equal to the target pressure but undergoes fluctuations around the target 

pressure.
68

 There are several methods employed by the barostat algorithm to control the pressure. 

 

The simplest approach is the volume rescaling where the volume of the system is modified such 

that the instantaneous pressure is exactly equal to the target pressure. This approach does not 

properly generate the isothermal-isobaric ensemble. Berendsen barostat
63

 is analogous to the 

Berendsen thermostat where the pressure is weakly coupled to a “pressure bath” which slowly 

approaches to the target pressure. To maintain the system to a desired pressure, the atomic 

coordinates and volume are scaled periodically. The rate of change of pressure is proportional to the 

difference in pressure which is given by: 

 

𝑑𝑃

𝑑𝑡
= −

1

𝜏
(𝑃 − 𝑃0) (2.32) 

 

where 𝜏 is the relaxation time which determines how tightly the pressure bath and the system are 

coupled together and 𝑃0 is the target pressure. Suppose we have an isotropic system with volume 

𝑉 = 𝐿3 where 𝐿 represents the box length of the system. An extra term 𝛼𝒓𝑖  is added to the 

equation of motion which is given by: 
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𝒓𝑖̇ =
𝒑𝑖
𝑚𝑖
+ 𝛼𝒓𝑖 (2.33) 

 

where 𝛼 is determined so that the instantaneous pressure is equivalent to the target pressure. The 

coordinates of the particles are given in terms of scaled variables 𝒓̃𝑖:  

 

𝒓𝑖 = 𝑉
1
3𝒓̃𝑖 (2.34) 

 

and the time derivative is given by: 

 

𝒓𝑖̇ = 𝑉
1
3𝒓̃𝑖̇ +

𝑉̇

3𝑉
𝒓𝑖 =

𝒑𝑖
𝑚𝑖
+
𝑉̇

3𝑉
𝒓𝑖 (2.35) 

 

With Equations (2.33) and (2.35), the volume change can be expressed as: 

 

𝑉̇ = 3𝛼𝑉 (2.36) 

 

The pressure change can be related to the isothermal compressibility 𝛽: 

 

𝑑𝑃

𝑑𝑡
= −

1

𝛽𝑉

𝑑𝑉

𝑑𝑡
= −

3𝛼

𝛽
 (2.37) 

 

Hence, from Equations (2.32) and (2.37), the equation of motion in Equation (2.33) can be rewritten 

as: 

 

𝒓𝑖̇ =
𝒑𝑖
𝑚𝑖
+
𝛽

3𝜏
(𝑃 − 𝑃0)𝒓𝑖 (2.38) 

 

This represents a proportional scaling of coordinates and box length per time step from 𝒓𝑖 to 𝜇𝒓𝑖 

and 𝐿 to 𝜇𝐿, where 𝜇 is the scaling factor given by: 

 

𝜇 = 1 +
𝛽∆𝑡

3𝜏
(𝑃 − 𝑃0) ≅ [1 +

𝛽∆𝑡

𝜏
(𝑃 − 𝑃0)]

1
3
 (2.39) 
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The value of the compressibility does not have to be precisely known and the relaxation time appears 

only as a ratio in the dynamics. In practice, compressibility of liquid water is often used. Many 

applications can be found that utilize Berendsen barostat
69–71

 as this method will approach the target 

pressure realistically; however the ensemble it is sampling from is not well defined and cannot be 

guaranteed to be NPT ensemble.
68,72

  

 

Alternatively, extended ensemble barostat methods, such as Parrinello-Rahman,
73

 can be 

applied to control the pressure. The system is coupled to a fictitious pressure bath by adding an 

additional degree of freedom to the equations of motion which allows the shape of the simulation 

box to change during the simulation. Although the algorithm yields the correct ensemble, it is not 

recommended for equilibrium processes as it will not behave well if not near the target pressure. 
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2.2 Enhanced sampling methods 

 

Conformational transitions relevant to biological functions are challenging to observe because these 

events tend to occur stochastically as rare events and the time scale of such phenomena can simply 

exceed feasible computational time simulated by brute force simulations, even if significant 

computational resources are employed. To overcome this difficulty, a wide variety of enhanced 

sampling techniques have been proposed to capture long-timescale events, where each technique can 

be useful for different situations. Some of the widely used methods are introduced. 

 

2.2.1 Targeted MD 

 

Targeted MD
13,14

 is a class of nonequilibrium simulation which enhances the conformational 

transitions of two-end states (reactant and product) where a subset of atoms is guided towards the 

product state via a steering force. The force on each atom is derived from the gradient of the 

potential energy which is given by: 

 

𝑈𝑇𝑀𝐷 =
1

2
𝑘[𝑅𝑀𝑆𝐷(𝑡) − 𝑅𝑀𝑆𝐷0(𝑡)]

2  (2.40) 

 

where 𝑘 is the spring constant, 𝑅𝑀𝑆𝐷(𝑡) is the root-mean-square deviation (RMSD) at time step 

𝑡 measured from the product structure. 𝑅𝑀𝑆𝐷0(𝑡) is the prescribed RMSD at time step 𝑡 which is 

slowly decreased to zero during the simulation. Although this method is convenient, the external 

force should be carefully set as the transition pathway may not necessarily follow the lowest energy 

pathway and yield irreversible pathways that are rarely accessible to the system at normal 

temperature.
14

  

 

The free energy profile (potential of mean force) along the conformational transition pathway 

can be obtained using Jarzynski’s equality
74

 where the transition is characterized by the amount of 

work required to drive the transition. 

 

∆𝐹 = −
1

𝛽
ln〈𝑒−𝛽𝑊〉  (2.41) 

 

Here, the bracket denotes an ensemble average over multiple independent simulations, and 𝑊 is the 

work performed on the system by an external force. Since the exponential average can be dominated 
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by small values of the work which occur rarely, the logarithm of an exponential term can be 

expanded in terms of cumulants to reduce the exponential noise.
75,76

  

 

2.2.2 Accelerated MD 

 

In accelerated MD
77

 the sampling efficiency is enhanced by increasing the escape rates from the 

potential wells (Figure 2.3). This is achieved by modifying the true potential 𝑉(𝒓) via a continuous 

non-negative boost potential ∆𝑉(𝒓) while maintaining the underlying shape of the true potential 

energy surface. The modified potential, 𝑉∗(𝒓) = 𝑉(𝒓) + ∆𝑉(𝒓), is described as: 

 

{
𝑉∗(𝑟) = 𝑉(𝑟) +

(𝐸 − 𝑉(𝑟))
2

𝛼 + (𝐸 − 𝑉(𝑟))
,           𝑉(𝑟) < 𝐸

𝑉∗(𝑟) = 𝑉(𝑟),                                               𝑉(𝑟) ≥ 𝐸

  (2.42) 

 

and the boost potential ∆𝑉(𝒓) is given by: 

 

∆𝑉(𝒓) =
(𝐸 − 𝑉(𝒓))

2

𝛼 + (𝐸 − 𝑉(𝒓))
,           𝑉(𝑟) < 𝐸  (2.43) 

 

Here 𝐸 is the potential energy threshold and 𝛼 is the tuning parameter which determines the depth 

of the modified potential energy.  

 

The boost potential can be applied to either the dihedral potential energy, total potential energy, 

or dihedral and total potential energy. The potential boost parameters associated with 𝛼 can be 

defined by the number of protein residues, total number of atoms, and the average dihedral and/or 

total potential energies calculated from short conventional MD simulations.
78,79

 The canonical 

ensemble distribution, 𝑝(𝐴), along a selected reaction coordinate 𝐴(𝒓) can be recovered by 

reweighting the probability distribution, 𝑝∗(𝐴), sampled by accelerated MD which is given by: 

 

𝑝(𝐴𝑗) = 𝑝
∗(𝐴𝑗)

〈𝑒𝛽∆𝑉(𝑟)〉𝑗

∑ 〈𝑒𝛽∆𝑉(𝑟)〉𝑗
𝑀
𝑗=1

 (2.44) 

 

where 𝑀 is the number of bins, 〈𝑒𝛽∆𝑉(𝑟)〉𝑗 is the ensemble-averaged Boltzmann factor of ∆𝑉(𝑟) 

found in the j
th

 bin.
79

 The exponential term can be approximated by Maclaruin series expansion or 

cumulant expansion to reduce the noise as the Boltzmann factor can be dominated by high boost 

potential values. The reweighted potential of mean force can be calculated as: 
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𝐹(𝐴𝑗) = −
1

𝛽
ln𝑝(𝐴𝑗) (2.45) 

 

2.2.3 Metadynamics 

 

Metadynamics
80

 enhances the rare-events occurrence by discouraging the system from revisiting the 

same phase space by introducing a repulsive bias potential to the original potential. The original 

potential 𝑉(𝒓) is modified by a history-dependent Gaussian potential deposited along the collective 

variable (CV) space which is expected to be suitable in describing the process of interest. The 

Gaussian potential is added every time interval 𝜏𝐺 and the biasing potential at time 𝑡 is given by: 

 

𝑉𝐺(𝑠(𝒓), 𝑡) = 𝑤 ∑ 𝑒𝑥𝑝 {−
[𝑠(𝑟) − 𝑠(𝑟𝐺(𝑡

′))]2

2𝛿𝑠
2 }

𝑡′=𝜏𝐺,2𝜏𝐺,3𝜏𝐺,⋯

𝑡′<𝑡

       
(2.46) 

 

where 𝑤 and 𝛿𝑠 are the height and the width of the Gaussian. 𝑠(𝒓) and 𝒓𝐺(𝑡
′) denote the CV 

and the trajectory of the system under the modified potential 𝑉 + 𝑉𝐺, respectively. As the bias 

potential accumulates and fills the potential wells, the system is able to move in a less-barrier 

manner among the different states. The free energy profile along the CV can be reconstructed by 

simply changing the sign of Equation (2.46).  

 

To achieve reasonable and accurate free energy profile, the height of the Gaussians must be 

sufficiently small compared to the main free energy barrier and the bias should not be added too 

frequently in time. This method is effective for exploring few CVs, however the performance can 

deteriorate rapidly with dimensionality because the computational effort required to discourage the 

visiting phase space will increase with the number of CVs. Deciding when to terminate a 

metadynamics simulation may not be straightforward as Gaussian potentials are added during the 

entire course of the simulation. As a result, the system will be pushed to explore high-energy regions 

and the calculated free energy will typically fluctuate around the correct value. Variants of 

metadynamics have been proposed to overcome these difficulties such as well-tempered 

metadyanics
81

 where the height of the Gaussian potential decreases over time showing better 

convergence. 
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2.2.4 Multicanonical MD simulation 

 

In multicanonical MD (McMD) simulation
15,16

 the conformational sampling is enhanced by 

introducing a weight function so that the probability distribution of the potential energy 𝑃𝑚𝑐(𝐸, 𝑇0) 

is uniform. 

 

𝑃𝑚𝑐(𝐸, 𝑇0) ∝ 𝑛(𝐸)𝑒
−𝑊(𝐸,𝑇0) = 𝑐𝑜𝑛𝑠𝑡 (2.47) 

 

Here 𝐸 is the potential energy of the system, 𝑇0 is the simulation temperature, 𝑛(𝐸) is the density 

of states, and 𝑊(𝐸, 𝑇0) is the weight function. The flat energy probability distribution leads to 

random walk in energy space, allowing the system to overcome potential energy barriers and explore 

a wide range of phase space. In general, temperature 𝑇0 is set to a sufficiently high temperature so 

that the conformation can overcome energy barriers in the conformational space. The multicanonical 

distribution can be reweighted to reproduce the canonical distribution at an arbitrary temperature 𝑇, 

if the weight function is accurately estimated, and is given by: 

 

𝑃𝑐(𝐸, 𝑇) ∝ 𝑃𝑚𝑐(𝐸, 𝑇0)𝑒
−𝛽𝐸+𝑊(𝐸,𝑇0) (2.48) 

 

Thus, the weight function is defined as 

 

𝑊(𝐸) = ln[𝑛(𝐸)] = 𝛽0𝐸 + ln[𝑃𝑐(𝐸, 𝑇0)] (2.49) 

 

𝑃𝑐(𝐸, 𝑇0) is the canonical energy distribution at temperature 𝑇0. Since 𝑊(𝐸, 𝑇0), i.e., 𝑃𝑐(𝐸, 𝑇0), is 

not known a priori, the weight function is estimated and updated through iterative runs of McMD 

simulations until a flat distribution can be obtained from an converged estimate value of 𝑃𝑐(𝐸, 𝑇0):  

 

𝑊(𝑖+1)(𝐸) = 𝑊(𝑖)(𝐸) + ln𝑃𝑚𝑐
(𝑖)(𝐸, 𝑇0) (2.50) 

 

where the i
th

 multicanonical distribution 𝑃𝑚𝑐
(𝑖)(𝐸, 𝑇0) is obtained with the weight function 𝑊(𝑖)(𝐸). 

In practice, it is impossible to obtain an ideal weight factor that completely flattens the potential 

energy distribution. One criterion for a satisfactory weight factor is that as long as a random walk in 

potential energy space is achieved, the probability distribution 𝑃𝑚𝑐(𝐸) does not have to be strictly 

flat but with a tolerance of an order of magnitude deviation.
82
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2.2.5 Replica exchange molecular dynamics 

 

Replica exchange molecular dynamics (REMD)
17

 seeks to enhance the conformational sampling by 

running independent simulations of the same system (replicas) with slightly different ensemble 

conditions and periodically swap replicas to efficiently overcome the energy barriers (Figure 2.4). In 

temperature REMD (T-REMD), also known as the parallel tempering, replicas with different 

temperatures are simulated parallel and swapping of neighboring replicas is attempted periodically 

with a given probability based on the Metropolis criterion that satisfies the detailed balance for 

swapping temperatures: 

 

𝑃𝑖,𝑗 = 𝑚𝑖𝑛{1, 𝑒𝑥𝑝[−(𝛽𝑖 − 𝛽𝑗)(𝐸𝑗 − 𝐸𝑖)]}       (2.51) 

 

where 𝐸 is the potential energy, and subscripts 𝑖 and 𝑗 represent different replicas, respectively. 

To achieve optimal sampling performance, distribution of temperatures and number of replicas 

should be chosen with care. The highest temperature should be high enough to ensure that no 

replicas are trapped in local energy minima. For efficiency, each replica should spend equal amount 

of time at each temperature, suggesting that the temperatures should be chosen in a way that gives 

similar acceptance ratio between adjacent replicas. It was demonstrated that exchange acceptance 

probability of ~20% yields optimal performance;
83,84

 however acceptance ratios of >10% is still 

acceptable.
17

 Finding the optimal temperature distribution and number of replicas are non-trivial and 

several suggestions for setting these parameters have been offered.
85–87

  

 

After a T-REMD simulation, unbiased populations of different substates can be obtained from 

the reference temperature of replicas. In addition, it is also possible to combine information from 

multiple replicas by performing a weighted-histogram analysis (WHAM)
17,88,89

 to obtain the 

expectation value of any physical quantity at an arbitrary temperature. It should also be noted that 

analogous to T-REMD, replica exchange can be performed with order parameters other than 

temperatures, such as the use of different Hamiltonians (H-REMD).
18

  

  



24 

 

2.3 General analysis methods used in molecular 

dynamics simulations 

2.3.1 Root-mean-square deviation and root-mean-square fluctuation 

 

Root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) are frequently used 

measurements to give information on different aspects of biomolecular ensembles.
90

 It often makes 

sense to compare the internal motions of the system; hence translational and rotation of atoms are 

removed from the system by superposing to a reference coordinate in advance of the analysis. 

RMSD is the average distance between the subset of atoms which is given by: 

 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑(𝒓− 𝒓0)2
𝑛

𝑖=1

       (2.52) 

 

where 𝑛 is number of atoms, 𝒓 is the atomic coordinate, and 𝒓0 is the coordinate of the reference 

structure. RMSD is useful to measure the global similarity of two states and monitor the structural 

change during the simulation. RMSF is analogous to RMSD, which provides information about the 

local structural dynamics. RMSF is defined as the root mean-square-average distance between an 

atom and its average position in a given set of structures. 

 

𝑅𝑀𝑆𝐹𝑘 = √
1

𝑚
∑‖𝒓𝑖,𝑘 − 〈𝒓〉𝑘‖

2
𝑚

𝑖=1

       (2.53) 

 

Here 〈𝒓〉𝑘 is the average position of atom 𝑘 over 𝑚 structures. RMSF can be used to study 

protein dynamics such as protein flexibility, thermal stability, and prediction of disordered regions as 

it is related with B-factors in X-ray experiments which are given by: 

 

𝑅𝑀𝑆𝐹𝑘 = √
3𝐵𝑘
8𝜋2

 (2.54) 
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2.3.2 Principal component analysis 

 

Principal component analysis (PCA) is a multivariate statistical technique used to reduce the 

dimensionality of a biomolecular system.
20,21

 The PCA represents a linear transformation that 

diagonalizes the covariance matrix so that the instantaneous linear correlations among the variables 

are removed. To obtain the internal motion of the system, translational and overall rotation from the 

trajectories are removed by superposing to a reference coordinate, which is often chosen to be the 

average coordinate determined self-consistently, prior to performing PCA.
91

 Commonly, PCA of a 

MD simulation is performed by diagonalizing the (mass-weighted) covariance matrix of the atomic 

Cartesian coordinates, 𝐀, where the element 𝑎𝑖𝑗 of matrix 𝐀 is given by: 

 

𝑎𝑖𝑗 = 〈(𝑞𝑖 − 〈𝑞𝑖〉)(𝑞𝑗 − 〈𝑞𝑗〉)〉       (2.55) 

 

where 𝑞𝑖  and 𝑞𝑗  represent the Cartesian coordinates of atom 𝑖  and 𝑗 , respectively, and the 

bracket denotes an average over ensemble of conformers. Diagonalization of matrix 𝐀, i.e., 

𝐀𝐕 = 𝐕𝛏, leads to eigenvectors 𝐕 and eigenvalues 𝛏, which describes the direction of the motion 

and the magnitude along the corresponding eigenvector (principal component), respectively. Since 

the eigenvalues represent the mean-square fluctuations along the principal axes, the large-scale 

fluctuations or collective motions which dominate the biomolecular motions can be corresponded to 

the principal components with the large eigenvalues. The MD-generated trajectories 𝐓 can be 

projected onto the m
th

 principal component subspace by computing 𝐓′𝐯𝐦 where 𝐯𝐦 is the m
th

 

eigenvector and the prime denotes a transposed matrix.  

 

In general, 20 modes are usually more than enough to define an essential space that captures the 

motions governing biological functions.
92

 However, the presence of large-scale motions makes it 

difficult to resolve small-scale motions because the former motion has much greater relative 

amplitude in atomic displacement. Cartesian coordinate-based PCA may reflect to some extent the 

dominant overall motion rather than smaller internal motion of the protein. PCA using Cartesian 

coordinates may not yield the correct rugged free energy landscape due to the artifact of the mixing 

of internal and overall motion, as separation of these two motions is essential to construct and 

interpret the energy landscape of a biomolecular system undergoing large structural rearrangement.
93

 

Internal coordinates such as backbone dihedral angles and distance-based measurements may be 

more advantageous as they provide natural separation of the external and internal motions.
94,95

  

 

 



26 

 

2.3.3 Clustering 

 

Clustering is a data-mining technique which is widely used to group ensemble of conformers into 

similar structures based on a chosen distance measurement, such as distances between structures 

calculated via best-fit coordinate RMSD or some other Euclidean distances. A wide variety of 

algorithms have been applied in many studies to cluster molecular dynamics trajectories and search 

for similar structures which help gain an intuition of the biomolecular system. Clustering algorithms 

can be categorized into two major classes: hierarchical and non-hierarchical methods. 

 

Hierarchical clustering seeks to build a hierarchy of clusters by merging pairs of clusters. For 

example, hierarchical clustering with the bottom-up approach (agglomerative hierarchical clustering) 

first starts with each data point as a single-point cluster and iteratively merges clusters into larger 

clusters until a desired number of clusters are reached. Commonly, distances between structures 

calculated via best-fit coordinate RMSD values or some other Euclidean distances are used to decide 

which clusters to merge. Hierarchical clustering can have different strategies to merge the data points 

such as single-linkage and average-linkage. Single-linkage uses the minimum distance, whereas 

average-linkage considers the average distance between members of two clusters. Average-linkage is 

expected to be one of the most useful approaches among various linkage algorithms.
96

  

 

K-means clustering
97

 is one of the most popular non-hierarchical clustering methods which aim 

to minimize the objective function given by: 

 

𝐽 =∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

       (2.56) 

 

where 𝑖 is the cluster index, 𝑘 is the defined number of clusters, 𝑥𝑗 is the data point belonging to 

cluster 𝐶𝑖, and 𝜇𝑖 is the centroid of cluster 𝐶𝑖. ‖𝑥𝑗 − 𝜇𝑖‖
2
 is a chosen distance measure between 

point 𝑥𝑗  and 𝜇𝑖 . K-means clustering first starts with assigning 𝑘  random points as cluster 

centroids and subsequently all other points are assigned to the closest cluster centroid. The centroid 

of each cluster is recomputed and data points are reassigned to newly defined cluster centroids to 

minimize the objective function. This procedure is repeated until a stopping criterion is met, such as 

when centroids of newly formed clusters do not change or maximum number of iterations is reached. 

K-means algorithm does not necessarily find the most optimal solution, but instead approximates 

local minima of the objective function. The algorithm is also sensitive to the initial cluster centers, 

which are selected randomly, and is recommended to run multiple times with different random seeds 
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to reduce the initial dependency. K-means++
98

 which is a modification of the standard K-means 

method can be applied to improve the initial guess of cluster center positions.  

 

2.3.4 Markov state model analysis 

 

The Markov state model (MSM)
99–101

 is a discrete-state stochastic model which can provide insights 

into biomolecular mechanisms and predict stationary and kinetic quantities of long-timescale 

dynamics using a set of multiple simulations which are much shorter than the timescales of interest. 

This is achieved by coarse-graining the high-dimensional configuration space into 𝑛  discrete 

microstates 𝑆𝑖=1,2⋯𝑛, and a conditional transition probability matrix, termed the transition matrix 

𝐓 ≡ {𝑇𝑖𝑗}, is estimated from the simulation trajectories 𝐱.  

 

𝑇𝑖𝑗(𝜏) = Prob(𝐱𝑡+𝜏 ∈ 𝑆𝑗|𝐱𝑡 ∈ 𝑆𝑖) (2.57) 

 

The transition matrix describes the chance of jumping from one state to another in some time 

interval τ which is referred to as the lag time. The eigen-decomposition of transition matrix 𝐓 

yields a set of eigenvectors and corresponding eigenvalues. The eigenvalues are related to the 

relaxation timescales of kinetic processes, and eigenvectors indicate the associated structural change 

occurring at these timescales. The relaxation timescale, also known as the implied timescale, is given 

by: 

 

𝑡𝑖 = −
𝜏

ln𝜆𝑖
 (2.58) 

 

where 𝑡𝑖 is the relaxation timescale corresponding to the ith eigenvalue 𝜆𝑖. The largest eigenvalue, 

𝜆1, is always 1 for a model where networks are connected and satisfies the detailed balance 

condition. Thus, the corresponding (left) eigenvector represents the equilibrium distribution, i.e. 

stationary distribution. The equilibrium free energy of microstate 𝑖 can be obtained using the 

stationary distribution 𝝅 which is given by: 

 

𝐹𝑖 = −
1

𝛽
ln(𝜋𝑖) (2.59) 

 

The choice of a lag time is important to construct a valid Markov model. Plotting the relaxation 

timescales as a function of the lag time can give some indication of appropriate lag time.
102

 

According to the Chapman-Kolmogorov equation, 𝐓(𝑛𝜏) =  𝐓(𝜏)𝑛 , the relaxation times for a 
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Markov model with a lag time of 𝑛𝜏 should be equal to those with a lag time of 𝜏. Therefore, we 

can expect that the relaxation time level-off at a certain lag time if the model satisfies the Markov 

assumption. However, it should be noted that the convergence of the relaxation time does not 

guarantee Markovianity, as the eigenvectors would require being constant as well. One can also 

perform the Chapman-Kolmogorov test to further validate the model. 
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Figure 2.1: PDB statistical data of (a) overall, (b) X-ray crystallography, (c) NMR, and (d) 3D 

electron microscopy experiments. Data source taken from RCSB PDB (https://www.rcsb.org/).
103
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Figure 2.2: Schematic illustration of empirical force field with bonded and non-bonded energy 

terms. 
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Figure 2.3: Schematic illustration of accelerated MD. 𝑉(𝑟), ∆𝑉(𝑟), and 𝐸 represent the potential 

energy, boost potential energy and threshold energy, respectively. The red and blue dashed lines 

represent the modified potential energies using two different threshold energy, 𝐸  and 𝐸′ , 

respectively. This figure is reprinted by Zhao B, Cohen Stuart MA, Hall CK (2017) Navigating in 

foldonia: Using accelerated molecular dynamics to explore stability, unfolding and self-healing of 

the β-solenoid structure formed by a silk-like polypeptide. PLoS Comput Biol 13(3): e1005446. 

https://doi.org/10.1371/journal.pcbi.1005446.g011; licensed under Creative Commons Attribution 

(CC BY) License < https://creativecommons.org/licenses/by/4.0/>. 

 

  

https://doi.org/10.1371/journal.pcbi.1005446.g011
https://creativecommons.org/licenses/by/4.0/
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Figure 2.4: Schematic illustration of replica exchange molecular dynamics with temperature 

exchange. Each arrow represents a MD simulation with a different temperature. 
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Chapter 3 

Edge Expansion Parallel Cascade Selection 

Molecular Dynamics Simulation 

 

In this chapter, edge expansion parallel cascade molecular dynamics (eePaCS-MD) is introduced as 

a new enhanced sampling technique to investigate the large-amplitude collective motions of proteins 

with a focus on domain motions. Section 3.1 introduces the motivation of eePaCS-MD and addresses 

the current limitations of other related methods. Section 3.2 introduces the methodology and 

procedure of eePaCS-MD, as well as detailed description of the target systems used to assess the 

sampling efficiency of eePaCS-MD. The results and discussions are given in Section 3.3 and 3.4, 

respectively. Finally, the conclusion of this chapter is given in Section 3.5. This chapter is 

reproduced from Takaba, K.; Tran, D.P.; Kitao, A. Edge expansion parallel cascade selection 

molecular dynamics simulation for investigating large-amplitude collective motions of proteins. J. 

Chem. Phys. 2020, 152 (22), 225101, with the permission of AIP Publishing. 

 

3.1 Introduction 

3.1.1 Parallel cascade selection molecular dynamics 

 

Parallel cascade selection molecular dynamics (PaCS-MD)
104

 is a class of adaptive sampling method 

which enhances the conformational transitions of two-end states. The PaCS-MD method 

dramatically enhances conformational transitions from one state to a target state without external 

perturbations using cycles of multiple independent MD simulations conducted in parallel. Each cycle 

consists of two major steps. In the first step, MD initial structures are selected from past simulation 

trajectories. The selected structures are the closest to the target structure defined by an appropriate 

quantity, e.g., root-mean-square deviation (RMSD). The second step involves conformational 

sampling by short parallel MD simulations. The selection of the initial structures considerably 

increases the probability of rare event occurrences to induce conformational change toward the target 

(Figure 3.1). The transition pathways obtained by PaCS-MD can be further analyzed by umbrella 

sampling along the pathways
104

 or by performing Markov state model (MSM) analysis to obtain the 

free energy landscapes of protein conformational changes and protein-ligand bindings.
105,106

  

 

One of the limitations of the original PaCS-MD method is the requirement of prior knowledge 
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of the product structure. Various extensions of PaCS-MD have been proposed over the past several 

years using distinct selection methods.
107–111

 For example, nontargeted PaCS-MD (nt-PaCS-MD)
107

 

selects the structures that deviate most from the average structure based on Gram-Schmidt 

orthogonalization, whereas the outlier flooding method (OFLOOD)
108

 selects outlier structures based 

on clustering techniques. The conformational sampling efficiency is enhanced by resampling from 

the edge or sparse distributions of the selected quantity, so that the probability along this quantity 

increases. Note that the conformational sampling is only enhanced against the selected quantity and 

not for the other coordinates (Figure 3.2). The utility of these methods has been demonstrated using 

several globular proteins, such as T4 lysozyme, glutamine binding protein, and maltose/maltodextrin 

binding protein. In all cases, the open-close transitions were observed within the simulation time 

scale of nanoseconds.  

 

However, current methods still require improvement. For example, inefficient sampling can 

occur when the initial structures are not sufficiently distributed in a conformational space.
110

 

Furthermore, deterministic selection of initial structures may be problematic: we have observed the 

repeated selection of similar dead-end structures, resulting in inefficient sampling. In addition, some 

methods select the initial structures from all prior generated structures,
108–110

 which requires keeping 

all the trajectories and makes the selection process time consuming. To address these issues, a new 

extension of eePaCS-MD was developed. 

 

3.1.2 Edge expansion parallel cascade selection molecular dynamics 

 

Edge expansion PaCS-MD (eePaCS-MD) is proposed as a new extension of PaCS-MD, which 

explores the large-amplitude collective motions of proteins with a focus on domain motions. 

eePaCS-MD brings together three important features: (i) conformational resampling from the 

structures rigorously located at the boundary of the sampled conformational space to improve 

sampling efficiency; (ii) reducing the number of candidates for the initial structures to quicken the 

selection process while retaining the information of the entire conformational space sampled by the 

simulation; and (iii) random selection of the initial structures to alleviate the risk of consecutively 

selecting dead-end structures. The first two features are realized by introducing the concept of 

“convex hull” defined as the smallest convex polygon that includes a given set of points in a 

multi-dimensional space (Figure 3.3(a) and (b)).
112

 The convex hull is characterized by vertices and 

connecting edges. Computing the convex hull is a problem in computational geometry, which is 

widely applied to computer graphics, pattern recognitions,
113

 image processing,
114,115

 medical 

simulations,
116

 home range estimations,
117

 and animal epidemic forecasts.
118

 In this study, 

eePaCS-MD-generated snapshots distributed in a several dimensional principal component (PC) 
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subspace determined by principal component analysis (PCA) are considered as the points 

constructing the convex hull. Identifying the snapshots as vertices reduces the number of candidate 

structures for selection. This procedure takes advantage of the fact that large-amplitude fluctuations 

of many proteins can be described in terms of only a few PCs.
11,20,21

 Thus, eePaCS-MD randomly 

selects the initial structures from the vertices and enhances the concerted conformational transitions 

along a few PCs. 

 

Here, we demonstrate the conformational sampling efficiency of eePaCS-MD for the 

open-close transitions of glutamine binding protein (QBP), maltose/maltodextrin binding protein 

(MBP), and adenylate kinase (ADK). Each was successfully simulated in ~10 ns of simulation time 

or less. eePaCS-MD is expected to offer 1-3 orders of magnitude shorter simulation time compared 

to conventional MD (cMD). Furthermore, we show that the combination of eePaCS-MD and 

accelerated MD (aMD)
77

, which we call eePaCS-aMD, can further enhance conformational sampling 

efficiency, reducing the total computational cost of observing open-close transitions by at most 36%. 

We also compare eePaCS-MD with other related methods and conclude that the sampling efficiency 

of eePaCS-MD is slightly better or comparable. 

 

3.2 Materials and methods 

3.2.1 Procedure of eePaCS-MD 

 

A flowchart for eePaCS-MD is shown in Figure 3.3(c). First, preliminary MD simulations (cycle 0) 

are performed, and the trajectories are subjected to PCA. The MD snapshots are projected onto a 

subspace spanned by a few PCs and a set of structures that constructs the convex hull is identified. 

The program package Qhull,
112

 which implements the Quickhull algorithm, is applied to solve the 

convex hull problem (see Appendix for detail). A predefined number of initial structures are selected 

randomly from the vertices as the MD initial structures. Conformational sampling from the selected 

snapshots by parallel independent MD simulations (hereinafter called “replicas”) is conducted with 

reinitialized velocities based on the Maxwell-Boltzmann distribution. After sampling, the MD 

trajectories from each replica and the vertices of the previous cycle are subjected to PCA, where the 

PCs are redefined to determine a new set of vertices and edges. Finally, the sampling process is 

repeated until it reaches a predefined number of cycles. Figure 3.3(b) shows the actual evolution of 

the vertices and edges for QBP. 
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3.2.2 Target systems 

 

The conformational sampling efficiency of eePaCS-MD was assessed by applying it to three target 

proteins: QBP, MBP, and ADK (Figure 3.4). QBP and MBP are two-domain proteins widely studied 

by other methods related to eePaCS-MD.
107–111

 We selected these proteins because they are suitable 

for examining the sampling efficiency of eePaCS-MD compared to the sampling efficiencies of 

previous studies. ADK was chosen as it has three domains and undergoes more complex 

movement
119,120

 and thus is considered a more challenging target than QBP and MBP. Using ADK, 

we demonstrate the broader applicability of eePaCS-MD. 

 

QBP and MBP are members of a large group of periplasmic binding proteins in gram-negative 

bacteria and are subunits of ATP binding cassette (ABC) transporters.
121–125

 QBP and MBP move 

within the periplasm and serve as the initial receptor for the active transport of L-glutamine and 

maltose/maltodextrin, respectively. QBP and MBP consist of 226 and 370 residues, respectively, and 

comprise two globular domains linked by a hinge composed of two (QBP) or three (MBP) short 

linkers. The ligand binding site is located in the cleft between the two domains. X-ray 

crystallography and theoretical studies revealed that the two domains undergo a large amplitude 

domain motion upon ligand binding, from the open to closed structures.
121–128

 QBP adopts an open 

form in its crystal apo state (Protein Data Bank (PDB) ID: 1GGG
123

) and takes a closed form in the 

holo state (PDB ID: 1WDN
125

). Similarly, MBP takes open and closed forms in the apo (PDB ID: 

1OMP
122

) and holo (PDB ID: 1ANF
124

) states, respectively. 

 

ADK is a nucleoside triphosphate kinase and is a monomeric enzyme that regulates the energy 

of a cell by balancing the relative abundance of AMP, ADP, and ATP via catalysis of the phosphoryl 

transfer reaction: Mg2+ ∙ ATP + AMP ↔ Mg2+ + ADP + ADP.
129,130

 ADK comprises 214 residues 

and three domains: the LID domain that closes upon ATP binding, the NMP domain that closes upon 

AMP binding, and the core domain which shows no significant conformational change upon ligand 

binding. Conformational change between the open (PDB ID: 4AKE
130

) and closed (PDB ID: 

1AKE
129

) states occurs as a multi-step clamshell-like movement.
120

 

 

3.2.3 System preparation 

 

The open and closed conformations of each protein were taken from the apo and holo crystal 

structures and employed as the starting structures for eePaCS-MD. In the closed state, the ligand was 

removed in the simulation system. The structures of the missing residues were modeled using 

PyMOL.
131

 The protonation states of the amino acid residues were determined by H++.
132–134

 For 
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QBP, Glu17 and Asp106 were protonated for both the open and closed states and all other residues 

were treated in their general tautomer states under physiological conditions. The AMBER ff14SB 

force field
51

 was employed for all the proteins. Each system was solvated using TIP3P waters,
135

 

preserving crystal waters within 3.2 Å of each protein. Rectangular simulation boxes were 

constructed with a margin of at least 12 Å between the protein and the periodic box boundaries. The 

QBP system with a salt concentration of 100 mM KCl contained 11,702 and 13,159 water molecules 

for the open and closed states, respectively. The solvated MBP systems were neutralized by adding 8 

Na
+
 ions and each system contained 15,378 and 15,538 water molecules for the open and closed 

states, respectively. The systems for the open and closed states of ADK contained 12,534 and 10,312 

water molecules, respectively, and 4 Na
+
 ions were added to neutralize each system. 

 

The GPU-accelerated version of AMBER14
136

 was used for all simulations. Electrostatic 

interactions were treated with the particle mesh Ewald method
55

 in which Lennard-Jones interactions 

and real-space electrostatic interactions were smoothly switched to zero at 10 Å. The systems of all 

three targets were first minimized with harmonic positional restraints imposed on the protein 

backbone atoms with a force constant of 10 kcal mol
-1

 Å
-2

. The restraints were gradually reduced to 

zero during the minimization procedure. Subsequently, the system was subjected to 300 ps MD 

simulation with the NPT ensemble at 300 K and 1 bar, and an additional 200 ps was performed with 

the NVT ensemble at 300 K. For each case, a set of five distinct simulations was performed and the 

final structure was used as the initial structure for 10 preliminary MD simulations to generate the 

input for eePaCS-MDs. Isothermal and isobaric conditions were realized using the Langevin 

thermostat
137,138

 with a friction constant of 2.0 ps
−1

 and the Berendsen barostat
63

 with a pressure 

relaxation time of 1.0 ps. The MD time step was 2 fs, with hydrogen bonds constrained with the 

SHAKE
58

 and SETTLE
59

 algorithms. 

 

3.2.4 Details of eePaCS-MD 

 

The number of replicas (nrep) and the total simulation cycles (ncyc) were combinations of nrep = 10 

and 100 and ncyc = 10, 15, 100, and 150, respectively, depending on the target system and the case 

study. The MD simulation time per cycle (tcyc) was fixed to 100 ps and MD trajectories were saved 

every 1 ps. The eePaCS-MD simulation time (tsim = tcyc × ncyc) is proportional to the actual elapsed 

time or central processing unit (CPU) time, whereas the total accumulated MD time (ttot = nrep × tcyc × 

ncyc) indicates the total computational cost. For example, eePaCS-MD with nrep = 10 and ncyc = 100 

requires tsim = 10 ns and ttot = 100 ns. 

 

To investigate the effect of the number of PCs (nPC) on sampling efficiency, eePaCS-MDs were 
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tested with nPC = 2‒5 using QBP. Based on the QBP results, we judged that nPC = 4 is optimal and 

this value was used for MBP and ADK. Hereafter, for example, eePaCS-MD of QBP with nrep = 10, 

ncyc = 100 ps and nPC = 2 starting from the open (OP) and closed (CL) states are referred to as 

OPQ
10,100,2

 and CLQ
10,100,2

, respectively, and Q indicates QBP. Similar indices to distinguish the 

target proteins and simulation conditions are used for MBP and ADK, as shown in the first column 

of Table 3.1. Five distinct trials of eePaCS-MDs from different initial structures were performed for 

both the open and closed states. 

 

To further enhance the conformational sampling efficiency of eePaCS-MD, we also examined 

eePaCS-aMD, where aMD
77

 was used instead of MD. In aMD, the true potential 𝑉(𝐫) is modified 

via a continuous non-negative boost potential ∆𝑉(𝐫) while maintaining the underlying shape of 

𝑉(𝐫). The boost potential increases the escape rates from the potential wells and enhances the 

sampling efficiency. Here, dual boost aMD was applied where boost potentials were added to the 

total potential energy and the dihedral potential energy. The potential boost parameters (E𝑝𝑜𝑡, 𝛼𝑝𝑜𝑡) 

and dihedral boost parameters (E𝑑𝑖ℎ, 𝛼𝑑𝑖ℎ) were defined following the work of Pierce et al.
78

 using a 

150 ns total MD (30 ns MD × 5 trials per state) starting from the open and closed states. 

 

3.2.5 Analysis 

 

The goal of these applications is to generate natural conformational transition pathways from the 

open to closed states and vice versa without prior information on the other state. In this study, we 

judged that the conformational transitions to the other state were successfully simulated when the Cα 

RMSDs from the opposite state were within 1.5 Å. To define the reference structure for the RMSD 

calculation, five distinct 30 ns MDs were performed from the final structures of the aforementioned 

equilibration step for each case. The last 20 ns of five trajectories in the open or closed state were 

merged and subjected to agglomerative hierarchal clustering. The centroid structure of the most 

populated cluster was chosen as the representative structure of the open or closed state, and used as 

the reference for the RMSD calculation. Cα RMSD was measured from both the open and closed 

states to evaluate the conformational transitions with respect to ncyc. RMSDmin and RMSDmax refer to 

the minimum and maximum Cα RMSDs measured from the opposite and initial structures, 

respectively. t1st indicates the total computational cost required to reach the opposite state for the first 

time with different Cα RMSD criteria (3.5, 3.0, 2.5, 2.0, and 1.5 Å). In addition, we denote tmin as the 

eePaCS-MD time to reach RMSDmin. The eePaCS-MD trajectories were projected onto the first and 

second PC coordinates, where the subspaces were defined by the merged five distinct 30 ns cMD 

simulations of the open and closed states (total of 300 ns). 
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3.3 Results 

3.3.1 Open-close transitions of QBP and the optimum number of PCs 

 

We investigated the optimum value of nPC by performing eePaCS-MDs of QBP with nrep = 10, ncyc = 

100, and nPC = 2‒5, as summarized in Tables 3.1‒3.3. For OPQ
10,100,2-5

, RMSDmin and tmin were in 

the range of 1.2‒1.6 Å and 7.5‒8.5 ns, respectively. OPQ
10,100,3

 achieved the lowest RMSDmin (1.2 ± 

0.3 Å) at tmin = 8.5 ± 0.8 ns, where 4/5 trials reached the closed state within ncyc = 100. OPQ
10,100,4

 

gave results comparable to OPQ
10,100,3

 but tmin was 9% shorter and the open-to-closed transitions 

were successful in all five trials. For CLQ
10,100,2-5

, RMSDmin and tmin were in the range of 1.3‒2.5 Å 

and 5.8‒9.5 ns, respectively. CLQ
10,100,4

 gave the lowest RMSDmin (1.3 ± 0.3 Å) at tmin = 8.0 ± 2.2 ns, 

where 4/5 trials reached the open state. In the case of OPQ, t1st tended to increase with npc against 

various RMSD criteria. Similar trend was observed with CLQ; however the trend was not as clear as 

OPQ since t1st could not be averaged over all five trials even for rather high RMSD criteria (Table 

3.2). Although the overall performance of eePaCS-MDs with nPC = 3 and 4 were comparable, we 

chose nPC = 4 for MBP and ADK, as the overall motions could be captured more efficiently by 

considering more PCs.  

 

In most cases, the individual eePaCS-MD trials observed the open-close transition within 10 ns 

of simulation time, regardless of nPC (Table 3.3). In contrast, with cMD the open-to-closed transition 

was not observed during 500 ns with the AMBER ff03 force field.
108

 Figure 3.5 shows the average 

Cα RMSD (RMSDmin and RMSDmax) and standard deviation with respect to ncyc. Although RMSDmin 

almost converged within ncyc, RMSDmax continued increasing. This is reasonable because higher 

energy states are reached as eePaCS-MD continues. 

 

3.3.2 Open-close transitions of MBP and ADK 

 

The MBP simulation results for MBP (OPM and CLM) are summarized in Tables 3.1 and 3.4. With 

OPM
10,100,4

, RMSDmin reached 1.5 ± 0.3 Å at tmin = 8.1 ± 1.8 ns; the corresponding value for 

CLM
10,100,4

 was 1.4 ± 0.9 Å at tmin = 6.9 ± 1.9 ns. Among the five trials with OPM
10,100,4

 and 

CLM
10,100,4

, three and four trials were successful in reaching the opposite state within 100 cycles (tsim 

≤ 10 ns and ttot ≤ 100 ns), respectively. The three unsuccessful trials, two and one trials from OPM 

and CLM, respectively, were able to reach the opposite state when ncyc was extended to 150 cycles 

(Figure 3.6). A previous study reported that a 1 µs cMD simulation with the AMBER ff03 force field 

starting from the open state stayed in the initial state,
109

 whereas the closed-to-open transition was 

observed within 500 ns of cMD simulation starting with the closed state.
110

 Similarly, one of the 30 
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ns cMD simulations performed in the current study observed a closed-to-open transition and reflects 

the fact that the closed structure is stabilized by interactions with maltose/maltodextrin. 

 

Table 3.1 and 3.5 shows the results for ADK with ncyc = 150 and nPC = 4. For OPA
10,150,4

, RMSDmin 

and tmin were 2.3 ± 0.6 Å and 10.3 ± 4.6 ns; the corresponding values for CLA
10,150,4

 were 2.4 ± 0.8 

Å and 10.7 ± 3.4 ns, respectively. One trial of OPA
10,150,4

 observed the open-to-closed transition 

(RMSDmin ≤ 1.5 Å), and two and three trials of OPA
10,150,4

 and CLA
10,150,4

, respectively, reached 

structures near the opposite states (RMSDmin ≤ 2.0 Å. See Table 3.5). The lowest RMSDmin obtained 

by OPA
10,150,4

 and CLA
10,150,4

 were 1.5 Å and 1.7 Å, respectively, which showed nice overlap with 

the opposite structures as shown in Figure 3.7. These results also indicate that conformational 

sampling by eePaCS-MD can almost reach the opposite state. However, compared to QBP and MBP, 

simulating the open-close motion of ADK was more difficult, as expected from the aforementioned 

complex nature of ADK domain motion. For example, cMD simulations from the open state with 

AMBER ff03 did not approach to the closed crystal structure sufficiently within 1 μs.
139

 Similarly, a 

10 µs cMD simulation from the open state with AMBER ff12SB remained stable.
140

 From the closed 

state, structures near the open crystal structure (~2 Å RMSD) were sometimes reached by 300‒1,000 

ns of cMD simulation with the AMBER ff03 force field.
139

 We cannot rigorously compare these 

results with those of eePaCS-MD because of differences between the reference structures for the 

RMSD calculation and the different force fields; however, eePaCS-MD is expected to shorten the 

simulation time by 1‒3 orders of magnitude compared with cMD simulation in the case of ADK.  

 

For comparison, we also conducted five trials of 150 ns aMD for ADK. In the case of aMD 

from the open state, RMSDmin from the closed state was 3.8 ± 0.5 Å, which is significantly greater 

than those with eePaCS-MDs, indicating that this direction is considered to be a difficult case for 

aMD. RMSDmin from the closed state was 2.7 ± 0.6 Å, which is slightly worse than those with 

eePaCS-MDs.  

 

3.3.3 Combination of eePaCS with accelerated MD (eePaCS-aMD) 

 

Five distinct trials of eePaCS-aMDs were performed starting from the open and closed states (Table 

3.1). The overall RMSDmin were comparable to or slightly better than those obtained using 

eePaCS-MDs, with nPC = 4. In addition, tmin decreased by 13‒36% compared to the results of 

eePaCS-MD, except for CLM (4% increase). Next, the conformational spaces sampled by 

eePaCS-MDs and eePaCS-aMDs were compared, as shown in Figure 3.8. The merged cMD 

trajectories of the open and closed states (30 ns × 5 trials per state) are also shown for comparison. 

Broader conformational space was sampled by eePaCS-aMDs, indicating that the combination of 
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eePaCS with aMD can further enhance sampling efficiency. Similarly, the conformational space 

sampled by eePaCS-MD/aMDs are compared with the five trials of 150 ns aMD for ADK, as shown 

in Figure 3.9, indicating the high sampling efficiency of eePaCS-MD method. 

 

In Figure 3.8, the PC coordinates used for the projection were determined using the cMD 

trajectories from both open and closed states. Practically, however, the structure of the opposite state 

may be unknown. As blind prediction, we examined whether the open and closed states are both 

distinguishable if we only employ the PC coordinates determined by the eePaCS-MD trajectories 

starting from one of the states (Figure 3.10). Similar to the results in Figure 3.8, the PC projections 

with the PC modes defined only by eePaCS-MD show that the initial and opposite states are clearly 

distinguished. 

 

3.4 Discussion 

3.4.1 Optimal nPC and nrep 

 

Choosing the optimal value of nPC is a nontrivial problem. As shown in Tables 3.1 and 3.2, tmin and 

t1st of QBP tended to be shorter with fewer nPC. This suggests that fewer nPC results in fewer vertices, 

increasing the probability of selecting collective motions related to open-close transitions as long as 

important motions occur within the space spanned by the selected PCs. However, if there are too few 

nPC, important protein motions might not be induced within the selected subspace. Figure 3.11 shows 

that the number of vertices significantly increases as nPC increases, indicating that the number of 

vertices increases by a factor of three per dimension. To establish robust sampling corresponding to a 

variety of motions, we judged that nPC = 4 is a reasonable default setting but should be adjusted 

depending on the target. We monitored the CPU time for solving the convex hull problem as a 

function of PC dimension (nPC) before conducting the production runs (Figure 3.12). From nPC = 7, 

the CPU drastically increased up to the order of seconds. Compared to this, 0.1 ns MD simulation 

per cycle with GPU Tesla K40c took 130‒210 s, and the PCA calculation took a few seconds to tens 

of seconds. Therefore, eePaCS-MD up to nPC = 8 is feasible in computational efficiency but higher 

dimension may be less efficient in computational time. If eePaCS-MD trial with nPC = 4 is not so 

good, we would suggest to conduct one or two trials of eePaCS-MD by increasing nPC up to 7 or 8. 

However, it should be noted that the number of vertex structures gradually increases as ncyc evolves 

(Figure 3.11), meaning that the CPU time for the convex hull will also increase as ncyc evolves. 

Therefore nrep should be carefully adjusted to achieve sufficient selection rate of the vertex structures, 

i.e., nrep/nvertex, as discussed below. 
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Increasing nrep is likely an efficient way to reduce simulation time and accelerate 

conformational transitions because the probability of rare event occurrence increases, as stated in an 

earlier paper.
105

 To examine nrep dependence, eePaCS-MDs with (nrep, nPC) = (100, 4) were also 

performed with ncyc = 10 for QBP and MBP and 15 for ADK, so that ttot is equal to that obtained with 

(nrep, nPC) = (10, 4), performed earlier. Five distinct trials were conducted starting from the open 

(OPQ
100,10,4

, OPM
100,10,4

, OPA
100,15,4

) and closed states (CLQ
100,10,4

, CLM
100,10,4

, CLA
100,15,4

. See 

Table 3.1). For all three targets, RMSDmin obtained with (nrep, nPC) = (100, 4) were higher than that 

with (10, 4). In these cases, 77% (23/30) of the individual simulations showed RMSDmin > 2.0 Å, 

indicating that the opposite state was not visited within the cycle limit (Tables 3.3‒3.5). Next, we 

compared the evolution of RMSDmin and RMSDmax as a function of ttot (Figure 3.13). Although 

eePaCS-MD
 
with (nrep, nPC) = (100, 4) did not necessarily reach the opposite state as efficiently as 

(10, 4), it should be noted that the simulation time is one order of magnitude less than the latter case. 

The number of vertices with (100, 4) increased more rapidly compared to that with (10, 4) (Figure 

3.14), indicating that the initial structures are more densely situated in the conformational space. 

Since the selection rates of the vertex structures, i.e., nrep/nvertex, with (nrep, nPC) = (100, 4) were 

several times higher than with (nrep, nPC) = (10, 4), more intensive sampling of the vertex structures 

was conducted using the former conditions. Here we have extended ncyc of CLA
100,15,4

 to ncyc = 50, 

i.e. CLAextend
100,50,4

, and achieved RMSDmin comparable to those obtained by CLA
10,150,4

 but was 

able to reduce tmin by 64% (Table 3.1). As stated earlier, increasing nrep is an efficient way to improve 

sampling efficiency; however, ten replicas were still adequate to promote the collective 

conformational transitions observed in this study. 

 

In addition to the optimal nPC and nrep, it might be nontrivial to judge the convergence of the 

conformational sampling, because the conformational space will keep expanding as sampling is 

repeated from structures that are situated at the edge of the sampled conformational space. From our 

experiences, we recommend to use RMSDmax as a criterion to stop the simulation, avoiding too 

much distortion from the original conformation. In the case of proteins similar to QBP, MBP, and 

ADK in size, we suggest to stop the simulation when RMSDmax exceeds 8 Å. 

 

3.4.2 Time evolution of PC subspaces  

 

To examine the time evolution of the subspace spanned by the first few PCs, we introduced a 

quantity 𝑅𝛼𝛽(𝑡) =
1

𝑛
∑ ∑ (𝒗𝛼𝑖(𝑡) ∙ 𝒗𝛽𝑗(𝑡))

2𝑛
𝑗=1

𝑛
𝑖=1  where 𝒗𝛼𝑖(𝑡) is the eigenvector of the i-th PC at 

cycle t in trial α. 𝑅𝛼𝛽(𝑡) is unity if the subspace of trial α spanned by the first four PCs perfectly 

matches with that of trial β while this value vanishes if there is no correlation. The result with n = 4 
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is shown in Figure 3.15. In the beginning of eePaCS-MD, 𝑅𝛼𝛽(𝑡) of cycle 0 that was determined 

from the PCs of independent preliminary MDs ranged around 0.3‒0.6, which indicates that the first 

four PC coordinates had some amount of correlation with those of the other trials from the beginning. 

This also shows that intrinsic anharmonic nature of the proteins can be partly captured during the 

short preliminary MDs. 𝑅𝛼𝛽(𝑡) converged to 0.6‒0.7 and did not completely approach to unity, 

showing that there is some dependence on the initial conditions; thus the sampled conformational 

space differed among eePaCS-MD trials (Figures 3.16‒3.18). Therefore, multiple trials of 

eePaCS-MD are suggested as we performed in this work. 

 

Next, the inner products between distinct pairs of PCs from individual trials of eePaCS-MD 

simulations were calculated to investigate how PCs behaved during the simulation. Here we 

introduce a quantity 𝑆𝑖𝑗(𝑡) = (𝒗𝑖(𝑡) ∙ 𝒗𝑗(𝑡 − 1))
2
 where 𝒗𝑖(𝑡) is the eigenvector of the i-th PC at 

cycle t. 𝑆𝑖𝑗(𝑡) represents how much the subspace spanned by the j-th PC at time t − 1 is included in 

the i-th PC at cycle t. For example, 𝑆11(𝑡) = 1 means that the first PC at cycle t and t − 1 share the 

same PC subspace, whereas 𝑆12(𝑡) = 1 indicates that the second PC at cycle t − 1 changed to the 

first PC at cycle t. As a representative result, analysis of PC pairs of 𝑖, 𝑗 ≤ 4 applied to CLQ
10,100,4

 

(trial 1 and trial 3) are shown in Figure 3.19. 𝑆𝑖𝑗(𝑡) with i = j tended to fluctuate throughout the 

simulation where the i-th PC at cycle t was partially captured by its neighboring PCs at cycle t − 1; 

suggesting that the PCs flexibly change during eePaCS-MD to capture the large-amplitude 

fluctuations of proteins. In the case of CLQ
10,100,4

 (trial 1), 𝑆11(𝑡) ranged around 0.8‒1.0, meaning 

that the first PC did not change much during the simulation, whereas CLQ
10,100,4

 (trial 3) showed 

more fluctuations during the simulation. Interestingly, the RMSDmin of the two trials (trial 1: 1.3 Å, 

trial 3: 1.9 Å) seems to differ respect to the behavior of 𝑆11(𝑡). 

 

We further examined whether successful eePaCS-MD trials that achieved low RMSDmin can be 

related with certain PC behaviors during the simulation. Here another quantity 𝑇𝑖𝜏(𝑡 + 𝜏) =

(𝒗𝑖(𝜏) ∙ 𝒗𝑖(𝑡 + 𝜏))
2 is introduced where 𝒗𝑖𝜏(𝑡 + 𝜏) is the eigenvector of the i-th PC at cycle t + τ 

and τ is a given fixed cycle. 𝑇𝑖𝜏(𝑡 + 𝜏) measures how much the i-th PC at cycle t + τ have change 

compared to those observed at t = τ. The results with τ = 0, 10, 20, 30, 40, and 50 for eePaCS-MDs 

(nPC = 4) applied to OPQ, CLQ, OPM, CLM, OPA, and CLA are shown in Figures 3.20‒3.25, 

respectively. The relation between eePaCS-MD trials that achieved low RMSDmin and 𝑇𝑖𝜏 were not 

obvious for PCs higher than or equal to two (i ≥ 2); however a slight trend was observed for the first 

PC (i = 1). In the case of eePaCS-MDs that showed high RMSDmin, such as trial 3 of CLQ (Figure 

3.21(c): 1.9 Å) and trial 2 of CLM (Figure 3.23(b): 3.1 Å), 𝑇𝑖𝜏 with i = 1 showed large fluctuations 

for various τ, indicating that the first PC was not clearly determined during the first 50 cycles of 

eePaCS-MD. In contrast, for eePaCS-MDs that were successful to achieve low RMSDmin, 𝑇𝑖𝜏 with i 
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= 1 tended to behave more continuously, meaning that the first PC is determined in a certain 

direction or changes gradually respect to eePaCS-MD cycles. In eePaCS-MD, the conformational 

sampling is enhanced toward the selected quantity by increasing the probability along that direction. 

Therefore, eePaCS-MDs that are successful to determine the first PC which associates the largest 

amplitude motion after few tens of cycles is important to achieve efficient sampling. However, the 

conformational sampling could be inefficient even if the first PC is firmly defined as the PC may be 

irrelevant to the biological conformational change as seen with the third trial of OPA (Figure 

3.24(c)).  

 

3.4.3 Comparison of random and deterministic selections of initial 

structures 

 

As mentioned in Section 3.1, the random selection of initial structures is one of the important 

features of eePaCS-MD. Here we show the pretest results of eePaCS-MD where initial structures are 

selected deterministically during the simulation. The procedure is similar to those described in 

Figure 3.3(c) except for step (iii), where the vertex structures were clustered into M = 10 clusters 

using agglomerative hierarchical clustering, and the largest RMSD snapshot with respect to the 

average structure from each cluster was selected as initial structures. Hereafter, we refer to this 

approach as deterministic-based approach and the original method which selects initial structures 

randomly as random-based approach. Since the simulation presented in Section 3.4 was one of the 

pretests, the simulation conditions of eePaCS-MD was slightly different from those described in 

Section 3.2, where 200 ps NVT simulation during equilibration was considered as the preliminary 

eePaCS-MD cycle, i.e. cycle 0, and MD trajectories were saved every 2 ps. 

 

The performance of eePaCS-MD using deterministic-based approach, was investigated for QBP 

with nrep = 10, ncyc = 100, and nPC = 2‒5, as summarized in Tables 3.6‒3.8. For OPQ
10,100,2-5

, 

RMSDmin and tmin were in the range of 1.2‒1.3 Å and 5.3‒7.0 ns, respectively. The 

deterministic-based approach gave comparable or slightly lower RMSDmin values than random-based 

approach, thus tmin was 16‒38% shorter. For CLQ
10,100,2-5

, the RMSDmin and tmin were in the range of 

1.5‒2.7 Å and 6.6‒8.8 ns, respectively. Furthermore, the deterministic-based approach showed lower 

t1st than the random-based approach against various RMSD criteria for most cases (Table 3.7). 

However, the random-based approach tended to show better results than deterministic-based 

approach for eePaCS-MDs using nPC ≥ 4 regrading RMSDmin (Table 3.6). 

 

In Figure 3.26, the initial structures from (i +1)
th

 cycles were compared with the previous cycles 

to see how many replicas were subjected to sampling with different initial structures. eePaCS-MD 
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with random-based approach tends to select unique initial structures during the entire simulation. In 

deterministic-based approach, the number of unique initial structures rapidly decayed as ncyc evolved 

and converged to 3‒5, suggesting that similar initial structures were repeatedly selected for 

resampling. The same structures could be repeatedly selected for more than 20 cycles, as this was the 

case for CLQ
10,100,5

. This could result in inefficient sampling and expose risk in sampling 

energetically unfavorable structures. The simplest way to alleviate such risk is to select initial 

structures randomly as demonstrated in this study. Alternatively, application of reinforcement 

learning algorithms, such as Monte Carlo tree search
141

 and multi-armed bandits,
142

 can be applied to 

avoid being trapped in local states. In fact, the random selection of initial structures presented in this 

study can be regarded as an application of ε-greedy with ε = 1 which is one of the most famous and 

simplest multi-armed bandit algorithms. 

 

In Figure 3.27, the time evolution of the subspace spanned by the first four PCs, i.e. 𝑅𝛼𝛽(𝑡), 

using random- and deterministic-based approaches are compared. In the case of deterministic-based 

approach (Figure 3.27(b)), 𝑅𝛼𝛽(𝑡) converged to 0.65‒0.80 (OPQ) and 0.25‒0.65 (CLQ) depending 

on the individual simulation trials, whereas 𝑅𝛼𝛽(𝑡) converged to ~0.65 for both OPQ and CLQ 

using the random-based approach (Figure 3.27(a)). Convergence to different 𝑅𝛼𝛽(𝑡) indicates that 

each individual trial samples different subspace regions and exhibits strong initial condition 

dependency. 

 

3.4.4 Comparison with other related methods 

 

The methodological features of eePaCS-MD are compared with those of other related methods in 

Table 3.9. In eePaCS-MD, the samplings are repeated from widely distributed structures that are 

rigorously located at the boundary of a conformational space to improve sampling efficiency. In 

contrast, SACS (Self-Avoiding Conformational Sampling)
109

 and OFLOOD (Outlier FLOODing)
108

 

do not necessarily select the next starting structures from the edges but rather from near neighbors. 

In SACS, the initial structures are selected from unvisited PC subspaces from past cycles. The 

probability of selecting important motions is proportional to the ratio of the number of structures 

selected as initial structures versus the structures from unvisited PC subspaces from prior cycles. 

Sampling can be inefficient when this ratio becomes too small. In OFLOOD, the initial structures are 

randomly selected from sparsely distributed conformational spaces determined by clustering 

techniques. The second important feature of eePaCS-MD is its randomness in selecting the initial 

structures. The random selection of initial structures from the vertex structures used for resampling 

alleviates the risk of consecutively selecting unfavorable structures. SDS (Structural Dissimilarity 

Sampling)
110

 and extended SDS
111

 select the initial structures systematically based on inner products 
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among PCs. Another important feature of eePaCS-MD is that the information on the entire sampled 

conformational space is preserved with the minimal number of structures to accelerate the selection 

process. The vertex structures are the only structures stored throughout the simulation. In contrast, 

several related methods select the initial structures out of all prior generated structures,
108–110

 which 

might require more storage, memory, and time for selection. 

 

Next, we compared the sampling efficiency of eePaCS-MD and eePaCS-aMD (nPC = 4) to those 

of other related methods for QBP, MBP, and ADK (Table 3.10). The results for QBP and MBP 

obtained by the related methods with reference numbers were taken from the original papers where 

the results are considered to be the best after parameter tuning, but each simulation was performed 

only once. We judged that we cannot reproduce the other methods exactly except for nt-PaCS-MD 

because the software to conduct them is not available. nt-PaCS-MD does not require any parameter 

tuning except for nrep. Therefore, we conducted five trials of nt-PaCS-MDs for ADK from the open 

and closed states with nrep = 10, which is the best parameter for both original nt-PaCS-MD and 

eePaCS-MD. We selected ADK because this target is the most challenging among the three targets 

investigated in this study and we expected that difference between the methods is more evident. 

 

More than 3/5 eePaCS-MD trials were successful in observing the open-close transitions 

(RMSDmin ≤ 1.5 Å) within ttot < 100 ns for QBP and MBP (Tables 3.3 and 3.4). The RMSDmin 

averaged over five trials of eePaCS-MDs for OPQ, CLQ, OPM and CLM simulations were 1.3 ± 0.2, 

1.3 ± 0.3, 1.5 ± 0.3, and 1.4 ± 0.9 Å, respectively; the corresponding results for eePaCS-aMDs were 

1.3 ± 0.1, 1.3 ± 0.1, 1.2 ± 0.1, and 1.3 ± 0.1 Å, respectively (Table 3.1). In contrast, the lowest 

RMSDmin of QBP observed using other related methods (nt-PaCS-MD and OFLOOD) was no better 

than 1.7 Å for both OPQ and CLQ, despite requiring over twice the total computational cost as 

eePaCS-MD, i.e., ttot = 200 ns. For MBP, RMSDmin of OPM and CLM simulated by SACS, SDS, and 

extended SDS were in the range of 0.8‒2.0 Å and ttot ranged from 50‒1000 ns. Several results from 

SDS and SACS showed lower RMSDmin than eePaCS-MDs, but in most cases the simulations 

required a longer computational time. Among five trials of eePaCS-MD for ADK, two and three 

trials of OPA and CLA were successful in reaching the opposite state (RMSDmin ≤ 2.0 Å), 

respectively. In contrast, nt-PaCS-MD succeeded only once in both cases. In addition, average 

RMSDmin of eePaCS-MDs for OPA and CLA were 2.3 ± 0.6 and 2.4 ± 0.8 Å, respectively, which 

were smaller than the corresponding results of nt-PaCS-MDs (2.7 ± 0.8 and 2.7 ± 0.4 Å). Therefore, 

we judged that eePaCS-MD is more efficient than nt-PaCS-MD at least for this particular target. 

 

The open-close transition of MBP is a large amplitude motion of two domains and is likely 

governed by the first two PCs. As anticipated, SACS employing the first two PCs (SACS
PC1,2

, ttot = 
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100 ns) applied to OPM showed lower RMSDmin than eePaCS-MD with nPC = 4. When SACS was 

compared under the similar simulation condition as eePaCS-MD, i.e., SACS
PC1-4

 (ttot = 100 ns), 

eePaCS-MD showed lower RMSDmin than SACS. Extended SDS showed lower RMSDmin and 

required less computational time than eePaCS-MD. This is expected because the former method 

samples from structures that deviate far from the initial structure promoting the open-close 

conformational change more intensively than the latter method. However, we speculate that the 

conformational space sampled by eePaCS-MD is much broader than that of extended SDS, as the 

latter method is more focused on enhancing sampling toward a certain direction in conformational 

space.  

 

Table 3.10 also shows the comparison of t1st. To estimate t1st of QBP and MBP, we used the 

same RMSD criteria as those in the literatures (2 and 1 Å for QBP and MBP, respectively), so as to 

make a better comparison with the results of the other methods. As far as in the successful cases, 

eePaCS-MD/aMD tended to show shorter t1st compared to the other methods except for CLQ and 

OPA. In the case of CLQ, average t1st for eePaCS-MD/aMD were longer than that of nt-PaCS-MD, 

but the latter was conducted only once. The shortest t1st for eePaCS-MD and eePaCS-aMD were 19 

and 24 ns, which are shorter than that of nt-PaCS-MD (27 ns). OPM can be considered as a 

relatively difficult target because many of the other methods, as well as eePaCS-MD, did not reach 

the opposite state. Even in the successful cases, it took 89‒660 ns in t1st. 

 

Table 3.11 summarizes the t1st results of eePaCS-MD/aMD and nt-PaCS-MD against various 

RMSD criteria. For OPA, eePaCS-MD/aMD and nt-PaCS-MD required similar t1st (~20 ns) to reach 

RMSD = 3.5 Å, where all five trials of each method were successful to satisfy the RMSD criteria. 

However, nt-PaCS-MD took ~60 ns in t1st to reach RMSD = 3.0 Å which is twice as much 

computational time compared to eePaCS-MD/aMD (~30 ns). For CLA, 4/5 trials of eePaCS-MD and 

nt-PaCS-MD were successful to reach RMSD = 3.5 Å but t1st was ~8% shorter for the former case. 

In the case of eePaCS-aMD, only 2/5 trials reached RMSD = 3.5 Å. Since the true potential of the 

system is artificially modified with a boost potential, eePaCS-aMD may had difficulty in capturing 

the PC subspace relevant to the conformational transitions toward the opposite state. The required t1st 

to reach other RMSD criteria are difficult to estimate as less successful trials of eePaCS-MD/aMD 

and nt-PaCS-MD are observed as the criteria becomes stricter. 

 

Although we cannot rigorously compare the eePaCS-MD results with those obtained using the 

other related methods, the conformational sampling efficiency of eePaCS-MD is expected to be 

better or comparable to that of the other related methods. It should be also noted that, for comparison, 

multiple trials of simulations are necessary because the sampled conformational space can depend on 
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the trial. In practice, several trials of eePaCS-MD are recommended. 

 

3.4.5 Analysis of free energy landscape in combination with the 

Markov state model 

 

Analysis of the free energy landscape can be performed by using the Markov state model (MSM) 

constructed from the trajectories generated by PaCS-MD.
105,106,143,144

 The first approach only 

employed the PaCS-MD-generated trajectories
105,106

 while the second approach also used additional 

MD trajectories together with the PaCS-MD trajectories so as to increase the statistics.
143,144

 In this 

work, we used the second approach because eePaCS-MD tends to sample higher energy 

conformations so that statistics of low energy conformations was not sufficient without additional 

MDs. 

 

We first performed the clustering of merged eePaCS-MD trajectories of OPQ
10,100,4 in the space 

spanned by the first 10 PCs and identified 496 highly-connected microstates from 500 clusters. Then, 

496 cMD simulations started from the conformations of the cluster centers were independently 

conducted for 1 ns. After merging the trajectories obtained by eePaCS-MD and additional MDs, 

re-clustering into 496 microstates was conducted. Free energy landscape was calculated from the 

probabilities of the stationary distribution of the microstates obtained by MSM. The clusters were 

discretized by 100 trials of K-Means clustering
97

 into clusters with K-Means++
98

 for an initial guess 

of cluster center positions, ensuring the convergence of the clustering. We used the maximum 

likelihood estimator to build the Markov State Model with detailed balance condition by utilizing the 

PyEMMA package.
145

 

 

The obtained free energy landscape of QBP is shown in Figure 3.28. We found that the global 

free energy minimum was situated in the open state as expected. Another free energy minimum was 

found in the closed state, and the transition state was located between the open and closed states. The 

positions of these energy minima are very close to those of the representative cMD structures of the 

open and closed states marked by the cross and square in Figure 3.8. Free energy of the closed state 

is 2.6 kcal/mol higher than that of the open state (global free energy minimum). Compared to the 

global minimum, the energy height of the transition state is 4.1 kcal/mol. The free energy difference 

between the two states and the barrier height determined with AMBER ff03 force field were reported 

to be ~2.6 and 5 kBT (1.6 and 3.0 kcal/mol), respectively,
108

 both of which are slightly lower by ~1.0 

kcal/mol. Overall features of the 2D free energy landscape shown in the literature
146

 are similar to 

that of Figure 3.28 but fee energy differences were not explicitly described in the paper. The MSM 

results indicate that eePaCS-MD can be combined with MSM to analyze the free energy landscape. 
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3.5. Conclusion 

 

In this chapter, we proposed eePaCS-MD as an efficient adaptive conformational sampling method 

to investigate the large-amplitude motions of proteins. eePaCS-MD accelerates conformational 

sampling along a few large-amplitude PC modes by limiting the conformational space to be sampled 

at low dimensions. This treatment is expected to be efficient in exploring large protein motions such 

as domain motions but presumably not suitable for sampling more localized motions like loop 

flapping motion. We have demonstrated that eePaCS-MD can simulate open-close transitions along 

several collective degrees of freedom without prior knowledge of the opposite structure. In 

eePaCS-MD, resampling is repeated from the randomly selected initial structures that are rigorously 

located at the boundary of the conformational spaces identified as vertices of a convex hull spanned 

by several PCs. This resampling increases the probability of rare event occurrences, inducing 

conformational transitions to new conformational states, thus enhancing sampling efficiency. The 

information of the entire conformational space sampled by the simulation is stored as a set of vertex 

structures and is updated every cycle, which speeds up the selection process and improves the 

robustness of the method. We showed that eePaCS-MD successfully observed the open-close 

transitions of QBP, MBP, and ADK, requiring ~10 ns of simulation time on average, which is 1‒3 

orders of magnitude faster than conventional MD. Furthermore, we showed that the combination of 

eePaCS-MD and aMD (eePaCS-aMD) further enhances conformational sampling efficiency, with 

the total computational cost of observing the open-close transitions being reduced by 13‒36%, 

except for one case where the cost increased by 4%. We also compared eePaCS-MD with other 

related methods and concluded that the sampling efficiency of eePaCS-MD is slightly better or 

comparable.  
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Figure 3.1: General concept of PaCS-MD. P is a selection quantity defined by the user. 
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Figure 3.2: Conceptual trajectories generated by extensions of PaCS-MD that does not require the 

prior knowledge of the product structure. The filled circles indicate the starting point of each 

trajectory. The trajectories are sequentially generated in the order of blue, brown, green, magenta, 

and orange. 
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Figure 3.3: Procedure for conducting eePaCS-MD. (a) Schematic illustration of the convex hull. 

Each circle indicates a protein structure projected onto a subspace spanned by a set of PCs (PC1 and 

PC2). (b) The evolution of the vertices and edges, represented as colored markers and connecting 

black lines, respectively, for QBP. The vertices and edges are shown every 20 cycles (white: cycle 0, 

gray: 20, cyan: 40, magenta: 60, orange: 80, and green: 100). Cycle 0 refers to the preliminary MD 

which was initiated after the equilibration step (Section 3.2.3.). The red (open state) and blue (closed 

state) points represent five distinct 30 ns cMD simulations which were extended from the 

equilibration step. The yellow cross and square markers denote representative structures of the open 

and closed states which were defined by the extended 30 ns cMD simulations (Section 3.2.5), 

respectively. Note that the PCs used to obtain the vertices and edges are different from those used for 

projection. The vertices and edges were obtained from PCs that were redefined every eePaCS-MD 

cycle, and subsequently projected onto the first two PCs defined by the five distinct 30 ns cMD 

simulations starting from the open and closed states. (c) Flowchart for eePaCS-MD. 
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Figure 3.4: Superposition of the open and closed X-ray structures of (a) QBP: glutamine binding 

protein (open: PDB ID 1GGG, closed: 1WDN), (b) MBP: maltose/maltodextrin binding protein 

(open: 1OMP, closed: 1ANF), and (c) ADK: adenylate kinase (open: 4AKE, closed: 1AKE). The 

open and closed structures are depicted in red and blue, respectively, and the domains used for 

superposing the two states are shown in gray. 
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Figure 3.5: Evolution of Cα RMSD of QBP (RMSDmin and RMSDmax) as a function of ncyc. 

eePaCS-MD starting from (a) the open (OPQ) and (b) closed states (CLQ) are shown. Blue and 

green lines represent RMSDmin and RMSDmax, respectively. The error bars indicate the standard 

deviations. 
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Figure 3.6: RMSDmin profile of MBP obtained by eePaCS-MD with ncyc extension. The three trials 

which were unsuccessful to reach the opposite state within 100 cycles were extended to 150 cycles. 

The trial number corresponds to individual trials described in Table 3.3. 
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Figure 3.7: Superposition of the snapshots sampled by eePaCS-MD (gray) with the representative 

open and closed structures; and the corresponding Cα RMSD values. Representative closed structure 

(blue) and the closest snapshot to the representative closed structure sampled by eePaCS-MD 

starting from the open state of (a) QBP, (b) MBP, and (c) ADK are shown. Similarly, representative 

open structure (red) and the closest snapshot to the representative open structure sampled by 

eePaCS-MD starting from the closed state of (d) QBP, (e) MBP, and (f) ADK are shown. 
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Figure 3.8: The eePaCS-MD/aMD trajectories (pale green) of (a) QBP, (b) MBP, and (c) ADK 

projected onto a subspace spanned by the first and second principal components (PC1 and PC2). The 

five distinct 30 ns cMD simulations starting from the open (red) and closed state (blue) are shown. 

The yellow cross and square markers denote representative structures of the open and closed states, 

respectively. 
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Figure 3.9: The eePaCS-MD/aMD trajectories (pale green) of ADK compared with five distinct 150 

ns aMD (purple) simulations starting from the (a) open and (b) closed state. Trajectories were 

projected onto a subspace spanned by the first and second principal components (PC1 and PC2), 

similarly to those described in Figure 3.8. 
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Figure 3.10: This figure is equivalent to Figure 3.8 but shows the trajectories projected onto a 

subspace spanned by the first two PC axes determined only from the eePaCS-MD trajectories. The 

five distinct 30 ns cMD simulations starting from the open (red) and closed state (blue) are shown. 

The yellow cross and square markers denote representative structures of the open and closed states, 

respectively. 
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Figure 3.11: The number of vertex structures during eePaCS-MD of QBP starting from the open 

(red) and closed (blue) states. (a-d) and (e-h) represent the results for OPQ
10,100,2-5

 and CLQ
10,100,2-5

, 

respectively. The black error bars represent the standard deviations. 
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Figure 3.12: CPU time for solving the convex hull problem with different nPC. One core of AMD 

Opteron 4122 (2.2 GHz) was used with 1,000 data points. The error bars indicate the standard 

deviations over 5 different datasets. 
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Figure 3.13: Comparison of evolution of Cα RMSD (RMSDmin and RMSDmax) as a function of ttot by 

eePaCS-MD with nrep = 10 (blue) and 100 replicas (green) and eePaCS-aMD with nrep = 10 (red). 

Simulations starting from the open state (a-c) and the closed state (d-f) of QBP, MBP, and ADK are 

shown. The error bars represent the standard deviations. 
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Figure 3.14: The number of vertex structures as a function of ttot. The results of eePaCS-MD with 

nrep = 10 (blue) and 100 (green), and eePaCS-aMD with nrep = 10 (red) are shown. nPC is fixed to 4. 

(a,b) QBP, (c,d) MBP, and (e,f) ADK. The error bars represent the standard deviations. 
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Figure 3.15: Similarity of the PC subspace spanned by the first four PCs between a pair of distinct 

eePaCS-MD trials at cycle t. The results for (a) QBP, (b) MBP, and (c) ADK from the open (red) and 

closed (blue) states are shown. The thin lines show the individual results and the thick lines indicate 

the average. 
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Figure 3.16: The five individual eePaCS-MD trajectories (pale green) of (a) OPQ and (b) CLQ 

projected onto a subspace spanned by the first and second principal components (PC1 and PC2). The 

five distinct 30 ns cMD simulations starting from the open (red) and closed state (blue) are shown. 

The yellow cross and square markers denote representative structures of the open and closed states, 

respectively.  
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Figure 3.17: The five individual eePaCS-MD trajectories (pale green) of (a) OPM and (b) CLM 

projected onto a subspace spanned by the first and second principal components (PC1 and PC2). The 

meaning of the figure is same as those described in Figure 3.16. 

 

 

  



67 

 

 

Figure 3.18: The five individual eePaCS-MD trajectories (pale green) of (a) OPA and (b) CLA 

projected onto a subspace spanned by the first and second principal components (PC1 and PC2). The 

meaning of the figure is same as those described in Figure 3.16. 
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Figure 3.19: Evolution of inner products between distinct pairs of PCs. The results of CLQ
10,100,4 

for 

(a) trial 1 and (b) trial 3 are shown. The numbers in brackets, (i, j), represents the inner products 

between the i-th PC at cycle t (blue: 1
st
 PC, red: 2

nd
 PC, green: 3

rd
 PC, and magenta: 4

th
 PC) and j-th 

PC at cycle t − 1. RMSDmin and tmin are shown for references which were taken from Table 3.1. 
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Figure 3.20: Evolution of inner products between i-th PCs with different reference cycles τ (0, 10, 20, 

30, 40, and 50) for OPQ
10,100,4

. PC inner products of the first (blue), second (red), third (green), and 

fourth (magenta) PCs at cycle t + τ and τ are shown. RMSDmin and tmin are shown for references 

which were taken from Table 3.1. 
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Figure 3.21: Evolution of inner products between i-th PCs with different reference cycles τ (0, 10, 20, 

30, 40, and 50) for CLQ
10,100,4

. The meaning of the figure is same as those described in Figure 3.20.  
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Figure 3.22: Evolution of inner products between i-th PCs with different reference cycles τ (0, 10, 20, 

30, 40, and 50) for OPM
10,100,4

. The meaning of the figure is same as those described in Figure 3.20. 
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Figure 3.23: Evolution of inner products between i-th PCs with different reference cycles τ (0, 10, 20, 

30, 40, and 50) for CLM
10,100,4

. The meaning of the figure is same as those described in Figure 3.20. 
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Figure 3.24: Evolution of inner products between i-th PCs with different reference cycles τ (0, 10, 20, 

30, 40, and 50) for OPA
10,150,4

. The meaning of the figure is same as those described in Figure 3.20. 
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Figure 3.25: Evolution of inner products between i-th PCs with different reference cycles τ (0, 10, 20, 

30, 40, and 50) for CLA
10,150,4

. The meaning of the figure is same as those described in Figure 3.20. 
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Figure 3.26: The number of unique initial structures found in (i+1)
th
 cycle of eePaCS-MD with 

respect to the previous cycle using random-based approach and deterministic-based approach. 

eePaCS-MD results of (a) OPQ
10,100,2

, (b) CLQ
10,100,2

, (c) OPQ
10,100,3

, (d) CLQ
10,100,3

, (e) OPQ
10,100,2

, 

(f) CLQ
10,100,4

, (g) OPQ
10,100,5

, and (h) CLQ
10,100,5

 are shown. The lines in red and blue represents the 

results of OPQ and CLQ, respectively, with the random-based approach. The results from 

deterministic-based approach of OPQ and CLQ are both shown in green lines. Filled transparent 

areas represent the standard deviations.  
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Figure 3.27: Similarity of the PC subspace spanned by the first four PCs between a pair of distinct 

eePaCS-MD trials at cycle t using (a) random- and (b) deterministic-based approach. The results for 

QBP from the open (red) and closed (blue) states are shown. The thin lines show the individual 

results and the thick lines indicate the average.  
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Figure 3.28: Free energy landscape of QBP determined by the Markov state model. 
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Table 3.1: Summary of the eePaCS-MD simulations applied to QBP, MBP, and ADK. The meanings 

of the simulation indices are described in the main text. Subscript “aMD” represents the simulation 

results of eePaCS-aMD. Average and standard deviations (values after ±) over five trials are shown. 

 

Simulation index nrep ncyc nPC RMSDmin [Å] RMSDmax [Å] tmin [ns] 

QBP  

OPQ10,100,2 10 100 2 1.6 ± 0.5 9.3 ± 1.8 7.5 ± 2.0 

OPQ10,100,3 10 100 3 1.2 ± 0.3 7.2 ± 0.5 8.5 ± 0.8 

OPQ10,100,4 10 100 4 1.3 ± 0.2 6.5 ± 0.7 7.7 ± 2.1 

OPQ100,10,4 100 10 4 1.9 ± 0.4 4.2 ± 0.5 1.0 ± 0.0 

OPQaMD
10,100,4 10 100 4 1.3 ± 0.1 7.9 ± 0.8 4.9 ± 1.5 

OPQ10,100,5 10 100 5 1.5 ± 0.4 5.4 ± 0.9 8.3 ± 1.6 

CLQ10,100,2 10 100 2 2.5 ± 1.6 7.2 ± 2.6 5.8 ± 3.0 

CLQ10,100,3 10 100 3 1.7 ± 1.0 7.3 ± 0.8 7.0 ± 2.1 

CLQ10,100,4 10 100 4 1.3 ± 0.3 6.0 ± 1.2 8.0 ± 2.2 

CLQ100,10,4 100 10 4 3.3 ± 0.8 3.3 ± 0.6 1.0 ± 0.0 

CLQaMD
10,100,4 10 100 4 1.3 ± 0.1 8.5 ± 0.9 6.4 ± 1.9 

CLQ10,100,5 10 100 5 1.9 ± 1.2 5.0 ± 1.2 9.5 ± 0.6 

MBP  

OPM10,100,4 10 100 4 1.5 ± 0.3 4.2 ± 0.4 8.1 ± 1.8 

OPM100,10,4 100 10 4 2.2 ± 0.5 3.2 ± 0.6 0.9 ± 0.1 

OPMaMD
10,100,4 10 100 4 1.2 ± 0.1 5.4 ± 0.4 6.7 ± 1.0 

CLM10,100,4 10 100 4 1.4 ± 0.9 5.1 ± 1.3 6.9 ± 1.9 

CLM100,10,4 100 10 4 2.3 ± 0.6 3.0 ± 0.7 1.0 ± 0.0 

CLMaMD
10,100,4 10 100 4 1.3 ± 0.1 5.9 ± 0.5 7.2 ± 1.8 

ADK  

OPA10,150,4 10 150 4 2.3 ± 0.6 9.3 ± 0.8 10.3 ± 4.6 

OPA100,15,4 100 15 4 2.6 ± 0.6 6.7 ± 0.3 1.4 ± 0.1 

OPAaMD
10,150,4 10 150 4 1.9 ± 0.4 12.9 ± 1.7 8.9 ± 3.3 

CLA10,150,4 10 150 4 2.4 ± 0.8 8.2 ± 1.3 10.7 ± 3.4 

CLA100,15,4 100 15 4 5.4 ± 0.8 4.5 ± 0.1 1.5 ± 0.0 

CLAextend
100,50,4 100 50 4 2.4 ± 0.8 10.9 ± 0.9 3.9 ± 0.8 

CLAaMD
10,150,4 10 150 4 3.2 ± 0.8 12.6 ± 2.5 9.3 ± 3.1 
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Table 3.2: Summary of the total computational cost, t1st in ns, with different Cα RMSD criteria (3.5, 

3.0, 2.5, 2.0, and 1.5 Å) measured from the opposite structure. The results of eePaCS-MD 

simulations applied to QBP, MBP, and ADK are shown. Average and standard deviations (values 

after ±) over the number of successful trials which are shown in brackets are computed for each 

RMSD criteria. NA means that one of the eePaCS-MD trials at the beginning satisfied the given 

RMSD criteria; hence t1st is not shown.  

 

Simulation index 3.5 [Å] 3.0 [Å] 2.5 [Å] 2.0 [Å] 1.5 [Å] 

QBP      

OPQ10,100,2 7.8 ± 1.6 (5) 14.0 ± 5.4 (5) 32.4 ± 28.9 (5) 41.5 ± 33.8 (4) 34.0 ± 4.5 (3) 

OPQ10,100,3 7.4 ± 4.8 (5) 15.6 ±7.2 (5) 32.0 ± 16.6 (5) 50.6 ± 21.2 (5) 56.0 ± 19.8 (4) 

OPQ10,100,4 9.0 ± 3.2 (5) 23.4 ± 16.4 (5) 36.4 ± 18.3 (5) 48.4 ± 22.8 (5) 67.8 ± 22.7 (5) 

OPQ10,100,5 11.6 ± 6.2 (5) 29.4 ± 16.1 (5) 44.6 ± 22.4 (5) 67.0 ± 25.1 (5) 70.0 ± 15.6 (3) 

OPQaMD
10,100,4 7.4 ± 6.1 (5) 10.8 ± 6.8 (5) 14.4 ± 6.7 (5) 28.0 ± 10.8 (5) 40.4 ± 16.1 (5) 

CLQ10,100,2 35.3 ± 10.9 (3) 38.7 ± 12.4 (3) 44.3 ± 16.5 (3) 48.7 ± 20.9 (3) 36.0 ± 7.0 (2) 

CLQ10,100,3 44.3 ± 19.8 (4) 51.0 ± 22.5 (4) 54.8 ± 22.3 (4) 57.5 ± 22.2 (4) 61.3 ± 23.6 (4) 

CLQ10,100,4 53.8 ± 24.7 (5) 57.0 ± 25.7 (5) 60.6 ± 28.0 (5) 64.8 ± 28.4 (5) 59.3 ± 24.0 (4) 

CLQ10,100,5 40.5 ± 5.9 (4) 55.8 ± 9.0 (4) 67.8 ± 8.5 (4) 75.0 ± 12.9 (4) 89.0 ± 13.5 (4) 

CLQaMD
10,100,4 39.0 ± 21.5 (5) 41.4 ± 20.8 (5) 44.2 ± 19.4 (5) 47.4 ± 19.0 (5) 52.8 ± 17.6 (5) 

MBP      

OPM10,100,4 NA 10.0 ± 7.7 (5) 23.8 ± 9.0 (5) 49.2 ± 25.9 (5) 53.7 ± 15.2 (3) 

OPMaMD
10,100,4 NA 5.8 ± 5.1 (5) 13.8 ± 6.2 (5) 24.0 ± 9.6 (5) 41.6 ± 13.1 (5) 

CLM10,100,4 20.4 ± 19.9 (5) 19.5 ± 9.7 (4) 27.0 ± 7.7 (4) 31.0 ± 10.1 (4) 37.0 ± 9.9 (4) 

CLMaMD
10,100,4 7.0 ± 6.3 (5) 16.4 ± 8.4 (5) 24.2 ± 10.8 (5) 33.2 ± 8.8 (5) 49.4 ± 20.2 (5) 

ADK      

OPA10,150,4 20.4 ± 9.2 (5) 31.0 ± 17.6 (4) 47.3 ± 24.5 (3) 102.0 ± 46.0 (2) 131 (1) 

OPAaMD
10,150,4 22.0 ± 12.9 (5) 28.8 ± 11.2 (5) 42.8 ± 10.5 (4) 76.3 ± 24.0 (4) 114 (1) 

CLA10,150,4 73.8 ± 27.5 (4) 81.5 ± 28.7 (4) 77.7 ± 26.0 (3) 92.3 ± 38.0 (3) – (0) 

CLAaMD
10,150,4 95.0 ± 44.0 (2) 96.0 ± 44.0 (2) 108.5 ± 38.5 (2) – (0) – (0) 
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Table 3.3: Individual eePaCS-MD/aMD results for QBP. The unbracketed values from the upper and 

lower rows represent RMSDmin and RMSDmax in Å, respectively; and the values in brackets 

correspond to the number of cycles (ncyc) required to reach RMSDmin and RMSDmax. 

 

Index Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

OPQ
10,100,2

 1.3 (45) 

12.1 (100) 

1.4 (83) 

8.7 (96) 

1.0 (59) 

7.7 (91) 

1.7 (100) 

10.5 (98) 

2.5 (90) 

7.5 (100) 

OPQ
10,100,3

 1.1 (85) 

6.3 (97) 

0.9 (92) 

7.1 (97) 

1.0 (95) 

7.2 (99) 

1.2 (76) 

7.7 (98) 

1.7 (78) 

7.8 (77) 

OPQ
10,100,4

 1.5 (37) 

7.4 (88) 

1.1 (75) 

6.5 (85) 

1.1 (88) 

6.1 (93) 

1.4 (94) 

5.6 (100) 

1.5 (93) 

7.1 (94) 

OPQ
100,10,4

 1.8 (10) 

4.4 (10) 

1.8 (10) 

4.2 (10) 

2.1 (10) 

4.1 (10) 

1.3 (10) 

5.0 (10) 

2.6 (10) 

3.4 (10) 

OPQaMD
10,100,4

 1.3 (60) 

7.5 (100) 

1.3 (38) 

8.0 (69) 

1.2 (30) 

8.4 (91) 

1.4 (45) 

9.0 (100) 

1.3 (72) 

6.6 (86) 

OPQ
10,100,5

 1.1 (56) 

6.7 (99) 

1.4 (72) 

5.4 (65) 

1.1 (95) 

5.4 (95) 

1.9 (92) 

5.3 (95) 

2.0 (99) 

4.0 (91) 

CLQ
10,100,2

 1.8 (80) 

9.1 (100) 

4.2 (99) 

4.5 (100) 

1.0 (48) 

8.3 (94) 

0.9 (52) 

10.4 (96) 

4.8 (10) 

3.9 (94) 

CLQ
10,100,3

 1.5 (96) 

6.1 (97) 

1.0 (37) 

8.0 (95) 

1.1 (56) 

8.2 (99) 

1.0 (76) 

7.2 (100) 

3.7 (83) 

6.8 (99) 

CLQ
10,100,4

 1.3 (95) 

5.6 (96) 

1.1 (64) 

6.9 (96) 

1.9 (100) 

4.0 (100) 

1.0 (98) 

6.3 (92) 

1.1 (45) 

7.4 (98) 

CLQ
100,10,4

 4.3 (10) 

2.8 (9) 

2.2 (10) 

4.1 (10) 

4.2 (10) 

2.5 (9) 

3.3 (10) 

3.2 (9) 

2.6 (10) 

3.7 (10) 

CLQaMD
10,100,4

 1.4 (91) 

6.9 (100) 

1.2 (52) 

9.3 (97) 

1.4 (64) 

8.7 (99) 

1.1 (77) 

8.3 (99) 

1.2 (36) 

9.5 (99) 

CLQ
10,100,5

 4.3 (91) 

3.0 (84) 

1.5 (98) 

4.9 (96) 

1.1 (85) 

6.2 (93) 

1.4 (100) 

4.8 (99) 

1.4 (100) 

6.2 (98) 
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Table 3.4: Individual eePaCS-MD/aMD results for MBP. The meaning of the table is same as those 

described in Table 3.3. 

 

Index Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

OPM
10,100,4

 1.8 (97) 

3.8 (83) 

1.5 (52) 

4.6 (99) 

1.2 (88) 

4.2 (85) 

1.2 (68) 

4.7 (91) 

1.9 (99) 

3.6 (96) 

OPM
100,10,4

 2.8 (8) 

2.4 (5) 

2.2 (10) 

3.2 (10) 

2.6 (9) 

2.6 (9) 

1.5 (10) 

4.1 (10) 

1.7 (10) 

3.6 (10) 

OPMaMD
10,100,4

 1.3 (65) 

5.0 (68) 

1.2 (82) 

5.6 (93) 

1.2 (52) 

5.6 (89) 

1.0 (74) 

5.9 (96) 

1.3 (64) 

4.9 (91) 

CLM
10,100,4

 1.0 (62) 

5.5 (92) 

3.1 (98) 

2.5 (88) 

0.9 (40) 

5.6 (65) 

0.9 (71) 

5.7 (98) 

1.0 (75) 

6.3 (95) 

CLM
100,10,4

 3.1 (10) 

2.1 (10) 

2.6 (10) 

2.6 (10) 

1.5 (10) 

3.7 (10) 

2.5 (10) 

2.8 (10) 

1.7 (10) 

3.8 (10) 

CLMaMD
10,100,4

 1.4 (85) 

5.4 (98) 

1.1 (86) 

5.5 (89) 

1.3 (88) 

5.8 (77) 

1.2 (54) 

6.2 (99) 

1.3 (46) 

6.7 (99) 
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Table 3.5: Individual eePaCS-MD/aMD results for ADK. The meaning of the table is same as those 

described in Table 3.3. 

 

Index Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

OPA
10,150,4

 2.4 (55) 

8.9 (147) 

2.9 (40) 

9.9 (150) 

3.1 (142) 

10.4 (148) 

1.8 (148) 

8.2 (143) 

1.5 (131) 

9.1 (147) 

OPA
100,15,4

 2.2 (12) 

6.2 (15) 

2.2 (15) 

6.4 (14) 

3.8 (14) 

6.9 (15) 

2.3 (14) 

7.0 (13) 

2.3 (15) 

6.8 (15) 

OPAaMD
10,150,4

 1.5 (114) 

14.2 (140) 

2.6 (40) 

13.2 (149) 

1.6 (133) 

15.1 (149) 

2.0 (71) 

10.9 (146) 

1.8 (86) 

11.1 (147) 

CLA
10,150,4

 1.8 (63) 

9.1 (150) 

3.7 (105) 

6.6 (137) 

1.9 (146) 

7.2 (149) 

1.7 (77) 

10.3 (142) 

2.7 (145) 

8.0 (147) 

CLA
100,15,4

 4.1 (15) 

4.7 (15) 

6.4 (15) 

4.4 (15) 

5.5 (15) 

4.4 (14) 

5.0 (15) 

4.4 (14) 

6.0 (15) 

4.7 (15) 

CLAaMD
10,150,4

 3.7 (60) 

13.7 (140) 

3.7 (97) 

12.1 (149) 

2.3 (70) 

16.0 (148) 

4.2 (88) 

12.8 (149) 

2.2 (149) 

8.4 (147) 
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Table 3.6: Summary of the eePaCS-MD simulations applied to QBP using deterministic-based 

approach. The meaning of the table is same as those described in Table 3.1. eePaCS-MD results 

using random-based approach are shown for comparison which were taken from Table 3.1. 

 

Simulation index ncyc nrep nPC RMSDmin [Å] RMSDmax [Å] tmin [ns] 

Random 

OPQ10,100,2 100 10 2 1.6 ± 0.5 9.3 ± 1.8 7.5 ± 2.0 

OPQ10,100,3 100 10 3 1.2 ± 0.3 7.2 ± 0.5 8.5 ± 0.8 

OPQ10,100,4 100 10 4 1.3 ± 0.2 6.5 ± 0.7 7.7 ± 2.1 

OPQ10,100,5 100 10 5 1.5 ± 0.4 5.4 ± 0.9 8.3 ± 1.6 

CLQ10,100,2 100 10 2 2.5 ± 1.6 7.2 ± 2.6 5.8 ± 3.0 

CLQ10,100,3 100 10 3 1.7 ± 1.0 7.3 ± 0.8 7.0 ± 2.1 

CLQ10,100,4 100 10 4 1.3 ± 0.3 6.0 ± 1.2 8.0 ± 2.2 

CLQ10,100,5 100 10 5 1.9 ± 1.2 5.0 ± 1.2 9.5 ± 0.6 

Deterministic 

OPQ10,100,2 100 10 2 1.2 ± 0.1 8.6 ± 1.1 5.7 ± 0.5 

OPQ10,100,3 100 10 3 1.2 ± 0.2 7.6 ± 1.8 5.3 ± 2.3 

OPQ10,100,4 100 10 4 1.2 ± 0.2 8.1 ± 1.0 5.8 ± 1.1 

OPQ10,100,5 100 10 5 1.3 ± 0.2 7.7 ± 2.0 7.0 ± 1.5 

CLQ10,100,2 100 10 2 1.9 ± 1.5 7.9 ± 2.4 6.6 ± 2.6 

CLQ10,100,3 100 10 3 1.5 ± 0.8 6.1 ± 1.5 8.8 ± 1.2 

CLQ10,100,4 100 10 4 2.6 ± 1.9 6.0 ± 1.8 7.3 ± 1.5 

CLQ10,100,5 100 10 5 2.7 ± 2.0 6.2 ± 2.2 8.5 ± 1.9 
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Table 3.7: Summary of the total computational cost, t1st in ns, with different Cα RMSD criteria (3.5, 

3.0, 2.5, 2.0, and 1.5 Å) obtained by eePaCS-MD simulations applied to QBP using 

deterministic-based approach. The meaning of the table is same as those described in Table 3.2. The 

results using random-based approach are shown for comparison.  

 

Simulation index 3.5 [Å] 3.0 [Å] 2.5 [Å] 2.0 [Å] 1.5 [Å] 

Random      

OPQ10,100,2 7.8 ± 1.6 (5) 14.0 ± 5.4 (5) 32.4 ± 28.9 (5) 41.5 ± 33.8 (4) 34.0 ± 4.5 (3) 

OPQ10,100,3 7.4 ± 4.8 (5) 15.6 ±7.2 (5) 32.0 ± 16.6 (5) 50.6 ± 21.2 (5) 56.0 ± 19.8 (4) 

OPQ10,100,4 9.0 ± 3.2 (5) 23.4 ± 16.4 (5) 36.4 ± 18.3 (5) 48.4 ± 22.8 (5) 67.8 ± 22.7 (5) 

OPQ10,100,5 11.6 ± 6.2 (5) 29.4 ± 16.1 (5) 44.6 ± 22.4 (5) 67.0 ± 25.1 (5) 70.0 ± 15.6 (3) 

CLQ10,100,2 35.3 ± 10.9 (3) 38.7 ± 12.4 (3) 44.3 ± 16.5 (3) 48.7 ± 20.9 (3) 36.0 ± 7.0 (2) 

CLQ10,100,3 44.3 ± 19.8 (4) 51.0 ± 22.5 (4) 54.8 ± 22.3 (4) 57.5 ± 22.2 (4) 61.3 ± 23.6 (4) 

CLQ10,100,4 53.8 ± 24.7 (5) 57.0 ± 25.7 (5) 60.6 ± 28.0 (5) 64.8 ± 28.4 (5) 59.3 ± 24.0 (4) 

CLQ10,100,5 40.5 ± 5.9 (4) 55.8 ± 9.0 (4) 67.8 ± 8.5 (4) 75.0 ± 12.9 (4) 89.0 ± 13.5 (4) 

Deterministic      

OPQ10,100,2 6.2 ± 1.2 (5) 12.0 ± 1.8 (5) 17.4 ± 3.4 (5) 31.0 ± 8.8 (5) 47.8 ± 11.1 (5) 

OPQ10,100,3 8.2 ± 6.1 (5) 15.8 ± 9.8 (5) 23.6 ± 16.6 (5) 40.0 ± 29.1 (5) 33.5 ± 6.3 (4) 

OPQ10,100,4 3.6 ± 1.4 (5) 10.0 ± 2.8 (5) 16.8 ± 5.3 (5) 23.0 ± 9.1 (5) 40.5 ± 7.4 (4) 

OPQ10,100,5 6.4 ± 3.3 (5) 15.2 ± 6.0 (5) 27.8 ± 12.8 (5) 36.8 ± 10.1 (5) 46.5 ± 18.3 (4) 

CLQ10,100,2 41.0 ± 23.0 (4) 45.0 ± 24.5 (4) 50.0 ± 23.5 (4) 53.0 ± 23.8 (4) 56.8 ± 27.2 (4) 

CLQ10,100,3 48.4 ± 29.4 (5) 52.8 ± 30.3 (5) 44.0 ± 22.0 (4) 52.5 ± 27.8 (4) 58.8 ± 27.1 (4) 

CLQ10,100,4 39.3 ± 14.3 (3) 44.7 ± 13.3 (3) 51.0 ± 14.0 (3) 54.3 ± 12.7 (3) 57.7 ± 11.1 (3) 

CLQ10,100,5 34.0 ± 9.1 (3) 38.0 ± 8.3 (3) 40.0 ± 7.8 (3) 41.3 ± 7.8 (3) 43.3 ± 8.2 (3) 
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Table 3.8: Individual eePaCS-MD results for QBP using deterministic-based approach. The meaning 

of the table is same as those described in Table 3.3. 

 

Index Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

OPQ
10,100,2

 1.2 (55) 

7.9 (96) 

1.3 (61) 

9.5 (100) 

1.1 (54) 

6.9 (98) 

1.4 (64) 

9.8 (97) 

1.2 (51) 

8.7 (97) 

OPQ
10,100,3

 1.2 (53) 

9.9 (94) 

1.1 (38) 

7.0 (95) 

1.7 (98) 

4.8 (98) 

1.0 (44) 

9.1 (95) 

1.2 (34) 

7.1 (73) 

OPQ
10,100,4

 1.2 (46) 

7.8 (100) 

1.1 (76) 

7.4 (100) 

1.0 (65) 

9.5 (97) 

1.2 (48) 

6.7 (96) 

1.7 (53) 

8.9 (93) 

OPQ
10,100,5

 1.2 (52) 

7.1 (100) 

1.7 (67) 

11.4 (100) 

1.1 (96) 

5.7 (98) 

1.2 (63) 

6.6 (97) 

1.2 (73) 

7.7 (100) 

CLQ
10,100,2

 1.5 (100) 

6.0 (99) 

1.1 (44) 

8.7 (93) 

4.8 (91) 

4.3 (86) 

1.1 (61) 

9.4 (99) 

0.9 (34) 

11.1 (96) 

CLQ
10,100,3

 3.0 (100) 

4.2 (100) 

1.0 (69) 

8.1 (99) 

1.1 (78) 

6.4 (100) 

1.5 (100) 

4.8 (100) 

1.0 (93) 

7.2 (94) 

CLQ
10,100,4

 5.1 (68) 

4.4 (91) 

1.1 (92) 

6.2 (99) 

1.1 (73) 

8.4 (96) 

4.9 (85) 

3.6 (99) 

0.9 (49) 

7.2 (100) 

CLQ
10,100,5

 5.1 (99) 

3.3 (94) 

1.1 (100) 

8.9 (99) 

1.1 (48) 

7.6 (98) 

5.2 (95) 

3.7 (88) 

1.1 (83) 

7.3 (100) 
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Table 3.9: Summary of various methods related to eePaCS-MD. 

 

Method Selection method Collective 

variable 

Character of the 

initial structure 

Selection process  Requirement of full 

trajectory search for 

resampling 

eePaCS-MD Convex hull PCA Edge Random No 

nt-PaCS-MD107 Gram-Schmidt 

orthogonolization 

RMSD Non-edge Random No 

OFLOOD108 Clustering PCA Non-edge Random Yes 

SACS109 Histogram PCA Non-edge Random Yes 

SDS110 Inner product PCA Non-edge Deterministic Yes 

Extended 

SDS111 

Inner product PCA Non-edge Deterministic No 
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Table 3.10: Sampling efficiencies of eePaCS-MD/aMD and the other related methods described in 

this chapter. The results of eePaCS-MD/aMD with nPC = 4 are shown as a reference. The SACS and 

SDS superscripts show the number of PC dimensions applied in the method. The column of ‘Ref’ 

shows the reference number. t1st is defined based on different Cα RMSD criteria (OPQ/CLQ: 2, 

OPM/CLM: 1, OPA/CLA: 2 Å) used in the references, and the numbers in the parentheses indicate 

the number of trials that satisfied the RMSD criteria. NA means that no information is provided in 

the original paper. 

 

Target Method Ref # trials tcyc [ps] nrep ncyc ttot [ns] RMSDmin [Å] t1st [ns] 

OPQ eePaCS-MD  5 100 10 100 100 1.3 ± 0.2 48.4 ± 22.8 (5) 

 eePaCS-aMD  5 100 10 100 100 1.3 ± 0.1 28.0 ± 10.8 (5) 

 nt-PaCS-MD 107 1 100 10 200 200 1.7 121 (1) 

 OFLOOD 108 1 20 100 100 200 1.7 NA 

CLQ eePaCS-MD  5 100 10 100 100 1.3 ± 0.3 64.8 ± 28.4 (5) 

 eePaCS-aMD  5 100 10 100 100 1.3 ± 0.1 47.4 ± 19.0 (5) 

 nt-PaCS-MD 107 1 100 10 100 100 1.9 27 (1) 

OPM eePaCS-MD  5 100 10 100 100 1.5 ± 0.3 – (0) 

 eePaCS-aMD  5 100 10 100 100 1.2 ± 0.1 74 (1) 

 SACSPM1,2 109 1 100 10 100 100 1.0 89 (1) 

  109 1 100 50 50 250 1.0 125 (1) 

  109 1 100 100 50 500 0.9 260 (1) 

 SACSPM1-3 109 1 100 10 100 100 2.0 – (0) 

  109 1 100 50 100 500 1.4 – (0) 

  109 1 100 100 100 1000 1.0 660 (1) 

 SACSPM1-4 109 1 100 10 100 100 1.9 – (0) 

  109 1 100 50 100 500 1.3 – (0) 

  109 1 100 100 100 1000 1.0 – (0) 

 SDSPM10 110 1 100 100 50 500 ~1.0 ~110 (1) 

 SDSPM30 110 1 100 50 50 250 ~1.0 ~125 (1) 

  110 1 100 100 50 500 0.8 ~150 (1) 

 Extended SDS 111 1 100 10 50 50 ~1.1 – (0) 

  111 1 100 50 50 250 ~1.0 ~200 (1) 

  111 1 100 100 50 500 ~1.2 – (0) 

CLM eePaCS-MD  5 100 10 100 100 1.4 ± 0.9 57.5 ± 17.7 (4) 

 eePaCS-aMD  5 100 10 100 100 1.3 ± 0.1 – (0) 

 SDSPM10 110 1 100 100 50 500 < 1.0 ~60 (1) 

 SDSPM30 110 1 100 100 50 500 0.9 ~100 (1) 

OPA eePaCS-MD  5 100 10 150 150 2.3 ± 0.6 102.0 ± 46.0 (2) 

 eePaCS-aMD  5 100 10 150 150 1.9 ± 0.4 76.3± 24.0 (4) 

 nt-PaCS-MD  5 100 10 100 150 2.7 ± 0.4 44 (1) 

CLA eePaCS-MD  5 100 10 150 150 2.4 ± 0.8 92.3 ± 38.0 (3) 

 eePaCS-aMD  5 100 10 150 150 3.2 ± 0.8 – (0) 

 nt-PaCS-MD  5 100 10 100 150 2.7 ± 0.7 149 (1) 
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Table 3.11: Summary of the total computational cost, t1st in ns, with different Cα RMSD criteria (3.5, 

3.0, 2.5, 2.0, and 1.5 Å) obtained by eePaCS-MD/aMD and nt-PaCS-MD simulations applied to OPA 

and CLA. The meaning of the table is same as those described in Table 3.2.  

 

Simulation index 3.5 [Å] 3.0 [Å] 2.5 [Å] 2.0 [Å] 1.5 [Å] 

OPA      

eePaCS-MD 20.4 ± 9.2 (5) 31.0 ± 17.6 (4) 47.3 ± 24.5 (3) 102.0 ± 46.0 (2) 131 (1) 

eePaCS-aMD 22.0 ± 12.9 (5) 28.8 ± 11.2 (5) 42.8 ± 10.5 (4) 76.3 ± 24.0 (4) 114 (1) 

nt-PaCS-MD 20.4 ± 15.3 (5) 60.8 ± 38.7 (4) 27 (1) 44 (1) – (0) 

CLA      

eePaCS-MD 73.8 ± 27.5 (4) 81.5 ± 28.7 (4) 77.7 ± 26.0 (3) 92.3 ± 38.0 (3) – (0) 

eePaCS-aMD 95.0 ± 44.0 (2) 96.0 ± 44.0 (2) 108.5 ± 38.5 (2) – (0) – (0) 

nt-PaCS-MD 80.3 ± 40.6 (4) 65.0 ± 27.2 (3) 77.7 ± 24.2 (3) 149 (1) – (0) 
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Chapter 4 

Comparison of eePaCS-MD Utilizing Cartesian 

Coordinate PCA and Distance-based PCA  

 

In this chapter, the conformational sampling efficiency of eePaCS-MD utilizing Cartesian coordinate 

PCA and distance-based PCA are compared. Section 4.1 introduces the motivation of using 

distance-based PCA in eePaCS-MD. Section 4.2 describes the procedure of eePaCS-MD utilizing 

distance-based PCA and the target system used to assess its performance. Section 4.3 discusses the 

results obtained by eePaCS-MDs utilizing Cartesian coordinate PCA and distance-based PCA, and 

compares the conformational sampling efficiency of the two methods. Finally, the conclusion of this 

chapter is given in Section 4.4. 

 

4.1 Introduction 

 

As described in Section 2.3.2, principal component analysis (PCA) is a powerful technique to reduce 

the high-dimensional MD trajectory data to a low-dimensional reaction coordinate. While various 

PCA methods have been proposed, probably the most commonly used PCA method is the Cartesian 

coordinate PCA.
11,20,21

 To observe the internal motion of a system, it is required to first remove the 

external motion, i.e., overall translation and rotation, from the system which is usually achieved by 

instantaneously fitting each coordinates from the trajectory to a reference coordinate. Separation of 

external and internal motion is essential to achieve a well-resolved free energy landscape. However, 

such separation can be difficult even for relatively rigid systems.
94,147

 Apart from Cartesian 

coordinates, internal coordinates, such as dihedral angles
93

 and distance-based measures,
95

 can be 

used as input data in a PCA. It has been shown that PCA utilizing internal coordinates can yield 

better-resolved energy landscapes than applying Cartesian coordinates.
93–95

  

 

Given the above fact, it is debatable how the conformational sampling efficiency of 

eePaCS-MD can be influenced by the choice of internal coordinate PCA. In this study, the 

performance of eePaCS-MD utilizing Cartesian coordinate PCA (cPCA) and distance-based PCA 

(dPCA) are compared. While the optimal choice of internal coordinate PCA will depend on the 

specific molecule, dPCA was suggested as a versatile approach that balances the number of PCs 

required to show good convergence of the cumulative fluctuations of protein motions and to achieve 



90 

 

well-resolved free energy landscapes.
95

  

 

Here, we show that the conformational sampling efficiency of eePaCS-MD for the open-close 

transitions of adenylate kinase (ADK) is not affected by the choice of the PCA method. eePaCS-MD 

utilizing dPCA gave similar performance as those obtained by cPCA.  

 

4.2 Materials and methods 

 

The conformational sampling efficiency of eePaCS-MD utilizing dPCA was assessed for the 

open-closed transitions of ADK. This target was chosen because it is the most challenging among the 

three targets (QBP, MBP, and ADK) investigated in the previous study and expected that differences 

between cPCA and dPCA will be more evident.  

 

The procedure of eePaCS-MD utilizing dPCA is the same as those described in Section 3.2.1 

where cPCA was simply replaced with dPCA. In dPCA, distances of all Cα atom pairs except for the 

first few atoms from the N- and C-terminals were excluded. The element of the covariance matrix, 

𝜎𝜇𝜈, in dPCA is given by 𝜎𝜇𝜈 = 〈(𝐷𝜇 − 〈𝐷𝜇〉)(𝐷𝜈 − 〈𝐷𝜈〉)〉 where 𝜇, 𝜈 represents the atom pairs 

and 𝐷 is the Cα distance of those pairs. dPCA was calculated utilizing MDTraj package.
148

 The 

parameters of eePaCS-MD utilizing dPCA were chosen so that it matches the conditions with those 

simulated with cPCA described in Section 3.2.4. The number of replicas (nrep), the total simulation 

cycles (ncyc), and number of PCs (nPC) were fixed to nrep = 10, ncyc = 150, and nPC = 4 respectively. 

The MD simulation time per cycle (tcyc) was fixed to 100 ps and MD trajectories were saved every 1 

ps. Five distinct trials of eePaCS-MD from different initial structures were performed for both the 

open and closed states of ADK. The initial structures were taken from the final structures obtained 

by the five individual equilibration simulations described in Section 3.2.3 and were used to perform 

the preliminary eePaCS-MD cycles, i.e. cycle 0. To analyze the performance of eePaCS-MD, we 

introduced the same quantity measures as described in Section 3.2.5 such as RMSDmin and tmin. 

 

Hereafter, for example, eePaCS-MD utilizing cPCA and dPCA are referred to as 

eePaCS-MDcPCA and eePaCS-MDdPCA, respectively. Similar indices are used for simulations of ADK 

starting from the open (OP) and closed (CL) states; for example, ADK starting from the open state 

utilizing dPCA is denoted as OPAdPCA where A indicates ADK.  
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4.3 Results and Discussion 

 

The eePaCS-MDdPCA results for ADK (OPAdPCA and CLAdPCA) are summarized in Tables 4.1‒4.3. 

For OPAdPCA, RMSDmin reached 2.6 ± 0.5 Å at tmin = 11.3 ± 2.3 ns where RMSDmin is 0.3 Å higher 

than OPAcPCA. In the case of CLAdPCA, RMSDmin reached 2.0 ± 0.5 Å at tmin = 13.1 ± 1.3 ns where 

RMSDmin is 0.4 Å lower than CLAcPCA. For both OPAdPCA and CLAdPCA, tmin increased by 10% and 

22% compared to OPAcPCA and CLAcPCA, respectively. In addition, eePaCS-MDcPCA tended to show 

lower t1st than eePaCS-MDdPCA against various RMSD criteria; although meaningful comparison is 

somewhat difficult to make since t1st was averaged over less successful trials as the RMSD criteria 

became stricter (Table 4.2). Among the five trials of OPAdPCA, the open-to-closed transitions 

(RMSDmin ≤ 1.5 Å) were not observed within 150 cycles, whereas one trial was successful in 

reaching the opposite state for CLAdPCA (Table 4.3). In contrast, for OPAcPCA, one trial was 

successful to observe the open-to-closed transitions but all five trials failed to reach the opposite 

state for CLAcPCA.  

 

Next, the Cα RMSDmin/max profiles of eePaCS-MDcPCA and eePaCS-MDdPCA were compared as 

shown in Figure 4.1. The RMSDmin of eePaCS-MDcPCA tended to decay faster than eePaCS-MDdPCA 

for both OPA and CLA during the first ~90 cycles. The cumulative fluctuations obtained by the first 

four PCs of cPCA covered slightly larger fraction of the collective variance than dPCA during the 

first few tens of cycles, but no significant difference was found among the two PCA methods (Figure 

4.2). The cumulative fraction at cycle 0 for OPAcPCA, OPAdPCA, CLAcPCA, and CLAdPCA were 0.52, 

0.52, 0.34, and 0.31, respectively, showing no remarkable difference. These results suggest that 

eePaCS-MD utilizing cPCA and dPCA captured the same amount of overall motion of ADK during 

the eePaCS-MD simulation.  

 

The number of vertex structures obtained by eePaCS-MDcPCA and eePaCS-MDdPCA are 

compared as shown in Figure 4.3, suggesting that the selection rates of the vertex structures, i.e., 

nrep/nvertex, are not affected by the choice of the PCA method. In Figure 4.4, the time evolution of the 

subspace spanned by the first four PCs, i.e.,  𝑅𝛼𝛽(𝑡) , obtained by eePaCS-MDcPCA and 

eePaCS-MDdPCA are compared. In the beginning of eePaCS-MDcPCA/dPCA, 𝑅𝛼𝛽(𝑡) of cycle 0 that 

was determined from the PCs of independent preliminary MDs were 0.47, 0.38, 0.26, and 0.22 for 

OPAcPCA, OPAdPCA, CLAcPCA, and CLAdPCA, respectively, indicating that the first four PC 

coordinates from cPCA had higher correlation with those of the other trials from the beginning 

compared to dPCA. 𝑅𝛼𝛽(𝑡) converged to ~0.70 and ~0.55 for OPAcPCA/dPCA and CLAcPCA/dPCA, 

respectively, indicating that there are initial condition dependencies regardless of the PCA method.  
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The computational complexity of dPCA may be problematic for large biomolecular systems 

because of the quadratic scaling of the number of distances with respect to the size of the molecule. 

It has been shown that it is sufficient to include only relatively few selected distances in dPCA. 

Similar free energy landscapes were obtained using all Cα distances and selected distance pairs that 

are less than 8 Å apart in the reference structure.
95

 Based on this fact, eePaCS-MDs utilizing dPCA 

with Cα atom pairs that are less than 8 Å apart from the initial structures of eePaCS-MDs were 

additionally simulated which are denoted as eePaCS-MDdPCA(cutoff). Contrary to the expectation, 

eePaCS-MDdPCA(cutoff) performed worse than the original eePaCS-MDdPCA, as shown in Tables 4.1‒

4.3. This suggests that it is important to include all Cα distances in dPCA to capture the intrinsic 

anharmonic nature of proteins during eePaCS-MD simulations. 

 

4.4 Conclusion 

 

In this chapter, eePaCS-MDs utilizing cPCA and dPCA were compared for the open-close 

conformational transitions of ADK. The above results suggest that the conformational sampling 

efficiency is not affected by the choice of the PCA method, at least for this particular target. 

Furthermore, dPCA with Cα atom pairs that are less than 8 Å apart from the initial structures of 

eePaCS-MDs were considered, suggesting that it is important to include all Cα distances in dPCA to 

capture the intrinsic anharmonic nature of proteins during eePaCS-MD simulations. cPCA and dPCA 

both have their own problems. In cPCA, separation of external and internal motion is not 

straightforward even for relatively rigid systems, whereas the computational complexity of dPCA 

scales quadratically with the number of atoms, which makes it unfeasible for large biomolecular 

systems. Considering the results obtained in this study, eePaCS-MD utilizing cPCA is recommended 

as a first choice of the PCA method, although the optimal choice of PCA method is expected to 

depend on the target system. 
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Figure 4.1: Cα RMSD (RMSDmin and RMSDmax) profile as a function of ncyc obtained by 

eePaCS-MDcPCA (blue) and eePaCS-MDdPCA (red). eePaCS-MDs starting from (a) the open (OPA) 

and (b) closed states (CLA) are shown. The error bars indicate the standard deviations. 
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Figure 4.2: Evolution of cumulative fluctuations covered by the first four PCs as a function of ncyc 

obtained by eePaCS-MDcPCA (blue) and eePaCS-MDdPCA (red). Results are shown for simulations 

starting from the open (a) and closed (b) states of ADK. The error bars represent the standard 

deviations. 
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Figure 4.3: The number of vertex structures as a function of ncyc obtained by eePaCS-MDcPCA (blue) 

and eePaCS-MDdPCA (red). Results are shown for simulations starting from the open (a) and closed 

(b) states of ADK. The error bars represent the standard deviations. 
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Figure 4.4: Similarity of the PC subspace spanned by the first four PCs between a pair of distinct 

eePaCS-MD trials at cycle t utilizing (a) cPCA and (b) dPCA. The results for ADK from the open 

(red) and closed (blue) states are shown. The thin lines show the individual results and the thick lines 

indicate the average.  
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Table 4.1: Summary of the eePaCS-MD simulations applied to ADK utilizing Cartesian coordinate 

PCA (cPCA) and distance-based PCA (dPCA). The subscript “cutoff” represents dPCA with Cα 

atom pairs that are less than 8 Å apart from the initial structures of eePaCS-MDs. The meanings of 

the simulation indices are described in the main text. 

 

Simulation index ncyc nrep nPC RMSDmin [Å] RMSDmax [Å] tmin [ns] 

ADK 

OPAcPCA 150 10 4 2.3 ± 0.6 9.3 ± 0.8 10.3 ± 4.6 

OPAdPCA 150 10 4 2.6 ± 0.5 8.0 ± 1.2 11.3 ± 2.3 

OPAdPCA(cutoff) 150 10 4 3.0 ± 0.5 5.2 ± 0.6 8.0 ± 3.5 

CLAcPCA 150 10 4 2.4 ± 0.8 8.2 ± 1.3 10.7 ± 3.4 

CLAdPCA 150 10 4 2.0 ± 0.5 9.9 ± 0.6 13.1 ± 1.3 

CLAdPCA(cutoff) 150 10 4 4.3 ± 1.1 7.1 ± 1.3 12.3 ± 0.9 
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Table 4.2: Summary of the total computational cost, t1st in ns, with different Cα RMSD criteria (3.5, 

3.0, 2.5, 2.0, and 1.5 Å) obtained by eePaCS-MD simulations applied to ADK utilizing Cartesian 

coordinate PCA (cPCA) and distance-based PCA (dPCA). The subscript“cutoff”represents dPCA 

with Cα atom pairs that are less than 8 Å apart from the initial structures of eePaCS-MDs. The 

meaning of the table same as those described in Table 3.2. 

 

Simulation index 3.5 [Å] 3.0 [Å] 2.5 [Å] 2.0 [Å] 1.5 [Å] 

ADK      

OPAcPCA 20.4 ± 9.2 (5) 31.0 ± 17.6 (4) 47.3 ± 24.5 (3) 102.0 ± 46.0 (2) 131.0 (1) 

OPAdPCA 32.8 ± 28.3 (5) 17.3 ± 7.7 (3) 87.7 ± 52.6 (3) 117.0 (1) – (0) 

OPAdPCA(cutoff) 40.3 ± 35.5 (4) 66.3 ± 29.2 (3) 68 (1) – (0) – (0) 

CLAcPCA 73.8 ± 27.5 (4) 81.5 ± 28.7 (4) 77.7 ± 26.0 (3) 92.3 ± 38.0 (3) – (0) 

CLAdPCA 81.4 ± 25.2 (5) 91.6 ± 26.3 (5) 107.3 ± 21.2 (4) 109.7 ± 14.8 (3) 120 (1) 

CLAdPCA(cutoff) 76 (1) 77 (1) 83 (1) – (0) – (0) 
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Table 4.3: Individual eePaCS-MDs utilizing cPCA and dPCA for ADK. The meaning of the table is 

same as those described in Table 3.3. 

 

Index Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

OPAcPCA 2.4 (55) 

8.9 (147) 

2.9 (40) 

9.9 (150) 

3.1 (142) 

10.4 (148) 

1.8 (148) 

8.2 (143) 

1.5 (131) 

9.1 (147) 

OPAdPCA 1.8 (128) 

7.3 (141) 

3.2 (79) 

8.1 (150) 

3.2 (112) 

8.0 (150) 

2.4 (145) 

6.5 (141) 

2.5 (100) 

10.1 (141) 

OPAdPCA(cutoff) 2.9 (69) 

5.1 (147) 

3.4 (20) 

4.7 (108) 

2.9 (107) 

4.6 (116) 

3.6 (121) 

6.1 (112) 

2.2 (84) 

5.6 (124) 

CLAcPCA 1.8 (63) 

9.1 (150) 

3.7 (105) 

6.6 (137) 

1.9 (146) 

7.2 (149) 

1.7 (77) 

10.3 (142) 

2.7 (145) 

8.0 (147) 

CLAdPCA 2.0 (123) 

10.4 (140) 

2.3 (145) 

9.1 (150) 

2.6 (149) 

10.6 (148) 

1.7 (118) 

9.3 (139) 

1.3 (120) 

9.9 (147) 

CLAdPCA(cutoff) 5.0 (111) 

8.7 (141) 

4.0 (116) 

5.9 (150) 

5.3 (124) 

7.0 (144) 

2.2 (131) 

8.4 (150) 

4.8 (134) 

5.6 (149) 
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Chapter 5 

Conclusions and Perspectives 

 

Proteins are inherently dynamical molecules that undergo large-scale conformational changes to 

exert its functions.
8–10

 To investigate the high anisotropic nature of protein dynamics, MD simulation 

is an essential computational tool that can elucidate the conformational transitions of proteins, 

providing time-dependent information on protein fluctuation at atomic resolution. However, 

observing conformational changes relevant to biological functions is challenging because these 

events tend to occur stochastically in a time scale longer than feasible MD simulation time. To 

overcome this difficulty, various enhanced methods have been proposed.
13–17,77,80

 However, some of 

the methods require an external force to enhance the conformational transition, which does not 

necessarily guarantee that the obtained trajectories follow the lowest energy pathway. Other methods 

do not need such external forces but may require pre-test of simulations to determine the simulation 

parameters which can be cumbersome. Therefore, an enhanced sampling method that can simulate 

protein conformations relevant to biological functions without external forces and does not require 

cumbersome parameter setting is attractive. In addition, a method that can simulate protein 

conformations starting from a single structure without the prior knowledge of other conformational 

states can be valuable, for example situations where a novel protein structure is solved and its 

conformational transitions are unknown. 

 

In this thesis, I have proposed edge expansion parallel cascade molecular dynamics 

(eePaCS-MD)
19

 as an efficient adaptive conformational sampling method to investigate the large 

amplitude motions of proteins, which is an extension of the original PaCS-MD method.
104

 

eePaCS-MD can simulate open-close transitions along several collective degrees of freedom without 

the prior knowledge of the conformational transitions or external forces to enhance the 

conformational sampling. eePaCS-MD can help generate new mechanistic hypotheses and support 

experimental work to further validate the hypotheses. For example, one can remove a bound ligand 

from an experimentally determined protein structure and then simulate the bound and unbound 

systems to see how ligand binding affects protein dynamics and its functions.
23,24

 Similarly, one can 

mutate one or more amino acid residues in the protein to explain or predict the effect of 

mutations.
26,27

 Simply simulating a protein in their apo state to reveal possible protein conformations 

can be also valuable as it can lead to the discovery of novel binding sites and development of new 

therapeutic drugs.
25
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In Chapter 3, I have introduced the general concept and methodology of eePaCS-MD. In 

eePaCS-MD, sampling is repeated from randomly selected initial structures that are rigorously 

located at the boundary of the conformational spaces identified as vertices of a convex hull spanned 

by several principal components (PCs). This resampling increases the probability of rare event 

occurrences, inducing conformational transitions to new conformational states, thus enhancing 

sampling efficiency. In addition, each sampling is assigned with new initial velocities which help 

overcome the energy barriers. The information of the entire conformational space sampled by the 

simulation is stored as a set of vertex structures and is updated every cycle, which speeds up the 

selection process and improves the robustness of the method. The random selections of the initial 

structures alleviate the risk of consecutively selecting dead-end structures.  

 

The conformational sampling efficiency of eePaCS-MD was demonstrated for the open-close 

transitions of glutamine binding protein, maltose/maltodextrin binding protein, and adenylate kinase. 

Each was successfully simulated in ~10 ns of simulation time on average which is expected to offer 

1-3 orders of magnitude shorter simulation time than conventional MD. The free energy landscape of 

the conformational transitions can be obtained by constructing a Markov state model (MSM) using 

trajectories generated by eePaCS-MD, as demonstrated for the open-to-closed transition of 

glutamine binding protein. The obtained free energy landscape showed an energy barrier separating 

the open and closed states where the open state was suggested to be energetically more favorable 

than the closed state. 

 

The simplicity and generality of eePaCS-MD is particularly appealing. This method can be 

implemented with any MD program by simple scripts and is available for any computational 

resource, such as supercomputers and cloud computing. As a demonstration, I have combined 

eePaCS-MD with accelerated MD and showed that the conformational sampling efficiency can be 

further enhanced, where the total computational cost of observing the open-close transitions was 

reduced at most 36% compared to the original eePaCS-MD method. 

 

In Chapter 4, the conformational sampling efficiency of eePaCS-MD utilizing Cartesian 

coordinate PCA (cPCA) and distance-based PCA (dPCA) were compared for the open-close 

conformational transitions of adenylate kinase to investigate whether the choice of the PCA method 

affect the performance of eePaCS-MD. In dPCA, all Cα distance pairs and Cα distances of 

pre-selected atom pairs were considered. In the latter case, atom pairs with Cα distances less than 8 

Å apart from the initial structures of eePaCS-MD were selected. In this study, it was suggested that 

considering all Cα distance pairs in dPCA is essential to capture the intrinsic anharmonic nature of 

proteins during eePaCS-MD simulations to promote the conformational sampling. The sampling 
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efficiency of eePaCS-MD utilizing cPCA and dPCA (all Cα distances) showed comparable results. 

Considering the computational complexity of dPCA which scales quadratically with the number of 

atoms, I have concluded that eePaCS-MD utilizing cPCA as a first choice of the PCA method, 

although the optimal choice is expected to depend on the target. 

  

The current framework of eePaCS-MD, as well as other related methods, cannot directly 

calculate the free energy because the relationships among the generated trajectories are not obvious. 

Therefore, additional calculations such as umbrella sampling and MSM are required to obtain the 

free energy landscape. This two-step process is not necessarily a drawback, as insights into possible 

conformational changes can be obtained efficiently with a low computational cost. In some cases, 

the free energy landscape could be calculated by directly analyzing the PaCS-MD-generated 

trajectories by MSM without any additional simulation.
105,106

 However, a concrete workflow and 

theoretical background in constructing reliable MSM with PaCS-MD-generated trajectories remain 

to be established. 

 

The selection of initial structures that has the potential to exhibit new metastable states is the 

key to achieve efficient conformational sampling in eePaCS-MD. To this end, the application of 

reinforcement learning algorithms, such as Monte Carlo tree search
141

 and multi-armed bandits,
142

 

may be worth considering to improve the process of selecting the initial structures. Such algorithms 

can be used to avoid initial structures that are trapped in local states and allocate computer resources 

to other initial structure candidates. In fact, eePaCS-MD proposed in this study which selects initial 

structures in a complete random fashion can be regarded as an application of ε-greedy with ε = 1 

which is one of the most famous and simplest multi-armed bandit algorithms. 
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Appendix 

A.  Convex hull algorithm 

When given a set of points, a convex hull is defined as the smallest convex which includes all the 

points. The points that construct the convex hull and its boundary lines are called vertices and edges, 

respectively. Computing the convex hull is a problem in computational geometry, which is widely 

applied to computer graphics, pattern recognitions,
113

 image processing,
114,115

 medical simulations,
116

 

home range estimations,
117

 and animal epidemic forecasts.
118

 Various algorithms have been proposed 

to solve the convex hull problem,
149

 such as Graham’s scan,
150,151

 Jarvis’s march,
152,153

 and 

Quickhull.
154–156

 Here the two-dimensional Quickhull algorithm is described. 

 

Let us start with a set S containing n points (Figure A1(a)). First, the points with the minimum 

and maximum x coordinates, a and b, are determined where these points are one of the vertices of 

the convex hull (Figure A1(b)). The line formed by points a,b subdivides S into subsets S1 and S2, 

which will be processed recursively. As an example, let us focus on S1.The next step is to find point 

c in S1 such that the area of the triangle abc is maximized (Figure A1(c)). This process is equivalent 

to finding a point that has the furthest distance from line ab. Since the points lying inside the triangle 

abc cannot be part of the convex hull, these points are ignored in the latter steps (Figure A1(d)). To 

determine whether the point is inside the triangle, one can evaluate the orientation of an ordered 

triple of points (p, q, r), that is, if the points (p, q, r) form a clockwise cycle or not. The point 

orientation can be evaluated by calculating the determinant of a 3 × 3 matrix given by:  

 

Orient(𝑝, 𝑞, 𝑟) = det(

1 𝑝𝑥 𝑝𝑦
1 𝑞𝑥 𝑞𝑦
1 𝑟𝑥 𝑟𝑦

) (A.1) 

 

where the sign is negative if (p, q, r) forms a clockwise cycle, positive if counterclockwise, and zero 

if they are collinear. Since the determinant gives twice the signed area of the triangle formed by 

points (p, q, r), Equation (A.1) can be used to compute the furthest point from line pq. After point c 

is determined, S1 can be further subdivided into S11 and S12 by lines ac and bc, respectively (Figure 

A1(d)). The next vertices, which are the furthest points from lines ac and bc, can be searched 

following the procedures described above until no more points are left. 
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Figure A1: Schematic illustration of Quickhull algorithm. (a) Set S containing n points are shown as 

gray circles. (b) The points above and below line ab correspond to subsets S1 and S2, respectively. 

(c) Point c represents the furthest point from line ab. (d) The points located outward from lines ac 

and bc correspond to subsets S11 and S12, respectively. 
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