
Doctoral Dissertation
博士論文

Microscopic Theory of Thermoelectric
Transport in Magnetic Fields: Application

to Dirac Systems

（磁場中の熱電輸送に関する微視的理論：
ディラック系への応用）

A Dissertation Submitted for the Degree of Doctor of Philosophy
July 2020

令和２年７月博士（理学）申請

Department of Physics, Graduate School of Science,
The University of Tokyo

東京大学大学院理学系研究科物理学専攻

Könye Viktor Arthur
コニェ　ヴィクトル　アートル





iii

Abstract
In this dissertation we study the magnetotransport of Dirac systems. We present a

microscopic formalism to calculate transport coefficients in finite magnetic fields in the
framework of linear response theory. We distinguish the cases of low magnetic fields
and high magnetic fields and study them separately.

At low magnetic fields, we show how the magnetoconductivity can be calculated
in the linear order of the magnetic field. Assuming small scattering rates and treating
the magnetic field as perturbation we give formulas for the Hall conductivity and
longitudinal conductivity. In the lowest order of the scattering rate, we recover the
result of the semiclassical Boltzmann transport theory. At the subleading order, we get
quantum corrections in terms of the Berry curvature and the orbital magnetic moment.
The terms containing the Berry curvature are consistent with the semiclassical theories
that include the anomalous velocity, but the terms containing the orbital magnetic
moment can not be described with the anomalous velocity. We apply this formalism to
tilted Weyl semimetals and study the effects of the tilting on the magnetoconductivity.
We show the appearance of a finite linear longitudinal magnetoconductivity and we
discuss how the orbital magnetic moment affects this result.

At high magnetic fields, we describe a microscopic theory to calculate thermoelectric
transport coefficients using impurity Green’s functions calculated in the first Born ap-
proximation using screened charged impurities. We employ this formalism to study the
transverse magnetoconductivity and magnetothermopower of three-dimensional mas-
sive Dirac materials in high magnetic fields. We focus on the effects of the mass term
and we show the main differences that arise compared to the massless Dirac fermions.
The different behavior is shown to be relevant at high magnetic fields or low charge
carrier densities. We show that the electric conductivity is proportional to ∝ B−1 and
this behavior does not change qualitatively in the case of a finite mass term. On the
other hand we find that the mass term causes significantly different behavior in the
Seebeck and Nernst coefficients that show a ∝ B2 dependence at high fields.
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Chapter 1

Introduction

In this dissertation we study thermoelectric transport in magnetic fields. We develop
a microscopic formalism to calculate magnetoconductivity and magnetothermopower
in solid state systems. We apply this formalism to study the magnetotransport of
Dirac systems in both low and high magnetic fields. Thermoelectric transport plays
an essential role in solid state physics. Measuring transport properties of a material
is one of the main tools used to get a deeper insight into the material. In a magnetic
field these properties can be studied in a diverse manner (the basic transport effects
in a magnetic field are reviewed in Fig. 1.1). The presence of a magnetic field gives
rise to many exotic phenomena (e.g. quantum Hall effect, linear magnetoresistance
and magnetothermopower in Dirac systems, chiral anomaly in Weyl semimetals etc.)
This makes magnetotransport interesting to study and useful for both fundamental
and applied research. Therefore, the theoretical understanding of magnetotransport is
crucial for the study of solid state systems. This topic is extensively discussed in the
literature with a long history of experimental and theoretical studies. Even recently,
a lot of research is carried out in this area in connection with topological systems
and the effects of the Berry curvature. In this chapter we review the theoretical and
experimental work done to study magnetotransport, and clarify how these relate to the
present dissertation.

1.1 Theory of magnetotransport
In this section we review the theoretical methods used to study magnetotransport in
the literature. We point out the research relevant to our study, and discuss how our
formalism fits into this picture. We divide the discussion into the low magnetic field

1
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Figure 1.1: Transport effects in a magnetic field.

and high magnetic field methods, as these consist of significantly different approaches.

1.1.1 Boltzmann transport theory

A widely used and very successful theory to calculate transport is the semiclassical
Boltzmann transport theory with relaxation time approximation [1, 2]. This was fur-
ther improved after realizing the importance of the Berry curvature [3] in electric
transport [4–8]. By introducing the so called anomalous velocity related to the Berry
curvature, this theory had great success in describing several phenomena (e.g. anoma-
lous Hall effect [9, 10] and quantum Hall effect [8]).

In finite magnetic fields the Boltzmann transport theory can be used to study the
magnetoconductivity at low magnetic fields. If the anomalous velocity is taken into
account, in a magnetic field several effects appear connected to the Berry curvature. In
Ref. [11] they showed that in magnetic fields the Berry curvature modifies the phase-
space density of states. Furthermore, the magnetoconductivity was shown to have a
contribution coming from the Berry curvature [12–17], which can lead to a planar Hall
effect [16], or a negative magnetoresistance without chiral anomaly [15].
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1.1.2 Linear response theory

A very effective formalism to study transport in solid state systems is the linear re-
sponse theory [18, 19]. A microscopic description of the electric conductivity using
linear response theory was formulated by Kubo [20], where the conductivity is ex-
pressed using the current-current correlation. The extension of this theory to thermal
transport coefficients was developed by Luttinger [21]. Following Luttinger’s argument
the calculation in magnetic fields had to be slightly modified by Smrčka and Středa [22]
to include the magnetization and the so called energy magnetization [23]. In this work
we base our formalism on these theories and extend it to multi-band Hamiltonians with
random impurities. The details of this will be explained in Chapter 3.

In usual systems the thermoelectric transport coefficients can be expressed using
only the zero temperature conductivity as a function of the chemical potential. These
relations, from now on referred to as Sommerfeld-Bethe (SB) relations [24, 25], can be
obtained from the Boltzmann transport equation. It was Jonson and Mahan [26] who
first showed these relations microscopically for the case of a single-band Hamiltonian
with static random potentials and static phonons. They also discussed the violation of
the SB relations in the presence of electron-phonon interaction. The validity of the SB
relations has been discussed in the presence of mutual interactions between electrons
[24, 27]. In this dissertation we show that the SB relations are valid for a multi-band
Hamiltonian in case of an external magnetic field and impurities.

In the absence of a magnetic field Karplus and Luttinger [28] showed that a finite
magnetic moment leads to an anomalous Hall conductivity that is expressed by what
we call Berry curvature nowadays. It was later shown that the same result can be
achieved with the semiclassical Boltzmann theory with anomalous velocity [9, 10]. In
the case of no magnetic field the connection of the microscopic theory to the Boltzmann
theory was discussed in Ref. [29].

1.1.3 Linear response theory in low magnetic fields

Using linear response theory in magnetic fields is more challenging. For small magnetic
fields a microscopic theory was developed by Fukuyama [30, 31]. The magnetoconduc-
tivity in linear order of the magnetic field is given as a formula containing velocity
operators and Green’s functions. In this thesis we start from this formalism, and eval-
uate it in a general manner and show how this leads to the Boltzmann result and



4 Chapter 1. Introduction

quantum corrections connected to the Berry curvature and orbital magnetic moment.
The formalism we describe in this dissertation shares similarities with the problem

of orbital susceptibility. A well known method to calculate the orbital susceptibility
is the Landau-Peierls formula [32, 33]. The same problem can be treated with micro-
scopic calculations using linear response theory [34–37]. The microscopic theory was
shown to contain the Landau-Peierls contribution with additional corrections [38–40].
This is analogous to our problem, but a big difference is that in the case of orbital sus-
ceptibility the scattering rate can be ignored, while in the case of magnetoconductivity
it is essential to have finite results.

1.1.4 Linear response theory in high magnetic fields

In the case of high magnetic fields, the perturbative approach can no longer be applied.
In order to have a quantum description the system has to be solved in the magnetic
field and the Landau levels [32, 41] have to be utilized. One of the difficulties is that the
magnetic field breaks the translational symmetry, so the Green’s function is no longer
diagonal in the momentum space. Furthermore, in the magnetic field impurities play
an important role, and the proper treatment of the self-energy is crucial. A successful
method to do this is the Born approximation. Using this formalism, the high magnetic
field conductivity of graphene [42] and the Weyl Hamiltonian [43] was calculated. We
detail these results in Dirac systems in the next section.

1.2 Magnetotransport of Dirac systems
In this section we review previous studies on three-dimensional Dirac systems. Almost
a century passed since Dirac wrote down the equation named after him in 1928 [44],
which played a very important role in understanding relativistic fermions in particle
physics. Shortly after this, Weyl [45] showed that to describe massless fermions a sim-
pler equation with two component fields can be used. These so called Weyl fermions
were not yet found among the known elementary particles. However, in solid state sys-
tems electrons in a periodic potential can behave effectively as Weyl fermions. These
effective massless electrons were first found in graphene after it was isolated in 2004
[46]. Following the discovery of several other two-dimensional massless fermions [47],
they were also theoretically proposed in three dimensions [48–50] and later found exper-
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imentally (for recent reviews see Ref. [51, 52]). Three-dimensional materials exhibiting
massless fermions are topologically classified as Dirac or Weyl semimetals [53]. A sim-
ple continuum model to study Dirac and Weyl semimetals is the Weyl Hamiltonian
with an effective speed of light [48–51].

In several Dirac systems the nodal point is gapped out, and this translates to a finite
mass term in the effective model described by the 4 × 4 massive Dirac Hamiltonian
[54–58]. These materials, hosting massive Dirac fermions are sometimes referred to
as gapped Dirac materials, or massive Dirac materials in the literature [59–61]. A
schematic representation for the different Dirac systems is shown in Fig. 1.2

Weyl semimetal Dirac semimetal massive Dirac material

Figure 1.2: Schematic dispersion relation of Weyl semimetals, Dirac
semimetals, and massive Dirac materials.

The thermoelectric transport in Dirac systems is an old problem, with the first
studies carried out in connection with graphite [62] and bismuth [54]. Recently, with
the discovery of new materials and experimental observation of interesting phenomena
(e.g. negative magnetoresistance, linear magnetoresistance and magnetothermopower)
there is a renewed interest in Dirac systems. In the last decade extensive research
was carried out both experimentally and theoretically to understand three-dimensional
Dirac systems. In the following we review these materials and the exotic transport
properties associated with them.

1.2.1 Experimental studies

Some of the experimentally studied three-dimensional Dirac materials include Dirac
semimetals: Cd3As2 [63–70], Na3Bi [71–74], Weyl semimetals: TaAs [75, 76], NbAs
[77], and massive Dirac materials: bismuth [55], ZrTe5 [60, 78–80], Sr3PbO [81],
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Pb1−xSnxSe [82, 83].
Three-dimensional Dirac materials show a lot of exotic transport phenomena that

are not present in usual systems nor in two-dimensional Dirac systems (for recent
reviews see Refs. [84, 85]). One of these interesting features is the chiral anomaly and
as a consequence negative magnetoresistance in Weyl semimetals. In Weyl semimetals
Weyl nodes come in pairs with opposite chirality. In a magnetic field parallel to the
electric field the chiral symmetry is broken leading to the chiral anomaly [86] (also
called Adler-Bell-Jackiw anomaly [87, 88]). In transport measurements this leads to a
negative longitudinal magnetoresistance [89, 90].

Another interesting and unique feature that seems to be present in all three-
dimensional Dirac materials is a non-saturating linear transverse magnetoresistance
[68, 69, 81, 90–95]. The linear magnetoresistance of the Dirac semimetal Cd3As2 mea-
sured in Ref. [68] is shown in Fig. 1.3. The effect persists to room temperature and
shows no signs of saturation with the magnetic field. They also studied the Subnyikov
de-Haas oscillations at low temperatures and showed that they are consistent with
massless relativistic fermions.

Figure 1.3: Linear magnetoresistance of Cd3As2 measured in Ref. [68]
(Reprinted figure from Physical Review Letters).

This effect is not only present in massless Dirac systems but also appears in massive
Dirac systems. The magnetoresistance of the massive Dirac material Sr3PbO measured
in Ref. [81] is shown in Fig. 1.4. They found the magnetoresistance to be large and



1.2 Magnetotransport of Dirac systems 7

non-saturating with very little temperature dependence1.

Figure 1.4: Linear magnetoresistance of Sr3PbO measured in Ref. [81]
(Reprinted figure from Physical Review B).

Furthermore, several thermoelectric experiments were carried out in an external
magnetic field. Similarly to the magnetoresistance, the magnetothermopower at high
magnetic fields was found to be increasing linearly with the magnetic field [80, 83, 96].
This results in a high thermoelectric figure of merit [97], which has very valuable
applications in thermoelectric devices. The magnetothermopower of the massive Dirac
material Pb1−xSnxSe measured in Ref. [83] can be seen in Fig. 1.5.

After reaching the quantum limit at B ≈ 10 T they found that the magnetother-
mopower increases linearly. The first Landau level manifests as a big jump in the mag-
netothermopower when the magnetic field is lowered below the quantum limit. The
temperature dependence of the thermopower is close to linear at low temperatures.

At lower magnetic fields, the Nernst coefficient is found to be large, with an anoma-
lous contribution [98–100]. This effect is predicted to be directly caused by the finite
Berry curvature associated with the Weyl nodes [101, 102].

1This is also true for massless Dirac systems. The temperature dependence in Fig. 1.3 is due to
the temperature dependence of the zero field resistivity which normalizes the magnetoresistance.
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Figure 1.5: Linear magnetothermopower of Pb1−xSnxSe measured in
Ref. [83] (Reprinted figure from Nature Communications).

1.2.2 Theoretical studies in low magnetic fields

The theoretical study of thermoelectric transport of three-dimensional Dirac systems
is a diverse and extensively discussed problem in the literature. In the absence of a
magnetic field several semiclassical and microscopic theoretical studies were carried out
[103–105]. In a finite magnetic field the calculation becomes more challenging and in
this section we review the methods and results found in the literature.

At low magnetic fields the most frequently used method to calculate transport of
Dirac systems is the semiclassical Boltzmann theory with anomalous velocity. Several
papers study the magnetoconductivity of Dirac and Weyl semimetals [12–14, 106, 107].
It was shown that the finite Berry curvature causes unusual phenomena in Dirac sys-
tems such as the negative magnetoresistance without the chiral anomaly [15, 17, 106]
and the planar Hall effect [16, 107].

Furthermore, the semiclassical theory was also applied to study thermoelectric co-
efficients at low magnetic fields. For example the anomalous behavior of the Nernst
coefficient is intensively studied with this method [101, 102, 108–111].

As for a microscopic calculation in low magnetic fields, linear response theory was
used to study the Hall conductivity of two-dimensional Dirac systems [112, 113].
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In this dissertation we employ the microscopic theory to study three-dimensional
Dirac materials. We compare the formalism with the results of the Boltzmann theory,
and study the quantum corrections that are not present in the semiclassical formula-
tion. The details of this are described in Chapter 4

1.2.3 Theoretical studies in high magnetic fields

Next, we talk about the calculations performed in high magnetic fields. A formal-
ism that was able to describe the linear magnetoresistance for Weyl semimetals was
proposed by Abrikosov [43]. He used the first Born approximation to calculate the
scattering rate and the Kubo formula for the conductivity. The important assumption
of taking screened Coulomb potentials as impurities led to his result of linear magne-
toresistance. He only studied the case with zero chemical potential and at very high
magnetic fields where only the zeroth Landau level contributes to the conductivity.

More recent studies [114–116] revisited this calculation in more detail. It was shown
that the screened Coulomb impurities used by Abrikosov are crucial for reproducing the
linear behavior [115], since a completely different behavior is achieved for the simple
case of short-range scatterers. In Ref. [114] Xiao et al. calculated the scattering rates
for different Landau levels, and they showed that there is a Landau level dependence
of the scattering rate. In their result they recovered the linear magnetoresistance for
high magnetic fields, but at low fields they obtained a B1/3 behavior. Also the effect
of the first Landau level is very strong and gives a strong jump in the magnetore-
sistance. Klier et al. [115, 116] gave an analytic argument using the self-consistent
Born approximation and several other approximations. They determined the scaling
of the conductivity in the different magnetic field regimes. They recovered the linear
background with Subnyikov de-Haas oscillations. The vertex correction in the massless
case was investigated in Ref. [115], where they found that close to the Weyl point the
effect of the vertex correction is negligible.

For the case of high magnetic fields, the Seebeck coefficient for the Weyl Hamilto-
nian was studied by Skinner and Fu [117] and was found to be linear and non-saturating
at high fields. Their calculation is based on expressing the thermopower using the en-
tropy density.

The above studies only discussed the massless case using the Weyl Hamiltonian.
In the case of massive fermions, some older references [118, 119] discussed the prob-



10 Chapter 1. Introduction

lem in the context of astrophysics and thus the formalism and approximations are not
exactly applicable for solid state systems. On the other hand, a recent study of the
transverse magnetoresistance in gapped Dirac semimetals only used short-range scat-
terers and a very simple model for the scattering rate [120]. In the case of longitudinal
magnetoresistance the self-consistent Born approximation was discussed in the case of
short-range impurities in Ref. [61, 121]. However, as explained before, the choice of
impurity potential is crucial. Therefore, in order to have a proper description for the
massive Dirac fermions, the inclusion of the screening is inevitable.

Basing our research on Abrikosov’s work we extend the formalism to thermoelectric
transport and massive Dirac fermions. This gives a unified microscopic approach to
study the transport coefficients of Dirac systems in high magnetic fields. In particular,
we will give analytic formulas for the scalings in high magnetic fields which give novel
predictions for the experiments. Our results are described in detail in Chapter 5.

1.3 Structure of the dissertation
First, in Chapter 2 we describe the basic formalism to study quantum systems in mag-
netic fields. This chapter creates the framework to the rest of the thesis and includes the
necessary definitions and notations. We define the Hamiltonian, the Green’s functions,
the current operators and the chemical potential. We describe the method to calcu-
late the impurity Green’s function, using finite temperature Feynman diagrams. We
give explicit expressions to calculate the screened impurity potential using the random
phase approximation, and the scattering rate using the first-order Born approximation.

In Chapter 3 we discuss linear response theory in magnetic fields. We present a
formalism to calculate the transport coefficients in terms of the current operators and
Matsubara Green’s functions. We discuss how the effect of impurities can be treated
using the impurity Green’s function, and give explicit expressions to calculate the vertex
correction. We show that the Sommerfeld-Bethe relations hold, even in the presence
of magnetic fields, thus the Mott formula and Wiedemann-Franz law are valid.

In Chapter 4 we derive a formula that expresses the magnetoconductivity at low
magnetic fields. The contents of this chapter were published in Ref. [122]. We show how
the microscopic theory of low field Hall conductivity developed by Fukuyama [30, 31]
can be extended and used for general models. We evaluate the Hall conductivity and
longitudinal magnetoconductivity in the low scattering rate limit in the linear order
of the magnetic field. We discuss, how this result relates to the Boltzmann transport
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theory, and show that in the microscopic calculation quantum corrections appear, that
are not present in the Boltzmann theory.

In Chapter 5 we study the thermoelectric transport of a massive relativistic elec-
tron gas. The results of this chapter were published in Refs. [123] and [124]. We
apply the formalism described in Chapters 2 and 3 to Dirac materials, using the Dirac
Hamiltonian as a simple model. First, we solve the Landau problem of the system in a
finite magnetic field. Then, we calculate the chemical potential, the screened impurity
potential, and the scattering rate. Finally, we study the magnetic field and mass term
dependence of the transverse components of the conductivity, and thermopower.

Throughout the dissertation we use units where ℏ = 1 (in some instances the ℏ
dependence will be shown explicitly).





Chapter 2

Quantum systems in magnetic fields

2.1 Clean system

In this section we discuss solid state systems in a finite magnetic field without any
impurities. The effect of impurities will be discussed in the next section. We show how
the Landau problem of a general Hamiltonian can be solved. We give expression to the
Green’s function, current operators, and chemical potential which will be extensively
used in later parts of the dissertation.

2.1.1 General Hamiltonian and Green’s function

As a general model for electrons in solid state systems under the influence of a mag-
netic field we can start with the Dirac Hamiltonian with periodic potential V (x)
and magnetic field B introduced using the vector potential A with minimal coupling
(p → p + eA):

H(p,x) = γ0
[
mc2 + cγ(p + eA)

]
+ V (x) , (2.1.1)

where γµ are the Dirac matrices, m is the electron rest mass, c is the speed of light,
and e > 0 is the elementary charge. Using the Foldy–Wouthuysen transformation [125]
up to quadratic order in momentum, the Hamiltonian in a magnetic field becomes:

H(p,x) = (p + eA)2

2m
+V +µBσ·B+

ℏ
4m2c2

σ·[∇V × (p + eA)]+
ℏ2

8m2c2
∇2V , (2.1.2)

where the first two terms are the classical Hamiltonian in a magnetic field, then there
is the Zeeman term (µB = eℏ/2m is the Bohr magneton), the spin orbit interaction,
and finally the Darwin term.

13



14 Chapter 2. Quantum systems in magnetic fields

In the absence of a magnetic field the Hamiltonian is periodic in real space and the
system can be expressed with the following Bloch Hamiltonian:

Hk(p,x) =
(p + k)2

2m
+ V +

ℏ
4m2c2

σ · [∇V × (p + k)] + ℏ2

8m2c2
∇2V . (2.1.3)

This Hamiltonian acts on Bloch wave functions as:

Hk(p,x)uak(x) = Eakuak(x) , (2.1.4)

where, uak(x) is a two-component vector which is periodic with the same period as
V (x), a denotes the band index, and the wave vector k is within the first Brillouin
zone.

There are several methods to approximate this Hamiltonian with effective Hamil-
tonians [2], and in general the Bloch Hamiltonian becomes an n× n Hermitian matrix
which is a function of only the quasi momentum:

H(k) |a,k⟩ = Eak |a,k⟩ . (2.1.5)

From this we can make an effective continuum model by substituting the quasi mo-
mentum with the real momentum H(p).

In effective models like these we can introduce the magnetic field in two ways. For
small magnetic fields we can use the (2.1.2) Hamiltonian and treat the magnetic field
as a perturbation. Then for the zeroth order Hamiltonian we can use the effective
model. For high fields we can create a continuum model for the effective model and
use minimal coupling (p → p + eA) directly on the effective model to introduce the
magnetic field.

After solving the H(p,x) |a⟩ = Ea |a⟩ eigenvalue problem, the Matsubara Green’s
function can be expressed as [19]:

G(iωm) =
∑
a

|a⟩ ⟨a|
iωm + µ− Ea

. (2.1.6)

In later sections we will use several representations of this Green’s function. Using
the wave functions defined as ϕa(x) := ⟨x|a⟩, the Green’s function in the coordinate
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representation becomes:

G(x,x′, iωm) =
∑
a

ϕa(x)ϕ†
a(x′)

iωm + µ− Ea
. (2.1.7)

Using the Fourier transform of the wave functions ϕaq =
∫

d3x e−iqxϕa(x) the Green’s
function in the momentum representation is expressed as:

Gqq′(iωm) =
∑
a

ϕaqϕ
†
aq′

iωm + µ− Ea
. (2.1.8)

Finally, in the eigenstate representation the Green’s function is diagonal:

Gab(iωm) =
δab

iωm + µ− Ea
=: δabGa(iωm) . (2.1.9)

The connections between these representations are:

G(x,x′, iωm) =
1

V 2

∑
q,q′

eiqxGqq′(iωm)e−iq
′x′
, (2.1.10a)

G(x,x′, iωm) =
∑
a,b

ϕa(x)Gab(iωm)ϕ
†
b(x′) , (2.1.10b)

Gqq′(iωm) =

∫
d3x d3x′ e−iqxG(x,x′, iωm)eiq

′x′
, (2.1.10c)

Gqq′(iωm) =
∑
a,b

ϕaqGab(iωm)ϕ
†
bq′ , (2.1.10d)

Gab(iωm) =

∫
d3x d3x′ϕ†

a(x)G(x,x′, iωm)ϕb(x′) , (2.1.10e)

Gab(iωm) =
1

V 2

∑
q,q′

ϕ†
aqGqq′(iωm)ϕbq′ . (2.1.10f)

2.1.2 Landau problem of a general Hamiltonian

We assume a Hamiltonian expressed as an n×n Hermitian matrix which is a function
of the momentum H(p). The magnetic field points in the z direction B = (0, 0, B)

and we fix the gauge to the Landau gauge, with the vector potential expressed as A =

(0, Bx, 0). In the magnetic field the momentum is π = p+ eA. Using this momentum
and the canonical commutation relations [xα, pβ] = iδαβ the following bosonic operator
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can be defined:

a :=
ℓB√
2
(πx − iπy) ,

[
a, a†

]
= 1 , (2.1.11)

where ℓB =
√

ℏ/eB. The backwards relations are:

πx =
1√
2ℓB

(a + a†) , πy =
i√
2ℓB

(a − a†) , πz = pz . (2.1.12)

This representation can be used in several systems to diagonalize the Hamiltonian
easily. The a†a combination can be diagonalized in the usual way for bosonic operators
(a†a |n⟩ = n |n⟩). Every H(π) Hamiltonian can be expressed as H(a, a†, pz), and the
|n, py, pz⟩ states can be used to find the solution to the eigenvalue problem using:

a |n, py, pz⟩ =
√
n |n− 1, py, pz⟩ , a† |n, py, pz⟩ =

√
n+ 1 |n+ 1, py, pz⟩ . (2.1.13)

The normalized wave functions of the |n, py, pz⟩ states can be expressed as:

⟨x|n, py, pz⟩ =
in

L
hn
(
x+ ℓ2Bpy; ℓB

)
eipyyeipzz , (2.1.14)

where L3 = V is the volume of the system and hn are the orthonormal Hermite-
functions:

hn(x; ℓB) :=
(ℓ2Bπ)

−1/4

√
2nn!

exp
(
− x2

2ℓ2B

)
Hn

(
x

ℓB

)
, (2.1.15)

where Hn(x) are the Hermite-polynomials. As the Hamiltonian does not depend on py
it can be shown that each Landau level is L2/2πℓ2B-fold degenerate in py.

2.1.3 Densities and currents

In this section, we derive the current operators of a general non-interacting multi-band
Hamiltonian based on the continuity equation (a similar derivation can be found in Ref.
[18]). For an arbitrary single-particle Hamiltonian (H) the many-body Hamiltonian can
be written as:

H =
∑
a,b

∫
d3xΨ†

a(x)Hab(p,x)Ψb(x) , (2.1.16)

where Ψa(x) is the field operator. From now on for the summations over indices
the Einstein summation convention will be used. In the coordinate representation the
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momentum is a differential operator which can be expressed using an integral transform
with a singular kernel, thus the Hamiltonian can always be written as1:

H =

∫
d3x d3x′Ψ†

a(x)Hab(x,x′)Ψb(x′) . (2.1.17)

The particle (j) and energy currents (jE) are connected to the particle (ϱ) and
energy (h) densities through the continuity equation:

∂tϱ+ divj = 0 , ∂th+ divjE = 0 . (2.1.18)

The particle and energy density operators are defined to be Hermitian as:

ϱ(x) = Ψ†
a(x)Ψa(x) , h(x) =

∫
d3x′

1

2

[
Ψ†
a(x)Hab(x,x′)Ψb(x′) + (x↔ x′)

]
. (2.1.19)

From now on j1 ≡ j, j2 ≡ jE, ϱ1 ≡ ϱ, and ϱ2 ≡ h. The many body current operators
(J i) can be expressed with the density operator using Eq. (2.1.18) as:

J (i)
α :=

∫
d3x j(i)α (x) =

∫
d3x

∑
β

(∂βxα)j
(i)
β (x)

= −
∫

d3x
∑
β

xα∂βj
(i)
β (x) =

∫
d3xxα∂tϱi(x) , (2.1.20)

where we neglected surface terms during the partial integrations. Introducing the
polarization operators (P i) the current operators are:

P i :=

∫
d3xxϱi(x) , J i = ∂tP i = i[H,P i] . (2.1.21)

Using the previous definitions and the anticommutator of fermionic field operators{
Ψa(x),Ψ

†
b(x′)

}
= δabδ(x− x′) the current operators become:

J 1 = i

∫
d3x d3x′Ψ†

a(x)Hab(x,x′)(x′ − x)Ψb(x′) , (2.1.22a)

J 2 =
i

2

∫
d3x d3x′ d3x′′Ψ†

a(x)Hac(x,x′′)(x′ − x)Hcb(x′′,x′)Ψb(x′) . (2.1.22b)

1We use this form because it makes it easier to understand what should be derivated and what
should not. Usually, this is done with differential operators acting to the right and to the left, which
can make the formalism confusing.
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Using differential operators these can be expressed as:

J i =

∫
d3xΨ†

a(x, t)J
(i)
ab (p,x)Ψb(x, t) , (2.1.23)

where (using [f(p),x] = −i∇pf(p)):

J(1)
ab (p,x) = ∇pHab(p,x) , (2.1.24a)

J(2)
ab (p,x) =

1

2

[
J(1)
ac Hcb +HacJ(1)

cb

]
. (2.1.24b)

If the Hamiltonian includes impurities in the form of V (x) we can see that it
doesn’t affect the particle current, but it appears in the energy current. Thus, in order
to calculate the energy current the matrix elements of the impurity potential would
be necessary. This can be avoided by expressing the energy current with the particle
current operator. A similar argument for a single-band Hamiltonian can be found in
Refs. [126] and [24]. We start by defining:

J 1(τ, τ
′) :=

∫
d3xΨ†(x, τ)JJJ1Ψ(x, τ ′) , (2.1.25)

where we use the τ imaginary times of the Matsubara formalism. The many-body
current operator can be expressed with a limit as:

J 1(τ) = lim
τ ′→τ−

J 1(τ, τ
′) . (2.1.26)

Using the grand canonical Hamiltonian (K = H−µN ) the τ derivative of an arbitrary
A operator is:

∂τA(τ) = [K, A(τ)] . (2.1.27)

It can be shown that:

∂τΨ
†
a(x, τ) =

∫
d3x′Ψ†

b(x′, τ)Kba(x′,x) , (2.1.28a)

∂τΨa(x, τ) = −
∫

d3x′Kab(x,x′)Ψb(x′, τ) . (2.1.28b)

Using these relations the energy current can be expressed as:

J 2(τ) = lim
τ ′→τ−

1

2
[∂τ − ∂τ ′ + 2µ]J 1(τ, τ

′) . (2.1.29)
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Using this formula only the matrix elements of the current operator are needed, which
do not include the impurity potential.

2.1.4 Chemical potential

The chemical potential is obtained by fixing the number density of electrons in the
system:

ne =

∞∫
−∞

dεD(ε)f (ε− µ) , D(ε) =
1

V

∑
a

δ(ε− Ea) , (2.1.30)

where f(ε) is the Fermi-Dirac distribution and D(ε) is the density of states. In semi-
conductor or semimetallic systems it is better to use the charge carrier density to fix
the chemical potential2. This is defined as the number density of electrons minus the
number density of holes:

nc =

∞∫
0

dε [D(ε)f (ε− µ)−D(−ε)f (ε+ µ)] . (2.1.31)

2.2 Impurities

In this section we discuss the effects of impurities, and how the Green’s function can
be approximated when impurities are present. We will assume charged impurities, that
are screened by the electron-electron interaction. The screening is calculated using the
random phase approximation, and the scattering rate is calculated using the first-order
Born approximation.

2.2.1 Dyson equation

The Hamiltonian with impurities is expressed as:

H(p,x) = H0(p,x) + V (x) , (2.2.1)

2The chemical potential will have the same value, but the charge carrier density has a more im-
portant meaning.
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where H0(p,x) is the Hamiltonian without impurities, V (x) =
Ni∑
j=1

u(x − Rj) is the

sum of randomly distributed impurities with Ni being the number of impurities. We
treat the impurities with the usual diagrammatic technique for impurity Green’s func-
tions (for details see Ref. [19]). In a magnetic field the translational invariance of the
Hamiltonian is broken, so the Green’s function is not diagonal in momentum space.
Nevertheless, the diagrammatic technique is analogous with the one in [19], and the
same diagrammatic rules can be used, with the only difference that each Green’s func-
tion line has two independent momentums. After averaging over random impurities
we get the following Dyson equation:

Gkbka = G(0)
kbka

+
1

V 2

∑
kk′

G(0)
kbkΣkk′Gk′ka , (2.2.2)

where G(0)
kbka

is the Green’s function of the clean system and Σkk′ is the self-energy.
The diagram of the Dyson equation is shown in Fig. 2.1. The Dyson equation in the

= +

Figure 2.1: Feynman diagram of the Dyson equation in Eq. (2.2.2). The
double arrow is the impurity Green’s function, the single arrow is the im-
purity free Green’s function and the filled circle is the self-energy.

eigenstate representation is expressed as:

Gba = δabG
(0)
a +

∑
c

G
(0)
b ΣbcGca , (2.2.3a)

Σba =
1

V 2

∑
k,k′

ϕ†
bkΣkk′ϕak′ . (2.2.3b)

If the self-energy is diagonal in the eigenstate representation, the impurity Green’s
function can be simply expressed as:

Ga(iωm) =
1

iωm + µ− Ea − Σa(iωm)
. (2.2.4)
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2.2.2 Self-energy and scattering rate

To calculate the self-energy we use the first-order Born approximation taking the Feyn-
man diagram shown in Fig. 2.2 (for more details see Ref. [19]). This diagram can be
expressed as:

ΣB
kk′(iωm) = ni

1

V

∑
q
u2qG

(0)
k−q,k′−q(iωm) , (2.2.5)

where ni is the number density of the impurities and uq is the Fourier transform of the
effective impurity potential.

ΣB
kk′ =

k − q

q

k′ − q

q

k k′

Figure 2.2: Feynman diagram for the first-order Born approximation of
the self-energy (see Eq. (2.2.5)). The star is the impurity density and the
double dashed line is the effective impurity potential.

In the eigenstate representation using Eqs. (2.2.3b) and (2.1.8):

Σab(iωm) =
ni
V 3

∑
k,k′,q

u2qϕ
†
ak

∑
c

ϕc,k−qϕ
†
c,k′−q

iωm + µ− Ec
ϕbk′ (2.2.6)

By rearranging the summations this can be expressed as:

Σab(iωm) =
ni
V

∑
q
u2q
∑
c

Fac(q)F ∗
bc(q)

iωm + µ− Ec
, (2.2.7a)

Fab(q) =
1

V

∑
k
ϕ†
akϕb,k−q =

∫
d3xϕ†

a(x)ϕb(x)eiqx , (2.2.7b)

where the convolution was transformed to a Fourier transform.

We will assume that the real part of the self energy is renormalized into the chemical
potential and only use the scattering rate Γ = − Im{Σ}. The analytic continuation of
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the scattering rate is:
Γab(ε) = lim

δ→0+
Γab(ε+ iδ) (2.2.8)

Henceforth we will focus on the diagonal elements of the scattering rate (later we
will show that in the systems we study the off-diagonal elements are very small). The
diagonal elements of the scattering rate after analytic continuation have different signs
on the upper and lower half planes, with a branch cut on the real axis:

Γa(ε+ iδ) ∝ sgn(δ) . (2.2.9)

This property will be very important in the calculation of transport, which will be
discussed in the next chapter. After performing the δ → 0+ limit the scattering rate
is:

Γa(ε) = ni
∑
b

∫ d3q

2(2π)2
u2qδ (ε+ µ− Eb) |Fab(q)|2 . (2.2.10)

With this, the retarded impurity Green’s function becomes:

GR
a (ε) =

1

ε+ µ− Ea + iΓa(ε)
. (2.2.11)

2.2.3 Impurity potential screening

For the effective impurity potential uq we use screened charged impurities. We start
by taking the vq Coulomb potential and the screening is calculated using the so called
random phase approximation [18, 19] (RPA). In general the Green’s function is not
diagonal in the momentum space, so the RPA must be done using two momentums.
Diagrammatically the RPA is expressed as in Fig. 2.3.

= +

Figure 2.3: Feynman diagram of the RPA used to calculate the screening of
the impurity potential. The double dashed lines are the effective impurity
potentials, the single dashed lines are the bare impurity potentials and the
wavy line represents the electron-electron interaction.

The equation of the Fig. 2.3 diagram is expressed using charged impurities in a
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dielectric medium vq = ui/q
2 (single dashed line) and the electron-electron interaction

wq = ue/q
2 (wavy line) the screened impurity potential is expressed implicitly as:

uqq′(iωλ) = vqδqq′ +
1

V

∑
q′′

wqΠ
(0)
qq′′(iωλ)uq′′q′(iωλ) , (2.2.12)

where Π(0) is the bubble diagram for electrons. For simplicity we study the static
and long-wave limit iωλ,q,q′ → 0. In this limit we assume that the bubble diagram
is diagonal and constant Π

(0)
qq′(iωm) ≈ δqq′Π

(0)
00 (0). With this the effective impurity

potential will also be diagonal and simply expressed as:

uq =
ui

q2 − ue
V
Π

(0)
00 (0)

≡ ui
q2 + κ2

. (2.2.13)

Here κ is the screening wavenumber and it is obtained using the static and long-wave
limit of the bubble diagram (see Fig. 2.4) as:

κ2 = − ue
βV 3

∑
m,k,k′

Tr
[
G(0)

kk′(iωm)G(0)
k′k(iωm)

]
. (2.2.14)

In the eigenstate representation this is:

κ2 = − ue
βV

∑
m,a

[
G(0)
a (iωm)

]2
. (2.2.15)

Π
(0)
qq′(iωλ) =

k + q′

k′k

k′ + q

q′ q

Figure 2.4: The bubble diagram used to calculate the screening wavenumber
in Eq. (2.2.16).

The Matsubara summation can be evaluated using the residue of the second order
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pole and the screening wavelength is simply expressed as:

κ2 = −ue
V

∑
a

∂f(Ea − µ)

∂Ea
. (2.2.16)

At zero temperature the derivative of the Fermi-Dirac distribution becomes a Dirac
delta and the screening wavelength can be expressed using the density of states defined
in Eq. (2.1.30) as:

κ2 = ueD(µ) . (2.2.17)
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Transport in magnetic fields

In this chapter we describe the formalism used to calculate the transport coefficients.
The formalism is based on Luttinger’s theory of thermoelectric transport [21] and the
extension of this to magnetic fields, studied by Smrčka and Středa [22]. We extend the
formalism to arbitrary multi-band systems and express the transport coefficients in the
eigenstate representation. We show that the Mott’s formula and Wiedemann-Franz law
hold. We give expressions to calculate the transport coefficients in case of impurities,
using the impurity Green’s function and vertex correction.

3.1 Current operators under external fields

The total Hamiltonian of the H system under external fields can be written as [21, 22]:

Htot =

∫
d3xh(x)[1 + ψ(x)] + ϱe(x)ϕ(x) , (3.1.1)

where ψ is a fictitious gravitational potential introduced as the dynamical counterpart
of the temperature gradient, ϕ is the electric potential, h is the energy density and ϱe

is the electric charge density. The kernel function in Eq. (2.1.17) of this Hamiltonian
is:

Htot
ab (x,x′) =Hab(x,x′)

[
1 +

1

2
(ψ(x) + ψ(x′))

]
+ δ(x − x′)ϱe(x)ϕ(x) . (3.1.2)

25
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Using Eqs. (2.1.22a) and (2.1.22b) the single-particle current and energy current op-
erators in Eq. (2.1.23) can be expressed as:

JJJtot
1 = JJJ1 +

1

2
[JJJ1ψ + ψJJJ1] , (3.1.3a)

JJJtot
2 = JJJ2 −

e

2
[JJJ1ϕ+ ϕJJJ1] +

1

2

[
JJJ2ψ + ψJJJ2 + JJJ1ψH+HψJJJ1

]
, (3.1.3b)

where JJJ1 = ∇pH, JJJ2 = 1
2
[JJJ1H+HJJJ1] and we kept only the first order terms in the

external fields. This is equivalent to the currents obtained in Refs. [22] and [23].

3.2 Transport coefficients in magnetic fields

Phenomenologically the current density and energy current density can be expressed
using the transport coefficients (Lij) and the driving forces as [18, 21, 22]:

j1 = −e2L11∇ϕ+ eL12∇ψ , (3.2.1a)
j2 = e L21∇ϕ− L22∇ψ , (3.2.1b)

where we separated the elementary charge from the usual definitions and:

j1 = −e
⟨
J tot

1

⟩
tot

V
, j2 =

⟨
J tot

2

⟩
tot

V
, (3.2.2)

where ⟨⟩tot is the thermal average using the total Hamiltonian.
For a uniform electric field the electric potential is ϕ = −xE. According to the

arguments in Ref. [21, 22] the gradient of the gravitational potential is equivalent
to the the temperature gradient ∇ψ ≡ −T∇ (1/T ). If this is also uniform then
ψ ≡ −Tx∇ (1/T ).

Using Eqs. (3.1.3a), (3.1.3b) and (2.1.23) the thermal average of the many-body
current operators can be expressed as:

⟨
J tot

1

⟩
tot ≈ ⟨J 1⟩tot +

⟨
J ψ

1

⟩
, (3.2.3a)⟨

J tot
2

⟩
tot ≈ ⟨J 2⟩tot +

⟨
J ϕ

1

⟩
+
⟨
J ψ

2

⟩
. (3.2.3b)

The ⟨⟩ is the thermal average using only the H Hamiltonian. In these formulas we only
consider the potentials up to linear order. We divide the contributions to the transport
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coefficients coming from the field independent and field dependent currents as:

Lij = Kij +Mij , (3.2.4)

where Kij comes from the field independent part of the current operators in Eq. (3.2.3).
This will be calculated in Sec. 3.2.1 and we will see how this quantity is related to the
current-current correlation. The Mij quantities come from the field dependent part in
the current operators in Eq. (3.2.3) that are only averaged using H. These quantities
will be discussed in Sec. 3.2.2

3.2.1 Current-current correlation function

The Kij components coming from the ⟨J i⟩tot terms can be calculated using the Kubo
formula [18, 20] as:

K
(ij)
αβ = lim

ω→0

i

ω
lim
δ→0+

Π
(ij)
αβ (iωλ = ω + iδ) , (3.2.5a)

Π
(ij)
αβ (iωλ) = − 1

V

β∫
0

dτ eiωλτ
⟨
J (i)
α (τ)J (j)

β (0)
⟩
0
. (3.2.5b)

Using the many-body current operators with the formalism described in Eq. (2.1.29)
the current-current correlation can be calculated as:

Π
(ij)
αβ = − 1

V

β∫
0

dτ eiωλτ lim
τ ′→τ−

τ ′′′→τ ′′−

τ ′′→0−

∆i(∂τ , ∂τ ′)∆j(∂τ ′′ , ∂τ ′′′) ⟨Jα(τ, τ ′)Jβ(τ ′′, τ ′′′)⟩o , (3.2.6)

where ∆1(∂τ , ∂τ ′) := 1 and ∆2(∂τ , ∂τ ′) :=
1
2
(∂τ−∂τ ′+2µ). Using the (2.1.25) form of the

many-body current operator, performing the thermal average over the field operators
and transforming to the Matsubara frequency space we get:

Π
(ij)
αβ (iωλ) =

1

V

1

β

∑
n

∫
d3x

∫
d3x′ ∆i(iωn,−iωn − iωλ)∆j(iωn + iωλ,−iωn)×

× Tr{JαG(x,x′, iωn + iωλ)JβG(x′,x, iωn)} , (3.2.7)
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where G is the Green’s function of the H Hamiltonian defined in Eq. (2.1.7). In the
eigenstate basis (H |a⟩ = Ea |a⟩) this can be expressed as:

Π
(ij)
αβ (iωλ) = − 1

V

∑
a,b

J
(α)
ab J

(β)
ba C

(ij)
ba (iωλ) , (3.2.8a)

C
(ij)
ba (iωλ) := − 1

β

∑
n

(
iωn + µ+

iωλ
2

)i+j−2

Gb(iωn + iωλ)Ga(iωn) . (3.2.8b)

The Matsubara summation can be transformed to line integrals (for details see
Appendix A). Because of the (iωn + µ+ iωλ/2)

i+j−2 factor the (A.1.8) formula has to
be modified a little. After analytic continuation (iωλ = ω + 0+) the retarded current-
current correlation function becomes:

C
R(ij)
ba (ω) =

∞∫
−∞

dε
2πi

f(ε− µ)

[(
ε+

ω

2

)i+j−2 (
GR
b (ε+ ω)GR

a (ε)−GR
b (ε+ ω)GA

a (ε)
)
+

+
(
ε− ω

2

)i+j−2 (
GR
b (ε)G

A
a (ε− ω)−GA

b (ε)G
A
a (ε− ω)

) ]
,

(3.2.9)

where the retarded and advanced Green’s functions are defined as1:

GR
a (ε) =

1

ε− Ea + iΓa(ε)
GA
a (ε) =

1

ε− Ea − iΓa(ε)
(3.2.10)

We are interested in the C(ij)
ba := lim

ω→0
C
R(ij)
ab (ω)/ω limit. Performing the limit on

Eq. (3.2.9) we get:

C
(ij)
ba =

∞∫
−∞

dε
π
f(ε− µ)

(
εi+j−2

[
∂εG

R
b (ε) ImGR

a (ε)− ∂εG
A
a (ε) ImGR

b (ε)
]
+

+
i+ j − 2

2
εi+j−3

[
GR
b (ε) ImGR

a (ε)−GA
a (ε) ImGR

b (ε)
])

.

(3.2.11)

1For simplicity the the energy is shifted by the chemical potential from the usual definition.
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We can divide this into real and imaginary parts as:

ImC
(ij)
ba = −

∞∫
−∞

dε
π
εi+j−2∂εf(ε− µ) ImGR

b (ε) ImGR
a (ε) , (3.2.12a)

ReC(ij)
ba =

∞∫
−∞

dε
2π
f(ε− µ)

[
∂ε
(
εi+j−2 ReGR

b (ε)
)

ImGR
a (ε)− a↔ b

]
+

+

∞∫
−∞

dε
2π
f(ε− µ)

[
εi+j−2∂ε

(
ReGR

b (ε)
)

ImGR
a (ε)− a↔ b

]
. (3.2.12b)

Substituting these in Eq. (3.2.5a) we get:

ReK(ij)
αβ =

1

V

∑
a,b

Im
{
J
(α)
ab J

(β)
ba

}
ReC(ij)

ba + Re
{
J
(α)
ab J

(β)
ba

}
ImC

(ij)
ba , (3.2.13a)

ImK
(ij)
αβ = − 1

V

∑
a,b

Re
{
J
(α)
ab J

(β)
ba

}
ReC(ij)

ba + Im
{
J
(α)
ab J

(β)
ba

}
ImC

(ij)
ba , (3.2.13b)

Since the one-particle current operator is Hermitian the following relations hold:

Re
{
J
(α)
ab J

(β)
ba

}
= Re

{
J
(α)
ba J

(β)
ab

}
, Im

{
J
(α)
ab J

(β)
ba

}
= − Im

{
J
(α)
ba J

(β)
ab

}
. (3.2.14)

Using Eq. (3.2.12) we can see that:

ReC(ij)
ba = −ReC(ij)

ab , ImC
(ij)
ba = ImC

(ij)
ab . (3.2.15)

These relations guarantee that Im{Kij} = 0. This way the components coming from
the Kubo formula can be expressed as:

K
(ij)
αβ =

1

V

∑
a,b

Im
{
J
(α)
ab J

(β)
ba

}
ReC(ij)

ba + Re
{
J
(α)
ab J

(β)
ba

}
ImC

(ij)
ba , (3.2.16a)

ImC
(ij)
ba = −

∞∫
−∞

dε
π
εi+j−2∂εf(ε− µ) ImGR

b (ε) ImGR
a (ε) , (3.2.16b)

ReC(ij)
ba =

∞∫
−∞

dε
π
f(ε− µ)∂ε

(
εi+j−2 ReGR

b (ε)
)

ImGR
a (ε)+



30 Chapter 3. Transport in magnetic fields

+

∞∫
−∞

dε
π
f(ε− µ)εi+j−2∂ε

(
ReGR

b (ε)
)

ImGR
a (ε) . (3.2.16c)

3.2.2 Magnetization and Energy magnetization

We move on with expressing the Mij components in Eq. (3.2.4) coming from the field
dependent part of the current operator. These are already linear in the external fields,
so the thermal averaging is done only using the H Hamiltonian. Using the eigenstate
representation we can write them as:

M11 = 0 , (3.2.17a)

M12 = − 2

V

∑
a

∞∫
−∞

dε
2π
f(ε− µ) Im

{
GR
a (ε)

}
Ma = M21 , (3.2.17b)

M22 = − 4

V

∑
a

∞∫
−∞

dε
2π
εf(ε− µ) Im

{
GR
a (ε)

}
Ma , (3.2.17c)

where M (a)
αβ = 1

2
⟨a| [Jαxβ + xβJα] |a⟩. Using Jα = i[H, xα] this can be transformed to

M
(a)
αβ = 1

2
⟨a| [Jαxβ − Jβxα] |a⟩. From this form we can see that M (ij)

αα = 0.

3.2.3 Transport coefficients

Since every formula in Eqs. (3.2.16) and (3.2.17) is proportional to f(ε−µ) or ∂εf(ε−µ)
it is always possible to express the finite temperature quantities with the zero temper-
ature quantities as:

Lij(T, µ) = −
∫

dεdf(ε− µ)

dε Lij(0, ε) , (3.2.18)

Using Eq. (3.2.16) the diagonal elements of the transport coefficients can be expressed
as:

L11
αα(0, ε) =

1

πV

∑
a,b

∣∣∣J (α)
ab

∣∣∣2 ImGR
b (ε) ImGR

a (ε) , (3.2.19a)

L12
αα(0, ε) = εL11

αα(0, ϵ) , (3.2.19b)
L22
αα(0, ε) = ε2L11

αα(0, ϵ) . (3.2.19c)
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For the off-diagonal components the calculation is more complex. We need to
address both K and M contributions. It can be shown in a similar fashion as Ref. [22]
that the components coming from M compensate for terms coming from K in a way that
the off-diagonal components can be expressed similarly to the diagonal components.
The conductivity is not affected by M and can be expressed using Eq. (3.2.16) as:

L11
αβ(0, ε) =

1

πV

∑
a,b

[
Re
{
J
(α)
ab J

(β)
ba

}
ImGR

b (ε) ImGR
a (ε)+

+ Im
{
J
(α)
ab J

(β)
ba

} ε∫
−∞

dξ 2∂ξ ReGR
b (ξ) ImGR

a (ξ)

]
. (3.2.20)

To calculate the other two transport coefficients we define the following functions:

A0(ε) :=
1

πV

∑
a,b

Re
{
J
(α)
ab J

(β)
ba

}
ImGR

b (ε) ImGR
a (ε) , (3.2.21a)

A1(ε) :=
2

πV

∑
a,b

Im
{
J
(α)
ab J

(β)
ba

}
∂ε ReGR

b (ε) ImGR
a (ε) , (3.2.21b)

A2(ε) :=
1

πV

∑
a,b

Im
{
J
(α)
ab J

(β)
ba

}
ReGR

b (ε) ImGR
a (ε) . (3.2.21c)

With these definitions the transport coefficients calculated from Eq. (3.2.16) are:

K11
αβ(0, ε) = A0(ε) +

ε∫
−∞

dξ A1(ε) , (3.2.22a)

K12
αβ(0, ε) = εA0(ε) +

ε∫
−∞

dξ [ξA1(ξ) + A2(ξ)] , (3.2.22b)

K22
αβ(0, ε) = ε2A0(ε) +

ε∫
−∞

dξ
[
ξ2A1(ξ) + 2ξA2(ξ)

]
. (3.2.22c)

After partial integrations:

K12
αβ(0, ε) = εK11

αβ(0, ε) +

ε∫
−∞

dξ (ξ − ε) (A1(ξ)− ∂ξA2(ξ)) , (3.2.23a)
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K12
αβ(0, ε) = ε2K11

αβ(0, ε) +

ε∫
−∞

dξ (ξ2 − ε2) (A1(ξ)− ∂ξA2(ξ)) . (3.2.23b)

The next step is to evaluate A(ξ) := (A1(ξ)− ∂ξA2(ξ)). For this we go back to the
general operators:

A =
1

2iπV
Tr
[
Jα
(
∂ξ ReGR

)
Jβ ImGR − Jα ReGRJβ

(
∂ξ ImGR

)
− α ↔ β

]
=

=
1

4πV
Tr
[ (
∂ξGR

)
JαGRJβ −

(
∂ξGA

)
JαGAJβ − α ↔ β

]
. (3.2.24)

Using the definition of the Green’s function and current operator it can be shown that
the following identity holds:

Jα = i
[(
GR/A

)−1
, xα

]
, (3.2.25)

and with this A can be transformed to:

A = − 1

2πV
Tr
[ (
∂ξ ImGR

)
Jαxβ − α ↔ β

]
. (3.2.26)

After partial integration the terms containing A will be the same as the terms in M,
and the final expression for the transport coefficients is:

L11
αβ(0, ε) = A0(ε) +

ε∫
−∞

dξ A1(ε) , (3.2.27a)

L12
αβ(0, ε) = εL11

αβ(0, ϵ) , (3.2.27b)
L22
αβ(0, ε) = ε2L11

αβ(0, ϵ) . (3.2.27c)

This means that all the necessary information is included in the zero temperature
conductivity tensor as a function of chemical potential, and every other transport
coefficient can be expressed with that.

The experimentally measurable quantities (conductivity (σ), Seebeck (S) and ther-
mal conductivity (κ) tensors) can be expressed using the transport coefficients as [18]:

σ = e2L11 , (3.2.28a)
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S = − 1

eT
L−1

11 (L12 − µL11) , (3.2.28b)

κ =
1

T

[
L22 − L21L−1

11 L12

]
. (3.2.28c)

Close to zero temperature (T → 0) using the Sommerfeld expansion, we obtain:

L11(T, µ) ≈ L11(µ) +
π2

6
T 2∂2µL11(µ) , (3.2.29a)

L12(T, µ) ≈ µL11(µ) +
π2

6
T 2∂2µ [µL11(µ)] , (3.2.29b)

L22(T, µ) ≈ µ2L11(µ) +
π2

6
T 2∂2µ

[
µ2L11(µ)

]
. (3.2.29c)

Using these expansions in Eq. (3.2.28) we get :

σ(T, µ) ≈ e2L11(µ) , (3.2.30a)

S(T, µ) ≈ −π
2T

3e
L−1

11 (µ)∂µL11(µ) , (3.2.30b)

κ(T, µ) ≈ π2

3
TL11(µ) . (3.2.30c)

As we can see the Mott’s formula and the Wiedemann-Franz law hold even in a mag-
netic field.

3.3 Vertex correction

In the previous section we derived a formula for the transport coefficients in Eq. (3.2.27a).
This formula assumes that the eigenstate representation and the Green’s function of
the whole Hamiltonian is known. In the case of impurities usually the clean system is
solvable and we treat the impurities as perturbation. We assume that the Hamiltonian
has the form:

H = H0 + V (x) . (3.3.1)

From now on the eigenstate basis will be defined using the eigenstates of the H0 Hamil-
tonian2.

Here we only consider the first order approximation in the impurity density. After
resummations as in Ref. [19] we get two terms. Diagrammatically this can be repre-

2For simplicity they will be denoted with the same index as before H0 |a⟩ = Ea |a⟩.
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sented as in Fig. 3.1. The double lines in the diagrams represent the impurity Green’s
function (which is assumed to be diagonal in the |a⟩ basis). The two contributions will
be represented as L11 = L(0)

11 + L(1)
11 .

Π = + + ...

Figure 3.1: Feynman diagrams of the first order approximation of the cor-
relation function. The double lines are the impurity Green’s function, the
double dashed lines are the effective impurity potentials and the star is the
impurity density.

The first diagram (L(0)
11 ) gives exactly the same contribution as in Eq. (3.2.27a),

but now the expression is in the eigenstate basis of only H0 and the Green’s functions
are the impurity Green’s functions (2.2.11).

The second diagram has four Green’s functions, and in the momentum representa-
tion can be expressed as:

Π
(1)
αβ(iωλ) =

1

V 6

∑
k,k′

k′′,k′′′
q

1

β

∑
n

ni|uq|2×

× Tr
{
J(α)kk Gkk′′′(iωn)Gk′′′−qk′′(iωn)J(β)k′′k′′Gk′′k′−q(iωn + iωλ)Gk′k(iωn + iωλ)

}
.

(3.3.2)

In the eigenstate basis this becomes:

Π
(1)
αβ(iωλ) = − 1

V

∑
a,b,c,d

V dc
ab J

(α)
ad J

(β)
cb C

dc
ab(iωλ) , (3.3.3a)

Cdc
ab(iωλ) := − 1

β

∑
n

Ga(iωn + iωλ)Gb(iωn + iωλ)Gc(iωn)Gd(iωn) , (3.3.3b)

V dc
ab :=

1

V 3

∑
k,k′

q

ni|uq|2ϕ†
dk′ϕck′−qϕ

†
bk−qϕak . (3.3.3c)

Using Eq. (A.1.11) in Appendix A the Matsubara summation can be transformed
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into an integral. After performing the zero frequency limit:

Cdc
ab =

∞∫
−∞

dε
2πi

f ′(ε− µ)
[
gARabcd(ε, ε)− gAAabcd(ε, ε)

]
+

+f(ε− µ)∂ω
[
gRRabcd(ε, ε+ ω)− gAAabcd(ε, ε+ ω)

]∣∣
ω=0

, (3.3.4)

where gXX′

abcd (ε, ε
′) := GX

a (ε)G
X
b (ε)G

X′
c (ε′)GX′

d (ε′). Using this, the vertex correction of
the conductivity can be expressed as:

L
11(1)
αβ = − i

πV

∑
a,b,c,d

V dc
ab J

(α)
ad J

(β)
cb C

dc
ab , (3.3.5a)

V dc
ab =

1

V

∑
q
ni|uq|2F ∗

ab(q)Fdc(q) , (3.3.5b)

where we used the F functions defined in Eq. (2.2.7b). To get the first order approx-
imation in Cdc

ab it is enough to take the Γ → 0 limit, since V dc
ab is already proportional

to the impurity density.





Chapter 4

Conductivity in low magnetic fields

In this chapter we show how the conductivity can be calculated microscopically at low
fields. The results shown here are published in Ref. [122]. In the previous chapter we
showed that the conductivity is enough to express all the transport coefficients, so in
this section we only discuss the conductivity tensor. First we show the expression for
the zero magnetic field and then the linear order in the magnetic field. In both cases
we are interested in the low scattering rate limit, and only keep the lowest order terms
in the scattering rate.

4.1 Conductivity at zero magnetic field

In the absence of the magnetic field, a periodic Hamiltonian will be diagonal in the
quasi momentum described by the (2.1.3) Bloch Hamiltonian. The eigenvalues and
eigenvectors of this are denoted as Hk |a,k⟩ = Eak |a,k⟩. For simplicity from now on
Hk ≡ H, Eak ≡ Ea, |a,k⟩ ≡ |a⟩, and ∂kµ ≡ ∂µ. The current operators can be expressed
using the generalized Hellmann-Feynman theorem [127]:

J
(µ)
ab = ⟨a|Jµ|b⟩ = ⟨a|∂µH|b⟩ = δa,b∂µEa + (Eb − Ea) ⟨a|∂µb⟩ . (4.1.1)

As explained in the previous chapter the conductivity can be calculated through
the retarded current-current correlation function as:

σµν = lim
ω→0

ie2

ω
ΠR
µν(ω) , (4.1.2)

Using Eq. (3.2.16) the Matsubara current-current correlation function in zero magnetic

37
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field is expressed as:

σ(0)
µν =

e2

V

∑
k,a,b

Im
{
J
(µ)
ab J

(ν)
ba

}
ReCba + Re

{
J
(µ)
ab J

(ν)
ba

}
ImCba , (4.1.3a)

ImCba = −
∞∫

−∞

dε
π
∂εf(ε− µ) ImGR

b (ε) ImGR
a (ε) , (4.1.3b)

ReCba = 2

∞∫
−∞

dε
π
f(ε− µ)∂ε

(
ReGR

b (ε)
)

ImGR
a (ε) . (4.1.3c)

Since we are interested in the low scattering rate limit, we assume that the Green’s
function can be expressed as:

GR
a (ε) =

1

ε− Ea + iΓ
, (4.1.4)

where the scattering rate Γ is constant, and Γ → 0. With this assumption the integrals
in Eqs. (4.1.3b) and (4.1.3c) can be evaluated (for details see Appendix A):

ImCba = −δab
f ′(Ea − µ)

2Γ
+O

(
Γ1
)
, (4.1.5a)

ReCba =
2f(Ea − µ)

(Ea − Eb)2
+O

(
Γ1
)
. (4.1.5b)

Taking the products of two current operator matrix elements (4.1.1) we get:

J
(µ)
a,b J

(ν)
b,a = δa,b∂µEa∂νEa + (Eb − Ea)

2 ⟨∂µa |b⟩⟨b| ∂νa⟩ (4.1.6)

Substituting everything back in Eq. (4.1.3) we get two contributions σ(0)
µν = σNµν + σAµν :

σNµν = −e
2τ

V

∑
k,a

∂µEa∂νEaf
′(Ea − µ) , (4.1.7a)

σAµν = −e
2

V

∑
k,a

Ωa
µνf(Ea − µ) , (4.1.7b)

where Γ = ℏ/2τ and Ωa
µν is the the Berry curvature [3, 8]:

Ωa
µν = i

[
⟨∂xa|∂ya⟩ − ⟨∂ya|∂xa⟩

]
. (4.1.8)
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At zero magnetic field we recover the usual Boltzmann result σNµν [18, 19] and the
anomalous conductivity σAµν connected to the Berry curvature [8, 28]. Because of the
symmetry properties of the Berry curvature, the anomalous contribution only appears
in the off-diagonal conductivity, giving rise to the anomalous Hall effect.

4.2 Linear order of the magnetic field

In this section we will express the conductivity up to linear order of the magnetic
field. The uniform magnetic field points in the z direction, and we are interested in
the Hall conductivity σxy and longitudinal conductivity σzz. For the calculation of the
current-current correlation we base our calculation on the microscopic theory of Hall
conductivity developed by Fukuyama [30, 31]. Here the magnetic field is treated as a
perturbation similarly to the electric field. In the first order of the magnetic field the
current-current correlation function is (for details on how these formulas are derived
see Appendix B):

Π(1)
xy (iωλ) = −ieB

βV

∑
n,k

Tr[JxG+JyGJxGJyG− JxG+JyG+JxG+JyG] , (4.2.1a)

Π(1)
zz (iωλ) = −ieB

βV

∑
n,k

Tr[JzG+JzGJxGJyG− JzG+JyG+JxG+JzG] . (4.2.1b)

where G ≡ G(k, iεn) and G+ ≡ G(k, iεn + iωλ).

4.2.1 Hall conductivity

We start with discussing the Hall conductivity. Using Eq. (4.2.1a) in the eigenstate
basis the Hall conductivity can be expressed as:

σ(1)
xy = −Be

3

V

∑
k

∑
a,b,c,d

J
(x)
da J

(y)
ab J

(x)
bc J

(y)
cd Cabcd , (4.2.2a)

Cabcd = − lim
ω→0

1

βω

∑
n

G+
aGd(GbGc −G+

b G
+
c ) , (4.2.2b)

where the iωλ = ω+ iη substitution was made and the η → 0 limit was taken in Cabcd.
Using the Eq. (4.1.1) form of the current operator we will have five different type of
terms in Eq. (4.2.2a) based on the number of Kronecker deltas. The terms containing



40 Chapter 4. Conductivity in low magnetic fields

three Kronecker deltas will vanish after summation so we only have to consider the
other four type of terms σ(1)

xy = σOxy + σIxy + σIIxy + σIVxy , where the indices represent the
number of Kronecker deltas. After evaluating the sums over the Kronecker deltas and
renaming indices we get:

σIVxy = −Be
3

V

∑
k,a

(∂xEa)
2(∂yEa)

2Caaaa , (4.2.3a)

σIIxy = −Be
3

V

∑
k,a,b

(Ea − Eb)
2×

×
{
∂xEa∂xEb ⟨∂ya|b⟩ ⟨b|∂ya⟩Cabba + ∂yEa∂yEb ⟨∂xa|b⟩ ⟨b|∂xa⟩Caabb+

+ ∂xEa∂yEa

[
⟨∂ya|b⟩ ⟨b|∂xa⟩ (Caaab + Cabaa) + ⟨∂xa|b⟩ ⟨b|∂ya⟩ (Caaba + Cbaaa)

]}
,

(4.2.3b)

σIxy = −Be
3

V

∑
k,a,b,c

(Ea − Eb)(Eb − Ec)(Ec − Ea)×

×
{
∂yEa ⟨a|∂xc⟩ ⟨b|∂xa⟩ ⟨c|∂yb⟩ (Caacb + Ccbaa)−

− ∂xEa ⟨c|∂ya⟩ ⟨a|∂yb⟩ ⟨b|∂xc⟩ (Cabca + Ccaab)

}
, (4.2.3c)

σOxy = −Be
3

V

∑
k,a,b,c,d

(Ea − Ed)(Eb − Ea)(Ec − Eb)(Ed − Ec)×

× ⟨d|∂xa⟩ ⟨a|∂yb⟩ ⟨b|∂xc⟩ ⟨c|∂yd⟩Cabcd . (4.2.3d)

The next step is to evaluate the Matsubara summations. The details of these are
discussed in Appendix A. We are interested in the low impurity case so we assume that
the scattering rate is constant Γa(ε,k) ≡ Γ and small, and we neglect terms of O(Γ0).
It can be shown that σIxy = O(Γ0). Keeping only the terms O(Γ−2) and O(Γ−1), only
σIV , σII , and σO remain:

σIVxy =− Be3

4Γ2V

∑
k,a

(∂xEa)
2(∂yEa)

2f ′′
a , (4.2.4a)

σIIxy =− 3Be3

4Γ2V

∑
k,a

∂xEa∂yEaf
′
a

(
Θa
xy +Θa

yx

)
+
Be3

2ΓV

∑
k,a

∂xEa∂yEaf
′
aΩ

a
xy−
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− Be3

4ΓV

∑
k,a

∂xEa∂yEaf
′′
a i
(
Θa
xy −Θa

yx

)
, (4.2.4b)

σOxy =− Be3

2ΓV

∑
k,a

f ′
ai
(
Θa
xy −Θa

yx

) (
Θa
xy +Θa

yx

)
, (4.2.4c)

where fa = (exp{β(Ea − µ)} + 1)−1 is the Fermi-Dirac distribution, Ωa
xy is the Berry

curvature defined in Eq. (4.1.8), and:

Θa
xy =

∑
b

(Ea − Eb) ⟨∂xa|b⟩ ⟨b|∂ya⟩ . (4.2.5)

The quantity Θa
xy can be transformed to:

Θa
xy = ⟨∂xa|∂yH − ∂yEa|a⟩ . (4.2.6)

Then, using ∂x∂yH = 0 and the derivative of ⟨a|∂yH|a⟩ = ∂yEa we can show the
following (similarly to Ref. [38]):

Θa
xy +Θa

yx = ∂x∂yEa . (4.2.7)

The imaginary part of Θa
xy is the orbital magnetic moment [5, 8]:

Ma
xy =

1

2i

(
Θa
xy −Θa

xy

)
= Im{ ⟨∂xa|(Ea −H)|∂ya⟩} . (4.2.8)

Using partial integrations and separating terms proportional to 1/Γ2 and 1/Γ the
magnetic field dependent part of the Hall conductivity becomes (σ(1)

xy = σBxy + σQxy)

σBxy =
Be3τ 2

ℏ4V
∑
k,a
f ′
a

{
1

2

[
(∂xEa)

2 ∂2yEa + (∂yEa)
2 ∂2xEa

]
− ∂xEa∂x∂yEa∂yEa

}
, (4.2.9a)

σQxy =
Be3τ

ℏ3V
∑
k,a
f ′
a

{
∂xEa∂yEaΩ

a
xy + ∂x∂yEaM

a
xy −

1

2

[
∂xEa∂yM

a
xy + ∂yEa∂xM

a
xy

]}
,

(4.2.9b)

where Γ = ℏ/2τ . In this final form only the partial derivatives of the energy and gauge
invariant quantities such as the Berry curvature and the orbital magnetic moment
appear. The σBxy term is the same as the result of the semiclassical Boltzmann trans-
port theory with relaxation time approximation [31]. The σQxy term is the quantum
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correction that contains the Berry curvature and orbital magnetic moment.

4.2.2 Longitudinal conductivity

We continue with the longitudinal conductivity. Using Eq. (4.2.1b) in the eigenstate
basis the longitudinal conductivity can be expressed as:

σ(1)
zz = −Be

3

V

∑
k
a,b
c,d

vzdav
z
ab

(
J
(x)
bc J

(y)
cd Dabcd − J

(y)
bc J

(x)
cd D̃abcd

)
, (4.2.10a)

Dabcd = − lim
ω→0

1

βω

∑
n

G+
aGbGcGd , (4.2.10b)

D̃abcd = − lim
ω→0

1

βω

∑
n

GaG
+
b G

+
c G

+
d . (4.2.10c)

After summation over the Kronecker deltas we get:

σIVzz = −Be
3

V

∑
k,a

(∂zEa)
2∂xEa∂yEa(Daaaa − D̃aaaa) , (4.2.11a)

σIIzz = −Be
3

V

∑
k,a,b

(Ea − Eb)
2×

×
[
∂zEa∂xEb ⟨∂za|b⟩ ⟨b|∂ya⟩Dabba + ∂zEa∂yEb ⟨∂xa|b⟩ ⟨b|∂za⟩Daabb+

+∂xEa∂yEa ⟨∂za|b⟩ ⟨b|∂za⟩Dbaaa + ∂zEa∂zEa ⟨∂xa|b⟩ ⟨b|∂ya⟩Daaba+

+∂xEa∂zEa ⟨∂ya|b⟩ ⟨b|∂za⟩Daaab + ∂yEa∂zEa ⟨∂za|b⟩ ⟨b|∂xa⟩Dabaa−

− (x↔ y,D ↔ D̃)
]
, (4.2.11b)

σIzz = −Be
3

V

∑
k,a,b,c

(Ea − Eb)(Eb − Ec)(Ec − Ea)×

×
[
∂yEa ⟨a|∂zc⟩ ⟨b|∂xa⟩ ⟨c|∂zb⟩Dcbaa − ∂xEa ⟨a|∂yb⟩ ⟨b|∂zc⟩ ⟨c|∂za⟩Dcaab+

+∂zEa ⟨a|∂xc⟩ ⟨b|∂za⟩ ⟨c|∂yb⟩Daacb − ∂zEa ⟨a|∂zb⟩ ⟨b|∂xc⟩ ⟨c|∂ya⟩Dabca−

− (x↔ y,D ↔ D̃)
]
, (4.2.11c)

σOzz = −Be
3

V

∑
k,a,b,c,d

(Ea − Ed)(Eb − Ea)(Ec − Eb)(Ed − Ec)×

×
[
⟨d|∂za⟩ ⟨a|∂zb⟩ ⟨b|∂xc⟩ ⟨c|∂yd⟩Dabcd − (x↔ y,D ↔ D̃)

]
. (4.2.11d)
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The Matsubara summation is evaluated the same way as for the Hall conductivity (for
details see Appendix A) and we get:

σIVzz =−B
e3

4Γ2V

∑
k,a

(∂zEa)
2∂xEa∂yEaf

′′
a , (4.2.12a)

σIIzz =−B
e3

4Γ2V

∑
k,a

∂zEa
[
∂xEa∂y∂zEa + ∂yEa∂z∂xEa + ∂zEa∂x∂yEa

]
−

−B
e3

2ΓV

∑
k,a

∂zEa

{
f ′
a∇Ea ·Ωa + f ′′

a∇Ea · Ma+

+ if ′
a

∑
b

[(∂xEb ⟨∂ya|b⟩ ⟨b|∂za⟩ − z ↔ y)− x↔ y]
}
, (4.2.12b)

σIzz =−B
ie3

2ΓV

∑
k,a

f ′
a∂zEa

{
∂z∂xEa ⟨a|∂ya⟩ − ∂y∂zEa ⟨a|∂xa⟩−

−
∑
b

[(∂xEb ⟨∂ya|b⟩ ⟨b|∂za⟩ − z ↔ y)− x↔ y] +

+

[(
⟨∂ya|∂xH|∂za⟩ − y ↔ z

)
− x↔ y

]}
, (4.2.12c)

σOzz =−B
e3

2ΓV

∑
k,a

f ′
a

[
∂z∂xEaM

a
x − ∂y∂zEaM

a
y

]
. (4.2.12d)

Using partial integrations a lot of these terms can be canceled. One of the less trivial
partial integrations done in Eq. (4.2.12b) is of the form:∑

k,a
∂zEaf

′′
a∇Ea · Ma = −

∑
k,a

[
∂zEaf

′′
a ∂zEaM

a
z + 2f ′

a∂z(∂zEaM
a
z )+

+ f ′
a∂x(∂zEaM

a
x ) + f ′

a∂y(∂zEaM
a
y )
]
. (4.2.13)

Using equations like ∂x∂z[(Ea−H) |a⟩] = 0 this can be transformed and used to cancel
some terms in Eq. (4.2.12). After several transformations the longitudinal conductivity
can also be expressed as σ(1)

zz = σBzz + σQzz with terms proportional to τ 2 and τ :

σBzz = 0 , (4.2.14a)

σQzz = −Be
3τ

ℏ3V
∑
k,a

f ′
a

[
∂zEa (2∇Ea ·Ωa − ∂zEaΩ

a
z) + ∂zEa∂zM

a
z − ∂2zEaM

a
z

]
,

(4.2.14b)
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where Ωa
µ = 1

2
εµνηΩ

a
νη and Ma

µ = 1
2
εµνηM

a
νη.

After the partial integrations the Boltzmann contribution σBzz vanishes as expected
from the Boltzmann theory. Similarly to the Hall-conductivity, in the case of the
longitudinal conductivity we also have a quantum contribution σQzz expressed with the
Berry curvature and orbital magnetic moment.

If the system is time reversal symmetric Ea(k) = Ea(−k), ∂µEa(k) = −∂µEa(−k),
Ωa
µ(k) = −Ωa

µ(−k) and Ma
µ(k) = −Ma

µ(−k). These relations guarantee that both
σQxy = 0 and σQzz = 0. Thus, in order to see the quantum contributions we need to
break time reversal symmetry.

The expressions of the Berry curvature (4.1.8) and orbital magnetic moment (4.2.8),
are hard to use in these forms. These quantities can be expressed in an easier to evaluate
formula where the derivatives of eigenstates do not appear. Using Eq. (4.1.1) and the
completeness of eigenstates:

Ωa
µν = i

∑
b ̸=a

⟨a|∂µH|b⟩ ⟨b|∂νH|a⟩
(Ea − Eb)2

− µ↔ ν , (4.2.15a)

Ma
µν =

1

2i

∑
b ̸=a

⟨a|∂µH|b⟩ ⟨b|∂νH|a⟩
Ea − Eb

− µ↔ ν . (4.2.15b)

A simple example for the calculation of the magnetoconductivity using Eqs. (4.2.9)
and (4.2.14) is the calculation for the nearly free electron model:

H =
ℏ2k2

2m
, E =

ℏ2k2

2m
. (4.2.16)

The different components of the magnetoconductivity are:

σBxy = −Be
3τ 2

m2
ne , σQxy = 0 , σBzz = 0 , σQzz = 0 , (4.2.17)

where ne = 1
V

∑
k
f is the number density of electrons. This result is the same as the

classical result [2].



4.3 Tilted Weyl node 45

4.3 Tilted Weyl node
In this section we study the magnetoconductivity of a tilted Weyl node. We start with
a general two-level system with the following Hamiltonian:

H = h(k) · σ + h0(k)σ0 , E± = h0 ± h , (4.3.1)

where σα are the Pauli matrices. Using Eq. (4.2.15) for the Berry curvature and orbital
magnetic moment we get:

Ω±
µν = ∓1

2

h · (∂µh × ∂νh)
h3

, M±
µν =

1

2

h · (∂µh × ∂νh)
h2

. (4.3.2)

First, we discuss a simple example for a two-level system, a single Weyl node
described by the Weyl Hamiltonian:

h = vℏk , h0 = 0 , E± = ±vℏk . (4.3.3)

The Berry curvature and orbital magnetic moment using Eq. (4.3.2) becomes:

Ω± = ∓1

2

k
k3
, M± =

1

2

k
k2
. (4.3.4)

The different components of the magnetoconductivity calculated from Eqs. (4.2.9) and
(4.2.14) at zero temperature are:

σBxy = −vµBe
3τ 2

6π2ℏ3
, σQxy = 0 , σBzz = 0 , σQzz = 0 . (4.3.5)

Even though the Berry curvature and orbital magnetic moment are not vanishing, after
integration the quantum contributions vanish because of the mirror symmetries of the
system.

In order to get a finite quantum contribution we introduce a small tilting (t < 1)
in the kz direction:

h = vℏk , h0 = vℏtkz , E± = vℏ(tkz ± k) . (4.3.6)

The dispersion relation with different tiltings is shown in Fig. 4.1. The Berry curvature
and orbital magnetic moment is unchanged, but the tilting breaks the mirror symmetry
in the dispersion relation, and the components of the zero temperature magnetocon-
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t = 0

kz

t = 0.5

kz

t = 1

kz

Figure 4.1: Schematic dispersion relation in the kz direction of a tilted
Weyl node with tilting t.

ductivity calculated from Eqs. (4.2.9) and (4.2.14) become:

σBxy = σh
3 tanh−1(t)− 3t

t3
, σh = −vµBe

3τ 2

6π2ℏ3
, (4.3.7a)

σQzz = σlt , σl = −vBe
3τ

4π2ℏ2
, (4.3.7b)

where σh is the Hall conductivity of the not tilted Weyl node in Eq. (4.3.5). The rest
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Figure 4.2: The Hall conductivity (4.3.7a) and longitudinal magnetocon-
ductivity (4.3.7b) of a tilted Weyl node with tilting t. σh = −vµBe3τ2

6π2ℏ3 is the
Hall conductivity at t = 0 and σl = −vBe3τ

4π2ℏ2 .
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of the components are still zero. The magnetoconductivity as a function of the tilting
parameter is shown in Fig. 4.2.

As a consequence of the tilting a linear longitudinal magnetoconductivity appears.
This effect was studied using the semiclassical Boltzmann transport theory in Refs.
[106] and [107]. These studies do not take into account the effect of the orbital mag-
netic moment. In order to compare our results we separated the longitudinal magne-
toconductivity in Eq. (4.3.7b) to the term coming from the Berry curvature and the
term coming from the orbital magnetic moment:

σQ(berry)
zz = σl

−3t+ 5t3 + 3t5 + 3(t2 − 1)2 tanh−1(t)

3t4
, (4.3.8a)

σQ(mag)
zz = σl

3t− 5t3 − 3(t2 − 1)2 tanh−1(t)

3t4
. (4.3.8b)

These separated components can be seen in Fig. 4.3. The result containing only the
Berry curvature coincides with the result gotten in the semiclassical Boltzmann theory
[106, 107]. But as we can see on the figure the terms containing the orbital magnetic
moment significantly modify the result. The qualitative behavior of the result is not
affected, but the quantitative value changes.
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Q z
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t

Figure 4.3: The longitudinal magnetoconductivity (4.3.7b) of a tilted Weyl
node with tilting t. The red and blue line show the contribution of the Berry
curvature and the orbital magnetic moment separately as in Eq. (4.3.8).
σl = −vBe3τ

4π2ℏ2 .
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In real materials Weyl nodes come in pairs with opposite tilting and opposite chi-
rality, and the Hamiltonian of the second Weyl node is expressed as [106, 107, 128]:

h = −vℏk , h0 = −vℏtkz , E± = −vℏ(tkz ± k) . (4.3.9)

Because of the sign change of both the tilting and the chirality the linear lon-
gitudinal conductivity persists even in the case of a pair of Weyl nodes. The total
conductivity of two Weyl nodes separated into σ2W

zz = σ
2W (berry)
zz + σ

2W (mag)
zz can be

expressed as:

σ2W (berry)
zz = 4σl tanh−1(t) , (4.3.10a)

σ2W (mag)
zz = σl

−4t− 2(t2 − 2) tanh−1(t)

t2
. (4.3.10b)

The longitudinal conductivity of the two Weyl nodes is shown in Fig. 4.4. As we can
see the qualitative behavior for small tiltings does not change when two Weyl nodes
are present.
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Figure 4.4: The longitudinal magnetoconductivity (4.3.7b) of a pair of tilted
Weyl nodes with tilting t. The red and blue line show the contribution of
the Berry curvature and the orbital magnetic moment separately as in Eq.
(4.3.10). σl = −vBe3τ

4π2ℏ2 .

This type of linear longitudinal magnetoconductivity has very unusual properties.
The sign of the conductivity changes with the magnetic field, which can be used ex-
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perimentally to distinguish this component from σ
(0)
zz and σ

(2)
zz . It produces a negative

magnetoresistance1 and gives an alternate mechanism to the chiral anomaly that pro-
duces a negative magnetoresistance. The chiral anomaly is also an effect that happens
when the magnetic field and electric field is parallel, but the longitudinal magneto-
conductivity in that case is quadratic in the magnetic field, and happens without any
tilting in the Weyl node. The symmetry properties in the magnetic field can be used
to separate these two effects experimentally.

In order to estimate the magnitude of the linear longitudinal magnetoconductivity
we can compare it to the conductivity at zero magnetic field and zero tilting calculated
from Eq. (4.1.7):

σ(0)
zz =

4π

3

e2

h

µ2τ

h2v
. (4.3.11)

Since both quantities are proportional to the relaxation time, the ratio of σl to σ
(0)
zz

becomes a τ independent number:

δ =
σl

σ
(0)
zz

=
3

2

ℏv2eB
µ2

. (4.3.12)

Assuming realistic parameters such as v = 10 × 106 m s−1, µ = 200 meV, and B = 1 T
the ratio becomes δ ≈ 0.025. The effect is small, but not negligible and it can be
enhanced with a smaller chemical potential.

4.4 Summary

In this chapter we studied the magnetoconductivity at low magnetic fields. We dis-
cussed the conductivity up to linear order of the magnetic field using linear response
theory. We evaluated the microscopic formula developed by Fukuyama [30, 31] in a
general manner for small scattering rates (Eqs. (4.2.9) and (4.2.14)). These expressions
were not derived before from a microscopic theory and are one of the main results of
this chapter.

In the two lowest orders of the scattering rate we got terms of order O(Γ−2) (σBµν)
and O(Γ−1) (σQµν). In the σBµν term we recover the magnetoconductivity described by
the semiclassical Boltzmann transport theory without anomalous velocity [31]. The

1Or positive magnetoresistance, for opposite sign of the magnetic field.
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σQµν term is a quantum correction expressed in terms of the Berry curvature σQ(berry)
µν

and orbital magnetic moment σQ(mag)
µν . The σQ(berry)

µν part was previously derived using
the anomalous velocity in the Boltzmann theory [13, 106, 107]. The additional σQ(mag)

µν

term is not present in these theories. In our calculation these terms appear naturally
without assuming an anomalous velocity.

The σQµν quantity can only be nonzero if time reversal symmetry is broken. This is
consistent with the Onsager relations, where these type of terms are forbidden. An in-
teresting symmetry property of the Hall conductivity is that the quantum contribution
is symmetric for the x↔ y change, while the Boltzmann contribution is antisymmetric.

Finally, we studied a tilted Weyl node using the above formalism. This system
was discussed with the semiclassical Boltzmann theory [106, 107]. Our microscopic
treatment is new in the literature. We showed that in a tilted Weyl node a finite linear
longitudinal magnetoconductivity σQzz is present which is proportional to the tilting.
This term was also found using the Boltzmann transport theory [106, 107], but only
the effects of the Berry curvature were discussed. Our main result is that we showed
that the orbital magnetic moment affects the magnetoconductivity and gives significant
quantitative corrections.

A finite tilting is present in many Weyl semimetals [129–132], making this effect
relevant experimentally. In real materials the Weyl nodes come in pairs with opposite
chirality, but they also tilt in opposite direction. As we showed this ensures that the
effect of linear longitudinal magnetoconductivity persists even with two Weyl nodes. As
we discussed the effect is small, but not negligible. The effect is enhanced for smaller
charge carrier densities, larger tiltings, or larger magnetic fields. The conductivity
changes sign with the magnetic field, making it possible to distinguish it from the zero
field conductivity.



Chapter 5

Relativistic electron gas

In this chapter we study the magnetotransport of a massive three-dimensional rela-
tivistic electron gas, which can be used as a simple model for Dirac materials. The
results of this chapter were published in Refs. [123] and [124]. First, the model is
described in detail, and solved exactly in a magnetic field. Then, we calculate the
chemical potential, the screening wavenumber, and the scattering rate with the for-
malism described in Chapter 2. Finally, using these and the formalism of Chapter 3
we study the magnetoconductivity and magnetothermopower.

5.1 Model

As a simple model for Dirac materials we use the Dirac Hamiltonian [44] with effective
speed of light (v) and effective mass (∆):

HD := γ0 (vγp +∆) , (5.1.1)

where γµ are the Dirac matrices. Experimentally realistic parameters for the effective
parameters are:

v = 106m s−1 [64, 66, 67, 69, 70] ∆ = 10− 100meV [55, 60, 78, 81] . (5.1.2)

From now on v is defined into the unit of energy and is omitted from the following
formulas for simplicity. With the Dirac matrices taken in the Dirac representation the

51
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Dirac Hamiltonian is:

H =


∆ 0 pz px − ipy

0 ∆ px + ipy −pz
pz px − ipy −∆ 0

px + ipy −pz 0 −∆

 . (5.1.3)

As described in Sec. 2.1.2 the Hamiltonian in a magnetic field becomes:

H =


∆ 0 pz

√
2

ℓB
a

0 ∆
√
2

ℓB
a† −pz

pz
√
2

ℓB
a −∆ 0

√
2

ℓB
a† −pz 0 −∆

 . (5.1.4)

Using the eigenstates |n⟩ of the a†a operator (a†a |n⟩ = n |n⟩) the eigenvalue problem
can be solved and the Landau levels are given by:

Enλs(pz) = λ
√
2neB +∆2 + p2z , (5.1.5)

where n = 0, 1, 2, . . . is the Landau index, λ = ±1 represents the band index and
s = ±1 represents the two-fold degeneracy (for n ̸= 0 levels). These Landau levels are
shown on Fig. 5.1. In the case of ∆ = 0 the n = 0 Landau level is completely linear
and gapless, while in the ∆ ̸= 0 case there is a gap of 2∆.

The eigenstates in the magnetic field are [119]:

|n, λ, s⟩ =


un,λ,s |n− 1⟩

−sun,λ,−s |n⟩
sλun,−λ,s |n− 1⟩
−λun,−λ,−s |n⟩

 |0, λ⟩ =


0

−s̃un,λ,−s̃ |0⟩
0

−λun,−λ,−s̃ |0⟩

 (5.1.6)

where n > 0, s̃ = −sgn(pz), and the |n⟩ states are given in Eq. (2.1.14). The unλs
functions are given by:

unλs =
1

2

√√√√(1 + spz√
E2
n −∆2

)(
1 + λ

∆

En

)
, (5.1.7)

withEn ≡ En11(pz). The quantum numbers describing these states are n ≡ (n, λ, s, pz, py).
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Figure 5.1: Landau levels (5.1.5) of the Dirac Hamiltonian. The degeneracy
of each level is 2 except the n = 0 levels. ∆ = 0.5/ℓB and ℓB =

√
ℏ/eB are

used.

The wave functions will be denoted as:

ϕn = ψnλs(x; py, pz)
1

L
eipyyeipzz := ⟨x|n⟩ , (5.1.8)

where we separated the part depending on x which is not a plane wave.
The dispersion relation only depends on n, λ and pz. Each Landau level is L2/2πℓ2B-

fold degenerate in py (L is the length of the system) and twofold degenerate in s (for
n ̸= 0). The n = 0 Landau level is not degenerate in s and must be treated with
caution.

The current operator using Eq. (2.1.24) is:

Jα = γ0γα =

(
0 σα

σα 0

)
. (5.1.9)

Using the Eq. (5.1.6) eigenstates, the matrix elements of the current operator becomes:

J
(x)
nn′ = δpyp′yδpzp′zδn,n′−1U

n′λ′s′

nλs + (n ↔ n′) , (5.1.10a)
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J
(y)
nn′ = iδpyp′yδpzp′zδn,n′−1U

n′λ′s′

nλs − (n ↔ n′) , (5.1.10b)
J
(z)
nn′ = δpyp′yδpzp′zδn,n′Ũn′λ′s′

nλs + (n ↔ n′) , (5.1.10c)
Un′λ′s′

nλs := −λun,−λ,−sun′,λ′,s′ − ss′λ′un,λ,−sun′,−λ′,s′ . (5.1.10d)
Ũn′λ′s′

nλs := s′λ′un,λ,sun′,−λ′,s′ − sλ′un,λ,−sun′,−λ′,−s′ . (5.1.10e)

5.1.1 Chemical potential

We calculate the chemical potential fixing the charge carrier density as explained in
Sec. 2.1.4. As a realistic charge carrier density, we use nc = 1018cm−3 [69, 81]. The
density of states is calculated as:

D(ε) =
1

2π2ℓ2B

⌊
(ε2−∆2)

ℓ2B
2

⌋
∑
n=0

(2− δn0)
|ε|√

ε2 −∆2 − 2n
ℓ2B

. (5.1.11)

In the case of ∆ = 0 this is the same as the result obtained in Ref. [133]. The density
of states is shown in Fig. 5.2.
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Figure 5.2: Density of states calculated from Eq. (5.1.11). The mass term
is chosen as ℓB∆ = 1.

Substituting the density of states in Eq. (2.1.31) we obtain the expression for the
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charge carrier density. At zero temperature after integration:

nc =
1

2π2ℓ2B

⌊
(µ2−∆2)ℓ2B

2

⌋∑
n=0

(2− δn0)

√
µ2 −∆2 − 2n

ℓ2B
. (5.1.12)

This is consistent with the ∆ = 0 result in Ref. [114].
In the high magnetic field limit (ℓB → 0) only the lowest Landau level contributes

and the chemical potential can be expressed as:

µ ∼
√
∆2
B +∆2 ∆B := 2π2ncℓ

2
B ∝ 1

B
. (5.1.13)

As we can see at high magnetic fields µ → ∆, and for ∆ = 0 µ ∝ 1/B as in Refs.
[43, 114]. The high field1 behavior for different mass terms can be seen in Fig. 5.3.
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Figure 5.3: Asymptotic behavior of the chemical potential at high magnetic
fields and zero temperature using Eq. (5.1.13). The carrier density is fixed
at nc = 1018cm−3.

In the low magnetic field limit (ℓB → ∞) the summation can be substituted with

1In the figures of this chapter we present the results up to very high magnetic fields, that experi-
mentally are not realizable. We do so in order to be able to show the effects of the mass term, because
in the case of nc = 1018cm−3 the magnetic field needs to be very large for this. In order to have the
effects observable at lower magnetic fields, materials with a lower charge carrier density are needed.
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an integral and we obtain:

nc =
(µ2 −∆2)

3
2

3π2
, (5.1.14)

which reproduces the zero magnetic field result. For intermediate fields at finite tem-
perature the chemical potential can be calculated numerically using the density of
states (5.1.11) in Eq. (2.1.31) and the result can be seen in Fig. 5.4. For the high and
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Figure 5.4: Magnetic field dependence of the chemical potential for three
mass terms ∆0 = 0, ∆1 = 50 meV and ∆2 = 100 meV and for two tempera-
tures T0 = 0 K and T1 = 50 K. The carrier density is fixed at nc = 1018cm−3.
The vertical lines show the magnetic fields where the chemical potential
crosses a Landau level as calculated from Eq. (5.1.15).

low magnetic field limits we see the behavior explained using Eq. (5.1.12). In the case
of finite temperature we see some deviation but the qualitative behavior remains the
same. Between the two limits we see oscillations caused by the singularities present in
the density of states. At zero temperature the oscillations are more prominent with
sharp changes in the chemical potential. Finite temperature smoothens the curves and
at high temperatures the oscillations almost completely disappear.

An oscillation occurs when the chemical potential crosses a Landau level. At zero
temperature the magnetic fields where the oscillations occur can be calculated from
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the condition of (µ2 −∆2)ℓ2B/2 ∈ N. Solving Eq. (5.1.12) with this condition yields:

eBm =

(√
2π2nc
A(m)

) 2
3

, A(m) :=
m∑
n=0

(2− δn0)
√
m− n , (5.1.15)

where m ∈ N denotes the mth Landau level that crosses the chemical potential. We
can see from the formula and the numerical results as well that the peaks occur at the
same magnetic fields independently of ∆. We define the quantum limit as the magnetic
field where at zero temperature only the lowest Landau level is occupied. From the
above formula the criteria for this is ℓ2B(

√
2π2nc)

2/3 < 1. For nc = 1018cm−3 [69, 81]
the quantum limit is reached above B ≈ 40 T.

Another critical magnetic field which is important is where the mass term becomes
relevant in Eq. (5.1.13). This happens when ∆B = ∆. In the two limiting cases where
∆B ≪ ∆ and ∆B ≫ ∆ we expect two very distinct behaviors. And we will see in the
following sections that this is indeed the case. For ∆ = 10− 100meV [55, 60] the mass
term becomes relevant above B = 850− 170T.

5.2 Impurity Green’s function

In this section we express the impurity Green’s function. We start with calculating
the screened impurity potential, and use this to calculate the scattering rate. With
the scattering rate the impurity Green’s function can be calculated from the Dyson
equation as:

Gn(iωm) =
1

iωm + µ− En + iΓn(iωm)
. (5.2.1)

5.2.1 Screening

As explained in Sec. 2.2.3, in the long wavelength limit (q → 0) the screened impurity
potential can be expressed as:

uq =
ui

q2 + κ2
, (5.2.2)

where the screening wavenumber using Eq. (2.2.16) is calculated as:

κ2 = − ue
2πℓ2B

∞∫
−∞

dpz
2π

∞∑
n=0
λ=±1

(2− δn0)
∂f(λEn − µ)

∂λEn
. (5.2.3)
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The screening wavenumber as a function of the magnetic field at different temperatures
and for different mass terms is shown in Fig. 5.5.
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Figure 5.5: Magnetic field dependence of the screening wavenumber for
several cases using the same parameters as in Fig. 5.4.

At zero temperature using Eqs. (2.2.17) and (5.1.11) the screening wavenumber is:

κ2 =
ue

2π2ℓ2B

⌊
(µ2−∆2)ℓ2B

2

⌋∑
n=0

(2− δn0)
|µ|√

µ2 −∆2 − 2n
ℓ2B

. (5.2.4)

For high magnetic fields (ℓB → 0) only the zeroth Landau level contributes to the
screening. Using the high magnetic field dependence of µ (5.1.13), we obtain:

κ2 ∼ ue
2π2ℓ2B

√
∆2
B +∆2

∆B

∝

B ∆B ≫ ∆

B2 ∆B ≪ ∆
. (5.2.5)

The screening wavenumber at high magnetic fields for different mass terms is shown in
Fig. 5.6. For ∆ = 0 we recover the κ2 ∝ B result used in Ref. [43].

In the zero magnetic field limit similarly to Eq. (5.1.14) the sum can be substituted
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Figure 5.6: Screening wavenumber in the quantum limit (5.2.5) as a function
of the magnetic field using different mass terms. The parameters used are:
nc = 1018cm−3 and v = 106m s−1.

with an integral and the screening wavenumber goes to a constant:

κ2 =
ue
π2
µ
√
µ2 −∆2 =

ue
π2

√
(3π2nc)

4
3 + (3π2nc)

2
3 ∆2 . (5.2.6)

5.2.2 Scattering rate

To calculate the scattering rate we use the first-Born approximation described in Sec.
2.2.2. Using Eq. (2.2.10) the scattering rate can be calculated as:

Γn(ε) = ni
∑

n′

∫ d3q

2(2π)2
u2qδ (ε+ µ− En′)

∣∣∣Fn′

n (q)
∣∣∣2 , (5.2.7)

Fn′

n (q) =
∫

d3xϕ†
n(x)ϕn′(x)eiqx . (5.2.8)

Using the eigenstates from Eq. (5.1.8) this becomes (with explicitly writing the
different quantum indices):

Γnλs(ε, pz) = ni
∑
n′λ′s′

∫ d3q

2(2π)2
u2qδ (ε+ µ− λ′En′(pz − qz))

∣∣∣F n′λ′s′

nλs (q, pz)
∣∣∣2 , (5.2.9)
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F n′λ′s′

nλs (q, pz) =
∫

dxψ†
nλs(x; 0, pz)ψn′λ′s′(x,−qy, pz − qz)eiqxx , (5.2.10)

where py was eliminated using variable substitution in x. This way, the scattering rate
is completely independent of py, as expected. Using the following property of the Dirac
delta function: ∫

f(x)δ(g(x)) dx =
∑

xo∈g−1(0)

f(x)

|∂xg(x)|

∣∣∣∣
x=xo

, (5.2.11)

the integration of qz can be evaluated and we get:

Γnλs(ε, pz) = ni

⌊
ℓ2B

(ε+µ)2−∆2

2

⌋∑
ℓ=0

∑
α=±1
t=±1

∫ dqx dqy
2(2π)2

u2qℓα

∣∣∣∣∣∣ ε+ µ√
(ε+ µ)2 − 2ℓ

ℓ2B
−∆2

∣∣∣∣∣∣
∣∣∣F ℓγot

nλs (qℓα, pz)
∣∣∣2 ,

qℓ± := (qx, qy, qℓ±) , qℓ± := pz ±
√

(ε+ µ)2 − 2ℓ

ℓB
−∆2 . (5.2.12)

where γo = sgn(ε+ µ) and the summation over t is only done for l ̸= 0.
Using this formula we calculated the scattering rate as a function of the magnetic

field for several mass terms. The results of this are shown in Fig. 5.7. For the
numerical calculations ue = e2/ε0 is used. The Fourier transformation in Eq (5.2.13) is
calculated using the fractional Fourier transform [134]. The Qx integral is done using
the Simpson’s rule on the result of the fractional Fourier transform and finally the Qy

integral is done through Gaussian quadrature.
As shown in Fig. 5.7, at low fields we get SdH oscillations. The effect of the mass

term is only relevant at high magnetic fields. As a function of the magnetic field the
scattering rate first has an increasing background (with SdH oscillations) then after
reaching the quantum limit it starts to decrease.

To get the expression of the scattering rate we assumed that the scattering rate
is diagonal in the Landau level representation. This assumption is not trivial and is
not proven analytically. We evaluated the formula for several non-diagonal elements
numerically and we found that the difference between diagonal and non-diagonal ele-
ments is several orders of magnitude smaller in the used magnetic field ranges, thus
the diagonality is a valid assumption.

In order to study the asymptotic behavior of the scattering rate analytically it is
useful to introduce dimensionless quantities. Using ℓB =

√
ℏ/eB the dimensionless



5.2 Impurity Green’s function 61

3

80

10

60010 100

Γ
0
1
1
(0
,0

)
[ n

i

n
c

m
eV

]

B [T]

∆ = 0 meV
∆ = 50 meV
∆ = 100 meV

Figure 5.7: Scattering rate calculated from Eq. (5.2.13) with indices n = 0
and λ = 1 as a function of magnetic field at zero temperature. The scatter-
ing rate is calculated at Pz = 0 and E = 0. The screening wavenumber is cal-
culated using Eq. (5.2.3). The density of charge carriers is nc = 1018cm−3.

quantities are (P ,Q, E ,M,D, x) := ℓB(p,q, ε, µ,∆,X ). Using Eq. (5.2.12) for the
scattering rate we obtain:

Γnλs(E ,Pz) = niℓ
2
B

⌊
(E+M)2−D2

2

⌋∑
ℓ=0

∑
α=±1
t=±1

∫ dQx dQy

2(2π)2
u2Qℓα

∣∣∣∣∣ E +M√
(E +M)2 − 2ℓ−D2

∣∣∣∣∣ ∣∣∣F ℓγot
nλs (Qℓα,Pz)

∣∣∣2,
F ℓγt
nλs(Q,Pz) :=

∫
dX ϕ†

nλs(X ; 0,Pz)ϕℓγt(X ;Qy,Pz −Qz)eiQxX ,

Qℓ± := (Qx,Qy,Qℓ±) , Qℓ± := Pz ±
√

(E +M)2 − 2ℓ−D2 . (5.2.13)

In this formula the magnetic field dependence of the scattering rate comes from the
explicit 1/ℓ2B factor, the effective impurity potential

(
uQ = ui

Q2+ℓ2Bκ
2

)
, and the param-

eters2 M and D .

2We have to keep in mind that µ and ∆ are not integration variables but parameters thus M and
D are functions of B.
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In later sections we will see that at low temperatures the important part of the
scattering rate is at E = 0. Using the (5.2.5) screening, the (5.2.13) scattering rate in
the quantum limit becomes (Γnλs ≡ Γnλs(0,Pz)):

Γnλs = niu
2
i ℓ

2
B

∑
α=±

∫ dQx dQy

2(2π)2

√
D2

B+D2

DB

∣∣∣F 0γ0 t̃
nλs (Q0α,Pz)

∣∣∣2(
Q2

0α +
ue
2π2

√
D2

B+D2

DB

)2 , (5.2.14)

where from the summation over ℓ only the the zeroth Landau level plays a role.

In the ultra quantum limit (ℓB → 0) this can be expressed as:

Γnλs = niu
2
i ℓ

2
B

Inλs ∆B ≫ ∆

∆B

∆
Jnλs ∆B ≪ ∆

, (5.2.15a)

Inλs :=
∑
α=±1

∫ dQx dQy

2(2π)2

∣∣∣F 0γo t̃
nλs (Q0α, 0)

∣∣∣2(
Q2

0α +
ue
2π2

)2 , (5.2.15b)

Jnλs :=
∑
α=±1

∫
dQx dQy

π2

2u2e

∣∣∣F 0γo t̃
nλs (Q0α, 0)

∣∣∣2 . (5.2.15c)

The magnetic field dependence is:

Γnλs ∝

B−1 ∆B ≫ ∆

B−2 ∆B ≪ ∆
. (5.2.16)

This asymptotic behavior is also visible in the numerical results in Fig. 5.7.

The scattering rate in the quantum limit calculated numerically from Eq. (5.2.14)
can be seen in Fig. 5.8. As we can see the scattering rate depends strongly on the
Landau index. At lower fields the mass term only affects the quantitative value of
the scattering rate, but the magnetic field dependence is unaffected. At high fields we
can see the dependencies described in Eq. (5.2.16). For higher Landau levels a higher
magnetic field is needed to get the asymptotic behavior.
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Figure 5.8: Scattering rate of the n = 0, 1, 2 Landau levels in the quantum
limit (5.2.14) as a function of the magnetic field using different mass terms.
The scattering rate is calculated at Pz = 0 and E = 0. The parameters used
are: nc = 1018cm−3 and v = 106m s−1.

5.3 Magnetoconductivity

In this section we calculate the magnetoconductivity using the equations explained in
Sec. 3.2. We study the components perpendicular to the magnetic field (σxx and σxy).

5.3.1 Hall conductivity σxy

We start with calculating the Hall conductivity. Using Eq. (3.2.27a) only the sec-
ond part is needed since the product of matrix elements of the current operators in
Eq. (5.1.10) are purely imaginary. Furthermore, we only use the lowest order approx-
imation in the impurities and take the clean limit (similarly to the case of the Weyl
Hamiltonian in Refs. [43] and [114]):

L11
xy(µ) =

1

πV

∑
n,n′

Im
{
J
(x)
nn′J

(y)
n′n

} µ∫
−∞

dξ 2∂ξ ReGR
n′(ξ) ImGR

n (ξ) . (5.3.1)



64 Chapter 5. Relativistic electron gas

With no impurities the imaginary part of the Green’s function will be a Dirac delta
ImGR

n (ξ) = −πδ(ξ − En). With this the integral in Eq. (5.3.1) can be evaluated:

L11
xy(µ) = − 1

2π2

∞∑
n=0

∑
λ,λ′=±1
s,s′=±1

∫
dpz

(
Un+1λ′s′

nλs

)2 f(λEn − µ)− f(λ′En+1 − µ)

(λEn − λ′En+1)2
, (5.3.2)

where the summation over s is taken only for n ̸= 0.

This formula can be simplified by using the properties of the Fermi-Dirac distribu-
tion ( f(−ε − µ) = 1 − f(ε + µ) ), the definition of Un′λ′s′

nλs in Eq. (5.1.10d) and the
explicit form of En. After the summations over the λ, λ′, s, s′ indices, we can show that
the formula becomes:

L11
xy(µ) = − 1

4π2

∞∑
n=0

∫
dpz (1+2n)

[
f(En−µ)−f(En+µ)−f(En+1−µ)+f(En+1+µ)

]
.

(5.3.3)
After rearranging the summation over n we get:

L11
xy(µ) = − 1

4π2

∞∑
n=0

∫
dpz (2− δn0) [f(En − µ)− f(En + µ)] . (5.3.4)

This formula is proportional to the charge carries density and the Hall conductivity
can be expressed as:

σxy = −enc
B

. (5.3.5)

To check the validity of Eq. (5.3.5) the Hall conductivity is calculated numerically
from Eq. (5.3.2). The numerical results at different mass terms can be seen in Fig.
5.9 (the results are only shown at one finite temperature, but at different temperatures
we get exactly the same result). As we can see the Hall conductivity does not depend
on the mass term nor the temperature (in the case of no impurities) and it exactly
satisfies Eq. (5.3.5). Since the charge carrier density is constant the Hall conductivity
is exactly inversely proportional to the magnetic field.

In the quantum limit, we can express the Hall conductivity using the chemical
potential (5.1.13) as:

σxy = − e2

2π2

√
µ2 −∆2 . (5.3.6)
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Figure 5.9: Hall conductivity σxy calculated from Eq. (5.3.2) as a function of
magnetic field at T = 30 K. The density of charge carriers is nc = 1018cm−3.

5.3.2 Conductivity σxx

We continue with calculating the diagonal component of the conductivity. In this case
the impurities are necessary to give a non-zero result. As explained in Sec. 3.3 the
lowest order approximation of the conductivity with respect to the impurities has two
terms:

L11
xx = L11(0)

xx + L11(1)
xx , (5.3.7)

where L11(1)
xx is the vertex correction.

We start with calculating the first term using Eq. (3.2.19a):

L11(0)
xx (µ) =

1

πV

∑
n,n′

∣∣∣J (x)
nn′

∣∣∣2 ImGR
n′(µ) ImGR

n (µ) , (5.3.8)

where the impurity Green’s function is taken from Eq. (5.2.1) and the matrix elements
of the current operator are taken from Eq. (5.1.10). With the dimensionless units
defined in Sec. 5.2.2 we obtain:

L11(0)
xx (µ) =

1

4π3ℓB

∞∑
n=0

∑
λ,λ′=±1

s=±1,s′=±1

∫
dPz

(
Un+1λ′s′

nλs

)2
ImGR

nλs(M) ImGR
n+1λ′s′(M) .

(5.3.9)
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The imaginary part of the Green’s function is expressed as:

Im
{
GR

n (M)
}
= − ℓBΓn(M,Pz)

(En −M)2 + (ℓBΓn(M,Pz))2
. (5.3.10)

In the quantum limit the scattering rate is small (if the impurity density is small
enough) and the imaginary parts of the Green’s function can be approximated as:

Im
{
GR

0λs(M)
}
≈ −πδ(E0λs̃ −M) , Im

{
GR
n+1λs(M)

}
≈ −ℓBΓn+1λs(M,Pz)

(En+1λs −M)2
.

(5.3.11)

In the lowest order of the impurity density we have to keep only the n = 0 term which
leads to:

L11(0)
xx =

1

4π2

∑
λ,λ′=±1
s′=±1

∫
dPz

(
U1λ′s′

0λs̃ (Pz,D)
)2
δ(E0λs̃ −M)

Γ1λ′s′(M,Pz)
(E1λ′s′ −M)2

, (5.3.12)

where s̃ = −sgn(Pz). After performing the Pz integral and using the Eq. (5.1.13) form
of the chemical potential at high fields (assuming µ > 0) we obtain:

L11(0)
xx =

1

4π2

∑
λ′=±1
s′=±1
ξ=±1

(
U1λ′s′

01s̃ (ξDB,D)
)2 √D2

B +D2

DB

Γ1λ′s′

(√
D2
B +D2, ξDB

)
(
λ′
√
2 +D2

B +D2 −
√

D2
B +D2

)2 .
(5.3.13)

In the very high field limit we can use Eq. (5.2.16) for the scattering rate:

L11(0)
xx =

niu2i ℓ2BI ∆B ≫ ∆

niu
2
i ℓ

2
BJ ∆B ≪ ∆

∝ 1

B
, (5.3.14)

where:

I :=
∑
λ′=±1

s′=±1,ξ=±1

1

8π2

(
U1λ′s′

01−ξ (0, 0)
)2
I1λ′s′ , (5.3.15a)

J :=
∑
λ′=±1

s′=±1,ξ=±1

1

8π2

(
U1λ′s′

01−ξ (0, 0)
)2
J1λ′s′ . (5.3.15b)
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The conductivity (σ0
xx = e2L

11(0)
xx ) in the quantum limit calculated numerically using

Eq. (5.3.13) can be seen in Fig. 5.10.
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Figure 5.10: The conductivity without the vertex correction in the quantum
limit (5.3.13) as a function of the magnetic field using different mass terms.
The parameters used are: nc = 1018cm−3 and v = 106m s−1.

As we can see in the high field limit we recover the asymptotic behavior described
in Eq. (5.3.14), and at lower fields the effect of the mass term becomes less relevant.
The real asymptotic behavior is only reached at very high fields. In the intermediate
region where the curves with different mass term start to diverge from each other the
decrease is weaker than B−1. As a consequence in the high field limit the quantitative
value of the conductivity is larger for larger values of the mass term.

At lower magnetic fields we need to evaluate Eq. (5.3.9) numerically. First, we
do a phenomenological study, where we take the scattering rate phenomenologically in
order to clarify its effects on σxx. We assume the scattering rate to be independent of
Landau levels and other variables except the magnetic field. The impurity density is
chosen in a way that the ratio of σxx to σxy in our results is similar to the experimental
results [69]. The obtained results of σxx for different mass terms are shown in Fig.
5.11.

When we assume that the scattering rate has the same magnetic-field dependence
as the high magnetic field limit dependence described in Sec. 5.2.2 (i.e., Γ ∝ B−1 for
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Figure 5.11: Transverse diagonal conductivity σxx calculated from
Eq. (5.3.9) as a function of magnetic field at different temperatures. ∆ = 0
(top plot) and ∆ = 50 meV (bottom plot). The scattering rate is chosen
phenomenologically based on the numerical results in Fig. 5.7. The inset
shows the scattering rates used (no Landau level dependence is assumed).
The thick lines show results at T = 0 K and the thin lines show T = 50 K.
The density of charge carriers is nc = 1018cm−3.
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∆ = 0 and Γ ∝ B−2 for ∆ ̸= 0, green lines in the insets of Fig. 5.11), the analytic
behaviors in high magnetic fields are reproduced3. However, in the low field region,
we get a much faster decrease than B−1. This scattering rate is the same as used by
Abrikosov [43].

On the other hand, if we assume Γ ∝ B (cyan lines in Fig. 5.11), we obtain
σxx ∝ B−1 in the low field region. However, in this case, the analytic behaviors in high
magnetic fields are not reproduced.

As shown in Fig. 5.7 in Sec. 5.2.2, the numerically obtained scattering rate first
increases in the low field region, and then decreases as Γ ∝ B−1 for ∆ = 0 and
Γ ∝ B−2 for ∆ ̸= 0 in the high field region. Therefore, we connect these dependencies
phenomenologically as shown with blue and red curves in Fig. 5.11. In these cases,
we obtain a σxx ∝ B−1 background with SdH oscillations superimposed in all the
magnetic field region. As shown in Fig. 5.7, there is no significant difference between
Γ0 for ∆ = 0 and Γ0 for ∆ ̸= 0 in the low field region. The conductivity also behaves
similarly, and the two cases behave differently only in the quantum limit where only
the lowest Landau level is important.

The temperature dependence is negligible at high fields as we can see in Fig. 5.11.
After changing to dimensionless units the relevant parameter will be the dimensionless
temperature T := ℓBT . So the criteria for low temperatures is:

kBT

v
√
ℏeB

≪ 1 , (5.3.16)

which shows that the temperature range where the low temperature approximation
can be used increases with increasing magnetic fields. For B = 1 T the criteria is T ≪
300 K. At lower magnetic fields the finite temperature smoothens the SdH oscillations.

A more precise numerical result can be achieved using the scattering rate calculated
from Eq. (5.2.13). However, the exact numerical integration of Γ is a very heavy
calculation. Therefore, we assume that the scattering rate is independent of momentum
and energy (Pz = 0 and E = 0) and only the Landau level dependence and magnetic
field dependence are kept. For the strength of the interactions we assume ue = ui =

e2/ε0εr considering different relative permittivities. The results for both the massless
and massive cases are shown in Fig. 5.12.

In the high magnetic field region, we recover the magnetic field dependencies dis-

3Note that the green lines in the main figures of Fig. 5.11 overlap with blue lines in the high field
region.
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Figure 5.12: Transverse diagonal conductivity σxx calculated from
Eq. (5.3.9) as a function of magnetic field at zero temperature. ∆ = 0
(top plot) and ∆ = 50 meV (bottom plot). The scattering rate is calcu-
lated using Eq. (5.2.13) using screening wavenumbers calculated through
Eq. (5.2.3). The inset figure shows the scattering rates used (n=1 Landau
level). The density of charge carriers is nc = 1018cm−3.
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cussed above. In the low field region, σxx ∝ B−5/3 and the effect of the first Landau
level appears as a very strong jump similarly to what was found in Ref. [114]. We see
that changing the relative permittivity changes the height of this jump. In the inset,
we also show Γ1, since this determines mainly the conductivity in high fields. In this
system higher scattering rate means higher conductivity (contrary to normal system
where the opposite is true). This means that if we increase the density of impurities
the conductivity is also increased.

5.3.3 Vertex correction

Now we move on with the calculation of the vertex correction, L11(1)
xx . As explained in

Sec. 3.3 in the lowest order approximation this can be calculated as:

L11(1)
xx = − i

πV

∑
n,n′,m,m′

V n′m′

nm J
(x)
nn′J

(x)
m′mC

n′m′

nm , (5.3.17a)

V n′m′

nm =
1

V

∑
q
ni|uq|2F ∗

nm(q)Fn′m′(q) , (5.3.17b)

where for the quantum numbers we use: n ≡ (n, λ, s, pz, py), n′ ≡ (n′, λ′, s′, pz, py),
m ≡ (m, γ, t, p′z, p

′
y) and m′ ≡ (m′, γ′, t′, p′z, p

′
y). The part with the impurity potential

is very similar to the scattering rate:

V n′λ′s′;m′γ′t′

nλs;mγt (Py,P ′
y,Pz,P ′

z) =

=
ni
ℓ3B

∫ d3Q
(2π)3

u2QδPy−Qy ,P ′
y
δPz−Qz ,P ′

z
Fm′γ′t′

n′λ′s′ (Q,Pz)Fmγt∗
nλs (Q,Pz) , (5.3.18)

where F is defined in Eq. (5.2.13). It can be shown that V is real. The matrix
elements of the current operator are also real. This way, for the real part of the vertex
correction only the imaginary part of C is needed. This can be expressed as:

ImCn′m′

nm =
[(En − µ)Γm + (Em − µ)Γn][(Em′ − µ)Γn′ + (En′ − µ)Γm′ ]

ΓnΓmΓm′Γn′
×

× ImGR
n ImGR

m ImGR
m′ ImGR

n′ , (5.3.19)

where the Green’s functions and scattering rates are evaluated at the chemical potential
(Γn ≡ Γn(µ, pz) and GR

n ≡ GR
n (µ)).

In the lowest order approximation in the impurity density we can again use Eq.
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(5.3.11) for the imaginary part of the Green’s function. Using the matrix elements of
the current operator keeping only the lowest Landau indexes (higher indexes will have
little contribution at high fields), we obtain:

L11(1)
xx =

2πℓ4B
V

∑
λ,λ′,γ,γ′

s′,t
Pz ,P ′

z ,Py ,P ′
y

V 1λ′s′;0γ′ t̃′

0λs̃;1γt (Py,P ′
y,Pz,P ′

z)U
1λ′s′

0λs̃ (Pz)U1γt

0γ′ t̃′
(P ′

z)×

×
δ(E0γ′ t̃′(P ′

z)−M)

E1γt(P ′
z)−M

δ(E0λs̃(Pz)−M)

E1λ′s′(Pz)−M
, (5.3.20)

where we use the fact that V is real and the symmetry properties in the quantum
numbers. Using the Kronecker deltas in V and evaluating all momentum integrals
except Qx and Qy, we obtain:

L11(1)
xx =

niu
2
i ℓ

2
B

4π2

∑
λ′,γ=±1
s′,t=±1
ξ,η=±1

U1λ′s′
01s̃ (ξDB ,D)U1γt

01t̃′ (ηDB ,D)

√
D2
B

+D2

DB
Θ1λ′s′;01t̃′

01s̃;1γt ((ξ+η)DB ,ξDB)(
λ′
√

2+D2
B+D2−

√
D2

B+D2
)(
γ
√

2+D2
B+D2−

√
D2

B+D2
) , (5.3.21a)

Θn′λ′s′;m′γ′t′

nλs;mγt (Qz,Pz) :=
∫ dQx dQy

(2π)2

√
D2

B+D2

DB
Fm′γ′t′

n′λ′s′ (Q,Pz)Fmγt∗
nλs (Q,Pz)(

Q2 + ue
2π2

√
D2

B+D2

DB

)2 . (5.3.21b)

The structure of the vertex correction is very similar to that of L11(0)
xx , but the origin

of each term is different. Similarly to how we calculated the limit of the scattering
rate and L

11(0)
xx we can evaluate the high field limit of the vertex correction. Since the

structure is similar we get the same asymptotic behavior as in Eq. (5.3.14) but the
proportionality constants will be different:

L11(1)
xx =

niu2i ℓ2B Ĩ ∆B ≫ ∆

niu
2
i ℓ

2
BJ̃ ∆B ≪ ∆

∝ 1

B
, (5.3.22)
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where:

Ĩ :=
1

8π2

∑
λ′,γ=±1
s′,t=±1
ξ,η=±1

U1λ′s′
01s̃ (0,0)U1γt

01t̃′ (0,0)

λ′γ

∫
dQxdQy

(2π)2
F 01t̃′
1λ′s′ (Qx,Qy ,Qz=0,0)F 1γt∗

01s̃ (Qx,Qy ,Qz=0,0)

(Q2
x+Q2

y+
ue
2π2 )

2 ,

(5.3.23a)

J̃ :=
1

8π2

∑
λ′,γ=±1
s′,t=±1
ξ,η=±1

U1λ′s′
01s̃ (0,0)U1γt

01t̃′ (0,0)

λ′γ

∫
dQxdQy

(2π)2
F 01t̃′
1λ′s′ (Qx,Qy ,Qz=0,0)F 1γt∗

01s̃ (Qx,Qy ,Qz=0,0)

( ue
2π2 )

2 .

(5.3.23b)

The vertex correction contribution was numerically calculated from Eq. (5.3.21). The
results can be seen on Fig. 5.13.
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Figure 5.13: The vertex correction of the conductivity in the quantum limit
(5.3.21) as a function of the magnetic field using different mass terms. The
parameters used are: nc = 1018cm−3 and v = 106m s−1.

At high fields we do not recover the asymptotic behavior described in Eq. (5.3.22),
but instead we get a more rapid decrease. This is because in the analytic formula
we assumed that Ĩ and J̃ are non-zero. From the numerics we can see that they are
numerically zero. This gives an extra decrease when DB, D → 0. From the numerical
results we can see that the vertex correction is several orders of magnitude smaller than
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σ0
xx. This is because in the summation over indices in Eq. (5.3.21) Θ is close to zero

when the matrix elements of the current operators give finite values. Furthermore,
the vertex correction at ∆ = 0 is numerically zero (it is not visible on the figure).
When D ≫ 0 the vertex correction becomes more relevant, but at reasonable values
of the mass term it is negligible. In the following sections we will neglect the vertex
correction, since it has a very small contribution to the overall conductivity.

5.3.4 Magnetoresistance

Using the previous results for the magnetoconductivity we show the results for the
magnetoresistivity. The resistivity is calculated as:

ϱxx =
σxx

σ2
xx + σ2

xy

, ϱxy =
σxy

σ2
xx + σ2

xy

. (5.3.24)

In the previous results we have seen that σxy ≫ σxx. Because of this the Hall
resistance using Eq. (5.3.5) can be simply expressed as:

ϱxy = − B

enc
= BRH . (5.3.25)

This is the usual Hall resistance.
In the case of ϱxx we need to consider σxx. First, we discuss the magnetoresis-

tance in the quantum limit. Using Eq. (5.3.24) on the high field magnetoconductivity
(5.3.14) the magnetoresistance becomes proportional to the magnetic field. The mag-
netoresistance in the quantum limit calculated numerically is shown in Fig. 5.14.

After the high field limit, we study the magnetoresistance calculated from the phe-
nomenological scattering rate represented by the red line in the insets of Fig. 5.11. In
this case, the obtained σxx is proportional to B−1 with SdH oscillations. The magne-
toresistance calculated in Eq. (5.3.24) becomes ρxx ∝ B since both σxx and σxy are
proportional to B−1. This is shown with the red lines in Fig. 5.15. For the case of
finite ∆, the lower field region (oscillating region) behaves similarly to the massless
case as explained previously. The main difference is at high fields as seen previously
in the high field limit.

Finally, we show the magnetoresistances calculated using the numerically calculated
scattering rates (corresponding to the case with εr = 1 of Fig. 5.12). The results are
shown with blue lines in Fig. 5.15. In the high field region, they behave similarly to
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Figure 5.14: Magnetoresistance ϱxx calculated from Eqs. (5.3.24) and
(5.3.13) as a function of magnetic field. The density of charge carriers
is nc = 1018cm−3.

those calculated using the phenomenological scattering rates. However, the low field
behavior shows a sublinear increase, since the B dependence of the conductivity is no
longer B−1 as shown in Fig. 5.12.

5.4 Magnetothermopower
Finally, we study the Seebeck tensor using Eq. (3.2.30b). For this, we need the
resistivity tensor and the derivative of the conductivity with respect to the chemical
potential. The independent elements of the Seebeck tensor are:

Sxx = −T π
2

3e

σxx∂µσxx + σxy∂µσxy
σ2
xx + σ2

xy

, Sxy = −T π
2

3e

σxx∂µσxy − σxy∂µσxx
σ2
xx + σ2

xy

. (5.4.1)

The result for the Seebeck (Sxx) and Nernst (Sxy) coefficients depends strongly on
the Hall angle (tanϑH = σxy/σxx), which is mainly determined by the ratio of charge
carrier density and the impurity density. Based on experimental results for the Hall
angle [95] we will assume σxy > σxx. This is in good agreement with the assumption
that the impurity density is not too high. For simplicity we will now assume that
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Figure 5.15: Magnetoresistance ϱxx calculated from Eq. (5.3.24) as a func-
tion of magnetic field. ∆ = 0 (left panel) and ∆ = 50 meV (right panel).
The resistivity calculated from the phenomenological result (red line) and
the resistivity calculated microscopically using the first Born approximation
with εr = 1 (blue). The density of charge carriers is nc = 1018cm−3.

tanϑH ≫ 1. In this case the elements of the Seebeck tensor are:

Sxx = −T π
2

3e

∂µσxy
σxy

, Sxy = −T π
2

3e

σxx∂µσxy − σxy∂µσxx
σ2
xy

. (5.4.2)

In the quantum limit the derivative of the Hall conductivity (5.3.6) with respect to
the chemical potential is:

∂µσxy = − e2

2π2

√
∆2
B +∆2

∆B

. (5.4.3)

With this the Seebeck coefficient can be expressed analytically as:

Sxx = −T π
2

3e

√
∆2
B +∆2

∆2
B

∝

B ∆B ≫ ∆

B2 ∆B ≪ ∆
. (5.4.4)

For the massless case we recover the linear non-saturating result obtained experi-
mentally and theoretically in Refs. [117] and [83]. For the massive case we get a signif-
icantly different behavior since the Seebeck coefficient is proportional to the square of
the magnetic field. As we can see this result does not depend on the impurity density
as long as the impurities can be neglected in the calculation of the Hall-conductivity.
The Seebeck coefficient (5.4.4) using different mass terms can be seen in Fig. 5.16.
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Figure 5.16: The Seebeck coefficient in the quantum limit (5.4.4) as a func-
tion of the magnetic field using different mass terms. The parameters used
are: nc = 1018cm−3 and v = 106m s−1.

The Nernst-coefficient can be divided in two terms as:

Sxy = Sxx
σxx
σxy︸ ︷︷ ︸

S
(1)
xy

+T
π2

3e

∂µσxx
σxy︸ ︷︷ ︸

S
(2)
xy

. (5.4.5)

As we showed in previous sections σxx ∝ σxy at high fields, this means that the
magnetic field dependence of S(1)

xy is qualitatively the same as Sxx. For the second
term we need to evaluate ∂µσxx. Since the chemical potential dependence affects many
components of the conductivity through ∆B in Eq. (5.3.13), we calculate the derivative
numerically. The conductivity as a function of the chemical potential can be seen in
Fig. 5.17.

In the massless case the conductivity is almost independent of the chemical poten-
tial, but in the massive case we can see that the dependence becomes very strong close
to the bottom of the Landau level, caused by the diverging density of states. Using
the numerical derivative for the conductivity we can calculate S(2)

xy . The results for the
two components of the Nernst coefficient can be seen on Fig. 5.18.

The first component is very similar to the Seebeck coefficient, but it is suppressed
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Figure 5.17: The conductivity in the quantum limit (5.3.13) as a function of
the chemical potential at different magnetic fields. The mass term is ∆ = 0
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values of the chemical potential when nc = 1018cm−3 at the given magnetic
fields, which is the point where the derivative in Eq. (5.4.5) has to be
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by cotϑH . The second component is very small (at certain regions even negative) at
low fields and low mass terms. At higher fields in the case of finite mass term it has
the same dependence as S(1)

xy and roughly the same value.
The total Nernst coefficient can be seen in Fig. 5.19. The dependence is very
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Figure 5.19: The Nernst coefficient in the quantum limit (5.4.5) as a function
of the magnetic field using different mass terms. The parameters used are:
nc = 1018cm−3 and v = 106m s−1.

similar to that of the Seebeck coefficient. The main difference is at lower fields where
σxx differs from the asymptotic behavior.

5.5 Summary
In this final section the most important results of this chapter are summarized. We
studied the transport coefficients of a three-dimensional relativistic electron gas in high
magnetic fields. The used model is the Dirac Hamiltonian in a constant magnetic field.
This model is a generalization of the Weyl Hamiltonian used in Refs. [43] and [114],
and can be used as a continuum model for massive Dirac materials.

We calculated the chemical potential fixing the charge carrier density, the screening
wavenumber using the random phase approximation, and the scattering rate using the
first Born approximation. At high magnetic fields we show the analytic asymptotic
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behavior of these. The important energy scale is ∆B = 2π2ncℓ
2
B and the mass term

∆ becomes relevant when ∆B < ∆. For realistic systems this happens at high fields
which are hard to realize experimentally. In order to be able to see the effects of the
mass term, materials with smaller charge carrier density or larger mass term need to
be studied. The asymptotic behavior can be summarized as:

µ ∝ B−1 κ2 ∝ B Γ ∝ B−1 ∆B ≫ ∆ , (5.5.1a)
µ ∼ ∆ κ2 ∝ B2 Γ ∝ B−2 ∆B ≪ ∆ . (5.5.1b)

At lower magnetic fields the effect of the mass term is negligible and all quantities show
SdH oscillations. For the ∆ = 0 case our results are consistent with studies on the
Weyl Hamiltonian [43, 114].

Using the formalism described in Chapter 3 we calculated the transport coefficients
in a magnetic field. We studied the magnetoconductivity and magnetothermopower
in the transverse plane of the magnetic field. At high magnetic fields we got analytic
results for these quantities which is the main result of this chapter, and it can be
summarized as:

σxx ∝
ni
B

Sxx ∝
TB

nc
∆B ≫ ∆ , (5.5.2a)

σxx ∝
ni
B

Sxx ∝
TB2∆

n2
c

∆B ≪ ∆ , (5.5.2b)

σxy ∝
nc
B

Sxy ∝
niTB

n2
c

∆B ≫ ∆ , (5.5.2c)

σxy ∝
nc
B

Sxx ∝
niTB

2∆

n3
c

∆B ≪ ∆ . (5.5.2d)

The different scalings of the transport coefficients obtained in this chapter are con-
sistent with other experimental and theoretical studies found in the literature. These
related studies are summarized in Tab. 5.1. In the following, we give a detailed de-
scription of our results and explain what is new and how they are connected to the
studies found in the literature.

First, we discuss the magnetoconductivity. This was previously studied in the
massless case using the 2× 2 Weyl Hamiltonian [43, 114–116]. The finite mass results
shown in this dissertation are new results.

We showed that the Hall conductivity in the clean limit is inversely proportional
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Scaling Mass term Experimental studies Theoretical studies

σxx ∝ B−1

∆B ≫ ∆

[68, 69, 81, 90–92, 95] [43, 114–116]
σxy ∝ B−1

Sxx ∝ B
[80, 83, 96]

[117]

Sxy ∝ B present study

σxx ∝ B−1

∆B ≪ ∆ not studied yet present study
σxy ∝ B−1

Sxx ∝ B2

Sxy ∝ B2

Table 5.1: A review of the previous experimental and theoretical results
found in the literature and the new results of the present dissertation for
the scaling of the transport coefficients.

to the magnetic field and it is independent of the mass term and temperature. This
magnetic field dependence was shown previously in the massless case.

In the case of σxx impurities are necessary to get a non-zero result. We have
shown that the magnetic field dependence of the scattering rate directly affects the
magnetic field dependence of the conductivity. The screened charged impurities are
necessary to reproduce the B−1 dependence of the conductivity and thus the linear
magnetoresistance, consistently with previous studies in the massless case [43, 114–
116]. We calculated the vertex correction and showed that it is negligible for realistic
parameter regimes, which justifies the assumptions in previous studies. In the case of
finite mass term we showed that the high field limit is qualitatively the same as in the
massless case i.e. proportional to B−1 but with different numerical prefactors.

We calculated the magnetoresistance and recovered the linear magnetoresistance
observed in many experimental studies [68, 69, 81, 90–92, 95]. At low fields, ϱxx for the
massive and massless cases behave very similarly. In addition to the SdH oscillations,
ϱxx is proportional to B if we assume a phenomenological scattering rate as Γ ∝ B. On
the other hand, if we use the scattering rate calculated from the Born approximation
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we get ϱxx ∝ B1/3 as in Ref. [114].
We have seen that the temperature dependence is not so relevant. It decreases the

SdH oscillations but it does not affect the overall magnetic field dependence. This is
consistent with experimental results [68, 90–92]. The temperature dependence in the
experimental results is mainly caused by the normalization using the zero field conduc-
tivity, which is strongly temperature dependent.

Finally, we discuss the magnetothermopower. This was discussed previously in the
massless case using a theory where the entropy density is used to calculate the Seebeck
coefficient in a magnetic field [117]. A microscopic description using linear response
theory employed in this dissertation was not discussed before in the literature.

Using the Mott-formula we studied the Seebeck and Nernst coefficients. We as-
sumed that the Hall conductivity is larger than the diagonal conductivity, and thus
the Hall-angle is large. This is a reasonable assumption if the impurity density is low
and it is consistent with experimental results [95]. With this Sxx is linear in the mass-
less case consistently with Ref. [117]. In contrast, in the massive case the Seebeck
coefficient increases quadratically with the magnetic field. This is also consistent with
the experimental result for massive Dirac electrons [80, 83, 96], where they found the
thermopower to be linear, since the magnetic field is not high enough in the experiment
to see the different behavior. While the qualitative difference does not appear in the
conductivity, we see it in the Seebeck coefficient, but only at very high fields. As we
saw the Nernst coefficient behaves very similarly to the Seebeck coefficient. This is
mainly caused by the fact that the Hall angle saturates at high fields, which makes
Sxy ∝ Sxx.





Chapter 6

Summary and outlook

We presented a microscopic formalism based on linear response theory to calculate
magnetotransport in solid state systems. We studied both the low magnetic field and
high magnetic field cases. As we saw the formalism and approximations used are very
different for the two cases. We applied these methods to study Dirac systems in mag-
netic fields. In the following we review the most important results presented in the pre-
vious chapters. Furthermore, we present some unsolved problems and future prospects.

In Chapter 4 we studied the low magnetic field dependence of the magnetoconduc-
tivity. We expressed the Hall conductivity (4.2.9) and longitudinal magnetoconduc-
tivity (4.2.14) up to linear order of the magnetic field assuming small scattering rates.
These expressions were not derived using a microscopic theory so far and are new
results in this dissertation. The magnetoconductivity is expressed in terms of energy
derivatives, the Berry curvature, and the orbital magnetic moment. The terms contain-
ing the Berry curvature were previously explained using the semiclassical Boltzmann
theory using the anomalous velocity, but the term containing the orbital magnetic
moment is not present in these previous studies.

We discussed that in systems where the time reversal symmetry is broken it is pos-
sible to produce a linear longitudinal magnetoconductivity. As a simple example where
this effect is present we studied tilted Weyl semimetals. This system was studied pre-
viously using the Boltzmann transport theory. We reproduced the semiclassical result
(4.3.8a) with our microscopic theory and showed that the linear longitudinal magneto-
conductivity has corrections connected to the orbital magnetic moment (4.3.8b). The
main finding of this chapter is the extra term in the magnetoconductivity related to
the orbital magnetic moment and the effect of it in the case of tilted Weyl semimetals.
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This term does not affect the qualitative behavior but modifies the quantitative value
of the magnetoconductivity.

Our formalism is general and can easily be applied to any system and can be gen-
eralized to thermoelectric transport or higher orders of the magnetic field. This opens
a new pathway to theoretically study low magnetic field magnetotransport.

In Chapter 5 we studied the thermoelectric transport coefficients of a massive Dirac
fermion gas in high magnetic fields using the formalism described in Chapters 2 and 3.

The novel results of this chapter are connected to the finite mass term, which
was not studied in the high magnetic fields. We showed that the mass term becomes
relevant at high fields or low carrier densities and the energy scale that the mass term
has to be compared to is ∆B = 2vℏ2π2ne/eB.

We calculated the transverse magnetoconductivity and transverse magnetother-
mopower and gave analytic scalings (5.5.2) for these as a function of the magnetic
field, which is the main result of this chapter. These results and their connection to
previous findings are summarized in Tab. 5.1.

We found that the transverse magnetoconductivity is inversely proportional to the
magnetic field. This is consistent with the linear magnetoresistance observed in exper-
iments. The finite mass term does not cause a qualitatively different result and the
scaling remains B−1 for finite mass terms. In the case of the transverse magnetother-
mopower at high magnetic fields a qualitatively different behavior occurs between the
massless and massive cases. In the massless case we got a linear increase while in the
massive case the increase is quadratic.

We showed that the temperature range where the low temperature approximation
can be applied expands with increasing magnetic fields. This means that at high
magnetic fields, the temperature dependence of the magnetoconductivity is negligible.
And in the case of the thermoelectric transport coefficients, the linear temperature
dependence persists to higher temperatures when a magnetic field is applied.

The formalism described by us works very well at high magnetic fields. It is com-
pletely general and it can be used to study other topological systems in the quantum
limit, and gives a robust method to study the high field magnetotransport in solid state
materials.

In the following we discuss some future problems, that are beyond the scope of
this dissertation. The low magnetic field formalism was developed for the linear order
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of the magnetic field. Our plan for the future is to extend the formalism to higher
orders of the magnetic field. The higher order we study the more complicated the
formalism becomes (e.g. in the quadratic order there will be six Green’s functions and
six current operators), which makes the problem very challenging. The formalism can
also be extended to study thermoelectric components, and it could be used to study
non-trivial effects in the Seebeck and Nernst coefficients.

In the high magnetic field description we needed several assumptions in order to be
able to calculate the transport coefficients. The general problem is very complicated
with many multivariate integrations, but in order to better study the low magnetic field
behavior a more accurate calculation for the scattering rate and impurity potential is
needed.

At lower magnetic fields we saw very strong oscillations in the scattering rate, which
are caused by only using the first Born approximation. An important improvement
would be the self-consistent Born approximation, which is a numerically very challeng-
ing problem. Furthermore, using the static and long-wave limit in the random phase
approximation is the simplest way to include the electron-electron interaction for the
screening. An improvement would be to take into account the frequency and momen-
tum dependence of the polarization function and thus the screening wavenumber. The
assumption of a simple screened Coulomb potential might not be sufficient to describe
all the effects properly.

The ultimate goal of the theoretical study of magnetotransport is to connect the
low field and high field descriptions with a continuous curve and have a consistent
description that works for any system. This is a very challenging task with still a lot of
unsolved problems and inconsistencies. All things considered, the formalisms presented
in this dissertation bring us one step closer to achieve this goal, and help to deepen
our understanding of thermoelectric transport in magnetic fields.





Appendix A

Matsubara summations

A.1 Matsubara summation with branch cuts

The Matsubara summations in this dissertation are mainly in the form of:

C(iωλ) = − 1

β

∑
n

g(iεn, iεn + iωλ) , (A.1.1)

where the function g contains Green’s functions with arguments iεn or iεn + iωλ. A
simple example is (this appears in Sec. 3.2.1):

g(iεn, iεn + iωλ) = Ga(iεn)Gb(iεn + iωλ) . (A.1.2)

In general there can be any number of Green’s functions with any kind of indices.
Because of the sign changing properties of the scattering rate at Im{ε} = 0, g has two
branch cuts and this type of summation can be transformed to four ordinary integrals
using the residue theorem [19]. We first show this on the example given in Eq. (A.1.2).
The Matsubara summation can be transformed into a contour integral as shown in the
left side of Fig. A.1:

C(iωλ) = − 1

β

∑
n

Gb(iωn + iωλ)Ga(iωn) =

∮
C

dz
2πi

Gb(z + iωλ)Ga(z)f(z) , (A.1.3)

where f(z) is the Fermi-Dirac function:

f(z) =
1

eβz + 1
, Res

z=iωn

[f(z)] = − 1

β
. (A.1.4)
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Figure A.1: The left side shows the contour integral equivalent to the
Matsubara summation. The right side shows this same integral transformed
to four ordinary integrals. The crosses show the singularities of the Fermi-
Dirac distribution. The dashed lines show the branch cuts of g in Eq.
(A.1.1).

The contour integral can be transformed to four line integrals as show in the right
side of Fig. A.1:

CR(ω) =

∞∫
−∞

dε
2πi

f(ε)

[
Gb(ε+ ω,+Γb(ε+ ω))Ga(ε,+Γa(ε))−

−Gb(ε+ ω,+Γb(ε+ ω))Ga(ε,−Γa(ε))+

+Gb(ε,+Γb(ε))Ga(ε− ω,−Γa(ε− ω))−

−Gb(ε,−Γb(ε))Ga(ε− ω,−Γa(ε− ω))

]
, (A.1.5)

where:
Ga(z,±Γa(z)) :=

1

z + µ− Ea ± iΓa(z)
, (A.1.6)

and we performed the analytic continuation in the frequency iωλ → ω + i0+. It is
useful to shift ε by the chemical potential, and define the retarded and advanced
Green’s functions:

GR
a (ε) :=

1

ε− Ea + iΓa(ε)
, GA

a (ε) :=
1

ε− Ea − iΓa(ε)
. (A.1.7)
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With this the Matsubara summation becomes:

CR(ω) =

∞∫
−∞

dε
2πi

f(ε− µ)

[
GR
b (ε+ ω)GR

a (ε)−GR
b (ε+ ω)GA

a (ε)+

+GR
b (ε)G

A
a (ε− ω)−GA

b (ε)G
A
a (ε− ω)

]
. (A.1.8)

This same derivation works for any number of Green’s function, and the general
Matsubara summation can be expressed as:

CR(ω) =

∞∫
−∞

dε
2πi

f(ε− µ)
[
gRR(ε, ε+ ω)− gAR(ε, ε+ ω) +

+gAR(ε− ω, ε)− gAA(ε− ω, ε)
]
, (A.1.9)

where the upper indices of g show the retardedness of the Green’s function with the
corresponding argument. In our previous example:

gXY (ε, ε+ ω) = GX
a (ε)G

Y
b (ε+ ω) . (A.1.10)

In the case of the conductivity only the ω → 0 limit is important. Since in
Eq. (3.2.5a) we have to divide by ω, the limit we are interested in is C = lim

ω→0

CR(ω)
ω

:

C =

∞∫
−∞

dε
2πi

f ′(ε− µ)
[
gAR(ε, ε)− gAA(ε, ε)

]
+

+f(ε− µ)∂ω
[
gRR(ε, ε+ ω)− gAA(ε, ε+ ω)

]∣∣
ω=0

. (A.1.11)

A.2 Integrals of Green’s functions
From now on we assume Γa(ε) ≡ Γ and Γ → 0. This means that we only keep the
highest order terms in Γ and neglect anything O(Γ0). We substitute the infinite integral
in Eq. (A.1.11) with a contour integral on the upper complex plane as in Fig. A.2.
The integrand will have several poles coming from the Fermi-Dirac distribution and
poles coming from the advanced Green’s functions inside the contour. After collecting
the residues coming from the Fermi-distribution and performing the Γ → 0, limit we
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×

×

× Ea + iΓ

× Eb − iΓ

0

C

ε

Figure A.2: Contour integration on the upper half plane. The crosses show
the singularities of the Fermi-Dirac distribution and the Green’s functions.

see that these contributions disappear since for Γ = 0 the difference between advanced
and retarded Green’s functions disappears, thus in the combination gAR − gAA and
gRR− gAA the singularities coming from the Fermi-Dirac distribution can be neglected
in the order of O(Γ0). This means that the integral can be substituted with the residues
coming only from the advanced Green’s functions in the upper plane1.

This means immediately that the term gRR can be neglected. It can also be shown
that gAA can only have contributions of O(Γ0). In order to have a higher order term
two poles with the same energy but with different retardednesses are necessary. In this
case in the residue a 1/(Ea−Ea+2iΓ) type of term appears which is of O(Γ−1). With
higher order poles higher orders of Γ−1 can also appear. Since in gAA all the poles are
on one side the contribution is O(Γ0).

This way C can be calculated as:

C =
∑
i

Res
{
f ′(ε)gAR(ε, ε), εi

}
, (A.2.1)

where εi are the singular points on the upper half plane of only gAR. Taking our simple

1This same argument can be done with the lower half plane and retarded Green’s functions, and
the results do not change.
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example in the case of b = a:

C = Res
{
f ′(ε)GA

a (ε)G
R
a (ε), Ea + iΓ

}
=
f ′(Ea)

2iΓ
. (A.2.2)

This is exactly the same result as using the usual GA
a (ε)G

R
a (ε) = πδ(ε − Ea)/Γ ap-

proximation. But in cases where there are more Green’s functions, this approximation
can not always be used. Our method provides a systematic approach to evaluate these
types of integrals. It is important to note that here f ′(Ea + iΓ) ≈ f ′(Ea) was used
since we are neglecting terms of O(Γ0). In cases with more Green’s functions the Taylor
expansion of f is necessary to get a proper result as we will see in the following section.

A.3 Summations in Chapter 4
In this section we give the results of the summations present in Eqs. (4.2.3) and
(4.2.11). We detail Caaaa and list the rest of the results. The gAR in this case is:

gAR = GR
aG

A
a (G

A
aG

A
a −GR

aG
R
a ) . (A.3.1)

using Eq. (A.2.2):

Caaaa =
1

2

(
f ′GR

a

)′′ ∣∣∣∣
ε=Ea+iΓ

− f ′ (GR
a

)3 ∣∣∣∣
ε=Ea+iΓ

= −f ′′ (GR
a

)2 ∣∣∣∣
ε=Ea+iΓ

+
1

2
f ′′′GR

∣∣∣∣
ε=Ea+iΓ

=

=
f ′′(Ea + iΓ)

4Γ2
+
f ′′′(Ea + iΓ)

4iΓ
≈ f ′′(Ea)

4Γ2
+
f ′′′(Ea)iΓ

4Γ2
+
f ′′′(Ea)

4iΓ
=
f ′′(Ea)

4Γ2
.

(A.3.2)

All the other summations can be done in a similar way. Here are the results for the
C summations in Eq. (4.2.3):

Caaaa =
f ′′
a

4Γ2
+O

(
Γ0
)
, (A.3.3a)

Cabba = O
(
Γ0
)
, (A.3.3b)

Caabb =
1

2iΓ

f ′
a − f ′

b

(Ea − Eb)2
+O

(
Γ0
)
, Cabab = Caabb , (A.3.3c)

Caaab =
1

4Γ2

f ′
a

Ea − Eb
+

i

4Γ

[
2f ′

a

(Ea − Eb)2
− f ′′

a

Ea − Eb

]
+O

(
Γ0
)
, Cbaaa = C∗

aaab, (A.3.3d)

Cabaa =
1

2Γ2

f ′
a

Ea − Eb
+O

(
Γ0
)
, Caaba = Cabaa , (A.3.3e)
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Caacb =
f ′
a

2iΓ

1

Ea − Eb

1

Ea − Ec
+O

(
Γ0
)
, Caacb = Cabac = −Ccbaa = −Cbaca , (A.3.3f)

Cabca = O
(
Γ0
)
, Ccaab = O

(
Γ0
)
, (A.3.3g)

Cabcd = O
(
Γ0
)
. (A.3.3h)

And here are the results for the D summations in Eq. (4.2.11):

Caaaa = Daaaa − D̃aaaa , (A.3.4a)

Dabba =
1

2iΓ

f ′
a

(Ea − Eb)2
+O

(
Γ0
)
, Dabba = D̃abba = Daabb = D̃aabb = Dabab = D̃abab ,

(A.3.4b)

Dbaaa = O
(
Γ0
)
, D̃baaa = O

(
Γ0
)
, (A.3.4c)

Daaab = Caaab , D̃aaba = −D∗
aaba , Daaab = Daaba = Dabaa , D̃aaab = D̃aaba = D̃abaa ,

(A.3.4d)

Daacb = Caacb , Daacb = D̃aacb = Dabca = D̃abca = Dabac = D̃abac , (A.3.4e)
Dcbaa = O

(
Γ0
)
, D̃cbaa = O

(
Γ0
)
, Dcaab = O

(
Γ0
)
, D̃caab = O

(
Γ0
)
, (A.3.4f)

Dbaca = O
(
Γ0
)
, D̃baca = O

(
Γ0
)
, Dabcd = O

(
Γ0
)
, D̃abcd = O

(
Γ0
)
. (A.3.4g)



Appendix B

Low field magnetoconductivity

B.1 Low magnetic field approximation
In this appendix we show how the formula for the current-current correlation function in
Eqs. (4.2.1a) and (4.2.1b) is calculated based on the microscopic formalism developed
by Fukuyama [30, 31].

We start by taking a general relativistic Hamiltonian1 as in Eq. (2.1.2):

H(p,x) = (p + eA)2

2m
+ V +

ℏ
4m2c2

σ · [∇V × (p + eA)] +
ℏ2

8m2c2
∇2V . (B.1.1)

The conductivity tensor is obtained using the current-current correlation as:

σµν = lim
ω→0

ie2

ω
ΠR
µν(ω) . (B.1.2)

the Matsubara current-current correlation function at finite q momentum is calculated
as:

Πµν(q, iωλ) = − 1

V

β∫
0

dτ eiωλτ ⟨Jqα(τ)J0β(0)⟩ , (B.1.3)

where Jqα is the Fourier transform of the current density operator defined as:

Jqµ(τ) :=

∫
d3rJµ(r, τ)e−iqr. (B.1.4)

The current operator was derived in Sec. 2.1.3. Here we need the current density
operator, which in the case of the Eq. (B.1.1) Hamiltonian can be divided into two

1We only focus on the orbital contribution and neglect the Zeeman term.
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contributions J (r) = J para(r) +J dia(r) where the paramagnetic current is

J para(r) = − iℏ
2m

(
Ψ†∇Ψ−∇Ψ† ·Ψ

)
+

ℏ
4m2c2

Ψ†(σ ×∇V )Ψ , (B.1.5)

and the diamagnetic current is

J dia(r) =
e

m
A(r)ϱ(r) , (B.1.6)

where ϱ(r) is the density operator, ϱ(r) = Ψ†(r)Ψ(r).

We will calculate σµν up to the first order with respect to the magnetic field. For
this it is useful to express the vector potential A(x) using a plane wave (similarly to
Refs. [30] and [34]) as:

A(x) = −iAqeiqx . (B.1.7)

With this vector potential, the magnetic field B = ∇× A becomes:

B(r) = q ×Aqe
iqx . (B.1.8)

In the q → 0 limit we get the constant magnetic field as B = q×Aq. If the magnetic
field points in the z direction:

qµAq,ν − qνAq,µ = εµνzB . (B.1.9)

To get a first order expression in the magnetic field, Πµν(q, iωλ) has to be expressed
up to the first order with respect to both Aq and q.

In the zeroth order the current-current correlation function Πµν(q, iωλ) in Eq. (B.1.3)
becomes:

Π(0)
µν (q, iωλ) = − 1

V

β∫
0

dτ
⟨
J para

qµ (τ)J para
0ν (0)

⟩
0
eiωλτ , (B.1.10)

where the thermal average is taken at zero magnetic field. This gives the zero field
conductivity discussed in Sec. 4.1.

In the first order with respect to the magnetic field, we have two contributions to
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Π
(1)
µν (k, iωλ). These are expressed as:

Πdia
µν (q, iωλ) = − 1

V

β∫
0

dτ
( ⟨

J para
qµ (τ)J dia

0ν (0)
⟩
0
+
⟨
J dia

qµ (τ)J para
0ν (0)

⟩
0

)
eiωλτ ,

(B.1.11a)

Πpara
µν (q, iωλ) =

1

V

β∫
0

dτ

β∫
0

dτ1
⟨
TτJ para

qµ (τ)J para
0ν (0)H1(τ1)

⟩
0
eiωλτ , (B.1.11b)

where H1 is the first-order Hamiltonian with respect to the vector potential:

H1 =
∑
α

∫
d3xΨ(x)∂H0

∂pα
eAαΨ(x) , (B.1.12)

where H0 is the Hamiltonian at zero magnetic field.

B.2 Luttinger-Kohn representation

In a periodic potential the Hamiltonian can be described with the (2.1.3) Bloch Hamil-
tonian:

Hk(p,x) =
(p + k)2

2m
+ V +

ℏ
4m2c2

σ · [∇V × (p + k)] + ℏ2

8m2c2
∇2V . (B.2.1)

This Hamiltonian acts on Bloch wave functions as:

Hk(p,x)uak(x) = Eakuak(x) . (B.2.2)

In the Luttinger-Kohn representation [135], the electron field operator is expressed
using Bloch wave functions as:

Ψ(x) =
∑
a,k

eikxuak0(x)cak , (B.2.3)

where k0 is a fixed momentum chosen conveniently for the later calculations. In this
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representation the current density operator and the density operator is written as:

J para
qµ =

∑
a,b,k

∫
d3xu†

ak0
Jk,µubk0

c†
a,k− q

2
cb,k+ q

2
,

ϱq =
∑
a,k

c†
a,k− q

2
c
a,k+ q

2
,

(B.2.4)

with
Jk,µ :=

∂Hk

∂k
=

ℏ2

m
(k + p) + ℏ2

4m2c2
σ ×∇V. (B.2.5)

Using the Eq. (B.1.7) form of the vector potential the Fourier component of the
diamagnetic current becomes:

J dia
q = −i e

m
Aqϱ0 , J dia

0 = −i e
m
Aqϱ−q . (B.2.6)

The first order Hamiltonian (B.1.12) can be expressed using the paramagnetic current
and the vector potential as:

H1 = −ieJ para
−q ·Aq . (B.2.7)

B.3 Current-current correlation

Using thermal Green’s functions, the first contribution to Πµν(q, iωλ) in Eq. (B.1.11b)
denoted as Πdia

µν (q, iωλ) becomes2:

Πdia
µν (q, iωλ) = − 1

βV

∑
n,k

ie

m
Tr
[
Jk,µGk+(iεn + iωλ)Gk−(iεn)

]
Aq,ν , (B.3.1)

where k± = k ± q/2, and Gk(iεn) is the thermal Green’s function in the momentum
representation defined in Eq. (2.1.8).

2In the q → 0 limit the O
(
q0
)

terms will vanish, so we neglected the terms independent of q.
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The second term Πpara
µν (q, iωλ) has two contributions:

Πpara
µν (q, iωλ) =

−1

βV

∑
n,α,k

ie

ℏ3
Tr
[
Jk,µGk+(iεn + iωλ)Jk+,νGk+(iεn)Jk,αGk−(iεn)

]
Aq,α+

+Tr
[
Jk,µGk+(iεn + iωλ)Jk,αGk−(iεn + iωλ)Jk−,νGk−(iεn)

]
Aq,α .

(B.3.2)

Next, we calculate the linear order in q of the total Π
(1)
µν (q, iωλ). Defining the

following differential operator

Dq :=
∑
µ

qµ
∂

∂kµ
, (B.3.3)

the thermal Green’s function can be expanded as:

Gk+(iεn) = Gk(iεn) +
1

2
DqGk(iεn) +O(q2) . (B.3.4)

In the following, we use these abbreviations: Jk,µ → Jµ, Gk(iεn) → G, and Gk(iεn +

iωλ) → G+. Using the previously defined Dq operator, we get:

Π(1)
µν (q, iωλ) = − 1

βV

∑
n,k

ie

2mℏ

{
Tr
[
JµDqG+G

]
Aq,ν − Tr

[
JµG+DqG

]
Aq,ν

}
−

− 1

βV

∑
n,α,k

ie3

2ℏ3
Aq,α

{
Tr
[
JµDqG+JνGJαG

]
+ Tr

[
JµG+DqJνGJαG

]
+

+Tr
[
JµG+JνDqGJαG

]
− Tr

[
JµG+JνGJαDqG

]
+

+Tr
[
JµDqG+JαG+JνG

]
− Tr

[
JµG+JαDqG+JνG

]
−Tr

[
JµG+JαG+DqJνG

]
− Tr

[
JµG+JαG+JνDqG

]}
.

(B.3.5)

Using the definition of the Green’s function the following Ward identity can be shown
to hold:

GJµG =
∂

∂kµ
G . (B.3.6)

Furthermore, from the definition of Jµ in Eq. (B.2.5), we can see that:

DqJµ =
ℏ2

m
qµ . (B.3.7)
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Using these identities we can get an expression for the current-current correlation
function that is proportional to the gauge invariant combination qαAq,β − qβAq,α:

Π(1)
µν =− ie

2mℏ
1

βV

∑
n,k,α

Tr[JµG+JαG+G− JµG+GJαG](qαAq,ν − qνAq,α)−

− ie3

2ℏ3
1

βV

∑
n,k,α,β

(qαAq,β − qβAq,α)×

×
{

Tr[JµG+JαG+JνGJβG] + Tr[JµG+JνGJαGJβG] + Tr[JµG+JαG+JβG+JνG]

}
.

(B.3.8)

In this final expression we can substitute qαA
q
β − qβA

q
α with εαβzB as explained in

Eq. (B.1.9).
To get the expressions in the main part of the dissertation in Eqs. (4.2.1a) and

(4.2.1b) some transformations are needed. Using the Ward identity and partial inte-
grations, for example, the following identity holds:

∑
k
JxG+JyGJxGJyG = −

∑
k

ℏ2

m
JxG+GJxG+ JxG+JyG+JyGJxG+ JxG+JyGJyGJxG .

(B.3.9)

Using other similar identities to this one, we get a more compact expression for the
Hall conductivity and longitudinal conductivity:

Π(1)
xy (iωλ) = −ieB

βV

∑
n,k

Tr[JxG+JyGJxGJyG− JxG+JyG+JxG+JyG] , (B.3.10a)

Π(1)
zz (iωλ) = −ieB

βV

∑
n,k

Tr[JzG+JzGJxGJyG− JzG+JyG+JxG+JzG] . (B.3.10b)
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