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Abstract

In this Thesis, we investigate some fundamental problems concerning dynamical phases of
quantum matter out of nonequilibrium, an emergent subject at the interface of atomic, molec-
ular and optical physics, condensed matter physics and statistical physics. It is well-known
that spontaneous symmetry breaking and topology provide two universal mechanisms for phase
transitions in equilibrium quantum systems. However, it remains poorly understood how we can
generalize these notions to the nonequilibrium regime, where not only the quantum many-body
states but also their dynamical evolutions become crucial. Here, we address this issue for three
of the most common nonequilibrium situations, namely periodic driving, dissipation and quench.
For periodically driven (Floquet) systems, we focus on both mechanisms of spontaneous sym-
metry breaking and topology. We predict that discrete time crystals which spontaneously break
the discrete time-translation symmetry can exist in open quantum systems. We also perform
a systematic topological classification of locality-preserving unitary operators with symmetries.
For dissipative and quenched systems, we focus only on their topological aspects. We clas-
sify the dynamical phases for both scenarios and discuss observable signatures of their unique
topological structures. The results of this Thesis have strong relevance to the state-of-the-art
quantum-simulation experiments, and serve as some basic paradigms for further studies on
nonequilibrium phases in more general settings.
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Chapter 1

Overview

C’est ExBWT... WNAZE.. MoRFg... HoBE. ..
Cest THZE A, .. MRS, Fokfh.. KXo !

The beauty of nature is rooted in the diversity of states of matter and their dynamical
changes with the flow of time. It is one of the most important tasks in physics to understand
the essence underlying the diversity of states of matter, which consist of macroscopic numbers
of atoms, electrons and ions that behave following quantum mechanics, the fundamental law in
the microscopic world. To this end, it is constructive to group the states of matter that share
the same qualitative properties into some universal classes, which are called phases. Concerning
the classification of phases, a groundbreaking contribution was made in 1930s by Landau [1],
who proposed a universal mechanism called spontaneous symmetry breaking (SSB), which refers
to a situation where the microscopic physical laws that describe a many-body system respect
certain symmetries but the state at equilibrium does not. An example of such a phase transition
has been given in the opening poetry by the crystalization of rain into snow upon decreasing
the temperature, where the continuous spatial translation symmetry is spontaneous broken into
a discrete one. In general, different phases of a given system can be distinguished from each
other by the different ways in which the symmetries are broken.

For quite a long time, it was believed that all the phases can be understood on the ba-
sis of SSB [2]. However, a revolution was triggered by the discovery of the quantum Hall
effect in 1980s [3], after which the existence of novel states of matter beyond Landau’s SSB
paradigm had become clear [4]. These novel phases are qualitatively distinguished from the
conventional ones in the sense that the microscopic ingredients are arranged and interacting
with each other in a topologically nontrivial manner [5]. To gain some intuitive insight into
what we mean by topologically nontrivial, one may imagine two linked rings, which cannot be
separated into two individual rings unless one of them is cut (corresponding to a singularity in
a continuous deformation). When some symmetries are imposed, the topological structure may
be further enriched, leading to the notions of symmetry-protected topological (SPT) phases [6]
and symmetry-enriched topological phases [7]. More precisely, in the language of quantum
information, we can say that topologically nontrivial quantum many-body states cannot be
disentangled into individual components by any finite-step combinations of local operations by
quantum gates (with symmetry constraints, if any) [8]. In light of the recent rapid development
of topological material science, a complete classification of topological phases at equilibrium has
almost been achieved [9].

It might not be a surprise that the discovery of topological phases is much more delayed than

'This is part of the lyric of a Japanese-French song “ELEID (belles choses)”. It describes some scenes
with vivid seasonal features, such as a drizzling rain harmonized with the cry of cicadas in summer and a peaceful
snow wrapping the earth in winter.
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Figure 1.1: Schematic illustration of the three prototypical scenarios for bringing a quantum
system out of equilibrium, which are periodic driving, dissipation and quench.

the proposal of SSB, since topological phenomena such as the quantization of the Hall conduc-
tance [3] are usually observable only when the quantum effects dominate. This typically requires
a low temperature and a nearly perfect isolation from an environment.” These experimental
situations have been achieved for not only crystalline materials [12], but also artificial quantum
many-body systems implemented by various atomic, optical and molecular (AMO) platforms
such as ultracold atoms [13], trapped ions [14] and superconducting qubits [15]. Compared to
real materials, which inevitably involve some defects and impurities and can only be described
by some effective theories after a lot of approximations, such kind of quantum simulators have
the advantage to mimic a clean and simple system that is faithfully described by the physical
theory we wish to investigate [16]. Indeed, various topological phases have been realized in
AMO quantum simulators [17-19]. One representative implemented with ultracold atoms is
the famous Haldane model that gives a minimal realization of the anomalous quantum Hall ef-
fect [20]. Interestingly, this model is expected by Haldane himself to be “unlikely to be directly
physically realizable” [21].

It is certainly not the end of the story if we could classify all the phases at equilibrium and
realize them in the laboratory. Indeed, nature is intrinsically out of equilibrium, and its beauty
can never be fully understood without considering its dynamical aspects. Sometimes it might be
good enough to interpret a dynamical change of states of matter as a transition between different
equilibrium phases, provided that the transition is driven by some slowly varying parameters.
However, things can be qualitatively different if the parameters change as quickly as the internal
microscopic dynamics, as is the case of, e.g., optically driven crystalline materials [22]. Similar
situations can also be realized in quantum simulators in a highly controllable way [23]. For these
quantum many-body systems far from equilibrium, can we have a systematic classification based
on their universal dynamical properties? In particular, can we have similar notions like SSB
and topological phases? If these notions apply, what are the relations and essential differences
between the nonequilibrium dynamical phases and the conventional equilibrium phases? These
issues are actually under active discussions in recent years, yet they are poorly understood.

This Thesis is devoted to address the above fundamental questions concerning nonequilib-
rium dynamical phases. It is certainly too ambitious a goal to establish a complete framework
since there is an enormous number of ways to drive a system out of equilibrium. Here, we
confine ourselves to three of the simplest scenarios that are widely used in the literature, as
illustrated in Fig. 1.1. The first scenario is periodic driving, which means that the parameters
of the system are modulated periodically in time. Such a system is usually referred to as a
Floguet system [24]. In the simplest setup, a Floquet system is still closed in the sense that it
does not exchange matter with an environment, but exchanges energy with the work resources

?Recently, it has become clear that some topological phenomena occur also in classical wave systems at room
temperature, such as photonic lattices [10] and mechanical metamaterials [11].



Table 1.1: Topics discussed in each chapter.

Topic ‘Order Topology | Floquet Dissipation Quench

Chapter 2 ) o o

Chapter 3 o o

Chapter 4 o o

Chapter 5 o o

that enable the temporal variations of parameters. We will discuss both SSB and topological
phases in Floquet systems [25]. The second scenario is dissipation, which means that the system
is coupled to some well-designed reservoirs which are generally not at thermal equilibrium [26].
Accordingly, the system is necessarily open and matter exchange with the reservoirs is generally
allowed. The third scenario is quench, which means a sudden change of a parameter such that
an original equilibrium state becomes highly excited [27]. This is arguably the simplest setup
since the system is isolated after the quench. For the latter two scenarios, we will primarily
focus on topological phases.

Let us sketch out the outline of the remaining chapters, which is briefly summarized in
Table 1.1. In Chapter 2, we discuss a unique dynamical order associated with the SSB of discrete
time-translation symmetry in Floquet open quantum systems. Previously, the so-called discrete
time-crystalline (DTC) order, which can be considered as the temporal counterpart of the
conventional spatial crystalline order in crystals, had been predicted [28-30] and experimentally
verified in closed Floquet systems [31,32], and was expected to be fragile against dissipation
[33]. However, we will show that the interplay between some specific dissipation and driving
can stabilize and even enrich the unique dynamical order. We will also discuss the possible
experimental realization in cavity and circuit QED systems. This chapter is based on the
following publication [34]:

o “Discrete Time-Crystalline Order in Cavity and Circuit QED Systems”, Zongping
Gong, Ryusuke Hamazaki, and Masahito Ueda, Physical Review Letters 120, 040404
(2018).

In Chapter 3, we focus on the topological aspects of Floquet systems. Precisely speaking,
we discuss the topological classification of one-dimensional (1D) locality-preserving unitary
operators with on-site unitary symmetries. Such kind of unitary operators have elegant tensor-
network representations called matriz-product unitaries (MPUs) [35], which are the simplest
tensor-network operators used to describe nonequilibrium quantum dynamics. MPUs provide
efficient descriptions of the single-periodic time-evolution operators (i.e., the Floquet unitary) of
1D Floquet systems [36]. Moreover, it is known that, even in the absence of symmetries, there
exist some topologically nontrivial MPUs that appear only as the edge dynamics of 2D intrinsic
Floquet topological phases without equilibrium counterparts [37]. We will see that such kind of
novel MPUs, as well as the corresponding 2D Floquet topological phases, are further enriched
by symmetries. This chapter is based on the following publication [38]:

o “Classification of Matrixz-Product Unitaries with Symmetries”, Zongping Gong,
Christoph Stinderhauf, Norbert Schuch, and J. Ignacio Cirac, Physical Review Let-
ters 124, 100402 (2020).

In Chapter 4, we turn to discuss the topological phases in dissipative systems. In particu-
lar, we focus on the simplest class described by non-Hermitian Hamiltonians in the quadratic
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form, which is a natural generalization of free-fermion systems. To our knowledge, the earliest
classification of topological phases was done for free-fermion systems in the so-called Altland-
Zirnbauer (AZ) classes [39,40], which feature one or some of the three fundamental symmetries
— time-reversal symmetry, particle-hole symmetry and chiral symmetry [41]. Well-known ex-
amples of free-fermion topological phases include quantum Hall insulators [3] and the more
recently discovered time-reversal symmetric topological insulators [42]. When the Hermiticity
constraint on the Hamiltonian is removed due to dissipation, we will see a dramatically changed
classification result. For example, a 2D quantum Hall insulator is no longer topological and
a prototypical nontrivial system turns out to be a 1D lattice with asymmetric left and right
hopping amplitudes, a model originally proposed by Hatano and Nelson in a context irrelevant
to topological phases [43]. This chapter is based on the following publication [44]:

e “Topological Phases of Non-Hermitian Systems”, Zongping Gong, Yuto Ashida,
Kohei Kawabata, Kazuaki Takasan, Sho Higashikawa, and Masahito Ueda, Physical
Review X 8, 031079 (2018).

In Chapter 5, we focus on the topological classification of quench dynamics. Somewhat
surprisingly, while quantum quenches are the simplest scenario for generating nonequilibrium
dynamics, their topological aspects had not been seriously studied until recently. A pioneering
work discovered the Hopf link in the (2 4+ 1)D momentum-time space after a quench from a
trivial two-band insulator to a nontrivial Chern insulator in 2D [45]. Following this line of
thought, we will perform a systematic analysis on the (1 4+ 1)D spacetime topology underlying
the quench dynamics in 1D topological insulators in all the AZ classes. We will also discuss the
universal feature of such dynamical topology from an entanglement perspective. This chapter
is based on the following publication [46]:

e “Topological Entanglement-Spectrum Crossing in Quench Dynamics”, Zongping
Gong and Masahito Ueda, Physical Review Letters 121, 250601 (2018).

Finally, in Chapter 6, we summarize the thesis and discuss some possible directions for
future studies.

11



Chapter 2

Discrete time-crystalline order in
cavity and circuit QED systems

Periodic driving is one of the most common scenarios for bringing a system out of equilibrium.
It not only provides a convenient tool to overcome some technical difficulties such as generating
long-range hoppings and effective gauge fields, but also opens up the possibility of exploring
new phases of matter unique to the nonequilibrium regime. A prototypical example of intrinsic
nonequilibrium phases of matter with recent interest is discrete time crystals, which can be
considered as the time analog of conventional crystals that spontaneously break the spatial
translation symmetry. Most of the studies in literature focus on discrete time crystals in closed
systems, since dissipation and decoherence are usually thought to destroy the dynamical order
in discrete time crystals, the so-called discrete time-crystalline order. In this chapter, we argue
that the discrete time crystals do exist in some open systems, where the discrete time-crystalline
order may be stabilized and even enriched. We will not only discuss the theoretical possibilities,
but also provide concrete experimental implementations based on driven cavity and circuit QED
systems in the ultra-strong coupling regimes.

2.1 Background and motivation

2.1.1 Brief review on time crystals

Phases and phase transitions of matter are key concepts for understanding complex many-
body physics [47,48]. Spontaneous symmetry breaking (SSB) is among the most important
mechanisms of phase transitions. Examples that are ubiquitous in nature include the spatial
translation symmetry breaking in the liquid-solid phase transition and the spin-rotational sym-
metry breaking in the paramagnet-ferromagnet phase transition. While the notion of SSB was
originally used to physically understand natural phenomena, one can always ask from a purely
theoretical point of view whether a symmetric many-body Hamiltonian breaks all or some of
the symmetries in certain parameter regimes. Rigorously speaking, here we have assumed the
system to be isolated so that its energy is conserved and there is always a continuous time-
translation symmetry generated by the Hamiltonian itself. Here comes a fundamental question:
can this continuous time-translation symmetry be spontaneously broken? In fact, this is a ques-
tion considered by Nobel laureate Frank Wilczek in 2012, who answered it in the affirmative
and proposed plausible realizations in both classical and quantum systems [49,50]. Meanwhile,
a similar proposal with a concrete trapped-ion implementation appeared [51].

However, the original proposal of Wilczek turns out to be defective [52]. Moreover, it is
found that the continuous time-translation symmetry breaking never occurs in ground states

12



and thermal states, provided that the Hamiltonian only involves sufficiently local interactions.
In other words, there is a no-go theorem for continuous quantum time crystals [53]. It is not
trivial at all to formulate this statement — to judge whether the continuous time-translation
symmetry is spontaneously broken, we have to introduce a time-dependent perturbation to see
whether a local observable oscillates in time if we first take the thermodynamic limit and then
the zero perturbation limit. A more convenient criterion, which does not require a perturbation
and is adapted in the proof of the no-go theorem in Ref. [53], is whether there is a long-range
spatial-temporal order in a ground state or thermal state. Such a long-range spatial-temporal
order turns out to be impossible, although there can be long-range spatial correlations alone,
as is the case for conventional SSBs.

The discovery of the no-go theorem is not the end of the story. We recall that an important
assumption in the no-go theorem is that the system is at its ground state or thermal equilibrium,
so that it stays far from clear what would happen when the system is driven out of equilibrium.
Indeed, recent experimental developments in various quantum simulators, such as ultracold
atoms [13, 54], trapped ions [14, 55] and superconducting qubits [15, 56], have enabled us to
prepare and control nonquilibrium quantum many-body systems [23,57,58]. Several unique
dynamical phases have been unveiled, such as the many-body localized phases [59-64], whose
excited states are non-thermal states with area-law entanglement, and the Floquet topological
phases [37,65-71], which are nonequilibrium topological phases enriched by periodic driving
and will be discussed in the next chapter. Indeed, it turns out that we can bypass the no-go
theorem by either focusing on excited states [72], or introducing periodic driving [28,29,73,74].
The latter is of much more recent interest [75] and leads to the notion of discrete time crystals
(DTC) or Floquet time crystals. We also mention that it is possible to realize a continuous time
crystal at equilibrium by introducing long-range interactions [76].

To realize DTCs in periodically driven quantum systems, at the very least, we have to
circumvent the Floquet eigenstate thermalization hypothesis, which implies that the system
will eventually be heated to a featureless infinite-temperature state due to persistent driving
[77-79]. One common scenario is the Floquet many-body localization, which requires strong
disorder. This idea is adapted in a variety of driven spin-chain models [28,29,73,74] and the
trapped-ion experiment [32]. Note that another experiment based on NV-centers [31] does not
fall into this category since the spatial dimension is three and the long-range dipole-dipole
interactions tend to delocalize the system, leading to critical thermalization [80]. There are
also some other scenarios that do not require any disorder such as mean-field models [81,
82] and Floquet prethermalization [83,84]. In any case, these phases with broken discrete
time-translation symmetry exhibit discrete time-crystalline order (DTC order) characterized by
periodic oscillations of physical observables with period nT’, where T' is the Floquet period and
n=2,3,---. Moreover, the DTC order is expected to be stabilized by many-body interactions
against variations of driving parameters. Such a rigidity feature explains why a DTC is called
a “crystal”.

2.1.2 Motivation and the main achievement

While remarkable progress concerning the DTCs has been made, most studies focus on closed
quantum systems. Indeed, as has been experimentally observed [31,32] and theoretically in-
vestigated [33], the DTC order in an open system is usually destroyed by decoherence. On
the other hand, it is known that dissipation and decoherence can also serve as resources for
quantum tasks such as quantum computation [85] and metrology [86]. From this perspective, it
is natural to ask whether the DTC order exists and can even be stabilized in open systems [87].
Such a possibility has actually been pointed out in Ref. [83], but neither a detailed theoretical

13
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Figure 2.1: Cavity and circuit QED setups for realizing the DTC order. In the first (second)
half of a Floquet period T, we switch on (off) the coupling A between light and (artificial)
atoms. For sufficiently large A, almost persistent DTC order in the stroboscopic dynamics of
a local observable is expected for an ensemble of a large number of atoms in an optical cavity,
while transient DTC behavior can be observed for few superconducting qubits coupled to a
microwave transmission line. Here k denotes the loss rate of (microwave) photons. Reproduced
from Fig. 1 of Ref. [34]. Copyright © 2018 by the American Physical Society.

model nor a concrete experimental implementation is presented.

Here, we propose a concrete open-system setup for realizing the DTC order by using a pro-
totypical dissipative model — a modified open Dicke model [88-90], which describes a collective
light-atom interaction in the presence of interaction modulation and photon loss. This model
is relevant to cavity QED systems based on cold atoms [91-94] and circuit QED systems based
on superconducting qubits [95-101]. As schematically illustrated in Fig. 2.1, the DTC order
manifests itself through periodic switch-on and switch-off of a sufficiently strong light-atom cou-
pling, leading to a period doubling in the stroboscopic dynamics of a physical observable such
as the atomic spin polarization. For the cavity QED case, we consider the thermodynamic limit
and find unexpectedly rich dynamical phases as the detuning parameter is varied (see Fig. 2.4).
For the circuit QED case, we examine a deep quantum regime with few qubits to find a clear
transient DTC behavior even for two qubits, a minimal setup of superradiance [98]. We also
discuss a phenomenological model which demonstrates the exponentially long lifetime of the
DTC order. These predictions should be testable in light of the state-of-the-art experimental
developments in atomic, molecular and optical physics.

2.2 Theoretical proposal

We consider N pieces of identical two-level atoms in a single-mode cavity. Neglecting the
motional degrees of freedom of atoms, the dynamics of the system can be described by the open

14



Dicke model [102]:

d .
L= LN pr = —i[H(N), pi) + wDlapr,
) 2\ T (2.1)
HMN =wad'a+wyJ, + —=(a+a')J,,
where )
Dlalp = apa’ — —{a'a, p} (2:2)

is the photon-loss dissipator with a being the annihilation operator of the photon field and {-, -}
being the anticommutator,

T

DN | =

ZUIJL'L’ =Y,z (23)
j=1

is the collective atomic pesudospin operator, w, wp, A and k are the optical frequency, the
resonant frequency of an atom, the coupling strength and the photon-loss rate, respectively.
One can check that the GKSL generator respects the combined Zy parity symmetry of atoms
and photons, which is represented by

P = ¢irlaattat ), (2.4)

Here by respecting the parity symmetry, we mean that
LANP =PL(N), (2.5)

where Pp = PpP is the parity superoperator.

Let us first review some basic facts about the phase transition in the static open Dicke
model, i.e., the case of a time-independent A. These results have been dervied in Ref. [102]
on the basis of a semiclassical approach. Here, we present a quantum treatment as an open-
system generalization of the method developed in Ref. [90], which deals with the quantum
phase transition in the isolated Dicke model. It is convenient to represent the system using the
Holstein-Primakoff transformation:

N
Jp =blv/N—btb, J_=+/N—bteb, J,=blb— o (2.6)
where the bosonic field operator b describes the atomic collective mode, which has a truncated
Fock space up to N bosons. In particular, the N-boson Fock state corresponds to the fully
spin-up polarized state |{) = ®§V: 1 |T) in the original spin picture. Suppose that the system is

in the parity-symmetry-broken superradiant phase, which has a macroscopic coherence in both
photon and atom fields. This motivates us to rewrite the photonic and atomic modes as

a=c+a, b=d-p, (2.7)
where |a| and |8| are of the order of v/N. Using the gauge invariance of a general Gorini-

Kossakowski-Sudarshan-Lindblad (GKSL) equation py = —i[H, ps] + >_; D[L;]p: under the
transformations [87]

L= Li+Cj. H—H+Y (G} - C;Ly), (2.8)
J
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where C}’s are c-numbers, we can rewrite the master equation for the open Dicke model (2.1)
as

p = —i[H'(\). pi] + wDlclor. (2.9)

Here, up to small corrections that vanish in the thermodynamic limit N — oo, the modified
Hamiltonian H'()) is given by

H'(\) = wele 4+ wod'd + |af?w + (\B|2 - Z;) wo — A1 — w]\f(a* +a)(B8*+B)

+ a(w—ig) — (B +B)/1 - WA';)\ ¢l +He.

+ {)\(a* +a)\/1— W]\F {1 - M} — 6w0} d' + H.c. (2.10)
, B2 [B*d2 +Bd? (8 +B)dld (8" + B)(B*d + Bdl)?

Tt T [2<N— B TN T sV - 5Py

2 * *
+ /1 - ‘?\L [1 - é(BNtﬁl;‘BQ)] (" +¢)d + Hec..

To eliminate the terms that are linear in the field operators in Eq. (2.10), we require the
parameters a and § to satisfy

o (w—if) = (& + apf1- 120,

2 *
18| (8 +/ﬂﬁ}::5wm

AMa™ + ) 1_W {1_2(N—|5|2)

(2.11)

which implies * = 8 and

PN 2B W
% (1-%) - o= -5 (212)

where the critical value \. reads

1 Jwo [, K?
Ac = 5\ 2 (w + 1 ) (2.13)
It is clear that nontrivial solutions (i.e., |a|,|5| # 0)
N Nw A2
2 2 0, —1 — A
_ N _ _ =Zc 2.14
=5 0—p), ot =2 —p), p=15 (2.14)

exist if and only if A > A or equivalently p < 1. Substituting Eqgs. (2.14) and (2.11) into
Eq. (2.10) yields

1+ p B+ )1 —p) 2
H'(\) =wcle + —Zwpdid + 220" 22 0(d +dH2 + ) f dt +d
(\) =wc'e + 2 wod'd + EE) wo(d+d")* 4+ A 1+M(C +¢)(d" +d)

N4 +1—p (2.15)

4y

It has been shown in Ref. [90] that, without photon loss (k = 0), the ground state of H' (2.15)
is a squeezed (including both single-mode and two-mode squeezed) vacuum with respect to ¢

wq-
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and d. In the presence of photon loss, the steady state becomes not only squeezed but also
mixed. However, since ¢ and d are obtained by a macroscopic translation of the order of v N
from a and b, the expectation values of local observables (e.g., single-atom spin polarization)
in the thermodynamic limit are expected to coincide with those of |a) ® |—/3), i.e., the direct
product of photon and atomic-spin coherent states:

1o X a” R
o) =727 > —=ln), |=8) = 2:% N (2.16)

So far we have shown that, in the thermodynamic limit and when A exceeds A. given in
Eq. (2.13), the open Dicke model exhibits a phase transition that breaks the Zy symmetry
characterized by the parity operator in Eq. (2.4) [90,92]. For A > A, we can actually construct
an exact period-doubling Floquet dynamics as follows: Starting from one of the symmetry-
broken steady states pgs, in the first-half period, the dynamics is governed by Eq. (2.1), and
therefore pgs stays unchanged by definition. In the second-half period, we perform the parity
operation on the system, so that the other steady state

pés = Ppss = PpssP (217)

is achieved at the end of the Floquet period. If we observe the system stroboscopically at
tn, = nT, we should find pss (plg) for even (odd) n. This gives the desired period doubling.

However, the exact period doubling under the above specific driving protocols does not
necessarily mean that the system is in a DTC phase. Only if we can demonstrate that the period
doubling is robust against imperfection such as the deviation of the evolution in the second-half
period from the parity operation, we can identify it as a DTC order. A straightforward way to
introduce such imperfection is to switch off the atom-light coupling in the second-half period.
That is, we modulate X in Eq. (2.1) periodically as

A 0<t< %,
AT =N = { 0 Z_< teT (2.18)
5 < .

In the resonant (w = wy = wp = 27 /T) and isolated (k = 0) limit, the time evolution during
the second half of the period gives the parity operator up to an unimportant global phase since

P = ¢ izHO=0+5N, (2.19)
If we introduce a detuning between w and wqg as
w=(1-€ewr, wo=1+¢€wrp, (2.20)

we can control the degree of imperfection by e. In addition, there is always a nonunitary
imperfection due to photon loss (k # 0) even for ¢ = 0. Without loss of generality, we set
wr = 1 hereafter.

2.3 Numerical simulations

In this section, we perform extensive numerical simulations on the modulated open Dicke model.
We focus both on the thermodynamic limit, for which we solve the semiclassical equation of
motion using the Runge-Kutta method, and on the few-atom quantum regime, for which we
solve the original master equation by using the exact-diagonalization method.
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2.3.1 Mean-field dynamics in the thermodynamic limit
Semiclassical equation of motion

In the thermodynamic limit N — oo, the relative fluctuation in a local observable becomes
negligible, and the semiclassical approach is justified in such a mean-field regime [103-105].
To work out the semiclassical equation of motion, we should adapt the Heisenberg picture.
For a general time-dependent GKSL equation pp = Lypr = —i[H(t), p] + >_; D[L;(t)]pe, the
corresponding open-system Heisenberg equation for an observable O is given by [87]

dii? = (£]0) = <z’[H(t),O] + ZJ: <Lj.(t)0Lj(t) - ;{L}(t)Lj(t),0}>> , (2.21)

where (...) = Tr[...p;] is the instantaneous ensemble average. Applying Eq. (2.21) to the mod-
ulated open Dicke model (2.1) and using the commutation relations [a,a’] = 1 and [J,, J,] =
1€v0J5, We obtain

N o (o + D) o) - 22,

dat 2 VN (2.22)
d(Je) d(Jy) 2\ i d(J.) 2N i '
P wo(Jy), i wo(Jz) ﬁ“‘”’a )J2), P W«G‘F a')Jy).
We can also check from [J2,.J,] = 0 that
d(J?) 2\ g2
=0, J'= %: J2 (2.23)

which means (J?) is conserved. In particular, if the atoms are initialized (by, e.g., optical
pumping) to be a fully spin-polarized state like |{}) = ®§V: 1 1), which is the case in real
experiments [91,94], we have (J%) = £(4 + 1) for all the time.

On the mean-field level, we can approximate the crossing terms like (aJ,) as (a)(.J,), which
has an order of magnitude of O(N %), while the quantum fluctuation is expected to be no more
than O(N). Such an approximation should become exact in the thermodynamic limit. In terms
of the scaled variables

o

&‘%, juz<t]]\[“>, =1,z (2.24)

Eq. (2.22) gives a closed set of semiclassical equations:

dé
dﬁ‘ . (iw v 5) & — 2N,
y df 2 U (2.25)
7: — —Wij, d—ty :wij—Q)\t(d—f-d*)jz, ditz _2)\t(6{+5[ )]y,
which can finally be rewritten in the forms of
d d,
Tep-Ta, D= - Tp- 2020,
d% = (woez + 2XV2wzer) X j,  J = (Jas Jys =)
after the substitution .
a=,/2z 4+ L (2.27)




In terms of the photon fields, = and p are expressed as

(a + al) ilat — a)

x =, —_—.
2Nw P V2N /w

Note that j2 = 3 u jz continues to be a conserved quantity for Eq. (2.25) and takes on the value
of 1/4 for (J?) = (N/2)(N/2 + 1) when N — co. This observation implies that the trajectory
of atomic angular momenta is confined on the Bloch sphere. It is also worth mentioning that
for a large but finite N we can systematically calculate the corrections of the order of N=* by
means of the cumulant expansion [106].

One can check that the Zs parity symmetry is inherited by the semiclassical equation of
motion, in the sense that Eq. (2.26) is invariant under the simultaneous sign reversal of z,
P, jo and j,. The dissipative phase transition [107] in the open Dicke model now becomes a
dynamical phase transition known as the pitchfork bifurcation [104], where the original unique
stable attractor

(2.28)

L 1
(.’E(),p(]) = (07 0)7 (]:cOv]yOanO) = (07 07 _2) (229)
becomes unstable and two new stable attractors
2w(l—p?) K . 1 A2
(x:l:ypzl:) = :Fm()\a 5)5 (]x:ta]y:b]z:l:) = §(i V 1- :u2707 _:u)v n= )\7; (230)

emerge as the classical reductions from pg and pl,. To be specific, we choose the initial state to
be the “+” attractor (2.30) in all the following numerical calculations. We solve the nonlinear
differential equation given in Eq. (2.26) for up to 5000 periods by using the Runge-Kutta method.

Synchronization-based approach to diagnosing dynamical phases

While it is not so difficult to judge whether the system is in a DTC phase (or other dynam-
ical phases) from the time evolution of some appropriate observables, here we introduce a
synchronization-based approach to make an accurate diagnosis. Indeed, the rigidity of the
DTC order in closed systems is usually explained as a result of many-body synchronization [74].
As for the Dicke model, while we do have long-range (actually all to all) interactions between
atoms mediated by photons [91], it is more convenient to regard the atoms as a rotor that cou-
ples nonlinearly to a harmonic oscillator that represents single-mode photons. In this picture,
we can quantify the degree of synchronization through the phase difference between the rotor
and the oscillator. Similar synchronization quantifiers have been used in several recent studies
on nonlinear classical and quantum systems [108—110].
Denoting the phase of photons as ¢, and that of atoms as ¢, we have

(a) = [(a)]e’®,  (b) = (D) "™, (2.31)

where b is the bosonic mode of collective atomic excitations defined in Eq. (2.6). In the ther-
modynamic limit, the phases can semiclassically be evaluated through the relations

¢a = Arg (ﬁx + \%) s Op = Arg (i +ijy). (2.32)

Note that ¢, — ¢, = # mod 27 for the symmetry-broken ground states of the isolated Dicke
model, and that it slightly deviates from 7 for a small nonzero k. In the following calculations,
we fix A = 1 and k = 0.25 unless otherwise indicated.
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Figure 2.2: Probability distribution of the phase difference (PDPD) ¢, — ¢ over 5000 periods
and the stroboscopic dynamics of atomic angular momenta in the last 30 periods for the normal
DTC phase (e = 0.15), the asymmetric period-doubling phase (¢ = 0.19) and the thermal phases
(e =0.22 and € = 0.08,k = 0). We use A =1 and xk = 0.25 unless indicated otherwise. A single
peak in the PDPD splits into two when the doublet becomes asymmetric. For thermal phases,
the PDPD spreads almost uniformly in the closed limit (k = 0) while inhomogeneously for a
nonzero k. Reproduced from Supplementary Fig. 1 of Ref. [34]. Copyright © 2018 by the

American Physical Society.
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Figure 2.3: Stroboscopic dynamics of the atomic angular momenta over the last 30 periods of
the 5000-period evolution (top), the phase-space trajectories of the last 200 periods projected
onto the pseudospin Bloch sphere (middle) and the corresponding probability distribution of
the phase difference (bottom). The other parameters are chosen to be k = 0.25 and A = 1.
In addition to a limit-cycle pair (e —0.03), we find new dynamical phases including an
asymmetric limit-cycle pair (¢ = —0.12), an asymmetric sextet (e = 0.059), symmetric ten-
(e = 0.07) and asymmetric eighteen-fold (e = 0.06) multiplets, and a locally ergodic phase
(e = 0.2). Reproduced from Supplementary Fig. 3 of Ref. [34]. Copyright (© 2018 by the
American Physical Society.
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Let us consider the modulated open Dicke model in the normal DTC phase (symmetric
doublet). The states of the system at the end of an odd number of periods and that of an
even number of periods are exactly related to each other by the parity operator, implying
Gq — ¢Gq + 7 mod 27 and ¢, — ¢, + ™ mod 27 after each period. Therefore, the photon and
atomic phases are perfectly synchronized in the normal DTC phase, as indicated by a single peak
in the probability distribution of the phase difference (PDPD) ¢, — ¢ calculated at t, = nT
(n=1,2,...,5000). We give an example in the top left two panels in Fig. 2.2.

When the period doubling becomes asymmetric, the PDPD splits into two peaks (see the top
right two panels in Fig. 2.2), since the increments of ¢, and ¢, after each period are no longer the
same, although those after every two periods are both 27. When the system enters the thermal
phase, the PDPD spreads to everywhere over [0, 27), implying the loss of synchronization (see
the panels in the bottom in Fig. 2.2). The PDPD also becomes continuous for a symmetric
limit-cycle pair, but is localized in a finite range with singularities at the boundaries (see the
second column from the left in Fig. 2.2). We can see that the behavior of the PDPD sharply
distinguishes different dynamical phases.

We apply this powerful approach to further explore the rich dynamical phases. Typical
numerical results are presented in Fig. 2.3. For ¢ = —0.12, we find a pair of asymmetric limit
cycles, indicated by two continuous compact regions in the PDPD. For ¢ = 0.059, we find
an asymmetric sextet order. For e = 0.06 (0.07), we find that the period of the stroboscopic
dynamics becomes eighteen-fold (ten-fold) in an asymmetric (symmetric) manner, which can
be read out from the number of peaks in the PDPD. Furthermore, when € = 0.2, we observe a
locally ergodic phase where the trajectories cover two separated areas on the angular-momentum
sphere (in the quadrature plane). This phase is more chaotic than the phase of a limit-cycle
pair, for which the trajectories are one dimensional, yet less chaotic than a thermal phase, where
there is only a single area covered by the trajectories and the DTC order is destroyed. These
features are well captured by the PDPD, which is still localized but the boundary singularities
are smeared out.

Finally, we emphasize that once the semiclassical dynamics becomes chaotic, it is in practice
impossible to obtain exact numerical results except for an initial short time interval. This is
due to the exponential amplification of inevitable numerical errors. Nevertheless, we can still
observe qualitative behavior of irregular trajectories covering areas, based on which we judge
that the system is in the thermal phase.

Phase diagram

By employing the approach in the previous section for different € and fixed x = 0.05 and A =1,
we map out the full dynamical phase diagram in the top row of Fig. 2.4. We find the normal
DTC phase (denoted as SD) and the thermal phase (T); the former respects the Zs symmetry in
which j, jy, , p reverse their signs after one period, and the latter shows irregular trajectories
that cover some areas of the pseudospin sphere (or in the quadrature (z-p) plane). Furthermore,
we find symmetric limit-cycle pairs (LC), for which the steady orbit forms two closed loops in
the phase space, period sextupling (S), and asymmetric period doubling (AD), with js, j,
x, p taking on two different values that are not symmetric against inversion. Interestingly, the
regions of SD and LC phases are not connected but separated into two parts by other dynamical
phases. As we will see in the next subsection, these phases can be systematically understood
on the basis of bifurcation theory [111-115].

We note that the dynamics of a generalized time-independent open Dicke model, which
has an additional Stark-shift term (U/N)J.ata in H(\) in Eq. (2.1) (see Eq. (2.70)), has been
thoroughly studied in Ref. [104] based on the semiclassical analysis. While there are only
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Figure 2.4: Dynamical phase diagram (top), typical stroboscopic dynamics (middle), and tra-
jectories (bottom) of the atomic pseudospin for atom-light coupling A = 1 and photon-loss rate
k = 0.05. Top: As the detuning e (see Eq. (2.20)) is varied, five different dynamical phases
emerge: thermal (T, red), symmetric period doubling (normal DTC order, SD, blue), limit-
cycle pair (LC, orange), period sextupling (S, purple), and asymmetric period doubling (AD,
magenta). The phase boundaries are marked in white with resolution 1073. Middle: Typi-
cal stroboscopic dynamics of j, = (Ju)/N (u = x (solid blue), y (dashed orange), z (dotted
black)) for the last 30 periods of the entire 5000-period evolution. Bottom: Full stroboscopic
phase-space-point trajectories (light blue) and those of the last 200 periods (purple) projected
on the pseudospin Bloch sphere. Reproduced from Fig. 2 of Ref. [34]. Copyright © 2018 by
the American Physical Society.
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Figure 2.5: Steady orbit g1900—2000 of the recurrence equation (2.33) starting from go = 0.5 (left
panel) and —0.5 (right panel) for different values of the parameter r. Besides the symmetric
doublet for 0 < r < 1, we observe the asymmetric doublet (indicated as AD) and even the period
sextupling (S) embedded in the locally ergodic phase (LE). Reproduced from Supplementary
Fig. 2 of Ref. [34]. Copyright © 2018 by the American Physical Society.

single- (normal) and double-attractor (superradiant) phases for U = 0, limit-cycle and multiple-
attractor phases emerge for U # 0, leading also to a rich dynamical-phase structure. Here, in
contrast, the richness of dynamical phases arises from the time dependence of A with U = 0.
Another distinction is that in Ref. [104] the steady state picks up one of the attractors or the
unique limit cycle, whereas here the steady state goes around different fixed points or limit
cycles in a stroboscopic manner.

Understanding the dynamical phases from bifurcation theory

The richness of the dynamical phases in the modulated open Dicke model arises also from the
nonlinearity of the semiclassical dynamics (2.25), which, in turn, originates from the finite-level
nature of the atomic spectrum. Here, by the finite-level nature, we mean that the atomic
excitations can be saturated for a given N. Such saturation effects become increasingly more
significant, and hence survive even in the thermodynamic limit as the system is excited farther
away from the steady state. This is precisely the case of the modulated open Dicke model.

In the language of nonlinear dynamical systems [112], different dynamical phases are caused
by certain types of bifurcations. The normal DTC order is essentially an interplay of pitchfork
bifurcation and parity symmetry. It appears already in a simple recurrence series:

1 = —(r + D)gn + ¢, (2.33)

which is a combination of a minimal discrete dynamics ¢ — (r + 1)g — ¢* for supercritical
pitchfork bifurcation and the inversion ¢ — —¢q. Note that this is neither a supercritical pitchfork
bifurcation alone, after which the dynamics converges to one of the fixed points, nor a subcritical
pitchfork bifurcation, after which no stable fixed point exists. As shown in Fig. 2.5, we see
symmetric period doubling for 0 < r < 1. When r exceeds 1, the symmetric orbit becomes
unstable and a local period-doubling bifurcation, which is well-known in the logistic map [111],
occurs at the ensemble level, leading to the asymmetric period doubling at the trajectory level.
For larger r, we observe a narrow sextet window embedded in the locally (two-branched) ergodic
phase, which resembles the period-sextupling phase sandwiched by limit-cycle pairs shown in
the top row of Fig. 2.4. While the toy model (2.33) and the modulated Dicke model share many
common features, only the latter shows transitions between limit cycles and fixed points around
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Figure 2.6: (a) Stroboscopic dissipative dynamics of the scaled angular momenta of j, (solid),

y (dashed), and j, (dotted) in the two-qubit Dicke model with x = 0.05,¢ = 0.1 and A =1
(strong coupling). The inset shows quadratures, i.e., z (dotted) and p (solid). (b) Stroboscopic
dynamics for isolated systems (k = 0,e = 0.1, and A = 1) in the strong-coupling regime. (c)
Stroboscopic dissipative dynamics in the weak-coupling regime (k = 0.05,¢ = 0.1, and A = 0.1).
(d) Stroboscopic unitary dynamics in the weak-coupling regime (k = 0,e = 0.1, and A = 0.1).
Only (a) shows a DTC transient. The initial state is always |=)®|0), where |=) is the eigenstate
of J, with eigenvalue N/2 (N = 2) and |0) is the photon vacuum. Reproduced from Fig. 3 of
Ref. [34]. Copyright © 2018 by the American Physical Society.

€ = 0 and —0.07. These transitions are a Floquet version of the Hopf bifurcation [114], which
requires at least two continuous variables.

2.3.2 Open-system dynamics in the few-atom regime
Numerical results from exact diagonalization

Let us move to the few-atom regime (i.e., N ~ O(1)), which is the case for circuit QED
systems. We first consider the modulated open Dicke model with N = 2 and demonstrate that
the interplay between strong coupling and dissipation causes a DTC behavior' for unexpectedly
long periods even in this deep quantum regime. By unexpectedly long we mean that the DTC
transient lasts much longer than the decay time x~' ~ 3T

We solve the Floquet-GKSL dynamics governed by Egs. (2.1) and (2.18) using the exact
diagonalization approach under a truncation up to 16 photons. Figure 2.6 (a) shows the obtained
stroboscopic dynamics of the scaled angular momenta j, and quadratures x,p (inset) in the
strong-coupling regime, where x = 0.05,¢ = 0.1 and A = 1. The initial state is chosen to be
|=) ® |0), where |=) = ®§V:1 |—) is the eigenstate of J, with eigenvalue N/2 (N = 2) and |0)
is the photon vacuum. We clearly see that j, and x start oscillating with a period of 27T after

n this few-body regime, we avoid using the term “DTC order” since an order usually refers to a property in
the thermodynamic limit.
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Figure 2.7: (a) Stroboscopic dissipative dynamics of the three-qubit Dicke model with x =
0.05,€ = 0.05 and A = 1 (strong coupling). Scaled angular momenta of j, (solid), j, (dashed), j.
(dotted), and quadratures x (dotted) and p (solid) are shown. We clearly see that the DTC order
emerges. (b) Stroboscopic dissipative dynamics in the weak-coupling regime (k = 0.05,¢ = 0.05
and A = 0.1). (c) Stroboscopic unitary dynamics (k = 0,e = 0.05, and A = 1) in the strong
coupling regime. (d) Stroboscopic unitary dynamics in the weak-coupling regime (k = 0, =
0.05 and A = 0.1). In (b)-(d), no DTC order appears. The initial state is always chosen to be
|=) ® |0), where |=) = ®§V:1 |—) is the eigenstate of .J, with eigenvalue N/2 (N = 3) and |0)
is the photon vacuum. Reproduced from Supplementary Fig. 5 of Ref. [34]. Copyright (© 2018

by the American Physical Society.
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t ~ 5T, which persists even at ¢ ~ 507". This result shows that our strong-coupling modulated
open Dicke model features a DTC transient even in the deep quantum regime before reaching
the stationary state. For the sake of comparison, we show in Fig. 2.6 (b) the stroboscopic
dynamics for an isolated Dicke model (N = 2,k = 0,e = 0.1, A\ = 1) starting from the same
initial state. We can see that the expectation value of each observable randomly fluctuates and
does not have temporal order in contrast to its dissipative counterpart.

We note that no DTC transient emerges in the weak-coupling regime. Figure 2.6 (c) shows
the Floquet dynamics for an open (k = 0.05) Dicke model with € = 0.1 and A = 0.1. Unlike
the DTC transient in Fig. 2.7(a) with a fixed (approximate) period 2T that is robust against
small variations of the parameters, the low-frequency oscillation has a period around 7'/e which
is sensitive to the detuning e. This is similar to the observation that the period doubling is
fragile in noninteracting spin systems [32,74]. A similar dynamics is found in a weakly coupled
isolated Dicke system (k = 0,¢ = 0.1 and A = 0.1) as shown in Fig. 2.6 (d). Thus, neither
photon loss nor strong coupling alone gives rise to the DTC transient.

So far, we have seen that, in the strong-coupling regime, the transient DTC behavior is
stabilized by dissipation even for two qubits. We here demonstrate that the same feature is
shared by the modulated open Dicke models with N = 3. Figure 2.7 shows time evolutions
of the scaled angular momenta and quadratures for three-qubit Dicke models with different
parameters (the detuning is fixed to be € = 0.05). As shown in Fig. 2.7 (a), the transient DTC
behavior emerges for the dissipative case (k = 0.05) in the strong-coupling regime (A =1). On
the other hand, no transient DTC behavior appears in the closed counterpart (x = 0 and A = 1),
as shown in Fig. 2.7 (¢). In the weak-coupling regime (A = 0.1), the dissipative (k = 0.05, Fig.
2.7 (b)) and closed (k = 0, Fig. 2.7 (d)) cases behave similarly to each other, both of which do
not exhibit the DTC behavior.

Understanding the DTC behavior from the Floquet-GKSL spectrum

As shown in the previous subsection, the transient DT'C behavior of the modulated open Dicke
model in the deep quantum regime emerges only in the presence of both dissipation and strong
coupling. Here we present further discussions on this issue on the basis of the spectrum analysis
of the Floquet-GKSL superoperator

Up = Telo 4O, (2.34)

where T denotes the time ordering.
Let {uq}o and {|uq)}a be a set of eigenvalues and that of right (super)eigenvectors of U,
respectively. The vector |pg) representing the initial state py evolves stroboscopically as

lpur) =Y u(alpo)ua), (2.35)

where |i) is the left eigenvector corresponding to |u) and the Hilbert-Schmidt inner product
is defined as

(A|B) = Tr[ATB]. (2.36)

The eigenvector |uy) with uy = 1 represents the stationary state of the Floquet-GKSL dynam-
ics. If we assume that the stationary state is unique, the other eigenvectors have eigenvalues
with |us| < 1 and decay exponentially due to the factor ul}. However, if there exists a single
eigenvector |u_) whose eigenvalue u_ is close to —1, | p,7) becomes a mixture of two eigenmodes
of |uy) for relatively large n. In this case, if we approximate the state at time t, = nT as

|Pnr) = cfug) +cfu-), (2.37)
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Figure 2.8: Spectra of the Floquet-GKSL superoperator Ur for different coupling strength A =
0,0.2,0.4,0.6 and 0.8. Arrows show long-lived eigenmodes whose eigenvalues satisfy |uq| > 0.9
and u, # 1. Note that such an eigenmode does not exist for A = 0.6. As indicated by the dotted
arrows, such eigenmodes are not close to —1 in the weak-coupling regime (A < 0.6). On the
other hand, in the strong-coupling regime (A > 0.8), there exists a single real eigenmode whose
eigenvalue is close to —1, as indicated by the solid arrows. The data are obtained by the exact
diagonalization method, in which we truncate the Hilbert space up to 16 photons. Reproduced
from Supplementary Fig. 4 of Ref. [34]. Copyright (© 2018 by the American Physical Society.

we will obtain

lp(na)T) = cqluy) —c—|u),  |pmyyr) = clug) +c-fu-), (2.38)

provided that the decay of |u_) is neglected. This regime exhibits the DTC behavior with a
period of 2T". Note that ¢y = 1 if |uy) is a normalized steady state with the unit trace.

It is worthwhile to mention that the DTC order manifests only if we look at an odd-parity
observable O, such as z, p, J; and J,. That is, the DTC order emerges only if we look at those
observables satisfying

PO = POP = —0, (2.39)

where P is the parity operator defined in Eq. (2.4). Note that the parity operation preserves
the trace, so that each odd-parity operator must be traceless. By taking the contraposition, we
know that the unique steady state |uy) must feature even parity, i.e.,

Plus) = fus). (2.40)
We can also argue that |u_) is an odd-parity operator, i.e.,

Plu_) = —|u_), (2.41)
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from the perspective of continuous deformation of Up from the ideal form PefMT/2 and the
discrete nature of parity eigenvalues. Therefore, |u;) contributes nothing to (O) and only |u_)
in Eq. (2.38) contributes a finite expectation value and thus gives rise to the DTC order. On
the other hand, the expectation of an even-parity operator, such as n = afa and J,, stays
unchanged during the stroboscopic evolution given by Eq. (2.38), since only |uy) contributes a
finite value but the coefficient does not flip its sign after a period.

Figure 2.8 shows the spectra of Ur for different coupling strength A. The other parameters
are fixed to be k = 0.05 and € = 0.1. Arrows in Fig. 2.8 show long-lived eigenmodes whose
eigenvalues satisfy |uq| > 0.9 and u, # 1. As indicated by the dotted arrows, such eigenmodes
are not close to —1 in the weak-coupling regime (A < 0.6). We note that the approximated
ten-fold rotation symmetry of the spectrum for A = 0 is due to the specific choice ¢ = 0.1
(7! = 10). On the other hand, in the strong-coupling regime (A > 0.8), there exists a single
real eigenmode whose eigenvalue is close to —1, as indicated by solid arrows. This eigenmode
corresponds to |u_) above and contributes to the transient DTC behavior.

2.4 General phenomenology

With all the obtained numerical results in mind, we are now in a position to establish a general
phenomenology for such open-system DTCs. This phenomenological theory, which is derived
from the modulated open Dicke model by eliminating the atomic degrees of freedom, turns out
to be the Floquet-GKSL generalization of the scalar-field Landau theory in 0 + 1 dimension.
We call this theory the Floquet-GKSL-Landau theory and expect it to capture the general
qualitative features of a wide class of Floquet open systems in addition to the Dicke model. We
demonstrate within this theory that the lifetime of the DTC order increases exponentially with
respect to the system size.

2.4.1 Floquet-GKSL-Landau theory
Semiclassical derivation

We first derive the effective dynamics of the photon degree of freedom on the basis of a semi-
classical argument. Recall that the semiclassical equation of motion is given by Eq. (2.26).
Assuming that wg > w, we expect that the atomic degrees of freedom will soon equilibrate
(ju =0, 4 = x,y,2) upon a small change in the photon degree of freedom. In this case, j, can
be estimated from z via

M 2wz

o = ——F/——.
’ Vwi + 8wA?z?
Note that the minus sign comes from the assumption that j, < 0, which can be justified by a

low-energy atomic state like j, = —1/2 at the initial time. Substituting Eq. (2.42) into the first
two equations in Eq. (2.26) yields a closed equation of motion in terms of x and p alone:

(2.42)

. 9 K n AN2wx . K
P=—WT— P+t ———— T =p— =
2 VWi + 8wAlz? 2

If 8wA?2? < w?, which turns out to be equivalent to A ~ \. (since x ~ (Awp/A2y/w)+/1 — A2/A\%),
Eq. (2.43) can well be approximated by

x. (2.43)

2 4 2
) 9 K 4N “w 16\ w* 4 . K
I L _ R 2.44
D Wi —op o T 3 T T=p-32 (2.44)
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from which we can infer that the corresponding Lindblad master equation is given by

)\2 4
pr = —i |lwa'a — =—(a +a)? + 3 (a" 4+ a)*, p| + kD[a]p;. (2.45)
wo wON

With X replaced by A+ = Ary 7, the above equation describes the dissipative and Floquet coun-
terpart of the well-known Landau theory. In this sense, while derived from the open Dicke
model, the general form of Eq. (2.45)

Qy

32—]\[@T +a) (2.46)

) Q
pr = —i[Hy, pt] + kDla]pe, Hri, = wala — Zz(cfr + a)2 +

should widely be applicable to periodically driven single-mode open quantum systems. It is
worth mentioning that Eq. (2.46) features a parity symmetry with respect to P, = /™',
Consistency check based on adiabatic elimination

A result consistent with Eq. (2.45) can be obtained by using adiabatic elimination, which is a
purely quantum treatment. To do this, we first write down the Dicke Hamiltonian

bth bh N
which can be approximated as
A
H = wa'a + wob'd + A(a’ + a) (b +b) — ﬁ(aT + a)(b"%b + bT?) (2.48)

if bTb <« N, i.e., almost all the atoms are at their ground states. In the case of w < wy and
starting from the ground state |0); of the atomic ensemble, the creation of an atomic excitation
is expected to be blocked by a large energy discrepancy. The task of adiabatic elimination is
nothing but to find out an effective Hamiltonian H, of the photon field alone, which satisfies

e tHat ~(0|e7HHE|0),,. (2.49)

This problem is more conveniently solved in the frequency domain by using the Green’s-function
formalism and the Dyson equation

GO =Go(Q)t - 2(Q), (2.50)

where G(Q) = ,(0|(Q2 — H +i07)~1|0), is the photon Green’s function in the presence of an
interaction, Go(Q) = (Q2—wa'a+i07)~! is the free photon Green’s function and X(€2) is the self-
energy, which can be perturbatively computed by summing up the contribution from irreducible
virtual processes (see Fig. 2.9). The leading-order contribution arises from the virtual process
of single atomic excitation and is given by

2

A
21(2) = (0| Vo1Gpo(2)Vi0]0), = o (a" +a)?, (2.51)

where Vig = VOT1 = Ma' + a)bl and Gyo(Q) = (2 — web'b +i07) 7! is the free Green’s function
of atoms. Note that in Eq. (2.51) the term i0" can be neglected since typically < wg. The
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Figure 2.9: Diagramatic illustration of the single (left) and double (right) atomic excitation
virtual processes. The creation, annihilation and free propagation of an atomic excitation are
represented as a filled dot, an open dot and a dashed line, respectively. The larger open (filled)
dot refers to the coalescence of two atomic excitations (the split of an atomic excitation).
Reproduced from Supplementary Fig. 6 of Ref. [34]. Copyright © 2018 by the American
Physical Society.

subleading-order contribution arises from the virtual process of two atomic excitation and is
given by
22(2) = (0] (Vo1 Goo () Vi2Goo () VioGeo (1) Vio + Vo1 Gro(2) Vor Gro(2) Va1 Gro(2) Vio) [0)s
223

— T 4
N — w2 —2ag) @ T
(2.52)
where Vo1 = VlT2 = —ﬁ(cﬁ + a)b!?b and the factor of 2 in the numerator results from
5(0|b26T20bT[0);, = (0|bbTB2HT2]0);, = 2. (2.53)

Since 2 ~ w <K wp, we can safely approximate ¥ 2(£2) by X 2(0) to obtain an effective Hamil-

tonian )

A A4
Hy = Hy + 21(0) + 22(0) = wala — w—g(aT +a)® + WS—N(CLT +a)?, (2.54)

which coincides with the unitary part in Eq. (2.45).

Mean-field analysis

On the mean-field level, Eq. (2.46) implies the following equation of motion of a = (a):
i@az(u)—iE)a—Q ReoH—g(Rea)?’ (2.55)
t 2 2 N 9 .

which can be rewritten as

i0,& = (w . zg) & — QoRe & + Qu(Re &) (2.56)

after the rescaling & = a/v/N. In addition to dy = 0, when Qy > Q. = w + %, Eq. (2.56) has

two fixed points
Qo — QC
do = <1 + ) L (2.57)

near which the semiclassical equation of motion (2.56) can be linearized to give

i0,66 = (w - z—) 56 + [304(Re do)? — Q]Re da. (2.58)
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The two eigenvalues of Eq. (2.58) read

1

Ay = —§[f<c + /K2 — 8w(Q — Qo)) (2.59)

which are both negative when Q9 > ), implying the stability of the two fixed points (2.57).

Replacing A with A\, = M\47, we may expect that the lifetime of the damping mode besides

the DTC mode is O(k~!). After a similar linearization-based analysis, we can obtain the two
eigenfrequencies of the damping modes near & = 0 to be

N, = —%[m + /K2 + 4w(Qz — Q)] (2.60)

As expected, both of X/, are negative (A becomes positive) when Qs < Q. (Q2 > ), implying
the stability (instability) of the fixed point & = 0.

We note that Eq. (2.57) can be used to perform a self-consistent check to justify the adiabatic
elimination. Substituting Qg = 4\2/wg and Q4 = 202 /wy into Eq. (2.57), we obtain

- w
jdof* = 22 n(1 — ), (2.61)

where = A2/A2? with A\, = (1/2)+/(wo/w)(w? + k2/4). While this result (2.61) differs generally
from the order parameter |&|?> = wo(u ™! — u)/(4w) in the original Dicke model (cf. Eq. (2.14)),
they do coincide near A = A or © = 1. This provides a piece of evidence that the effective
theory does give a good approximation of the Dicke model in certain limits.

2.4.2 Scaling of the DTC lifetime
Numerical calculation by exact diagonalization

The above mean-field analysis should become exact in the large-N limit and can help us map
out the dynamical phase diagram, just like what we did for the modulated Dicke model. On
the other hand, it cannot tell us how the lifetime of the DTC mode scales with respect to IV,
which is a particularly important question of our concern. A natural expectation is that the
lifttime becomes exponentially long with increasing N, since the underlying dissipative phase
transition features an exponentially small damping gap [116]. However, it is highly nontrivial
to find whether this is the case even in a Floquet open system. It turns out to be difficult to
handle this problem numerically in the original modulated open Dicke model with both atomic
and photonic degrees of freedom. This difficulty emphasizes the importance of scalable circuit-
QED-based quantum simulation with up to tens of qubits [117], as we will discuss in the next
section. Nevertheless, we can gain qualitative insights by considering the previously derived
Floquet-GKSL-Landau theory:

% = — i[HL(22(t), Qu(?)), pe] + wDlalpy,
(2.62)

Q Q
— wal 20t 2 4 (qt 4
Hy,(Q2,) =wa'a 1 (a" +a)” + 32N(a +a)".

This model is numerically much more tractable since there is only the photon field with no
atomic degrees of freedom.

To investigate the lifetime scaling of the DTC mode, we employ the exact diagonalization
method, by means of which it is more convenient to rewrite the original GKSL equation in
Eq. (2.62) into

pr = —i(Hegrpr — ptH’Iﬁ) + kapgal. (2.63)
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Figure 2.10: (a) Typical Floquet-GKSL spectrum of an open-system DTC. The DTC mode
and the steady state (SS) locate at —1 + ¢ and 1, respectively, with 6 ~ O(e=¢V). The other
modes locate in a disk (shaded) with radius r < 1 for VN, so that their lifetime is bounded by
a constant —T'/Inr. (b) Finite-size scaling for the lifetime 7 = —T'/In(1 — §) of the DTC and
the second longest-lived (SLL) modes in the Floquet-GKSL-Landau model (2.62) for ¢ = 0.02
and —0.05. Reproduced from Fig. 4 of Ref. [34]. Copyright © 2018 by the American Physical
Society.

Here the non-Hermitian effective Hamiltonian is given by

QQ K 394 394 QQ 2 2
Hug = (w— 2228 i 1)+ (2522 f
off <w 5 12>n+16Nn(n+ )+(16N 4>(a +a”) 200
4 12 2 Qy t4 4 '
+8—N(a n+na)+327N(a +a%),

where the time arguments of €2y and ()4 are dropped for simplicity. In addition, we have to
truncate the Hilbert space up to a |nmax) to make its dimension finite. While we expect that
the profile of the Floquet steady state (approximately a Poisson distribution in the Fock space)
is reliable as long as nuyax = 2|ag|?, it is not clear whether the exponentially long lifetime could
be reliable. Nevertheless, we can certify the precision by changing n,.x in actual numerical
calculations, and we have indeed confirmed the convergence.

In practice, we can perform exact diagonalization independently for the odd and even parity
sectors, since Eq. (2.62) respects the parity symmetry. To be concrete, if we choose the basis to
be |n)(m| with |m) and |n) being photon Fock states, then the GKSL generator in Eq. (2.62)
never mixes the sector having odd m+n (odd parity) with that having even m+n (even parity).
This is true also for the Floquet-GKSL superoperator. In particular, the steady state (DTC
mode) can be found by diagonalizing the even-parity (odd-parity) sector. Using this approach,
we carry out numerical calculations for a specific protocol

L5w, 0<t<T;

o - (2.65)
0, E§t<T:(2_€)5’

Qu(t) = Qa(t) = Wt +T) = {

and xk = 0.05w. The results are presented in Fig. 2.10.
As illustrated in Fig. 2.10 (a), the spectrum of the Floquet-GKSL superoperator for Eq. (2.62)
indeed has a DTC mode near —1 under some appropriately chosen parameters, which is similar
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to the case of the Dicke model (see Fig. 2.8). In Fig. 2.10 (b), we show the lifetime of the DTC
(longest-lived) and that of the second longest-lived mode (except for the steady state). We do
find an exponential scaling of the lifetime of the DTC order with respect to IV and the saturation
of the lifetime of the second longest-lived mode. Note that the lifetime of a one-dimensional
many-body localized DTC obeys the same exponential scaling in the system size [69], although
the mechanism of DTC order is different [28,29,73,74].

Possible phenomenology for the asymmetric DTC behavior

We have performed yet another finite-size scaling analysis for a large imperfection € = 0.12, the
semiclassical dynamics of which exhibits an asymmetric DTC behavior. As shown in Figs. 2.11
(a) and (b), in addition to the exponentially long-lived DTC mode, the second longest-lived
mode turns out to possess a relatively long lifetime that scales linearly with respect to N. In
Fig. 2.11 (c¢) we also present the stroboscopic dynamics of the rescaled quadratures starting from
a coherent state (cf. Eq. (2.16)) po = |a)(a| with & = \/N/5 + y/N/10i. The dynamics turns
out to be the relaxation of an asymmetric DTC (ADTC) behavior to the usual symmetric DTC
order. Since the life time of the transient ADTC behavior seems to be consistent with that of
the second longest-lived mode, it is natural to expect the latter to give rise to the former. In the
thermodynamic limit, the second longest-lived mode persists and so does the ADTC behavior.

To establish a possible phenomenology for the ADTC behavior, it is constructive to look at
the full Floquet-GKSL spectrum (see Fig. 2.11 (d)). After an intermediately large number of
periods, e.g., n ~ (’)(\/JV), we can well approximate the state of the system by

|pnT) ~ |pss) + CD|0D) + CO|JO) + CE|O-E)a (266)

where |pss), |op), |0o) and |og) are the steady state, the DTC mode, the second longest-
lived mode in the odd-parity sector parity and the longest-lived mode in the even-parity sector,
respectively. As indicated by Fig. 2.11 (d), the eigenvalues of |0g) and |og) are almost symmetric
with respect to the imaginary axis, implying that their lifetimes are nearly the same. More
information of these four eigenmodes is summarized in Table 4.1. After a single period, the
state of the system (2.66) evolves into

|P(n+1)T) = |pss) — cplop) + coloo) — crlor). (2.67)

Note that the coefficient of |op) does not flip the sign and thus serves as a basis for the DTC
order resulting from |op) when we look at an odd-parity observable. Furthermore, we can infer
from Egs. (2.66) and (2.67) that the ADTC behavior emerges also in an even-parity observable,
lasting for a time of the order of N before eventually relaxing to a constant instead of an
exponentially long symmetric DTC order. In fact, this expectation has already been vindicated
in the stroboscopic dynamics of j, in the top right panel in Fig. 2.2 as well as that in the
rightmost panel in Fig. 2.4.

2.5 Experimental implementations

We here discuss concrete experimental implementation of the modulated open Dicke model in
a cavity QED setup and its variation in a circuit QED setup. The main ideas are schematically
illustrated in Fig. 2.12.

2.5.1 Cavity QED setup based on four-level atoms

It is known that, as a result of the Thomas-Reiche-Kuhn sum rule, the Dicke phase transition is
always killed by the A? term in an equilibrium cavity QED setup [89]. However, the influence of
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Figure 2.11: (a) Finite-size scaling for the lifetime of the DTC mode and that of the second
longest-lived mode in the Floquet-GKSL-Landau model with the protocol in Eq. (2.65) with € =
0.12. (b) Same as (a) but the vertical axis is in the normal scale rather than the logarithmic scale.
(c) Stroboscopic dynamics of rescaled quadratures p = i(at — a)/v2N and z = (a' +a)/V2N
(inset) starting from a coherent state. The parameters are the same as those in (a) but with
N fixed to be 80 and the photon truncation is nmax = 81. (d) Spectrum of the Floquet-GKSL
superoperator for the system in (c). The eigenvalues belonging to the odd (even) sector are
marked in blue (orange). Reproduced from Supplementary Fig. 7 of Ref. [34]. Copyright ©
2018 by the American Physical Society.

Table 2.1: Properties of several important Floquet-GKSL eigenmodes, including the steady
state (SS), the discrete time-crystalline (DTC) mode, the second longest-lived mode in the odd-
parity sector (OSLL), and the longest-lived mode in the even-parity sector (ELL) . We use the
symbol “~” to indicate the eventual decay of the mode after a long time.

State Parity Eigenvalue Odd-parity observable Even-parity observable

SS + 1 0 const.
DTC - —1+0(e™N) ~t -t 0
OSLL - 1-O(NY ~const. 0
ELL + -1+ 0O(N7Y 0 ~+ =t
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the A? term can be neglected in the rotating frame in an intrinsically nonequilibrium setup based
on the Raman transition, as pointed out in Ref. [102]. Such a proposal was first realized by using
the atomic motional degrees of freedom [91], which correspond to a fixed wy ~ 27 x 10 kHz. This
is not suitable for our proposal, since wy < w ~ 27 x 10 MHz and the parity operator cannot be
generated even approximately.” Instead, we suggest that the experiment reported in Ref. [94],
which is based fully on atomic internal states, might be an appropriate implementation of our
proposal, where wp, w and A are all of the same order of magnitude (~ 27 x 1 MHz).

We first summarize the main results in Ref. [102]. Consider an ensemble of four-level atoms
in an optical cavity with frequency w.. The four levels consist of two ground states [|), [1)
and two excited states |ep), |e1), whose frequencies are 0, wi, wap and w,y, respectively. As
shown in the upper half in Fig. 2.12, the cavity mode interacts with the atom via the dipole
transitions ||) <> |eg) and [T) <> |e;) with single-photon Rabi frequencies go and g;. Two
additional classical driving lasers (wrg, ) and (wr1,€21) are applied to couple [1) <> |ep) and
[4) <> |e1), respectively. The frequencies satisfy

Wl — wLo &~ 2wi, WL + wro =~ 2we (2.68)
in order to dramatically reduce the effective w and wyg in an appropriately chosen rotating frame.

The detunings

1
Ay = wao — i(WLO +wr1), Al =wa —wi (2.69)

are assumed to be so large that the excited-state manifold can be adiabatically eliminated. In
this case, the effective Hamiltonian reads

1 1
H.g = hwala + hwoJ, + hdaTad, + —=hA(a'J_ + aJy) + —=hN (aJ_ +alJ}), 2.70
ff 0> 2t ( +) Ny ( +),  (2.70)

where the parameters are given by

1 N 2 2
w—wc—(wL1+wLo)+2<go+gl>,

2 JAYYEREVAN]
1 1/ O
Wy = wy — §(WL1 —wro) + 1 (A(()) — A11> , (2.71)
) :ﬁ — ﬁ A\ = M N = M
AO Al’ 2AO ’ 2A1 ’

If we take an A2 term D(a + a')? into account, the only difference is a small shift in w by 2D,
which plays no role since w is tunable via changing wr; and wrs. The Dicke Hamiltonian can
be obtained from Eq. (2.70) by fine-tuning the parameters of the external driving lasers such
that § = 0 and A = ). Note that N ~ 10° is also a tunable quantity. We therefore have enough
degrees of freedom to independently control all the three parameters w, wg and A for the same
cavity (with fixed gg, g1, we and k).

To switch off the interaction in such a setup, we only have to switch off the driving lasers,
corresponding to Qg = Q; = 0 and thus A = ) = 0. Note that w and w; stay unchanged, since
w is independent of €1 and wy = w1 — (w1 — wr2)/2, provided that § = 0 and A = X\ are
satisfied. Therefore, by simply switching on and off the external driving lasers as shown in the
upper half in Fig. 2.12, we can realize the modulated open Dicke model.

2However, this regime might be relevant to the Lipkin-Meshkov-Glick model, which also supports the DTC
order by periodically switching off the all-to-all coupling [82]. Furthermore, Fig. 4 in Ref. [92] seems to suggest
the possibility to realize the DTC order in this regime.
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Figure 2.12: Detailed implementations of the modulated Dicke model and its variation in the
cavity (upper half) and circuit (lower half) QED systems. In the former case, the light-atom
coupling is a Raman process assisted by excited states of four-level atoms. The coupling can
be switched off if one stops shining the external driving lasers €2 1. In the latter case, the
light-atom coupling is simulated by inductive coupling between an LCR circuit (analogy of
microwave photons with loss) and an array of Josephson oscillators (artificial atoms). The
coupling can be turned off through a three-way switch (marked by blue circles). Reproduced
from Supplementary Fig. 8 of Ref. [34]. Copyright (© 2018 by the American Physical Society.
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2.5.2 Circuit QED setup based on inductive coupling

As for the circuit QED setup based on superconducting qubits, we note that, due to the absence
of the Thomas-Reiche-Kuhn sum rule for the capacitive coupling, the A% term could be negligible
in the strong-coupling regime without entering the rotating frame of reference [96] (although
still controversial [97,99]). For the inductive coupling, while the Dicke phase transition has not
yet been experimentally observed in superconducting circuits, the beyond-ultrastrong coupling
has recently been realized for a single flux qubit [101]. In a similar setup, the transient DTC
behavior might be observable by fine-tuning the parameters and scaling up the number of
superconducting qubits.

To be concrete, we discuss how to simulate a variation of the modulated open Dicke model
by slightly modifying a circuit proposed in Ref. [100], which has been demonstrated to exhibit
a superradiant phase transition. As shown in the lower half in Fig. 2.12, an LC'R circuit, which
corresponds to a lossy “photon” mode with frequency w = (LC)_% and decay rate k = (RC) ™!
is integrated with an array of N Josephson oscillators sharing the same flux bias @, = ®/2
(where ®y = h/(2e) is the flux quantum). The “light-atom” coupling can be turned on/off via a
three-way switch (marked by blue circles). If the photon-like and atom-like circuits are coupled,
the Hamiltonian reads

2 N — )2 27
H==4— E J
1= + —i—; 20J 2L0 + JCOS< ®, >

where the charge operator @ (g;) and the flux operator ¥ (¢;) of the LC'R circuit (the jth
artificial atom) satisfy [V,Q] = ih ([¢j,qr] = ihd;), Cy is the capacity of the Josephson
junction and Ej is the Josephson energy. The plus sign before Ej in Eq. (2.72) is due to the
global flux bias ®y,. This is crucial to enable the superradiant transition [100], which we believe
would create a transient DTC behavior even for small N.

Note that even if the A2 (¥? from (¢); — ¥)?) term is included, H; still has an exact parity
symmetry, i.e., the invariance under Q — —Q, ¥ — —V¥, ¢; — —¢; and ¢; — —;. This
symmetry is maintained for the GKSL equation, in which the jump operator is linear in () and
V. The parity operator can again be approximated as a time evolution under the following
noninteracting Hamiltonian:

: (2.72)

2 2
qj—i-]—i-EJcos( ;f;)] ) (2.73)

provided the anharmonicity is small so that

2 )3 1 /)2
E — ) ~F Ly=—|— 2.74
JCOS( By ) 7 — 2LJ J 2 <27T , (2.74)
and the parameters satisfy
o1\t
LC~|——— Cy. 2.75
( I LJ) 3 (2.75)

That is, the detuning between the LC R circuit and the Josephson oscillators is small.
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Chapter 3

Classification of matrix-product
unitaries with symmetries

In the previous chapter, we have focus on DTCs, which are novel dynamical phases that stro-
boscopically switch between different spontaneously symmetry-broken states. Having in mind
that topology gives yet another fundamental mechanism of phase transitions beyond the SSB
paradigm, it is natural to ask whether there exist dynamical phases that stroboscopically switch
between different topological states. In this chapter, we answer this question in the affirma-
tive in the context of matrix-product unitaries, the simplest tensor networks used to describe
locality-preserving nonequilibrium quantum dynamics in one spatial dimension (1D). Moreover,
we perform a systematic classification for the matrix-product unitaries with on-site unitary
symmetries and unveil a new type of topological invariants called symmetry-protected indices.
Our findings have experimentally verifiable consequences and important implications for 2D
Floquet symmetry-protected topological phases.

3.1 Introduction

3.1.1 Background, motivation and the main results

Classification of topological phases of matter is a central issue in modern condensed matter
physics [9]. A particular recent attention is focused on the classification of topological sys-
tems far from thermal equilibrium [44,46,65,69-71,118-125]. This tendency is largely driven
by the remarkable experimental developments in atomic, molecular and optical physics, which
have opened up unprecedented flexibility for controlling and probing quantum many-body dy-
namics [31,32,126-129]. Moreover, understanding nonequilibrium phases of matter per se is
of fundamental theoretical importance in extending the conventional paradigm of statistical
mechanics to the largely unexplored nonequilibrium regime [23,58,61].

For equilibrium interacting systems, the arguably most well-understood classification is that
of 1D bosonic symmetry-protected topological (SPT) phases [6, 130-132] as ground states of
gapped local Hamiltonians with symmetries. Thanks to the entanglement area law [133], these
1D SPT phases are well described by the matrix-product states (MPSs) [134-137], and are
completely classified by the second cohomology group [138—141], provided that the symmetries
are not spontaneously broken. An analogous minimal setting in the nonequilibrium context is
the classification of matriz-product unitaries (MPUs) [35,37,141,142], which have been shown
to be equivalent to quantum cellular automata [35]. They efficiently approximate finite-time 1D
dynamics generated by local Hamiltonians [36], as can be understood from the Lieb-Robinson
bound [143]. While an MPU can be regarded as an MPS with an enlarged local Hilbert space, the
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classification of MPUs can be very different from that of MPSs due to the unitarity requirement.
Indeed, without symmetry protection, MPSs can always be continuously deformed into product
states, while MPUs are classified by the (chiral) index quantized as the logarithm of a rational
number [35,37,142, 144]. Efforts have also been made to classify 1D SPT many-body-localized
(MBL) phases, and the result turns out to be the same as that of ground-state SPT MPSs [145].

In stark contrast to the case of MPSs, the problem of classifying MPUs commuting with a
local symmetry operation remains unsolved. In this chapter, we address this problem for general
on-site unitary symmetries forming a finite group G. First, we allow adding arbitrary symmetric
ancillas (identities) with arbitrary on-site representations of G. We prove that the combination
of the index and the second cohomology class completely classifies all the MPUs with given
symmetries. This actually proves a conjecture raised by Hastings [146] for quantum cellular
automata. Whenever the cohomology class is nontrivial, the MPU transfers a symmetric state
in one SPT phase into another, giving rise to a topological analogy of time crystalline oscillation
discussed in the previous chapter.

Second, we allow ancillas only with the same symmetry representation as the original system.
Here, we unveil a series of quantized symmetry-protected indices (SPIs). Nonzero SPIs quantify
an imbalance of the left and right transport of each group element in the Heisenberg picture.
We identify an observable signature of SPIs as the asymmetries in the two edges of symmetry-
string operators evolved by the MPU, and propose an interferometry experiment for probing
the SPIs relative to the index. Such an experimental scheme in turn inspires us to show that
the SPIs (as well as the indices and cohomology classes) are robust against disorder, i.e., they
stay well-defined for inhomogenous locality-preserving unitaries.

Our results should directly impact on the classification of Floquet SPT phases [25]. Given
a 2D Floquet system with boundary in the MBL regime, its edge dynamics is well described by
an MPU [37]. Here, we construct a class of 2D Floquet systems with edge MPUs characterized
by nontrivial SPIs, and provide a unified picture for understanding the edge dynamics of 2D
intrinsic Floquet SPT phases as symmetry-charge pumps.

3.1.2 Brief review on matrix-product states and unitaries

While we mainly focus on MPUs in this chapter, it is instructive to first review MPSs, which are
closely related to MPUs. With the translation-invariance and the periodic boundary condition
assumed, an MPS is a quantum many-body state that is defined on a 1D lattice and takes the
following form [134,136,137]:

‘\II) = Z Tr[Alejg---AjL”.jlj2---,jL>- (31)
j19j27"'7jL

Here L is the total length of the lattice, |js) denotes a state in a fized basis of the local Hilbert
space C? at the sth site, and {A;} is a set of D x D matrices with D being the bond dimension.
Such an MPS can be diagrammatically expressed as

N A 52

where the contractions of the horizontal legs correspond to the matrix products and the remain-
ing legs correspond to the local physical states (i.e., the subscript j in A;). Note that Eq. (3.1) is
invariant under the gauge transformation 4; — X A; X ~1 V4, where X is an arbitrary invertible
D x D matrix. Moreover, by multiplying an appropriate normalization factor, we can always
associate an MPS with a completely positive map E( - ) = ;A A} with unit spectral radius.
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Such a map can be diagrammatically represented by
/A\ (3.3)

If £ has a unique and positive-definite (i.e., full-ranked) fixed point, the corresponding MPS
is said to be normal and necessarily has short-range correlations. In this case, we can always
make € a quantum (or unital) channel by gauge transforming {A;}. All the 1D SPT phases’
are described by normal MPSs subject to certain symmetry constraints [132, 139, 140].

Let us move on to clarify the definition of MPUs and some basic facts. Qualitatively,
according to Ref. [35], an MPU is nothing but a 1D quantum cellular automaton defined as a
locality-preserving unitary transformation on a 1D lattice. By locality-preserving we mean that,
with the unitary denoted as U, any operator O supported on a finite region R is transformed
into UTOU supported on another finite region R’ O R. This property allows us to define a finite
Lieb-Robinson length as the minimal length Iy g such that R’ C [j —IyRr, j + lLr] for any on-site
operator O supported on the jth site for any j.

Quantitatively, with the local Hilbert-space dimension assumed to be d, an MPU of length
L is a unitary operator U : (C*)®L — (C4)®L generated by a rank-four tensor U:

&=

U =" Tolthy, Uiy, - Uiy, linia i) (rja - . dLl (3.4)

01,82, 58L,J1,J25++ ] L

where the virtual indices are contracted with each other and two physics indices label the local
input and output states. Similarly to the case of MPSs (3.1), the dimension D of the matrices
{U;;} is also called the bond dimension. If we consider U;; as a rank-three tensor by combining
1 and j together, then the vectorized MPU is always a normal MPS. Moreover, it is shown in
Ref. [35] that, after blocking & times, i.e., combining multiple physical indices into one index:

where k is at most D*, U, — U becomes simple in the sense that the blocked tensor satisfies

(3.5)

(3.6)

(3.7)

'Here we have actually assumed that no SSB occurs. Accordingly, we have excluded those unconventional
topological phases protected by some partially broken symmetries [139, 141].
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This property implies that the Lieb-Robinson length [1r is bounded from above by k.? The
corresponding MPU generated by the blocked tensor acquires the standard form

_
(3.8)

in terms of unitaries u : (C%)®2 — C!@C" and v : C"®C! — (C%")®2. Throughout this chapter,
we apply operators in the graphical notation from bottom to top. The unitaries v and v in the
standard form (3.8) are unique up to gauge transformations

uw— (XT@YNu, v— oY ®X), (3.9)

where X € U(l) and Y € U(r) (U(n): set of n x n unitaries). Conversely, two arbitrary unitaries
u and v generate an MPU, possibly with the unit cell doubled.

We will focus our attention on G-symmetric MPUs which commute with a unitary repre-
sentation pg4 of the finite group G, i.e.,

P UB] =0, Vged. (3.10)

Henceforth, we will basically omit the length L due to the translation-invariance of MPUs.
Although that we assume the translation invariance throughout this chapter, all the topological
indicators we unveil can be shown to be stable against disorder (see Appendix A). The essential
physics behind the stability is the locality-preserving constraint, which is obviously satisfied by
the standard form (3.8) even if u and v are position-dependent.

3.2 Systematic classifications

Even for equilibrium systems, it is known that the topological classifications can be altered
depending on the definitions of continuous deformations. For example, a Hopf insulator is
topologically nontrivial in the sense of homotopy, but becomes a trivial phase in the more
crude K-theory classification [147]. Similar things happen for the classification of MPUs. In
particular, we will define a weak and a strong version of topological equivalence and show that
the latter has a much richer classification.

3.2.1 Equivalence and the complete classification

We first classify the symmetric MPUs according to the following equivalence relation.

Definition 1 (Equivalence) Two G-symmetric MPUs Uy and Uy are equivalent if we allow
for blocking (i.e., treating multiple sites as a single site) and the addition of local ancillas with the
identity operator, such that the MPUs can then be continuously connected within the manifold
of symmetric MPUs.

Here, by adding local ancillas to an MPU U, we mean that we take the enlarged MPU U’ =
U® 1§L on (Cd ® Cda)®L7 and consider the representation p; = pg ® 04, where o can be an
arbitrary representation of G on C%,

2We believe that the minimal k for achieving the simple property is equal to ILr, although a rigorous proof
is not yet made. Nevertheless, lrr < k is good enough for deducing that an MPU with a finite bond dimension
has a finite Lieb-Robinson length.
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An MPU can be considered as a normal MPS by bunching the two physical indices of each
tensor into one. Whenever inputting a symmetry operator p, on the physical level, we can
identify a unitary z, on the virtual level of ¢ [138]:

9
= .
@) (3.11)
Here, z4 is unique up to a U(1) phase and forms a projective representation of G:
292 = ew(g’h)zgh, e?9h) e U(1), Vg,heG. (3.12)
Accordingly, €?@") is unique up to a coboundary and satisfies the cocycle condition
0(g,h) + 6(gh,k) =0(g,hk) + 0(h, k), Vg,h, k€ G, (3.13)

implying that its cohomology class in H?(G, U(1)) is well-defined. It is apparent that z, does not
change upon blocking. When composing or tensoring two symmetric MP Us with representations
z; and z’g’ , the projective representation on the MPS level becomes the tensor product z, = z’g ®
zg , implying that the corresponding cohomology classes sum up. In particular, the cohomology
class stays unchanged upon adding trivial ancillas.

Alternatively, we can identify the cohomology class from the standard form (3.8). Since

U =pd"U(pd™)", (3.14)

we know that u and v from the standard form of the lhs generate the same MPU as u(p; ® p;)
and (pg ® pg)v from the standard form of the rhs. The gauge freedom (3.9) then immediately

results in the existence of unitary x4,y, such that

L 00 60

[« ] and [ v | = [ v ]

| ’ (3.15)

Applying the group elements g and h separately or jointly, we obtain

V(YgYn @ TgTh) = (Pgh @ pgn)v = v(Ygh @ Tgn), (3.16)

which implies that y, ® x4 forms a linear representation. Hence y, and z, form projective
representations that have opposite phase terms (cocycles) €9 e U(1):

Tgxp = ew(g’h)xgh, YgUh = e_ie(g’h)ygh. (3.17)

In other words, z, and y, belong to the opposite cohomology classes. Here we use the same
notation e?(9") as in Eq. (3.12) because the cohomology class of z, (y,) is indeed the same
as (opposite to) that of z;. This relation can be understood by considering the singular value

decomposition of v
P~ =l
: H (3.18)
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Figure 3.1: (a) G-symmetric MPS evolved by a G-symmetric MPU with the cohomology classes
summing up. (b) Zy x Zg-symmetric MPU in the nontrivial cohomology class. Here o is the
delta tensor and H is the Hadamard matrix. (c) Stroboscopic dynamics of the entanglement
spectrum (ES) governed by (b) starting from a symmetric product state. Reproduced from
Fig. 1 of Ref. [38]. Copyright (© 2020 by the American Physical Society.

which, upon the action of pg4, transforms as

Q- and -
& ' (3.19)

Examples of MPUs with nontrivial cohomology classes are already found in Refs. [148,149]
as the edge dynamics of 2D intrinsic Floquet SPT phases.® Being initialized as a symmetric
state, a nontrivial 1D edge evolves from one SPT phase into another after each Floquet period,
reminiscent of the DTCs which toggle between different symmetry-broken phases [28-30, 74].
In the tensor-network picture, we can understand this “topological DTC oscillation” from the
virtual level — when a symmetric MPS is evolved by a symmetric MPU, their cohomology
classes simply sum up. This is schematically illustrated in Fig. 3.1(a), where the symmetric
MPS built from orange triangles denotes the current state |¥;) at time ¢ and is evolved by
the symmetric MPU U built from blue squares. The obtained MPS |¥;11) = U|¥;) marked
in purple is again symmetric and its cohomology class is the sum of those of |¥;) and U.
To diagnose this phenomenon, we may trace the stroboscopic evolution of the entanglement
spectrum [46,122,123], which is experimentally accessible by many-body-state tomography [150]
or interferometric measurement [151]. For the G = Zx x Zy SPT MPU corresponding to the
generator of H?(G,U(1)) = Zy [148], starting from a symmetric trivial state, we will show in
Sec. 3.3 that there arises (at least) (N/ged (N, t))?-fold degeneracy in the entanglement spectrum
after ¢ time steps. See Figs. 3.1(b) and (c) for the simplest case N = 2. Here the Zy x Zy-
symmetric MPU is built from adjacent controlled Hadamard gates. The stroboscopic dynamics
generated by this MPU is a toggle between a trivial direct-product state and a nontrivial 1D
cluster state, which have no and 4-fold degeneracies in the entanglement spectrum, respectively.
More general examples with nontrivial cohomology classes will be given in the next section.

In addition to the cohomology class, we can always define the (chiral) index for an MPU
as [35,142,144] X

) T

ind = 3 In 7
which captures the imbalance between right-propagating quantum information and left-propagating
one. Unlike the cohomology class, this topological invariant has no counterpart in MPSs, and

(3.20)

3By intrinsic, we mean that they have no equilibrium counterparts and correspond to the H?(G,U(1)) part
in the cohomology classification H*(Z x G,U(1)) = H*(G,U(1)) x H*(G,U(1)) [70].
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can thus be considered as being originated in the unitary constraint for MPUs. On the other
hand, just like the cohomology class, the index is also stable under blocking and additive under
tensoring as well as composition of MPUs [35]. A prototypical example of an MPU with a
nontrivial index is a left or right translation unitary, which appears at the boundary of another
type of 2D intrinsic Floquet topological phases — anomalous Floquet chiral phase [37,67].

As Hastings conjectured [146], equivalent phases of MPUs are indeed completely classified
by the index and cohomology class:

Theorem 1 (Equivalence) Two G-symmetric MPUs Uy and Uy with the same or different
symmetry representations are equivalent if and only if they share the same index and cohomology

class in H*(G,U(1)).

Note that the necessity of the same indices was shown by Cirac et al. [35]; that of the same
cohomology classes follows from [139], just as for MPS. We then only have to construct an
explicit path that continuously connects Uy with U;. This turns out to be always possible
after symmetrization of the on-site symmetry representations of Uy and U; and regularization
through attaching ancillas with regular representations, as detailed in the following.

If Uy and U; have different representations pg and p; of the symmetry, we may add ancillas
(identities) with p; and pg to Uy and Uy, respectively. The composition U{r Uy is then symmetric
with the representation pg ® p1. Since Uy and U; have the same cohomology class and index,
their additivity under composition leads to U. I Up having trivial cohomology class and zero index.
Therefore, we can apply the following lemma to UlJr Up.

Lemma 1 Fach symmetric MPU U of zero index and trivial cohomology is equivalent to the
identity.

According to this lemma, we can find a one-parameter class of symmetric MPUs V) such that
Vo = | and Uf Uy = V1. This gives a continuous path Uy = UOVAJr which is symmetric under G
for VA € [0, 1] and connects Uy and Uj.

We still have to prove Lemma 1. To this end, we may assume that U is simple, since blocking
is allowed in the definition of equivalence. Since U has trivial cohomology, a4z, and B4y, are
linear representations for suitable g, 35 € U(1). We now try to get rid of the phases such that
x4 and y, directly are linear representations. To this end, we perform the transformation

Ty = agry and yj = (g By) L Byvg, (3.21)
which does not alter Eq. (3.15) and leaves the linear representation

Ty ® Yy = Ty @ Yy = (agBy) ™" @ (agg) © (Bgyy) (3.22)

invariant. On the rhs, the leftmost factor must be a (one-dimensional) linear representation
because the other tensor product factors already are linear representations. Therefore, both x’g
and y; are linear representations. To unclutter notation, we call them z, and y, in the following.

Now we regularize by adding ancillas (identities) to U. We are free to choose the regular
representation py® as the action of the symmetry G on the ancillas. This yields the tensor
Uy, @ 1gim pree, and the standard form is affected in the following way:

S 1 I |

|
I [ [
a [ua Ta
| . (3.23)
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With the original physical legs blocked together with the ancillas, which correspond to the lines
over the boxes, the blocked local symmetry is g, = pg @ pg®. It acts on the unitaries of the
blocked standard form v = v ® 1(qim pree)2 as

(Py © Bg)0 = 0 (9 © PI%) ® (i, © %)) = (3, ® ). (3.24)

In fact, pg, T4, and gy, are equivalent linear representations. To see this, let us demonstrate
that 7 ® p"8 is equivalent to a (dim 7)-fold copy of p™® for any linear representation 7. Within
the character theory of finite groups [152], we can calculate

Tr(rg ® pg®) = Tr(7y)(dim pj®)dge = (dim 7e) Tr(py®), (3.25)

with the identity e € G. Since the MPU is index zero, py, x4, and y, have the same dimensions
and pg, T4, and g, are therefore equivalent representations.

The equivalence of representations means that there exist two unitaries X and Y such that
Ty = Xp, X" and §, = Yp,YT, implying

(g ® pg, V'] = [pg @ pg, W] =0, Vg € G, (3.26)

where 7/ = 5(Y ® X) and @' = (XT®@Y1)a are related to @ and @ by a gauge transformation, so
that they generate the same MPU. Thanks to Eq. (3.26), we can find two Hermitian operators
hy and h, such that @/ = e~ and ¢/ = e~ and

[Pg ® pg, hu] = [Pg @ pg, hy] =0, Vg € G. (3.27)

Defining @' (\) = e~ and #'(\) = e~ we immediately know that the generated MPU
U(A) gives a continuous path which respects all the symmetries and interpolates U and the
(global) identity | = 1¥%.

3.2.2 Strong equivalence and the symmetry-protected indices

In real physical systems with symmetries, the representation is usually determined by the micro-
scopic details and cannot be changed freely. This motivates us to ask how the classification will
be modified if the representation is fixed. Forbidding arbitrary representations for the ancillas
in Def. 1 leads to the following;:

Definition 2 (Strong Equivalence) Two G-symmetric MPUs Uy and Uy are strongly equiv-
alent if (i) their on-site representations are (generally different) powers of a single fized repre-
sentation p of G and (ii) they can be continuously connected within the manifold of symmetric
MPUs upon blocking and/or adding identities as ancillas with representation p.

If p is regular, we return to Theorem 1. Otherwise, there is at least one g # e with character
Xg = Tr pgy # 0. In this case, the notion of strong equivalence refines the phase structure beyond
Theorem 1, as revealed by the SPIs which are a natural generalization of the index (3.20), which

can be rewritten as ) T
ind:fln’ ry6|,
2 | Tra.|

to other group elements other than e (trivial identity element):

(3.28)

Definition 3 (Symmetry Protected Index) Given a G-symmetric MPU U for which we

can determine x4 and yq, from a standard form, the SPI with respect to g € G with x4 # 0 is

defined as

1

T
ind, = ln‘ ~Yg

5 . (3.29)

Trz,
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Given a blocking number k, the SPI is well defined since the absolute value removes the phase
ambiguity and the trace is gauge-invariant. Moreover, we can show that, just as in ind = ind,
[35], ind is invariant under blocking and additive under tensoring and composition:

Proposition 1 Given a G-symmetric MPU generated by U and g € G with x4 # 0, the SPI

Tr
indg = - 1In Yo

3.30
2 Trz, ( )

is well-defined, although the standard form is not unique.

Proof: Having in mind that the SPI is well-defined for a given blocking number k& > kg, we only
have to prove that the SPI does not depend on k. For Vk > kg, we can always find m, mg € Z+
such that km = kgmo = K. Denoting the standard form of Uy, and U}, as ug,, vk, and ug, v,
respectively, by further blocking the former my times (see Fig. 3.2(a)) or the latter m times, we
obtain two equivalent standard forms for Ux:

U = <1®k ® U}‘?(m—l) ® :LQZ)k)uliZ)m7

vi = 18km=1) o o & 1®k(m71)’ and
/K : (3.31)
v = 1®ko(mo—1) Vo ® 1®k0(m071)’

l®k0 ® U;i(mofl) ® 1®ko)u?0mo’

which should be related by a gauge transformation [35]. Accordingly, x4 and y, for Uy can be
obtained to be

Tk ® Pj;@k(m_l), P?k(m_l) ® Yk,g, and

k -1 k -1
iy ® 50, p@hoo=)

(3.32)

1Y ® Yko,g>

where xy g, yr,g are the projective representations on the virtual level of the standard form of
U, Recalling that ind, is well-defined for a given blocking number, we have

. I 3
indy,(Ur) = iln T g gl [ F D indg (Uy,)
LT |" Fotmo-1) (3.33)
— Yko,g!1Xg _ indg(uk0)~
2 | Trzpy gllxglFolmo=D
So far, we have confirmed that the SPI is well-defined. O

Proposition 2 The SPI is additive by tensoring and composition.

Proof: The case of tensoring is almost trivial — on the virtual level of the standard form, the
projective representations of a tensored MPU U = U; ® Uy are given by the tensor product of
those of Uy and Uy. Using the trace identity Trz; ® xg = Trxq Trzg, we immediately obtain
the additivity of the SPI.

For the case of composition, we consider two G-symmetric standard-form (after blocking ko
sites into one) MPUs Ué6k°L) and Ul(ﬁkOL) generated by ug,vg and u1,v; and their composition

U(GkoL) — Ul(GkOL) UéﬁkOL). By further blocking three sites into one, the building blocks u,v for

the standard form of U(®%0L) can be related to those for UéﬁkOL) and Ul(ﬁkOL) via (see Fig. 3.2(b))

u={xg. ® [(1%% @ uy ® 1%%)0$?] @ yo . JuS?,

(3.34)
v =07 {y1e ® WP (1% ® vo ® 19%0)] @ 21}
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Figure 3.2: Blocking protocols for showing (a) the blocking independence and (b) the additivity
of the SPIs. Reproduced from Supplementary Fig. 4 of Ref. [38]. Copyright © 2020 by the
American Physical Society.

Therefore, on the virtual level of the standard form of U®%0L) the projective representations
read

T=2x0® p®k0 Kry, y=41® p®k0 X Yo, (3.35)

which implies that the SPIs are additive. U

We further claim that the SPI is a topological invariant for strong equivalence. Recall that
ind, does not rely on blocking and is obviously invariant if we add identities with the fixed
representation. Moreover, it can be shown that ind, is continuous and stays discretized during
a continuous deformation. Therefore, the SPI is a quantizied topological invariant. A more
rigorous statement and the proof can be found in the following;:

Proposition 3 Given a continuous path of Uy generating G-symmetric MPUs and g € G with
Xg 7 0, then ind, stays unchanged along the path.

Proof: According to Corollary 4.7 in Ref. [35], there exists kg < D (Dy,: largest bond dimen-
sion of Uy) such that the MPU U, (2koL) generated by Uy has a standard form uy, vy which are

continuous with respect to A. Using u>\p®2k0u; =T) g QYxrg = W)q, We can rewrite the SPI for
U, into
Trl [TI'r W), g rTI} ’U);g]

l’Xg’%O ’

indy(Uy) = s 1In (3.36)
where Tr, and Trj are the partial traces over C” and C! on the virtual level, with I and r being the
dimensions of ) 4 and y, 4, respectively. Since w) 4 = uApg%Ou; and w; are both continuous
with respect to A, the continuity of indg (i) follows. On the other hand, due to the fact that
Txg ® Yxg is a linear representation, we have () 4 ® y,\7g)d9 = 1®2ko (dg: order of g defined as
the smallest integer d, such that g% = e), implying xig = 1; and yf\lf’ = 1, for a certain phase
gauge. Accordingly, ind,(U)) only takes values over a finite set

’ Zjezdg n]wég |

In
’Xg |k0

: Z nj=r (3.37)

J€Za4y
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in In |Q(wg,)\{0}|, where wq, = ?™/ds Combining the discrete image of ind,(Uy) with its

continuity, we conclude that ind, is a quantized constant, which is a logarithm of the absolute

value of a cyclotomic number, along the continuous path. O
The above proposition immediately implies the following;:

Theorem 2 Two symmetric, strongly equivalent MPUs share the same SPI for all group ele-
ments with x4 # 0.

The contraposition of Theorem 2 allows us to use SPIs to distinguish topologically different
MPUs. For cyclic groups G = Zy with N > 3, the minimal nontrivial example is the bilayer
SWAP circuit of qubits [35], in which a single site contains two qubits and

Pizy =1© Zu,  Zuy = 10)(0] + TN 1)1, (3.38)

where 1z, is the generator of Zy. We can check that

v, =19 g, =257, (3.39)
leading to
: ™
indy, =In ‘cos N‘ #0, (3.40)

which is sufficient to rule out the strong equivalence between the bilayer SWAP circuit and the
identity. However, having ind = 0 and trivial cohomology, it is still equivalent to the identity.

Recalling that the index and cohomology class fully classify all the MPUs in the sense of
equivalence, we would like to ask whether the SPIs, together with the index and the cohomology
class, give a complete classification for strong equivalence. This question can be settled by
answering whether an MPU with trivial SPIs, index and cohomology class is always strongly
equivalent to the identity. The answer turns out to be mo, because the SPI can be further
refined, at least for those MPUs with trivial cohomology. Let us introduce the definition of such
a refined SPI:

Definition 4 (Refined SPI) Given a G-symmetric MPU in the trivial cohomology class, a
refined index with respect to any g € G with x4 # 0 is defined as

Try, \ %
rind, = <T§i9> : (3.41)
g9

where y4 1s already lifted to a linear representation.

As y, is a linear representation, the phase ambiguity is discretized as a 1D representation and
thus killed by the power dg4, implying that the refined SPI is well-defined for a given standard
form. We show the following proposition:

Proposition 4 Given a G-symmetric MPU in the trivial cohomology class and g € G with
Xg # 0, the refined SPI given in Eq. (3./1) is well-defined, although the standard form is not
UNLque.

To show this, we can use almost the same analysis as the one for the blocking-independence of
the SPI.

We still have to prove that the refined SPI is not only well-defined but also a topological
invariant. To this end, we need the following lemma:

Lemma 2 Given a continuous path of projective representation z¢(\) of a finite group G in the
trivial cohomology class, there exists a continuous function wy : X — U(1) such that wg(X)zg(X)
is a continuous path of linear representation.
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Proof: By assumption, there exists z () = wg(A)z4(A) which is a linear representation but not

necessarily continuous with respect to A\. From z;(A)dQ = 1, we know that w;()\)dg = 24(\) "%

should be continuous, thus
_ oy

wy(A) = wg()\)ng , (3.42)

where wj(A) is continuous and ny(A) € Zg,. Moreover, from z;(A)2},(A) = 2{;,(A), we know that

wy(Nwh(Nwgn V)™ = [29(AN)2a(N)2gn ()] (3.43)

is continuous. The combination of Eqgs. (3.42) and (3.43) implies that ij (A)ws}?(/\)w;;g " i also

continuous. On the other hand, wggg (A)wg:(’\)w;g:"h()‘) takes discrete values in {wéG 1J €2y}

(dg: order of group G defined as the smallest integer dg such that ¢9¢ = e Vg € G), so that

wsg"(A)wg:(/\)wi;gh(/\) = wggg (O)WZ:(O)W(;;Q;I(O) (3.44)
should be independent of A. Now defining
0
2y (0) = wi(Nwg? @ zg(N), (3.45)
which is obviously continuous, we can check that it is a linear representation. U

Combining Proposition 4 and Lemma 2, we immediately obtain

Proposition 5 The refined SPI is a topological invariant, which is multiplicative by tensoring
and composition.

The generalization of the refined SPI to inhomogeneous locality-preserving unitaries can be
done in full analogy to the generalization of the SPI.
Since rind, is a topological invariant, we have the following:

Theorem 3 Given two symmetric, strongly equivalent MPUs Uy and Uy, then UITUO has trivial
(unit) refined SPIs.

A minimal example that is not strongly equivalent to the identity as indicated by Theorem 3 but
not captured by Theorem 2 is a Zz-symmetric MPU consisting of qutrits. Denoting p{/) (7 € Z3)
as the irreducible (1D) representation of Z3 with pgjz)g = wg, for p = p(@ @ 2p(M) | we can realize
z=1y=p9 ®2p® on the virtual level due to p®@p =z @y = p© @ 4pM) ©4p?). Substituting
Try,, =1+ 2w3 and Tr P1z, = 1+ 2ws into Eq. (3.41), we obtain rind;,, = —1 # 1, which
implies that the MPU cannot be deformed into the identity without breaking the Z3 symmetry
with such a fixed representation. We will see an explicit construction of such an MPU in the
following subsection. Finally, we emphasize that while Theorem 3 is undoubtedly an improved
criterion for ruling out strong equivalence, we still do not know whether the refined SPI gives
the complete classification.

3.3 Examples

In this section, we present some examples of MPUs with nontrivial cohomology classes and
(refined) SPIs. We will first represent the Zy x Zy SPT edge unitaries in Ref. [148] in the MPU
forms followed by discussing the signatures in the entanglement-spectrum dynamics, and then
provide a general construction for an arbitrary G. We will also discuss how to realize nontrivial
(refined) SPIs in a systematic manner.
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3.3.1 MPUs with nontrivial cohomology classes
Zy xZy SPT MPUs

For unitary symmetries,* the minimal group that admits a nontrivial projective representation is

ZyxZs, whose cohomology group reads H?(ZyxZs, U(1)) = Z3 and a realization of the nontrivial

element has been shown in Fig. 3.1(b). In the following, we discuss how to generalize the results

to Zy x Zx SPT MPUs corresponding to nontrivial elements in H2(Zy x Zy,U(1)) = Zy.
Specifying the representation of the Zy x Zy symmetry group as

Pimm) =Z" @ Z", (m,n) € Zy x Zy, (3.46)

where Z;; = (i|Z]j) = 5ingv with wy = ei%ﬂ, we can write down the generator of nontrivial
SPT MPUs (cohomology group) as [148]

Uspp = o i Zj(—)”Vj,X]VjH,X7 (3.47)

where Nx = Z?;%(XJ - 1)/(w;,j — 1) with X;; = 6;41,;. Note that here the variables in the

Kronecker delta are elements in Zy, thus 0 = 1. One can easily check that
XZ =wnZX. (3.48)
With the delta tensor and the generalized Hadamard matrix defined diagramatically as
7
*’7]‘5517‘5]'1@, i —{H} & Ewg\];

k (3.49)

under the eigenbasis of {X,}, the building block of the Zy x Zy SPT MPU (3.47) can be
represented as

(3.50)
Note that the delta tensor and the generalized Hadamard matrix satisfy
g (3.51)

“HA- = KO- |
O = -

4If we allow anti-unitary symmetries, then a time-reversal symmetry (ZQT) alone can protect nontrivial topo-
logical phases, including both MPSs [132] and MPUs [35].
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Figure 3.3: 2D Floquet SPT model with a trivial bulk and an anomalous edge dynamics gov-
erned by the Zy x Zy SPT MPU (3.47). Reproduced from Supplementary Fig. 1 of Ref. [38].
Copyright (© 2020 by the American Physical Society.

Using these relations (3.51), upon inputing P(mn) = £ ® Z™ on the physical level, we obtain

(3.52)

Therefore, the projective representation on the virtual level reads

According to the building block (3.50), we can write down the standard form as follows:

(3.54)

Using Eq. (3.51), we can determine the projective representations x4, and y, on the virtual level
of the standard form as

T(mn) = w]:rmanZm ® Zn’

m S (3.55)
y(m’n):Z QR X"Z".

It is easy to check w,((m,n), (m/,n')) = W™ = w,((m,n), (m’,n')), which is consistent with
the general relation that z, and z, belong to the same cohomology class.
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The MPU representation (3.50) in turn gives us an elegant picture of the associated 2D
Floquet system with a trivial bulk. As shown in Fig. 3.3, the 2D Floquet unitary is a product of
commutative local unitaries 0 and O acting on gray and white plaquettes, respectively. Since
0O and O are actually small SPT MPU with 2 unit cells, the entire 2D Floquet unitary is locally
implemented under the symmetry constraint. While the bulk turns out to be trivial due to the
fact that — and — cancel out, we obtain an anomalous edge as in Eq. (3.47), which is not locally
implementable under the symmetry constraint [148].

Entanglement-spectrum dynamics

As briefly mentioned in the previous section, starting from a trivial symmetric MPS |¥),
after t steps of time evolution by a Zy x Zy SPT MPU with the same cohomology class as
Eq. (3.47), the entanglement spectrum (under the periodic boundary condition) must be at
least (N/gcd(N,t))?-fold degenerate. To show this, we first point out a useful property that the
spectrum of the transfer matrix of an MPS is conserved during the time evolution by an MPU.
This result comes from the unitary nature of time evolution, which implies

L L

T (Y MjoM; | =Tr|Y MjoM| , VLeZ', (3.56)
J J

where M; € CP*P and Mj =3 UjyMy. In particular, if the transfer matrix of [¥p) has a
unique fixed point, the uniqueness is preserved for |¥;). This observation rules out the possibility
of spontaneous symmetry breaking during the time evolution of a symmetric MPU. Moreover,
let A be the unique fixed point of the transfer matrix of |¥;); it is known that the entanglement
spectrum is given by {)‘a)‘ﬁ}g =1, Where {A}P_, are the eigenvalues of A [136]. In addition,
the cohomology-class sum rule applies to an MPS evolved by an MPU (see Fig. 3.1(a)), just as
does to composed MPUs.

Denoting the projective representation on the virtual level of [¥;) = Upp|Wo) as Vi, ), we
know from the additivity of the cohomology class that

‘/(m7n) ‘/(m'ﬂ/) = w?\rfn/n‘/(m—&—m’,n—&-n’) (357)

for some phase gauge. Moreover, due to the uniqueness of the fixed point, we have [V{,, ,,), A] = 0
for V(m,n) € Zy x Zy. Noting V(leo) =1, (1,: the identity on the virtual level), we can define
a set of projectors o

P,=N"'Y" wy'"Vigy NEZN (3.58)

JE€EZN

that satisfy P, P, = 0mnbPh, ZnEZN P, =1, and PV = V0P = wyPr. Now consider
an arbitrary eigenstate |A), of A with eigenvalue A; there should be at least one P, such that
ProlA)v # 0 and thus [An )y = P [A)v/ || Pag|A)v|| is @ common eigenstate of A and V/; o) with
eigenvalues A and wjf, respectively. Using Eq. (3.57), we have

Vo) Vo, Ano)v = wn™ " Vi 1) Ano) v, (3:59)

so that V{ ) | Ang)v are also common eigenstate of A and V{; ¢y with eigenvalues A and wy o,

respectively. Since w;,t"Jr"O takes N/gced(N,t) pieces of different values, the degeneracy in the
entanglement spectrum should be at least (N/ged(N,t))2.

Let us verify the above conclusion both analytically and numerically. We first consider
an analytically solvable case in which |¥g) = [02)%2L (|5z) defined from Z|jz) = wil|jz)) is
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evolved by the MPU in Eq. (3.47). With the local basis chosen as the eigenstates of X, the
MPS building block for |¥;) is given by

[M()(ib)]aﬁ = d_léaawj\l;(aiﬁ)a (360)

where we have used (jx|j},) = wy’?/v/N with j' = 0 (|jx) defined from X|jx) = w|jx)).
To make the representation matrix of the Zy x Zy symmetry diagonal, we prefer to use the
Z-basis, under which

[M(i,b)]aﬁ =N"! Z W?V(Hb b[M()if,b')]aB
ez (3.61)
= N7'wR O(—ayr,p-

One can check that M(i b) is zero unless ¢ = ged(N, t)|b, i.e., ¢ divides b. When q|b, defining
b= b/q, N = N/q and t = t/q, we have

~ a 717—1
M7 = N2 X" P, (3.62)
where ¢! is the well-defined inverse (due to ged(N,%) = 1) of £ on Z & and

P=q 'Y xV (3.63)
J€Zq

is a projector with rank Tr P = N/q = N. Since P? = P, M(% b = PM(%1 b) gives the same
MPS and the bond dimension is N. This result already implies that the extreme case of
(N/ged(N,t))* = N-fold degeneracy is achievable. Moreover, defining Xp = PXP and Zp =
PZ1P, we can check that X}g = le.y =P, XpZp=wyZpXp and PZ*P = 0 unless a = qa, in

which case PZ°P = Z%P = PZ%. Therefore, we obtain M é b= 0 except for

oz 7174 ybi—t

M5 = ZoXE . (3.64)
Under the Z-basis, the action of Z™®Z™ on |azby) is just a phase w?\,erb", so that the projective
representation on the virtual level can be determined as

Vi) = Z8Xp™, (3.65)
which satisfies ~
Vv(m,n) ‘/(m’,n’) = wg[mn t‘/(m—i-m’,n—i—n/)' (366)
Since w ™ = W™ = Wil T with

—(m+m/)(n+n')t
—t(mn'4+m'n) W
Wy - — (3.67)
—mnt, —m/n’t
Wy o WN

being a coboundary, Eq. (3.66) can be related to Eq. (3.57) by a gauge transformation.

If Uspr in Eq. (3.47) is perturbed in a symmetry-preserving manner, the strict N-fold
period multiplication generally disappears but the constraint on the entanglement-spectrum
degeneracy should still be valid. For simplicity, we consider the following Zy x Zy-symmetric
MPU which belongs to the same phase as Uspr:

Up = e "2 Niz Ugpr, (3.68)
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Figure 3.4: Stroboscopic dynamics of (a) the entanglement spectrum and (b) the entanglement
entropy governed by the Floquet unitary in Eq. (3.68) starting from |¥q) = [07)®2F. The
top, middle and bottom rows show the cases of N = 2 (qubit), N = 3 (qutrit) and N = 4
(ququard), respectively. Times steps with SPT-enforced entanglement-spectrum degeneracy
are shaded in (a). The Insets in (b) show the h dependence of the crossover time ¢* determined
from Eq. (3.69). The entanglement dynamics in finite qubit systems are obtained by exact
diagonalization while those in infinite qutrit and ququard systems are obtained by iTEBD with
varying bond dimension xy = 100 ~ 1500 such that the numerical results converge. Reproduced
from Supplementary Fig. 2 of Ref. [38]. Copyright (© 2020 by the American Physical Society.
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where Ny = Z?;%(Zj -1)/ (w;j — 1). We perform numerical studies on the stroboscopic
dynamics of both the entanglement spectrum and entropy for N = 2,3 and 4 with varying h.
In particular, we study the finite-size effect using exact diagonalization for N = 2 (with h = 0.1
only) while we focus on infinite systems for N = 3 and 4 using the infinite time-evolving block
decimation (iTEBD) method [153]. While the growing (with oscillation) entanglement entropy
shown in Fig. 3.4(b) indicates that the system will eventually thermalize, we do observe in
Fig. 3.4(a) the (at least) (N/gcd(N,t))2-fold degeneracy in the entanglement spectrum. Even in
a qubit system with L = 6, the (at least) 4-fold degeneracy at odd time steps is only slightly lifted
(not visible in Fig. 3.4(a)), implying that the SPT DTC oscillation is, in principle, observable
in small systems.

It is also worth mentioning that the entanglement entropy Sg exhibits a crossover between
two dynamical regimes with large and small oscillations accompanied by the growth. As shown
in the insets in Fig. 3.4(b), the crossover time ¢*, which we determine from

N-1
s_ 1 T P O Y (0
¢ _]\H;ts, *=min{t: S5’ (t) = Sy ()}, (3.69)

where Sés)(t) is a continuation of Sg(t = nN +s) (s € Zy), turns out to be proportional to h~!
for small . We can understand the crossover from the SPT-enforced entanglement-spectrum
degeneracy, which implies a lower bound 21In(N/ged(N,t)) on the entanglement entropy. When
h is small, according to the Magnus expansion as used in Ref. [148], the continuation SI(ES) (t)

is expected to be well approximated by the entanglement entropy of \\IJE\S)> = ¢ MHes Udpr|¥o)
with A = ht and

1 _
He = >N UprN; 2Usfr. (3.70)
j a€Z N

The initial strong oscillation and the h~! scaling follow.

General constructions for arbitrary finite groups

So far we have focused on Zy x Zn SPT MPUs. From a general perspective of topological DTC
oscillations, we can seek for MPUs with nontrivial cohomology classes by considering bilayer
unitary circuits (i.e., standard forms of MPUs, cf. Eq. (3.8)) that transform trivial states, such
as product states, into SPT MPSs. Indeed, the Zy x Zy MPU transforms |07)®% into a 1D
cluster state of qudits [154].

In general, an SPT state can be constructed from a path integral of a cocycle action on a
triangulated spacetime manifold [155]. This construction might be regarded as a sort of the
matter-field dual of the Dijkgraaf-Witten theory for gauge fields [156]. In 1D, given a symmetry
group G and a 2-cocyle €(9") representing an element in H2(G, U(1)), we can easily identify
the underlying MPU as [149]

-k —1,. -1
U= Y e 135210095 95419550 g1 go....g1.) (919291 (3.71)

{g; }JL:1

Here the symmetry representation on a local Hilbert space ClI¢ is assumed to be regular, i.e.,
pglh) = |gh) for Vg,h € G, and the sum of each g; runs over G. To confirm that Eq. (3.71) is
topologically nontrivial, we first identify u, v in the standard form as

. —1 —1
u=v=> e I gg.) gg,| (3.72)
gi,9r
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Accordingly, we can identify x4, and y, from

(pg @ pgyo =D e 6 99D |gq) gg.) (grgel = Y €000 90979 | g1g,) (g™ g1, g g
9i,9r gi1,9r

o 1 S 1y (3.73)
_ Z el[@(gT ,g)*@(gl gr,gr )70(91 :g)]‘glgr><gflgl7gilgr| = ’U(yg X $g),
gi,9r
where we have used the defining property of cocycles (see also Eq. (3.13)):
0(9; "9, ) + 09, 9) = 09 'gr. 9, 9) + 009, 9). (3.74)
Similarly, we can show that p?%ﬁ = uT(a:g ® yg). The expressions of xz, and y, are given by
" 0(1.—1 _ S (—1,—1
zg=yy = Iy k| = T gk (K], (3.75)
k k
according to which we obtain
Ty = Zei[9(k*1h’1g*17g)+0(k’1h’17h)]‘ghk><k’
F (3.76)

— Z6i[9(k‘1h‘19‘17gh)+9(g,h)]‘ghk><k| — @Ry,

implying that {z,} form a projective representation with factor set ei0(g:h)

factor set for {y,} is e~0(9:0).
The nontrivial cohomology class can alternatively be confirmed by looking at the building-
block tensor U, which is given by

U= e ) |G- (3.77)

Since y, = xy, the

Here, we use |-) and |-) to refer to physical and virtual states, respectively. We can identify the
projective representation on the virtual level through

a0 ai— 1] -1 . I — .
pgu;%:Ze”“ " g)1) (gl = Zel ") j)g ) (g G

_ . (3.78)
—ZZ” 00 ) (] = 2fUz,

where we have again used the cocycle property and z, on the virtual level turns out to be
9= D) (g =Y P gh) (h), (3.79)
h h

whose entries are the same as those in 24 (3.75). This result is consistent with the fact that zg,
zg4 and y, belong to the same cohomology class.

Finally, let us construct the parent 2D Floquet system of the general SPT MPU (3.71). In
fact, such a construction naturally extends to arbitrary dimensions and realizes all the intrinsic
Floquet SPT phases in the cohomology classification [149]. To make the notations concise,
we introduce a(g1,g2,93) = ¢=0(91 92,95 '93) which satisfies a(g91,992,993) = a(g1, g2, g3) for
Vg € G and the cocycle property

a(g2, 93, 94)a(g1, 92, ga)
a(g1, 93, 94)a(g1, g2, g3)

= 1. (3.80)

o7



) O—O——O—0O——0
O o—0O0—0O0——0—=0
9 g2
91 O—0 9r = g0 G5 90, 90) 9197 {919+
9 O—0 9r =000 G0 s 9:)|919r) (9197

Figure 3.5: (a) 2D Floquet SPT phase built from a 2-cocycle (3.81). (b) Such a Floquet system
has a trivial bulk and a nontrivial edge dynamics described by an SPT MPU (3.71). (c) Building
blocks of the 2D Floquet unitary and the SPT MPU as its edge dynamics. Reproduced from
Supplementary Fig. 3 of Ref. [38]. Copyright (© 2020 by the American Physical Society.

As shown in Fig. 3.5, the Floquet unitary is simply a product of commutative four-site unitaries
acting on each plaquettes:

04(91, 94,93)

a@\g1,92, 9
Ur=][Va Ua= > Mlglgzgw@(glgzgwd- (3.81)
@ {9; ?:1

Due to the topological nature of the action (especially the cocycle property given in Eq. (3.80)),
the U(1) phase before any |[{g;})({g;}| (eigenstate of Ur) should not depend on the explicit way
of triangulation [155,156]. In particular, we can put a single point into the bulk and assign
an arbitrary group element g, € G to determine the phase. This observation implies a trivial
bulk dynamics, i.e., Up = lpyik ® Uedge With lpyi being the bulk identity [149]. For g, = e, the
bottom edge dynamics is described by the SPT MPU given in Eq. (3.71).

3.3.2 Nontrivial MPUs in the trivial cohomology class

Let us move on to construct MPUs with nontrivial (refined) SPIs. We first point out that a
nontrivial cohomology class may enforce the projective representation matrices for some group
elements to be traceless, implying that the SPIs cannot be defined for these elements. To make
the SPI well defined, a necessary condition turns out to be the c-regularity. For the cohomology
class represented by a 2-cocyle ¢: G x G — U(1), g € G is said to be c-regular if

c(g,h) =c(h,g), VYheNy={heG:gh=hg}, (3.82)

where Ny is the stabilizer group of g. We can show that c-regularity is actually a property
for conjugacy classes, since Nygp-—1 = kNgk—! and c(kgk™1, khk™1') is related to c(g,h) via a
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k-dependent 2-coboundary [157]:

Br(gh)
Br(9)Br(h)’

where £1(g9) = c(k, gk~ e(g, k™) /c(k™1, k) is a 1-cochain. Now let us consider an arbitrary
projective representation z with factor set ¢ together with a group element g that is not ¢
regular. By assumption, there exists h € Ny such that ¢(g, h) # c(h, g). From the definitions of
projective representations zyzp = c(g, h)zgn and zpz4 = c(h, g)zpg, we obtain

c(kgk™, khk™) = ¢(g, h) (3.83)

Trzy = c(g,h) Tr(zghzgl) =c(h, g) TI‘(Z;ZIZhg)
=c(h,g) Tr(zghzgl),

where we have used Tr(AB) = Tr(BA) and gh = hg in the second line. Since ¢(g, h) # c(h, g),
the only possibility is Trz, = Tr(zghzgl) = 0. Similarly, we have Trz, = Trzg = 0. This
completes the proof that the SPI cannot be defined for g whenever g is not c-regular.

In particular, the trivial cohomology class, for which c is a coboundary, always validates the
c-regular condition. For simplicity, here we only focus on this situation. Given an MPU in the
trivial cohomology class, all the projective representations z4, 4 and y, on the virtual level can
be lifted to linear representations, which are all elements in the representation ring [152]:

(3.84)

Definition 5 (Representation Ring) For a finite group G with in total r different irreducible
representations denoted by pM, p | .. p., the representation ring R(G) is defined as {p =
D nap' : n, € Z}, on which the addition between two elements p = @ _; nap'™ and
P =@L_, nlp® is defined as

T

p®p = P (na+nl)p', (3.85)

a=1
while their multiplication is defined as

r

'
pap =@ | D> Ngngnl | o, (3.86)
a=1 \B,y=1

where the nonnegative integer (Littlewood-Richardson) coefficients N 5‘7 are determined from

the decomposition of the tensor-product representation.

According to the character theory, there is an injective map x : R(G) — C” (r is also the
number of conjugacy classes)

x(p) = (Tr pg,, Tr pg,, ..., Tr pg,.), (3.88)

where Trpg. = > NaXaj € Z[wdgj] (Kummer ring), g; is a representative element of the jth

conjugacy class and xo; = Tr pg?) is an entry in the character table. From the injectivity of y,
we know that Ng = N7 and thus R(G) is commutative. Note that Z can be regarded as the

representation ring of the trivial group G = {e}.
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With the notion of representation ring in mind, we can systematically construct MPUs with
nontrivial SPIs through finding nontrivial solutions to

PP =z®y, xypeR(G), (3.89)
where RT(G) is a subset of R(G) consisting of all the linear representations (i.e., n, > 0 and
> n_1Na > 1), pis on the physical level and z and y are on the virtual level of the standard form
(3.8). By nontrivial, we mean that  # pip ® p for any one-dimensional representation pip of G;
otherwise the MPU can be trivialized into the identity. In practice, we may alternatively focus
on the nontrivial decomposition of the character vector, of which each component is decomposed
on the Kummer ring.

For the simplest Abelian group G = Zy, we have r = N and Ng, = 0,8+~ @ minimal
example of nontrivial decomposition

(2p® @ 2p0)82 = 4O g () @ 2oV @ p?) (3.90)

has already been mentioned in Sec. 3.2.2 and can be realized by the bilayer SWAP circuit on
two qubits via 2p(0) @ 2p(1) = (2p(0) @ (p(©) @ pM)):

(3.91)

where «— is the CNOT gate [0)(0|® 1+ |1)(1| ® X and the part marked in the gray rectangle is
the building block U. The equivalence between the left and right hand sides in Eq. (3.91) can

be understood from
- -
(3.92)

For N = 2, however, such an apparently nontrivial decomposition (3.90) is not stable against
blocking since p ® z = p ® p. Indeed, we can trivialize the bilayer SWAP circuit as follows:

(3.93)

where the local quantum gates in the gray boxes can be continuously deformed into local
identities without breaking the Zs symmetry (represented by 1® 7). When N > 3, the stability
of the nontrivial MPU against blocking (and disorder) is ensured by the nontrivial SPI.

To construct a Zs-symmetric MPU with zero index and nonzero SPI, we first write down
the general representation-decomposition relation

(dop'™ & dip™M)®? = (mop'® & m1p™)) @ (nop'® & n1ph), (3.94)

which is equivalent to
(do + d1)2 = (mo + ml)(no + 77,1). (3.95)

To make the SPI nontrivial, we would like to find a solution with d = dg+d1 = mg+mq1 = ng+n1
and mg — my # ng — n1, dy # dy. After some trials, a minimal solution with the smallest local
Hilbert-space dimension d = 8 is found to be

(6p9 @ 2p1)22 = (5p(0) & 3p(1)  8p(®). (3.96)
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Regarding d = 8 = 23 as three qubits, we can implement Eq. (3.96) with

Pz, = (DA Z+[0)(0]®1) ® 1,

(3.97)
15, = 100)(00] © 1 + (1%% — |00)(00)) ® Z, y1,, = 1%,
which can be realized by
(3.98)
V= U’ 5
where the two-qubit-controlled gate in w is given by
111)(11] ® (X @ [0)(0] + 1 ® |1)(1]) + [01)(01] ® S+ 1 ® |0)(0| ® 1%, (3.99)

and that in v = Su'S (S swaps two adjacent sites, either of which consists of three qubits) is
given by
(JOY(0] ® X + [1){1| ® 1) @ [11) (11| + S ® [01)(01] + 1®3 ® [0)(0]. (3.100)

Finally, we present an explicit construction that realizes

(p(o) @ 2p(1))®2 - (p(O) ® 2p(2))®2 (3.101)

on R(G = Z3), which is the minimal example with trivial SPIs but a nontrivial refined SPI,
as mentioned in Sec. 3.2.2. We consider a qutrit system and specify the representations on the
physical and virtual levels as

Pz, = 1000 +ws (I +[2)2]), 215, = Y1z, = PT,, = P2z, (3.102)

To transform p ® p into = ® y, we can use

eere ﬁ ) (3.103)

where—o =}, - I (jleX 7 (X = > kezs [k—1)(k|) is a natural generalization of the CNOT
gate. We can easily check that v|00) = |00), v(|01), [12),]02),|21)) = (]12),|02),|21),|01)) and
v([10),[11),[20),[22)) = (|11), |20), [22), [10})), implying

2 2 2 2
p?zgv = vpégz?)’ pé@z?)v = /Up(lgz?)' (3]‘04)

3.4 Experimental probing of SPIs

Observable signatures of SPIs

Similarly to the cohomology character, the SPI (3.29) is defined on the virtual level, so that its
physical meaning is not clear at first glance. Having in mind that SPT phases with nontrivial
cohomology classes usually exhibit exotic edge physics [158], we are naturally led to think
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about a similar situation for SPIs, which depend on g. In fact, we can consider a sufficiently
long string operator p;]@N evolved by the MPU and show that the g-string operator will almost
stay unchanged, except that near the left and right edges two 2k-site unitaries L, and R, emerge
(see Fig. 3.6(a)). These two unitaries on the physical level turn out to be related to x4, and y,
on the virtual level via

Ly =ul(ze @ yg)u, Ry=ul(z,®ye)u, (3.105)
leading to (cf. Egs. (3.28) and (3.29))

Tr L,
Tr R,

1
indy —ind = -~ 1In . (3.106)

2

It is now clear from Eq. (3.106) that ind, gives a measure of the edge imbalance in the g-string
operator evolved by the MPU.

Let us provide the detailed derivation of Eq. (3.105). Without loss of generality, we first
assume U to be simple (otherwise block and, if so, redefine Uy, as U and correspondingly pg@k —
pg) so that Eq. (3.6) may be satisfied. Applying Egs. (3.6) and (3.11) to an evolved g-string
operator UTpg?lU, we identify L, and R, to be

(3.107)

Substituting the singular-value decomposed forms

7~ _
R (3.108)

into Eq. (3.107), we obtain

{4
5P

@) (3.110)

(3.109)

and

Ly =
R, =




Here we have used the definition properties of singular-value decomposition

(3.111)

and the symmetry constraint (complementary to Eq. (3.19))

}
(3.112)

Note that Egs. (3.109) and (3.110) are nothmg but Eq. (3.105). It is worth mentioning that,
by evolving a more general strlng operator p N® p%L ! with g, h € G, we will obtain D j, =
uT(xg ® yp)u near the domain wall whose left is p, and right is pp. Note that Ly = D, 4 and
Ry = Dye.

As a byproduct of Eq. (3.107), we can compute the relative SPI from a single U, which is
not necessarily simple. For Vg € G with x, # 0, replacing U and pg in Eq. (3.107) with U
(which is simple) and pf]@k , respectively, followed by taking the trace and using

(3.113)
k times, we obtain

(3.114)
where ¥, = Eg(ng) and

(3.115)
Using the fact that for Vk > ko (ko: smallest integer such that Uy, is simple)

dk—ko
(3.116)
(3.117)
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Figure 3.6: (a) Symmetry string operator evolved by a symmetric MPU. Ounly the left and
right edges are modified into L, and R, respectively. (b) Tensor-network representation of
Trg[Tra U Tra UT] = Tr[USUTS], where S (green rectangles) is the SWAP operator between
subsystem A and its copy A’. (c¢) Interferometric approach to probing the relative SPI (3.106).
Initially, the qubit is set to be |0) while the remaining part is prepared in the infinite-temperature
state poo. Here H is the Hadamard gate and the controlled-SWAP gate reads Ucg = |0)(0] ®
1aa+1)(1] ®S. The final expectation value (X) of the qubit is related to | Tr Ly| and thus
the relative SPI. (d) Bilayer SWAP circuit subject to Zx symmetry. (e) SPI of (d) with respect
to 1z,_, determined by linear fitting (3.127). Reproduced from Fig. 2 of Ref. [38]. Copyright
(© 2020 by the American Physical Society.

with &' = k + ko, as well as the symmetry requirement, we know that ¥, = 850(252) and
satisfies £4(X,) = Xy. On the other hand, due to Tr&} = 1 for Vn € Z*, the fixed point of &,
is unique (just like £ = &). Therefore, we can determine ¥, by solving &,(X,) = 3, subject to
Tr 243, = 1, where both £, and z, can be obtained from a single Y. According to Eq. (3.114)
and Tr L, Tr R; = d2kxgk, the relative SPI is directly related to X, by

indg —ind = In| Tr X,|. (3.118)
Recalling that the index ind does not rely on blocking, according to Eq. (3.118), we again
confirm the blocking independence of ind,.

Implementation of the measurement

Equation (3.106) opens up the possibility for practically measuring the SPI relative to the index.
Noting that
Tr Ly Tr Ry = d**x2F, (3.119)

we suffice to measure either |Tr Ly| or |Tr Ry|. This problem can be simplified into how to
measure | Tr Uy| for a subsystem unitary Uy embedded in Ugp = Uy ® Up, where the Hilbert-
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Figure 3.7: Interferometric scheme for measuring Trp[Tra Uap Tra UL gl- Reproduced from
Supplementary Fig. 5 of Ref. [38]. Copyright (©) 2020 by the American Physical Society.

space dimension dp of subsystem B can be much larger than d4, which is the dimension of
subsystem A. Combining | Tr U4 |? = dngrB [Tra Uap Try ULB] with the identity in Fig. 3.6(b),
we obtain

| TrUa|? = d% Tr[UapSpecU ' 5S), (3.120)

where S is the SWAP operator acting on A and a copy A’ while po, = d;fd; 1 4/ 4p is the infinite-
temperature state of the entire system including A’. Since eventually we rewrite | Tr U4 |? into
the form of a Loschmidt echo, we can measure it by means of the standard interferometric
approach in the following (see also Refs. [159-162]).

We claim that the rhs of Eq. (3.120) can be read out from the expectation value (X) of an
auxiliary qubit in Fig. 3.7 for a general bipartite unitary Usp. To show this, we first recall that
the controlled-SWAP gate reads

Ucs = |0)(0] ® 1aa + |1){(1] ® S, (3.121)

where S = Z%‘,/:l |jaj ) (jjar| = ST, we obtain the unitary evolution of the entire system,
including the bipartite physical system A|J B with interest, a copy A’ and an auxiliary qubit,
as (for simplicity, several subsystem identities are omitted)

Usot = Ucs(X @ Uap)UcsH = |1)(+| ® SUap + [0)(—| ® UapS, (3.122)

where |£) = (]0) £ [1))/v2, X = [1)(0| + [0)(1], and H = (X + Z)/v/2 (namely the Hadamard
gate) with Z =]0)(0| —|1)(1]. At the initial time, we prepare the qubit in the pure state |0) and
the remaining systems in the infinite-temperature state poo = dZngl 14/ 45. After evolving the

entire system by Uyot (3.122), we measure the qubit under the X basis, so that the expectation
value (X') should be

(X) = T[XUsot(10) (0] @ poc) Ufye] = Re Tr{X Uson (14 {—| © poc)Uily]

(3.123)
= d32d5! Tr[UapSU’ 58],

where we have used [0)(0] = & (Lqubit + | =) (+| + |[+)(~|) and Tr[SUASU Y 5] = Tr[UapSU} 5S.
Combining Egs. (3.123) and (3.120), we end up with

| Te Us| = dar/(X). (3.124)

Let us return to discuss how to measure the relative SPI, for which we should implement
Uap as U Tpf?lU . See Fig. 3.6(c) for a schematic illustration. Thanks to the locality-preserving
property of MPUs, we can choose A to be as small as 2kg ~ O(1) sites, where kg is the smallest
k such that U, is simple, across the left domain wall between p, and 1. The controlled-SWAP
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gate between A and its copy can be decomposed into 2k individual two-site controlled-SWAP
gates acting only on the jth site of A and that of the copy. Once we succeed in measuring (X),
we obtain

| Tr Ly| = d**0\/(X), (3.125)
so that the relative SPI reads
. . | Tr Lg| 1 d
indj —ind =In ——— = —In(X) 4+ ko In —. (3.126)
I dkO’Xg’ko 2 ‘Xg‘

By choosing A as 2k sites with k > kg across the left edge of the symmetry string operator,
following a similar analysis, we can obtain Eq. (3.126) with kg replaced by k:

ind, —ind = ~In(X) + kln . (3.127)
2 Xl

Note that (X) also depends on k. Equation (3.127) implies that, even if d and x4 are unknown,

we are still able to measure (X) with increasing length 2k of A and then extract ind, from a

linear fitting. See Figs. 3.6(d) and (e) for the example of the bilayer SWAP circuit subject to

Z3 symmetry and the linear fitting for determining its SPI.

3.5 Implications for Floquet topological phases

Recalling the relation between MPUs and Floquet systems, we can deduce that the (strong)
equivalence between MPUs are necessary for the (strong) equivalence between the corresponding
G-symmetric 2D MBL Floquet systems — they are continuously connected without crossing a
delocalization point [37,148,149]. This is because MBL implies a spatial factorization of the bulk
Floquet unitary and its separation from the boundary unitary, which is 1D, locality-preserving
and thus well described by an MPU [37]. A continuous deformation of the Floquet system thus
gives rise to that of the edge MPU. Conversely, two inequivalent MPUs sufficiently distinguish
their parent Floquet systems.

It is thus natural to ask whether an MPU with nontrivial SPIs can be embedded into
a parent Floquet system, just like those with nontrivial indices [37] and cohomology classes
[148,149]. Since topologically different MPUs distinguish different MBL parent Floquet systems,
the embeddability would imply a new class of 2D SPT Floquet phases characterized by SPIs.
We answer in the affirmative by giving a general construction shown in Fig. 3.8(a), whose bulk
is trivial and thus many-body localizable [163], while the edge dynamics is governed by an MPU
generated by v and v = u!S,, where S, exchanges the virtual Hilbert spaces C' and C”. This
construction is inspired by the standard form (3.8) and the four-step SWAP model [37,67,164]
— we compose two four-step SWAP processes, one on the left virtual Hilbert spaces and pulled
back by u, and the other on the physical level.

The above general construction of parent Floquet systems in turn gives a simple symmetry-
charge-pump picture for topological MPUs. Here a G-symmetry charge refers to a Hilbert space
on which G acts as a linear (integer charge) or projective representation (fractional charge).
These charges can fuse or split following the fusion rules set by the group structure. With
the physical and the left virtual charge in the standard form denoted as g, = kg, and ¢z, an
MPU segment coupled to two symmetry reservoirs R;, right-translates ¢, and left-translates

"Technically speaking, according to the character theory of projective representations [157], ¢. is specified
by a 2-cocycle § : G x G — 27R/Z and a vector n : G — CU {—o0}, n(g) = InTrz, (we take In to make g
additive) subject to the gauge transformation 6(g,h) — 0(g,h) + 7(g9) + 7(h) — 7(gh), n(g) — n(g) +i7(g) for
V7 : G — 27R/Z.
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Figure 3.8: (a) 2D Floquet system with a trivial bulk and a nontrivial edge dynamics (shaded
in magenta) governed by an MPU. The open (periodic) boundary condition is imposed on the
vertical (horizontal) direction. In the first (left panel)/second (right panel) half period, we apply
u-conjugated (thick black bonds) SWAP gates (thick color bonds)/physical-level SWAP gates
(color bonds) sequentially as red—blue—green—orange. (b) MPU segment as a symmetry-
charge pump that transfers g, from R; to R, and ¢, from R, to R;. The circuits above/below
the dashed line are generated by the left/right panel in (a). (c) Edge imbalance (light/dark
purple) in an evovled g-string operator (pink) from current imbalance (3.106). Reproduced
from Fig. 3 of Ref. [38]. Copyright (© 2020 by the American Physical Society.
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Figure 3.9: (a) General construction of a 2D symmetric Floquet system whose edge dynamics
is characterized by a nontrivial SPI. (Left) The thick black lines denote the conjugation by
u:C" @Cd — Cl'®Cr and all the colored lines are the SWAP gates on two copies of C!
(left virtual Hilbert space). After u conjugations, the SWAP gates are pulled back to the
physical level. (Right) Each colored line corresponds to a SWAP gate on two copies of C?
(physical Hilbert space). In both figures, the SWAP gates are switched on sequentially as
red—blue—green—orange. The bulk dynamics of the Floquet system is trivial, as indicated by
the arrows forming loops. (b) Tensor-network representation (standard form) of the (bottom)
edge dynamics. The lhs corresponds directly to the action by (a) Left followed by (a) Right,
while it is clear from the rhs that v = uSy, where Sy is the SWAP gate Cl®C" — C"®C! that
exchanges the left and right virtual Hilbert spaces. Reproduced from Supplementary Fig. 8 of
Ref. [38]. Copyright © 2020 by the American Physical Society.

¢z (see Fig. 3.8(b)). In fact, the cohomology class and the SPIs (including the index) are all
characters of the net symmetry-charge current g, — g,. This picture unifies all the related
previous works as special situations, such as G = {e} [37,164] and Trz, = Tr oy, = dg4e dim p
[148,149]. Remarkably, this picture gives an intuitive insight into Eq. (3.106): We regard two
equally long segments centered at the edges of a g-string operator as R;,, which are connected
by two pumps with inputs g and e (see Fig. 3.8(c)). We can then interpret Eq. (3.106) as an
equation of continuity, with the left- and right-hand sides being the current and the change
of charge, respectively. There is a factor 1/2 since a net flow of charge ¢ causes 2q charge
imbalance.

Finally, let us explain the details of the Floquet system in Fig. 3.8(a), which would be helpful
for understanding why its bulk is trivial while its edge dynamics is described by a nontrivial
MPU. We extend this lattice model in Fig. 3.9(a), where black and white sites live on the
vertices of square plaquettes while gray sites live in the centers. Regardless of the color, each
site is assigned with a local Hilbert space Cdk, where the symmetry is linearly represented as
o = p®F. We impose the same boundary conditions as in Fig. 3.8(a). In the first half of a
Floquet period, we sequentially apply direct products of u-conjugated SWAP gates of black
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sites as follows (see Fig. 3.9(a) Left):

Usp = UpeUs UpUse, (3.128)
where
Us, = Q) ul®*S\u2?, (3.129)
S~

with S, acting on two copies of C!, on which the symmetry is represented as x. Here the
identities on the virtual Hilbert space C", where the symmetry representation is y, are omitted
for simplicity. Other unitaries in Eq. (3.128) are defined similarly. One can check that Usp
is trivial in the bulk, while the left virtual Hilbert spaces C' are left(right)-translated to the
nearest one (separated by two physical sites) at the lower (upper) boundary (see the arrows at
the edges of Fig. 3.9(a) Left). In the second half of a Floquet period, we sequentially apply
direct products of SWAP gates on the physical level as follows (see Fig. 3.9(a) Right):

Usp = (U, ® UL)(Up @ Up) (Us, @ U)(Up @ Up), (3.130)

where

U@ U, =(R)Sr 2 Q) Ss (3.131)
e e

with S and S, acting on two copies of C%. This is exactly the model studied in Refs. [37] and
[164], which is the bosonic counterpart of the anomalous Floquet insulator of free fermions [67].
Such a unitary is also trivial in the bulk, while the dynamics at the lower (upper) edge is the
one-site right (left) translation (see the arrows at the edges of Fig. 3.9(a) Right). The entire
Floquet operator is given by Uj,Usp, which again has a trivial bulk, but exhibits nontrivial
edge dynamics described by the MPU given in Fig. 3.9(b).
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Chapter 4

Topological phases of non-Hermitian
systems

In the preceding two chapters, we mainly focused on the unique dynamical phases in periodi-
cally driven systems including discrete time crystals and Floquet topological phases. On top of
periodic driving, dissipation provides yet another widely used tool for bringing a system out of
equilibrium. In this chapter, we discuss the topological phases in the simplest class of dissipa-
tive systems described by non-Hermitian Hamiltonians. These systems are of increasing recent
interest due partially to their strong experimental relevance to a large variety of open classical
and quantum systems such as photonic lattices with gain and loss, active mechanical metama-
terials, electrical circuits, exciton-polariton systems and dissipative Bose-Einstein condensates.
Unlike the topological phases at equilibrium, non-Hermitian topological phases are generally
dynamical phases in the sense that not only the eigenstates but also the complex eigenener-
gies can play crucial roles and have important dynamical consequences. With the help of the
techniques developed for classifying Floquet topological phases, we obtain a systematic clas-
sification of non-Hermitian topological phases with Altland-Zirnbauer (AZ) symmetries in all
dimensions, in analogy with the periodic table for topological insulators and superconductors.
Here, the most fundamental example of a topological phase that does not require any symmetry
protection and hence may be considered as the counterpart of 2D quantum Hall insulators in
Hermitian physics, turns out to be the 1D Hatano-Nelson model.

4.1 Introduction

4.1.1 Background, motivation and the main results

Topological phases of matter [21, 130, 165-167] have attracted growing interest over the last
decade in many subfields of physics, including condensed matter physics [4,9,12,42,168-170], ul-
tracold atomic gases [13,17,20,171-176], quantum information [177-180], photonics [10,19,181—
188] and mechanics [189-192]. Topological phase transitions lie outside the Landau paradigm of
spontaneous symmetry breaking [48]; instead, they are sometimes protected by certain symme-
tries and become trivial once the symmetries are broken [193]. Among such SPT phases, free-
fermion systems, which are usually referred to as topological insulators and superconductors, are
arguably the most well-understood class. Their systematic topological classifications have been
achieved for various setups ranging from the fundamental AZ classes [39-41,194,195] to compli-
cated crystalline materials [196-202]. These novel states of matter exhibit robust edge modes
localized at open boundaries [203,204] and degenerate or gapless entanglement spectra for sub-
systems [205]. The gapped bulks are characterized by highly nonlocal topological indices, which
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Table 4.1: Periodic table for non-Hermitian Hamiltonians. The Altland-Zirnbauer ten-fold
classes [39,40,194] are grouped into six such that classes A, DIIT and CI, classes Al and D, and
classes AIl and C are unified. The Bott periodicity of classifying (cl.) space C; (C1 x C1) is
2, and that of Ry (Rs x Rs, s = 1,5) is 8. Note that all the classes are nontrivial (trivial) in
d=4n+1 (d = 4n + 2) dimensions, where n = 0,1,2,---.

AZ class Cl space d=0 1 2 3 4 5 6 7
A,DIII,CI C1 0 Z 0 Z 0 Z 0 Z
AlIl C1 xCq 0 ZeZ 0 ZeoeZ 0 ZaZ 0 ZeZ
ALLD R1 Zs Z 0 0 0 2Z 0 Zs
BDI RiXR1 Zo®Zo ZDZ 0 0 0 2Z2®02Z 0 Zy®Zs
All, C Rs 0 2Z 0 Zy Z Z 0 0
CII Rs5 X Rs 0 22922 0 Zo®Zy ZoyDZs D7 0 0

can give rise to quantized transport phenomena immune to disorder [206]. More recently, the
notion of SPT phases has been generalized to periodically driven (Floquet) systems [69-71,119],
which accommodate new topological phases with no static counterparts [65-67]. Indeed, we have
discussed some examples in the previous chapter.

In recent years, considerable efforts have been devoted to explore topological phases in non-
Hermitian systems [207-215], which are open and out of equilibrium. This burgeoning research
arena is largely driven by the experimental progress on atomic, optical and optomechanical sys-
tems [216-224], where experimentalists are able to controllably introduce gain and loss. Con-
trolled dissipation can be utilized to engineer an effective non-Hermitian Hamiltonian H # HT,
represented by parity-time (PT)-symmetric systems [225-231], whose spectra stay real in the
PT-unbroken regimes [232,233]. In contrast to Hermitian systems, in general, the eigenenergies
of a non-Hermitian Hamiltonian are complex, and the right eigenstates are neither orthogonal
to each other nor equivalent to the corresponding left ones. Furthermore, the right eigenstates
can coalesce and become orthogonal to the corresponding left ones at an exceptional point [234],
where H cannot be diagonalized. Previous works have mostly focused on topological proper-
ties associated with the exceptional point. Some unique topological objects with no Hermitian
counterparts are identified, such as anomalous edge modes characterized by half-integers [212]
and Weyl exceptional rings with both the quantized Chern number and the quantized Berry
phase [214]. Non-Hermitian systems emerge ubiquitously in a variety of situations including
open quantum systems [87,235-242], mesoscopic physics [243-245], biological physics [246-248]
and chemistry [249-251], where topology can play important roles [235,241,248,249].

Nevertheless, a systematic understanding of topological phases of non-Hermitian systems is
still elusive. Inspired by the periodic table for Hermitian topological insulators and supercon-
ductors [39,40,194], we are naturally led to the following questions:

(i) Can we classify non-Hermitian systems in analogy with the topological phases in
closed quantum systems (i.e., Hermitian systems)?

(ii) If yes, then what is the non-Hermitian counterparts of AZ classes?

(iii) Is there a quantum-Hall-like non-Hermitian system which has no symmetry yet
is topologically nontrivial?

(iv) Is there a bulk-edge correspondence in non-Hermitian systems?

Regarding these fundamental questions, it seems that exceptional points, while unique to
non-Hermitian systems, may not be a good starting point for a systematic classification, since
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they imply band touching in the bulk and seem incompatible with a non-Hermitian generaliza-
tion of gap. We note that two very recent works [252,253] have made efforts to build a general
framework following the methodology for gapped Hermitian systems. In particular, Ref. [252]
focuses on 1D lattices with on-site loss and no dark states, and identifies a topological winding
number relevant to particle displacement; Ref. [253] mainly discusses 2D non-Hermitian lattices
with separable bands in the complex-energy plane, and identifies a Chern number for individual
bands. However, these results are rather specific in spatial dimensions and/or the structure of
the Hamiltonian.

Here, we present a systematic framework for studying the topological phases of generic
non-Hermitian systems. For the sake of comparison with Hermitian free-fermion systems, we
focus primarily on lattice systems described by non-Hermitian Bloch Hamiltonians H (k). Our
framework is based on two guiding principles:

(I) Topological phases of non-Hermitian systems can be understood as dynamical
phases, where not only the eigenstates but also the full complex spectra should be
taken into account;

(IT) The non-Hermitian generalization of the concept of the band gap is the prohibi-
tion of touching a base energy, which is typically zero but can generally be complex,
in the spectrum.

We show that (I) and (II) are well justified both physically and mathematically. On the basis
of these two guiding principles, we find that a 1D lattice with asymmetric hopping amplitudes,
known as the Hatano-Nelson model [43,254], turns out to be the most prototypical example
comparable to the quantum Hall insulator, in the sense that an integer topological number
can be defined without any symmetry protection. We also unveil a bulk-edge correspondence
which is qualitatively different from the Hermitian case: There is a continuum of (quasi-)edge
modes in the semi-infinite space (open chain), with the winding number being the degeneracy
at a given base energy. These findings answer the last two questions (iii) and (iv) raised in the
preceding paragraph.

Our guiding principles also enable a systematic application of the K -theory [255], a technique
widely used in classifying Hermitian topological systems [40,195,200], to the non-Hermitian AZ
classes, leading to a complete classification in all spatial dimensions. We introduce a unitariza-
tion procedure as a non-Hermitian generalization of band flattening, followed by a Hermitian-
ization procedure to represent the classifying space as a Clifford-algebra extension [119]. The
classification problem turns out to be mathematically equivalent to that of the Hermitian AZ
classes with an additional chiral symmetry, leading to a dramatically different periodic table as
shown in Table 4.1. We identify the underlying topological numbers implied by the K-theory
classification for all the non-Hermitian AZ classes in 1D. These results answer the first two ques-
tions (i) and (ii) raised above, and can further be generalized to, e.g., systems with crystalline
symmetries and especially to PT-symmetric systems.

Finally, we should point out that question (ii) was not completely answered in Ref. [44].
Since transposition is not equivalent to complex conjugation for a general matrix, fundamental
symmetry classes are actually richer than the ten-fold AZ classes for non-Hermitian systems.
These symmetric classes are called Bernard-LeClair classes, which were first proposed in the
context of random matrices [256], and the complete classifications for all these classes were
completed in Refs. [257,258]. Nevertheless, the main ideas and techniques of Ref. [44] can
straightforwardly be applied to deal with the additional symmetry classes.
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4.1.2 Definition of non-Hermitian topological phases

Before discussing the topological aspects of non-Hermitian systems, it is instructive to give a
short introduction to non-Hermitian systems themselves. Formally, a non-Hermitian system is
described by the following nonunitary Schrodinger equation:

i0|he) = H|¢y), (4.1)

where [1;) is the state vector of the system at time ¢t and H is a non-Hermitian linear operator.
While Eq. (4.1) is almost the same as the conventional Schrédinger equation except for the
absence of Hermiticity constraint on H, the underlying system may not necessarily be quantum
mechanical. Indeed, there are various classical systems, such as mechanical metamaterials
with frictions or active feedback controls [259-261] and electric circuits with resistors or/and
nonreciprocal devices [262-264], whose equations of motion take the form of Eq. (4.1) [265]. On
the other hand, it is possible to realize a non-Hermitian quantum system on the basis of reservoir
engineering [26,266-269]. Generally speaking, by engineering a GKSL master equation [270,271]

pr = —ilH, pe] + ZD[Lj}Pt, (4.2)

where D[L)p = LpL' — {L'L, p} /2, we can obtain an effective non-Hermitian Hamiltonian

i
Hex = H — 5 > Ll (4.3)

J

under postselection of no-jump trajectories [238,239,272] or for loss processes of a coherent
condensate [214,216,241].

We are now in a position to address the main issue of this chapter. We begin by discussing
how to define topological phases. In a gapped Hermitian system, a topological phase can be
analyzed from the many-body ground-state wave function |¥). In particular, for free-fermion
systems, |¥) = (]| B;<Ex f;r )|vac) has a one-to-one correspondence to the projector

Po= " lpi)eil (4.4)

Ej <Ep

that projects the state onto all the single-particle eigenstates |¢;) = f; |vac) below the Fermi
energy Fr. Note that the spectrum plays no role here, since the Hamiltonian H on the single-
particle level can be flattened by means of the projector (4.4) into 1 — 2P_ [39,40,194] without
closing the band gap, as schematically illustrated in Fig. 4.1 (a). Two gapped Hamiltonians H
and H' differ topologically if and only if |¥) (P-) cannot continuously be deformed into |¥’)
(P") under the constraint of the energy gap and certain symmetries. Such a topological distinc-
tion between wave functions accords with the “states of matter” interpretation of equilibrium
topological phases [4].

However, the very notion of the ground state, be it single- or many-body, breaks down for
a non-Hermitian system, since its eigenenergy belongs to the complex-number field C, where,
unlike the real-number field R, an order relation cannot be defined [273]. Indeed, from a phys-
ical point of view, non-Hermitian systems are intrinsically nonequilibrium and even unstable.
According to the nonunitary Schréodinger equation given in Eq. (4.1), only the single-particle
eigenstate with the largest imaginary energy survives in the long-time limit, a phenomenon well
known in photonics experiments [230]. It thus cannot be justified to interpret non-Hermitian
topological phases simply as topological states of matter.
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Figure 4.1: (a) Energy spectrum (thick lines and dots) of a Hermitian insulator. We can
always perform band flattening, i.e., continuously deform the spectrum into {E_, E;} with
E_ < Ep < E4, where Ep (red dot) is the Fermi energy. In particular, we can choose Fy = +1
for Er = 0. (b) Energy spectrum of a non-Hermitian system forming a loop that encircles a
base point Eg € C. (In the figure we set Eg = 0 for simplicity.) While the shape can be
continuously deformed, the loop can never shrink to a single point without crossing or touching
the base point. Reproduced from Fig. 1 of Ref. [44]. Copyright © 2018 by the American
Physical Society.

Here we argue that the topological phases of non-Hermitian systems can be understood
as topological dynamical phases, for which not only the eigenstates but also the full complex
spectra play important roles. In fact, such a dynamical perspective has widely been adopted in
the context of thermalization and many-body localization [61], as well as Floquet systems [58].
Examples include the Wigner-Dyson (Poisson) level-spacing statistics in chaotic (integrable)
systems [274] and quasi-energy pairing in discrete time crystals [28,29,73]. As for non-Hermitian
systems, we can immediately identify a unique topological object arising solely from the complex
spectrum — a loop constituted from eigenvalues that encircles a prescribed base point (see
Fig. 4.1 (b)). Here by unique we mean that the topological object discussed here never occurs
in a Hermitian system with a real spectrum; by topological we mean that the loop can never
be removed without crossing the base point at £ = FEp. If the base point is chosen to be
zero, a loop ensures the existence of amplifying (ImE > 0) and attenuating (ImFE < 0) modes.
Such a topologically enforced dynamical instability (dynamical property) can be compared
to topologically protected edge states (state property) in Hermitian systems. Note that the
converse is not true, since instability or edge modes may not have a topological origin.

While only the complex spectrum is relevant in the above example, in general, however,
both states and the spectrum are important in the complicated transient dynamics governed
by Eq. (4.1). Since the full information of dynamical behavior is encoded in the non-Hermitian
Hamiltonian H in Eq. (4.1), we can generally define that two non-Hermitian systems differ
topologically if and only if their Hamiltonians cannot continuously be deformed into each other
under certain constraints. Here the minimal constraint follows the guiding principle (IT), which
will be justified in the next section.

Remarkably, by imposing the constraints of Hermiticity and a finite gap, we can reproduce
the states-of-matter interpretation in Hermitian systems, at least for noninteracting SPT phases.
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Without loss of generality,’ assuming that Fr = 0 lies in the band gap, the real spectrum can
always be trivialized to +1, leaving the only difference arising from P_ given in Eq. (4.4). In
this sense, the dynamical viewpoint on topological phases is a generalization of the static one.

We would like to recall that Eq. (4.1) should not necessarily be interpreted as a nonunitary
equation of motion for a wave function. Indeed, it can be any linear dynamics, such as a classical
Markovian process, where |1;) is a probability distribution [275], or a quantum master equation,
where 1) is a density operator or a supervector in the Liouville space [276]. In some cases, we
may consider a discrete version of Eq. (4.1):

te1) = Urlthr), (4.5)

which can be any linear stroboscopic dynamics or even a single input-output process, such as
nonunitary quantum walk [229,277] or quantum channels [278] (see also Sec. 4.4.1). A recent
work [118] on classifying Gaussian nonequilibrium steady states pss can be regarded as a specific
case of Eq. (4.5) with Us(p) = pss for all p, where Uy, = limy oo €54, and pys is the unique
(under the periodic boundary condition) kernel of a quadratic GKSL generator £ with a finite
damping gap.

The remainder of this chapter is organized as follows. In Sec. 4.2, we first justify the
guiding principle (II) and then discuss the topological properties of non-Hermitian lattices in
1D, including the definition of the winding number, edge physics and experimentally observable
signatures. In Sec. 4.3, we employ the K-theory to achieve a complete classification of non-
Hermitian AZ classes in all dimensions, as shown in Table 4.1. The identification of topological
numbers and some topologically nontrivial examples in zero and 1Ds are given in Sec. 4.4.
While we will primarily discuss translation-invariant systems described by Bloch Hamiltonians,
some preliminary results concerning the interplay between topology and disorder can be found
in Appendix B.

4.2 Topological non-Hermitian lattices in 1D with no symmetry

Before performing a general classification, it is instructive to start from the most illustrative case
— 1D lattices without any symmetry. These systems are found to be classified by a topological
winding number, provided that a base energy Ep is not involved in the energy spectrum. We
show that such a winding number corresponds to the number of edge states at Eg in a semi-
infinite space and is measurable from the wave-packet dynamics.

4.2.1 Topological winding number

Let us first clarify the allowed continuous deformation. Note that all the matrices M can be
continuously deformed to zero matrices via the path My = (1 — A\)M, X € [0,1] if there is no
constraint. To avoid the situation in which all non-Hermitian systems in all dimensions are
trivial, we must impose at least one constraint. In the Hermitian case, such a constraint is the
existence of an energy gap near the Fermi energy Fr, which is equivalent to the condition that
Er does not belong to the energy spectrum of the Hamiltonian. As a possible generalization to
the non-Hermitian case, we impose the condition that a base energy Ep € C does not belong to
the energy spectrum of H (k) for all k € [—m, 7|, where k is the wave number. In analogy with the

In the absence of a particle-hole or chiral symmetry, the classification of all the Hermitian Hamiltonians with
a given Fr is equivalent to that with Er = 0, since we have a time-reversal-symmetry-preserved one-to-one map
H — H — Er between two sets of Hamiltonians. In the presence of a particle-hole or/and chiral symmetry,
although Er has arbitrariness for a given system, the only choice of Er is zero when considering the set of all
such Hermitian Hamiltonians.
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Hermitian case where Ef is typically set to be zero, we assume without loss of generality £g = 0
such that H(k) € GL(7'), where GL(¥) is the general linear group on the Hilbert space ¥ at
a given wave number k. Such a minimal constraint is not only natural from a mathematical
viewpoint, but also physically reasonable, since breaking the invertibility of a Hamiltonian
usually requires fine-tuning of parameters. In other words, the constraint should easily be
satisfied under random perturbations, as is typically the case with experimental imperfection.
Indeed, as will be detailed from now on, our setup does bring fruitful physical insights into
non-Hermitian systems.
Mathematically, our minimal constraint reads

det H(k) #0, Vk e [—m, 7], (4.6)

which allows one to define a topological winding number:

wz/ d—k,é?klndetH(k). (4.7)

o 2mi

We note that the generalization to the case of Eg # 0 can be achieved by simply replacing H (k)
by H(k)— Ep in Egs. (4.6) and (4.7). Let Ey(k), E2(k), ..., En(k) € C/{0} be the eigenenergies
of H(k), where N = dim?¥ is the total number of bands. Then the winding number (4.7) can
be expressed as

N
T dk
w = nz:l /_7r %8;C arg Ey, (k), (4.8)

where arg F,, (k) is the argument of the complex energy E, (k). Note that w always vanishes
for Hermitian Hamiltonians because the real energy spectrum implies argF, (k) is pinned at 0
or w. In this sense, a nontrivial winding number, which counts how many times the complex
eigenenergies encircle £p, is unique to non-Hermitian systems. Mathematically, the existence of
this winding number is ensured by the fact that the fundamental group of GL(%) is isomorphic
to Z. In the next section, we will show that the K-theory approach also gives the same Z
classification for 1D systems in class A, which imposes no symmetries. In contrast, class A is
topologically trivial in 1D Hermitian systems [39].

As a minimal setup to observe a topological phase transition, we consider a ring geometry
with asymmetric hopping amplitudes Jg, Ji, € C (see Fig. 4.2(a)):

H= Z(JRC;[ch + JLc;r-ch). (4.9)
J

Fourier transforming Eq. (4.9) to moment space, we obtain the Bloch Hamiltonian as
H(k) = Jre™* + Jpet, (4.10)

whose winding number is evaluated to give

Lo Rl <|JLl;
= 4.11
{ -1, ’JR’ > |JL’ ( )

The topological phase-transition point thus locates at |Jgr| = |JL| (see Fig. 4.2(b)), where
H(k) =0 for k = [arg(Jr/J1,) = 7|/2 and thus H (k) is not invertible.

Note that Eq. (4.10) becomes H (k) = e~* for the specific choice of Jg = 1 and Jy, = 0,
which is known as the one-way model [279]. In this case, the non-Hermitian Hamiltonian
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Figure 4.2: (a) 1D lattice with asymmetric hopping amplitudes Ji, # Jj;. Here, we illustrate
the case in which |Jp| > |Jr|, as indicated by the thickness of the arrows. (b) Phase diagram
and typical complex energy spectra for the model in (a), where w is the winding number. A
topological phase transition occurs at |Ji,| = |Jr| (purple dot), where the spectrum touches the
origin, while the specific case of (a) (blue star) belongs to the w = 1 phase, where the energy
spectrum forms a loop encircling the origin. An arrow inside each loop indicates the direction
of increasing k£ which corresponds to the sign of the winding number w. Reproduced from Fig. 2
of Ref. [44]. Copyright © 2018 by the American Physical Society.

becomes unitary. Then, if we regard H (k) as the Floquet operator Ur(k), we obtain a Thouless
pump [280], which is characterized by the winding number proposed in Ref. [65]:

w = /7r ﬁTr[Ugl(k)akUp(k)]. (4.12)

x 2T

In fact, Eq. (4.12) reduces to Eq. (4.7) if we replace Ur(k) by H (k). To see this, it suffices to
show the following identity for an invertible matrix with a single parameter:

O In detH (k) = Tr[H ' (k)0 H (k). (4.13)
By definition, the lhs of Eq. (4.13) reads
In detH (k +¢€) — In detH (k)

Ok In detH (k) = lim (4.14)
e—0 €
We only have to take care of the leading-order term in the numerator of the rhs:
Indet H(k + ¢) — Indet H(k) = In{det[H (k) + 0y H (k)]/ det H(k)} 4+ O(¢?) (4.15)

—=Indet[I + eH Y (k)0 H(K)] + O(?) = e Te[H ™ (k)ORH (k)] + O(€),

where we have used the identity dete? = ™4 and In(1 + z) = = + O(z?). Compared to
Eq. (4.7), Eq. (4.12) does not seem to have a clear physical meaning but has the advantage of
being able to be readily generalized to higher dimensions [194]. Despite some formal similarities,
there are also essential differences between non-Hermitian Hamiltonians and Floquet operators,
as will be clarified in Sec. 4.3.4.
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Remarkably, without symmetry constraints, non-Hermitian systems can support topological
phases and transitions even for a single-band lattice like Eq. (4.9). Indeed, we can easily write
down a single-band Bloch Hamiltonian H (k) = e™*, which corresponds to a unidirectional
|n|-site hopping (leftward when n > 0 and rightward when n < 0) and features an arbitrary
winding number n € Z. This makes a sharp contrast with Hermitian topological systems which
require at least two bands. Such a sharp distinction can be understood as follows: According to
Eq. (4.8), the winding numbers in non-Hermitian systems are determined solely from complex
energies. On the other hand, winding numbers (or Chern numbers) in Hermitian systems are
usually related to the Berry phase, which automatically becomes trivial if there is only a single
band. We will return to these crucial points in Sec. 4.2.3.

4.2.2 Bulk-edge correspondence

As is well known in Hermitian systems, a nontrivial topological number in the bulk usually
implies the existence of edge states, such as chiral edge modes in a quantum (anomalous) Hall
state with open boundaries [203]. It is thus natural to ask whether the bulk-edge correspondence
still holds true in non-Hermitian topological systems. We answer this question in the affirmative,
at least for the single-band case. However, the correspondence turns out to be very different
from that in Hermitian systems — given a base energy Ep, a positive (negative) winding number
w implies w (—w) independent edge modes with energy E = Ep and localized at the left (right)
boundary in the semi-infinite space.

Let us first focus on the minimal model described by Eq. (4.9). By assuming |Jy| > |Jr|,
we expect an edge state at the left boundary. Indeed, in the limiting case of Jr = 0, ©; = d;1
is a zero mode localized at the first site. More generally, by imposing the right-half-infinite
boundary condition, a state localized at the left boundary can be obtained by solving

JrYj—1 + JLvj = Evy, j=1,2, ... (4.16)
subject to
Jj—0o0

This is a standard problem on a recursive sequence. Denoting z; and zy as the roots of
E=Jrz '+ Jpz, (4.18)

which is the characteristic equation of Eq. (4.16), the general form of the wave function can be

written as?

bj = c12] + c22). (4.19)

Accordingly, the conditions in Eq. (4.17) become
c1+c2 =0, ‘Zl| <1, |22| < 1. (420)

These conditions lead to a continuum of solutions 1; o z{ — zé with energies that fill the
interior of the bulk energy spectrum — a closed loop (see Fig. 4.3 (a)) specified by Eq. (4.10) or
Eq. (4.18) with |z| = |¢?*] = 1. Note that w = 1 for any base energy within this loop, including
Eg =0.

If 21 = 22, we have ¥; = ¢1 z{ + Csz{'*l. Here the emergence of jz{;l can be understood from the fact that
the transfer matrix of [1;41, wj}T becomes similar to a 2 x 2 Jordan block with eigenvalue z:, whose power has
such an off-diagonal entry. See, e.g., Ref. [265] for the calculation of a general analytic function (including power
functions) of an arbitrary matrix possibly having a nontrivial Jordan form.
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Figure 4.3: (a) Energy spectrum of Eq. (4.9) with J, = 2 and Jgr = 1 under the periodic
boundary condition (PBC, blue ellipse) and the open boundary condition (OBC, red line). For
each energy F inside the ellipse (light-blue region) there exists a w = 1 edge state localized at
the left boundary in the semi-infinite space. Three colored points show energies of the three
quasi-edge modes in (d). (b) An edge state in the semi-infinite space (magenta wave packet)
will eventually become unstable (orange wave packet) in a finite open chain with length L
after a time t* ~ L/v, where v is the Lieb-Robinson velocity. (c) Time evolution of the relative
deviation R(t) = ||[e”“H—E) —1]|4)|| for the edge state |1) with E = 0.17 in an open chain with
L = 100. Inset: Time evolution (solid curves) of [1;(¢)|? at the leftmost three sites (j = 1,2, 3)
in comparison with that of |1;(¢)|? = e*™E%|4,(0)|? (dashed lines). (d) Finite-size scaling of t*
for three different quasi-edge states with energies £ = 0.17,2.85 and 0.5 — 0.5¢ (marked in (a)).
We define t* by R(t*) = 1072, as indicated by the dashed red line in (c). Reproduced from
Fig. 4 of Ref. [44]. Copyright © 2018 by the American Physical Society.
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With the above concrete example in mind, we are ready to generalize the conclusion to
arbitrary single bands with positive winding numbers. While the full proof is a bit technical
(see Appendix C), the key idea is simply the argument principle [273]

d e
j{z:l i 20 (4.21)

where F = f(z) is the characteristic equation and Z (P) denotes the number of zeros (poles) of
f(2) in the area |z| < 1. Replacing z with e’*, we find that the left-hand side of Eq. (4.21) gives
nothing but the winding number w introduced in Eq. (4.8). A general form of the wave function
can be written as 1; = 3.7, a1z, where {z} are the zeros and {¢;} are subject to P pieces of
different constraints stemming from the inhomogeneity at the edge. These are straightforward
generalizations of Egs. (4.19) and (4.20). As a result, there are (Z — P = w)-fold degeneracies
of edge states at £ = 0, or generally at £ = Ep if we replace f(z) with f(z) — Ep in Eq. (4.21).
A similar analysis for negative winding numbers can be made by interchanging z and 2z~ 1.

In realistic 1D systems, such as photonic lattices [230], open boundaries always appear in
pairs. In the presence of two edges, only a 1D part is picked out from the edge-state continuum,
making the topological degeneracy generally invisible for a given base energy. For example, the
spectrum of an open chain described by Eq. (4.9) with length L can be determined as E, =
2y JuJr cosinm/(L+1)] (n =1,2,..., L) which distributes over an interval (—2v/JpJr, 2v/JLJR)
on the real-energy axis in the thermodynamic limit (see the red line in Fig. 4.3 (a)). A sudden
change in the spectrum under different boundary conditions has also been found in Ref. [281].
Precisely speaking, it is found in Ref. [281] for a chiral-symmetric® model that an exponentially
small (in terms of the system size) modification of the boundary condition can lead to an order-
one change in the spectrum. This is also the case for the Hatano-Nelson model. Interestingly,
we can have a topological interpretation for such an extreme spectral sensitivity by considering
an open chain as a special disordered system. See Appendix B.1 for details.

As stated above, an energy eigenstate localized at the edge of a semi-infinite space generally
disappears if the system size is finite. Nevertheless, quasi-edge modes may exist for finite-
size systems. By quasi-edge modes, we mean that they are not exact eigenstates, yet their
dynamics seem just as eigenstates do up to a time scale that increases with the system size
and diverges in the thermodynamic limit. To investigate them, suppose that an edge state
with energy E for the semi-infinite condition is prepared in a finite lattice with length L, whose
spectrum does not include E. Then the time evolution can be obtained to a good approximation
simply by multiplying e " up to a time scale (at least) proportional to L (see Figs. 4.3(c) and
(d)). Note that this quasi-eigenstate of a finite chain becomes exact in the semi-infinite limit
L — oo. We can intuitively interpret this linear scaling as a manifestation of the Lieb-Robinson
bound [143] after a boundary-condition quench is made roughly L sites away from the edge
mode, as illustrated in Fig. 4.3 (b).

The dramatic changes in the spectra for different boundary conditions have already been
investigated in a purely mathematical context regarding non-Hermitian Toeplitz matrices (i.e.,
the matrices satisfying M; = M;_;) and operators [282]. A generalization of the conventional
eigenvalues and eigenvectors, which is called the e-pseudo-eigenvalues and eigenvectors, was
made to explain the apparent inconsistency. The exact definition is as follows: Given a matrix or
operator H, if there exists V' such that the operator norm satisfies ||V || < e and (H+V )y = Ev,
then E and 1 constitute a pair of e-pseudo-eigenvalue and eigenvector of H. In our language,
Toeplitz matrices and operators correspond to finite and semi-infinite chains, respectively, and
a pseudo-eigenvector is nothing but a quasi-edge mode. The spectrum of a Toeplitz operator

3 According to Ref. [257], it is more precise to say sublattice symmetry.
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must be obtained by first taking the thermodynamic limit L — oo followed by ¢ — 0, which
is generally inequivalent to the limit e — 0 followed by L — oo [282]. This fact is reminiscent
of quantum phase transitions [48], where spontaneous symmetry breaking occurs only by first
taking the thermodynamic limit and then making the symmetry breaking perturbations vanish.

4.2.3 Determining the winding number

In Hermitian systems, the only direct signature of w in 1D seems to be the number of edge states.
Due to the subtlety of the bulk-edge correspondence discussed above, it is highly nontrivial
to identify w simply from the energy spectrum of a finite non-Hermitian system under open
boundaries. In this subsection, we introduce both numerical and experimental schemes to
determine the winding number.

Numerical scheme

We can numerically extract the winding number by counting the zero modes of the following
enlarged Hermitian Hamiltonian constructed from H:

Hy=0,®H+o_ ®HT, (4.22)

where 04 = (0, +i0y)/2, with o, and o, being the Pauli matrices. Such an idea of Hermi-
tianization (4.22) actually lies at the heart of the K-theory classification discussed in the next
section. Using the bulk-edge correspondence of H, we can show that the number of zero modes
of Eq. (4.22) equals to 2|w| (see Appendix C). This result is actually nothing but the bulk-edge
correspondence for Hermitian systems with chiral symmetry alone (class AIII). If the chiral
symmetry stems from the sublattice degrees of freedom, the sign of w determines in which sub-
lattice the edge state is localized. Note that the generalization to arbitrary base energies can
be done through replacement of H by H — Ep in Eq. (4.22).

Experimental scheme

In practice, we can measure the winding number from the wave-packet dynamics. For Hermitian
lattice systems, the semiclassical equations of motion of a particle in a single band are given
by [283]
dt dt dt
where F is the potential gradient, F(k) is the band dispersion, and Q(k) = i(Vgu(k)|x|Vieu(k))
is the Berry curvature, which requires at least two dimensions and two bands (as mentioned in
Sec. 4.2.1) to be nonzero. In two dimensions, it suffices to determine the Chern number directly
from the transverse motion of particles [172]. However, in a 1D lattice, rather sophisticated
operations are needed to measure the winding number or the Zak phase [171]. That is, we
have to isolate the geometric phase from the dynamical phase [284]. In a non-Hermitian 1D
system, however, the winding number (4.8) is determined solely from the eigenenergies, which
are relevant to the dynamical phase. It turns out that w can be measured simply from the
nonunitary Bloch oscillations [285,286], whose semiclassical equation of motion is given by
dk o dz dE(k) dIn N;

- b owTRea &

x Q(k), (4.23)

= 2ImE(k), (4.24)

where N; = (1¢|t)¢) is not, in general, equal to unity due to the nonunitary nature of the dynam-
ics. The above semiclassical equation of motion will be derived at the end of this subsection.
By simultaneously tracing the center of mass and the total weight of the wave packet, we can

81



(a) (b) 10%

AR
10 4 t=0.2T
o 001 F5547
5 Y Y
J —F 3 107} FS 50 TN} e =0T
L —_— (X . : oo
JR 10_8 o.:. : :.: ‘ .-.' “'. ° t=O7T
10-11 .-.'. : oo -..." '3: e t=09T
0 20 40 60 80 100

10} ' ' ' : ] r - S -
AN A WAL P

SE # A £ 5 £ LA ROl .

Y f LA % 0.5} ,+° Se
T T
3 % : B 0.0 H
3 J

T

1

T

& & 4 b
£ % Y g 14
-5 i % i % § v J
[ SR S S N R\ X1 %Y
-10p % & v F = Indyly,) St ‘____,,9”
—15f W, A L —10b Tt
0 10 20 30 40 -6 -5 -4 -3 -2 -1 0
t Re E(k)-Re E(0)

Figure 4.4: (a) Gaussian wave packet in a lattice with asymmetric hopping amplitudes Jp, = 2
and Jg = 1 and tilted by a potential gradient F' = 0.4. (b) Profiles of the wave packet in real
space at t = 0,0.27,0.47,0.57,0.7T and 0.97', with 7' = 2« /F for the lattice length L = 100.
(c) Numerical (“+” marks) and semiclassical (dashed curves, obtained from Eq. (4.24)) results
for the wave-packet dynamics in real space. Here A(z); = (z); — (x)¢ denotes the center-of-mass
displacement at time ¢. (d) Complex eigenenergies reconstructed from (c) (dots) in comparison
with the theoretical results (dashed curve). The arrows in (b) and (d) show the direction of
time. Since the data are taken stroboscopically, the imaginary energies ImFE are estimated from

In((Yeraelerar) /(W) /(2At). Reproduced from Fig. 5 of Ref. [44]. Copyright (© 2018 by
the American Physical Society.

reconstruct the energy spectrum when the wave number runs over the Brillouin zone. The
winding number w can thus be determined by counting how many times the complex-energy
trajectory encircles the base point. Such a simple scenario can be implemented in photonic
lattices [287] with asymmetric backscattering [221,222] or by using auxiliary microresonators
with gain and loss [288,289]. In the next subsection, we propose another implementation based
on ultracold atoms in optical lattices with engineered dissipation. Compared with photonic
lattices, ultracold atoms have the advantage in controlling interactions flexibly and thus are
promising for exploring non-Hermitian quantum many-body physics [238-240].

As a simple example, we consider the wave-packet dynamics in a Hatano-Nelson lattice (4.9)
with J;, = 2, Jg = 1 and L = 100. While the open-boundary condition is imposed, we have
checked that the difference from the periodic-boundary condition is negligible. At the initial
time, we prepare a Gaussian packet in the middle of the lattice with dispersion o, = \/L/(47)
and located at k& = 0 in the Brillouin zone (see Fig. 4.4(a)). After applying a potential gradient
F = 0.4 in the positive = (right) direction, both the center of mass and the intensity starts
to oscillate. As shown in Fig. 4.4(c), the numerical results (dots) agree quite well with the
semiclassical predictions (dashed curves). Thus, the reconstructed complex energies based on
Eq. (4.24) accurately reproduce those of the ideal dispersion relation (see Fig. 4.4(d)). We have
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also plotted the wave-packet densities at several different times in Fig. 4.4(b) and confirmed
that the profile stays approximately Gaussian during the time evolution. The initial direction
of motion is opposite to F' due to the negative effective mass meg = —(Jr, + Jr) at k = 0.

Let us return to the derivation of Eq. (4.24). In the continuous limit, the Schrédinger
equation (generally nonunitary) in momentum space is given by

i0ie(k) = [E(k) — iFO]ii(k), (4.25)

where E(k) is the dispersion relation of the band and F' is a potential gradient. Starting from
an arbitrary initial state ¢y(k), we can write down a formal solution to Eq. (4.25) as

Yy(k) = e~ o Bk — ), (4.26)

which satisfies the quasi-periodicity 9, o/ p(k) = e_Z”iE/Fwt( k) with E = f dkE (k).
Note that no approximation is made so far except for the continuous hmlt We note that a
similar semi-classical analysis on nonunitary wave-packet dynamics is made in Ref. [290].

If we focus on the semiclassical regime, (k) should be highly localized in the Brillouin
zone, as a Gaussian packet

k2
Yo(k) = (V2moy)™ Ze 2% (4.27)

near k = 0 does, with a small dispersion o}, < 1. In this case, we can expand E(k — F(t —t'))
in Eq. (4.26) near Ft' (in terms of k — Ft ~ o}) up to (k — Ft)?, such that the wave packet
(k) stays (approximately) Gaussian:

B0 _BO) (1 py) {%HW} (k—Ft)?
k

Yi(k) = (V2ray,) " 2e o @ EE, 1o . (428)

where FE’(k) means dFE(k)/dk. We can thus calculate the normalization N; = (¢]i)y) as
J7_dk|y(k)|?, which turns out to be

2[ImE(Ft)7ImE(0)]2UI%
F2—QUzF[ImE’(Ft)—ImE’(O)]. (4_29)

1 2 [ dt'ImE(Ft')+

\/ 1 — 28 [ImE/(Ft) — ImE'(0)]
By taking the limit o — 0, we obtain the rightmost equation in Eq. (4.24). The center of mass

in the Brillouin zone can also be read out from Eq. (4.28) as

2[ImE(Ft) — ImE(0)]o?
F —202[ImE'(Ft) — ImE’(0)]’

(k)e = Ft+ (4.30)
which reduces to Ft in the oy, — 0 limit. After the Fourier transform v (z) = (27)~ /2 J7dk x
Yy(k)e*® we can obtain the real-space wave function and determine the center of mass in real
space as
ReE(Ft) — ReE(0) 207 . .
(@) = 7 = o m[(E*(Ft) — E*(0)(E'(Ft) - E'(0))], (4.31)

which reduces to the middle equation in Eq. (4.24) in the limit of o} — 0.
It is worthwhile to consider the special case of free diffusion with F' = 0. Taking the limit
of FF— 0 in Egs. (4.29), (4.30) and (4.31), we obtain

’ 2
AmE(0)t 4 2ok E (O~
. 1-202ImE" (0)t QJ%ImEl(O)t

) k>t — )
\/1 _ QUilmE”(O)t 1-— QO'I%IHIE”(O)t (4.32)

(z)¢ = ReE'(0)t — 202Im[E"* (0)E" (0)]t?

M:
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Applying the last equation to a wave packet with the momentum-space spread of a,% =7/L in
the clean Hatano-Nelson model (4.9) with Jp,, Jr € R, we have
2
(z); = —%ug — T2 (4.33)
This result implies that the shift of the center of mass due to asymmetric hopping amplitudes

is a finite-size effect. In other words, a wave packet in the classical limit does not move in spite
of the asymmetry in hopping amplitudes.

4.2.4 Experimental implementation of asymmetric hopping amplitudes

As mentioned in Sec. 4.1.2, an effective non-Hermitian Hamiltonian appears naturally in the
time evolution of a Markovian open quantum system between quantum jumps or on the mean-
field level. In particular, if we choose

H=-JY (chyej+He), Lj =il *ici) (4.34)
j

in Eq. (4.2), where {L;} describe a collective one-body loss [241], the effective non-Hermitian
Hamiltonian in Eq. (4.3) will involve asymmetric hopping amplitudes:

Heg = Z(JRC}JAC]' + JLC}C]'+1) —ikNN. (4.35)

J

Here Jg = —J ¥ /2 differs from Jy, = —J £ r/2 and N =}, C}Cj is the total particle-number
operator, so that the last term corresponds to a background loss. Unlike Fig. 4.4(d), the energy
spectrum is now below the real axis due to atom loss, and the imaginary part of its center is
located at —ik.

It is not straightforward to engineer a nonlocal one-body loss like {L;} in Eq. (4.34), since
the usual loss process occurs locally [216]. However, we can effectively engineer such a novel
nonlocal loss by using a nonlocal Rabi coupling to some auxiliary degrees of freedom which
undergo rapid local loss. After adiabatically eliminating the fast decay modes [291], we end up
with an effective dynamics with target degrees of freedom alone, which now effectively undergo
nonlocal loss.

As illustrated in Fig. 4.5, we consider a system of two-level atoms with internal states |g)
and |e) in a 1D optical lattice with lattice constant a. Because the opposite Stark shifts are
opposite for |g) and |e), the potential minima for |e) locate in the middles of each of those for
|g). The excited state |e) is assumed to be unstable and rapidly escape from the lattice at a
rate . Parallel to the optical lattices, we further apply a running-wave laser with frequency
wRr, which is detuned from the atomic frequency wey by A = wr — weyg. The strength of the
laser-atom dipole coupling is characterized by a Rabi frequency 2r. Within the tight-binding
approximation and neglecting the interactions between atoms, we can write down the master
equation in the rotating frame of reference as

pt =—1 Z[HO + V7 Pt] + D[Cje]pta (436)
J
where Hy includes the bare tunneling and V' couples different internal states:
Hy=—-J Z (C}_‘_LaCja +H.c.) — Z Ac}ecje,
J

Jja=g,e
4.37
Vv _1 QeLikria t (.. +ikga . H ( )
=3 Z[ € Cielcig T Cjy1g) +Hel.
J
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optical lattice I

Figure 4.5: Implementation of asymmetric hopping amplitudes in optical lattices. A stable
(dissipative) optical lattice is applied to the ground (excited) state |g) (|e)). A running wave
parallel to an optical lattice couples |g) to |e), which undergoes rapid on-site loss at a rate .
By making the wavelength of the running wave equal to the lattice constant, the phases of Rabi
couplings can be adjusted to change by 7/2 compared with the left adjacent ones. Reproduced
from Fig. 17 of Ref. [44]. Copyright © 2018 by the American Physical Society.

Here 4+ (—) corresponds to the right (left) propagating wave and the Rabi coupling 2 can be
determined from Q = Qg [ dwe™ ™ W (z)W (z — %), with W(z) being the Wannier function.
In the regime of max{A,~v} > J, (2, we can adiabatically eliminate cj. in Eq. (4.36) to obtain

Eq. (4.2) with the same H as in Eq. (4.34) and a more general Lj;:

L, — Y § (4.38)

+ik
V2 + 4A2 (cjg + €241 ,9),

which gives the second equation in Eq. (4.34) if kga = m or Ag = 2a. Note that even if Ag
differs from A;, = 2a, which is the wavelength of the optical lattice laser, we can still obtain
Eq. (4.34) by tilting the running wave from the optical lattice by an angle fg = arccos(Ar/Ar)
as long as Ag < Ar.

In a realistic experiment, we can, for example, use '™*Yb atoms and 1117 nm-wavelength
lasers to create the anti-magic optical lattice with opposite Stark shifts for ¢ = 'Sy and e = 3P
[292]. We choose a relatively shallow (yet the tight-binding approximation still works well)
lattice depth Vo = 5E;, with E, = h?/(2mA?) = 27 x 0.92 kHz being the recoil energy. The
bare hopping amplitude is thus estimated to be J = 0.066E, = 27 x 60 Hz [54]. The on-site loss
rate v of |e) can be controlled by a 1285 nm laser that couples 3Py to 'P; resonantly, and we can
still make x = v|Q2|?/(v% +4A?) as small as, e.g., 0.2J = 27 x 12 Hz by tuning 7, |Q2| or/and A.
Here, we should make « much less than the band gap 4.6 F; of the optical lattice to justify the
tight-binding approximation for |e) (e.g., we can choose A = 0 and v = 5Q = 0.33E, = 27 x 0.30
kHz). The wavelength of the running-wave laser is fixed at 578.42 nm (clock transition [293])
and the tilting angle should be g = 58.8°. The potential gradient can be made from an optical
dipole force via an additional laser beam [172], and may be chosen to be, e.g., F' = 4k = 27 x 48
Hz, which is much smaller than the band gap and thus justifies the single-band treatment. The
maximum displacement can thus be evaluated to be 2.J/F = 5 lattice sites, which is enough to be
measured by single-site resolved quantum gas microscopy [294]. The period of Bloch oscillations
is Ty = 2w /F = 21 ms, after which the survival fraction of atoms is given by e 2*18 = 4.3%,
which should be sufficiently large for reconstructing the complex energy spectrum if there are
at least thousands of atoms at the initial time.
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4.3 Classification of non-Hermitian topological phases in the
Altland-Zirnbauer classes

The non-Hermitian systems discussed in the previous section are special in the sense that the
spatial dimension is d = 1 and no symmetry requirement is imposed. Such a non-Hermitian
counterpart of class A in 1D, however, exhibits an integer topological winding number (4.7)
reminiscent of Floquet systems [65] and Hermitian systems belonging to class AIII [39]. These
observations suggest a connection between a non-Hermitian Hamiltonian and a unitary operator,
the latter of which has a one-to-one correspondence to an involutory Hermitian Hamiltonian
with a prescribed chiral symmetry [119]. In this section, we establish such a connection, which
enables a systematic classification of non-Hermitian Bloch Hamiltonians in all dimensions and in
the presence of additional symmetries. In particular, we show that the topological classification
of non-Hermitian AZ classes differs significantly from those of Hermitian AZ classes [39,40,194,
195].

4.3.1 Unitarization under symmetry constraints

In the previous sections we have already clarified that two Hamiltonians are topologically equiv-
alent if they can continuously be deformed into each other under certain constraints. Without
symmetries, the only constraint is that a base point Ep cannot be touched by the energy spec-
trum. Such a constraint is imposed to satisfy the condition of invertibility of the Hamiltonian
for B = 0, which we primarily assume in the following discussions. This gap condition is now
called a point gap in literature [257]. For a given AZ class, which involves one or some of the
time-reversal symmetry 7', particle-hole symmetry C' and chiral symmetry I', we have to fur-
ther impose these symmetry constraints. These considerations lead to the following definition
of topological equivalence:

Definition 6 (Homotopy equivalence) Two non-Hermitian Bloch Hamiltonians Ho(k) and
Hy(k) in the same AZ class are homotopically equivalent, denoted as Ho(k) ~ Hq(k), if there
exists a path Hy(k) (0 < X\ < 1) in the space of invertible matrices (i.e., the GL(¥) group,
where ¥V is the Hilbert space) such that

SHx(k)S™" =ngHx(esk), VA€ [0,1], (4.39)

where S =T (anti-unitary, np = 1, ex = —1), C' (anti-unitary, nc = ec = —1) or I (unitary,
nr=—1,ep=1).

We emphasize again that the condition of H) (k) being invertible is equivalent to the condition
that the system stays gapped in the Hermitian case, if we prescribe the Fermi energy to be 0.
When generalizing to non-Hermitian systems, the concepts of upper and lower bands disappear
since we cannot establish an order relation for complex energies.

Definition 6 implies the following theorem:

Theorem 4 For an arbitrary invertible Bloch Hamiltonian H(k), which has a unique polar
decomposition H(k) = U(k)P(k) with U(k) being unitary and P(k) = /H(k)TH(k) being
positive-definite and Hermitian, we have H(k) ~ U (k).

Proof: To prove H (k) ~ U(k), we have to first confirm that U (k) belongs to the same symmetry
class of H(k). For an arbitrary anti-unitary symmetry or anti-symmetry S = UgK (Ug is
unitary and K denotes complex conjugation) such that

UsH (k)*UL = nsH(—k), na==+1, (4.40)
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Figure 4.6: (a) Spectral flow (from red to green, guided by the arrows) in the course of the
unitarization process of an invertible complex matrix with size 20. Note that the spectrum of
the unitarized matrix locates on a unit circle (black dashed). (b) The same as in (a) but for
a time-reversal-symmetric matrix. The time-reversal symmetry, which manifests itself as the
mirror symmetry of the spectrum with respect to the real axis, is kept in the unitarization
process. Reproduced from Fig. 6 of Ref. [44]. Copyright © 2018 by the American Physical
Society.

by performing the polar decomposition H (k) = U(k)P(k), we obtain

UsU(k)*P(k)*'UL = nsU(~k)P(—k) = UsP(k)?UL = P(~k)?

(4.41)
= [P(—k) + UsP(k)*UL)[P(—k) — UsP(k)*U}] = 0,

where the unitarity of Ug and U(k) (U(k)*) and the Hermiticity of P(k) (P(k)*) are used.
Recalling that P(k) (P(k)*) is positive-definite, we know that P(—k)+ USP(kz)*Ug should also
be positive-definite and thus invertible. This fact implies

P(—k) = UsP(k)"'UL, = UsU*(k)US = nsU(—k). (4.42)

Following a similar procedure, we can prove that U(k) and H (k) share the same unitary or
transpose symmetry or anti-symmetry. This is why we use the term symmetry class in the
beginning, which is much wider than the AZ class. For example, we can consider crystalline
symmetries and Bernard-LeClair symmetries [258].

We can now construct the following path

Hy(k) = (1= NH(k) + AU (k) = U(k)[(1 — \)P(k) + A, (4.43)

which satisfy Ho(k) = H(k) and Hi(k) = U(k). Furthermore, as a linear combination of H (k)
and U(k), Hy(k) shares all the symmetries of H(k) and U(k), and is indeed invertible due to
the fact that (1 — A)P(k) + A is positive-definite. O

We provide two examples of unitarization from H to U in Fig. 4.6. According to this
theorem, it suffices to consider the classification of all the unitary matrices. Note that this
result is consistent with band flattening in the Hermitian case [39,40,194]. By diagonalizing a
Hermitian Hamiltonian as

+
H=V <A%XP A(,) > v, (4.44)

axq
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where A;Xp (A, %) is the diagonal block of all the positive (negative) energies, we find the polar

decomposition to be H = UP with

AT
U=V <1POXP _ﬁxq) Vi, P=v ( po 0 ) v, (4.45)

axq
where U is nothing but the flattened Hamiltonian.

It is worthwhile to mention that there are also other generalizations of the energy gap, such as
the band separability [253] and the line gap [257]. In the latter case, one can prove that the Bloch
Hamiltonian can always be continuously deformed into a flattened (anti-)Hermitian Hamiltonian
under the constraint of fundamental symmetries (i.e., Bernard-LeClair symmetries), provided
that the imaginary (real) energy axis does not cross the energy spectrum [257,265]. This result
implies that the topological classification for line gapped non-Hermitian systems is the same as
that for Hermitian systems. As we will see in the following, as for point-gapped non-Hermitian
systems, we have a very different classification.

4.3.2 K-theory and Clifford-algebra extension

The classification based on the homotopy equivalence is appropriate for a given Hilbert space,
but is not so if the operations of inserting extra bands are also allowed. These operations are
indeed possible in experiments of ultracold atoms, where we can, for example, couple two or
more individual 1D chains [295]. In this case, the correct classification should be carried out on
the basis of the K-theory [40,195,199,200,296], i.e., all we have to do is to figure out the K-
group of the map from the Brillouin zone M = T¢ (d: spatial dimension) to a (non-Hermitian)
matrix space subject to specific symmetry requirements. If we are only interested in the strong
topological numbers [40], the manifold is M = S¢. From now on, we may omit the variable k
for simplicity, but we should remember that there is a base manifold.

Let us first review some basics of the K-theory, so as to understand why it is compatible
with band-inserting operations. The K-group is an Abelian group consisting of equivalence
classes, denoted as [Hy, H1|, of Hamiltonian pairs (Hy, H1), where Hy and H; act on the same
Hilbert space. For (Hy, Hy1), we define an addition structure as

(Ho, H1) + (Hy, Hy) = (Ho & Hy, Hy & H). (4.46)

We also impose (Hoy, Hy) = (H}, H}) if Hy ~ H|, and H; ~ Hj] (we recall that “~" means
homotopy equivalence as defined in Definition 6). To specify the equivalence classes, we require
that (Hp, H1) should be identified as (Ho®H, Hi®H ) for all H, i.e., [Hy®H, Hi®H| = [Hy, Hi).
By naturally defining the addition between equivalence classes as

[Ho, Hi] + [Hy, H}) = [Ho @ Hy, H, & Hj), (4.47)

we can deduce that they form an Abelian group, which is called the K-group and denoted as
K (M), with zero element [H, H] = 0 and the inverse of [Hy, H1]| being [Hy, Hy|. We say that
Hy and H; belong to the same topological phase if and only if [Hy, H;] = 0.

A crucial observation here is that although Hy ~ H; implies [Hp, Hi] = 0, the converse
is not true. A prototypical example is the Hopf insulator [147], which is a two-band system
in three dimensions and has no symmetry. While a Hopf insulator differs homotopically from
a trivial insulator by a nonzero Hopf charge, it becomes trivial in the K-theory classification
since we can insert additional bands into the system to trivialize the homotopy from S to the
entire Hilbert space. In other words, nontrivial topological phases emerge in class A in three
dimensions only if there are two bands.
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While it is not easy to calculate the K-group for general symmetry constraints [297], well-
developed techniques are available if the Hamiltonian space subjected to specific symmetry con-
straints is an extension of a Clifford algebra [40], which is generated by a set of anti-commutative
elements {e;}7_;:

€€y = —€j€j, V] 75 j/. (4.48)

If e? =1 for all j =1,2,...,n, the algebra generated by {e; };‘:1 over the complex-number field
C is called a complex Clifford algebra Cf,. If e? =—1forj=1,2,....,p (p <n) and e? =1 for
Jj =p+1,p+2,...,n, the algebra generated by {e; };?:1 over the real-number field R is called a real
Clifford algebra C¢, ,, where ¢ = n —p. For a flattened Hermitian Hamiltonian H, we naturally
have H? = 1, which can already be regarded as an element of a Clifford algebra C/z generated
by H and its two-fold symmetry operators (as well as ¢, if there is an anti-unitary symmetry).
Noting that the two-fold symmetry operators themselves generate another Clifford algebra Clg,
we can thus represent the Hamiltonian space by the Clifford-algebra extension Clg — C/lp.
In particular, we denote Cl; — Cls11 and Cly s — Clysy1 as Cs and Ry, respectively, which
satisfy the Bott periodicity [298]:

Cs+2 - Cs, R3+8 - RS. (449)

It is well known for Hermitian systems that the two complex AZ classes correspond to Cs with
s = 0,1 and the eight real AZ classes correspond to Ry with s = 0,1,...,7 [40]. Denoting the
K-group for a complex or real AZ class parametrized by s and in d dimensions as Kc(s;d) or
KRr(s;d), we have

Kc(s; d) = Fd(cs) = Wo(csfd), KR(S; d) = TI'd(RS) = Wo(Rs,d), (450)

where w4 is the dth homotopy group.
For a unitarized non-Hermitian Hamiltonian U, we do not have U? = +1 in general. Nev-
ertheless, we can introduce the corresponding Hermitian Hamiltonian

_ i |0 U
HU:O'+®U+O'7®U —|:U.I. 0:|, (451)
which now satisfies HIQJ = 1. Remarkably, by such construction, we naturally have a chiral
symmetry ¥ = o, ® 1, which satisfies 2 = 1 and

YHy = —HyY. (4.52)

It has been proved (see, e.g., Appendix D in Ref. [119]) that Hy must take the form of Eq. (4.51)
if we impose Eq. (4.52). Therefore, one can find properties of U from those of Hys.

4.3.3 Explicit classification

Now let us study how the non-Hermiticity changes the topological classification for each AZ
class. We start from the two complex AZ classes A and AIII, which correspond to Cy and Cy
in the Hermitian case. Due to the emergent chiral symmetry (4.52), class A is shifted to class
AIII, which is characterized by 74(C1) = Z (0) for odd (even) d. As for class AIIl with an
intrinsic chiral symmetry I, due to [£,00 ® I'] = 0 (09 = 12x2), the topological number simply
duplicates, i.e., it becomes m4(C; x C1) = Z @ Z (0) for odd (even) d.

Let us move on to the real AZ classes with only a single anti-unitary (anti-)symmetry
S = UsK, including Al (T? = 1), D (C? = 1), AIl (T? = —1) and C (C? = —1). By using the
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fact that

SUS™'=nsU = SUTS™! =pngUt
L9 opfo ul_ [0 U[s o (4.53)
o s||ut ol =" Ut oflo S|

we find that the action of an anti-unitary (anti-)symmetry oo ® S on Hy is the same as that on
U. Since [op® S, ¥] = 0, such a chiral symmetry ¥ implies another anti-unitary symmetry whose
square is the same as S2. Therefore, classes Al and D (classes AIl and C), which correspond
to Rp and Ry (R4 and Rg) in the Hermitian case, are unified into BDI (CII) described by R4
(Rs).

Finally, let us discuss the AZ classes with two anti-unitary (anti-)symmetries, including DIII
(T? =-1,C?=1),CI (T?=1,C? = -1), BDI (T? =1,C? = 1) and CII (T? = —-1,C? = -1).
For the former two classes, we can construct i¥(og ® I') = io, ® I'; this operator gives —1 upon
squaring and commutes with all the elements in the original Clifford algebra excluding . This
implies that DIII and CI, which correspond to R3 and R7 in the Hermitian case, are unified
into AIII (Cy), since io, ® I' behaves like a complex unit that changes the real AZ classes into
the complex ones [199]. For the latter two classes, we can construct X(og ® I') = o, ® I'; this
operator gives 1 upon squaring and commutes with all the elements in the original Clifford
algebra excluding 3. This implies that the topological number of classes BDI and CII simply
gets doubled, since o, ® I" has two different subspaces of eigenstates with eigenvalues +1 [199].

We list all the results in Table 4.1. To summarize, the effect of non-Hermiticity is equivalent
to adding a chiral symmetry that commutes with all the original symmetries. As a result, classes
A, DIII and CI are unified into AIII, Al and D are unified into BDI, AIl and C are unified into
CII, and AIII, BDI and CII become duplicated.

4.3.4 Discussions

A few remarks are in order here. First, the unification of classes Al and D, AIl and C as well
as that of classes DIII and CI, can be understood as a consequence of the one-to-one mapping
between a time-reversal symmetric Hamiltonian and a particle-hole symmetric Hamiltonian
which are transformed to each other by simple multiplication of one or the other by i [299].
Such a unification holds true for very general requirements of continuous deformation other
than maintaining invertibility, such as the existence of a complex band gap [253].

Second, despite the fact that the classification of non-Hermitian matrices is equivalent to
that of unitary matrices, the periodic table (Table 4.1) differs significantly from that of Floquet
systems [119]. This is partly due to the different meanings of symmetries in the context of
Hamiltonians and time-development operators. In the former case, we require SH(k)S~—! =
nsH (esk), while in the latter case we require SU(k)S~! = U(egk)™"s, where +/— corresponds
to a unitary/anti-unitary (anti-)symmetry [121]. Another reason is that, rather than a Floquet
operator alone, the full information of U (k,t) = Te i o WH®) from t = 0tot = T is important
in a Floquet system. A good illustration is the anomalous edge states [67], which exist in spite of
a trivial U(k,T') = 1, as has been mentioned in the previous chapter. In contrast, here we focus
on time-independent non-Hermitian Hamiltonians, so that the base manifold for classification
only contains k but not t.

Third, a 2D non-Hermitian system turns out to be always trivial in our classification. This
does not contradict a recently discovered Chern number for separable non-Hermitian bands
[253], since all the bands can be deformed to touch each other without hitting a base energy.
For example, let us show how to trivialize a Chern insulator without the spectrum touching at
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Figure 4.7: (a) Spectrum of Eq. (4.54) with (v,m) = (0.25,1). The zero mode in the v = 0
limit (sparse dots) disappears due to the global spectrum shift along the imaginary energy axis
(indicated by the arrows). (b) Same as (a) but with (y,m) = (0,1 + 0.5¢). The symmetry
constraint given in Eq. (4.55) enforces the spectrum to be inversion symmetric, leading to a
robust zero mode (grey dot). In both (a) and (b), the blue (red) dots correspond to the periodic
(open) boundary condition, and the system size is 40 x 40. Reproduced from Fig. 7 of Ref. [44].
Copyright © 2018 by the American Physical Society.

the origin (here, we assume Eg = 0). We consider a two-band system
H(ky, ky) = —iyog + sin kyo, + sinkyo, + (m — cosky — cosky)o, (4.54)

and start from (v, m) = (0,1), which describes a Hermitian Chern insulator [193]. We can first
gradually introduce a global loss up to, e.g., v = 0.25 (see Fig. 4.7(a)), and then change m
into, e.g., m = 3, and finally remove the global loss by reducing ~ to zero. It is clear that the
origin is not touched by the spectrum of H(k,,k,) during the whole process. Such continuous
deformation is, however, forbidden in Ref. [253], because a band touching occurs at m = 2.
Although the AZ classes are always trivial in two dimensions in our framework, nontrivial
topological phases do exist in other symmetry classes. For example, by setting v = 0 in
Eq. (4.54), we have
0 H (kg ky)oy = —H(—kz, ky) (4.55)

even for a complex m. With the symmetry constraint in Eq. (4.55) alone, we know that the
Hermitianized Hamiltonian (4.22) exhibits not only a chiral symmetry ¥ but also a mirror
symmetry (with respect to the y axis) o, ® o, that commutes with ¥, leading to a Z classifica-
tion [198]. In Fig. 4.7(b), we plot the spectrum for m = 1+40.5¢ with a nontrivial mirror winding
number 1 [198], and find a mode with zero energy under the open boundary condition. Such
a zero-energy mode should be robust due to the interplay of a nontrivial non-Hermitian Chern
number [253] and the inversion symmetry of the spectrum enforced by Eq. (4.55). This obser-
vation, together with the bulk-edge correspondence found in 1D, suggests that a topologically
nontrivial bulk with respect to a base energy Ep implies one or more robust edge modes at Ep
(or crossing Ep upon the change of boundary condition). This is much stronger a requirement
than the existence of robust edge modes (that may appear anywhere), which can be ensured
by a nontrivial non-Hermitian Chern number as discussed in Ref. [253]. From this viewpoint,
it may not be so incomprehensible that 2D non-Hermitian systems in AZ classes are always
trivial — these systems may exhibit robust edge modes, but they are not expected to exhibit an
edge mode at the base energy in general.

Finally, we again emphasize that weak topological numbers [40] are not shown in Table 4.1.
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Indeed, we can define two winding numbers

T dk
wy, = / ﬁ@ku Indet H(kz, ky), p=xzy (4.56)

—T

for any 2D lattices, but they inherit from the lower dimension (d = 1) and are not genuinely
2D topological invariants. On the other hand, a nontrivial weak topological number can lead to
a dramatic change in the spectrum under different boundary conditions, just like the 1D case
shown in Fig. 4.3(a).

4.4 'Topological indices for non-Hermitian systems

In this section, we identify the topological indices and provide some concrete examples for all
the nontrivial non-Hermitian AZ classes in zero and one dimension.

4.4.1 Zero dimension

According to the K-theory classification (see Table 4.1), if we impose either time-reversal or
(and) particle-hole symmetry, we obtain two (four) types of topologically different matrices.
Since a matrix of class BDI is made from two independent matrices of class Al (or D), it suffices
to focus on a single Zs topological number. Furthermore, class Al and class D can be mapped
into each other by simply multiplying the imaginary unit ¢ [299]; therefore we will primarily
discuss the case of class Al without loss of generality.

Note that an involutory (72 = 1) time-reversal symmetry can always be represented as
T = K (we recall that K denotes complex conjugation) in an appropriate basis [300], under
which all the time-reversal symmetric matrices are real. In this case, the polar decomposition
becomes H = OR, where O is orthogonal and R is real, symmetric and positive-definite. Since
H ~ O, we conclude that the Zy topological number characterizes the two disconnected sectors
of an orthogonal group. In terms of H, this topological number can be defined as

s = sgn(det H), (4.57)

which takes on 1 (—1) if there is an even (odd) number of eigenvalues on the negative real
axis (see Fig. 4.8). Using the correspondence between classes Al and D, the Z; index of a
particle-hole symmetric Hamiltonian can be defined as

s’ = sgn(detiH), (4.58)

which takes on 1 (—1) if there is an even (odd) number of eigenvalues on the positive imaginary
axis.

PT-symmetric systems

As mentioned in Sec. 4.1.1, PT-symmetric systems are an important class of non-Hermitian
systems whose spectra stay real for sufficiently small non-Hermiticity [232,233]. When the
balanced gain and loss in a PT-symmetric system exceeds a threshold, complex eigenenergies
emerge and such a spectral transition is called the PT-symmetry breaking. Remarkably, in the
sense of Eq. (4.57) (Eq. (4.58)), a PT-symmetry-breaking (or an anti- PT-symmetry-breaking
[219]) transition across an exceptional point can be identified as a topological transition. While
the PT symmetry physically differs from the 1" symmetry, as long as the symmetry operator is
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Figure 4.8: Spectrum deformation in a class Al system described by a 3 x 3 matrix in zero
dimension. The spectrum is always symmetric with respect to the real axis. Without touching
Ep = 0, the number of eigenvalues on the negative or positive real axis can only change by an
even number; therefore, a Z3 index (s = —1) can be defined as in Eq. (4.57). Reproduced from
Fig. 8 of Ref. [44]. Copyright (© 2018 by the American Physical Society.

involutory and anti-unitary, the topological classification in zero dimension is the same as class
AI As a minimal example, we consider a non-Hermitian two-level system [225]

H = Qo +iyo,, Q,7€R, (4.59)

which features a PT symmetry o, K. We can check that det H = 72 — Q? and thus s = —1 (s =
1) in the PT-unbroken (PT-broken) phase. A topological transition with anti- PT-symmetry
breaking (class D) can similarly be constructed by multiplying Eq. (4.59) by i.

At first glance, the conclusion that a PT-symmetry breaking transition is topological seems
rather odd, since in Hermitian systems the concept of SPT is complementary to spontaneous
symmetry breaking. As for non-Hermitian systems, this is possible due to the conceptual
difference in defining topological phases as dynamical phases instead of states of matter, so
that the eigenstates do not necessarily respect the symmetry. In particular, the Z, topological
number (4.57) for class Al in zero dimension is solely determined by the energy spectrum.
The emergence of E and E* is indeed topologically forbidden if they originate from two real
energies with opposite signs. This is because in PT-symmetric systems a pair of complex
conjugate eigenvalues emerges when two real eigenenergies coalesce; if these real eigenenergies
have opposite signs, they have no alternative but to meet at the origin which, however, is
forbidden by our assumption. The sign of the product of the two eigenvalues, which gives the
Zy index in Eq. (4.57), is negative before the PT-symmetry breaking and positive after it. Thus
the PT transition is topologically forbidden unless the origin is touched.

Quantum channels

Another important example is quantum channels or completely positive (CP) and trace-preserving
(TP) maps. A CPTP map always has a Kraus representation [301]

E(p) =) _ KapKl, (4.60)
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where the Kraus operators K, satisfy ) K:QKQ = 1. Alternatively, £ can be represented as
an enlarged non-Hermitian matrix

£=Y KooK (4.61)

on the Liouville space U = ¥ @ ¥ *. Remarkably, defining K(p) = p' as the Hermitian-conjugate
superoperator, which is anti-unitary* and involutory (K2(p) = p), we have

EK(p) = KE(p) = D Kap' K], (4.62)

which is actually the Hermiticity-preserving property of £ [274]. Such an inherent symmetry
is absolutely robust, unlike the PT symmetry which can hardly be exact due to experimental
imperfection. Therefore, a CPTP map £ always belongs to the Al class and is classified by a
Z, topological index, determined by the sign of det £ € R. We note that the same classification
applies to a CP map, which can also be represented by Eq. (4.60) with no constraints on {K,}.
With the TP property imposed, the eigenvalues of £ are enforced to be on or inside the unit
circle in the complex plane [302].

It is natural to define a trivial map if it is connected to the identity channel Z. It then
follows that £ is trivial as long as det £ > 0. In this sense, each invertible quantum dynamical
map D, is trivial since ®; can continuously be deformed into &y = Z, irrespective of whether ®;
is Markovian or not [303]. Conversely, we can conclude that a topologically nontrivial quantum
channel with det £ < 0 can never be continuously generated by a Markovian dynamics. It is
nevertheless easy to construct a nontrivial channel via random unitary transformations which
take the following form:

E(p) =Y pUipU}, > pj=1. (4.63)
J J
A prototypical example is the isotropic depolarization channel for a single qubit [278]:
l-p
Ealp)=pp+—5— D Oupou (4.64)
H=T,Y,2

whose extension &g ® Z has widely been used to introduce imperfection into a maximally entan-
gled qubit pair [304]. We can check that det &g = [(4p — 1)/3]3, so that a topological transition
occurs at p = 1/4, where the channel becomes a constant (fully depolarized) map &4(p) = 0¢/2.

If the quantum channel plays a role of a Floquet superoperator for a periodically driven open
system [44], the stroboscopic evolution is governed by pn+1 = £(pp). If we look at the long-
time dynamics, the topological index sgn(det€) might become meaningless since only the long-
lived modes with eigenvalues with nearly unit norm are relevant. Denoting the superprojector
onto such a metastable manifold U5 as P, which can always be made Hermiticity-preserving
[305], we expect the sign of dety,  PEP, denoted by spg, to be important for the long-time
dynamics. If sy = —1, there must be an odd number of long-lived modes near —1. When
the system is perturbed, we expect that at least one long-lived mode stays on the real axis
near —1. This cannot be ensured by sys = 1, since all the long-lived modes near —1 can
leave the real axis in a pairwise manner. The above discussion is parallel to the Zs topological
insulators [12,42,167], on the surface of which at least one Dirac cone survives under time-
reversal symmetric perturbations.

“This should be understood with respect to the Hilbert-Schmidt inner product (A|B) = Tr[ATB] defined in
Eq. (2.36) in Chapter 2. We can check that (KA|KB) = Tr[AB'] = Tr[BT A] = (B|A).
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Figure 4.9: (a) Pulse sequence of the stroboscopic qubit dynamics governed by two types of
operations ReEyy and Re&,. In the former case, m-pulses are applied randomly in the  and y
directions with equal probability, leading to ss = —1. In the latter case, m-pulses are applied
in the = direction, leading to sms = 1. (b) Starting from pg = |1) (1|, the dynamics of (o)
for € = 0 (red dots) are the same between the two cases. As for e = 0.057 (green dots), the
dynamics governed by R.E;, (left) exhibit a discrete time-crystalline-like behavior [31, 32, 74],
but the dynamics governed by R.E, do not. (c¢) Fourier transform of (¢,);—, into the frequency
domain. The single peak located at w = 0.5wyp (wr is the fundamental frequency determined
by the driving period) stays robust for R.E;, (left), but splits into two peaks for R.E, (right).
Reproduced from Fig. 9 of Ref. [44]. Copyright © 2018 by the American Physical Society.
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As a minimal illustration, let us consider a critical (zero full determinant) quantum channel

1
Eay(p) = §(pr‘7x + oypoy), (4.65)

which has a single long-lived mode o, with eigenvalue —1 in addition to the steady state 0 /2, so
that sms = —1. Starting from |1), we find an antiferromagnetic (/1] ...) stroboscopic dynamics
(see red dots in Fig. 4.9(b)). The same dynamics can be realized by unitary m-rotation along
the z axis, i.e.,

Ex(p) = 03poy, (4.66)

which has two modes with eigenvalues —1 so that s;,s = s = 1. Now let us disturb the temporal
antiferromagnetic pattern by inserting a sudden pulse

Re(P) — efiﬂeazpeiﬂeaz (467)

at the end of each evolution period (see Fig. 4.9(a)). As clearly shown by the Fourier transform
of (02)t=nr in Fig. 4.9(c), the antiferromagnetic pattern is robust against perturbation to &,
with sy, = —1, but is fragile for £, with sy, = 1. This observation is reminiscent of discrete
time crystals [28,29, 31,32, 73, 74], which are Floquet systems that spontaneously break the
discrete time-translation symmetry. Akin to intrinsic topological order that does not need
any symmetry protection [177], long-range correlation has been identified as the origin of the
rigidity of unitary discrete time crystals in 1D [306]. It would be interesting to study whether
a nontrivial Zy topological index, which emerges from the inherent time-reversal-like symmetry
(4.62), can lead to the absolute rigidity of the 0D dissipative discrete time crystal discussed in
Chapter 2 [44].

4.4.2 One dimension

We discuss the general structures of non-Hermitian Hamiltonians in 1D and the corresponding
topological numbers in addition to class A (cf. Sec. 4.2).

For class DIII (CI), we can always find a basis under whichI' =0, ® 1 and T' = 0, ® iocy K
(C = 0, ®ioyK). The symmetry requirements I'H(k) = —H(k)I" and TH(k) = H(—k)T
(CH(k) = —H(—k)C) lead to the following general form of the Hamiltonian:

H(k) = [io_yh(o_k)*gy h%k)} : (4.68)

where h(k) can be an arbitrary invertible matrix, and + and — correspond to class DIII and
CI, respectively. Due to the arbitrariness of h(k), the topological classification coincides with
class A and the topological number is determined by wy, € Z, i.e., the winding number of h(k).

For class AIIl, we can always find a basis under which I' = o, ® 1. A general form of the
Hamiltonian reads

H(k) = [h;zk) hlék)] : (4.69)

with hq2(k) being arbitrary invertible matrices. Note that there are two independent winding
numbers wy, and wp, in accordance with the classification Z@® Z. We can generally have wp, #
—wp,, implying different numbers of (quasi-)zero modes localized at the two open boundaries.
As shown in Fig. 4.10(a), a two-band model with k1 (k) = J1e2* and ha(k) = Joe~* in Eq. (4.69)
has two and one zero modes at the left and right boundaries, respectively, as a consequence
of asymmetric hopping amplitudes. It is interesting to note that for the Hermitian case the
non-Hermitian Z @ Z group degenerates into its subset {(n, —n) : n € Z} due to the Hermitian
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Figure 4.10: Non-Hermitian open chains with unidirectional hoppings (indicated by the arrows)
belonging to (a) class AIIl and (b) class AIl. In (a), the number of zero modes at the left
boundary (enclosed by a red rectangle) is not the same as that on the right boundary. In
(b), the zero modes form Kramers pairs, which interchange via the time-reversal operator T,
and therefore the total number of the edge modes must be even. Reproduced from Fig. 10 of
Ref. [44]. Copyright © 2018 by the American Physical Society.

constraint (wp, = —wp, ), which is nothing but the Z classification of class AIIL. It is worth
mentioning that the Hamiltonian studied in Ref. [212], which can be expressed as H(k) =
(v+rcosk)o, + r(sink —i)oy (v, € R), gives an example of the two generators of Z @ Z by
taking 0 < v/r < 2 and —2 < v/r < 0. The Z topological number identified therein turns out
to be (wp, — wp,)/2, which can be a half-integer only if the system is non-Hermitian.

For class Al (D), we can always find a basis under which T'= K (C' = K), so that H(k)* =
H(—k) (H(k)* = —H(—k)). This requirement enforces the matrix elements of H(k) to be
> nez e, with {¢,} being real (purely imaginary) numbers, yet the winding number of
H(k) does run over Z. All the different topological phases can be realized in a single-band
model H (k) = ™™ (H(k) = ie™*) with n € Z.

For class BDI, we can always find a basis under which I' = ¢,, T = K and C = ¢, K.
The general form of the Hamiltonian is again given by Eq. (4.69), but hy2(k)* = h12(—k) is
required. Similar to class AIIl, we have two independent winding numbers wy, and wp, and
the topological classification is Z ® Z.

For class AII (C), we can always find a basis under which T' = io, K (C = ioyK), so that
oyH(k)* = H(—k)oy (0yH(k)* = —H(—k)oy). This symmetry requirement restricts the form
of the Hamiltonian to be (k) o)

1 2
H(k) - :FhQ(—k)* ihl(—k)* ’

where hi(k) and ha(k) can be arbitrary (but H (k) should be invertible after all) and the upper
(lower) signs correspond to class AIl (C). In this case, we can prove that the winding number
of a Hamiltonian must be even, as indicated by the 2Z classification. To this end, let us
first unitarize H (k) into U(k) and show that Tr[U(k)T0,U (k)] is an even function of k. From
Eq. (4.42) we know that

(4.70)

— Te[U(—k) 0U (—k)] = —n2 Te[UsU (k) "ULOL(UsU (k)*UL)]
= —Te[U (k) 05U (k)*] = — Te[(0xU T (K))U (k)] (4.71)
= —0h Te[UT (KU (K)] + Te[UT (k)R U (k)] = Te[UT (k)ORU (k)]

where we have used Tr[AT] = Tr[A], Ox(AB) = (04 A)B + AdyB and Ut (k)U (k) = 1. Using the
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fact that Tr[UT(k)0xU (k)] is even in terms of k, the winding number can be expressed as

" dk ™ dk ™ dk
w = /_ﬁmTr[UT(k)akU(k)] =2/0 %Tr[UT(k:)akU(k:)] = 2/0 5Ok ndet U(k). (4.72)

However, this is not sufficient to ensure w € 2Z since foﬂ %ak Indet U (k) may be a half-integer.
Indeed, Eq. (4.72) is applicable also to classes Al and D. To rule out this possibility, we should
show that det U(0) and det U(m) share the same argument. To show this, it is convenient to
look at the individual eigenvalues. Note that TU(I')T—! = U(T') (CU((T)C~! = —U(I")) at
' =0,7,and T? = —1 (C? = —1) enforce the eigenvalues to appear in pairs like e*?a (deF¥a),
leading to det U(0) = det U(n) = 1 (det U(0) = det U(r) = (—1)4™”/2). This fact ensures that
w=2[; %ak Indet U (k) is quantized as an even integer. An important physical implication is
that there must be an even number of (quasi)-edge modes, which actually form Kramers pairs.
In Fig. 4.10(b), we present a minimal model of spin-3 fermions with hy (k) = 0 and ha(k) = Je'*
in Eq. (4.70).

For class CII, we can always find a basis under which I' = 0, ® 1 and T' = 0¢ ® io, K
(C =0, ®ioyK). A general form of the Hamiltonian in this case is again given by Eq. (4.69);
however, we no have o,hi2(k)* = hi2(—Fk)oy, that is, both h;i(k) and ho(k) belong to class
AII The topological characterization is thus given by two even integers wy, and wy,,, consistent
with the 2Z @ 2Z classification.
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Chapter 5

Topological entanglement-spectrum
crossing in quench dynamics

In the previous chapter, we have known that if the Floquet unitary of a Thouless pump (e.g.,
the left or right translation operator) is reinterpreted as a non-Hermitian Hamiltonian (e.g., the
Hatano-Nelson model with unidirectional hopping), then such a non-Hermitian system has a
nontrivial spectral winding number. Here, we would like to ask another fundamental question:
can we realize a Thouless pump by a quantum quench, i.e., a sudden change of the Hamiltonian,
which is the arguably simplest way of generating nonequilibrium quantum dynamics? While
the time periodicity can be ensured by a flat-band quench, the answer turns out to be negative
because there obviously exists a global section of the vector bundle over the momentum-time
manifold. On the other hand, it is still unclear whether we can realize some SPT pumps
by quench dynamics. In this chapter, we address this question in (1 + 1)D spacetime. We
perform a systematic analysis for all the AZ classes and identify those that support topologically
nontrivial quench dynamics. We also propose using the entanglement-spectrum crossing to
detect a nontrivial spacetime topology underlying quench dynamics.

5.1 Introduction

Topological quantum systems have attracted growing interest theoretically and experimen-
tally [168,169], due partly to their fundamental importance in phase transitions beyond the
conventional symmetry-breaking paradigm [2] and applications to quantum computation [178,
179,307, 308]. For gapped free-fermion systems at equilibrium, a systematic classification has
been established for the Altland-Zirnbauer (AZ) classes [39—41,194,195] and with additional
crystalline symmetries [9,198,200,201,309]. Topological phases are characterized by topological
invariants, some of which, such as the Zak phase and the Chern number, have been measured in
ultracold atomic gases [18,171,172]. Entanglement measures, which are related to the full entan-
glement spectrum (ES) [310], provide yet another powerful tool to detect (symmetry-protected)
topological order. In particular, 1D SPT phases exhibit degeneracy in the ES [132], while 2D
topologically ordered phases have a nonzero topological entanglement entropy [311-313].
Recently, studies on topological systems have been extended to various nonequilibrium
regimes [23]. As discussed in the previous two chapters, both Floquet systems [25,58] and
non-Hermitian systems [265, 314] have been demonstrated to exhibit intrinsically nonequilib-
rium topological phases with no static counterparts, including but not restricted to anomalous
Floquet chiral phases [37,65,67,68], intrinsic Floquet SPT phases [28,66,69,71] (cf. Chapter 3),
point-gapped non-Hermitian topological phases [44, 212,257, 258] (cf. Chapter 4) and excep-
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tional non-Hermitian topological semimetals [214,315-318]. In this chapter, we focus on another
important topic about quantum quenches in topological systems [45,122,319-328]. Compared
with dissipation and periodic driving, this is probably the simplest scenario for bringing a sys-
tem out of equilibrium: We just start from the ground state |¥) of an initial or prequench
Hamiltonian H and then suddenly change the Hamiltonian to H’, the postquench Hamiltonian.
The wave function subsequently undergoes a nontrivial unitary evolution

W(t)) = e )W), (5.1)

Previous studies have unveiled the stability of spatial topological numbers [122,320,321], topo-
logical dynamical phase transitions [322-324], a nonequilibrium Hall response which is not
associated with the Chern number [325-327] and momentum-time Hopf links upon quenches
between two 2D insulators with different Chern numbers [45, 328].

Despite many previous studies mentioned above, it stays an open problem to systematically
identify and detect the spacetime topology of quench dynamics. This issue is closely related to
adiabatic topological pumps, such as the renowned Thouless pump [280] and the more recently
proposed Zy topological pumps protected by time-reversal or particle-hole symmetries [195,329].
These topological pumps can be considered as a special type of Floquet systems [65] and are also
characterized by the topological number of the wave function dynamics over the momentum-
time manifold [195,280,329]. However, there are also several crucial differences. First, unlike
adiabatic pumps, the quench dynamics governed by Eq. (5.1) are highly nonadiabatic. Second,
even if the pre- and postquench Hamiltonians respect the same symmetries, which we assume
throughout this chapter, the symmetries might be partially or even completely broken in the
quench dynamics. This phenomenon was pointed out in Ref. [122] and is termed dynamical
symmetry breaking. This never happens in an adiabatic pump, provided that initially there is
no spontaneous symmetry breaking and the time-dependent Hamiltonian stays gapped. Third,
compared to quench dynamics, adiabatic pumps actually have much greater degrees of freedom
in the time-dependent wave function, since the former is fully determined by an initial state
and the (time-independent) postquench Hamiltonian while the latter has a continuous time
dependence in the Hamiltonian.

As briefly mentioned above, Ref. [45] has identified the Hopf-link structure in (2 4+ 1)D
quench dynamics. However, this is not a stable topological structure since it is well-defined
only for a clean system with two bands [147]. In contrast, here we would like to identify the
stable topological structures of quench dynamics that survive additional bands and disorder. As
the first step to achieve a complete understanding of this issue, we confine ourselves to (14 1)D
quench dynamics. We employ the K-theory to identify all the AZ classes that accommodate
stable nontrivial dynamical topology (see Table 5.1), and propose the time evolutions of ES as
their universal indicators. In particular, we demonstrate the ES crossing can help us distinguish
the Z topological number for class BDI from the Z, for class D. These results should be testifiable
in the state-of-the-art experiments of ultracold atoms [128,151,330-332] and trapped ions [129,
333-335], where many-body tomography has become possible [150,328,336-339].

5.2 Parent Hamiltonians and their classifications

In this section, we first introduce the notion of parent Hamiltonians which formally relate
quench dynamics to adiabatic pumps. After identifying the symmetries of the time-dependent
parent Hamiltonians with AZ symmetries, we work out their K-theory classifications and the
corresponding topological numbers. Following a case-by-case analysis, we single out all the
topological numbers that can take on nontrivial values. Finally, we discuss a specific case of
two-band systems.
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5.2.1 Parent Bloch Hamiltonian

In order to perform a systematic classification, we can formally relate the problem for quench
dynamics to that for adiabatic pumps by realizing that the nonequilibrium wave function |¥(¢))
in Eq. (5.1) is the ground state of

H(t) = e H il (5.2)

which we call a parent Hamiltonian. This parent Hamiltonian is nothing but the prequench
Hamiltonian H in the rotating frame with respect to the postquench Hamiltonian H'. We
note that H(t) is not unique since the quench dynamics stay unchanged if H is deformed in
a way such that the gap stays open and the ground state stays unchanged. Unlike the time-
dependent Hamiltonian of an adiabatic pump, the parent Hamiltonian is not periodic in time.
To make it time periodic, the postquench Hamiltonian should have even level spacings. For
free-fermion systems, on which we focus throughout this chapter, this is always the case if the
postquench Hamiltonian is flattened. The topological classifications will be performed for such
a flat-band case, but we believe that some crucial dynamical signatures can still be observed
even for nontrivial band dispersions.!

In 1D, if we further assume translation invariance, we can define the parent Bloch Hamilto-
nian h(k,t) from

H(t) =" cfh(k, t)ey, (5.3)
k

where ¢;, = [cra]L is a vector consisting of fermion annihilation operators with the same wave
number k and different internal states a such as spins and sublattices. Denoting h(k) and h’(k)
as the Bloch Hamiltonians of H and H’, i.e.,

H=Y chk)er, H = cih'(k)ex, (5.4)
k k

we can show that h(k,t) is given by
h(k,t) = e~ ®tp (k) (F)E, (5.5)

The derivation is rather straightforward. First, according to the general definition in Eq. (5.2),
the equation of motion for H(t) reads

iOH(t) = [H',H(t)], H(0)=H. (5.6)

With translation invariance imposed, Eq. (5.6) can be decomposed into independent blocks
having different wave numbers:

iohefh(k, t)ey = [l (K)ex, cfh(k, t)ey] = c| [l (k), h(k, )],  h(k,0) =h(k).  (5.7)
Here we have used the fermion-operator identity:
[CLacwv cL{ckg] = 557020(0;95 — 50(50270;{5. (5.8)

Note that Eq. (5.7) implies Eq. (5.5). It is worth mentioning that the above derivation is not
specific to 1D but applies to an arbitrary spatial dimension.

While we will see that there are indeed some observable signatures according to the numerical results in several
specific models, whether the dynamical topology is stable against band dispersions is not a trivial problem at all.
See Ref. [340] for some recent discussions on this subtle issue.
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As mentioned in the beginning of this subsection, to make h(k,t) in Eq. (5.5) time periodic,
we can flatten h(k) and h/(k) into hq(k) and k) (k), which satisfy

hi(k)? = hy(k)* = J?, (5.9)

and share the same symmetry as h(k) and h/(k) [40]. The corresponding parent Bloch Hamil-
tonian is also flattened, taking the form

h(k,t) = e” M0 (k)eh k) (5.10)

which satisfies 3 3 . .
h(k,t)? = J%, & (k,t + j) = h(k,1). (5.11)

We can actually write down its explicit expression as

Rk, 1) = (k) 7205 (k)P (R ) 4+ (1 (k) — 2B (k) () () cos(21)
T ha (k), B, (k)] sin(2J8)].

(5.12)

In the following, we will focus on the K-theory classification of h(k,t). The same topological
feature should be inherited by those parent Hamiltonians (5.2) that are continuously connected
to H(t) =), cLh(k, t)cy, but without translation invariance (or/and time periodicity).

5.2.2 Symmetry constraints and the maximal K-groups

Let us discuss the symmetry properties of h(k,t) in detail. Recalling both hy(k) and R (k)
belong to the same AZ class, we have

Shy(k)S™! =nshi(esk), Shy(k)S™ = nshi(esk), ns,es € {£1}, (5.13)

where S = T (anti-unitary, nr = 1, e = —1), C (anti-unitary, nc = —1, e¢ = —1) or/and T’
(unitary, np = —1, ep = 1). If S is anti-unitary, we have $iS~! = —i, leading to

Sh(k,t)S™! = ngh(esk, —nst). (5.14)
Otherwise, if S is unitary, we have
Sil,(k, t)S_l = ngiL(eSk, nst). (5.15)

Here the crucial point is that while k£ in B(k,t) changes in the same way as that in the pre-
and postquench Hamiltonians upon the symmetry actions, ¢t may either change its sign or not
depending on whether the (anti-)symmetry is unitary or anti-unitary.

With the symmetry constraints on iz(k:,t) clarified, we are ready to perform a systematic
classification based on the K-theory (cf. Sec. 4.3.2 in the previous chapter). We emphasize that
this classification relies on the symmetry constraints alone and does not take into account the
specific structure of h(k,t) in Eq. (5.10) for quench dynamics. Identifying the nontrivial topo-
logical invariants realizable in quench dynamics will be the main focus of the next subsection.

We start from the simplest case without any symmetry requirement. In this case, iz(k:,t)
simply belongs to class A in 2D and is characterized by Kc(0;2) = m(Co) = Z.

We now turn to the case of TRS alone, i.e.;, S = T. In this case, we have

Thk, )T~ ' = h(—k, —t), (5.16)
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Table 5.1: Topological classification of ﬁ(k,t) subject to the symmetry constraints given in
Eq. (5.14) (or Eq. (5.15) for class AIIl) with S =T or/and C' (S =T'). The last column shows
a subset of the maximal K-group (Max.) that can be realized in quench dynamics (Dyn.), i.e.,
in the form of Eq. (5.10).

AZclass T C T Symmetry constraints on h(k,t) Max.  Dyn.
A 0O 0 0 None Z 0
AL 0 0 1 Th(k, )T ' = —h(k, —t) zpz Z
Al + 0 0 Th(k,t)T~! = h(—k, —t) 0 0
BDI + + 1 Th(k,t)T™' = h(—k,—t), Ch(k,t)C~" = —h(—k,t) Z z
D 0 + 0 Ch(k,t)C~' = —h(—k, 1) Z, Z,
DIII  — + 1 Th(k,t)T ' =h(—k,—t), Ch(k,t)C~ = —h(—=k,t) Zo®Zy Zs
Al — 0 0 Thk,t)T~! = h(—k,—t) Z, 0
CII - — 1 Thk,t)T" =h(—k,—t), Ch(k,t)C~" = —h(—k,1) z z
C 0 — 0 Ch(k,t)C~' = —h(—k,t) 0 0
CI + — 1 Thk,t)T~' = h(=k,—t), Ch(k,t)C~' = —h(—k, 1) 0 0

which turns out to be the standard symmetry constraints of classes Al or AII in 2D. Therefore,
the classification is Kr(0;2) = m(Rg) = 0 (trivial) for T2 = 1 (class Al), and is Kr(4;2) =
70(Ra) = Zg for T? = —1 (class All).

We then move on to the case of PHS alone, i.e., S = C'. The symmetry constraint on INz(k, t)
reads

Ch(k,t)C~! = —h(—k, 1), (5.17)

which coincides with that of an adiabatic fermion-parity pump [195]. To calculate the K-group,
we can use the formula developed in Ref. [195]:

Kg(s;d, D) = Ke(s —d+ D;0,0), (5.18)

where F can be either C or R and d (D) corresponds to the number of momentum-like (position-
like) variables that (do not) flip their signs upon the operation of an anti-unitary symmetry. For
Eq. (5.17), we have d = D = 1 and thus the classifications are given by Kr(2;0) = mo(R2) = Z2
for C? =1 (class D) and Kr(6;0) = mo(Rg) = 0 for C? = —1 (class C), respectively.

Now let us consider the case in which there are both TRS and PHS. Recalling Eq. (5.16),
which means that ¢t behaves like the wave number with respect to the TRS, we can treat this
case as if we add an anti-unitary anti-symmetry C' with dj = 1 (the number of momentum
components that do not flip under the symmetry operation) into class Al or AIl. We can thus
apply the formula developed in Ref. [200]:

Kr(s,r;d,d)|) = Kr(s — d,7 —d|;0,0), (5.19)

where d = 2, d| = 1, and s and r are determined by the base system (real AZ class, here
it is either class Al or AII) and the additional two-fold symmetries. For class BDI, we have
s =0 and r = 3, leading to m9(C—_2) = Z. For class CI, we have s = 0 and r = 1, leading to
m0(Re X Re) = 0. For class DIII, we have s = 4 and r = 1, leading to mp(R2 X Ra) = Zy & Zs.
For class CII, we have s = 4 and r = 3, leading to m(C2) = Z.

For the remaining class AIII, we have to use another formula in Ref. [200]:

K& (s,r;d,dy) = K&(s —d,r — dj;0,0), (5.20)
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where d = 2, d| = 1, and s and r are determined by the base system (complex AZ class) and
the additional two-fold symmetry. This formula (5.20) formally coincides with Eq. (5.19) only
if the additional symmetry is unitary; this explains why the superscript “U” is added. Since we
start from class A, we have s = 0,7 = 1, leading to mg(C_2 X C_2) =Z & Z.

We summarize all the results in the second rightmost column in Table 5.1. Remarkably,
all the AZ classes characterized by a trivial maximal K-group turn out to be trivial classes in
1D [39,40,194]. The converse is not true, since classes A and AII are trivial in 1D, whereas the
maximal groups are not. It is worthwhile to mention that the formulas developed in Ref. [200]
are applicable to arbitrary dimensions and arbitrary two-fold-symmetry classes, which can be
represented by certain Clifford-algebra extensions.

5.2.3 Topological numbers and the dynamical realizations

In this subsection, we identify all the topological numbers indicated by the K-groups and
demonstrate that only some of them can be nontrivial for quench dynamics, while the others
always vanish. We also provide some examples to realize these nontrivial topological numbers.

Complex AZ classes

We start from class A. Since there is no symmetry constraint, the topological number Z is
nothing but the Chern number:

= / / 15?;3 (e, ) [0k, ), D0 (e, D)), (5.21)

where the double integral is carried out over [0, 7J 1] x [—7, 71]. Without specifying the form of
B(k, t), the generator of the maximal K-group Z can be exemplified by a Thouless pump with
a unit Chern number.

As for class AlIL, the classification Z @ Z differs significantly from the trivial result for the
conventional AZ class [39]. This is due to the fact that, unlike the wave number, the time
variable changes its sign upon being acted on by the chiral operator I'. The Chern number can
thus be nonzero. This is to be contrasted with the conventional class AIIl, where both wave
numbers are not reversed so that the chiral symmetry enforces the Chern number to be zero.

In addition to the Chern number, the other topological number for class AIII can be identified
as follows. Due to the reversion of ¢, the chiral symmetry is similar to a reflection (crystalline)
symmetry and determines two high symmetry points ¢ = 0,7/(2J), where the Hamiltonian
h(k,t) is chirally symmetric, i.e.,

{h(k,0), 1} =0, {h (K, %) T} =o. (5.22)
While we can define two winding numbers for these two Hamiltonians, only the difference AW
between the two winding numbers at the high symmetry points is a genuine 2D topological
number [198,200]. Indeed, a system with AW = 0 can be created by stacking a 1D chain
along the time direction and thus the system does not possess a nontrivial 2D topology. In
fact, we have (AW + C)/2 € Z, due to the quantization of the Chern number over half of
the momentum-time space with the boundaries at ¢ = 0 and 7/(2J) contracted to lead to a
boundary contribution AW/2.? The two generators of the K-group can thus be exemplified by

2Here by contraction we mean that the boundary Bloch Hamiltonian is continuously deformed into a single
point through a semi-sphere, as illustrated in Fig. 5.1. By stacking an appropriate tr1v1al 2D Hamiltonian followed
by a continuous deformation, we can always make h(k,0) = X, and h(k,7/(2J)) = Su cos(kAW) + X, sin(kAW)
({22, T} = {3,,T'} = {Z:,%,} = 0) so that the former is already contracted and the latter can be contracted
into I' through half of the standard construction in Ref. [195], which establishes an isomorphism between Kc(0;2)
and Kc(1;1). Therefore, the boundary contribution is AW/2.
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the Rice-Mele-Thouless pump [341,342] (C' = 1, AW = 1) and the quench dynamics in the SSH
model across the phase boundary (C'= 0, AW = 2), the latter of which will be studied in detail
in the next subsection.

So far we only impose the symmetry requirement and have not yet specified the form of
the Bloch Hamiltonian. If we confine ourselves to the quench dynamics, the flattened parent
Hamiltonian takes the form of Eq. (5.10). The integrand in Eq. (5.21) can thus be calculated
explicitly, giving

i Telh(k, 1)[Okh(k, ), Ot (k, O)]) = Te[h1 (K)[A(k, 8), b (k)] + Ocha (k), (1 (), b (K)]]
=Tr[([A(K, t), ha (k)] + Ocha (k) [[2 (k), ha ()], b (K)]]
=2Tr([A(k, 1), ha (k)] (M) (k) — ha (k)i (R)ha ()] (5.23)
+ 2 Te[Oha (k) (P (k) — ha (k)R (R)ha (K))]

1 1
=4J*(Te[A(k, t) [ (k), 1y ()] + Tr[k} (k) Oxha (K)]),
where A(k,t) = 1Bt (e~ (*)t) and we have used hy(k)dphy (k) 4+ (Oph1(k))hi(k) = 0 and

Oph(k,t) = e M Ak 1), hy (k)] B 4 e=hi Rt g, by (k)ethh (R

- o o (5.24)
Osh(k,t) = —ie” M WA, (k), by (k)] P,
Noting that k) (k)? = J?, we find that A(k,t) can be expressed as
sin? Jt _, _sin(2Jt) ,
Akt = |25 0 = 5 ot o), (5.25)
and its time integral gives
/ TGk, 1) = 5B (R)ORR) (R). (5.26)
0
Combining Egs. (5.23) and (5.26), we obtain a vanishing Chern number:
1 ™
C = i /7r dkoy Tr[h} (k)h1 (k)] = 0. (5.27)

As mentioned in the beginning of this chapter, we actually have a more elegant interpretation
to the vanishing Chern number, at least for two-band systems. In this case, we can easily write
down the ground Bloch state 1 (k,t) = e~ "1 (Wt (k), where (k) is the ground state of hy(k).
Since 9 (k,t) is continuous in both k and ¢, there is no obstruction for choosing a global U(1)
gauge over the momentum-time manifold, and thus the Chern number is necessarily zero.

As for parent Hamiltonians in class AIIIl, the Chern number must vanish as well. On the
other hand, AW can be nonzero, so that a subset {(C,AW) : C = 0, AW € 2Z}, which is
isomorphic to Z, can be realized. Furthermore, we have

AW =2(w' — w), (5.28)
where w' (w) is the winding numbers of R} (k) (h1(k)). Let us show Eq. (5.28) as follows.
According to Eq. (5.10), the Bloch Hamiltonians at hight symmetry points read

™

h(k,0) = hi(k), h (k; =

) = B (k) (k)RS (), (5.29)
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where, under the choice of I' = 0* ® 1, hy(k) and h) (k) take following the forms:

_ 0 u(k) / o 0 Ul(k?)
Therefore, we have
/ / _ 0 u (k)u(k) ! (k)
implying Wiz = 2w’ — w, where the winding numbers are given by
Y P ,
w = /Tr %&g Indetu(k), w' = /7r %8}c In detu’ (k). (5.32)

Since wy—p = w, we finally obtain Eq. (5.28).

Real AZ classes

According to the K-theory, there are five possibly nontrivial real AZ classes: BDI, D, DIII, AIl
and CII (see Table 5.1), which are nontrivial in the sense of the maximal K-group. We discuss
them one by one.

The simplest case is class All, of which the maximal K-group is exactly the same as the
conventional result Zy. According to the seminal work by Moore and Balents [343], such a Zy can
be determined from the parity (odd or even) of the Chern number of half of the Brillouin zone
(which is the momentum-time manifold here) after contracting the boundaries while keeping
TRS. See Fig. 5.1 for a schematic illustration of this approach. For class AIl, the contraction
of boundaries is always possible because class All is trivial in 1D [39]. As for quench dynamics,
since class AII is also trivial in 0D [194], we can always find two continuous paths of flattened
Hamiltonians hy, g (y) parameterized by v € [0, 1], which satisfy

hi(y =0) =h1(0), hp(y=1)=h1(0); hg(y=0)="hi(r), hg(y=1)=hi(n). (5.33)
The parent Hamiltonians are thus given by
hr(7,t) = e MnOpy (b g)e MmO, (5.34)

where kr, = 0 and kr = 7. Using Eq. (5.27), we have

C Tr[h1(0)?] — Tr[hy(7)?]) = 0, (5.35)

= 47!]2(
so that the Z, index for a quench dynamics generated by two class AIl Hamiltonians is always
trivial. On the other hand, with the symmetry constraint alone, the maximal K-group can
be generated by the Fu-Kane pump [329], which is built upon two copies of the Rice-Mele-
Thouless pump with opposite spins. Such a Z, index stays well-defined in the presence of
spin-orbit coupling terms that respect the TRS.

We move on to class D, which is similar to class AIl due to the same Zy characterization.
Indeed, we can again use the Moore-Balents approach, since the Bloch Hamiltonians at £ = 0, 7
are classified by 0 due to the fact that the effective dimension is § = 0 — 1 = —1, in which
class D is trivial [195]. As for quench dynamics, however, a matrix (0D Hamiltonian) in class
D is characterized by mo(Rz2) = Za, so that it is not always possible to deform A (k = 0, 7) into
hi(k = 0, 7). Nevertheless, we can always deform hj(k = 0,7) and hy(k = 0,7) to make them
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Figure 5.1: Moore-Balents approach for calculating the Z; index [343]. The right half (delimited
by the dashed rectangle) of a 2D Brillouin zone is equivalent to a cylinder. By contracting the
two boundaries of the cylinder while keeping the symmetry (e.g., TRS), we can compactify the
manifold, on which a Chern number is well-defined. Provided that the ambiguity of contrac-
tion leads to an even-integer difference, the parity (even or odd) of the Chern number should
be a well-defined Zy topological index. Reproduced from Supplementary Fig. 1 of Ref. [46].
Copyright (© 2018 by the American Physical Society.
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commute with each other, even if their Zs indices are different. That is, under the basis for
which C' = K (complex conjugation), we can always deform a 2n x 2n class D matrix h, which
satisfies

hW*=—h, Wl =h < (ih)* =ih, (ih)T = —ih, (5.36)

into either @?:1 o¥ or (—o¥) @ @?:_11 0¥, depending on the sign of the Pfaffian of ih, which
is an anti-symmetric real matrix. Neglecting the 2Z ambiguity (class D is characterized by 2Z
in the effective dimension § = 0 — 2 = —2 [195]) of contraction, and using Eq. (5.27), we can
explicitly write down the Z, index as

v = %(|sgn Pf[ih) (0)] — sgn Pf[ih1(0)]| — |sgn Pf[ih} (7)] — sgn Pf[ihi(7)]|) mod 2
- ’N/ - N’u

(5.37)

where sgn x = ‘ﬁ—' and

N = %|sgn Pifihy ()] — sen PEib (0)]], A = %]sgn Pk, ()] — sen PE[IRL(0)]].  (5.38)

It is worth mentioning that, in general, this Zy index (5.37) is difficult to calculate due to the
PHS constraint upon the boundary contraction [195]. Nevertheless, due to the specific form of
the parent Hamiltonians for quench dynamics (5.10), obtaining the explicit expression (5.37)
now becomes possible.

Let us turn to the real AZ classes with chiral symmetries. We first consider class BDI, which
can be obtained from class AIII by adding an involutory (72 = 1) and commutative ([T, T] = 0)
TRS. In the presence of TRS, we can show that the Chern number must vanish. On the other
hand, the difference between the winding number at high-symmetry lines ¢ = 0, 55 can still
be nonzero, even if the Hamiltonian takes the form of Eq. (5.10). Moreover, since the PHS-
protected weak Zy number for the spatial degree of freedom conserves along the ¢ direction,
AW must be even and we can define an integer

1
Aw = S AW, (5.39)

no matter whether or not h(k,t) is generated by quench dynamics. This explains why the
maximal K-group and the dynamical realization are both given by Z.

Using a similar argument, we can explain why the maximal K-group of class CII also re-
duces from Z @ Z to Z when adding an anti-involutory (i.e., 72 = —1) and commutative TRS.
Just like class BDI, the remaining Z corresponds to the difference of winding numbers at high
symmetry lines, which is twice the winding-number difference between the pre- and postquench
Hamiltonians. To realize the generator, we can construct a spin-orbit-coupled SSH-like model

h(k) = —[(J1 + J2cosk)o® @ 0¥ + Jysinko® ® o], (5.40)
for which we quench the parameters as
(Jl, Jg) = (J, O) — (0, J) (5.41)

Here T = io¥ ® 0K and C = ioc® ® 0YK.

Finally, we consider class DIII, which is characterized by Zs @& Zs. The simplest way to
understand this topological classification is to regard class DIII as class AIIIl with an additional
anti-involutory and anti-commutative ({7,I'} = 0) TRS. Note that class AIII is characterized
by Z @& Z. Due to the additional TRS, both the winding number at high symmetry lines and
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the Chern number vanish. Nevertheless, it is still possible to have a nontrivial Chern number
or/and a nontrivial winding number over one half of the Brillouin zone after deforming the
boundary to compactify the manifold (i.e., using the Moore-Balents approach). While both the
Chern number and the winding number are ambiguous, their parities are unique. Therefore, one
of the Z5 index should be the same as that in class AIl, while the other equals to the difference
of Z index at high symmetry lines, where the 1D section belongs to class DIII.

If the Hamiltonian is generated by quench dynamics, the TRS-related Zy index vanishes,
as we have proved for class AIl. On the other hand, the other Zy index could be nonzero. To
realize the generator, we can construct an explicit model — the spin-1/2 SSH model

h(k) = —0° @ [(J1 + Jacosk)o® + Jasin ka¥], (5.42)

which undergoes the quench
(J1,J2) = (J,0) = (0, J). (5.43)

Here T = i0Y ® 0°K and C = ¢” ® 0 K. Note that since the hopping in Eq. (5.42) does not
flip the spin, it is obvious that the TRS is respected. The PHS inherits simply from that of the
spinless SSH model. While the other Zy index vanishes in quench dynamics, we can make it
nontrivial in an adiabatic pump like [344]

h(k,t) = —Jo[1 — cosk — cos(2Jt)]o" @ o — Jy[sin(2Jt)0° @ 0¥ + sin ko® ® o7, (5.44)

which can be examined to respect both TRS and PHS.

So far we have identified all the nontrivial elements in the maximal K-group that are real-
izable in quench dynamics. As summarized in Table 5.1, the results turn out to be consistent
with the classification of topological insulators and superconductors in 1D [39,194]. However,
we should again emphasize that the topology underlying 1D quench dynamics is of 2D nature.
It is also worth mentioning an intuitive understanding of the reason why the quench dynamics
in trivial AZ classes must be trivial, even if the maximal K-group is not — we can always
continuously deform A/ (k) into hy(k), so that the parent Bloch Hamiltonian A(k,t) = hy (k) has
no t dependence and thus cannot exhibit genuine 2D nontrivial topology. This argument should
also be applicable to higher dimensions and other symmetry classes.

5.2.4 Quench dynamics in two-band systems

In this subsection, complementary to the abstract general theory presented above, we provide a
detailed analysis on the quench dynamics in two-band systems, whose bands are not necessarily
flattened. We focus especially on the Su-Schrieffer-Heeger (SSH) model, which is arguably the
simplest topological insulator and has strong experimental relevance.

Dynamics of pesudospins in momentum space

For general two-band systems such as a superlattice, the pre- and post-quench Bloch Hamilto-
nians can be expressed as

h(k) = do(k) +d(k) - o, K (k)= dy(k) +d (k) o, (5.45)

where o0 = ) pefzy.2} ote, is the Pauli-matrix vector with e, being the unit vector in the
direction. Denoting the parent Bloch Hamiltonian as

h(k,t) = do(k,t) + d(k,t) - & (5.46)
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and using Eq. (5.7) as well as the commutation relations for the Pauli matrices, we obtain
do(k,t) = do(k), 0uds(k,t)o" = [d;(k:)a“,d,,(k,t)a”] = 2ieuy,€d;(k)dy(k,t)o“, (5.47)

where u,v,k € {z,y,z} and the Einstein summation convention is assumed. With the dy-
component excluded, Eq. (5.47) can be rewritten as

Oyd(k,t) = 2d' (k) x d(k,1), (5.48)

Noting that do(k,t) plays no role in either dynamics or band topology, we assume it to vanish
for simplicity. Indeed, do(k,t) = 0 in both the SSH model and the Rice-Mele model. Intuitively,
Eq. (5.48) describes the precession of d(k,t) with respect to d’'(k) by an angular velocity 2d’ (k)
(d'(k) = |d'(k)|). Thus, we can write down the following solution:

d(k,t) = d (k) + cos(2d'(k)t)d . (k) + sin(2d (k)t)do (k), (5.49)

where the parallel (||), perpendicular (L) and out-of-plane (spanned by d(k) and d'(k)) (o)
components are given by

dy(k) = [d(k) -/ (k)] (k) do(k) = d(k) — dy(K),  do(k) = d(k) x 0'(k),  (5.50)

where n/(k) = —d'(k)/d (k).
As a concrete illustration, let us consider a quench in the SSH model starting from the trivial
dimerized state (see Fig. 5.4(a)). In real space, the Hamiltonian of the SSH model reads [345]

H=-— Z(Jlb;r-aj + Jga;f.+lbj + H.C.)7 (5.51)

J

where J; and Js are the intra- and inter-unit-cell hopping amplitudes, respectively. By Fourier
transforming Eq. (5.51) into the momentum space, we obtain the following quench protocol:

d(k) = —(J,0,0), d'(k)=—(J" + Jcosk,Jsink,0). (5.52)

Substituting Eq. (5.52) into Egs. (5.49) and (5.50) yields

B J sin ksin(d (k)t)]?
dg(k,t) =—J+2J [ k) ] )
. / 2
dy(k,t) = =2(J' + J cos k) sink [W] , (5.53)
J2
d,(k,t) = ) sin k sin(2d' (k)t),
where
d'(k) =/ J2 + J2 4+ 2J'J cos k. (5.54)

Note that d,(k,t) is generally nonzero, though d,(k) = d.(k) = 0. We can then obtain the

pseudospin texture
d(k,t) d(k,t)
k.t)=— =— 5.55

from Eq. (5.53).
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Figure 5.2: Pseudospin textures n(k,t) in the k-t space for the quench protocols (Ji, J2) =
(J,0) = (J',J) with (a) J' =0, (b) J' = 0.2J and (¢) J' = 1.2J. Momentum-time skyrmions
emerge in (a) and (b), but not in (c¢), as explicitly shown by calculating the topological number
defined in Eq. (5.56) (see also Eq. (5.63) and Fig. 5.3). Pseudospins along the red curves are
polarized in the z direction. Reproduced from Supplementary Fig. 2 of Ref. [46]. Copyright ©
2018 by the American Physical Society.

Figure 5.2 shows the dynamics of d(k,t) for the quench in the SSH model. Remarkably,
for J' = 0, the pseudospin texture n(k,t) forms two rows of skyrmion lattices with opposite
topological charges, which can be calculated from

Cskyrmion = //A %n(kﬂf) . [akn(kvt) X atn(kat)]v (556)
with A = [0,7/J] %[0, 7] (right column) or [0, 7/J] % [, 0] (left). When 0 < J’ < .J, skyrmions
are still well-defined but deformed and canted. In fact, the pseudospin texture can always be
mapped to two arrays of skyrmion lattices via rescaling the time axis in a k-dependent manner,
or equivalently via band flattening of the postquench Hamiltonian such that h/(k)? = J2. Such
a continuous deformation breaks down at the critical point J’ = J, above which n(k,t) becomes
topologically trivial since it can continuously be deformed to the pseudospin-polarized state.
We note that the momentum-time skyrmions have been observed in a similar quench dynamics
implemented by photonic quantum walks [346].

Dynamical Chern number

Let us study in detail the skyrmion charge (5.56), which can alternatively be expressed as the
integral of the Berry curvature Q(k,t) on the momentum-time manifold:

Q(k,t) = 2Im[(dyu(k, t)) Opu(k,t)). (5.57)

Here u(k,t) is the lower-band Bloch vector satisfying h(k, t)u(k,t) = —d(k)u(k,t). It should be
emphasized that this Berry curvature is merely a mathematical analogue, since the real physical
process is a highly nonadiabatic quench dynamics.

In terms of the eigenvectors of h/(k), which are denoted as v (k) with eigenvalues +d'(k),
u(k,t) can explicitly be written as

w(k,t) = e Wy (k) (v (k) u(k) + 7ty (k) (v_ (k) u(k). (5.58)
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C(T)

Figure 5.3: C(T) defined in Eq. (5.63) versus JT in the quench dynamics of the SSH model for
different values of the parameter. C(T") converges to 1 for J' < J (dashed blue line) and 0 for
J" > J (dashed red line). Reproduced from Supplementary Fig. 3 of Ref. [46]. Copyright ©
2018 by the American Physical Society.

Accordingly, the inner product (dyu(k,t)) 0pu(k,t) in Eq. (5.57) is calculated to be
b (k) (k) + i (k) () 1 ()0 (4 () () — (k) o (k) Dk (K) (k)]
i () [ (k) oy () (0 () v (k) — (k) o () P(w(k)! 0o (k)] (5.59)
+id (k) [ B (k) o (K)o (k) 'u(k) (v (k) 9o (k) + Heel,

where we have used 'UJﬂr(k:)(?k'u_(k:)—i—v_(lf)('9k11+(lf)T = ﬁk(vi(k)v_(k)) = 0. Since v (k) Opvs (k)
is purely imaginary and 2Re[u!(k)vs (k) (v+ (k) u(k))] = Ok (Ju(k) v (k)[?), we have

Q(k, t) = 2d' (k)0 (Jul (k)vy (k) [?) — 2d' (k) (e*? O Tx[P(k) Py (k)OR Py (k)] + H.e),  (5.60)

where P(k) = u(k)ul(k) and Py (k) = 'u+(k)vi(k) are projective matrices.

Note that the second term in Eq. (5.60) oscillates with ¢ due to the factor ¢4 () After
integrating Q(k,t) over A = {(k,t): 0 <t < %, 0 < k < 7} in the k-t plane, the contribution
from this oscillating term vanishes, and we obtain a quantized dynamical Chern number [347]

dkdt
Cam= [[ Grint) = Plx) = PO, F(k) = ! (o (B (5.61)
The quantization of Cqyy is ensured by the PHS, which restricts the Bloch states of h(k) and

h'(k) at k = 0,7 to be an eigenstate of o”. Concretely, denoting the eigenvalues of u(k = 0, )
and v_(k = 0,7) as vor and v ., we have F'(k = 0,7) = |}, — vo»|/2 and thus

1
Cayn = 5 (Ve = val = v = wol)- (5.62)

This result is consistent with Eq. (5.37), which applies to an arbitrary number of bands.
Alternatively, we can introduce

T T
T = /0 i /0 dtzszp(;’(z), (5.63)
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The equivalence between Eqs. (5.64) and (5.61) can be understood from the fact that the time
integral of the oscillating term in Eq. (5.60) is bounded, and accordingly vanishes after being
divided by an infinitely large T'. For the quench dynamics in the SSH model, we have

in(d'(k)t)]”
Q(k,t) = 2sink(J + J' cosk) Isin(d'(k)t) , (5.65)
d'(k)
where d'(k) is given in Eq. (5.54). Using the definition in Eq. (5.61), we obtain
c /7r dkJ?(J 4 J' cosk)sink /1 dsJ?(J + J's) 1+sgn(J —J") (5.66)
dyn — = = . .
o 224 g2 420 Tcosk): Jo12(J2 4+ J2 4200 Ts) 2

We thus find Cyyn =1 (Cayn = 0) if J > J' (J < J'), which is consistent with Eq. (5.62). After
straightforward calculations, we obtain the expression for C'(7') in Eq. (5.63):

. (5.67)

o(T) = 1+sgn(J —J) .y <T,J/) gt = /1 ds(l + 7s)sin(2tv/1 + 12 4 2rs)
2 J _1 At(1 + 72 4 2rs)?
We plot C(T) for several different values of the quench parameter in Fig. 5.3. It seems that
C(T) typically converges more quickly for a finite value J’ than the flat-band case J' = 0 (but
this is not the case when J' ~ J, i.e., close to the critical point). A physical explanation is that
a finite bandwidth causes certain disorder in the frequency domain and washes out quantum
coherent oscillations. We note that similar observations are made in Ref. [325], but in quite a
different context of the asymptotic quantization of the nonequilibrium Hall conductance.

5.3 Entanglement-spectrum dynamics after quenches

With the spacetime topology of quench dynamics identified in the previous section, it is natural
to ask how to detect it in a way that is universal, numerically tractable and experimentally
accessible. Note that the momentum-time skyrmion texture in Fig. 5.2 is only applicable to
two-band systems and is thus not a universal indicator. In this section, we suggest that the
ES dynamics could be a promising candidate. We perform extensive numerical simulations
to demonstrate that this indicator is stable against disorder and can clearly distinguish Z,
topology from Z topology. A possible experimental situation for measuring the ES dynamics is
also discussed.

5.3.1 Case study on the Su-Schrieffer-Heeger model

As mentioned in the introduction of this chapter, the ES has been widely used to character-
ize topological systems at equilibrium. In particular, for a gapped free-fermion system (not
necessarily translation-invariant) described by

H= Y Hjojucl,cia, (5.68)

. ,
27 ,a,a

R t . o .
where Hj, jio = H Jal ja and Cj, Creates a particle with internal degrees of freedom a at site

j, we can define the single-particle ES for its ground state, which is necessarily a Gaussian
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state. Let us outline how to define the single-particle ES for a general Gaussian state |¥).

Denoting S (S) as the region of interest (the complementary of S), the reduced density operator
ps = Trg[|¥)(¥|] can be rewritten as

pPs = ZlgleiHE7 Hg = Z enf;flfm (569)

n

where Zg = Tre !® and Hg is the quadratic entanglement Hamiltonian [348] and its eigen-
modes {f,} are linear combinations of {cj,}. The single-particle ES is then given by [349]
1

= . 5.70
&= (5.70)

Returning to the case of ground states of free-fermion systems, one can show that the single-
particle energy eigenvalues {¢€,} give the exact open-boundary spectrum of the flattened Hamil-
tonian [205]. Therefore, an entanglement zero mode with €, = 0 corresponds to &, = 1/2 in the
ES.

For quench dynamics in free-fermion systems, the nonequilibrium wave function stays Gaus-
sian as can be understood from the fact that the parent Hamiltonian is again quadratic. Accord-
ingly, the single-particle ES stays well-defined even out of equilibrium. Recalling the equivalence
between the ES and the open-boundary energy spectrum, we know that the time evolution of
ES faithfully simulates the edge spectral flow under open-boundary conditions in real space.
Given the bulk-edge correspondence [350], we expect that the spacetime topology of quench
dynamics can directly be read out from the ES dynamics. Moreover, the converse use of this
idea can be practically useful for recovering the Hamiltonian topology from quench dynamics,
provided that the many-body tomography for |¥(t)) [336,339] or the direct measurement of the
ES [151,351] is achievable.

To illustrate the power of ES dynamics as a dynamical topological indicator, we again
take the SSH model given in Eq. (5.51) as a prototypical example (see Fig. 5.4(a)). In real
systems, such as polyacetylene [352] and ultracold atoms in optical superlattices [171,341,342],
we generally have J;, Jo > 0, and a topological phase transition fromw =N =0tow =N =1
(cf. Egs. (5.32) and (5.38) for the definitions of w and N') occurs upon crossing the boundary
J1 = Ja (see Fig. 5.4(c)). If we quench the parameters as (same as Eq. (5.52))

(J17 JQ) = (J’ 0) - (J/’ J)v (5.71)

|W(t)) will remain in the same trivial phase as the dimerized state with A" = 0. Hence, topo-
logical entanglement edge modes in |¥(¢)) are absent in general. This is confirmed numerically
(see Appendix D.1 for details), i.e., the half-chain (see Fig. 5.4 (b)) ES &, # 1/2 for almost
all the time in Figs. 5.4(d) and (e). However, in the flat-band case J' = 0, we find periodic
oscillations of {&,}, which cross each other at t,, = (m — 1/2)7/J with m € Z*, where the
system instantaneously becomes class BDI with winding number 2. Remarkably, the crossings
stay robust as J' increases as long as J' < J with #; gradually diverging. This should be un-
derstood as the robustness of the nontrivial (1 4+ 1)D topology characterized by Aw = 1 (cf.
Eq. (5.39)), although the temporal periodicity disappears. When J exceeds J', no crossings
occur. This sharp transition in the ES dynamics distinguishes the quenches across different
topological phases from those within the same phase. The ES crossings in Fig. 5.4(d) can al-
ternatively be interpreted as a result of the nontrivial PHS-protected index v = 1 in Eq. (5.37),
which has been shown in Sec. 5.2.4 to be equal to the skyrmion charge (5.56) or the dynamical
Chern number (5.61) of the d-vector textures in one half of the momentum-time space. In-
deed, the ES crossings resemble the Dirac-cone dispersion of edge (entanglement) modes in 2D
topological insulators [167,353].

114



@A B Ji b 15

VRV (c) p
[o==0] G=3 =m0 W=/
a; bj  au  bjn
e o@o 00 KX YRR
2
ﬁN

1 ( RN ‘\\T'*:\T_qs;:}c‘ -
.~ -
7 ...‘{)\ \ .. A \\;-‘:_.(, c-:_\
PRV * o . |
0.8r % AN F SR SN -
. %, i 3 P g 7

P ""'}-. e Mo

e
Ol e

s LR
T et | m J'=1.1J

e (PARPY
< ‘
6 8 10

Figure 5.4: (a) Quench in the SSH model (5.51) from a dimerized state. The orange rectan-
gle marks a unit cell. (b) Half-chain entanglement cut (shaded region S) of a periodic chain.
(¢) Quench protocols. The leftmost three arrows show quenches across the topological phase
boundary. (d) Dynamics of the single-particle ES (5.70) after quenches across the phase bound-
ary, showing crossings at &, = 1/2. The total number of {{,} is L and most of them are very
close to 0 or 1. (e) Single-particle ES dynamics after quenches within the same phase and to
the critical point, showing no crossings at &, = 1/2. The system size is L = 100. Reproduced
from Fig. 1 of Ref. [46]. Copyright © 2018 by the American Physical Society.
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5.3.2 Distinguishing Z and Z; topology

While we have seen that the ES crossings can signal a nontrivial topology underlying the quench
dynamics of the specific two-band SSH model, it is unclear whether the topology is of Zy or Z
nature. In this subsection, we distinguish these two kind of topological numbers by studying
the quench dynamics in coupled SSH model. Depending on the form of inter-chain coupling,
the system falls into either class BDI characterized by Z or class D characterized by Zs. We
demonstrate that the difference can indeed be readout from the ES dynamics. We also provide
an example in class DIII, which is also characterized by a Zs index.

Class BDI

According to Table 5.1, the quench dynamics in class BDI systems are characterized by Z. Since
the addition operation on a K-group is the direct sum up to continuous deformation, we expect
the number of ES crossings to be multiplied by M if we quench M copies of the system coupled
to each other without breaking the symmetries, at least for the flat-band case. Also, we would
like to demonstrate the robustness of ES crossings against spatial disorder. For these purposes,
we consider an assembly of SSH chains and deform each chain by introducing randomness in
the hopping amplitudes:

H, =— E(Jl,jab;[aaja + Jz,jaa}H’abja + H.c.). (5.72)
J

We further randomly couple these SSH chains in a symmetry-preserving way (see Fig. 5.5(a)):

M M—-1
HBDI = Z Ha — Z Z(‘]Cdab;,a—f—laja -+ H.C.), (5.73)
a=1 a=1 j

where ajo (bjo) is the annihilation operator of a particle at sublattice A in the jth unit cell
of the ath SSH chain. For M = 3 chains and an appropriately chosen quench protocol, the
numerically obtained ES dynamics is shown in Fig. 5.5(c). As expected, we see (2M = 6)-fold
degenerate ES crossings (indicated by the blue circle) in the flat-band limit (blue curves), with
the factor of 2 coming from the periodic-boundary condition. Here the degree of degeneracy is
obtained by counting the number of crossings (indicated by the red arrows) in the absence of
band flatness (red curves). Further numerical results shown in the first and third columns of
Fig. 5.6 confirm the expection for SSH chains with M = 1 ~ 4 and with or without hopping
disorder.

Class D

If we break the TRS alone, the symmetry class changes from BDI to D and the K-theory
classification gives Zy (see Table 5.1), over which 1 +1 =0 mod 2. As a result, we expect the
presence (absence?) of ES crossings if we quench an odd (even) number of copies of SSH chains
with coupling amplitudes respecting PHS but breaking TRS. Such a situation can be realized
by changing the inter-chain coupling in Eq. (5.73) into (see Fig. 5.5(b))

M M—-1
Hp =Y Hot+ Y Y (iJejaa! o 1aje +He). (5.74)
a=1 a=1 j

3We do not rule out the possibility of finding accidental ES crossings without topological origin. Note that
edge states may also exist in topologically trivial systems.
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Figure 5.5: Three coupled SSH chains in (a) class BDI and (b) class D. Hopping amplitudes
Ja (@ =1,2,¢) are randomly sampled from a uniform distribution over [0.6.J,,1.4J,]. (c) ES
dynamics after quench (Ji,Jo, J.) = (0,1.5J,0) — (1.5J,0.5J,0.5J) in (a) with L = 40 and
the periodic-boundary condition. The result (F = 0) is compared with those after partial
(F = 0.5) and complete (F = 1) band flattening H'. A partially flattened Hamiltonian H/.
(F € (0,1)) is related to the original one H{j = H’ and the completely flattened one Hj via
Hp, = FH{ + (1 — F)H|,. The ES crossings in the blue circle split into those marked by red
arrows when F' changes from 1 to 0. The remaining two crossings in the red circle stem from
the second period. (d) Same as (c) but for the system in (b) with a different quench protocol
(J1,J2,Je) = (0,1.5J,0) — (1.5.J,0.5.J,.J). Reproduced from Fig. 2 of Ref. [46]. Copyright ©
2018 by the American Physical Society.
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Disordered

Figure 5.6: Single-particle ES dynamics in M copies of SSH chains with interchain couplings
(cf. Fig. 5.5(a) and (b)) that either respect both TRS and PHS (class BDI, see Eq. (5.73))
or break the TRS alone (class D, see Eq. (5.74)). The quench parameters are chosen to be
the same as those in Fig. 5.5, i.e., (J1,J2,J.) = (0,1.5J,0) — (1.5.J,0.5.J,0.5.]) for class BDI
and (J1, Ja, Je) = (0,1.5J,0) — (1.5J,0.5.J,J) for class D. The disorder realization of J; and
Jo is set to be the same for class BDI and class D, so that their ES dynamics agree with
each other for M = 1 in the disordered case. The length of a single chain is chosen to be
L = 120/M. Reproduced from Supplementary Fig. 9 of Ref. [46]. Copyright © 2018 by the
American Physical Society.

In Fig. 5.5(d), we present the numerical results of ES dynamics for M = 3 chains. We find that
only a single pair of crossings survive in a period in the flat-band limit (blue curves), and the
crossings persist when introducing band nonflatness (red curves).® This observation strongly
suggests reduction of the topological number Z — Z,. To further support such a dynamical Zs
reduction, we perform extensive numerical calculations for coupled SSH chains M =1 ~ 4 in
class D. As shown in the second and fourth columns of Fig. 5.6, we clearly find 2(M mod 2)
ES crossings in the flat band limit (blue curves), no matter whether the system is clean or
disordered.

Class DIIT

We numerically demonstrate that the Zy topological index for class DIII also has an intuitive
implication on the ES dynamics. In fact, by preparing two copies (with opposite spins) of the

“See Ref. [340] for a detailed explanation on the stability of this ES crossing against band nonflatness.
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Figure 5.7: Single-particle ES dynamics in a disordered class DIII system (5.77) after band
flattening. (a)-(d) correspond to the case of coupled four-band class DIII chains with M =1 ~ 4
(5.75). Note that a four-fold-degenerate (no) crossing survives for an odd (even) M, implying a
robust Z, topological characterization. The length of a single chain is chosen to be L = 96/M.
Reproduced from Supplementary Fig. 10 of Ref. [46]. Copyright (© 2018 by the American
Physical Society.

class D SSH chains, we have already obtained a model in class DIII, which certainly exhibits the
Zy reduction with doubled degeneracies in the ES crossings (due to the Kramers degeneracy).
Note that once the TRS alone is broken, the system reduces to class D and is always trivial.

To make the demonstration nontrivial, we can add a spin-orbit coupling term that respects
both TRS and PHS:

H,=— Z(Jl,jab;'asajas+J27jaa;‘+1,asbja5+H'C')+Z[Jw'a(b;'majaT_a;r'aibjaT)‘}'H'C']’ (575)
Jss J

where s =7, | denotes the spin degree of freedom. Denoting ¢; = [ajt, bjt, ajy, bji]T, the anti-
unitary TRS and PHS act like

T(c))T ' = (icY ® 0%)cj, C(e;)C7" = (0”@ o%)e;. (5.76)

We can couple M copies of such class DIII chains as

M M—1

H=Y Ho+ Y Y [(iJecjot] o 1 10jat — idecjotl oy ajay) + Hel, (5.77)
a=1 a=1 j

which respects both TRS and PHS.

We calculate the ES dynamics after a quench in the model given in Eq. (5.77). All the
parameters are randomly sampled from J, € [0.6j,“ 1‘4ju]= and the quench protocol is chosen
to be

(J1, Jo, Jey Jee) = (1.5.,0,0,0) — (0,1.5.J,0.4.7,0.8.]). (5.78)
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Figure 5.8: Implementation of the SSH model based on laser-assistant tunneling with ultracold
atoms in a tilted optical superlattice. The intra- and inter-unit-cell hoppings J; and J; can
independently be controlled by using two pairs of Raman lasers with detunings dap + Fla.
Reproduced from Supplementary Fig. 12 of Ref. [46]. Copyright © 2018 by the American
Physical Society.

The numerical results are shown in Fig. 5.7 for coupled chains M = 1 ~ 4. Remarkably, we find
that there is a four-fold-degenerate crossing (which comes from the periodic-boundary condition
and the Kramers degeneracy) for M = 1,3 while no crossing for M = 2,4. Such an observation
is consistent with the Zy classification predicted by the K-theory (see Table 5.1).

5.3.3 Experimental situation

We briefly discuss how to experimentally measure the ES dynamics in the SSH model simulated
by ultracold atoms, which provide an ideal platform to explore nonequilibrium quantum dy-
namics. Indeed, sudden quench and Bloch-state tomography have been achieved in the Haldane
model [328,338]. Here we apply these ideas and techniques to the SSH model. It is worth men-
tioning that an interferometric scheme to directly measure the ES in an interacting ultracold
atomic system has been proposed in Ref. [151], but has not yet been realized experimentally.
Such a scheme is a generalization of Ref. [331], which describes a method of measuring the
Rényi entropy and has recently been realized in an optical lattice [332].

While the SSH model has been realized in Refs. [171,341,342], these realizations are not
suitable for studying quench dynamics since the Wannier functions change considerably after
deforming the optical lattice, leading to unwanted excitations in higher bands. Also, an energy
difference between A and B sublattices is needed to perform tomography [336]. Therefore, we
use a superlattice with large energy offset dop between nearest neighbors (separated by a) and
subjected to a uniform potential gradient Fa ) [(2j — l)a}aj + 2jb}bj] (see Fig. 5.8). Thanks
to the potential gradient, it is possible to independently control the hopping parameters J; and
Jo by two pairs of Raman lasers with detunings dap + Fla. For example, to realize the quench
(Jo,0) — (0,J), we can suddenly switch off one laser assistant tunneling J; = Jy and switch
on the other tunneling Jo = J. Note that it is easy to generalize to the Rice-Mele model by
choosing imperfect Raman-laser detunings dapg + Fla F A.

As for Bloch-state tomography, we follow the method in Ref. [337] to suddenly switch off
the potential gradient and Raman lasers and then perform time-of-flight measurements after
waiting for a varying time up to a few times of 27T6K]13. Unlike the case in Ref. [337], the
potential gradient continuously shifts the quasimomenta during the quench dynamics, so that
the measured Bloch state at k should be replaced by k + F't,, with ¢ being the time duration of
the quench dynamics. In practice, we can apply an opposite potential gradient during time ¢
to compensate for this effect. If the gradient comes from inhomogeneous Zeeman splitting, this
can be done by globally flipping the atomic spin [171]. With the full information of Bloch states
in hand, we can calculate the half-chain ES following the standard method (see Appendix D.1).
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Chapter 6

Summary and outlook

In this Thesis, we have focused on the dynamical generalization of order and topology in quan-
tum systems out of equilibrium. We have considered three of the most common nonequilibrium
situations — periodic driving, dissipation and quench.

In particular, in Chapter 2, we have predicted the DTC order in Floquet open quantum
systems, and proposed a simple scheme for realizing it in cavity and circuit QED systems via
switching on and off of the atom-light coupling. Technically, we have focused on the modulated
open Dicke model both in the thermodynamic limit and in the deep quantum regime. In the
former case, we have found rich dynamical phases caused by various bifurcations. In the latter
case, we have shown that the interplay between dissipation and strong coupling gives rise to a
clear transient DTC behavior. Moreover, we have demonstrated an exponentially long lifetime
of the DTC behavoir in the Floquet-GKSL-Landau theory.

Our model can readily be generalized by taking into account the atomic motional degrees of
freedom [354], interactions between atoms [355], local decoherence, and spontaneous emission
[106, 356, 357]. Indeed, there have already appeared several follow-up works on these topics.
In particular, our study raises an intriguing question as to whether an intrinsically nonunitary
DTC can possess absolute stability [69] against arbitrary nonunitary perturbation. Further
studies along this line should give valuable hints for realizing a persistent DTC in the presence
of realistic uncontrollable dissipation and decoherence. Another direction of research is to
understand the mechanisms of the dynamical phases other than the DTC phase from their
Floquet-GKSL spectra, especially the scaling behavior of these dynamical orders with respect
to the system size. Note that some preliminary results on the asymmetric DTC behavior have
been reported in Sec. 2.4.2 in Chapter 2.

In Chapter 3, we have focused on the classification of symmetric MPUs, for which the
symmetry representation can be arbitrary or fixed. In the former case, we have achieved a
complete classification based on the index and the cohomology class. In the latter case, we have
unveiled a set of experimentally accessible SPIs that enrich the classification and lead to the
discovery of a new class of intrinsic Floquet SPT phases in 2D.

On the other hand, the complete classification of MPUs with fixed symmetry representations
stays an open problem. In addition, the current study concerns only on the locality-preserving
unitaries in 1D bosonic (spin) systems with unitary symmetries, so that the directions of future
studies may include the generalization to anti-unitary [35] and continuous symmetries, fermionic
systems [358] or/and higher dimensions [359]. Moreover, since both SPIs and cohomology classes
apply to inhomogeneous unitaries, it would also be interesting to study the impact of topology
on information scrambling in random circuits [360-366]. In particular, we would like to ask
whether nontrivial SPIs can set some lower bounds on the speed of thermalization [37], as
might be quantified by the growth of entanglement entropy [367].
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In Chapter 4, we have established a fundamental framework for a systematic study of topo-
logical non-Hermitian systems. This framework is based on a dynamical viewpoint on non-
Hermitian topological systems and a generalization of the energy gap for complex energy spec-
tra. We have studied in detail 1D non-Hermitian lattices in class A, identified the topological
winding number, unveiled a novel bulk-edge correspondence, and discussed the possible exper-
imental relevance. We have then performed a systematic classification based on the K-theory
and obtained the periodic table for non-Hermitian AZ classes. All the nontrivial classes in 0D
and 1D have been exemplified.

Our framework opens up many possibilities for future studies. Even if we confine ourselves
to non-Hermitian AZ classes, physical properties of topological phases in higher than two dimen-
sions are yet to be explored. Note that the topological phases in four or even higher dimensions
are also physically relevant since they might be realized by making use of the time degree of
freedom [368,369] or the synthetic dimensions [370,371]. Compatible with the K-theory, our
framework can readily be extended to including Bernard-LeClair symmetries, as has been done
in Ref. [257,258]. There should be no difficulty in principle for a further generalization to crys-
talline symmetries [199,200], such as the PT symmetry. Moreover, in analogy with Hermitian
systems for which the K-theory approach has been applied to classify bulk-gapless topological
phases [296], our framework has a potential to be generalized to non-Hermitian systems with
exceptional points in the bulk [210,212-214]. This has also been done recently in Ref. [318].
We can even go beyond the K-theory classification to seek for homotopically distinguishable
(like the Hopf insulator [147]) non-Hermitian topological phases with a definite Hilbert-space
dimension. See some recent progress along this line in Refs. [372-374]. Last but not the least,
it would be an intriguing theoretical issue to consider the topological characterization for in-
teracting many-body non-Hermitian systems [238, 239], which are expected to be accessible
in near-future atomic, molecular and optical experiments in light of the rapid development in
reservoir engineering [26].

In Chapter 5, we have identified the nontrivial spacetime topological structures for all the
one-dimensional quench dynamics within the same AZ class. We have proposed using the
ES dynamics to detect the dynamical topology and performed extensive numerical studied in
several prototypical models. In particular, we have demonstrated how to distinguish Z and Zs
topology from the ES dynamics in coupled SSH chains. These phenomena can be explored in
state-of-the-art AMO experiments.

In higher dimensions [375] and/or with additional symmetries, there remains an open prob-
lem as to whether a nontrivial (d+ 1)D topological structure emerges in quench dynamics, and,
if yes, how the single-particle ES dynamics looks like. Even in 1D, it is not fully clear whether
the ES crossing is robust against band nonflatness. See Ref. [376] for some recent progress
on this issue. We also note that Ref. [377] has discovered similar ES crossing phenomena in
free-fermion systems with long-range hoppings. Finally, the influence of interaction could be
yet another important issue, which might be tackled from the dynamics of the many-body ES.
In 1D, this can directly be readout from the MPS representation [153], which is accessible in
cutting-edge trapped-ion experiments [150].

In short, this Thesis contributes to the emergent subject on exploring novel phenomena in
nonequilibrium quantum dynamics, especially exotic dynamical phases in Floquet, open and
quenched systems. We hope that this Thesis could provide some valuable pieces of information
and pave the way towards a complete understanding on nonequilirium phases.
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Appendix A

Topological invariants for
inhomogenous locality-preserving
unitaries

In this appendix, we rigorously derive the factorization relation for the evolved symmetry string
operator solely from the symmetry and the (strict) locality-preserving requirement without
assuming the translation invariance. In analogy with the SPIs for MPUs, we prove that the
(relative) SPIs defined from L, and R, in the factorization relation are topological invariants.
The same technique also allows the generalization of the cohomology class to inhomogeneous
locality-preserving unitaries.

A.1 Factorization relation

We first introduce two useful lemmas:

Lemma 3 Given a unitary U acting on a bipartite system A|J B, then U = Uy ® Up for some
subsystem unitaries Us and Upg if and only if

[UT(04® 1)U, 14 ® O] = [04 @ 15,UT (14 ® Op)U] =0 (A1)
for any subsystem operators O and Op.
Proof: “Only if” is trivial. To show “if”, we first note that
[UT(04 @ 1p)U,14® Op] =0 (A.2)
for arbitrary Op acting on B is equivalent to
UN(Oa® 1)U = fa(Oa) ® 15. (A.3)

See, e.g., Lemma 1.5 in Ref. [378]. Moreover, f4 is a ring automorphism on Mg, (C) (ring of
da X d4 complex matrices), since it is a ring homomorphism and is bijective due to U(O4 ®
1)U f= f;l(O A) ® 1p. According to the Skolem-Noether theorem, we must have

f4(04) =V, 104Va, (A.4)
where V4 € Mg, (C) is invertible. Similarly, we must have

Ul(14 @ 0p)U =14 @ V5 OpVp. (A.5)
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Therefore, for an arbitrary operator O = ) j O4,; ® Op,; acting on the entire system, we have

UTOU =Y UT(04; ® 15)UUT (14 ® Op;)U = (V4@ Vp) 'O(Va ® V), (A.6)
J
which leads to
(Va@Ve)UT =clap c#0. (A7)
Absorbing ¢! into V4 or Vi followed by choosing a proper C* gauge, we end up with U =
Us ® Ug, where Uy and Up are subsystem unitaries. O

Lemma 4 Given a unitary U acting on an M -partite system S = U%:l S, thenU = ®£n/[:1 Uj
if and only if U = U, @ Uy, form =1,2,.... M — 1, where Uy, and Ug, are unitaries acting only
on Sy, and Sz, = S\ S, respectively.

Proof: “Only if” is trivial. To show “if”, we start from U = U; ® Uy and prove Uy = Uz ® Ugs.
Focusing on the singular-value decomposition with respect to the bipartition S = Sy J S5, we
know from U = Uz ® U; that the bond dimension is one, implying Uy = Vo ® V45. Moreover,
from the fact that
15 =U'U = Ulva ® [US (U7 @ Vip)], (A.8)
we can properly choose the C* gauge such that Vo = U, which in turn implies Uz = V45 is
unitary. Following a similar analysis, we can factorize Uz into Uz ® Uisz and so on, and end
up with U = @_, U,,,. O
Before deriving the factorization relation, we list a few fundamental properties of locality-
preserving unitaries:

Proposition 6 For a locality-preserving unitary Urp acting on a ring of L spins and with the
Lieb-Robinson length Iy r, we have
(i) If O acts nontrivially only on [ji,j] C Zr, then UEPOULP is nontrivial at most on [j; —

ILR, Jr +ILR];
(it) If Upp = Urp,1Urp2, where the Lieb-Robinson length of Unpq is lira (@ = 1,2), then

Iir <lira + IlLR2s
(i13) UIJEP has the same Lieb-Robinson length liR.

Proof: From a general expansion

Jr
o=3Y o (A.9)

{nj}e,, 7=0

where O][-nj] acts nontrivially only on the jth site, we obtain (i). Taking O = Uz p10;ULp1
in (i) for an arbitrary operator O; acting nontrivially only on the jth site, we know that
UIJEPQUEP’leULP,lULP,Q is nontrivial at most on [_] — lLR,l — lLR,g,j + lLR,l + ZLR,2] for Vj € Zp,
and (ii) follows. To show (iii), we consider all the operators O acting nontrivially only on
Zi\[J — IR, + lur], so that

[Uf,0ULp, 0] = [0,ULpO;U} ] = 0 (A.10)

due to (i), where O; follows the previous notation. The arbitrariness of O implies that Up,pO; UEP
acts nontrivially at most on [j — LR, j + (Lr]. Hence, denoting the Lieb-Robinson length of UEP

as lLr, we have I g < lLR. Similarly, we can derive I g < Ik from (UEP)T = Urp. Combining
these two relations, we obtain (iii). O
With all the previous results in hand, we are ready to prove the following theorem:
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Figure A.1: Relations between g, Ly, Ry, I:g and Rg through a symmetric inhomogeneous
locality-preserving unitary Upp with ;g = 1, which is always the case after sufficient blocking.
Trace preservation under unitary transformation implies Tr Ly (1) = Tr Ry(jm) and Tr R,(j) =
Tr f/g(jm + 1). Note that the parts above and below the red dashed line are transformed
separately. Reproduced from Supplementary Fig. 6 of Ref. [38]. Copyright (© 2020 by the
American Physical Society.

Theorem 5 (Factorization relation) Given a G-symmetric locality-preserving unitary Urp
with the Lieb-Robinson length lLr, for Vg € G defining a g-string operator pg; i1 = ®j€[jl,jr] Pg
with |71 — Jr| > 4lLRr, we have (with 1 omitted for simplicity)

U{Ppg[jlyjr}ULP = L9<jl) ® Pylii+Lr,jr—ILR] ® Rg(jr)a (A-ll)

where Lg(1) and Ry(j1) are unitary operators acting nontrivially (at most) on Iy, = [ji—ILr, i+
Iltr — 1] and Iy = [jr — lLr + 1, Jr + lLR], respectively.

Proof: We divide the lattice Z, into three subsystems:
S1=Z\Gi = lir e+ lir), 82 = [+ oG — lerl, S = I J In- (A.12)
Applying Proposition 6(i) directly to the lhs of Eq. (A.11), we obtain
Uleyin aiUip = U © Uy (A13)
with U; = 1g,. Since Upp is G-symmetric, we can rewrite the evolved g-string operator into
il _ ®L
UppPglj,i)ULp = P? UEPp;ZL\[jI,jr}ULP’ (A.14)
Applying Proposition 6(i) to the rhs of Eq. (A.14), we obtain

Uﬁppg[jl,jr} Urp = U2 ® Us (A.15)
with Uy = pf(jr_jl_mm“). According to Lemma D.15, there exists a unitary Us acting on S3
such that

UIthg g ULp = ® Un (A.16)

We move on to show that Uz can further be factorlzed. According to Props. 6(ii) and (iii),
the Lieb-Robinson length of ngpg[jl,jr}ULp is no more than 2lg. Since [jj — ji| > 4lLR, given

any two operators Oy, and Oy, acting nontrivially only on Ij, and IR, respectively, we have
U(Or, @ 15,)Us, 15, ® O] = [Or, ® L1, U (15,  Op JUs] = 0. (A.17)

It follows from Lemma 3 that Us = Lg(ji) ® Ry (jr) for two unitaries L, (ji) and R, (jr) acting on
I1, and IR, respectively. Substituting the expressions of U,, (m = 1,2,3) into ®f’n:1 Uy, yields
the rhs of Eq. (A.11). O
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Figure A.2: Schematic illustration of the additivity of the relative SPI and the cohomology class.
Up to tensoring with (equal numbers of) 1 and pg, Ly(j1) and Ry(jr) of Upp = Urp,1ULp 2 are
unitarily equivalent to Li 4(ji1) ® Ry .9(Jm) and L27g (Jm+1)® Ry ( Jr), respectively. Reproduced
from Supplementary Fig. 7 of Ref. [38]. Copyright © 2020 by the American Physical Society.

A.2 Topological invariants

We first mention that the robustness of ind defined in Eq. (3.20) against disorder and its addi-
tivity are well established in Ref. [37], so it is sufficient to focus on the relative SPI ind, — ind.
By sufficient we mean that if the relative SPI is an additive topological invariant, so is the SPI.

Proposition 7 The relative SPI

1

indy —ind = - l Trig

Tr R,

(A.18)

is a well-defined global character, although L, and R, are generally site-dependent.

Proof: To prove the site-independence of | Tr L,| and | Tr Ry|, we only have to show
Tr Lg(j1) = Tr Rg(jm),  Tr Ry(ji) = Tr Lg(jun +1),  Vjm € (i +lr,Jr — lr),  (A.19)

where f)g and Rg are determined from evolving the g-string operator by UIJEP. These two
identities stem simply from the preservation of trace under unitary conjugation (see Fig. A.1).
As j) and j, are variable for a fixed jm, |TrLy| and | Tr Ry| should be site-independent and
ind, — ind in Eq. (A.18) is a well-defined global character for Upp.

It remains to derive the relations in Fig. A.1, where the upper half is nothing but Theorem 5,
so that we only have to rigorously derive the lower half. To show the relation above the red
dashed line, which explicitly reads

ULPLg(jl) ® pg[jl+lLR7jm]UEP = Pglj1,jm—ILR] ® Rg(jm)’ (A’2O)
we divide Zj, into

S1=Z\[I—2lLRr, Jm+R],  S2 = [ —2lLR, Jm —lLR),  S3 = [jm—lLr+1, jm+ILr]. (A.21)

Applying Proposition 6(i) directly to the lhs of Eq. (A.20), we obtain the factorization U; ® Uy
with U; = 1g,. Moreover, rewriting Eq. (A.11) into

ULpLgy() ® pg[j1+lLR7jm]U£P - Pg[jhjr]ULPP;UmH,jrzLR] ® Rg(jr)TUItP (A.22)
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and applying Proposition 6(i) directly to the rhs, we obtain the factorization Us ® Us with

U2 = pylji—20rr.jm—lrg]- According to Lemma D.15, Eq. (A.20) follows. Similarly, by choosing

S1=Z\[jm —lr + 1,5c + 2ir],  S2 = [Jum + LR + 1, jr + 2ILR],

. | (A.23)
S3 = [jm — lLr + 1, jm + lLR],

we can derive

ULP Pgljmt1je—tin] @ Bg(ir)Ulp = Lg(im + 1) @ pyljuntivn1i]- (A.24)

The independence of Ry(jm) and Ly (jm + 1) on j; and j; with min{|; — jml, [jr — jm|} > lLr is
again a direct consequence of Proposition 6(i), i.e., a local modification far from subsystem Ss
cannot propagate to S3 through UEP. U

Similarly to the SPI, we can also generalize the cohomology character to inhomogeneous
locality-preserving unitaries by realizing that Lg(j1) ® Rg(jr) is a linear representation, as can
be seen from the top of Fig. A.1.

Proposition 8 The cohomology class of Ly, which is opposite to that of Ry, is a well-defined
global character.

To see this, note that Ly(j;) and R,(jm) are equivalent projective representations (see Fig. A.1
bottom) and the cohomology class cannot depend on j. U
Just as in the case of MPUs, we have

Theorem 6 The relative SPI is a topological invariant, which is additive by tensoring and
composition.

Proof: We consider a continuous path of G-symmetric locality-preserving unitaries Upp()\),
along which the maximal Lieb-Robinson length is denoted as lpax = max) lLr(A). For a fixed
g-string operator py(;, i1 with |jj — ji| > 4lmax, we have the factorization relation

UL p (NPl ULp(N) = Lg (1 A) @ Pyl me—tmn] © Ry (s V), (A.25)

where Lg(jl; >\) and Rg(jr; )\) act on Il = []1 - lma)hjl +lmax - 1] and Ir = []r - lmax + 1ajr +lmax]a
respectively. Note that the factorization in Eq. (A.25) may not be optimal in the sense that
Ly(j1; A) and Ry (jr; A) can be reduced to 1940 @ LgP(ji; A) @ pP2 and pi> @ RgP (ji; A) @ 194
with Al = lmax — lLr(A). Nevertheless, the ratio | Tr L,/ Tr Ry| always determines the relative
SPI since additional factors x, and d cancel out. Inspired by the experimental scheme, we can
express the relative SPI in terms of Urp()) via

“In ’

4| e [Ter, pggs 5y V) Tz, gy (V]

(A.26)

where pg[jl,jr]()‘) = UEP()\) Pglj1.;]ULP(A) is continuous with respect to A. Accordingly, the rela-
tive SPIis a continuous function of A. On the other hand, since L, ® R is a linear representation
(see also the proof of Theorem 3), we know that ind, —ind takes values over a finite set

| ez, |
dl]e dg l g . Z n] — d2lmax . (A27)
|Xg‘ jezdg

n

Therefore, the relative SPI must be a topological invariant.
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We move on to prove the additivity. Consider two G-symmetric locality-preserving unitaries
Urp,1 and Upp o with the Lieb-Robinson lengths If,r 1 and [1r 2; then their composition Urp =
Urp,1Urp,2 is again G-symmetric and locality-preserving with lrr = lpr,1 +IlLRr,2 — Al12 (Aly2 >
0). As shown in Fig. A.2, which is similar to Fig. A.1, we apply a “pull-back” technique to
UER1 Pyl )ULP,1 to obtain (a rigorous derivation is parallel to the proof of Proposition 7)

(dxg)212 Tr Ly(51) = Tr L1 4(51) Tr Ra,g(jim),

Al . . ~ . (A.28)
(ng) 2 Tr Rg(]r) =Tr Rl,g(]r) Tr L2,g(]m + 1)7
which implies
Tr L,(j Tr Ly 4(j Tr R 4 (jm
In |2 g(]}) T 1,9(3_1) 0 fRz,g{(J ) ’ (A.29)
Tr Ry(jr) Tr R1,4(jr) Tr Lo g(jm + 1)
and thus the additivity of the relative SPI. U

In fact, the same result (Theorem 6) holds for the cohomology class. To show this, we need
the following Lemma:

Lemma 5 Let U(A) = Ua(A) @ Ug(N) be a continuous path of unitaries acting on a bipartite
system A|J B; then we can always choose a proper U(1) gauge such that Ua(X\) and Ug(\) are
separately continuous paths.

Proof: By assumption, we have

Ua(N) @ Ua(N) = (@ BlUN) @ UN)|®pB), (A.30)

where |Ppp/) = %B Z?ﬁ 1 l7Bjp) is the maximally entangled state of subsystem B and its copy
B'. Moreover, Ua()\) ® Ua(\) must be continuous with respect to A as U(A) is. Decomposing
the entry of Ua(\) as [Ua(A)]mn = Tmn(A)wmn(A) with rp, (X)) € [0,00) and wp,(A) € U(1), we

can uniquely determine all 7, (\) from
[Ua(N) @ UaN)mm,nn = Tmn(A)?, (A.31)
and all wrn (X)/wimrn/(A) With 7 (A7 (A) # 0 from

_ Winn(A)

[UA()‘) ® UA()‘)]mm’,nn’ = Tmn()\)rm’n’()\)m7 (A32)

which are all continuous. Also, the unitarity > 7mn(A)? = 3, rmn(A)? = 1 implies at least
da nonzero entries. Imposing continuity to (the phase of) an arbitrary nonzero entry, the
continuity of the others immediately follows from the continuity of wy,,(A) /W (A), and we
obtain a continuous path of U4 (A). The corresponding Ug(A) can be determined from

Up(\) = d3' Tra[(UL(N) @ 1)U V)], (A.33)

which is also continuous with respect to . O
We are now ready to prove the following theorem:

Theorem 7 The cohomology class is a topological invariant, which is additive by tensoring and
composition.
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Proof: According to the factorization relation (A.11), using the same notations in the proof of
Theorem 6, we have
Lyg (s A) @ Ry (Jrs A) = dHhmaxt Trfl NI [p;[lerlmaX’jr,lmax]pgl[jl,jr} (], (A.34)
where pgr, ;)
apply Lemma 5 and find two continuous paths L, (ji; A) and Rg4(jr; A), which are projective
representations belonging to the opposite cohomology classes due to the fact that Ly(ji;; A) ®
Ry(jr; A) is a linear representation. According to Ref. [139], the cohomology class must stay
unchanged along the continuous path. To prove the additivity, we only have to employ the
pull-back technique shown in Fig. A.2 and then use the additivity of cohomology class upon
tensoring. U
Finally, we claim the following as a special case of inhomogeneous locality-preserving uni-
taries.

\) = UEP(/\)pg[jmr]ULp()\) is continuous with respect to A. Therefore, we can

Theorem 8 An open-boundary locality-preserving unitary always has trivial index, SPIs and
cohomology character.

Proof: For the case of the (symmetry-irrelevant) index, see Ref. [37]. In the presence of
symmetry, we consider a g-string operator pyo j, starting from the left edge of an open-
boundary locality-preserving unitary Upp with length L and Lieb-Robinson length Iipgr (we
choose j, > lpr). Combining the locality-preserving property and the identity

L
UEPIOQ[O,]}] ULP = p? UEPp:Ig.[errl’L,l]ULPa (A35)

we know that L,(0) = 1%r ® p?lm (where 1®/LR acts on the rightmost IpR sites), implying
that both the SPI and the cohomology class are trivial. O
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Appendix B

Localization and topology in the
Hatano-Nelson model

In this appendix, we explain in detail how the topological transition is related to the Anderson
transition in 1D non-Hermitian systems. We first generalize the spectral winding number to
disordered lattices and then provide extensive numerical and analytical results to demonstrate
the topological nature of the Anderson transition in the Hatano-Nelson model. We also provide
an example of a topological transition that is not accompanied by a localization transition.

B.1 Winding number for disordered systems

For Hermitian systems belonging to class A, we know that the integer quantum Hall states
in two dimensions are robust against spatial disorder. As a consequence, while the Anderson
transition is forbbiden in two dimensions [379] in the absence of spin-orbit interactions [380],
mobility edges emerge in an integer quantum Hall state and the delocalized modes contribute
to the quantized Hall conductivity Ce?/h [381], with C' being the Chern number [165]. These
well-established results naturally raise a question of whether or not a topological non-Hermitian
system, such as Eq. (4.9), is robust against disorder and, if yes, in what sense.
To address this question, we consider the original Hatano-Nelson model [43, 254, 382]:

H = Z(JRC}+1CJ' + JLC}L'C]'_H + V}'C}Cj), (B.l)
J

which describes a 1D ring with asymmetric hopping amplitudes and on-site disorder V;. While
a 1D Hermitian system is always localized in the presence of a random potential [379], e.g.,
V; € [-W, W] with a uniform probability, the Hatano-Nelson model (B.1) exhibits an Anderson
transition [383]. Recalling the emergence of mobility edges in quantum Hall systems, we may
conjecture that the Anderson transition is ensured by the nontrivial topological winding number,
which is expected to be trivial if the system is fully localized.

To verify the conjecture, we first have to generalize the definition of the winding number
(4.7) to disordered systems. Following the idea of defining the Chern number for disordered
quantum Hall states [206], we apply a magnetic flux ® through a finite non-Hermitian ring with
length L such that the hopping amplitudes are multiplied by e¥:®/L under a specific choice of
gauge. For the Hatano-Nelson model (B.1), we have

L
Z Jre™’ LC]+IC] + Jre' LcchH + Vc 5Cj)- (B.2)
7=1
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Figure B.1: (a) Energy spectrum of an infinite translation-invariant lattice described by
Eq. (B.8). The arrows indicate the flow of eigenenergy as the wave number k increases from 0
to 27. (b) The same as in (a) but for a finite (L = 30) ring subjected to a flux ®. The arrow
indicates the spectral flow as ® changes from 0 to 2w. Reproduced from Fig. 11 of Ref. [44].
Copyright (© 2018 by the American Physical Society.

T - T .

While H(®) is not periodic in ®, there exists a large-gauge transformation Ur,g = T X7
such that

H(® +27) = U H(®)U . (B.3)

Therefore, the gauge-independent quantity det H(®) is periodic in ® and the winding number
can be defined as

™

2m dd
wa/ T&p Indet H(P), (B.4)
0

which reproduces Eq. (4.7) in the presence of translation invariance. To show this, let us first
distinguish the fluxed entire Hamiltonian H(®) from the Bloch Hamiltonian H (k) by adding a
subscript “tot” to the former. In the quasi-momentum representation, the entire Hamiltonian
Hiot with flux ® can be block-diagonalized as

Ho(®)= P H (k + i) : (B.5)

kzzJTﬂ—w

which leads to o
Indet Hioi (P) = IndetH [ k+ — ). B.6
ndet Hio(®) = 3 ndec 7 (k+ 7 ) (B.6)

lc:—2JL7r —7

Therefore, we have

21 27
dd dd P
—O0g Indet Hiot (P) = —— O Indet H | K+ —
A 271'8(1) nde tt( ) Z A QWLak nde ( +L)

kz#—w
(B.7)
d T dk

— T
2jm _
3=0 T T s

L-1 ,20+h)m -
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It is instructive to illustrate the equivalence between the k-based and ®-based winding
numbers in a concrete model, such as

H = Z(ch;+16j + JQC;r;le_H) (B.8)
J

with J; = 1 and Jo = 2. According to the dispersion relation H (k) = Jie 7+ Je¥k it is
easy to know that det H (k) encircles the origin twice when k runs over the Brillouin zone, as
shown in Fig. B.1(a). Note that a given k corresponds to a single eigenenergy since there is
only a single band. On the other hand, for a finite ring with length L and subjected to a flux
®, the Hamiltonian becomes Hio (P) = Zj(eﬂ% ch;r-_ch + eQi%ch;r»_lch), where a given ¢
corresponds to L eigenenergies that form a discretized configuration of the continuous curve
H(k) (see Fig. B.1(b)). When & increases from 0 to 2w, the spectrum of Hiot(®) returns to
itself and the trajectory exactly generates the energy spectrum in the thermodynamic limit in
a counterclockwise manner, leading to the same winding number w = 2. It is also clear from
this example that w counts the number of times the complex spectral trajectory encircles the
base point at Eg = 0 when the flux is increased from 0 to 2.

Remarkably, the generalized winding number (B.4) also allows us to have a topological
understanding on the boundary-condition sensitivity of general topologically nontrivial 1D non-
Hermitian lattices such as the Hatano-Nelson model. It is clear that the winding number (B.4)
should either vanish or become ill-defined in an open chain, since the flux can always be gauged
out and thus det H(®) is ® independent. Therefore, the spectrum no longer encircles any base
point inside the spectrum loop under the open boundary condition. Since the spectrum should
change continuously when the boundary hopping is gradually switched on, the spectrum must
be very sensitive to the boundary condition.

B.2 Topological and localization transitions

Spectral flow and localization

In the previous section, our conjecture on the topological origin of the Anderson transition in
the Hatano-Nelson model is based on the intuition that a fully localized system is topologically
trivial. Here, we justify this statement from the viewpoint of the potential-gradient response
of wave functions. For an open chain with length L and described by the Hamiltonian H =
Zﬂ lec;-cl subject to a perturbation dH = —% Zj jc;r-cj, starting from an eigenstate |¢g) of H
and assuming the adiabaticity in the interacting picture, the wave function |¢;) at time ¢ can
well be approximated by e ®H*| ;) with |¢;) being the eigenstate of H(t) = eHtHe "0Ht —
>l lee*i%(j*l)c}cl. Note that [1);) ~ e""H¢|¢,) shares almost the same real-space profile as
|or). When the system becomes a ring, with V¢ replaced by ® in H(t), the obtained Hamiltonian
H(®) is equivalent to that of a ring with a flux ® inside. This correspondence can be understood
from the fact that a temporally changing magnetic flux induces an electromotive force. If |pq)
is localized, then by definition the wave function should be rigid against the induced electric
field. In contrast, a delocalized state should be flexible in response to a change of ®, giving
rise to transport phenomena. Recalling that the spectra of H(®) and H(® + 27) coincide, we
expect the complex energy of a localized (delocalized) state to stay almost unchanged (flow to
another eigenvalue) when varying ® from 0 to 2. Accordingly, the spectral trajectory of H(®)
cannot form any loop and is topologically trivial for a fully localized system.

We illustrate the above argument for a Hatano-Nelson ring (B.1) with a complex on-site
random potential and L = 30. As shown in Fig. B.2, when changing ® from 0 to 27, 8 of the 30
eigenvalues stay almost unchanged, while the rest 22 eigenvalues flow clockwise to their nearest
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Figure B.2: Spectral flow (right) and two representative eigen wave functions (left) of a Hatano-
Nelson ring with complex disorder W = 2.5, L = 30, J, = 2, Jg = 1 and threaded by a varying
flux ®. A delocalized wave function (left-upper panel) behaves flexibly, while a localized wave
function (left-lower panel) exhibits rigidity. Reproduced from Fig. 12 of Ref. [44]. Copyright (©
2018 by the American Physical Society.

neighbors, forming a loop. We also show the ®-dependence of two representative wave functions
on and outside the loop. The former wave function (left-upper panel) is relatively extensive in
real space and changes dramatically with respect to ®, while the latter one is localized and
exhibits rigidity against a change in ®. Given a base point (e.g., Eg = 0) inside the loop, the
spectral flow of the delocalized modes contributes to the winding number of w = 1.

Topological Anderson transition

To study the relation between the Anderson transition and the associated topological transition,
we perform an exact-diagonalization analysis of a much larger Hatano-Nelson model with L =
103, Jg = 2 and J;, = 1 subject to the periodic boundary condition. We present the numerical
results in Fig. B.3 for four different disorder strengths W = 1,3,4,5. As W increases, the
fraction of localized modes (indicated by the points located on the real axis in Fig. B.3(a))
increases and the mobility edges (points encircling the origin) shrink to the origin. Nevertheless,
even if the fraction of delocalized modes is small, the winding number (B.4) is always quantized
at w = —1. Moreover, argdet H(®) is approximately given by m — ®, as can be seen from the
following explicit expression

det H(®) = (—)F Y (JEe ™™ + JEe®) + P({V;)), (B.9)

where an overwhelming majority of the random magnitudes of the polynomial P({V;}), which
are independent of ®, should be much smaller than Jﬁ before localization. With further in-
creasing the disorder strength, an Anderson transition occurs at W, ~ 4.3 and all the states
become localized, leading to a trivial topological number.

In fact, the real parameters used in numerical calculations endows the Hatano-Nelson model
with time-reversal symmetry 7' = K (K: complex conjugate), which makes the spectra sym-
metric under reflection with respect to the real axis (see Fig. B.3(a)). To demonstrate that the
time-reversal symmetry is irrelevant to the winding number discussed here, we also calculate the
energy spectra for complex random potentials V; = |V;|e!% where the magnitude |V;| (phase
¢;) is randomly sampled from a uniform distribution over [0, W] ([0,27]). Then the symmetry
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Figure B.3: (a) Complex-energy spectra and (b) flows of Arg(det H) with respect to the flux ®
for typical realizations of the Hatano-Nelson Hamiltonian (B.1) with L = 103, Jg = 2, J, =1
and real on-site disorder V; € [-W, W], where W = 1,3,4,5. (c) and (d) correspond to (a)
and (b), respectively, with the same set of parameters except for inclusion of a complex on-site
disorder V; = |V;|e!®i, where |V;| € [0, W] with W = 2,3,3.5,4 and ¢; € [0,2n]. Note that
the flows of Arg(det H) almost overlap in (b) for W = 1,3,4 and in (d) for W = 2,3,3.5, and
that they also overlap with each other between (b) and (d). We see that the transition occurs
between W =4 and W =5 in (a) and between W = 3.5 and W =4 in (c). In the nontrivial
phase (W =1,3,4in (a) and W = 2,3,3.5 in (c)), the spectra encircle the base point at £ = 0,
giving the winding number w = —1. In the trivial phase, the data points lie on the real axis in
(a) and scatter in the complex energy plane without forming a closed loop in (c). Reproduced
from Fig. 14 of Ref. [44]. Copyright © 2018 by the American Physical Society.
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Figure B.4: (a) Disorder-averaged minimum absolute value of energy (|E|y) for the Hatano-
Nelson model (B.1) with J;, = 1, Jg = 0, real on-site disorder V; € [-W, W] and different
system sizes ranging from L = 1000 to 7000. (b) Disorder-averaged maximum ¢ (defined in
Eq. (B.11)) for the same model but with complex disorder V; = |V;|e!% where |V;| € [0, W]
and ¢; € [0,27], and different system sizes ranging from L = 100 to 1600. In both (a) and
(b), the red dashed line indicates the theoretical transition point W, = e = 2.718... (see the
derivation below Eq. (B.10)). The number of disorder realizations ranges from thousands to
hundreds, depending on the system size. The error bars denote twice the standard deviations of
the mean. Reproduced from Fig. 13 of Ref. [44]. Copyright © 2018 by the American Physical
Society.

with respect to the real axis is lost, yet for disorder strength W = 2,3 and 3.5, we still find
that the complex spectrum encircles the origin (see Fig. B.3(c)), as listed in a nontrivial wind-
ing number w = —1 (see Fig. B.3(d)). When the disorder is too strong (the critical value is
about W, ~ 3.9), e.g., for W = 4, the winding number becomes zero. Note that Arg(det H) in
Fig. B.3(d) for W = 4 does not take on special values like 0 or 7 unlike the Hermitian case.
This is because the constant term P({V}}) in Eq. (B.9) now becomes complex due to V; € C.

As we will see in the next subsection, while the topological transition and the localization
transition coincide in the above two models, this may not be the case for other forms of disorder.
On the other hand, one may conjecture that the system is fully localized if and only if the winding
number with respect to an arbitrary base energy vanishes, provided that the eigenvalues of
robust delocalized modes always form some loops. That is to say, a topological transition is
certainly not sufficient but probably necessary for a localization transition.

Some exact results

In general, we can hardly calculate the distribution of P({V}}) in Eq. (B.9) analytically. How-
ever, analytical results are available under specific choices of parameters, e.g., Jp,Jg = 0 (uni-
directional hopping [279]) and |Vj| obeys a uniform distribution over [0,/]. In this case,
P{V;}) = Hle V; and the distribution of Z;, = — In(|P({V;})|/W) € [0,00) can explicitly be
obtained as follows. Defining &; = —In(|V;|/W) € [0,00), we find that £; obeys the standard
exponential distribution, i.e., Prob(¢; = &) = e7¢0(€), where 0(¢) is the Heaviside step function.
Since 2, = Z]LZI ¢; with {¢;} being independent, Z;, obeys the Gamma distribution

L-1

Prob(Zp = E) = me—? (B.10)

[1]

For L > 1, we can check that =y /L approximately obeys the Gaussian distribution with mean 1
and variance L~!, and thus it approaches the delta distribution at 1 in the thermodynamic limit.
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Figure B.5: (a) Complex-energy spectra of Eq. (B.1) with L = 103, Jg = 0, J, = 1 and
binary on-site disorder V; = £W with equal probability of occurrence for W and —W, where
W =0.5,0.9,1.1,1.5. (b) Disorder-averaged maximum ¢ (see Eq. (B.11)) for the same model
but with different system sizes ranging from L = 100 to 1600. The red dashed line indicates the
theoretical topological transition point W, = 1. Reproduced from Fig. 14 of Ref. [44]. Copyright
(© 2018 by the American Physical Society.

Let us recall that the topological transition occurs at |P({V;})| = JX with J = max{|Jr|, |J1|},
or equivalently = /L = —In(J/W); we thus obtain the critical disorder strength to be W, = e J.
Note that this critical value does not depend on whether V; is complex or not. However, this
property should be unique to the unidirectional hopping.

In Fig. B.4, we provide numerical evidence that supports the above prediction. For real
disorder, we calculate the disorder average of |F|,, = min{|FE|: det(E — H) = 0, E € C}, which
is the minimum absolute value of the complex eigenenergies. In the thermodynamic limit, we
expect a nonzero (zero) (|E|ny) in the delocalized (localized) phase. For a finite system, as
shown in Fig. B.4(a), we find a sharper and sharper crossover near W, when increasing the
system size. For complex disorder, we use the inverse participation ratio, which is defined
as IPR({p;}) = Zle p? for a normalized distribution Zle p; = 1, where p; o |@;1;| (this
quantity has been demonstrated to be a better indicator than [t;]? and |p;|? [382]), ¥; is a right
eigen-wave function of H and ¢; is the corresponding left eigen-wave function. We calculate
the disorder average of the maximum of a rescaled quantity

1

= xR ))

€ (0,1] (B.11)
for individual realizations. In the thermodynamic limit, we have ¢ # 0 if p; decays no faster
than the square-root power law and ¢ = 0 otherwise, especially for an exponentially localized
pj- As shown in Fig. B.4(b), we find a similar crossover for ((m) from finite to zero near W,
and the crossover becomes sharper for larger L.

More generally, even if the analytic expression of Prob(Z;, = Z) is not available, the distribu-
tion of =,/ L asymptotically approaches the Gaussian distribution with mean E(¢;) and variance
Var[¢;]/L as long as the central limit theorem is applicable. For example, when |V}| obeys the
Lorentz distribution Prob(|V;| =V) = %H(V), the rescaled variable & = — In(|V;|/W)
obeys the hyperbolic secant distribution Prob(§; = £) = (7 cosh €)™ with mean 0 and variance
72 /4. Therefore, the critical disorder strength for the Lorentz distribution is W, = .J, which is
consistent with that obtained by the Green’s function method [279].

Finally, we provide an example which demonstrates a topological transition without a local-
ization transition. Consider a binary disorder V; = £W with equal probability of occurrence
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for W and —W [279]. In this case, |[P({V;})| = WL in an arbitrary disorder realization, so that
the critical disorder strength for the topological transition is W, = J. On the other hand, the
winding number with respect to Eg = £W is always one in the thermodynamic limit, no mat-
ter how large W is. This implies that there are always some delocalized modes and the system
never undergoes a localization transition. Nevertheless, there is indeed a qualitative change in
the spectrum when W exceeds W, — a single loop splits into two loops (see Fig. B.5(a)). As
shown in Fig. B.5(b), such a transition is accompanied by the onset of the deviation of (31 from
one.
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Appendix C

Proof of the bulk-edge
correspondence

In this appendix, we prove the bulk-edge correspondence between the winding number (4.7) and
the number of (quasi-)edge modes for a general single-band lattice with finite-range hopping
amplitudes {.J;}. By finite-range hopping, we mean that the hopping towards the right (left)
direction is at most p-site (g-site) with p (q) being a finite integer. Hence, with e’* denoted
as z, the dispersion relation, or the characteristic equation of the Schrédinger equation, can be
written as

q
E=f(z)=3 Ji, (1)
Jj=-p
where J_, and J; are nonzero. Assuming that the winding number w is non-negative, we impose
the right semi-infinite condition, so that the general solution of an edge state takes the form

S n -1

am ,

wj = E § Clm 1ZJ
o dzm

=1 m=1

, (C.2)

z=z

where 2 (I = 1,2,...,.5) is the njth-order zero of f(z) = 0 given in Eq. (C.1) and inside of the
unit circle |z| =1, i.e., |z| < 1. Using the argument principle (4.21) and the assumption w > 0,
we have lezl ng = Z =p+w > p, with p being the effective number of poles for |z| < 1.
Indeed, there is a single pth-order pole at z = 0, implying z; # 0 for all [ = 1,2,...,.S. The
initial condition reads

Yo=1-1= .. =0_p41 =0, (C.3)

which, together with Eq. (C.2), leads to a set of homogeneous linear equations
Mec =0, (C.4)

where the elements of the generalized Vandermonde matrix [384] M = [My,]pxz and the coef-
ficient vector ¢ = (c1,ca,...,cz)T are given by

dm—l -
Mj’o—(l’m) = dzm—l Z_J+ I ca(l,m) = Cl7m7 (05)
z=z]

with o(l,m) = er;ll n,+m, 1 <I<Sand1<m <n;. To see how many degrees of freedom
survive under the condition imposed by Eq. (C.4), we have to determine the rank of M, which

138



equals that of M. Suppose that the rank of MT does not saturate the maximum p; then there
must exist a nonzero vector a = (a1, az, ..., ap)T that satisfies

MTa = 0. (C.6)

Defining a polynominal ¢g(z) = ZJ 1a;2 71 with 0 < deg g(z) < p— 1 due to the fundamental
theorem of algebra, Eq. (C.6) can be explicitly written down as

dm—l 1
ezl =0, (C.7)

z=2z

implying that g(z) contains a polynomial factor Hle(z—zl_l)”l and thus deg g(z) > Zle n; =
Z. Recalling that Z > p, deg g(z) > Z contradicts deg g(z) < p — 1, we find that the original
assumption that rank(M™) < p must be wrong. In other words, both the rank of MT and that
of M saturate the maximum p. Therefore, the number of independent {¢;} satisfying Eq. (C.4),
or the degeneracy of zero modes localized at the left edge, turns out to be Z — p = w. As an
example with two-fold degeneracy, we can examine the model given in Eq. (B.8) and check that

27i

W =y 2148+ 8811 - ) and

— | - | (C.8)
e _( 3) | —15;”)/35] ’ [1+B8es + (B+e5)esd + (B +1)e 5 U]

span the zero-mode space, where 3 = (%)%

We move on to the case of w < 0. If we use the same boundary condition as above, we will
again obtain Eq. (C.4), but there are more rows than columns in M since p =2 —w > Z. We
can thus pick out the first Z rows of M to construct a square matrix M , such that

Mc=0 (C.9)
is necessarily satisfied. Straightforward calculations give

det M =C J[ (' =z #0, (C.10)

1<r<s<l
where the factor C' = Hle(—)”ﬁlzl— mu(m—1) [T _;(m—1)!. Therefore, as a necessary condition
of Eq. (C.4), Eq. (C.9) is sufficient to enforce ¢ to be 0, implying no edge modes localized at the
left boundary. On the other hand, if we change the boundary condition to be left semi-infinite,

we have
R my

¢_j_zz lndnl

=1 n=1
where ¢ (I = 1,2,..., R) is the m;th zero of f(z) outside |z] = 1. Recalling that zPf(z) is a
polynomial with degree p + ¢, we have Z' = Zf;l m; =p+q—Z = q— w. This result is
consistent with directly applying the argument principle to f(z~!), which has a single gth-order
pole z = 0 inside the circle of |z| = 1, leading to

dz dzf( ) r
7|{Z1 2mi f(z71) =7 -q (C.12)

, (C.11)

2=
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Here we have used the fact that Cl_l’s are the zeros of f(z~!) inside the unit circle |z| = 1.
Noting that the left-hand side in Eq. (C.12) can be shown to be the minus of that in Eq. (4.21)
via a change of the integration variable, we obtain Z’ = ¢ — w. The initial condition

Yo=1t1=..=9g-1=0 (C.13)

can again be written in the form of Eq. (C.4), but the elements of the generalized Vandermonde
matrix M = [Myy]gxz and the coefficient vector ¢ = (ci, ca, ..., cz)T become

dn—l -
Mj,y(l,n) = WZJ_ y  Cu(ln) = Clin, (014)
z=G

where p(l,n) = Zf;ll my+n,1 <l < Rand 1 < n < m,. Using the same technique as in
the previous paragraph, we can prove that M takes the maximum rank ¢, so that the number
of independent degrees of freedom, or the degeneracy of the zero modes localized at the right
boundary, turns out to be Z/ — ¢ = —w.

As an application of the bulk-edge correspondence for non-Hermitian Hamiltonians, we
can demonstrate the bulk-edge correspondence in Hermitian systems with a chiral symmetry
(class AIII), whose Hamiltonian is given by Eq. (4.22). Such a Hamiltonian can be unitarily
transformed into o, ® V H'H, so that the full spectrum reads {+E1, £FE5, ...}, with {E1, Es, ...}
being the eigenvalues of vV HTH, which is semi-positive-definite. Therefore the statement that
there are 2|w| zero modes of Eq. (4.22) is equivalent to the fact that there are |w| zero modes
of VHTH. We have already known that |w| gives the number of edge states of H at £ =0 in a
semi-infinite space, but it generally does not for an open chain. However, it gives the number of
quasi-eigenstates at £/ = 0, which almost vanish after being acted on by H. Using this property,
we can show that |w| does give the number of zero modes for the Hermitian operator v HYH.

To this end, we first prove the following lemma:

Lemma 6 Given D different wave functions |,) (n = 1,2, ..., D) satisfying ||H|vn)|| < €1 and
(Y| n)| < €2 < D7 for all m # n, there must be at least D different eigenstates of vV HTH
with energies less than Ey, = Dey/+/1 — (D — 1)e.

Proof: We note that {|¢,,)} are linearly independent. Otherwise, we can find {¢; }le such that

maxi<;<p |¢j| = |¢j,| > 0 and ZJD:1 cjlvj) = 0, leading to the contradiction

gl = lejo (Wiol i)l = | D ¢ Wil oi)| < D lesll(wiolib)] < ea(D = Dlej| < lejol- (C.15)
J#jo J#Jo
Therefore, denoting Vo = span{|y;) : j = 1,2,..., D}, we have dimVy = D. For an arbitrary

|) € Vi, which can always be expressed as [¢)) = Zle cilvg) /|| Zle ¢j|v;)|l, we can bound
|H )| from above as

1y < iz a XLl
IS5z etinl S22 = i [eiuen{bmbon) .
.« Sl o VDa By o
Vi=D-De /5D ¢~ V1= (D~ De vD
Consequently, we have
Try, [H'H] < E2, (C.17)
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where Try;[...] denotes the trace over the subspace V). Denoting P, as the projector onto the

Hilbert subspace V, spanned by all the eigenstates of vV H'H with energies less than Ej,, we can
construct H' = E2(1 — P,) < HTH, leading to

Try,[H'] = EE(D — Try [Py]) < B2 & Try[Py] = Try, [P] > D — 1, (C.18)

where Py is the projector onto Vp. Since Try,[Py] < Try,[1] = dimVy, which should be an
integer, we finally obtain dimVy > D. O

Now let us come back to the eigenvalue problem of vV HTH for an open chain with length
L. We can first work in the semi-infinite limit to determine a set of orthonormal zero modes
{l¢; >}|fl|1 of H, and then truncate and normalize them on a finite chain, obtaining |¢;)’s. Note
that |1;)’s are now not exact eigenstates of H, but the conditions of the theorem proved above
are satisfied, with €; and ey exponentially small in L, since the deviations stem from the expo-
nential tail. According to the theorem, we can find at least |w| eigenstates with exponentially
small energies. We should furthermore mention the impossibility to find the (Jw| + 1)th eigen-
state with a small energy that eventually vanishes in the thermodynamic limit; otherwise we
would have at least |w|+ 1 zero modes of H in a semi-infinite space, leading to a contradiction.

It is worthwhile to mention that the bulk-edge correspondence for class AIII (or BDI) alone
can alternatively be proved using the Callias index theorem [385] according to Ref. [189]. How-
ever, it seems rather nontrivial whether a similar method can be applied to a single off-diagonal
block in a class AIIT Hamiltonian.
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Appendix D

Calculating the
entanglement-spectrum dynamics

In this appendix we provide the details on how we numerically obtain the ES dynamics shown
in Figs. 5.4 and 5.5 in Chapter 5. We also provide some analytical results on the ES dynamics
in the Rice-Mele model after a ﬂat band quench.

D.1 Numerical method for general noninteracting systems

We follow the method proposed in Ref. [348] to numerically calculate the single-particle ES. The
basic idea is that in a particle-number-conserving free-fermion system described by a quadratic
Hamiltonian in terms of ¢; (j = 1,2, ..., N), any reduced density operator pg of the ground state
|W), which consists of the modes ¢; with j € S C {1,2,..., N}, is a Gaussian state

t
pS o< e_ Zm,nES(hE)m"CmC" = e_HE’ (Dl)

which can be reconstructed from its |.S|x | S| correlation matrix (where |S| denotes the cardinality
of S)

Conn = Tr[cl cnps] = (el e |¥), m,ne S (D.2)
via
CehE 417 '
Therefore, the eigenvalues of C' simply gives the single-particle ES [349]
1
= — D4
b=, (D.4)

where {e,} are the eigenvalues of Hg, or hg.

In particular, for a 1D lattice system with L unit cells and subjected to the periodic boundary
condition, we can utilize the translational invariance to represent the many-body wave function
in a factorized form:

H c,u(k)|vac), (D.5)

where u(k) is the Bloch vector and cku(k) => . ua(k‘)cla with @ being an internal degrees of
freedom. In this case, the correlation matrix (D.2) turns out to be a block-Toeplitz matrix:

— zk aa
Cja,j’a’ = <\IJ|C aCi'a’ |\IJ L ZU G=1" = C (DG)

142



(a) 1 ) (b) 1feeeeeeeeeees
0.8 5, / 1 o S .-
0.6' “.."._. .'.::: Ot RIIIXIXXIXIXX)
< k¥ 40 45 50 55 60
W _."“".. n
0.4; ::,-‘ '-...." (C) 1fecccccccccs T
‘T2
02 L .":. '."'._“ wR 0.5t e
/o (J,0)(0.9)%,
/ * (0.4)-(J.0) \“\._ ot
0 g T 40 45 50 55 60
n
Jt

Figure D.1: (a) ES dynamics after the quenches (Ji, J2) = (0,J) — (J,0) (blue) and (J,0) —
(0,J) (red) in the SSH model. (b) In the former case, the dynamics is trivial and two degenerate
entanglement edge modes at &, = 1/2 persist. (c¢) In the latter case, the dynamics is nontrivial,
and the instantaneous four-fold degeneracy at &, = 1/2 emerges at ¢t = w/(2J). Reproduced
from Supplementary Fig. 4 of Ref. [46]. Copyright (© 2018 by the American Physical Society.

where m, n are the site indices. To calculate the inter-unit-cell half-chain ES, we only have to
figure out the eigenvalues of the (LD/2) x (LD/2) matrix Cj, jios (D.6), where D is the total
number of internal degrees of freedom.

In a superlattice system, D = 2 and a labels the sublattices. By calculating first the
dynamics of the Bloch vectors governed by Eq. (5.58) and then the correlation matrix (D.6)
followed by exact diagonalization, we can obtain the dynamics of the full single-particle ES. As
a benchmark, we plot in Fig. D.1(a) the ES dynamics for the quench (J1, J2) = (0,J) — (J,0)
in the SSH model, after which no entanglement is generated for the entanglement cut shown
in Fig. 5.4(b) in Chapter 5 so that the ES should stay unchanged. Since the initial state is
topologically nontrivial (N = 2), we find two degenerate entanglement edge modes at &, =
1/2, as shown in Fig. D.1(b). This is to be compared with the ES dynamics for the quench
(J,0) — (0, J), after which we find nontrivial dynamics and instantaneous four-fold degeneracy
at &, = 1/2 at t = w/(2J) (see Fig. D.1(c)).

According to the notion of SPT phases, we expect that the ES crossings may dlsappear if
the PHS is explicitly broken, for example, by adding a staggered potential Z A(bTb —ak aj)
in the SSH Hamiltonian; then the model becomes the Rice-Mele model [386] (see Flg D. 2( )):

Hpy = — Z(Jlb}aj + Jga}L-Hbj + H.C.) + Z A(b;rbj — CL}CLj). (D.7)
J J

This is confirmed numerically in the flat-band case, as shown in Fig. D.2(b). An interesting
observation is that the gap is as small as O(A3/J3), as will be explained in the next section.
Note that the dynamical Chern number (5.61) is no longer well-defined (quantized) in this case.
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Figure D.2: (a) Quench in the flat-band Rice-Mele model (D.7) with A = 0.2J and (b) the
corresponding ES dynamics. The dots and dashed curves show the numerical and analytical
results, respectively. The inset shows the enlarged view around Jt = 7.7, showing that the two-
fold degeneracy is lifted, and crossings are gapped out, although the gap is very small (see inset).
(c¢) Quench from a dimerized state with a random on-site potential Vja’b shown schematically by a
dashed curve (see Eq. (D.8)). Here W = J’ = 0.2J. (d) The corresponding ES dynamics, which
no longer exhibit crossings at &, = 1/2 with (green) and without (blue) inversion symmetry.
When Vj respects the inversion symmetry, the ES is two-fold degenerate. Reproduced from
Supplementary Fig. 5 of Ref. [46]. Copyright (©) 2018 by the American Physical Society.
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We also calculate the ES dynamics in the SSH model with a random on-site potential:
HRssg = — Z(Jlb}aj + Jga}Jrlbj +H.c)+ Z(Vjaa}aj + ijb;[bj), (D.8)
J J

where V;* and ij are randomly sampled from a uniform distribution over [—W, W]. We consider
the ES dynamics after a quench that changes both the disorder configuration and the following
parameters (see Fig. D.2(c)):

(J1,J2,A) = (J,0,A) = (J', J,0). (D.9)
As shown in Fig. D.2(d), we find that ES crossings at &, = 1/2 disappear, even if the disorder
respects the inversion symmetry, i.e., V" = V ) mod L41° In contrast, we have seen in Fig. 5.6

that the ES crossings are robust against dlsorder in hopping amplitudes, which preserves the
PHS (and also the TRS).

D.2 Analytical results for some flat-band quenches

Since the entanglement cut is made in real space, a straightforward way to read out the ES is
to represent the real-space many-body wave function in the form of MPS [132,153]. To do this,
we should first translate the picture of a 1D fermionic superlattice into that of a spin chain via
the Jordan-Wigner transformation:'

2j—2

—i5 37 (of+1) 2j-1

051, by =er i it g, (D.10)

CLjZG 7

For example, the Rice-Mele Hamiltonian (D.7) in the spin representation becomes

_ _ A
Hpnv = — Z(Jlff;j%jq + Jga;jﬂazj +H.c.) — Z 5(053»_1 —05;); (D.11)
J J
which describes a spin chain with anisotropic spin-flip coupling and subjected to a staggered
magnetic field in the z direction. Here we have used the identity e_zf(gﬂ'ﬂ)aj_ = o, , since

the state of the jth site must be |]) or vanish after the operation o;. In the specific case

j
(J1,J2, A) = (Jp,0,4), the ground state is asymmetrically dimerized:

L
= X COS*Isz 1¢2J>+Sm sz—lT2j>)= (D.12)

J=1

where 6y € (0, ) is determined from Ay = Jy cot §y. Equation (D.12) can be rewritten into the
following MPS form (see Fig. D.3(a)):

:ZTI‘ PAAAFBAB PB AB]|8182...82L>, (D13)

sar
{sj}

where the sum runs over all the possible spin configurations s; =1,] (j =1,2,...,2L) and

AA:[COSOQ20 SH?@O} AB =1], Ff:m,rfzm 4=t 0,Tf=[0 1]. (D.14)

n fact, it is also possible to directly use the fermionic MPS [387]. However, the Jordan-Wigner transformed
spin picture is more convenient for practical numerical calculations.
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Figure D.3: (a) MPS representation of a 1D superlattice system in the spin language. (b) After a
factorized unitary evolution U = @), U; with translational invariance ((s2;s2;+1|Uj[s3;85;11) =
UP55% for V4, where s,s" € {1,1}), ]\T/> = U|¥) has a different (the same) ES encoded in A?

Szg S2j+1
(A4) for the intra-unit-cell (inter-unit-cell) entanglement cut. Reproduced from Supplementary
Fig. 6 of Ref. [46]. Copyright (© 2018 by the American Physical Society.

After the quench of the Hamiltonian, we can numerically calculate the MPS form of |¥(¢)) =
e~ W) by using, e.g., the iTEBD algorithm [153] if we work in the thermodynamic limit.
However, if the time-evolution operator is factorized as

U=Q)U;, (D.15)
J
with U; only acting on the spins at the 2jth and the (2j + 1)th sites (see Fig. D.3(b)), it is
possible to analytically obtain the MPS form of |¥) = U|¥):

=3 TTLATEAPTE AP|s1sq...501), (D.16)

saL,
{si}
where the matrix ingredients I'4® and Ap are related to those in Eq. (D.13) via [153]
ATBAPTEAN = Uy S,QAAFB AB FA A4, (D.17)
where U 5,185,2 is the matrix element of a single block Uj;. If we are only interested in the inter-

unit-cell ES it suffices to find the singular values of the left-hand side of Eq. (D.17), i.e

AAff[\BfprA AAFEJ\BFfAA

AMPPRBEAN  AAFPRAPTIAN (D-18)
Equation (D.15) is satisfied for a general flat-band quench in the Rice-Mele model:
(J1, J2, A) = (Jo,0,A¢) — (0, J, A), (D.19)
which implies
Ut =Uil = ¢, Ult = U] =isinfsin g,
(D.20)

UN = cos ¢ + i cos 0 sin ¢, Uﬁ = cos ¢ — i cos B sin @,
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where ¢ = v/ J? + A%t and 6 € (0,7) is defined from A = Jcotf. Combining Egs. (D.20) and
(D.14), we can explicitly compute the matrix elements in Eq. (D.18) to obtain

0 0 icos? 970 sin 6 sin ¢ 0
sin 970 cos 970 0 0 sin? 970 (cos p+icosBsin @) (D 21)
cos? 970 (cos p—icos O sin @) 0 0 sin %0 cos 970 ’ ’
0 isin2 0 sin @ sin o) 0 0

2

The four singular values of the above matrix (D.21) are found to be

% (\/1 — sin? 6 cos? Oy sin? ¢ + \/1 — sin? @ sin? qS) , %sin 0(1 £ cos bp)| sin ¢/, (D.22)

which constitute the eigenvalues of Ag. The single-particle ES can subsequently be determined
from Eq. (D.22) via the relation between many-body ES and single-particle ES [205]:

Mooy =11 B + Sn (gn — ;)] . sp =+l (D.23)

n

The result turns out to be

1
&n = 5 1 + cos fy sin” @ sin® ¢ + \/(1 — sin? @sin? ¢)(1 — cos? fy sin? O sin? qﬁ)} . (D.24)

Finally, let us discuss a specific case in which § = 6y, namely the quench shown in Fig. D.2(a).
In this case, the single-particle-ES gap reaches its minimum at ¢ = 7/2. Substituting 6 = 6
and ¢ = 7/2 into Eq. (D.24), we obtain

§n = % [1 + cosf (Sin2 0+ /1 — cos? 0 sin® 9)} ; (D.25)

which implies a tiny gap
3

_1 3 2 A
o€ = 5 COS 0(1 + cos” ) ~ NE

for a small A. This is consistent with the small gap found in the inset of Fig. D.2(b). If we
further set 0 = 0y = 5, Eq. (D.24) becomes

(D.26)

¢, = %[1 + cos(Jt)], (D.27)

which reproduces the sinusoidal oscillation observed in Fig. 5.4(c) (red curve) in Chapter 5.
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