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Abstract 

 

 GIS-based Susceptibility Analysis and SAR-based Detection for the 

Landslides Triggered in 2018 Hokkaido Eastern Iburi Earthquake 

(2018年北海道胆振東部地震の土砂災害に関する 

GISを用いた危険度評価と SARを用いた検出に関する研究) 

 

The extensive landslides triggered in 2018 Hokkaido Eastern Iburi Earthquake 

brought valuable data, information, experience, and lessons for future landslide 

disaster management, while causing big casualties and damage. This research aimed 

to make full of these data and experience to understand the landslide event, learn from 

it, and to suggest a procedure benefitting pre-event and post-event landslide disaster 

management in the future.  

The first objective is to understand the landslide event by collecting and analyzing 

spatial data of landslide inventory and conditioning factors (topography, geology, soil, 

surface vegetation, precipitation, and ground motion) as well as previous reports and 

studies concerning the landslide event. 

 It was found that most landslides were shallow, small-sized, densely 

distributed, and moved down several meters’ volcano activity related soil 

layers with long run-out and high mobility. The slope gradient of the 

collapsed slopes was relatively lower comparing with other landslides, owing 

to local topography, geology, and soil characteristics. The earthquake was the 

direct trigger of the landslide event, and the combinational impact of several 

conditioning factors, especially the special soft porous soil types, the 

accumulation of previous precipitation in the soil, and the shaking of the 

ground motion, was the real cause of these extensive landslides. 

 The special characteristics of the landslide event remind us to pay attention to 

physical properties and dynamic characteristics of the volcano activity related 

soil. Moreover, areas with special characteristics should also be taken 

seriously, when landslide triggers occur even with a low intensity, as the 

combinational impact of several conditioning factors that are not very 

significant might cause a severe landslide event.  
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The second objective is to develop a suitable landslide susceptibility model using 

the collected spatial data of landslide inventory and conditioning factors to facilitate 

pre-event landslide disaster management in the future. Data collection, data pre-

processing, indicator effectiveness and correlation analysis, landslide presence and 

absence ratio analysis, training and validation dataset preparation, and model 

construction were carried out step by step. 

 It was found that the standard curvature, one-week cumulative precipitation, 

and peak spectral acceleration of 0.3s were relatively more effective among 

curvature-, rainfall-, and earthquake-related indicators, owing to the 

parameter comprehensiveness, local soil water storage capacity and 

evaporation condition, and predominate period of local soil, respectively. 

 The ratio of 1:1 between landslide presence and absence was more ideal for 

landslide statistical susceptibility analysis and was suggested, as the more 

non-landslide cells involved in analysis, the lower recall value, that is, the 

more landslide cells would be classified as non-landslide cells.  

 The constructed landslide susceptibility model using the analyzed indicators 

under the ideal ratio achieved a good accuracy for both training and validation 

dataset in this case, and is expected to provide some information for 

understanding future landslide occurrence susceptibility, by updating the 

changed conditioning factors. 

The third objective is to explore favorable SAR-based landslide detection 

approaches by analyzing different features in captured SAR data to benefit post-event 

landslide disaster management in the future. Principal analysis, parameter calculation, 

qualitative interpretation, quantitative analysis, and landslide detection were executed 

step by step. Moreover, a simple comparison between ALOS-2 and Sentinel-1 

products, and a combinational application of landslide susceptibility map and SAR-

based landslide detection were also performed. 

 It was found that the intensity difference (d) had both lower-value and higher-

value pixels in landslide areas, as triggered landslides smoothed hillsides 

causing backscattering decrease, and roughened foothill areas causing 

backscattering increase. The correlation (r, ∆𝑟) and coherence parameters (γ, 
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∆γ) had more or less some lower-value pixels in landslide regions due to the 

relatively larger ground changes and decorrelation induced by landslides. 

 The sensitivity of parameters to other minor changes influenced the 

performance of them for landslide detection in these vegetation areas and also 

the optimal window size for parameter calculation. The more sensitive the 

parameter, the more inteference from other minor changes, and therefore the 

worse the performance and the larger the window size needed to filter and 

blur these inteference.  

 As the calculation window size increased, the performance of the intensity 

parameters first increased and then decreased. A value around 25%~75% 

cumulative distribution curve of landslide sizes could achieve relatively 

favorable results. A relatively smaller value within this range was better for 

intensity difference, while a relatively larger value within this range was 

better for correlation coefficient parameters. 

 The correlation difference ∆𝑟  and the new intensity difference parameter 

𝑑𝑎𝑏𝑠2  showed favorable performance and were recommended for future 

application. Particularly, 𝑑𝑎𝑏𝑠2  achieved the best performance and can be 

derived very easily from only one pre-event and one post-event SAR intensity 

images. 

 Sentinel-1 products did not achieve as good results as ALOS-2 products for 

landslide detection in this case. It might relate to the lower spatial resolution 

of the Sentinel-1 products and also the difference between the looking 

direction, imaging micorwave, and polarization between these two products. 

If possible, a further study by controlling different variables might be better 

to understand and compare these influences. Nevertheless, Sentinel-1 

products are free data and have a higher temporal resolution than ALOS-2 

products. As the intensity difference calculated by them also had some clear 

different characteristics in landslide areas, they are also valuable data that 

could be used to understand the general landslide condition following a 

disaster.  

 In a specific case, a comprehensive consideration of different factors (e.g., 

spatial resolution, temporal resolution, and image coverage) is needed so that 

appropriate products can be applied to achieve the study or application 
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purpose properly, as there are always trade-offs among different kinds of 

resolution and compromise between image resolution and image coverage.  

 The combinational application of landslide susceptibility map and SAR-based 

landslide detection could help improve landslide detection results, limit the 

scope of SAR image for processing, draw attention to dangerous areas, and 

provide more reasonable information for rescue and response operations. 

Based on these studies and results, corresponding to a disaster process in the future, 

a following management procedure is suggested: before landslide occurrence, 

updating predicted or actual rainfall and/or earthquake terms in the landslide 

susceptibility map to understand landslide occurrence risk in different areas and 

remind local people for preparation; after the landslide, detecting landslides rapidly 

by suggested SAR features and combining them with the updated susceptibility map 

to provide information for arranging rescue and response operations efficiently and 

effectively. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

1.1.1. The 2018 Hokkaido Eastern Iburi Earthquake 

On September 6th, 2018, just one day after the powerful Typhoon Jebi passed, an 

earthquake with a moment magnitude of 6.6 Mw (Japan Meteorological Agency 

(JMA) scale: 6.7Mj) struck the eastern Iburi region in Hokkaido Prefecture, North 

Japan, and triggered extensive landslides near the towns of Atsuma, Mukawa, and 

Abira. This earthquake, officially known as the 2018 Hokkaido Eastern Iburi 

Earthquake, is an intraplate earthquake occurred at the epicenter of 42.686°N, 

141.929°E near Tomakomai with a depth of 35km, at 03: 07: 59 am local time (JST) 

(UTC: 18: 07: 59 on 5 September 2018) (Figure 1.1) (USGS; Wang et al., 2019). It 

was a reverse dip-slip fault earthquake with a pressure axis in the ENE-WSW 

direction. Shaking was felt strongly in Hokkaido and Aomori prefecture. The 

maximum intensity of the earthquake was IX on the U.S. Geological Survey (USGS) 

scale (Figure 1.1) and 7 on the JMA scale. 

This earthquake caused 42 fatalities, 762 injuries including 31 serious injuries, 

462 totally-collapsed houses, 1,570 severally-damaged houses, and 12,600 slightly-

damaged houses according to Japan Geotechnical Society (JGS) (2019). Besides, it 

has also severely disrupted the electrical service, transportation, and communication 

in local area, leaving 5.3 million residents without power and causing a damage of 

over 367.5 billion yen (Mainichi Shimbun, 2018). Due to the fires broke out in the 

earthquake, the Hokkaido Electric Power Company's coal-fired power plant in 

Atsuma was heavily destroyed, causing 2.95 million houses in Hokkaido without 

power. Moreover, some water supply facilities were damaged, leading to 68,249 

houses in 44 municipalities without water. Some roads and bridges were also blocked 

or damaged by the earthquake-triggered landslides or the earthquake-caused 

liquefaction, becoming impassable. Furthermore, regional economic activities were 

seriously affected. Farming and fishing industries suffered severe losses owing to 

transportation closure and no power for operating equipment, cooling, and 
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refrigerating. Tourism industry was influenced due to the impacts and damage caused 

by the earthquake and the perception that the area was in danger of aftershocks. 

 

Figure 1.1. Shakemap for the 2018 Hokkaido Eastern Iburi Earthquake (USGS). 

 

1.1.2. Landslides Triggered by the 2018 Hokkaido Eastern Iburi Earthquake 

This earthquake triggered extensive densely distributed landslides near the towns 

of Atsuma, Mukawa, and Abira in the north of the earthquake epicenter, due to the 

complex interaction between the ground motion, rainfall, and special soil types of 

volcano ash here. The number and total area of the triggered landslides were 

approximately 6,000 and 46 km2, which were said to be the largest in Japan ever since 

Meji Era (1868-1912) (Osanai et al., 2019). The total volume of the landslides was 

around 30 milion m3 according to the Ministry of Land, Infrastructure, Transport and 

Tourism (MLIT) (2018).  
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Most of the landslides were shallow, moving down several meters’ volcano 

activity related soil layers with high mobility and long run-out and leaving the upper 

slip surface exposed without overlapping slide mass. Several deep-seated landslides 

were also found in the southeast of this area, including one that formed a landslide 

dam in the Hidaka-Horonai river. The landslides were mainly spoon and planar types 

occurred in valley topography and planar slopes, respectively, with a small to medium 

size, similar to the rainfall-induced landslides (Yamagish and Yamazaki, 2018). 

Figure 1.2 shows the overall distribution and several different types of the landslides. 

 

Figure 1.2. Landslides triggered by the 2018 Hokkaido Eastern Iburi Earthquake (Osanai et 

al., 2019): (a) Translational earth slide in Yoshino area (shallow landslide); (b) Translational 

earth block slide in Chikeppe River area (shallow landslide); (c) Earth flow in Tomisato area 

(shallow landslide); (d) Translational rock slide that formed the landslide dam (large deep-

seated landslide). 
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The main landslide materials were several meters’ volcano activity related soil 

layers erupted from several volcanoes in 40km-70km west of the earthquake epicenter 

(mainly Shikotsu caldera, Eniwa volcano, and Tarumae volcano). The predominant 

bedrock was Middle to Late Miocene marine and non-marine sediments, which 

mainly includes sandstone, mudstone, and conglomerate. The soft and porous 

volcanic soil layers above the hard bedrock inundated by previous accumulated 

rainfall and then ruptured by the shear force of the earthquake, which might be the 

mechanism of most induced landslides. 

These landslides triggered by the earthquake were thought as an important reason 

for the big casualties and damage caused by the disaster. Among all of the 42 deaths, 

36 people were killed by the earthquake-triggered landslides in Atsuma region. 

Especially, in Yoshino area  (Figure 1.3), many houses were swepted away by the 

landslides, causing 19 of 34 residents killed. Moreover, the debris carried out by the 

landslides involved many houses, and blocked and damaged some roads, bridges, 

rivers, and paddies at the foot of the mountains, causing damage to infrastructures and 

leading to big property damage and economic losses.  

 

 

Figure 1.3. Landslides in Yoshino area (Google Earth). 
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1.2.Problem Statement 

As is said, present and past are keys to the future. While causing big casualties 

and damage, this disaster also should make us think about the future, i.e., what caused 

the damage and how to reduce the damage for such disasters in the future. For instance, 

if there was a management procedure corresponding to the disaster process, the 

causalities and damage caused by the disaster might have been reduced. On one hand, 

before the disaster, if there were some models, systems, or maps that can be used to 

understand the dangerous condition of landslide occurrence in different areas, local 

people might have prepared better for the disaster. On the other hand, after the disaster, 

if there were some rapid ways to understand the landslide condition, more time might 

have been saved for emergency response and therefore more trapped people might 

have been saved. Besides, the fact that the disaster occurred in the early morning of 

local time also reminded us that the rapid way might be more reliable if it could work 

independent of sun light and weather condition.  

Moreover, while bringing casualties and damage, the disaster also provided us 

with abundant data and information that can be used to understand and learn from the 

disaster. Collecting relevant data and performing related analyses of the disaster might 

provide useful information for preferable landslide disaster management in the future. 

For instance, the spatial dataset of actual landslides and causative factors (e.g., ground 

motions and precipitation) can be collected and used to understand the characteristics 

and mechanism of the landslides, and to analyze the susceptibility condition of 

landslide occurrence in this area. The remote sensing (RS) data captured during the 

landslide event can be collected and applied to explore rapid landslide detection 

approaches, benefitting emergency response and rescue for landslide disasters in the 

future. 

To explore how to apply the data and information mentioned above to achieve the 

thoughts mentioned above, previous research, methodology, and approaches were 

reviewed and studied. As there were few studies concerning the whole procedure, 

studies related to each parts were reviewed seperately as follows. 

 

1.2.1. Landslide Susceptibility Analysis for Pre-event Landslide Disaster 
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Management 

There are generally three different kinds of approaches that can be used to 

construct models, maps, or systems for understanding dangerous condition of 

landslide occurrence, including deterministic approach, probabilistic approach, and 

statistical approach. The deterministic approach analyzes the landslide mechanism by 

infinite slope models and hydrological models. It requires detailed information of soil 

strength, soil depth, and hydrological parameters, which are difficult to collect for a 

large-scale area. The probability approach calculates an annual exceedance 

probability of certain magnitude of landslide failure at a specific slope by probabilistic 

models according to multi temporal landslide inventories. It requires long-term 

historical landslide records of similar types, which might be difficult to collect 

sufficiently and completely. Moreover, different types of landslides might be mixed 

(e.g., rainfall-induced landslides and earthquake-triggered landslides), if the history 

records were not very clear. The statistical approach constructs a landslide 

susceptibility, hazard, or risk model by analyzing the relationship between a series of 

landslides or an event-based landslide inventory and the corresponding landslide 

causative factors (e.g., earthquake and geology). It is difficult to be used for predicting 

landslide magnitude and run-out distance. 

As introduced above, different approaches have different advantages and 

disadvantages, and are suitable for different situations. Considering the fact that in 

cases like this one, it is difficult to collect the detailed information of soil and 

hydrological parameters or the series of similar historical landslide records due to the 

wide distribution and special characteristics of the landslides, the statistical approach 

is applied. By analyzing the relationship between the event-based landslide inventory 

and the corresponding landslide conditioning factors such as topography and rainfall, 

a landslide susceptibility map can be constructed, which may provide some useful 

information for preferably managing landslide disaster in the future. 

Over the years, various analyses have been carried out for the statistical approach-

based landslide susceptibility analysis of different types of landslides based on 

geographic information system (GIS) (Wang et al., 2005; Pardeshi et al., 2013; Lee, 

2015). Statistical analysis, such as discriminant analysis and logistic regression, and 

advanced machine learning approaches, such as decision tree, support vector machine, 
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and artificial neural networks, have all been explored for statistical landslide 

susceptibility analysis (Lee et al., 2008; Bai et al., 2010; Lee, 2014; Hong et al., 2015; 

Hong et al., 2016; Bui et al., 2016). Earthquake-induced landslides (Lee et al., 2008), 

rainfall-induced landslides (Chau et al., 2004), and storm event-induced landslides 

(Lee et al., 2008) have all been investigated as study subjects. Yet, most analyses 

usually only considered one exterior landslide conditioning factor depending on the 

need of local area  (e.g., rainfall, earthquake, or storm), as there was usually only one 

main triggering factor for each landslide event. This seems to be not very general, 

especially not very suitable for cases like this one, in which both rainfall and 

earthquake were considered as important exterior factors for the landslide occurrence.  

 

1.2.2. Landslide Detection for Post-event Landslide Disaster Management 

For landslide detection and understanding after a disaster, there are generally three 

main ways including field survey, optical remote sensing, and synthetic aperture radar 

(SAR) remote sensing. Field survey can provide very detailed information about a 

landslide event but takes time, especially for a wide area. Moreover, just after a 

disaster, it might be dangerous to go to the site, and the disaster area might be 

inaccessible due to damaged or blocked transportation. Optical remote sensing can 

provide very clear and intuitive images to understand the condition of landslide 

occurrence. However, it needs sunlight for imaging and cannot penetrate clouds due 

to the short wavelength of the applied visible light. As a result, it cannot be used at 

night and bad weather conditions, which may hamper its application as an emergency 

tool for landslide detection. For instance, it was said that there were almost no cloud-

free images for landslide detection in the first week following the 2015 Nepal 

earthquake (Burrows et al., 2019). SAR remote sensing actively transmits microwaves 

to ground targets and then receives the backscattered signals. It can provide data at 

both night and bad weather condition, as it works independent of sunlight and applies 

longer wavelength that can penetrate thick clouds. However, SAR data are relatively 

difficult to interpret comparing with optical images, and might not be able to provide 

results as accurate as field survey and optical remote sensing. 

In this study, considering the purpose of emergency application and the fact that 
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landslide event often occurred in bad weather condition (particularly rainfall-induced 

landslides) and sometimes at night like the one in this case, SAR remote sensing is 

applied. As time goes by after the landslides, when available and applicable, optical 

images can be applied and field survey can be carried out successively to obtain and 

more detailed information about the landslide event from other aspects. 

Over the years, SAR remote sensing has been widely explored for the monitoring 

of specific slow-moving landslides in a light-of-sight direction by various 

inteferometry techniques (Strozzi et al., 2005, Colesanti and Wasowski, 2006, Zhao 

et al., 2012, Tofani et al., 2013, Confuorto et al., 2017, and Zhao et al., 2018).  Yet, 

the application of it for landsldie detection has not been studied well. Several 

conducted studies were only concentrated on large individual landslides, catchments 

(Raspini et al., 2015; Yun et al., 2015; Xue et al., 2018), or dozens of landslides 

(Konishi and Suga, 2018). A couple of studies (Mondini, 2017; Burrows et al., 2019) 

focusing on large-scale landslide detection were also not for shallow landslides. The 

feasibility of SAR data for the detection of the densely distributed small and shallow 

landslides is not very clear. Moreover, there are several features and parameters in 

SAR data that can be used to measure ground changes, including intensity-related 

ones, phase-related ones, and polarimetry-related ones. But there are basically no 

studies to compare them and to give suggestions on which one is better or cost-

effective for application. 

 

1.3. Research Objective 

Based on the considerations in section 1.2, the general objective of this research 

is to make full use of the data, information, experience, and lessons brought by the 

landslide event to understand it, learn from it, and to suggest some procedure 

benefiting landslide disaster management in the future. More specifically, based on 

the landslides triggered in 2018 Hokkaido Eastern Iburi Earthquake, this study aims 

to: 

1. Understand the landslide event by collecting and analyzing the spatial data of 

landslide inventory and conditioning factors as well as previous reports and 

studies concerning the landslide event. 
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2. Develop a suitable landslide susceptibility model using the collected spatial data 

of landslide inventory and conditioning factors to facilitate pre-event landslide 

disaster management in the future. 

3. Explore favorable SAR-based landslide detection approaches by analyzing 

different features in captured SAR data to benefit post-event landslide disaster 

management in the future. 

After that, in the future, corresponding to a landslide disaster process, a following 

management procedure can be applied: before the disaster, updating the predicted or 

actual dynamic terms (e.g., rainfall and earthquake) in the landslide susceptibility map 

to understand the dangerous condition of landslide occurrence in different areas and 

to remind local people for reasonable preparation; after the disaster, detecting the 

induced landslides rapidly by suggested SAR features and combining them with the 

updated landslide susceptibility map to provide information for effective and efficient 

rescue and response operations.  

 

1.4. Research Methodology 

To achieve these objectives, the technologies of GIS and SAR remote sensing are 

applied. GIS is a computer system designed to manipulate various spatial and 

geographic data, and is very suitable for analyzing the relationship between landslide 

inventories and conditioning factors. It has become a popular technology applied in 

calculating and managing natural hazards including landslides since the middle of 

1980s (Chau, et al., 2004). By the use of GIS, various types of spatial data can be 

displayed, inventoried, and analyzed easily and conveniently. In this research, GIS is 

applied to understand the landslide event by analyzing landslide inventory and 

conditioning factor layers and to construct a landslide susceptibility model by the 

statistical analysis of logistic regression.  

Statistical analysis can construct a mathematical model by analyzing the 

relationship between the dependent variable (landslide occurrence in this case) and 

independent variables (landslide conditioning factors in this case). Comparing with 

the deterministic approach that explores slope failure mechanism by physical models, 

it does not require detailed physical parameters, such as soil strength, soil depth, and 
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hydrological parameters, which are difficult to collect in a large area (Lee, 2015). 

Moreover, the model constructed by the statistical analysis may be applied for 

landslide prediction, monitoring, and management in the future by updating the 

changed causative factors, based on the assumption that future landslides will occur 

under similar conditions of previous landslides.  

As one of statistical analysis approach, logistic regression can be used to model 

the relationship between a dichotomous dependent variable (landslide presence and 

absence in this case) and a set of independent variables (landslide conditioning factors 

in this case). It is efficient, highly interpretable, can be implemented relatively easily 

and quickly, and does not require the independent variables to have a normal 

distribution. Continuous data, discrete data, and category data can all be applied as 

independent variables in a logistic regression. It is applied to construct the landslisde 

susceptibility model in this case. 

Remote sensing is a technology used to acquire information about a phenomenon 

or object from a distance without physical contact. It can provide a valuable data 

source for landslide disaster study, owing to the capabilities of rapid response, no 

contact, and broad coverage. SAR is an important kind of active RS technology that 

transmits energies to the earth surface by itself and then receives backscattered 

energies. It is able to work at both night and daytime, as it does not need sun’s energy 

for imaging. Moreover, it applies microwave bands in the electromagnetic spectrum 

that have a relatively long wavelength and can penetrate clouds, which enables it to 

work in any weather conditions. Furthermore, several kinds of information in SAR 

data (e.g., intensity and coherence) have the potential for landslide detection, as they 

can be used to measure ground changes. In this research, SAR data are applied to 

explore landslide detection approaches.  

In specific implementations: 

 First, the spatial data of landslide inventory and conditioning factors 

(topography, geology, soil, surface vegetation, precipitation, and ground 

motion) will be collected from different sources, and then processed and 

analyzed in ArcGIS software to understand the general characteristics of the 
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extensive landslides, combining with previous reports on field surveys and 

research on mechanism study of this landslide event. 

 Then, based on the collected spatial data of landslide inventory and 

conditioning factors, the GIS-based statistical analysis will be performed to 

construct a suitable landslide susceptibility model in the study area. All data, 

either in a raster format or in a vector format, will be converted into a unified 

format for analysis. The effectiveness and correlation of the indicators for 

each conditioning factor will be analyzed to find the relatively effective ones 

and to eliminate the correlated ones for model construction. The selected and 

checked data will then be classified into two groups with one used for model 

training and another used for model validation. 

 After that, SAR products acquired for the influenced area during the disaster 

will be investigated to explore rapid landslide detection approaches. Potential 

information and parameters that can be derived from the captured products 

and have the ability to measure ground changes will be selected and calculated 

based on radar reflection mechanism, to facilitate rapid detection. Qualitative 

and quantitative analyses of these potential parameters and information will 

be carried out to find favorable and cost-effective ones for landslide detection. 

Landslides detected by the favorable SAR information and parameters will be 

compared with actual landslide inventory to check the reliability and accuracy. 

 

1.5. Structure of the Research 

In order to logically introduce how to use the methodologies mentioned in section 

1.4 to achieve the objectives mentioned section 1.3, there are totally seven chapters in 

this thesis. The details of each chapter are described below: 

Chapter 1 introduces the basic information of this research, including research 

background, problem statement, research objective, research methodology, and the 

structure of the research. The special landslide event caused by 2018 Hokkaido 

Eastern Iburi Earthquake reminded us to learn from it and to make a management 

procedure corresponding to landslide process for reducing casualties and damage. 

Considering the data availability, purpose of emergency application, and actual 
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situation of landslide disaster, GIS-based landslide susceptibility analysis and SAR-

based landslide detection were determined, even though there were several problems 

to be solved for their application in such cases. To explain how to use these analyses 

to achieve these objectives systematically and clearly, seven chapters were written 

orderly and logically in this thesis. 

Chapter 2 describes the important concepts and terminologies used in this research, 

including landslide, GIS, RS, SAR, disaster, and disaster management. The definition, 

causes, types, and impacts of landslides are first introduced to provide an 

understanding of the research subject. The concepts, basic knowledge, important 

terms, and advantages of GIS, RS, and SAR are then presented to explain the major 

technologies and tools applied in this research and why they are applied. The 

definition, classification, and impacts of disaster as well as the procedure and cycle 

for disaster management are finally described to help understand this research in a big 

picture of disaster study. 

Chapter 3 analyzes the characteristics of the landslides by collecting spatial data 

of landslide inventory and conditioning factors, and studying previous reports and 

research concerning this landslide event. A landslide inventory is applied to 

understand the sizes and distribution of the landslides. The raster or vector maps of 

topography, geology, soil, and surface vegetation, as well as the records of ground 

motion and precipitation before the disaster are collected from different sources, and 

used to analyze the characteristics of conditioning factors in landslides. Previous 

studies and reports on the landslide mechanism and field survey were also referred 

and combined to facilitate a better understanding of the landslide event. 

Chapter 4 executes a landslide susceptibility analysis using the collected data by 

a GIS-based statistical approach to facilitate pre-event landslide disaster management 

in the future. The landslide inventory is used as dependent variable and the 

conditioning factors are used as independent variables, respectively. All collected data, 

in either raster types or vector types, are converted into the same format for analysis. 

The effectiveness and correlation among the indicators of the conditioning factors are 

analyzed to select the relatively effective indicators and to exclude the correlated 

indicators for analysis. The dataset of the dependent variable and selected independent 

variables are then divided into two groups with one group used for model training and 
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another used for model validating. A landslide susceptibility model was finally 

constructed and validated by the training and validating dataset using a logistic 

regression. 

Chapter 5 explores rapid landslide detection approaches by the use of different 

features and information in SAR data to benefit post-event landslide disaster 

management in the future. Potential parameters and features that have the capabilities 

to measure ground changes and can be derived from the captured SAR products are 

first selected, calculated, and derived. Qualitative and quantitative analyses of these 

selected features are then carried out by visual observation and receiver operating 

characteristic (ROC) analysis, to compare their performances for landslide detection 

and to find the favorable ones. Landslides detected by the favorable SAR parameters 

are compared with actual landslide inventory to check the accuracy and reliability of 

the SAR-based landslide detection approaches. 

Chapter 6 investigates an additional application of landslide susceptibility map or 

landslide conditioning factors to the SAR-based landslide detection. For areas with an 

available landslide susceptibility map, the additional application of it to the SAR-

detected landslides can help draw attention to dangerous areas, improving the results 

and efficiency of landslide detection. For areas without such a map, the exterior 

conditioning factors of landslides (e.g., ground motion and precipitation) can be used 

to help narrow target areas for analysis and eliminate irrelevant areas. The interior 

conditioning factors of landslides (e.g., slope gradient and land use) can be applied to 

help exclude areas of no interest and areas where landslides are unlikely to occur. 

Chapter 7 summarizes the main conclusions, recommendations, limitations, and 

possible directions for future study. In order to understand the landslide event caused 

by 2018 Hokkaido Eastern Iburi Earthquake, the spatial data and studies concerning 

the landslides are collected, analyzed, and studied. In order to learn from it, a GIS-

based landslide susceptibility analysis and a SAR-based landslide detection are 

investigated for the application before and after a disaster, respectively. A 

combinational application of landslide susceptibility map and SAR-detected 

landslides is also simply explored and recommended for landslide disaster 

management in the future. Due to data availability and limitation in time and ability, 

there are some limitations in this work that can be further investigated. For instance, 
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polarimetry information in SAR data that should also have good performance for 

landslide detection has not been studied and compared in this case due to the data 

availability. 
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CHAPTER 2 

LANDSLIDE, GEOGRAPHIC INFORMATION SYSTEM (GIS), REMOTE 

SENSING (RS), DISASTER, AND DISASTER MANAGEMENT 

 

2.1. Introduction 

This chapter introduced the significant concepts and terminologies applied in this 

thesis, to facilitate the understanding of the entire research. The defination, causes, 

types, and impacts of landslides were first introduced to provide a general 

understanding of the research subject. The important concepts and terms in 

geographic information system (GIS), remote sensing (RS), and synthetic aperture 

radar (SAR) mentioned in the research were then explained to facilitate understanding 

the research tools and methodologies used in this work. The basic knowledge and 

general concepts of disaster and disaster management were finally presented to help 

understand the research in a big picture of disaster research. 

 

2.2. Landslide 

2.2.1. Definition and Causes of Landslides 

Landslides can be defined as the movement of a mass of rock, debris, or earth 

down a slope (Cruden, 1991). They are a type of "mass wasting," which denotes any 

down-slope movement of soil and rock under the direct influence of gravity, and 

occurs when forces acting down-slope (mainly due to gravity) exceed the strength of 

earth materials that compose the slope (USGS).  

Factors that can increase down-slope forces and factors that can decrease earth 

strength are both able to cause landslides, including natural phenomenon (e.g., 

earthquake, rainfall, volcanic activity, snowmelt, weathering, and erosion) and human 

activities (e.g., blasting, underground mining, cutting, and draining of reservoirs). A 

specific landslide event usually has multiple causes and factors. Landslides due to 

earthquakes or other factors can also occur underwater, which are called as submarine 

landslides and sometimes cause tsunami. Figure 2.1 shows several examples of 

landslides induced by different factors. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.1. Examples of landslides induced by different factors: (a) Earthquake-triggered 

landslides in Las Colinas, Santa Tecla in 2001 (García-Rodríguez and Malpica, 2010); (b) 

Rainfall-induced landslides in Panaon Island, Southern Leyte in 2003 (PHIVOLCS); (c) 

Continued mining-induced landslides in Hpakant, Myanmar in 2018 (The Landslide Blog); 

(d) Dam landslides in Ituango, Colombia, 2018 (Global Forest Coalition). 

 

2.2.2. Basic Types of Landslides 

Landslide types are usually classified based on the type of involved materials and 

the type of movement (Figure 2.2). The type of materials involved in landslide mass 

includes rock, soil, or both of them. Soil is usually described as earth if its main 

composition is finer or sand-sized particles, and described as debris if its main 

composition is coarser fragments. The type of movement includes falls, topples, slides, 

spreads, and flows, which describes how the landslide mass is displaced due to 

internal failure mechanism. Rock falls and debris flows are the two most prevalent 

occurring landslides. 
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Figure 2.2. Basic landslide types (BGS). 

 

Falls are sudden movements of debris, earth, or rock that separate from a cliff or 

slope. They usually take place because of gravity force, mechanical weathering, or 

earthquake. Topples are the forward spinning and movement of debris, earth, or rock 
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from a slope. They usually occur around an axis near or at the bottom of a rock block 

and generate a debris cone below the slope. Slides, including rotational and 

transitional ones, are moderate mass movement whereby the debris, earth, or rock 

breakaway from stable underlying materials. The material consistency can be 

maintained in slides. Spreads are lateral extension followed by tensile fractures that 

usually occur on gentle topography and include lateral spreads, block spreads, and 

liquefaction spreads. Flows are spatially continuous movements where the shear 

surfaces are closely spaced, short-lived, and usually not preserved. According to 

landslide materials, there are earth flows, debris flows, mudflows, debris avalanche, 

and creep. Moreover, landslides can also include more than one types of movements, 

forming the “complex landslides” (EARTH ECLIPSE; Highland and Bobrowsky, 

2008). An example of each type of landslide was shown in Figure 2.3 to provide an 

intuitive understanding. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 2.3. Examples of different types of landslides (Highland and Bobrowsky, 2008; Hungr 

et al., 2014): (a) Rock falls/slides; (b) Block topples; (c) Rotational slides; (d) Translational 

slides; (e) Lateral spreads; (f) Debris flows; (g) Volcanic mudflows; (h) Debris avalanche; (i) 

Earthflows; (j) Creep.  

 

Associating with landslide types, the area of landslides can range from less than a 

few square meters (e.g., shallow soil slides) to hundreds even thousands of square 

kilometers (e.g., large submarine landslides). The displacement velocity of landslides 

can range from a few millimeters per year to several meters per second. Depending 

on landslide displacement velocity, risk of landslides can range from class one 

(mitigation works can reduce the risk from slow-moving slides) to class seven (there 
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is an expectation for the loss of life) (Cruden and Varnes, 1996; Schlogel, 2015). 

 

2.2.3. Impacts of Landslides 

Landslides represent problematic and widespread geo-hazards worldwide, causing 

casualties, property damages, and economic losses in mountainous areas globally 

(Zhao and Lu, 2018). Communities at the foot of mountains and hills are at a greater 

risk for destruction by landslides. A substantial landslide carries large amounts of 

rocks, heavy debris or earth, having the capacity to kill many people, cause serious 

damage to infrastructures (e.g., communication, transportation, power, electricity 

service, and buildings), and isolate remote communities for emergency rescue. The 

property value loss, transportation disruption, and cost used to rescue casualties and 

to repair infrastructures can all cause adverse impacts to enconomy development in 

local area. A major landslide event could even drain the economy of a local area. 

Moreover, lots of indirect costs can also be generated by landslides. For instance, the 

mass of rock, earth, and debris carried by the landslides can cover the downhill of 

mountain areas, influencing original land use (e.g., agricultural land or social land). If 

they find a way to the waters, such as rivers and lakes, the availability, quantity, and 

quality of domestic and irrigation water and fisheries in local area might also be 

influenced.  

Globally, approximately 17% of the fatalities occurred due to landslides with 

around 66 million people living within high-risk landslide areas worldwide (Hong et 

al., 2015). Moreover, landslides were said to result in about 1,000 deaths and US 4 

billion property damages per year worldwide (Lee and Pradhan, 2007). Earthquake-

induced landslides are considered as one of the most important second hazard induced 

by earthquakes. Approximately 70% of all earthquake-related casualties not caused 

by shaking were caused by triggered landslides (Marano et al., 2010; Tanyas et al., 

2017). From 2004 to 2010, 47,736 causalities caused by earthquake-triggered 

landslides were reported (Petley, 2012; Kennedy et al., 2015; Tanyas et al., 2017). 

Consequently, it is considered to be an important issue to assess, manage, or stabilize 

the potential danger areas by engineering projects or geotechnical studies, such as 

strengthening slopes, building retaining walls, and making landslide hazard map. 
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2.3. Geographic Information System (GIS) and Remote Sensing (RS) 

2.3.1. Geographic Information System (GIS) 

Geographic information system (GIS) is a computer system designed to analyze 

and manage all kinds of spatial and geographic data. The word geographic in it 

indicates that some portions of the data are spatial. The concept of GIS was first 

applied in 1854, when British physician John Snow started to map the breakout of 

cholera by adding the disease, water lines, roads, and property boundaries into one 

map, and found that the cholera cases were only along one water line. Then in 1968, 

the “father of GIS” Roger Tomlinson started to fuse modern computing with maps, 

raised the term GIS firstly, and made GIS become a true computer-based tool for 

storing map data (GISGeography; Tomlinson, 1969).  

GIS can be used to show various types of data on one map, enabling to observe, 

analyze, and undestand patterns, trends, and relatinships more easily and clearly. The 

four main ideas of GIS are to create geographic data, manage it in a database, analyze 

it to find patterns, and visualize it on a map. Owing to various advantages, GIS has 

already been extensively applied by people from all walks of life for various purposes, 

such as scientific investigation, resource management, and development planning 

(GISGeography). It has also become a popular technology in calculating and 

managing natural hazards, including landslides, since the middle of 1980s (Chau et 

al., 2004). 

At present, ArcGIS and QGIS are two main and important GIS softwares that 

specialize in spatial analyses by math in maps and combine geography and modern 

technologies to quantify, measure, and understand our world. Vector and raster are 

two common and major formats used in GIS to store data. Vector formats apply points, 

lines, or polygons to store information and data in thematic layers. Raster formats 

store data in rows and columns in the form of grids of cells or pixels. The data of them 

can be either discrete or countinuous (Figure 2.4) (GISGeography).  
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Figure 2.4. Two major types of data formats in geographic information system (GIS). 

 

2.3.2. Remote Sensing (RS) 

Remote sensing (RS) is able to collect data for dangerous and inaccessible areas. 

It is a science of acquiring information about an object or phenomenon from a distance 

without physical contact, usually via aircrafts or satellites. Satellites of RS can either 

operate in polar orbits, non-polar orbits, or geostationary orbits. Satellites of polar 

orbit travel in a plane that is inclined at nearly 90 degrees to the equatorial plane, 

which can sense the entire globe and capture the regions that are diffcult to reach via 

the ground. Polar orbits can be either ascending (from south to north) or descending 

(from north to south). Satellites of non-polar orbit usually operate at an altitude of less 

than 2,000km above the Earth’s surface, which can only cover partial latitudes of the 

earth. Satellites of geostationary orbit travel at the same rate of the earth following the 

Earth’s rotation, and are able to observe the same place continuously (NASA).  

There are two types of sensors in RS: passive sensor and active sensor. Passive 

sensors use the naturally avaliable energy, which usually refers to the sun’s energy 

(e.g., visible wavelength and thermal infrared wavelength), and measure the energy 

(radiation) reflected or re-emitted from the objects (Figure 2.5). Most of them operate 

in the visible, infrared, thermal infrared, or microwave portions of the electromagnetic 
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spectrum (Figure 2.6), and usually cannot penetrate dense clouds. Radiometers and 

spectrometers of different types are examples of passive sensors. Active sensors emit 

energy to the ground targets by itself and then measure the energy (radiation) 

backscattered or refelcted from these targets (Figure 2.5). They usually operate in the 

microwave band of the electromagnetic spectrum that has a longer wavelength 

(Figure 2.6), and are able to work at anytime regardless of the weather condition and 

light. Examples of active RS include light detection and ranging (LiDAR), synthetic 

aperture radar (SAR), and etc.  

 

 

Figure 2.5. Two types of sensors used in remote sensing (RS) (NASA). 

 

 

Figure 2.6. Electromagnetic spectrum (Wikiversity). 

 

Resolution is an important factor in a RS image that influences how the image can 
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be applied. It varies with the orbit of the satellite and the design of the sensor. For any 

dataset, there are four kinds of resolution: spatial resolution, temporal resolution, 

spectral resolution, and radiometric resolution. Spatial resolution indicates the area on 

the Earth’s ground represented by each pixel. The higher the spatial resolution, the 

more detailed information in the ground can be seen. Temporal resolution represents 

the time needed for a satellite to revisit a same location, which depends on the sensor’s 

characteristics, the orbit, and the swath width. Satellites of geostationary orbit usually 

have a higher temporal resolution of around 30s to 1min, whereas satellites of polar 

orbits generally have a temporal resolution between 1 day and 16 days. Spectral 

resolution means the ability of a sensor to discern wavelengths. For a given band, the 

narrower the wavelength range, the higher spectral resolution. Radiometric resolution 

indicates the information amount in each pixel, that is, the bit number used to represent 

the recorded energy. The higher the radiometric resolution, the more values used to 

store information, and therefore the better discrimination between energy differences. 

In specific applications, trade-offs between these four kinds of resolution are usually 

needed according to demand, as it is hard to assemble all of these desirable features 

into one remote sensing sensor (NASA). 

 

2.3.3. Synthetic Aperture Radar (SAR) 

Synthetic aperture radar (SAR) was first invented in the early 1950s, and was an 

important and typical kind of active RS. It transmits energies in a side looking to the 

ground targets and then receives the reflected or backscattered energies. Both 

amplitude and phase information of the backscattered signal can be recorded by the 

radar sensor. Amplitude means the intensity or strength of the received signal. It can 

be influenced by both radar parameters, such as the wavelength (or frequency), 

polarization, and incidence angle, and surface parameters, such as the roughness, 

dielectric constant, and structure of objects. Phase indicates the position of a point in 

time on a waveform cycle. Its value depends on the distance between the radar sensor 

and the measured ground target.  

Wavelength or frequency  (the product of frequency and wavelength is the speed 

of light) of the applied microwave is an important parameter influencing the 
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application of the generated radar images. According to the frequency or wavelength, 

the microwaves have been classified into different bands as shown in Table 2.1. 

Among them, the L-band, C-band, and X-band are the predominate wavelenghs 

applied in present SAR satellites (Figure 2.7). In general, the longer the wavelength, 

the stronger the penetration ability of the microwave. 

Table 2.1. Microwave frequency bands. 

Band Frequncy range Wavelength 

HF 3-30 MHz 10-100 m 

VHF3 30-300 MHz 1-10 m 

UHF3 300-1000 MHz 30-100 cm 

L 1-2 GHz 15-30 cm 

S 2-4 GHz 7.5-15 cm 

C 4-8 GHz 3.75-7.5 cm 

X 8-12 GHz 2.5-3.75 cm 

Ku 12-18 GHz 16.7-25 mm 

K 18-27 GHz 11.1-16.7 mm 

Ka 27-40 GHz 7.5-11.1 mm 

V 40-75 GHz 4.0-7.5 mm 

W 75-110 GHz 2.7-4.0 mm 

mm 110-170 GHz 1.8-2.7 mm 

 

Figure 2.7. Main synthetic aperture radar (SAR) satellites in the world (UNAVCO). 



 

52 

Polarization is also a radar parameter that can influence the condition of the 

generated radar images. It is another essential property of electromagnetic waves, in 

addition to amplitude, phase, and frequency. Regardless of wavelength, a SAR 

platform can transmit horizontally polarized and/or vertically polarized electric field 

vectors, and then receive horizontally and/or vertically polarized return signals. 

Therefore, totally, there can be four kinds of polarization images, including horizontal 

transmit and horizontal receive (HH), horizontal transmit and vertical receive (HV), 

vertical transmit and horizontal receive (VH), and vertical transmit and vertical 

receive (VV). Radar images generated under different polarizations can show obvious 

differences for a specific ground target. For instance, the cross-polarization (HV or 

VH) measures the part of waves which are polarized at one direction when emitting 

and polarized at another direction when returning to the sensor, which doesn't happen 

to a large degree. Accordingly, the intensity of cross-polarization is usually lower than 

that of co-polarization (HH or VV) in most cases. Surfaces which are likely to cause 

change in polarization are often characterized by volume scattering (e.g., forest). 

Usually, a SAR system is designed to operate in either a single polarization mode (HH 

or VV), a dual-polarization mode (HH and HV or VV and VH), or a quad-polarization 

(or full-polarization) mode (HH, HV, VH, and VV).  

 

2.4. Disaster and Disaster Management 

2.4.1. Disaster 

Disasters are defined as serious disruptions of the functioning of a community or 

a society, owing to the interactions between hazard events and exposure, vulnerability, 

and capacity conditions of the community or society, resulting in human, material, 

economic, or environmental losses and impacts  (UNDRR, 2017). Hazard means a 

dangerous condition or event that threats or has the potential to cause casualties, 

environment damage, or property losses. Vulnerability indicates the extent to which a 

community or a society is likely to be disrupted by a particular hazard, owing to its 

nature, construction, and proximity to hazardous terrains or disaster prone areas. 

Capacity demonstrates the strengths, resources, and means existed in households and 

communities that enable them to prevent, mitigate, prepare, withstand, cope with, or 
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rapidly recover from a disaster (Khan et al., 2008). 

Disasters can be divided into natural ones and man-made ones. Natural disasters 

are natural phenomenons or processes that cause casualities or property, environment, 

economic, or social impacts and damage. Earthquake, landslide, flood, and tsunami 

are all examples of natural disasters. Human-made disasters are the consequence of 

human hazards or human negligence, such as transportation accidences, wars, and 

toxic waste leakage. Moreover, depending on the size of the impacted area, there are 

small-scale disasters that only impact local communities and large-scale disasters that 

may influence a society and demand national or international assistance. According 

to the occurrence probability and return period, there are frequent disasters and 

infrequent disasters, or slow-onset disasters  (e.g., desertification, drought, and 

epidemic disease) and sudden-onset disasters (e.g., earthquake, flood, and tranport 

accident) (UNDRR). 

Disasters are usually able to cause big physical (buildings, roads, bridges, and etc.), 

environmental (water, landuse, atmosphere, and etc.), social (life, health, security, and 

etc.), and enconomic (assets, income, insurance, etc) impacts to a community or 

society. These impacts can either be direct (e.g., property damage) or indirect (e.g., 

stress and psychological damage), tangible (that are able to be measured by a financial 

value) or intangible (e.g., the damage of an artwork). They are usually widespread and 

can last for a long period of time, even though some are also localized and immediate. 

When the impacts of a disaster exceed the capabilities of the community or society to 

response and recover using its own resources, external sources and assistance are 

needed.  

 

2.4.2. Disaster Management 

Disaster management means the organization and management of resources and 

responsibilities before, during, and after the disaster to reduce or avoid the potential 

losses from hazards, to assure prompt and appropriate assistance to victims of disaster, 

and to achieve rapid and effective recovery (Warfield, 2008). Following the course of 

a disaster, a comprehensive disater management cycle has been proposed to minimize 

the losses and impacts caused by the disaster. This cycle includes three pre-event 
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countermeasures of mitigation, preparedness, prediction and early warning before the 

disaster, and four post-event countermeasures of damage assessment, disater response, 

recovery, and reconstruction after the disaster (Figure 2.8).  

 

Figure 2.8. Comprehensive disaster management cycle. 

 

Appropriate actions at each step of this disaster management cycle can lead to 

better preparedness, more favorable warning, reduced damage, and even the 

prevention from next cycle of the disaster. For instance, in the mitigation step, actions 

like implementing building codes strictly, performing vulnerability analyses, and 

conducting public education can be carried out. In the preparedness step, measures 

such as planning how to respond by making preparedess plans and carrying out 

emergency exercises and training can be executed. In the assessment and response 

step, actions like mapping the disaster quickly and carrying out emergency relief and 

rescue rapidly can be implemented. In the recovery step, measures such as returning 

the community to normal by temporary housing and good medical care can be applied. 

GIS and RS are useful tools in the comprehensive disaster management system, 

which can provide effective and efficient information at each stage of the system, 

assisting in understanding the spatial phenomena, and providing authorities and 

scientists with objective data sources for decision making (Joyce et al., 2009). For 

instance, in the pre-event countermeasures before a disaster, they can be used for 

hazard map making, land use planning, hazardous area monitoring, and disaster 

forecasting. In the post-event countermeasures after the disaster, they can be applied 

to understand the magnitude and location of the disaster, form a quick damage map, 

and guide and monitor the recovery and reconstruction process.  
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CHAPTER 3 

CHARACTERISTICS OF THE LANDSLIDES TRIGGERED IN 2018 

HOKKAIDO EASTERN IBURI EARTHQUAKE 

 

3.1. Introduction 

In order to have an overall understanding of the whole picture of the landslide 

event, spatial data of landslide inventory and conditioning factors as well as previous 

reports and research on the landslide event were collected and studied. A vector map 

of landslide inventory created by Zhang et al. (2019) was applied to understand the 

basic condition of the landslides such as sizes and distribution. The maps of digital 

elevation model (DEM), geology, soil, surface vegetation, and the records of ground 

motion and precipitation before the disaster were collected from Geospatial 

Information Authority of Japan (GSI), Geological Survey of Japan (GSJ), National 

Agriculture and Food Research Organization (NARO), Biodiversity Center of Japan, 

U.S. Geology Survey (USGS), and Japan Meteorological Agency (JMA), respectively, 

and used to analyze the distribution and characteristics of the landslide conditioning 

factors in landslide areas. Previous reports and research concerning field survey and 

mechanism study of the landslides were also refered and studied to improve the 

understanding of the landslide event. 

 

3.2. Basic Condition of the Landslides 

GSI published a first-hand landslide database several days after the disaster with 

many landslide sites composed of several or dozens of landslides. Regarding the 

unreasonable landslide units in this database, Zhang et al. (2019) carried out a manual 

segmentation and combination according to ridge lines, valley lines, slope aspect, and 

hillshade derived from a DEM and high-resolution aerial images, creating a detailed 

landslide inventory map. In this chapter, this detailed landslide inventory map was 

applied to study the basic condition of the landslides, combing with previous reports 

and studies. 

According to the landslide inventory, the total number and area of the landslides 

are 5,625 and 46.3 km2, respectively. The area of single landslide ranges from smaller 
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than 100 m2 to larger than 500,000 m2, with an average value of around 8,000 m2. 

There are only 5 landslides with an area smaller than 100 m2 and 8 landslides with an 

area larger than 100,000 m2. The overall distribution of the landslide size is shown in 

Figure 3.1, from which it can be seen that more than half of the landslides have an 

area smaller than 5,000 m2 and around 80% of the landslides have an area smaller 

than 12,000 m2. The landslides are basically small- to medium-sized. The average size 

of most landslides was said to be smaller than what is commonly observed for other 

earthquakes (Wang et al., 2019). 

 

Figure 3.1. Distribution of the landslide size. 

 

Moreover, these landslides are densely distributed in an area of the transition zone 

from Hidaka Mountains to Ishikari Depression. They are basically in the north of the 

earthquake epicenter and are approximately within 25km from the epicenter, with 

most in Atsuma town and some in Mukawa town and Abira town. The density of the 

landslides was said to be higher than what is observed for landslides triggered by other 

earthquakes with a similar focus depth (Wang et al., 2019). Most landslides are 

shallow with a slip surface above the basement complex and have a depth of several 

meters, moving down the volcano activity related soils with a high water content. Rare 

deep-seated landslides whose slip surface is within the basement complex also exist, 

with  a large one even formed a landslide dam in the Hidaka-Horonai river (Kuwamura 

et al., 2019).  
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These landslides mainly occurred in valley terrain and planar slopes with high 

mobility and long run-out. Those occurred in vally terrain usually had a longer flow 

length than those occured in planar slopes. The upper slip surface of most landslides 

is exposed without overlapping slide mass, showing brownish patches over hill areas. 

Several types of landslides exist, such as translational earth slide, translational earth 

block slide, earth flow, and translational rock slide as shown in Figure 1.2 (Osanai et 

al., 2019). The characteristics of the landslides are more like those of the rainfall-

induced landslides, even though the direct trigger is earthquake, which might be due 

to the accumulation of previous precipitation in the special light porous soil types here. 

 

3.3. Conditioning Factors of the Landslides 

3.3.1. Topography 

Topography factors such as elevation, slope gradient, slope aspect, and slope 

curvature are considered to be associated with landslide occurrence, and have already 

been widely used as conditioning factors to evaluate landslide hazards and risks. 

Elevation is the height of the slope, which can be derived from a DEM directly. It 

can influence the condition of a slope such as local climate, temperature, soil type, 

and vegetation type, and therefore influences the stability condition of the slope. 

Slope gradient is the first derivative of surface elevation, which represents the 

change rate of elevation. It is an important parameter influencing the balance between 

the force and the capability of a slope. Generally, the larger the slope gradient value, 

the steeper the slope, and the higher the landslide occurrence probability.  

Slope aspect identifies the downslope direction of the maximum change rate from 

a point to its neighbors, and can be understood as the orientation of a slope. It can 

affect the exposure of the slope to sunlight, precipitation, and wind, which indirectly 

influce other factors that contribute to landslide occurrence such as rock weathering, 

soil moisture, and vegetation cover. The aspect of a slope can be north, northeast, east, 

southeast, south, southwest, west, northwest, and flat. 

Slope curvature is the second derivative of surface elevation, and displays the shape 

of the slope, either concave or convex. There are generally three types of curvature 
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(planform curvature, profile curvature, and standard curvature), which highlight 

different aspects of the slope shape. Planform curvature is the curvature in a horizontal 

plane, perpendicular to the direction of the maximum slope, which influences the 

convergence and divergence of flow across a surface. Its values are positive for 

convex areas and negative for concave areas, and can be used to distinguish valleys 

and ridges (Figure 3.2a). Profile curvature indicates the curvature in the maximum 

slope direction and is parallel to the slope. It affects the acceleration and deceleration 

of flow across the surface, and hence impacts the erosion and deposition. Its values 

are positive for concave areas and negative for convex areas (Figure 3.2b). Standard 

curvature is the derivative of the slope surface instead of the line formed by the 

intersection of the slope surface with a plane like the planform curvature and profile 

curvature. Its values are positive for convex areas or peaks, negative for concave areas 

or valleys, and zero for flat areas or saddles (Figure 3.2c). 

 

(a) 

 

(b) 

(c) 

 

Figure 3.2. Three types of curvature: (a) Planform curvature; (b) Profile curvature; (c) 

Standard curvature (Raster Curvature). 

 

In this case, most landslides were in mountainous areas of the east from Atsuma 

town and some were in relatively flat hills of the west from Atsuma town. In order to 
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have a intuitive and quantitative understanding of the topography characteristics in 

the landslide areas, a 10m resolution DEM acquired from GSI was applied to derive 

and calculate the slope characteristics mentioned above. The elevation values were 

obtained directly from the DEM. The slope gradient, slope aspect, and slope curvature 

including planform curvature, profile curvature, and standard curvature were derived 

by calculating the first and second derivatives of the DEM.  

After these topography characteristics were calculated, the histograms of them 

were drawn to get a clear understanding of the topography characteristics in the 

landslide areas (Figures 3.4-3.7). As the landslide sizes varied a lot according to 

Section 3.2, histograms for both landslide number and landslide area were both 

displayed. Moreover, the general topography condition within the rough overall 

landslide region (ellipse area in Figure 3.3) and the ratio between the landslide area 

and total area within this region for each group were also drawn. What should be noted 

is that these two kinds of figures might change with the selection of general landslide 

region, the ellipse area in this case is just as an example to provide a better 

understanding of the relationship between landslide occurrence and topography 

characteristics in this case.  

 

Figure 3.3. Landslide area. 

 

As it can be seen from Figure 3.4, most of the areas in this region have an 

elevation of lower than 300m, and the majority of landslide occurred in areas with an 
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elevation of 100m-200m. The general elevation of the collapsed slopes was lower than 

the mean value obtained from a worldwide database of coseismic landslides (534m) 

(Tanyas et al., 2017), due to local topograpgy characteristics.  

  

(a) (b) 

  

(c) (d) 

Figure 3.4. Histogram of elevation distribution: (a) Landslide number; (b) Landslide area; (c) 

Overall landslide region; (d) Ratio between landslide area and total area within the overall 

landslide region. 

 

From Figure 3.5 it can be seen that the majority of landslides occurred in regions 

with a slope gradient of around 15°-35°. The general slope gradient of the collapsed 

slopes is smaller comparing with other landslides. For instance, in previous studies, 

Okamoto and Murata (2016) indicated that rainfall-induced landslides and 

earthquake-induced landslides frequently occurred in slopes with an slope gradient of 

30°-40° and 35°-55°, respectively, in the study of past landslides in Japan. Evan et al., 

(1999) demonstrated that, in general, the most susceptibility slopes are those with 

angles of around 35°-40° in the study of natural terrain landslides in Hong Kong. 

Tseng et al., (2015) showed that the rainfall-induced landslides by 2011 Typhoon 

Nanmadol in Taiwan mainly distributed in slopes with an slope gradient of 30°-55°. 
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Guo et al., (2017) indicated that 1,315 of 1,418 landslides triggered by 2015 Gorkha 

earthquake in Nepal distributed in slopes with an slope gradient of 20°-50°. Zhang et 

al., (2019) found that 79% of slope collapse cases had a slope of 30°-50° among the 

1,610 collapse data in the past 15 years studied by them.  

In this case, besides the majority gradient of the collapsed slope is 15°-35°, some 

landslides even occurred in slopes with a gradient gentler than 15°, such as those in 

Horosato area of Atsuma town and those in Hayakitamizuho area of Abira town. This 

might be owing to local topography characetristics (most areas in this region have a 

slope gradient smaller than 40° as can be seen from Figure 3.5 (c)) and also the types 

(mainly shallow earth flows and earth slides) and special mechanism (the 

combinational impact of the special porous soil, precipitation, and earthquake) of the 

landslides. 

  

(a) (b) 

  

(c) (d) 

Figure 3.5. Histogram of slope gradient distribution: (a) Landslide number; (b) Landslide 

area; (c) Overall landslide region; (d) Ratio between landslide area and total area within the 

overall landslide region. 
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Figure 3.6 shows that, generally, the relatively preferred slope aspect of the 

landslides was south, facing the earthquake epicenter, which might relate to ground 

motion characteristics or local climate conditions of south-faced slopes, such as 

sunlight exposure condition, precipitation condition, and wind erosion condition. 

  

(a) (b) 

  

(c) (d) 

Figure 3.6. Histogram of slope aspect distribution: (a) Landslide number; (b) Landslide area; 

(c) Overall landslide region; (d) Ratio between landslide area and total area within the overall 

landslide region (N: North; NE: Northeast; E: East; SE: Southeast; S: South; SW: Southwest; 

W: West; NW: Northwest). 

 

Figure 3.7 shows that the relatively preferred types of slope curvature were 

concave profile curvature, concave planform curvature, and concave standard 

curvature, respectively, even though the overall region have more areas with convex 

topography. This may be due to the hydrological characteristics of these kinds of 

terrains. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 
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(i) (j) 

  

(k) (l) 

Figure 3.7. Histogram of slope curvature distribution: (a), (b), (c), and (d) are landslide 

number, landslide area, overall landslide region, and ratio between landslide area and total 

area within the overall landslide region for planform curvature, respectively; (e), (f), (g), and 

(h) are these figures for profile curvature; (i), (j), (k), and (l) are these figures for standard 

curvature. 

 

Moreover, the geomorphologic and hydrologic features of a slope, such as 

topographic wetness index (TWI), stream power index (SPI), and sediment transport 

index (STI) can also be derived by the topography information. They can affect the 

drainage network and hydrological processes of the slope, and hence might also 

influence the slope stability. TWI, SPI, and STI are all functions of slope gradient and 

upstream contributing area (flow accumulation), which can be calculated by 

Equations 3.1-3.3, respectively. In all of the three equations, 𝛽 indicates the slope 

gradient and As means the upstream area (number of upstream elements multiplied by 

the area of the grid cell). 

TWI is a steady state wetness, which can reflect the soil moisture and is commonly 

used to quantify topographic control on hydrological process. Areas with high TWI 
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values (e.g., flats and channels) are not prone to slope failures whereas areas with low 

TWI values usually have low saturation capacity (e.g., ridges). SPI is a measure for 

the erosion power of land flow. The larger the slope gradient and upstream area, the 

larger the SPI value. STI is an indicator measuring the process of erosion and 

deposition, which weights the upstream area stronger than the slope gradient as is 

shown in Equation 3.3. The calcualtion shows that the majority values of TWI, SPI, 

and STI in landslide areas were around 3-6, 0-60, and 0-20, respectively. 

𝑇𝑊𝐼 = ln⁡(𝐴𝑠 tan𝛽⁄ ) (3.1) 

𝑆𝑃𝐼 = 𝐴𝑠 ∗ ⁡ tan𝛽 (3.2) 

𝑆𝑇𝐼 = (𝐴𝑠 22.13⁄ )0.6 ∗ ⁡(sin 𝛽 0.0896⁄ )1.3 (3.3) 

 

3.3.2. Geology and Soil 

Geology condition of an area also influences the stability of slopes there, even 

though the slope failures are controlled by surface soil, as the soil thickness and 

hillslope sediment supply is usually impacted by the bedrock (Wang et al., 2019). In 

order to understand the distribution of geology in the landslide areas, a geology map 

was collected from GSJ. It was a polygon vector map with a scale of 1:200,000. Using 

this map, the geology types in the landslide areas were summarized and shown in 

Figure 3.8. As it can be seen from this figure, most of the landslides distributed in 

areas with the bedrock of N2sn (Middle to Late Miocene marine and non-marine 

sediments). Some distributed in areas with the bedrock of N3sn (Late Miocene to 

Pliocene marine and non-marine sediments). According to GSJ, both of these two 

kinds of bedrock were mainly conglomerate, sandstone, and mudstone. 

Above these bedrocks, there were several meters’ volcano activity related soil 

layers, as the volcanoes located around 40km-70km west of this area around Lake 

Shikotsu distributed tephra throughout there. In an ascending order, these volcanic 

soil layers mainly included Spfa1 layer erupted from Shikotsu caldera (42.771°N, 

141.358°E) in Late Pleistocene period, En-a layer erupted from Eniwa volcano 

(42.793°N, 141.285°E) in Late Pleistocene to Holocene period, and Ta-d and Ta-b 
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layers erupted Tarumae volcano (42.690°N, 141.377°E) in Holocene period. These 

volcanic soils seemed to be porous, soft, and have a high water storage capability 

according to the field survey and test of JGS (2019). 

  

(a) (b) 

Figure 3.8. Geology distribution: (a) Landslide number; (b) Landslide area (N2sn: Middle to 

Late Miocene marine and non-marine sediments; N3sn: Late Miocene to Pliocene marine and 

non-marine sediments; Hsr: Late Pleistocene to Holocene marine and non-marine sediments; 

Q2th: Middle Pleistocene  higher terrace; Q2sr: Middle Pleistocene marine and non-

marine sediments; N1sr: Early Miocene to Middle Miocene marine and non-marine 

sediments; Q3tl: Late Pleistocene lower terrace; PG3sr: Late Eocene to Early 

Olligocene marine and non-marine sediments).  

 

Spfa1 was erupted around 46,000 years ago from Shikotsu caldera, and was a 

white fine-grained pumice fall deposit layer with a maximum thickness of around 4m 

in the landslide areas. En-a was erupted around 19,000~21,000 years ago from Mount 

Eniwa, and was a yellow-white pumice fall deposit layer with a maximum thickness 

of 1m there. Ta-d was erupted about 9,000 years ago from Tarumae volcano, and was 

reddish brown to yellowish brown pumice fall deposit layer with a maximum 

thickness of 1m there. It could be easily crushed with fingers according to JGS (2019). 

Ta-b was erupted around 1667 from Tarumae volcano, and was  a white pumice fall 

deposit layer with a maximum thickness of 0.64m there (Figure 3.9) (Hirose at al., 

2018; JGS, 2019; Ito et al., 2020). Moreover, between these layers, there were also 

other layers that were thinner than 0.5m, such as humus layer, weathered layer of the 
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previous layer, Ta-a and Ta-c erupted from Tarumea volcano 1739 and 2500 years 

ago, and other volcanic soils disrupted from volcanos in south Hokkaido (JGS, 2019).  

 

Figure 3.9. Distribution of late Pleistocene and Holocene volcanic soils for Atsuma Town 

and surrounding area (Hirose at al., 2018). 

 

These volcanic soil layers covered the bedrock or a weathered layer of the bedrock 

directly. Depending on original thickness, slope gradient, slope aspect, and erosion 

process, the thickness and completeness of each layer varied from area to area. In 

gentle and flat areas, all of these layers might be preserved well, while in steep slopes 

or in areas near to rivers, some layers might have already been lost due to river erosion 

and solifluction (Figure 3.10). For instance, in Atsuma town, the layers older than Ta-
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d were found to be lost, while in areas from Atsuma town to Abira town, the layers 

older than En-a or Spfa-1 were also observed (Kuwamura et al., 2019).  

 

Figure 3.10. An example of slope evolution and movement process (Kuwamura at al., 2019). 

 

The slipe surface of most landslides were in these volcanic soil layers. According 

to the report of JGS (2019), it is highly possible that the slip surface of the landslides 

in Yoshino area, Tomisato area, and Uryu area of Astuma town was at the boundary 

of Ta-d layer, and the slipe surface of landslides in Hayakitamizuho area of Abira 

town was in the weathered layer of mudstone or the loam layer below the En-a or 

Spfa1 layer (Table 3.1). These light porous volcano materials above the hard bedrock 

inundated by accumulated precipitation before the earthquake slided away after the 

shear force of the earthquake ruptured the strata, which was thought as the possible 

mechanism of most landslides in this case. 

Moreover, according to a 1:200,000 scale soil map from NARO, the main types 

of surface soil in the landslide areas were D1(未熟黒ボク土) and J1 (火山放出物未

熟土) (Figure 3.11). Both of these two types of soil are mainly composed of light 

porous volcanic soil that are unconsolidated, less cohesive, highly compressible, and 

easy to absorb and store water. According to NARO, D (黒ボク土) is the light soil 
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mainly composed of volcanic ash, which displays black due to the accumulation of 

organics and has high phosphoric acid absorption coefficient. It has a good capability 

of water retention and permeability, and can reflect the distribution of active 

volcanoes and volcanoes that had been active 20,000~30,000 years ago. Around 31% 

of the national land in Japan is coverd by D soil. D1 is one type of the D soil that has 

been subjected to certain amount of soil action and has shown the property of fixing 

phosphoric acid and the accumulation of organics. J1 is the immature soil consisting 

of unweathered volcanic ash and pumice. It generally includes few organics and clay. 

 

Table 3.1. Possible slip surface of the surveyed landslides in different areas according to the 

report of JGS (2019). 

Area Slipe surface 

Yoshino, Tomisato, and Uryu area of 

Astuma town   

Ta-d layer 

Horonai area Bedrock for the deep-seated landslide and 

boundary between the weathered layer of 

the bedrock and Ta-d layer for other 

landslides 

Hayakitamizuho area of Abira town The weathered layer of mudstone or the 

loam layer below the En-a or Spfa1 layer 

 

  

(a) (b) 

Figure 3.11. Soil distribution: (a) Landslide number; (b) Landslide area (D1: 未熟黒ボク土; 

J1: 火山放出物未熟土; I1: 褐色森林土; F4: 褐色低地土; F3: 灰色低地土; F2: グライ低

地土).  
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3.3.3. Surface Vegetation 

Surface vegetation can either promote or hinder the stability of a slope, due to the 

complex combination among soil types, plant species, rainfall, slope aspect, and etc. 

It can affect the slope stability by means of wind throwing, water removal, mass of 

vegetation, or mechanical reinforcement of roots.  

In the case, the landslides were mainly occurred in areas covered by trees. In order 

to understand the vegetation types in the landslide areas, a surface vegetation map was 

collected from the Biodiversity Center of Japan. This map was a polygon vector map 

with a scale of 1:50,000. Applying this map, the vegetation types in the landslide areas 

were summarized and shown in Figure 3.12. As it can be seen from this figure , the 

predominated vegetation types in the landslide areas were エゾイタヤ－シナノキ 

(around 52%), 落葉針葉樹植林 (around 24%), andミズナラ－カシワ－コナラ群

落 (around 8%).  

 

(a) 

 

(b) 

Figure 3.12. Surface vegetation distribution: (a) Landslide number; (b) Landslide area. 
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3.3.4. Precipitation 

Prolonged precipitation and intense heavy rainfall are frequent and widespread 

triggers of landslides. They may add additional water loading to the slope, reduce the 

strength of soil on the slope, remove soil particles from the slope, or change the 

materials in the slope, which are all able to influence the stability of the slope and 

cause landslides. Rainfall-caused landslides are usually small, shallow (less than a few 

meters deep), run rapidly, and sometimes transform into debris flows. Even in an 

earthquake-induced landslides, the antecedent precipitation can also affect the number, 

distribution, and style of the landslides. 

In order to understand the precipitation condition of the landslide area before the 

disaster, precipitation records within one month before the landslides were collected 

from JMA. There were totally 14 valid rainfall stations in Iburi, Hokkaido, Japan with 

four around the landslide areas (Figure 3.13) that recorded past precipitation data. 

Using these data, the precipitation condition in this area before the disaster were 

analyzed and shown in Figures 3.14 and 3.15. 

 

Figure 3.13. Rainfall stations in Iburi, Hokkaido, Japan. 

 

Figure 3.14 showed that there was no more rainfall in the east of Iburi (landslide 

areas) than in the midwest of it. Figure 3.15 indicated that there was totally around 

200mm-300mm precipitation within one month before the disaster in the landslide 

areas. Around mid-August, several relatively heavy rains occured, with the heaviest 
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one bringing approximately 50mm precipitation. The powerful typhoon Jebi 

(Typhoon No.21 of 2018 in Japan), which occurred two days before the disater, 

brought heavy rainfall around Lake Shikotsu (around 50km west from Atsuma town), 

and was usually considered as an important factor for the extensive landslides, brought 

around 15mm of the precipitition in the landslide areas. The previous accumulated 

rainfall might be more important for the landslide occurrence. 

 

Figure 3.14. Accumulative precipitation before the disaster in Iburi. 

 

 

Figure 3.15. Precipitation around landslide areas before the disaster. 

 

3.3.5. Ground Motion 

Seismic activities have always been a main cause of landslides all around the 

world. In this case, the earthquake is the direct trigger of the extensive densely 

distributed landslides. The landslides were mainly distributed in the north of the 
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epicenter and within a distance of 25km from the epicenter. In order to understand the 

ground motion characteristics of the earthquake in landslide areas, the ShakeMaps of 

Modified Mercalli Intensity (MMI), peak ground acceleration (PGA), peak ground 

velocity (PGV), and peak spectral acceleration for 0.3s (PSA03), 1.0s (PSA10), and 

3.0s (PSA30) were collected from USGS and analyzed.  

MMI is a kind of earthquake intensity proposed by Wood and Neumann (1931), 

which permits seismologists to represent the ground shaking severity by a number. Its 

scales and levels were determined by considering the impacts of the earthquake on 

human beings, structures, and landscape. Lower scales were generally associated with 

how people felt about the shaking and higher scales were mainly based on observed 

structure damages. The descriptions of each scale in MMI are shown in Table 3.2. 

 

Table 3.2. Description of the scales in MMI (USGS). 

 

 

Based on these ShakeMaps, the histograms of MMI, PGA, PGV, PSA03, PSA10, 

and PSA30 in the landslide areas was analyzed and shown in Figures 3.16-3.21. From 

these figures, it can be seen that, the majority of ground motions in the landslides have 

an MMI value of around 7.4-8.2, a PGA value of around 0.48g-0.68g, a PGV value 

of around 14cm/s-18cm/s, a PSA03 value of around 0.92g-1.52g, a PSA10 value of 
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around 0.20g-0.24g and 0.40g-0.56g, and a PSA30 value of around 0.08g -0.12g, 

relating to ground shaking condition and topography condition in local region.  

 

  

(a) (b) 

  
(c) (d) 

Figure 3.16. Histogram of Modified Mercalli Intensity (MMI) distribution: (a) Landslide 

number; (b) Landslide area; (c) Overall landslide region; (d) Ratio between landslide area and 

total area within the overall landslide region. 

 

  

(a) (b) 
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(c) (d) 

Figure 3.17. Histogram of peak ground acceleration (PGA) distribution: (a) Landslide 

number; (b) Landslide area; (c) Overall landslide region; (d) Ratio between landslide area and 

total area within the overall landslide region. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.18. Histogram of peak ground velocity (PGV) distribution: (a) Landslide number; 

(b) Landslide area; (c) Overall landslide region; (d) Ratio between landslide area and total 

area within the overall landslide region. 
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(a) (b) 

  

(c) (d) 

Figure 3.19. Histogram of peak spectral acceleration for 0.3s (PSA03) distribution: (a) 

Landslide number; (b) Landslide area; (c) Overall landslide region; (d) Ratio between 

landslide area and total area within the overall landslide region. 

 

  

(a) (b) 
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(c) (d) 

Figure 3.20. Histogram of peak spectral acceleration for 1.0s (PSA10) distribution: (a) 

Landslide number; (b) Landslide area; (c) Overall landslide region; (d) Ratio between 

landslide area and total area within the overall landslide region. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.21. Histogram of peak spectral acceleration for 3.0s (PSA30) distribution: (a) 

Landslide number; (b) Landslide area; (c) Overall landslide region; (d) Ratio between 

landslide area and total area within the overall landslide region. 
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3.4. Conclusions 

Landslide inventory and conditioning factors were collected from different 

sources to understand the characteristics of the landslide event triggered in 2018 

Hokkaido Eastern Iburi Earthquake, combining with previous studies and reports from 

other scholars concerning the mechanism and field survey of the landslides.  

A detailed landslide inventory created by Zhang et al. (2019) based on a first-hand 

landslide database released by GSI was mainly applied to analyze the basic condition 

of the landslides, combining previous field survey reports and mechanism studies. 

Results showed that there were mainly small-sized shallow landslides, which densely 

distributed in an area of the transition zone from Hiddaka Mountains to Ishikari 

Depression in the north of the earthquake epicenter and within a distance of 25km to 

the epicenter. Most landslides had a slip surface above the basement complex and 

moved down the soft porous volcanic soil layers with high mobility and long run-out, 

leaving the landslide surface exposed as brownish patches. These landslides mainly 

occurred in valley terrain and planar slopes with several types. The characteristics of 

the landslides are more like those of the rainfall-induced landslides, even though the 

direct trigger is earthquake. The shear force of the ground motion ruptured the strata 

of the soft porous volcanic soil layers above the hard basement complex that have 

already been inundated by the precipitation before the earthquake, which might be the 

mechanism of most landslides. 

The maps and records of topography, geology, soil, surface vegetation, 

precipitation, and ground motion in the landslide areas were collected from different 

official websites and used to analyze the characteristics of conditioning factors in 

landslide areas. A raster map of DEM was collected from GSI, and used to derive and 

analyze the topography and hydrological characteristics, including elevation, slope 

gradient, slope aspect, slope curvature, TWI, SPI, and STI. Maps of geology, soil, and 

surface vegetation were acquired from GSJ, NARO, Biodiversity Center of Japan, 

respectively, to understand the distribution of the bedrock, soil, and vegetation in the 

landslide areas. They were all polygon vector maps with a scale of 1:200,000, 

1:200,000,  and 1:50,000, respectivly. Precipitation records were collected from JMA, 

which recorded past preciptation data in 14 valid stations of Iburi, Hokkaido. One-

month precipitation data before the disaster was analyzed to have an overall 
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undestanding of the precipitation condition before the disaster. Ground motion records 

were obtained from USGS, including ShakeMaps of MMI, PGA, PGV, PSA03, 

PSA10, and PSA30. 

Analyses of the landslide conditioning factors showed that majority of the 

landslides occurred in areas with an elevation of around 100m-200m, a slope gradient 

of  around 15°-35°, a geology type of N2sn (Middle to Late Miocene marine and non-

marine sediments), soil types of D1 (未熟黒ボク土) and J1 (火山放出物未熟土), 

and and surface vegetation types of エゾイタヤ－シナノキ and 落葉針葉樹植林. 

The elevation and slope gradient of the collpased slopes were lower, comparing with 

general values of other landslides, due to local topography and soil characteristics. 

The relatively preferred slope aspect was south, facing the earthquake epicenter. The 

relatively preferred slope curvature was concave, which may relate to raifall 

accumulation ability of these kind of topography. One month before the disaster, there 

were around 200mm-300mm precipitation, with several heavy rains in the mid of 

August. The powerful type Jebi, which occurred two days before the disater and was 

thought as an important factor of the landslides, brought approximately 15mm of the 

precipitation. The majority values of ground motion PGA and PGV in the landslide 

areas were 0.48g-0.68g and 14cm/s-18cm/s, respectively.  

The earthquake was the direct trigger of the landslide event, and the combinationl 

impact of different conditioning factors, especially the porous soil, accumulated 

rainfall, and ground motion, were the real cause of these extensive densely distributed 

landslides. The soft porous volcano activity related soil here originally had a low shear 

strength and a high water storage capacity, while the hard bedrock below the soil had 

a poor water permeability. Due to these characteristics, water from previous rainfall 

could accumulate in the soil and made the water content in the soil very high, which 

not only reduced the soil shear strength but also lubricated the interface between soil 

and bedrock. Then when the earthquake occurred, the shaking from the ground motion 

not only produced shear force to the soil but also reduced the soil shear strength by 

increasing pore water pressure and decreasing soil effectiveness stress, causing the 

shear stress larger than the shear strength and leading to slope failures. In some areas, 

the soil effectiveness stress might even become zero, causing liquefaction. 
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CHAPTER 4 

GIS-BASED STATISTICAL LANDSLIDE SUSCEPTIBILITY ANALYSIS 

FOR PRE-EVENT LANDSLIDE DISASTER MANAGEMENT 

 

4.1. Introduction 

As is said, present and past are keys to the future. Understanding and learning 

from past landslide event can provide useful and valuable information and experience 

for future landslide disaster management. In order to take advantage of the data and 

information brought by this landslide event to benefit pre-event landslide disater 

management in the future, a landslide susceptibility analysis was carried out in this 

chapter using a GIS-based statistical approach. Comparing with deterministic 

approaches that explore the slope failure mechanism by physical models, statistical 

approaches does not require detailed physical parameters of the slopes, such as soil 

strength, soil depth, and hydrological parameters, which are difficult to collect in a 

large area (Lee, 2015). 

Both qualitative and quantitative approaches can be used for landslide 

susceptibility analysis. Qualitative approaches are subjective approaches, in which the 

experience of experts is of vital importance. In this kind of approaches, usually, the 

experts assign weights to each landslide conditioning factor indicators to estimate the 

potential of landslide occurrence in different areas. Quantitative approaches are data-

dependent approaches and therefore are considered to be more objective. In this kind 

of approaches, the weights of different landslide conditioning factor indicators are 

generally estimated based on past landslide data. Statistical analysis, such as 

discriminant analysis and logistic regression, and advanced machine learning 

approaches, such as support vector machine (SVM) and neural network, can both be 

used for quantitative landslide susceptibility analysis.  

In this chapter, the GIS-based logistic regression of quantitative approaches was 

applied for the landslide susceptibility analysis, to make full use of the dataset brought 

by the landslide event and to be objective. GIS is a system designed to deal with 

various types of spatial and geographic data, and has become a popular technology 

for the management of natural hazards including landslides (Chau et al., 2004). 
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Logistic regression can construct a model by analyzing the relationship between a 

binary dependent variable (landslide presence and absencein this case) and multiple 

independent variables either of numeric types or nominal types (landslide 

conditioning factors in this case). It is efficient, highly interpretable, does not require 

too much computational resources, and has already shown favorable performance in 

landslide susceptibility, hazard, and risk analysis. 

To perform the GIS-based statistical landslide susceptibility analysis, spatial 

dataset of landslide inventory and conditioning factor indicators collected and derived 

in chapter 3 were preprocessed and constructed into a database on the ArcGIS 

platform as dependent and independent variables. All of the data, either in raster 

formats or vector formats, were converted into a unified format-10m raster cells for 

further calculation and analyses. As the raster cells tagged as landslides were much 

fewer than those tagged as non-landslides, a certain number of non-landslide cells was 

selected randomly from the non-landslide raster cell library for analysis, in order to 

avoid the underestimation of landslide occurrence. Effectiveness and multicollinearity 

problems of the conditioning factor indicators were analyzed and checked by several 

mathematical indicators to eliminate noneffective and related independent variables 

for logistic regression. A landslide susceptility model was finally constructed using 

these selected and checked data, and a landslide susceptibility map was generated in 

the study area applying this model. 

 

4.2. Dataset 

To carry out the statistical landslide susceptibility analysis in the study area, the 

spatial dataset of dependent and independent variables need to be prepared first. In 

this case, the landslide inventory and conditioning factor indicators collected and 

derived in chapter 3 were applied as dependent and independent variables in the 

analysis, respectively.  

As has been mentioned, the landslide inventory was created by Zhang et al. (2019) 

based on a first-hand landslide database published by GSI. The considered 

conditioning factor indicators of landslides included the topography characteristics 

derived from a DEM provided by GSI (Figure 4.1), geology information obtained 
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from GSJ (Figure 4.2), soil information acquired from NARO (Figure 4.3), surface 

vegetation information obtained from Biodiversity Center of Japan (Figure 4.4), 

ground motion information collected from USGS (Figure 4.5), and precipitation 

information calculated through the past precipitation records in 14 stations of JMA 

(Figure 4.6). Interpolation has been carried out for the point precipitation data by 

inverse distance weighted (IDW) technique to supplement data in areas without 

stations. Three-day, one-week, two-week, three-week, and one-month cumulative 

precipitation before the disaster were all calculated and will be compared to choose a 

relatively effective one for final landslide susceptibility model construction.  

As there is no widely accepted standard for the selection of landslide conditioning 

factors (Yalcin, 2008), these indicators were mainly determined based on the 

characteristics of the landslide event and local area, landslide mechanism, literature 

review, and data availibility. For instance, the understanding of the landslide 

characteristics and mechanism in chapter 3 showed that the soil, previous precipitation, 

and ground motion were important factors for the landslide occurrence. The slope 

gradient is always an important factor influencing the balance between the shear force 

and the slope capability. The slope aspect and elevation might influence local climate 

of the slope, which futher impacts the stability of the slope. The slope curvature might 

influence the hydrological characteristics of the slope that affects the slope stability. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

Figure 4.1. Topography maps: (a) Elevation; (b) Slope gradient; (c) Slope aspect; (d) Profile 

curvature; (e) Planform curvature; (f) Standard curvature; (g) Topographic wetness index 
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(TWI); (h) Stream power index (SPI); (i) Sediment transport index (STI). 

 

 
 

Figure 4.2. Geology map. 

 

 

 

Figure 4.3. Soil map (B1: 泥炭土; D1: 未熟黒ボク土; D5: 非アロフェン質黒ボク

土; D6: アロフェン質黒ボク土; F2: グライ低地土; F3: 灰色低地土; F4: 褐色低

地土; H2: 疑似グライ土; I1: 褐色森林土; J1 火山放出物未熟土; J2: 砂質未熟土; 

J4: 陸成未熟土; Z3:その他.). 

 

 
 

Figure 4.4. Surface vegetation map. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.5.  Ground motion maps: (a) Modified Mercalli intensity (MMI); (b) Peak ground 

acceleration (PGA); (c) Peak ground velocity (PGV); (d) Peak spectral acceleration for 0.3s 

(PSA03); (e) Peak spectral acceleration for 1.0s (PSA10); (f) Peak spectral acceleration for 

3.0s (PSA30). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 4.6. Precipitation maps: (a) Three-day cumulative precipitation before the disaster; (b) 

One-week cumulative precipitation before the disaster; (c) Two-week cumulative 

precipitation before the disaster; (d) Three-week cumulative precipitation before the disaster; 

(e) One-month cumulative precipitation before the disaster. 

 

4.3. Methodology  

As there were both raster and vector types in the collected data, first, they were 

converted into a unified format-10m×10m raster cells for further analysis. The total 

number of raster cells is more than 30 million, and the number of cells tagged as 
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landslides is around 400 thousand. Landslide presence only represents 1.26% of the 

study area, and therefore is considered as a rare event data (King and Zeng, 2001; Van 

Den Eeckhaut et al., 2006; Bai et al., 2010). The term “rare event data” was induced 

in political science, which described the binary dependent variables with dozens to 

thousands of times fewer 1s (landslide cells in this case) than 0s (non-landslide cells 

in this case). When applying popular statistical procedures (e.g., logistic regression) 

to model such conditions, the occurrence probability of the rare event can be sharply 

underestimated (King and Zeng, 2000, 2001). It is generally suggested to use the same 

number of landslide and non-landslide cells for model training (Süzen and Doyuran, 

2004; Nefeslioglu et al., 2008; Bai et al., 2010), even though there are also studies 

applying unequal proportions of them (Ayalew and Yamagishi, 2005; Dominguez-

Cuesta et al., 2007). In this study, referring to previous studies, the ratio of 1:1 to 1:5 

between the landslide and non-landslide cells were tested and explored. While all 

landslide cells were applied, a certain number of non-landslide cells were randomly 

selected to make the ratio between landslide presence and absence to be 1:1, 1:2, 1:3, 

1:4, and 1:5. 

After that, as there were several indicators for curvature-related conditioning 

factors (i.e., planform curvatre, profile crvature, and standard curvature), earthquake-

related conditioning factors (i.e., MMI, PGA, PGV, PSA03, PSA10, and PSA30), and 

precipitation-related conditioning factors (i.e., three-day, one-week, two-week, three-

week, and one-month cumulative precipitation before the disaster), respectively, 

effectiveness of them was first carried out by receiver operating characteristic (ROC) 

analyses to select the relatively effective indicators for susceptibility model 

construction (Lee, 2014). The larger the area under the ROC curve (AUC) value, the 

more effective the indicator.  

Then, the correlation and multicollinearity problems of the remaining numerical 

independent variables were analzyed by the pearson’s correlation coefficient, 

tolerance (TOL), and variance inflation factor (VIF), to exclude related indicators for 

model construction. Pearson’s correlation coefficient means the covariance of two 

variables divided by the product of their standard deviations. Its values are between -

1 and 1. -1 means completely negative linear correlation, 1 means completely positive 

linear correlation, and 0 means no linear correlation. An absolute value of pearson’s 
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correlation coefficient greater than 0.7 indicates a high collinearity (Bui et al., 2016; 

Booth et al., 2004). VIF is the quotient of the variance in a model with multiple terms 

by the variance of a model with one term alone. It is the reciprocal of TOL, and 

measures how much the variance of the estimated coefficient is inflated by 

multicollinearity (Equation 4.1). A large VIF value indicates that the associated 

independent variable is highly collinear with other independent variables. A TOL 

value smaller than 0.1 and a VIF value greater than 10 indicates that the 

multicollinearity is problematic.  

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2 =

1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
 

   

(4.1) 

 

After these analyses, the five different ratios (1:1, 1:2, 1:3, 1:4, and 1:5) between 

landslide and non-landslide cells were compared to determine a better one for model 

construction, by the use of landslide inventory and remaining landslide conditioning 

factor indicators. The dataset under the determined ratio were then randomly divided 

into two groups with a ratio of 7:3. Logistic regression was carried out using 70% of 

the data for training and 30% of data for validation, to construct and check the final 

landslide susceptibility model. Logistic regression is a multivariate analysis approach 

that can be used to model the relationship between a dichotomous dependent variable 

and a set of independent variables. It is efficient, highly interpretable, can be 

implemented relatively easily and quickly, and does not require the independent 

variables to have a normal distribution. The independent variables used for logistic 

regression can be either continuous, discrete, or any combinations of them. A logistic 

function can be written as Equation 4.2 (Allison, 2001), with 𝑝̂ representing the 

probability of event occurring (the probability of landslide occurrence in this case), 𝛼̂ 

representing the intercept, and 𝛽𝑖  representing the coefficient for the independent 

variable 𝑥𝑖 . It applies a maximum likelihood estimation in the algorithm after 

transforming the dependent variable into a logit variable. Logistic regression has 

already been applied for landslide susceptibility, hazard, and risk analysis, and shown 

favorable performance comparing with other statistical approaches such as 

discriminant analysis and the weight of evidence. 
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𝑃(𝑌 = 1) = 𝑝̂ =
1

1+𝑒−(𝛼̂+𝛽1̂𝑥1+𝛽2̂𝑥2+⋯+𝛽𝑛̂𝑥𝑛)
    

   

(4.2) 

 

4.4. Results and Discussions  

The AUC values of ROC analyses for the three curvature-related, six earthquake-

related, and five precipitation-related conditioning factor indicators were listed in 

Tables 4.1-4.3. As can be seen from these tables, no matter under what kinds of 

landslide and non-landslide cell ratios, the standard curvature, PSA03, and one-week 

cumulative precipitation before the disaster showed relatively better performance. 

This might be due to the parameter comprehensiveness of standard curvature 

comparing with planform and profile curvature, local soil water storage capability and 

evaporation conditon, and predominated period of local area. In the subsequent 

analysis, these three parameters will be used as the indicators for slope curvature, 

ground motion, and precipitation conditioning factors, respectively. Moreover, these 

tables also indicated that, for a specific indicator, there is no big difference among the 

AUC values under different ratios of landslide and non-landslide cells.  

 

Table 4.1. AUC values of curvature-related conditioning factor indicators under different 

ratios of landslide and non-landslide cells. 

Ratios Planform curvature Profile curvature Standard curvature 

1:1 0.54124 0.56543 0.56784 

1:2 0.54096 0.56526 0.56757 

1:3 0.54100 0.56523 0.56772 

1:4 0.54113 0.56531 0.56781 

1:5 0.54106 0.56546 0.56775 
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Table 4.2. AUC values of earthquake-related conditioning factor indicators under different 

ratios of landslide and non-landslide cells. 

Ratios MI PGA PGV PSA03 PSA10 PSA30 

1:1 0.81698 0.81247 0.70087 0.84492 0.77340 0.83532 

1:2 0.81717 0.81257 0.70099 0.84472 0.77336 0.83533 

1:3 0.81725 0.81269 0.70127 0.84476 0.77354 0.83526 

1:4 0.81731 0.81250 0.70120 0.84474 0.77353 0.83532 

1:5 0.81724 0.81250 0.70114 0.84472 0.77343 0.83528 

 

 

Table 4.3. AUC values of precipitation-related conditioning factor indicators under different 

ratios of landslide and non-landslide cells. 

Ratios 

Three-day 

cumulative 

precipitation 

One-week 

cumulative 

Precipitation 

Two-week 

cumulative 

Precipitation  

Three-week 

cumulative 

Precipitation  

One-month 

cumulative 

Precipitation  

1:1 0.89578 0.90505 0.87141 0.85990 0.78674 

1:2 0.89587 0.90513 0.87173 0.86014 0.78711 

1:3 0.89603 0.90528 0.87207 0.86041 0.78738 

1:4 0.89610 0.90538 0.87216 0.86042 0.78743 

1:5 0.89610 0.90539 0.87212 0.86043 0.78744 

 

The calculated correlation coefficient, TOL, and VIF values for the remaining 

numerical conditioning factors (i.e., elevation, slope gradient, slope aspect, standard 

curvature, TWI, SPI, STI, PSA03, one-week cumulative precipitation before the 

disaster) under different ratios of landslide and non-landslide cells are listed in Tables 

4.4-4.9. From these tables it can be seen that the correlation coefficient values between 

SPI and STI are higher than 0.7, which indicates that there may be some correlation 

between these two indicators. This might relate to the existence of many gentle slopes 

here, causing the sine and tangent value of the slope gradient for the calculation of 

STI and SPI, respectively, near to each other. In order to avoid the unnecessary 

problems caused by collinearity, SPI is excluded from the conditioning factor 

indicators, as it is not as effective as STI in this case.  
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Table 4.4. Correlation coefficient values between each two conditioning factor indicators 

(ratio of landslide and non-landslide cells=1:1). 

 
Elevat

ion 

Slope 

gradient 

Slope 

aspect 

Standard 

curvature 

PSA 

03 

One-week 

cumulative 

precipitation 

 

TWI SPI STI 

Elevation 1.000 0.168 0.058 0.057 -0.323 0.568 -0.203 0.033 0.074 

Slope 

gradient 
-- 1.000 0.088 0.006 0.196 -0.175 -0.632 -0.017 0.240 

Slope 

aspect 

-- -- 
1.000 -0.007 0.048 -0.046 -0.104 0.010 0.031 

Standard 

curvature 

-- -- -- 
1.000 -0.064 0.065 -0.336 -0.163 -0.386 

PSA03 -- -- -- -- 1.000 -0.565 -0.105 -0.019 0.048 

One-week 

cumulative 

precipitation 

-- -- -- -- -- 

1.000 0.055 0.027 -0.040 

TWI -- -- -- -- -- -- 1.000 0.247 0.249 

SPI -- -- -- -- -- -- -- 1.000 0.753 

STI -- -- -- -- -- -- -- -- 1.000 

 

Table 4.5. Correlation coefficient values between each two conditioning factor indicators 

(ratio of landslide and non-landslide cells=1:2). 

 
Elevat

ion 

Slope 

gradient 

Slope 

aspect 

Standard 

curvature 

PSA 

03 

One-week 

cumulative 

precipitation 

TWI SPI STI 

Elevation 1.000 0.210 0.070 0.050 -0.335 0.560 -0.236 0.036 0.097 

Slope 

gradient 
-- 1.000 0.096 -0.001 0.166 -0.124 -0.635 -0.005 0.252 

Slope 

aspect 
-- -- 1.000 -0.006 0.047 -0.041 -0.124 0.010 0.034 

Standard 

curvature 
-- -- -- 1.000 -0.060 0.057 -0.307 -0.144 -0.357 

PSA03 -- -- -- -- 1.000 -0.559 -0.082 -0.022 0.030 

One-week 

cumulative 

precipitation 

-- -- -- -- -- 1.000 0.017 0.030 -0.014 

TWI -- -- -- -- -- -- 1.000 0.214 0.204 

SPI -- -- -- -- -- -- -- 1.000 0.761 

STI -- -- -- -- -- -- -- -- 1.000 
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Table 4.6. Correlation coefficient values between each two conditioning factor indicators 

(ratio of landslide and non-landslide cells=1:3). 

 
Elevat

ion 

Slope 

gradient 

Slope 

aspect 

Standard 

curvature 

PSA 

03 

One-week 

cumulative 

precipitation 

TWI SPI STI 

Elevation 1.000 0.237 0.077 0.045 -0.335 0.554 -0.253 0.036 0.108 

Slope 

gradient 
-- 1.000 0.099 -0.002 0.136 -0.088 -0.636 -0.001 0.253 

Slope 

aspect 
-- -- 1.000 -0.005 0.044 -0.039 -0.132 0.009 0.035 

Standard 

curvature 
-- -- -- 1.000 -0.051 0.048 -0.295 -0.135 -0.341 

PSA03 -- -- -- -- 1.000 -0.548 -0.063 -0.024 0.015 

One-week 

cumulative 

precipitation 

-- -- -- -- -- 1.000 -0.007 0.031 0.003 

TWI -- -- -- -- -- -- 1.000 0.199 0.187 

SPI -- -- -- -- -- -- -- 1.000 0.767 

STI -- -- -- -- -- -- -- -- 1.000 

 

 

Table 4.7. Correlation coefficient values between each two conditioning factor indicators 

(ratio of landslide and non-landslide cells =1:4). 

 
Elevat

ion 

Slope 

gradient 

Slope 

aspect 

Standard 

curvature 

PSA 

03 

One-week 

cumulative 

precipitation 

TWI SPI STI 

Elevation 1.000 0.256 0.082 0.042 -0.335 0.551 -0.265 0.037 0.117 

Slope 

gradient 
-- 1.000 0.101 -0.001 0.113 -0.061 -0.635 0.001 0.255 

Slope 

aspect 
-- -- 1.000 -0.005 0.041 -0.035 -0.137 0.010 0.035 

Standard 

curvature 
-- -- -- 1.000 -0.044 0.041 -0.289 -0.133 -0.333 

PSA03 -- -- -- -- 1.000 -0.538 -0.049 -0.025 0.005 

One-week 

cumulative 

precipitation 

-- -- -- -- -- 1.000 -0.024 0.032 0.014 

TWI -- -- -- -- -- -- 1.000 0.195 0.178 

SPI -- -- -- -- -- -- -- 1.000 0.771 

STI -- -- -- -- -- -- -- -- 1.000 
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Table 4.8. Correlation coefficient values between each two conditioning factor indicators 

(ratio of landslide and non-landslide cells =1:5). 

 
Elevat

ion 

Slope 

gradient 

Slope 

aspect 

Standard 

curvature 

PSA 

03 

One-week 

cumulative 

precipitation 

TWI SPI STI 

Elevation 1.000  0.270  0.085  0.039  -0.334  0.548  -0.273  0.038  0.123  

Slope 

gradient 
-- 

1.000  0.101  0.001  0.094  -0.042  -0.634  0.003  0.256  

Slope 

aspect 
-- -- 

1.000  -0.004  0.039  -0.033  -0.140  0.010  0.035  

Standard 

curvature 
-- -- -- 

1.000  -0.039  0.035  -0.286  -0.132  -0.328  

PSA03 -- -- -- -- 1.000  -0.530  -0.038  -0.026  -0.003  

One-week 

cumulative 

precipitation 

-- -- -- -- -- 

1.000  -0.036  0.033  0.023  

TWI -- -- -- -- -- -- 1.000  0.193  0.174  

SPI -- -- -- -- -- -- -- 1.000  0.773  

STI -- -- -- -- -- -- -- -- 1.000  

 

Table 4.9. TOL and VIF values for the conditioning factor indicators under different ratios of 

landslide and non-landslide cells. 

Items Ratios Elevation 
Slope 

gradient 

Slope 

aspect 

Standard 

curvature 

PSA 

03 

One-week 

cumulative 

precipitation 

TWI SPI STI 

TOL 

1:1 0.826  0.595  1.000  0.930  0.889  0.732  0.611  0.587  0.439  

1:2 0.827  0.607  0.999  0.943  0.892  0.755  0.636  0.573  0.441  

1:3 0.828  0.616  0.999  0.950  0.901  0.773  0.648  0.562  0.438  

1:4 0.829  0.622  0.999  0.953  0.908  0.785  0.655  0.556  0.437  

1:5 0.830  0.626  0.999  0.956  0.913  0.794  0.659  0.554  0.438  

 VIF 

1:1 1.210  1.680  1.000  1.075  1.124  1.365  1.637  1.704  2.279  

1:2 1.210  1.646  1.001  1.060  1.121  1.324  1.571  1.745  2.266  

1:3 1.207  1.624  1.001  1.053  1.110  1.294  1.544  1.780  2.281  

1:4 1.206  1.609  1.001  1.049  1.102  1.274  1.528  1.800  2.289  

1:5 1.205  1.597  1.001  1.046  1.095  1.260  1.517  1.804  2.283  

 

In order to find the favorable ratio of landslide and non-landslide cells for model 

construction, the classification accuracy of logistic regression under different ratios 

were all calculated and listed in Table 4.10, including accuracy, recall, precision, and 
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F1 score. All data in the dataset were applied for training in the logistic regression 

analysis. Accuracy is an intuitive performance measure, indicating the ratio of 

correctly predicted observations to total observations (Equation 4.3). Recall is 

defined as the correctly predicted positive observations divided by all observations in 

actual class (Equation 4.4). Precision is defined as the correctly predicted positive 

observations divided by the total predicted positive observations (Equation 4.5). F1 

score is a weighted average of recall and precision (Powers, 2011) calculated based 

on Equation 4.6 to achieve a balance between the recall and precision measure. 

As it can be seen from the values in Table 4.10, among all of the five different 

ratios between landslide and non-landslide cells, the classification results obtained 

under the ratio of 1:1 is relatively better in general. Moreover, the recall values under 

different ratios indicated that the more non-landslide cells involved in analysis, the 

more landslide cells would be classified as non-landslide cells. Therefore, in this study, 

the dataset with the same number of landslide and non-landslide raster cells would be 

applied for constructing the final landslide susceptibility model. 

 

Table 4.10. Classification accuracy under different ratios of landsldie and non-landslide cells. 

Ratios Accuracy Recall Precision F1 score 

1:1 92.91% 97.06% 89.65% 93.20% 

1:2 92.00% 94.38% 83.71% 88.73% 

1:3 91.84% 90.72% 79.54% 84.76% 

1:4 91.89% 86.09% 76.36% 80.84% 

1:5 92.04% 81.28% 73.69% 77.30% 

 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 
(4.3) 

Recall = TP/(TP+FN) (4.4) 

Precision = TP/(TP+FP) (4.5) 

F1 score = 2×(Recall×Precision)/(Recall+Precision) (4.6) 

Here TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative 

in a confusion matrix shown in Table 4.11. 
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Table 4.11. Confusion matrix. 

 Positive Negative 

Positive True Positive (TP) False Negative (FP) 

Negative False Positive (FP) True Negative (TN) 

In order to construct and check the final model, the dataset with a ratios of 1:1 

between landslide presence and absence were randomly divided into two groups, 

with one including 70% of the data and used for model construction and another 

including 30% of the data and used for model validation. The final constructed model 

achieved a favorable accuracy for both training and validating dataset (Table 4.12). 

Using this model, a landslide susceptibility map in the study area was generated and 

shown in Figure 4.7, which seems to have a good consistency with the actual 

landslide distribution. In future application, by updating the changed conditioning 

factor indicators in the logistic regression function (i.e., the precipitation and ground 

motion indicators) according to actual situation, the landslide susceptibility model is 

expected to provide some useful information for landslide prediction, monitoring, 

and management in the study area. 

Table 4.12. Classification accuracy of the logistic regression. 

 Accuracy Recall Precision F1 score 

Training 93.92% 96.41% 89.72% 92.95% 

Validation 90.61% 97.09% 90.21% 93.53% 

 

 

Figure 4.7. Landslide susceptibility map. 

Actual 
Predict 
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As there is no earthquake after the 2018 Hokkaido Eastern Iburi Earthquake in the 

study area, to test and explain the application of the model in a future disaster, the 

information of a past earthquake, i.e., 2003 Tokachi-Oki Earthquake, was applied. 

The 2003 Tokachi-Oki Earthquake was an undersea earthquake occurred at the 

epicenter of 41.815°N, 143.910°E with a depth of 27km, at 04: 50: 06 am on 26 

September 2003 local time (JST) (UTC: 19:50:06 on 25 September 2003). The 

moment magnitude of the earthquake was 8.3Mw, and the maximum intensity of the 

earthquake was IX on a USGS scale (Figure 4.8) (USGS). It was said that, basically, 

no landslides were triggered in the study area by this earthquake. 

 

Figure 4.8. Shakemap for the 2003 Tokachi-Oki Earthquake (USGS). 

 

The ground motion information of the earthquake and the previous precipitation 

information before the earthquake were collected from USGS and JMA, respectively. 
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After some preprocessing (e.g., interpolation for the point precipitation data and 

conversion from vector format to raster format), the PSA03 map and one-week 

cumulative precipitation map used in landslide susceptibility analysis were obtained 

(Figure 4.9). Updating these two dynamic terms in the previously constructed 

landslide susceptibility model and map, a new landslide susceptibility map was 

generated (Figure 4.10). As can be seen from this figure, there was only a small area 

with a relatively high landslide occurrence probability in the updated landslide 

susceptibility map, which had certain consistency with the actual situation. The small 

area of inconsistency might be due to the misclassification of the model or the changes 

in other conditioning factors such as soil and vegetation between these two 

earthquakes. 

  

(a) (b) 

Figure 4.9. PSA03 map and one-week cumulative precipitation map for the 2003 Tokachi-

Oki Earthquake: (a) PSA03 map; (b) One-week cumulative precipitation map.  

 

 

Figure 4.10. Landslide susceptibility after changing the ground motion and precipitation 
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information of 2003 Tokachi-Oki Earthquake.  

 

4.5. Conclusions 

Taking advantage of the data and information brought by the landslide event in 

2018 Hokkaido Estern Iburi Earthquake, a landslide susceptibility analysis was 

carried out using a GIS-based statistical approach. Spatial data of landslide inventory 

and conditioning factors collected from different sources were preprocessed, analyzed, 

and constructed into a database in the ArcGIS platform, as dependent and independent 

variables for analysis. Considered independent variables (i.e., landslide conditioning 

factors) included topography, geology, soil, surface vegetation, precipitation, and 

ground motion. Representative indicators of these conditioning factors were 

calculated and derived in the ArcGIS platform for analysis. 

The effectiveness and multicollineary problems of these conditioning factor 

indicators were analyzed and checked by the values of AUC, correlation coefficient, 

TOL, and VIF. Standard curvature, PSA03, and one-week cumulative precipitation 

before the disaster were found to be relatively effective among the three curvature-

related (planform curvature, profile curvature, and standard curvature), six 

earthquake-related (MMI, PGA, PGV, PSA03, PSA10, PSA30), and five 

precipitation-related (three-day, one-week, two-week, three-week, and one-month 

cumulative precipitation before the disaster) conditioning factor indicators, 

respectively. SPI and STI seems to have some correlation with correlation coefficient 

values slightly larger than 0.7. After these analyses, eleven indicators were finally 

determined for the landslide susceptibility model construction, including elevation, 

slope gradient, slope aspect, standard curvature, TWI, STI, geology, soil, surface 

vegetation, PSA03, and one-week cumulative precipitation before the disaster. 

 All data, either in a raster format or vector format, were converted and resampled 

into 10m raster cells for raster calculation to incorporate various layers of information. 

The cells tagged as landslides occupied only 1.26% of the total raster cells, indicating 

a rare event of the landslide presence. Therefore, in order to avoid the underestimation 

of landslide occurrence, the non-landslide cells with the same number of landslide 

cells were randomly selected from the non-landslide cell library for susceptibility 



 

104 

analysis, as the testing results of different ratios between landslide and non-landslide 

cells (1:1, 1:2, 1:3, 1:4, and 1:5) showed that 1:1 was relatively favorable. 

A landslide susceptibility model was finally constructed using the selected 

indicators under the determined ratio by a logistic regressiom. 70% of the data were 

used for training while 30% of data were used for validation. This model achieved an 

overall accuracy of over 90% for both training and validation dataset. Applying this 

model, a landslide susceptibility map was generated for the study area, which showed 

certain consistency with the actual landslides. It is expected to provide some useful 

information for the prediction, monitoring, and management of future landslide 

occurrence in the study area, by updating the changed causative factors such as 

precipitation indicator according to actual situation. 
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CHAPTER 5 

SYNTHETIC APERTURE RADAR (SAR)-BASED LANDSLIDE 

DETECTION FOR POST-EVENT LANDSLIDE DISASTER 

MANAGEMENT 

 

5.1. Introduction 

Following a landslide event that impacted residents, a rapid detection and 

understanding of the landslides is of importance for coordinating emergency response 

efforts and limiting rescue arrangement delays. RS, especially optical sensors and 

SAR, can provide a valuable data source for rapid landslide detection, owing to their 

large coverage, non-contact, and rapid response. Making full use of the landslide 

inventory and RS products captured during this disaster, a SAR-based landslide 

detection was explored in this chapter to benefit post-event landslide disaster 

management in the future.  

As has mentioned, optical sensors and SAR are two important and major remote 

sensing technologies that can be used for quick landslide detection and mapping after 

a disaster. Optical sensors can provide optical images like human eyes view the Earth, 

which are easy to interpret. Over the years, various optical images have been explored 

for landslide research through various means, either at an object level or at a pixel 

level. For instance, Sun et al. (2017) developed an algorithm for recognizing and 

mapping loess landslides, based on an object-oriented approach, by combining 

spectral, textural, and morphometric information with auxiliary topographic 

parameters, in high-resolution multispectral CF-1 satellite data and a high-precision 

DEM. The multi-scale segmentation and merging in object-oriented analysis were 

executed to obtain favorable landslide candidate objects. Chen et al. (2017) proposed 

an object-oriented landslide mapping framework, based on random forests and 

mathematical morphology, using ZY-3 satellite imagery. Random forest was first 

employed as a feature reduction tool, to identify significant features for landslide 

description. Mathematical morphology was then combined with the random forest to 

map the landslides. Bivic et al. (2017) applied two image correlator software packages 

(MicMac and Cosi-Corr) to ortho-rectified SPOT-5 images, in order to evaluate the 

possibility of measuring the displacement occurred between two image acquisitions 
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of a landslide located in a mountainous highly vegetated areas. In their study, the scale 

invariant feature transform method was employed to select image control points.  

Nevertheless, optical sensors are passive RS using visible light, which rely heavily 

on sunlight for imaging, and cannot penetrate clouds. That may cause time delay in 

acquiring favorable images, hampering their application as an emergency tool for 

landslide detection, as landslide event usually occur in bad weather condition 

(especially rainfall-induced landslides) and sometimes at night such as the one in this 

case. In the 2015 Nepal earthquake, Burrows et al. (2019) indicated that there was 

almost no cloud-free imagery available for landslide detection in the first week 

following the disaster. SAR data, conversely, are relatively difficult to interpret, but 

can be acquired at night and in any weather condition, owing to the active 

characteristics of the radar sensors and long wavelengths of the applied microwaves. 

Therefore, they are deemed to be promising tools for quick response following a 

disaster even in harsh weather and at night. Actually, since the 1995 Kobe earthquake, 

SAR data have been widely investigated for building damage assessment in urban 

areas following a disaster (e.g., Matsuoka and Yamazaki, 2004; Dong and Shan, 2013; 

Plank, 2014).  

As an active remote sensing, SAR sends electromagnetic microwaves to ground 

targets in a slanted way and then receives corresponding backscattering echoes. Under 

certain modes, it has the ability to obtain both intensity and phase information of the 

backscattering waves. Intensity refers to the amplitude information of the 

backscattering waves that can be influenced by both parameters of radar systems and 

characteristics of ground targets. Phase indicates the relative position of the 

backscattering waves within a full period, which is largely dependent on the distance 

between the radar sensor and ground targets. The path length of an electromagnetic 

signal to the ground and back usually contains a number of whole wavelength plus 

some fraction of a wavelength.  

Over the years, SAR has been widely employed for the monitoring of specific 

slow-moving landslide through various interferometry techniques by the use of phase 

information (e.g., Strozzi et al., 2005, Colesanti and Wasowski, 2006, Zhao et al., 

2012, Tofani et al., 2013, Confuorto et al., 2017, and Zhao et al., 2018). Nevertheless, 

the feasibility of interferometry technique depends on many observation 
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characteristics such as the spatial baseline, temporal baseline, coherence, and 

wavelength (Konishi and Suga, 2018), and is restricted by many actual conditions 

such as the steepness and orientation of the slope as well as the amount of vegetation 

(Lazecký et al., 2015). For instance, a favorable interferogram cannot be generated by 

the pre-event and post-event Advanced Land Observing Satellite-2 (ALOS-2) images 

applied in this case owing to the low coherence between them.  

For the application of SAR images in landslide detection, there have not been 

many investigations. Several conducted studies were only concentrated on large 

individual landslides, catchments (Raspini et al., 2015; Yun et al., 2015; Xue et al., 

2018), or dozens of landslides (Konishi and Suga, 2018). A couple of studies (Mondini, 

2017; Burrows et al., 2019) focusing on large-scale landslide detection were also not 

for small-sized shallow landslides. Xue et al. (2018) synthesized a color image using 

SAR interference correlation value (red), backscattered intensity (green), and the 

difference between the backscattered intensities (blue), for the interpretation of the 

Daguanbao-Hongdongzigou giant landslide. Raspini et al. (2015) exploited both 

amplitude (through speckle tracking) and phase (through multi-image SAR 

interferometry) information of SAR images, for the displacement mapping of a single 

large landslide in Montescaglioso, Italy. Yun et al. (2015) found their damage proxy 

map, which was generated using the coherence difference calculated by a pre-event 

coherence map and a histogram-matched co-event coherence map, could roughly 

delineate the extent of debris from reported landslide/avalanche in Langtang valley. 

Konishi and Suga (2018) investigated the potential of backscattering coefficient 

difference and intensity correlation calculated by pre-event and post-event 

Constellation of Small Satellites for Mediterranean basin Observation (COSMO-

SkyMed) images, for the detection of dozens of deep-seated landslides. Burrows et al. 

(2019) tested three potential SAR-coherence-based landslide methods (i.e., the 

absolute coherence method using one pre-event and one post-event SAR images, the 

Advanced Rapid Imaging and Analysis (ARIA) method applying two pre-event and 

one post-event images (Xue et al., 2018), and the newly proposed sibling-based 

coherence method employing a series of SAR images) for large-scale landslide 

classification, in the 2015 Gorkha, Nepal earthquake, using Sentinel-1 images. 

Mondini (2017) measured pixel-based changes between consecutive couples of 



 

110 

sixteen Sentinel-1 SAR intensity images using Log-Ratio index, for rainfall-triggered 

landslide detection in Tozang area, Myanmar. Moran’s I index and semivariance were 

used to measure spatial autocorrelation evolution in the Log-Ratio index layers, and 

employed for landslide identification. 

From these previous studies, the applicability of SAR data for the detection of the 

densely distrubuted small-sized shallow landslides is not very clear. Moreover, 

several information and features in SAR data can be used to measure ground changes, 

but there were no studies to compare them and tell which one is better or cost-effective 

for the application in landslide detection. Therefore, this chapter aimed to take 

advantage of the SAR products captured during this disaster to explore and compare 

different SAR features for the detecion of such densely distrubuted small-sized 

shallow landslides landslides. Two pre-event and one post-event ALOS-2 L-band 

single look complex (SLC) SAR products were applied. All potential parameters that 

have the capability to measure ground changes and can be derived relatively easily 

from these products were selected and calculated to facilitate a rapid detection. 

Qualitative and quantitative analyses were performed to compare the capability of 

these potential candidate parameters for landslide detection so as to provide a 

reference. A combinational use of these parameters and features was also investigated. 

A simple exploration and comparison between Sentinel-1 C-band SAR data and 

ALOS-2 L-band SAR data was also carried out to provide some reference for future 

application. 

 

5.2. Study Area and Dataset 

Before and after the disaster, the Japanese ALOS-2 satellite captured the affected 

area in the Level 1.1 single look complex (SLC) format at August 9, 2018, August 23, 

2018, and September 6, 2018, respectively. All of the three products were captured 

from the left looking ascending track with an off-nadir angle of 37.8° and covered the 

same region with an area of 55 km×70 km (Figure  5.1a). SLC products means that 

the images were represented by complex I and Q channels to preserve amplitude and 

phase information, from which intensity and coherence can be derived. The 

acquisition mode of these images was stripmap ultra-fine mode single polarization 



 

111 

(UBS), with a polarization mode of HH. A summary of the data information was listed 

in Table 5.1.    

A rectangular region in the landslide area covered by the three SAR images was 

used to explore the SAR information and features for landslide detection (Figure  

5.1a). The two pre-event and one post-event ALOS-2 products were all used to 

calculate and derive potential features and parameters. The detailed landslide 

inventory created by Zhang et al., (2019), which has been introduced and used in 

chapters 3 and 4, was applied as the ground truth landslide data for result comparison 

and evaluation in this chapter. The distribution of actual landslides in the study area 

can be seen in Figure  5.1b.  

 

Table 5.1. Information of the applied ALOS-2/PALSAR-2 data. 

Date (UTC) 

(yyyy/mm/dd) 
Format Level Mode 

Polari

zation 

Sample Spacing 

(Range × Azimuth) 

Orbit 

Direction 

Off-nadir 

Angle 

2018/08/09 CEOS 
L1.1 

(SLC) 
UBS HH 1.43m × 1.95m 

Left Looking/ 

Ascending 
37.8 ° 

2018/08/23 CEOS 
L1.1 

(SLC) 
UBS HH 1.43m × 1.95m 

Left Looking/ 

Ascending 
37.8 ° 

2018/09/06 

(13:37) 
CEOS 

L1.1 

(SLC) 
UBS HH 1.43m × 1.95m 

Left Looking/ 

Ascending 
37.8 ° 

ALOS-2: Advanced Land Observing Satellite-2; PALSAR-2: Phased Array type L-band Synthetic Aperture 

Radar-2; CEOS: Committee on Earth Observation Satellites; SLC: single look complex; UBS: ultra-fine mode 

single polarization; HH: horizontal transmit and horizontal receive. 

 

. 

(a) 
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. 

(b) 

Figure 5.1. Location of captured synthetic aperture radar (SAR) products and study area as 

well as the landslide distribution in the study area: (a) Location of captured Advanced Land 

Observing Satellite-2 (ALOS-2) SAR products (red polygon) and study area (blue rectangle); 

(b) Landslide distribution in the study area. 

 

5.3. Methodology 

5.3.1. Principle and Parameter Calculation 

As has been introduced in section 5.2, the applied ALOS-2 SLC products included 

both intensity and phase information of microwave echoes backscattered from ground 

targets. Intensity indicates the amplitude information of backscattering microwaves 

received by the SAR sensor after emitting microwaves to ground targets. It is 

influenced by not only radar system parameters (e.g., frequency, polarization, and 

incidence angles) but also ground target characteristics (e.g., roughness and material 

dielectric characteristics). Therefore, intensity changes in SAR images over a period 

of time can indicate the ground target changes during this time. As landslides usually 

cause land surface changes such as de-vegetation and slope smoothing, SAR image 

intensity changes are deemed to have the potential for landslide identification. 

Intensity difference and co-event correlation coefficient calculated by pre-event and 

post-event SAR images can be used to quantify SAR image intensity changes caused 

by a disaster event, and hence are selected as candidate parameters for landslide 

detection in this case.  
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Intensity difference, d, can be easily calculated by Equation 5.1. Regions with 

higher absolute values of d experienced larger ground changes, whereas regions with 

lower absolute values of d experienced smaller changes.  

𝑑 =
∑ (𝐼𝑏𝑖 − 𝐼𝑎𝑖)
𝑁
𝑖=1

𝑁
 (5.1) 

where N is the total number of pixels within a certain window, and 𝐼𝑎𝑖 and 𝐼𝑏𝑖 are intensity 

values of pixel i in the two SAR images (hereafter). 

 

Correlation coefficient, r, can be calculated according to Equation 5.2. Its values 

range from -1 to 1, with lower values indicating larger ground changes, and a 1 value 

representing no ground changes. 

𝑟 =
𝑁∑ 𝐼𝑎𝑖𝐼𝑏𝑖

𝑁
𝑖=1 − ∑ 𝐼𝑎𝑖 ∑ 𝐼𝑏𝑖

𝑁
𝑖=1

𝑁
𝑖=1

√(𝑁∑ 𝐼𝑎𝑖
2𝑁

𝑖=1 − (∑ 𝐼𝑎𝑖
𝑁
𝑖=1 )2) ∙ (𝑁∑ 𝐼𝑏𝑖

2𝑁
𝑖=1 − (∑ 𝐼𝑏𝑖

𝑁
𝑖=1 )2)

 
(5.2) 

Moreover, to differentiate areas where the correlation coefficient value is always 

low and where it has decreased, the difference of pre-event and co-event correlation 

coefficient, ∆𝑟 , was also calculated (Equation 5.3) and taken into account. This 

parameter has shown favorable performance for building damage detection in un-

urbanized areas (Matsuoka and Yamazaki, 2006), and might have favorable 

performance for landslide detection in this case. 

∆𝑟 = 𝑟𝑐𝑜 − 𝑟𝑝𝑟𝑒 (5.3) 

where rco is the co-event correlation coefficient calculated by one pre-event and one post-

event SAR images, and rpre is the pre-event correlation coefficient calculated by two pre-event 

SAR images. 

 

Phase is a property of periodic phenomenon, referring to the relative value of the 

received backscattering wave within a whole period. It is very sensitive to the distance 

between the satellite sensor and ground target, and hence also has the ability to 

measure ground target changes. Phase difference has already been applied through 
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SAR interferometry techniques to measure earth’s surface changes, such as the 

deformation caused by landslides, volcanoes, glaciers or anthropogenic activities 

(Massonnet and Feigl, 1998). Nevertheless, as has been mentioned, the feasibility of 

interferometry technique depends on many observation characteristics (e.g., spatial 

baseline, temporal baseline, coherence, and wavelength) (Konishi and Suga, 2018), 

and is restricted by many actual conditions when applied for landslide detection and 

monitoring (e.g., the steepness and orientation of the slope and the amount of 

vegetation) (Lazecký et al., 2015). In this case, a favorable interferogram cannot be 

generated by the pre-event and post-event SAR images due to the high decorrelation 

between them.  

Coherence, γ, means the cross-correlation of phase information in two images 

(Equation 5.4), which is often used to prejudge whether a good interferogram can be 

generated. Its values range from 0 to 1, and can also be applied to measure ground 

changes, with a lower value indicating larger ground changes. In this case, the co-

event coherence calculated by one pre-event and one post-event SAR image was also 

selected as a candidate parameter for landslide detection. Moreover, similar to the 

correlation coefficient, to distinguish areas where the coherence value is always low 

and where it has reduced, the difference of pre-event and co-event coherence, ∆γ, was 

also calculated (Equation 5.5) and explored. 

γ =
𝐸〈𝑐1𝑐2

∗〉

𝐸〈𝑐1𝑐1
∗〉𝐸〈𝑐2𝑐2

∗〉
 (5.4) 

where c1 and c2 are corresponding complex pixel values in images of two acquisition dates, 

c* means the complex conjugate of c, and 𝐸 means the expected value. 

∆γ = 𝛾𝑐𝑜 − 𝛾𝑝𝑟𝑒 (5.5) 

where 𝛾𝑐𝑜  is the co-event coherence calculated by one pre-event and one post-event SAR 

images, and 𝛾𝑝𝑟𝑒 is the pre-event coherence calculated by two pre-event SAR images. 

To sum up, all of the parameters mentioned above, including intensity difference 

d, co-event correlation coefficient r, correlation coefficient difference ∆𝑟, co-event 

coherence γ , and coherence difference ∆γ , have certain potential for landslide 

detection and were selected as candidate parameters in this case. In order to obtain 
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images of these parameters, the Sentinel Application Platform (SNAP) 6.0 of the 

European Space Agency (ESA) and ArcGIS 10.5 software of the Environmental 

Systems Research Institute (ESRI) were applied to process the three original SAR 

SLC products. SNAP 6.0 was primarily applied to derive the basic intensity and 

coherence information from the original complex images (Veci, 2016). ArcGIS 10.5 

was mainly employed for the final calculation of these potential parameters. 

 

5.3.2. Qualitative and Quantitative Analyses of the Potential Parameters 

After obtaining images of these potential parameters, qualitative and quantitative 

analyses were carried out to investigate and compare their performance for landslide 

detection. Qualitative analyses were carried out by overlapping the landslide ground 

truth data (Zhang et al., 2019) upon the calculated parameter images, and observing 

the parameter characteristics in actual landslide and non-landslide areas intuitively. 

Quantitative analyses were executed by ROC curves. ROC curves are graphical plots 

generated by true positive rate (TPR) values against false positive rate (FPR) values, 

and can be used to illustrate the diagnostic ability of binary classifiers (Metz, 1978; 

Zweig and Campbell, 1993; Tom, 2006). In a binary classification problem, under a 

certain threshold, there is a confusion matrix composed of four elements: true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN), according to 

actual and predicted classification results (Table 4.11). Based on these four elements 

in the confusion matrix, TPR and FPR can be calculated easily by Equations 5.6 and 

5.7, respectively. Moving the classification threshold from lower values to higher 

values, a series of TPR and FPR can be obtained, by which a ROC curve is able to be 

generated. On one hand, the ROC curve can be applied to measure and compare the 

performance of binary classifiers through calculating the area under the curve (AUC). 

Values of AUC range from 0.5 to 1, with a larger value representing a model with 

higher performance (Hanley and McNeil, 1982). On the other hand, for a specific 

binary model, the ROC curve can be employed to find the optimal classification 

threshold by seeking the point with highest Youden index (Youden, 1950) in the top 

left of the curve.  
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TPR = TP/(TP+FN) (5.6)  

FPR = FP/(FP+TN) (5.7) 

where TPR and FPR means true positive rate and false positive rate; TP, FN, FP, and TN 

means true positive, false negative, false positive, and true negative as shown in Table 4.11. 

 

Parameter calculation window sizes influence characteristics of calculated 

parameter images (e.g., ground target boundary), and will also affect the performance 

of the parameters as landslide classifiers. In order to understand the influence of 

window sizes as well as to find the optimal window size for calculation, the equal step 

and hunt&fill scaling method in incremental dynamic analysis (Vamvatsikos and 

Cornell, 2001; 2002; Vamvatsikos, 2011) were referred in order to save computational 

efforts. First, calculation window sizes of 5×5, 15×15, 25×25, 35×35, 45×45, 55×55, 

65×65, 75×75, and 85×85 were applied to understand the overall trend of window size 

impacts, as the pixel size of the applied SAR images is around three square meters, 

and the landslide sizes in the study areas vary from hundreds to tens of thousands 

square meters. Then, if big difference exists between the results of two adjacent 

calculation window sizes, interpolation will be carried out to fill the gap and hunt for 

the specific optimal window size.  

 

5.4. Results 

5.4.1. Parameter Qualitative Interpretation 

The calculated parameter images overlapped by ground truth landslides are shown 

in Figure 5.2. As can be seen from this figure, more or less, all potential parameters 

show some different characteristics in landslide and non-landslide areas.  

The intensity difference image (Figure  5.2a) displays some obvious higher-value 

and lower-value pixels in landslide areas. That means both increase and decrease of 

intensity have been caused by the earthquake-induced landslides. On one hand, 

triggered landslides wiped away many elements on the hillsides (e.g., trees and big 

stones) and smoothed the slopes, reducing the backscattering from these areas to the 
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radar sensor and causing the intensity decrease. On the other hand, the alluviums 

washed away by landslides deposited in some foot regions of the slope, increasing the 

backscattering from these areas to the radar sensor and inducing the intensity increase.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.2. Images of calculated parameters overlapped by ground truth landslides (red color: 

ground truth landslides): (a) Intensity difference d; (b) Absolute value of intensity difference 

dabs1; (c) Co-event correlation coefficient r; (d) Correlation coefficient difference ∆r; (e) Co-

event coherence γ; (f) Coherence difference ∆γ. 
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As both intensity increase and decrease occurred in landslide areas, the absolute 

value of the intensity difference, dabs1, was calculated (Equation 5.8) and would be 

applied to facilitate further analysis for landslide pixel identification. In the image of 

this parameter, landslide areas will only display higher-value pixels (Figure  5.2b). 

Besides, information loss may occur when calculating d and 𝑑𝑎𝑏𝑠1  according to 

Equation 5.1, as the increased and decreased intensity pixel values within the 

calculation window could be averaged and neutralized. Therefore, a new intensity 

difference absolute value, 𝑑𝑎𝑏𝑠2, was created (Equation 5.9) to avoid information loss 

in intensity difference calculation, and would also be explored as a landslide classifier. 

𝑑𝑎𝑏𝑠1 = |𝑑| (5.8) 

where d is the intensity difference calculated by Equation 5.1. 

𝑑𝑎𝑏𝑠2 =
∑ |𝐼𝑏𝑖 − 𝐼𝑎𝑖|
𝑁
𝑖=1

𝑁
 (5.9) 

Moreover, in both co-event correlation coefficient (Figure  5.2c) and correlation 

coefficient difference (Figure 5.2d) images, landslide areas display some lower-value 

pixels, indicating larger ground changes comparing with non-landslide areas. Due to 

larger backscattering changes in the post-event SAR image caused by landslide-

induced ground changes, the co-event correlation coefficient in the landslide areas 

became relatively smaller, leading to these lower-value pixels. Besides, by subtracting 

a pre-event correlation coefficient, some areas where pixel values were always low 

seem to be excluded as expected in the correlation coefficient difference image. For 

instance, the water area at the top left of the study region (blue polygon in Figure 5.3), 

which showed relatively lower pixel values in the correlation coefficient image 

(Figure 5.2c), did not show clear lower pixel values in the correlation coefficient 

difference image (Figure 5.2d) anymore. 

Furthermore, the co-event coherence (Figure 5.2e) and coherence difference 

(Figure 5.2f) images also display some lower-value pixels in some landslide areas, 

owing to the relatively larger decorrelation caused by landslide-involved ground 

changes. Nevertheless, the difference between landslide and non-landslide areas in 

these two images seems to be not as clear as that in other images. This may be due to 
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the fact that most study areas were covered by trees where the coherence is originally 

very low even no landslides occurred. A clear lower-value region can be seen in the 

darker area of the coherence difference image (Figure 5.2f). This area was initially 

covered by grass (green polygon in Figure 5.3), which had higher pre-event coherence 

values comparing with areas covered by trees. Therefore, when pre-event coherence 

was subtracted from the co-event coherence, a lower-value area region appears. This 

may indicate that the coherence difference is favorable for landslide detection in 

slopes covered by grass. 

  

(a) (b) 

Figure 5.3. Pre-event and post-event optical images in the study area from Google Earth: (a) 

Pre-event image (2017/10/24); (b) Post-event image (2018/09/11) (red polygon: ground truth 

landslides made by Zhang et al. (2019)). (The different shape of images in Figure 5.3 is due 

to the different coordinate system in Google Earth). 

 

5.4.2. Parameter Quantitative Analyses 

ROC analyses of the six parameters mentioned above (𝑑𝑎𝑏𝑠1, 𝑑𝑎𝑏𝑠2, r, ∆𝑟, 𝛾, and 

∆γ) calculated under different window sizes were carried out one by one. Obtained 

AUC values are listed in Table 5.2 and then plotted in Figure 5.4 for easy visual 

observation. As can be seen from the table and figure, the newly proposed parameter 

𝑑𝑎𝑏𝑠2  shows the largest AUC values among all parameters, indicating its best 

performance as landslide classifiers in this case. The correlation coefficient difference 

∆𝑟 also shows good performance, whose AUC values are higher than the other four 
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parameters when the calculation window size is larger than 25. Besides, the largest 

AUC values of 𝑑𝑎𝑏𝑠2 and ∆𝑟 are around 0.82 and 0.75 respectively, demonstrating 

their favorable performance in classifying landslide and non-landslide pixels.  

 

Table 5.2. AUC values of the six parameters calculated under different window sizes. 

 5×5 15×15 25×25 35×35 45×45 55×55 65×65 75×75 85×85 

𝑑𝑎𝑏𝑠1 0.6385 0.6763 0.6856 0.6833 0.6745 0.6639 0.6551 0.6504 0.6483 

𝑑𝑎𝑏𝑠2 0.6601 0.7552 0.7998 0.8153 0.8148 0.8063 0.7954 0.7851 0.7768 

r 0.5537 0.6203 0.6525 0.6672 0.6729 0.6745 0.6742 0.6739 0.6741 

∆𝑟 0.5519 0.6437 0.7050 0.7388 0.7523 0.7540 0.7503 0.7447 0.7392 

γ 0.5406 0.5794 0.6042 0.6217 0.6352 0.6482 0.6580 0.6648 0.6690 

∆γ 0.5436 0.5842 0.6070 0.6242 0.6356 0.6435 0.6482 0.6511 0.6521 

 

 

Figure 5.4. AUC values of the six parameters calculated under different window sizes. 

 

Moreover, in general, the intensity-related parameters (𝑑𝑎𝑏𝑠1, 𝑑𝑎𝑏𝑠2, r, and ∆𝑟) 

have better performance than the coherence-related parameters (γ and ∆γ). This is 

considered to be associated with the sensitivity of these two kinds of information to 

ground changes and the land use here. Coherence information is more sensitive to 

minor changes (e.g., vegetation growth and movement of leaves and stalk induced by 

wind), and usually has low values in forests even if no disaster occurred. The study 

area was mainly covered by trees. The sensitivity of coherence information to the 

minor vegetation changes here interfered with their detection of landslides, which 
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might be the reason for the overall poorer performance of the coherence-related 

parameters. 

In addition, between the two intensity difference parameters (𝑑𝑎𝑏𝑠1 and 𝑑𝑎𝑏𝑠2), 

𝑑𝑎𝑏𝑠2 shows much better performance than 𝑑𝑎𝑏𝑠1, demonstrating the advantage of 

Equation 5.9, which tried to avoid information loss in calculation. In addition, as the 

window size increases, the gap between the AUC values of 𝑑𝑎𝑏𝑠1  and 𝑑𝑎𝑏𝑠2  is 

growing increasingly larger. This also proves that information loss occurred in the 

calculation of 𝑑𝑎𝑏𝑠1, which was caused by the average of increased and decreased 

intensity pixel values within the calculation window. As for the two correlation 

coefficient parameters (i.e., r and ∆𝑟), ∆𝑟 shows much better performance than r, as 

some pixels whose values were always low were excluded by subtracting one pre-

event correlation coefficient image. However, this approach dose not achieve the same 

good effect on coherence parameters, as most of the study area was covered by trees 

that along can cause large coherence decorrelation. The classification performance of 

∆γ is as unsatisfactory as that of γ. 

As for the influence of calculation window sizes, the general trend for the 

intensity-related parameters is that, as the window size increases, the classification 

accuracy first increases and then tends decrease. Favorable window sizes are around 

25 to 55, with the optimal being 25, 35, 55, and 55 for 𝑑𝑎𝑏𝑠1 , 𝑑𝑎𝑏𝑠2 , r, and ∆𝑟, 

respectively. Comparing with other parameters, 𝑑𝑎𝑏𝑠1  achieves the optimal 

performance in a smaller window size, as the bigger the window size, the more 

increased and decreased pixels will be averaged. For the coherence-related parameters, 

within the calculation window sizes that have been applied, the parameter 

performance is becoming better and better with the increase of the calculation window 

size. Nevertheless, the improvement is very slight.  

Furthermore, as can be seen from Table 5.2, there is no big difference between 

the AUC values of parameters calculated under two adjacent optimal window sizes. 

Therefore, interpolation between the calculation window sizes was not carried out. 

The highest AUC values for the six parameters, i.e., 𝑑𝑎𝑏𝑠1, 𝑑𝑎𝑏𝑠2, r, ∆𝑟, γ, and ∆γ, are 

around 0.69, 0.82, 0.67, 0.75, 0.67, and 0.65, respectively. That means, individually, 

𝑑𝑎𝑏𝑠1, r, γ, and ∆γ are not very appropriate as binary classifiers for distinguishing 

landslide and non-landslide pixels in this case, while 𝑑𝑎𝑏𝑠2 and ∆𝑟 have favorable 
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performances. What should be noted is that this conclusion is obtained based on only 

this specific case: detection of densely distributed shallow landslides with a small size 

in slopes covered by trees, using high-resolution L-band ALOS-2 products. For 

images of other bands or other resolution conditions, or for landslides in bare slopes 

or of deep-seated or large-sized types, there may be some differences. For instance, 

the coherence parameters may have better performances for landslide detection in bare 

slopes due to there being no vegetation interference.  

 

5.4.3. Landslide Detection by the Favorable Parameters 

In order to specifically understand the performances of the two favorable 

parameters (𝑑𝑎𝑏𝑠2  and ∆𝑟) found in quantitative analyses, detailed analyses were 

carried out. ROC curves of the two parameters calculated under the optimal window 

sizes were shown in Figure 5.5. Optimum thresholds were then determined by seeking 

the point with highest Youden index at the top left of the curves. Corresponding 

threshold values for 𝑑𝑎𝑏𝑠2 and ∆𝑟 were 2.08 and -0.11, respectively. Classification 

results under the optimal thresholds were shown in Figure 5.6 to compare with the 

ground truth landslides. A summary of the classification accuracy was listed in Table 

5.3, including accuracy, recall, precision, and F1 score (Equations 4.3-4.6), to 

provide a quantitative understanding. 

The shape of the ROC curves in Figure 5.5 can give an intuitive impression of the 

parameter performance as binary landslide classifiers. As x and y axis represent TPR 

and FPR respectively, the closer the curve to y axis, the better the parameter 

performance. The accuracy and recall values in Table 5.3 can provide a quantitative 

understanding of the parameter capabilities for landslide and non-landslide pixel 

classification. When using 𝑑𝑎𝑏𝑠2 as a landslide classifier, 69.36% landslide and non-

landslide pixels can be correctly classified, and 87.76% landslide pixels can be 

correctly identified. When using ∆𝑟 as a landslide classifier, 64.57% landslide and 

non-landslide pixels can be correctly classified, and 81.68% landslide pixels can be 

correctly identified. Since the key point of landslide detection is to identify all 

landslide areas correctly, the higher recall values indicate that the two parameters have 

certain values for the landslide detection. 
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(a) (b) 

Figure 5.5. Receiver operating characteristic (ROC) curves of 𝑑𝑎𝑏𝑠2 and ∆𝑟 calculated under 

the optimal window sizes: (a) 𝑑𝑎𝑏𝑠2; (b) ∆𝑟. 

 

Table 5.3. Landslide detection accuracy of 𝑑𝑎𝑏𝑠2  and ∆𝑟  calculated under the optimum 

window sizes. 

Parameter Accuracy Recall Precision F1 score 

𝑑𝑎𝑏𝑠2 69.36% 87.76% 47.04 % 61.25% 

∆𝑟 64.57% 81.68 % 42.59% 55.99% 

 

The low precision values of the classification results (Table 5.3) demonstrate that 

many non-landslide pixels were classified as landslide pixels. This can been seen more 

clearly from Figure 5.6, which shows that many non-landslide areas around the 

ground truth landslides were classified as landslides by the two parameters. To some 

extent, this phenomenon is due to the imprecise boundary of the ground truth 

landslides and the principal of the two SAR intensity parameters. The landslide 

boundaries in the ground truth landslide inventory were generally curves roughly 

consistent with visible ground changes caused by landslides, such as de-vegetation, 

as shown in Figure 5.3. They were not very precise. Moreover, surrounding areas of 

the landslide boundaries where there seems to be no clear visible changes may also 

experience implicated changes, for instance, vegetation tilt caused by the erosion or 

lashing of surrounding soils. These implicated changes may also cause significant 

AUC=0.8153 AUC=0.7540 
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SAR backscattering changes, making these areas detected as landslides by the SAR 

intensity parameters. F1 score, which balanced the recall and precision measures, has 

a value of 61.25% for 𝑑𝑎𝑏𝑠2 and a value of 55.99% for ∆𝑟, indicating a relatively 

better performance of 𝑑𝑎𝑏𝑠2 compared with ∆𝑟 on the whole. 

 

 

(a) 

 

 

 (b) 

Figure 5.6. Landslides detected by 𝑑𝑎𝑏𝑠2 and ∆𝑟 (green: landslides detected by 𝑑𝑎𝑏𝑠2 and ∆𝑟; 

red: ground truth landslides made by Zhang et al. (2019)): (a) 𝑑𝑎𝑏𝑠2; (b) ∆𝑟. 
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5.4.4. Landslide Detection by Jointly Applying Three Types of Parameters 

As the sensitivities of the three types of parameters (i.e., intensity difference, 

correlation coefficient, and coherence) to ground changes are different, a 

combinational application of them may provide complementary information to each 

other, and improve the landslide detection accuracy. To explore the combinational use 

of the three types of parameters, linear discriminant analysis (Balakrishnama and 

Ganapathiraju, 1998) was carried out using three relatively favorable parameters with 

one in each type.  

Linear discriminant analysis is a mathematical process that employs functions to 

separately analyze multiple object or item classes. It has been applied for SAR-based 

building damage assessments since the 1995 Kobe Earthquake, and has shown 

favorable performances, e.g., Matsuoka and Yamazaki, 2004 and 2010. 𝑑𝑎𝑏𝑠2, ∆r, and 

∆γ were applied as the intensity difference, correlation coefficient, and coherence 

parameters, respectively, as they have shown relatively favorable performances in 

parameter analyses, and/or are able to distinguish areas where parameter values were 

always low and have decreased. 

A discriminant function combining 𝑑𝑎𝑏𝑠2, ∆r, and ∆γ was obtained from the linear 

discriminant analysis and is shown in Equation 5.10. Landslides detected by this 

discriminant function are shown in Figure 5.7, to provide an intuitive observation. 

Pixels with positive discriminant scores (z values) were assigned as landslides, 

whereas pixels with negative discriminant scores were assigned as non-landslides. 

The accuracy, recall, and precision values of the mapping results are 74.31%, 70.13%, 

and 52.58%, respectively. Compared with the landslides detected by 𝑑𝑎𝑏𝑠2 and ∆r 

mentioned in the previous section, the accuracy and precision values are higher, and 

the recall value is lower. Misclassifications owing to the fact that surrounding non-

landslide pixels were classified as landslide pixels seem to be reduced, even though 

some still exist. Some misclassified landslide pixels seemed to be excluded (e.g., 

water area in Figure 5.6) by this method, while some landslide pixels in some areas 

were not identified (Figure 5.7). Overall, the combinational application of these three 

parameters did not improve the landslide detection significantly. This may because 

that these parameters could not provide much effective supplementary information to 
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each other and the coherence information is originally not good for the landslide 

detection in this case. 

What should be noted is that this discriminant function was also obtained based 

on only this case study. For the application to other SAR images and other ground 

conditions, a further check is still needed, as the parameter coefficients in the function 

may vary with the conditions of SAR images and actual sites. Moreover, the 

combination application of these parameters may improve the results to a greater exent 

for other cases, such as those with many types of landslides. 

z =1.069 𝑑𝑎𝑏𝑠2 -1.822 ∆r -2.986 ∆γ-3.406 (5.10) 

where z is the discriminant score.  

 

 

Figure 5.7. Landslides detected by the discriminant analysis (green: landslides detected by 

the discriminant analysis; red: ground truth landslides made by Zhang et al. (2019)). 

 

5.5. Discussions 

In the previous work, a relatively comprehensive study was conducted concerning 

the application of intensity and coherence information in two pre-event and one post-

event L-band ALOS-2 SAR products for rapid landslide detection at a pixel level. 

Qualitative interpretation, quantitative analyses, and a combinational application of 
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the potential parameters were carried out, to obtain some results and conclusions for 

future reference.  

What should be noted is that these results and conclusions were obtained based on 

only this one specific case: detection of densely distributed shallow landslides with a 

small size in slopes covered by trees, using high-resolution L-band ALOS-2 products. 

For other types of landslides or other kinds of SAR images, there may be some 

differences, and further verifications are still needed. The coherence difference may 

be a good parameter for identifying landslides in slopes covered by grass (as shown 

in the darker area of Figure 5.2f). The coefficients of different parameters in the 

discriminant function shall vary with the landslide situations and SAR image 

conditions. Nevertheless, the two favorable parameters (𝑑𝑎𝑏𝑠2 and ∆r) shall also have 

favorable performances for the detection of other types of landslides, especially deep-

seated and large-sized landslides, as the principal of them for landslide detection is 

that they can detect the ground changes caused by landslides and such landslides can 

cause more conspicuous ground changes. The combinational use of the three types of 

parameters shall lead to more obvious accuracy improvement for areas with landslides 

of more types or more sizes, owing to the different sensitivities of different parameters 

to ground changes of different degrees.  

Moreover, in this study, the linear discriminant analysis was applied to jointly use 

several different parameters, as it is relatively simple, intuitive, and has shown 

favorable performance for SAR-based building damage assessment. Other machine 

learning classifiers, such as the decision tree, random forest, and support vector 

machine, also have good capabilities for classification problems based on a series of 

variables, and can be explored to jointly use these intensity and coherence information 

for landslide detection. Yet, no matter which kind of classification method is applied, 

the trained models and parameters (e.g., coefficients of parameters in the discriminant 

function) shall vary with the conditions of landslides and SAR images. For an 

emergency application in a specific event, if such trained models are not available, an 

intuitive observation of the favorable parameters would be a good way, as these 

parameters can be calculated very easily, and have shown favorable performance even 

in the qualitative analyses. Furthermore, to make full use of different parameters’ 

advantages, the intuitive observation can also be conducted by compositing several 



 

128 

calculated parameter images into a color image (e.g., red: intensity difference, green: 

correlation coefficient difference, blue: coherence difference). Besides, a sample area 

in the images of the parameters can be extracted and the histogram of pixel values in 

the sample area can be analyzed, or the unsupervised classification can be carried out 

to find a suitable value or model to extract these areas, if the specific ones in this study 

are not suitable. 

In addition, it seems that a reasonable inference can be obtained concerning the 

parameter calculation window sizes: the more sensitive the parameter to other minor 

ground changes, the bigger window sizes are needed to blur parameter changes caused 

by these minor changes in order to reduce their interference, and therefore the bigger 

the optimal window size. In this case, the sensitivity of these three kinds of parameters 

to other minor ground changes was: coherence parameters > correlation coefficient 

parameters > intensity difference parameters, and the optimal calculation window size 

for them was generally: coherence parameters > correlation coefficient parameters > 

intensity difference parameters. Besides, the favorable window sizes for the intensity-

related parameters seem to be associated with image pixel sizes and landslide area 

distribution. In this case, the favorable window sizes for the intensity-related 

parameters were about 25 to 55. The size of each pixel is approximately 3m2. The 

landslide areas in the study region range from 100m2 to 50,000m2, with an average 

value of approximately 7,000 m2 (between the window size of 45 and 55). Landslides 

with an area of less than 2,000 m2 (around the window size of 25) account for around 

25% of the total number of landslides, and landslides with an area of less than 9,000m2 

(around the window size of 55) account for around 75% of the total number of 

landslides. Further verification of this phenomenon is still needed, yet it seems to be 

rational, as the performance of parameters increases first and then decreases with the 

increasing of calculation window sizes. Therefore, in a specific case, if possible, it is 

suggested to consider both the distribution of landslide areas (or at least the rough 

scale of most landslides) and image pixel sizes when selecting an appropriate window 

size for parameter calculation.  

Furthermore, this study applied only SAR intensity and coherence information for 

rapid detection of massive landslides. Nevertheless, when available, the polarimetry 

information of SAR data should also have favorable performances for landslide 
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detection, as the changes of different scattering mechanisms (e.g., surface scattering, 

double-bounce scattering, and volume scattering) can be clearly understood by 

decomposing the polarimetry data using model-based and/or eigenvalue-eigenvector-

based decompositions. The fusion of other information, such as slope characteristics, 

pre-event optical images, geology information, and landslide triggering factors, 

should also be able to improve the landslide detection accuracy, and improve the 

performance of some unfavorable parameters. For instance, as coherence changes are 

very sensitive to minor ground variations, small ground changes unrelated to 

landslides, such as the area change of river band caused by flood, also influence the 

performance of coherence information as landslide classifiers. If ancillary information, 

such as optical images and landuse maps can be obtained and applied to eliminate 

irrelevant areas (e.g., flats and waters) first, the landslides mapped by coherence will 

be much more accurate.  

 

5.6. A Simple Exploration and Comparison of Sentinel-1 C-band SAR Data for 

the Landslide Detection 

Previous sections of this chapter explored two pre-event and one post-event 

ALOS-2 SAR products for the rapid detection of the densely distributed small-sized 

shallow landslides. These three ALOS-2 products had a high resolution and were 

generated by L-band microwave, which has a relatively long wavelength (23.5cm). 

The high resolution allows the images to contain more detailed information about the 

ground target, benefiting the identification of small-sized landslides. The long 

wavelength makes the microwave have a favorable penetration ability, facilitating the 

study in areas covered by vegetation. 

Nevertheless, the ALOS-2 products are not free data that can be obtained and 

applied by everyone. Moreover, as has been mentioned in the discussion section, for 

different SAR data, there may be some differences in the conditions and results for 

the application in landslide detection. Therefore, in this section, a simple exploration 

and comparision of the Sentinel-1 C-band (5.5cm) SAR products, which can be 

downloaded from the official website freely and easily, for the detection of these 

landslides were carried out, in order to provide a reference for future application. 
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5.6.1. Dataset 

The study area is the same to the one used for ALOS-2 SAR products, in order to 

have a simple comparison between these two products. As coherence information did 

not show favorable performances in the previous studies, only intensity-related 

information and parameters were explored in this section to simplify the analysis.  

Applied dataset included two pre-event and one post-event Sentinel-1 Level 1 

Ground Range Detected (GRD) products captured at August 12, 2018, August 24, 

2018, and September 5, 2018 (UTC), respectively. GRD products means that the 

focused SAR data have been detected, multi-looked and projected to ground range 

using an earth ellipsoid model, in which phase information has been lost (ESA). All 

of these three products were captured from path 46, covering the same area from a 

right looking descending track, including two kinds of polarization: VV and VH. A 

summary of the data information is listed in Table 5.4.  

 

Table 5.4. Information of the applied Sentinel-1 data. 

Date (UTC) 

(yyyy/mm/dd) 
Level Mode 

Polariz

ation 

Sample Spacing 

(Range × Azimuth) 
Orbit Direction 

Incidence 

Angle 

2018/08/12 
L1.1 

(GRD) 
IW VV/VH 10m × 10m 

Right Looking/ 

Descending 
38.3 ° 

2018/08/24 
L1.1 

(GRD) 
IW VV/VH 10m × 10m 

Right Looking/ 

Descending 
38.3 ° 

2018/09/05 

(20:41) 

L1.1 

(GRD) 
IW VV/VH 10m × 10m 

Right Looking/ 

Descending 
38.3 ° 

GRD: ground range detected; IW: interferometric wide swath;  VV: vertical transmit and vertical 

receive; VH: vertical transmit and horizontal receive. 

 

Comparing Table 5.1 and Table 5.4 it can be found that, besides the difference in 

wavelength of the applied microwaves, there are several other differences between 

these two kinds of products. Sentinel-1 SAR products have a lower spatial resolution 

and a higher temporal resolution than the ALOS-2 SAR products. The capture time of 

the post-event Sentinel-1 product is earlier than that of the post-event ALOS-2 product, 

owing their different temporal resolution. Moreover, the polarization and orbit 

direction of the ALOS-2 products are HH and left looking/ascending, whereas those 



 

131 

of the Sentinel-1 products are VV/VH and right looking/descending. Furthermore, 

there are also slight differences in the incidence angle of these two dataset. 

 

5.6.2. Results and Discussions 

Similar to the study of ALOS-2 SAR products, potential intensity parameters were 

first calculated from the two pre-event and one post-event Sentinel-1 SAR products, 

including the intensity difference (𝑑𝑎𝑏𝑠1 and 𝑑𝑎𝑏𝑠2), correlation coefficient (r), and 

correlation coefficient difference (∆𝑟 ). Applied window sizes for the parameter 

calculation included 3×3, 5×5, 7×7, 9×9, 11×11, 13×13, and 15×15, taking into 

account the landslide size and image pixel size. All parameters were calculated by 

three cases: VV polarization image, VH polarization image, and the average of VV 

and VH polarization images, to make full use of the obtained information and to 

compare their performances. After that, ROC analyses of these calculated parameters 

were carried out to quantitatively understand and compare the performance of them 

for the landslide detection. The analysis results are listed and drawn in Table 5.5 and 

Figure 5.8 for interpretation. 

 

Table 5.5. AUC values of the parameters calculated under different window sizes by the 

Sentinel-1 SAR products. 

  3×3 5×5 7×7 9×9 11×11 13×13 15×15 

𝑑𝑎𝑏𝑠1 

VV 0.6304  0.6289  0.6149  0.5944  0.5733  0.5528  0.5364  

VH 0.6356  0.6468  0.6481  0.6434  0.6342  0.6263  0.6219  

(VV+VH)/2 0.6708  0.6715  0.6586  0.6373  0.6167  0.5999  0.5887  

𝑑𝑎𝑏𝑠2 

VV 0.6612  0.6863  0.6957  0.6969  0.6954  0.6937  0.6933  

VH 0.6592  0.6890  0.7027  0.7056  0.7043  0.7023  0.7012  

(VV+VH)/2 0.7065  0.7340  0.7425  0.7413  0.7368  0.7318  0.7283  

r 

VV 0.5473  0.5571  0.5635  0.5669  0.5698  0.5734  0.5776  

VH 0.5532  0.5702  0.5842  0.5950  0.6022  0.6068  0.6116  

(VV+VH)/2 0.5729  0.5877  0.5965  0.6010  0.6038  0.6064  0.6092  

∆𝑟 

VV 0.5510  0.5632  0.5695  0.5710  0.5714  0.5716  0.5725  

VH 0.5540  0.5727  0.5840  0.5892  0.5904  0.5910  0.5921  

(VV+VH)/2 0.5796  0.6060  0.6261  0.6370  0.6416  0.6438  0.6459  
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 5.8. AUC values of the parameters calculated under different window sizes by the 

Sentinel-1 SAR products: (a) 𝑑𝑎𝑏𝑠1; (b) 𝑑𝑎𝑏𝑠2; (c) r; (d) ∆𝑟. 
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Comparing AUC values of the parameters calculated by ALOS-2 SAR products 

(Table 5.2 and Figure 5.4) and by Sentinel-1 SAR products (Table 5.5 and Figure 

5.8), it can been seen that, generally, the ALOS-2 products showed better performance 

than Sentinel-1 products for the landslide detection in this case. Actually, according 

to Table 5.5, expect the 𝑑𝑎𝑏𝑠2  calculated by the VH polarization image and the 

average of VV and VH polarization images, other parameters calculated by the 

Sentinel-1 products are not suitable for landslide and non-landslide pixel classification 

in this case anymore. This phenomenon may relate to the low spatial resolution of the 

Sentinel-1 SAR products and the small size of the landslides in this case. The pixel 

size of the applied ALOS-2 products is around 3m2, while the pixel size of the applied 

Sentinel-1 products is 100m2. The higher resolution made the ALOS-2 products 

contain more detailed information about the ground targets, facilitating the detection 

of small-sized shallow landslides. Even though the area of the calculation window 

were near for the two kinds of products, the high-resolution can still contain more 

information due to the pixel size of the calculated parameter image, the SAR imaging 

principal, and the parameter calculation method, especially 𝑑𝑎𝑏𝑠2 . Besides, the 

difference in the imaging microwave, looking direction, and polarization might also 

have some influence to the different performance of the two kinds of products. For 

instance, microwaves of different lengths have different penetration ability, which 

might cause image differences. If possible, a further study by controlling different 

variables might be better to understand and compare these influences. 

Moreover, Table 5.5 and Figure 5.8 also showed that, in general, the parameters 

calculated by the average of VV and VH polarization images have the best 

performance among all of the three cases (VV polarization image, VH polarization 

image, and the average of VV and VH polarization images), as they included more 

information. The parameters calculated by the cross-polarization VH image displayed 

relatively better performace than those calculated by the co-polarization VV image, 

because, comparing with co-polarization, cross-polarization is more sensitive to the 

backscattering changes caused by the landslides, i.e., mainly from volume scattering 

generated by the forests to surface scattering generated by the bare soil. 

Furthermore, among all parameters, the favorable parameter 𝑑𝑎𝑏𝑠2 proposed for 

ALOS-2 products still showed the best performance for the Sentinel-1 products, 
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indicating its advantages. The optimal calculation window size of the parameters 

suitable for landslide detection in this case (𝑑𝑎𝑏𝑠2 calculated by the VH polarization 

image and the average of VV and VH polarization images) is around 7×7 (4900 m2) 

to 9×9 (8100m2), which also seems to be related to the distribution of the landslide 

sizes (landslides with an area of less than 2,000m2 , 7,000m2, and 9,000m2 account 

for around 25%, 50%, and 75% of the total number of landslides, respectively) as has 

been discussed in section 5.5. 

In order to have a more specific understanding of the Sentinel-1 SAR products for 

the landslide detection in this case, the optimal threshold of the favorable parameter 

(𝑑𝑎𝑏𝑠2 calculated by the average of VV and VH polarization images) calculated under 

the optimal window size (7×7) was found and then used for the classification of 

landslide and non-landslide pixels. The classified results are shown in Figure 5.9. As 

it can be seen, comparing with the results achieved by 𝑑𝑎𝑏𝑠2 calculated using ALOS-

2 SAR products (Figure 5.6a), there seems to be more misclassifications in the results 

achieved by 𝑑𝑎𝑏𝑠2 calculated using the Sentinel-1 SAR products. 

 

 

Figure 5.9. Landslides detected by 𝑑𝑎𝑏𝑠2 calculated using the average of VV and VH 

polarization Sentinel-1 products (green: landslides detected by 𝑑𝑎𝑏𝑠2; red: ground truth 

landslides made by Zhang et al. (2019)). 
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As has been analyzed above, in general, the Sentinel-1 SAR products did not 

achieve as good results as the ALOS-2 SAR products for landslide detection in this 

case. Nevertheless, they are free data that can be downloaded and applied by everyone 

conveniently. Moreover, Sentinel-1 satellite has a repeat cycle of six days for 

European area and twelve days for other areas (combining Sentinel-1A satellite and 

Sentinel-1B satellite), which is more available for emergency response than the 

ALOS-2 satellite that has a temporal resolution of fourteen days. In this case, the 

capture time of the post-event Sentinel-1 product is earlier than that of the post-event 

ALOS-2 product. In addition, in the visual and intuitive observation, the intensity 

difference calculated by the pre-event and post-event Sentinel-1 SAR products also 

displayed clear different characteristics in the landslide areas (Figure 5.10), which is 

able to provide useful information for the understanding of the general landslide 

condition following a disaster, although not as precise as that calculated by the high-

resolution ALOS-2 SAR products. Furthermore, the Sentinel-1 SAR products may 

have favorable performance for the detection of larger-sized landslides, which is 

worth further investigation. 

As has been mentioned in section 2.3.2, in a specific application, trade-offs among 

the different kinds of resolution (e.g., temporal resolution and spatial resolution) are 

usually needed, as it is hard to assemble all desirable features into one remote sensing 

sensor (NASA). Moreover, there might also be a compromise between the image 

covarage and spatial resolution. High-resolution images are able to provide more 

detailed information regarding ground targets, but may have a smaller spatial 

coverage and be limited by satellite storage and processing capacities (Joyce et al., 

2009). In a real application, all of these factors (e.g., spatial resolution, temporal 

resolution, and image coverage) should be considered comprehensively so that 

appropriate products can be applied to achieve the study or application purpose 

properly. 
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(a) 

 

 

(b) 

Figure 5.10. Intensity difference calculated by pre-event and post-event Sentinel-1 SAR 

products and ground truth landslides: (a) Intensity difference; (b) Ground truth landslides 

made by Zhang et al. (2019). 

 

5.7. Conclusions 
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This chapter provided an exploration on the intensity and coherence information 

of three ALOS-2 SAR images for rapid detection of densely distributed shallow 

landslides with a small size. Two pre-event and one post-event high-resolution ALOS-

2 SLC products were processed and applied. Four intensity-related (𝑑𝑎𝑏𝑠1, 𝑑𝑎𝑏𝑠2, r, 

and ∆r ) and two coherence-related (γ and ∆γ) potential parameters that can be derived 

from the three products relatively easily were selected and calculated based on SAR 

imaging principal, including a new parameter (𝑑𝑎𝑏𝑠2) proposed to avoid information 

loss in the calculation. Visual interpretation and ROC analyses were performed to 

analyze and compare these parameters for landslide detection qualitatively and 

quantitatively, in order to provide a reference for future application. The new intensity 

difference parameter 𝑑𝑎𝑏𝑠2  and correlation coefficient difference ∆r  showed 

favorable performance in these analyses, and therefore were further explored for 

classifying landslide and non-landslide pixels by suitable thresholds. A discriminant 

analysis was also carried out to explore the combinational application of these two 

types of information by combining three relatively favorable parameters (𝑑𝑎𝑏𝑠2, ∆r, 

and ∆γ) with one in each type. A simple exploration and comparison of the free 

Sentinel-1 C-band SAR data for the landslide detection was also carried out to provide 

some reference for future application. Several conclusions obtained from this study 

are summarized as follows. 

Qualitatively, intensity difference showed clear lower-value and higher-value 

pixels in landslide areas, as triggered landslides smoothed hillsides, causing 

backscattering decrease, and roughened foothill areas, inducing backscattering 

increase. Co-event correlation coefficient and correlation coefficient difference 

displayed lower-value pixels in landslide regions due to the relatively larger ground 

changes induced by landslides. Co-event coherence and coherence difference also 

more or less showed some lower-value pixels in landslide areas owing to the relatively 

larger decorrelation caused by the landslide-involved ground changes.  

Quantitatively, intensity-related parameters showed better performance than 

coherence-related parameters for landslide detection in these vegetation areas, as 

coherence information is very sensitive to minor changes in vegetation (e.g., 

vegetation growth and leave movement). The new intensity difference parameter 

𝑑𝑎𝑏𝑠2  and correlation coefficient difference ∆𝑟 showed favorable performance and 
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are recommended for future application. In particular, 𝑑𝑎𝑏𝑠2  can achieve an AUC 

value of around 0.82 under the optimal window size, and can be derived easily from 

only one pre-event and one post-event SAR intensity images. Nevertheless, the largest 

AUC values of other four parameters (𝑑𝑎𝑏𝑠1, r, 𝛾, and ∆γ) were around 0.65-0.69, 

indicating that, individually, they are not very appropriate binary classifiers for 

distinguishing landslide and non-landslide pixels in this case. Furthermore, between 

the two intensity difference parameters (𝑑𝑎𝑏𝑠1  and 𝑑𝑎𝑏𝑠2 ), 𝑑𝑎𝑏𝑠2  showed better 

performance than 𝑑𝑎𝑏𝑠1 , demonstrating the advantage of considering avoiding 

information loss in parameter calculation. Between the two correlation coefficient 

parameters (r and ∆𝑟), ∆𝑟  showed improved performance, as some pixels whose 

values were always low can be excluded by subtracting one pre-event correlation 

coefficient image. 

Moreover, the landslide detection results demonstrated that, individually, the two 

favorable parameters (𝑑𝑎𝑏𝑠2 and ∆𝑟) correctly classified around 64%-70% landslide 

and non-landslide pixels and properly identified 81%-88% landslide pixels by suitable 

thresholds. The combinational application of the intensity difference, correlation 

coefficient, and coherence parameters (𝑑𝑎𝑏𝑠2, ∆𝑟, and ∆γ) through linear discriminant 

analysis achieved an overall accuracy of around 74%. Misclassification is mainly due 

to the fact that some non-landslide pixels around the ground truth landslides were 

classified as landslide pixels, as landslide surroundings where there seems to be no 

clear visible changes might have experienced implicated backscattering changes (e.g., 

tree tilt caused by alluvium erosion or lashing). The rough or imprecise boundary of 

the ground truth landslides is also a reason of the relatively low accuracy and precision 

values. 

Furthermore, the simple investigation of Sentinel-1 SAR products showed that, 

generally, they did not achieve as good results as ALOS-2 products for the detection 

of these small-sized shallow landslides in this case, which might relate to the relatively 

coarser resolution of them. Nevertheless, the Sentinel-1 products also have their own 

advantages. They are free data that can be downloaded and applied by everyone. They 

can be obtained every twelve days globally (every six days in Europea), which is more 

frequent the ALOS-2 products (every fourteen days). As the pre- and post-event 

intensity difference calculated by them also showed clear different characteristics in 
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landslide areas, they are also considered as valuable data for a general understanding 

of a landslide event following a disaster. In a real application, a comprehensive 

consideration is needed for the application of different products according to the 

purpose, as a trade-off among different kinds of resolution and a compromise between 

image resolution and image coverage are usually needed. 
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CHAPTER 6 

ADDITIONAL APPLICATION OF LANDSLIDE SUSCEPTIBILITY MAP 

OR LANDSLIDE CONDITIONING FACTORS TO THE SAR-BASED 

LANDSLIDE DETECTION 

 

6.1. Introduction 

In order to explore and compare different SAR information and features for 

landslide and non-landslide pixel classification, a landslide region was used as the 

study area in chapter 5. Optimal thresholds of the favorable parameters were found 

and a discriminant function combining three different types of parameters was 

developed for the classification of landslide and non-landslide pixels. Relatively 

favorable results have been achieved by using these thresholds or function for the 

landslide detection in the study area. Nevertheless, when applying these thresholds or 

function to other areas, many misclassifcations occurred in other types of landuse, 

especially the crops, which may be due to the harvest of agriculture in the autumn 

(Figure 6.1). To exclude or reduce these misclassifications, the additional application 

of other information and/or data is a cost-effective option. 

Therefore, in this chapter, an additional application of the generated landslide 

susceptibility map or landslide conditioning factors to the SAR-based landslide 

detection was explored to solve this issue, to improve landslide detection results, and 

to provide more reasonable information for guiding rescue and response operations 

following a landslide disaster. 

On one hand, the landslide susceptibility map generated in chapter 4 includes rich 

information (combining a series of landslide conditioning factors) and provides the 

dangerous condition of landslide occurrence in different areas. It can help to draw 

attention to dangerous areas and to exclude areas of no interest for landslide detection 

analysis. When available, a combinational use of it and the SAR-detected landslides 

shall be able to improve landslide detection results and to provide more information 

for disaster response following a landslide event.  

On the other hand, the conditioning factors of landslides can also provide useful 

information for narrowing down target area for analysis and excluding areas where 
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landslides are unlikely to occur. The exterior conditioning factors or the triggering 

factors of landslides (e.g., precipitation and ground motion) can provide information 

to narrow down the areas of interest and exclude areas that are not related to this event . 

The interior conditioning factors or the inherent properties of the slopes (e.g., slope 

gradient and geology condition) can help to exclude areas of no interest or areas where 

landslides are unlikely to occur (e.g., flats and waters).   

 

 

Figure 6.1. Landslides detected by the discriminate score developed in chapter 5 (blue: 

landslides detected by the discriminate score; red: ground truth landslides made by Zhang et 

al. (2019); red line: SAR image boundary). 

 

6.2. The Additional Application of Landslide Susceptibility Map to the SAR-

based Landslide Detection 
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As has been introduced in chapters 3 and 4, various conditioning factors related to 

the landslide occurrence need to be considered in order to generate a landslide 

susceptibility map. The generated landslide susceptibility map is able to provide 

information concerning the susceptibility or probability of landslide occurrence in a 

specific area. Therefore, an additional application of it to the SAR-based landslide 

detection is able to draw attention to the most dangerous areas and to exclude areas 

with a low probability of landslide occurrence, improving the accuracy of the 

landslide identification. For instance, in this case, when using the probability of 

landslide occurrence larger than 0.7 to restrict the area of concern, the landslides 

detected by the discriminate score derived using the SAR features can be improved to 

Figure 6.2. 

 

 

Figure 6.2. Landslides detected by the discriminate score developed in chapter 5 considering 

the landslide susceptibility map developed in chapter 4 (blue: landslides detected by the 
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discriminate score considering the landslide susceptibility map; red: ground truth landslides 

made by Zhang et al. (2019); red line: SAR image boundary). 

 

Comparing Figure 6.1 and Figure 6.2, it can be seen that most of the 

misclassifications in the agriculture area have been excluded, by using the landslide 

susceptibility map as an additional information. Moreover, a simple overlaying of the 

landslides detected by the SAR data to the landslide susceptibility map or a quick 

comparison between the landslides detected by SAR featrues and the landslide 

occurrence probabilities in different areas are able to provide more valuable and useful 

information for the rescue and recover processe following a landslide disaster event, 

for instance, arranging the prioty order of the rescue process. 

 

6.3. The Additional Application of Landslide Conditioning Factors to the SAR-

based Landslide Detection 

A landslide susceptibility map combines various conditioning factors of landslides, 

and is very favorable information to supplement the SAR-based landslide detection. 

However, not all regions have an available landslide susceptibility map, and not all 

people who want to detect landslides following a disaster have an appropriate 

landslide susceptibility map. Under such circumstances, an additional application of 

the landslide conditioning factors to the SAR-based landslide detection may be a good 

alternative. The exterior conditioning factors (i.e., the triggering factors) of the 

landslides, such as the intensity of earthquake and the intensity or amount of 

precipitation, can be used to narrow down the target area for analysis and to exclude 

areas that have nothing to do with the disater event. The interior conditioning factors 

(i.e., the properties of the slopes) of the landslides, such as the slope gradient and 

landuse, can be applied to exclude areas of no interest or areas where landslides are 

unlikely to occur (e.g., flatlands and waters).  

For instance, in this case, when applying the PSA03 value of the ground motions 

and the amount of one-week cumulative precipitation before the disater to narrow 

down the target area, and employing the slope gradient to exclude areas with level, 

nearly level, very gentle, and gentle slopes (Table 6.1), the landslides detected by the 
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discrinimant score in chapter 5 can be improved to Figure 6.3. As can be seen from 

this figure, although not as good as the one considering landslide susceptibility map 

(Figure 6.2), the results have been improved greatly comparing with the one applying 

only SAR data (Figure 6.1), with many misclassifications in the agriculture areas 

excluded. Similar to the landslide susceptibility map, even by a simple overlaying of 

the SAR-detected landslides, the slope gradient, and the landslide triggering factors, 

a better understanding of the landslide event can be obtained. 

 

 

Figure 6.3. Landslides detected by the discriminate score developed in chapter 5 considering 

landslide conditioning factors (blue: landslides detected by the discriminate score considering 

landslide conditioning factors; red: ground truth landslides made by Zhang et al. (2019); red 

line: SAR image boundary). 
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Table 6.1. Standard slope descriptors (Barcelona Field Studies Centre). 

Slope (%) Approximate degrees Terminology 

0 - 0.5 0 Level 

0.5 - 2 0.3 - 1.1 Nearly level 

2 - 5 1.1 - 3 Very gentle slope 

5 - 9 3 - 5 Gentle slope 

9 - 15 5 - 8.5 Moderate slope 

15 - 30 8.5 - 16.5 Strong slope 

30 - 45 16.5 - 24 Very strong slope 

45 - 70 24 - 35 Extreme slope 

70 - 100 35 - 45 Steep slope 

> 100 > 45 Very steep slope 

 

6.4. Conclusions  

An additional application of landslide susceptibility map or landslide conditioning 

factors to the SAR-based landslide detection was explored in this chapter. The 

landslide susceptibility map considers various conditioning factors of landslides 

including the exterior ones  (e.g., earthquake and precipitation) and interior ones (e.g. 

topography and geology). When available, it is able to provide information concerning 

the dangerous degree of landslide occurrence in a specific area, helping to draw 

attention to areas with higher landslide occurrence susceptibility and to exclude areas 

where landslides are unlikely to occur. An additional application of it to the SAR-

based landslide detection in this case showed an obvious improvement in the results, 

by excluding many miscalssifications in other types of landuse.  

When there are no landslide susceptibility maps in the study area, an additional 

application of landslide conditioning factors can be a good alternative to help improve 

landslide detection results using only SAR data. The triggering factors of landslides, 

such as the intensity or amount of rainfall, can be used to narrow down the target area 

for analysis and to exclude areas having nothing to do with the disater event. The 

interior factors, such as the geology and slope gradient, can be used to exclude areas 
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where landslides are unlikely to occur or areas of no interest. In this case, the 

triggering factors and slope gradient were applied to improve the results of the 

landslides detected by using only SAR data. Many misclassifications were also 

excluded comparing with the results achieved by using only SAR data.  

For a rapid application, even a simple overlaying of the SAR-detected landslides 

to the landslide susceptibility map or the landslide conditioning factors can provide a 

better understanding of the landslide event. Moreover, before landslide detection, the 

landslide susceptibility map can also be used to limit the scope of SAR images for 

processing to save time. After the landslide occurred, the combination of landslide 

susceptibility map and SAR-detected landslides can provide more reasonable 

information for efficient and effective rescue and response. For instance, referring to 

the combination of the landslide susceptibility map and the SAR-detected landslides, 

the prioty order of rescue process can be arranged more reasonably. 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS 

 

The 2018 Hokkaido Eastern Iburi Earthquake induced a special landslide event, 

in which extensive densely distributed small-sized shallow landslides occurred in the 

towns of Atsuma, Mukawa, and Abira. This disaster brought valuable data, 

information, experience, and lessons, while causing big casualties and damage in 

Eastern Iburi area of Hokkaido prefecture, Japan. In order to make full use of these 

data and information to understand and learn from this landslide event for preferable 

landslide disaster management in the future, a systematic study on these landslides 

was carried out based on GIS and SAR remote sensing. The spatial data in GIS and 

remote sensing technologies are suitable and powerful for understanding and learning 

from these extensive and widespread landslides from a whole picture owing to its 

broad and wide coverage. The objectives of this study are to: 

1. Understand the landslide event by collecting and analyzing the spatial data of 

landslide inventory and conditioning factors as well as previous reports and 

studies concerning the landslide event. 

2. Develop a suitable landslide susceptibility model using the collected spatial data 

of landslide inventory and conditioning factors to facilitate pre-event landslide 

disaster management in the future. 

3. Explore favorable SAR-based landslide detection approaches by analyzing 

different features in captured SAR data to benefit post-event landslide disaster 

management in the future. 

 

7.1. Conclusions 

To achieve these objectives, a series of studies has been implemented sequentially 

from chapters 3 to 6. Main conclusions obtained in these studies concerning the three 

objectives are summarized as follows. 

 

Conclusions on understanding the landslide event (chapter 3) 
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The spatial data of landslide inventory and conditioning factors, including 

topograpphy, geology, soil, surface vegetation, precipitation, and ground motion, 

were collected from different sources and used to analyze the characteristics of the 

extensive earthquake-triggered landslides, combining with the understanding from 

previous field survey reports and mechanism studies of other scholars. 

 Landslide inventory analyses and previous reports and studies showed that 

the landslides were densely distributed in a region of the transition zone from 

Hiddaka Mountains to Ishikari Depression in the north of the earthquake 

epicenter and within a distance of 25km from the epicenter. Most landslides 

were small-sized and shallow with a slip surface above the basement complex. 

These landslides mainly occurred in valley topography and planar slopes, 

moving down several meters’ volcano activity related soil layers with long 

run-out and high mobility, as the moved materials seemed to have a high 

water content. The upper surface of most landslides were exposed, showing 

brownish patches over the hill areas. The characteristics of the landslides were 

more like those of the rainfall-induced landslides, even though the direct 

trigger was earthquake. The general mechanism of the lanslides might be that 

the shear force of the earthquake ruptured the strata of the light porous 

volcanic soil layers above the hard bedrock, which have already been 

inundated by the previous accumulated precipitation before the earthquake. 

 Landslide conditioning factor analyses showed that the majority of landslides 

distributed in areas with an elevation of around 100m-200m, a slope gradient 

of around 15°-35°, a geology type of N2sn (Middle to Late Miocene marine 

and non-marine sediments), soil types of D1 (未熟黒ボク土) and J1 (火山放

出物未熟土), and vegetation types of エゾイタヤ－シナノキ and 落葉針

葉樹植林. Above the bedrock, there were several meters’ volcano activity 

related soil layers, which were the main materials of the landslides. 

Comparing with other landslides, the elevation and slope gradient of the 

collapsed slopes were relatively lower, which are mainly due to special terrain 

and soil types in local area. Especially, in some areas (e.g., Horosato area in 

Atsuma town), some landslides even occurred in very gentle slopes that had 

a gradient smaller than 15°. Moreover, the relatively preferred slope aspect of 
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the landslides was south, facing the earthquake epicenter. The relatively 

preferred slope curvature was concave, which might relate to the hydrological 

properties of such terrains. One month before the disaster, there were totally 

around 200mm-300mm precipitation around the landslide areas. Several 

heavy rains occurred in the mid of August, with a heaviest one bringing 

around 50mm precipitation. The powerful typhoon Jebi, which took place two 

days before the disaster and was usually thought as an important cause of the 

landslides, brought around 15mm of the precipitation in the landslide areas. 

The predominated MM intensity, PGA, and PGV values of the ground motion 

in landslide areas were around 7.4-8.2, 0.48g-0.68g, and 14cm/s-18cm/s, 

respectively.  

 The earthquake was the direct trigger of the landslide event, and the 

combinational impact of several conditioning factors, especially the special 

porous soil type here, the accumulation of previous precipitation in the special 

soil, and the shaking of the ground motion, were the real cause of the landslide 

event. The soft porous volcano activity related soil here originally had a low 

shear strength and a high water storage capacity, while the hard bedrock 

below the soil had a poor water permeability. Due to these characteristics, 

water from previous rainfall accumulated in the soil and made the water 

content in the soil very high, which not only reduced the soil shear strength 

but also lubricated the interface between soil and bedrock. Then when the 

earthquake occurred, the shaking from the ground motion not only produced 

shear force to the soil but also reduced the soil shear strength by increasing 

pore water pressure and decreasing soil effectiveness stress, causing the shear 

stress larger than the shear strength and leading to slope failures. In some 

areas, the soil effectiveness stress might even become zero, causing 

liquefaction. 

 

Conclusions on GIS-based landslide susceptibility analysis for pre-event 

landslide disaster management (chapter 4) 
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A landslide susceptibility analysis was carried out by a GIS-based statistical 

approach using the collected landslide inventory as dependent variable and landslide 

conditioning factors as independent variables. Effectiveness, correlation, and 

multicollinearity problems of the landslide conditioning factor indicators were 

analyzed by the area under the ROC curve, pearson’s correlation, TOL, and VIF, to 

find the relatively effective indicators and to exclude the correlated indicators for 

model construction. Several different ratios of landslide presence and absence were 

tested to find a favorable one for statistical analysis, as there were much more non-

landslide cells than landslide cells. A landslide susceptibility model was finally 

constructed using the selected indicators under the determined ratio by a logistic 

regression. Applying this model, a landslide susceptibility map was generated. 

 The effectiveness analyses of landslide conditioning factor indicators showed 

that the standard curvature, one-week cumulative precipitation, and PSA03 

were relatively more effective among curvature-, rainfall-, and earthquake-

related indicators. It might relate to the parameter comprehensiveness, local 

soil water storage capacity and evaporation condition, and predominate period 

of local soil, respectively. The correlation and multicollinearity analyses 

indicated that SPI and STI seems to be correlated, as the correlation 

coefficient values between them were slightly larger than 0.7. In order to 

avoid the unnecessary problems caused by correlation, SPI was excluded 

because it was not as effective as STI in this case. After these analyses, there 

were totally eleven indicators left for final landslide susceptibility model 

construction, including elevation, slope gradient, slope aspect, standard 

curvature, TWI, STI, geology, soil, surface vegetation, PSA03, and one-week 

cumulative precipitation before the disaster. 

 The study on different ratios of landslide presence and absence showed that, 

generally, the ratio of 1:1 achieved better results than other ratios tested (1:2, 

1:3, 1:4, and 1:5). The more non-landslide cells involved in analysis, the lower 

recall value, that is, the more landslide cells would be classified as non-

landslide cells. Therefore, the dataset with the same number of landslide raster 

cells and non-landsldie raster cells was determined for the final landslide 

susceptibility model construction. 



 

154 

 Using the selected landslide conditioning factor indicators under the 

determined ratio of landslide presence and absense, a landslide susceptibility 

model was finally constructed by a logistic regression. 70% of the data was 

used for training and 30% of the data was used for validation to construct and 

check the model. The constructed model achieved a good accuracy for both 

training and validation data. Applying this model, a landslide susceptibility 

map was generated in the study area, which showed a good consistency with 

the distribution of actual landslides. It is expected to provide some useful 

information for the prediction, monitoring, and management of future 

landslide occurrence, by updating the changed conditioning factors, that is, 

the precipitation and ground motion information. 

 

Conclusions on SAR-based landslide detection for post-event landslide disaster 

management (chapter 5 and chapter 6) 

Two pre-event and one post-event ALOS-2 SLC SAR products with a high 

resolution were applied to explore rapid landslide detection approaches. Potential 

parameters that can be derived from these products and have the ability to measure 

ground changes were selected and calculated based on radar reflection mechanism. 

Considered parameters included the absolute value of intensity difference (𝑑𝑎𝑏𝑠1⁡ and 

𝑑𝑎𝑏𝑠2), co-event correlation coefficient (r), correlation coefficient difference (∆r), co-

event coherence (γ), and coherence difference (∆γ). Qualitative and quantitative 

analyses of these parameters were carried out to understand and compare their 

performance for landslide and non-landslide pixel distinguishment. Favorable 

parameters were explored for identifying landslide pixels by optimal thresholds. A 

joint application of several parameters for landslide detection was also investigated 

by a linear discriminant analysis, using three relatively favorable parameters with one 

in each type  (𝑑𝑎𝑏𝑠2, ∆r, and ∆γ). A simple exploration of the free Sentinel-1 C-band 

SAR products for the landslide detection was also performed to provide some 

comparision and reference for future application. An additional application of 

landslide susceptibility map or conditioning factors to the SAR-based landslide 

detection was also investigated to exclude more misclassifications, improve detection 
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results, and provide more information for effective and efficient rescue and response 

operations. 

 Parameter qualitative analyses indicated that all of the potential parameters 

showed some differences in landslide and non-landslide areas. The intensity 

difference showed clear lower-value and higher-value pixels in landslide 

areas, as triggered landslides smoothed hillsides, which caused backscattering 

decrease, and roughened foothill areas, which caused backscattering increase. 

The co-event correlation coefficient and correlation coefficient difference 

displayed some lower-value pixels in landslide regions due to the relatively 

larger ground changes induced by landslides. The co-event coherence and 

coherence difference also showed more or less some lower-value pixels in 

landslide areas owing to the relatively larger decorrelation caused by the 

landslide-involved ground changes.  

 Parameter quantitative analyses showed that the intensity-related parameters 

had better performance than coherence-related parameters for the landslide 

detection in these vegetation areas. It might relate to the sensitivity of these 

two kinds of parameters to other minor ground changes. Coherence-related 

parameters are much more sensitive to minor changes in vegetation (e.g., the 

growing of plants and the movement of stalk and leaves caused by wind), 

which interfered with their performance for the landslide detection. The new 

intensity difference parameter 𝑑𝑎𝑏𝑠2 and the correlation coefficient difference 

∆𝑟  showed favorable performance and were recommended for future 

application. In particular, 𝑑𝑎𝑏𝑠2 achieved an AUC value of around 0.82 under 

the optimal window size, and could be derived easily from only one pre-event 

and one post-event SAR intensity images.  

 The sensitivity of parameters to other minor changes not only influenced the 

performance of them for landslide detection in these vegetation areas but also 

impacted the optimal window size for parameter calculation. The more 

sensitive the parameter, the more inteference from other minor changes, and 

therefore the worse the performance and the larger the window size needed to 

filter and blur these inteference. In this case, the sensitivity of these three 

kinds of parameters to other minor ground changes was: coherence 
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parameters > correlation coefficient parameters > intensity difference 

parameters, the performance of them was generally: coherence parameters < 

correlation coefficient parameters < intensity difference parameters, and the 

optimal calculation window size for them was generally: coherence 

parameters > correlation coefficient parameters > intensity difference 

parameters. 

 Moreover, as the calculation window size increased, the performance of the 

intensity parameters first increased and then decreased. A value around 

25%~75% cumulative distribution curve of landslide sizes could achieve 

relatively favorable results. A relatively smaller value within this range was 

better for intensity difference, while a relatively larger value within this range 

was better for correlation coefficient parameters. 

 Landslide detection results demonstrated that, individually, the two favorable 

parameters (𝑑𝑎𝑏𝑠2  and ∆𝑟) correctly classified around 64%-69% landslide 

and non-landslide pixels and properly identified around 81%-88% landslide 

pixels by suitable thresholds. The combinational application of the intensity 

difference, correlation coefficient, and coherence parameters (𝑑𝑎𝑏𝑠2, ∆𝑟, and 

∆γ) through linear discriminant analysis achieved an overall accuracy of 

around 74%.  

 Studies on Sentinel-1 products showed that they did not achieve as good 

results as ALOS-2 products for landslide detection in this case. This might 

relate to the lower spatial resolution of the Sentinel-1 products and also the 

difference between the looking direction, imaging micorwave, and 

polarization between these two products. If possible, a further study by 

controlling different variables might be better to understand and compare 

these influences. Nevertheless, Sentinel-1 products are free data that can be 

downloaded and applied by everyone and have a higher temporal resolution 

(six days for Europe and twelve days for other areas) than ALOS-2 products 

(fourteen days). As the intensity difference calculated by pre-event and post-

event Sentinel-1 products also showed clear different characteristics in 

landslide and non-landslide areas, although not as accurate as that calculated 
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by ALOS-2 products, they are also considered as valuable data that can be 

used to understand the general landslide condition following a disaster.  

 In a specific application, trade-offs among different kinds of resolution (e.g., 

temporal resolution, spatial resolution, and radiometric resolution) are usually 

needed, as it is hard to assemble all desirable features into one remote sensing 

sensor. Moreover, there might also be a compromise between the image 

covarage and spatial resolution. High-resolution images are able to provide 

more detailed information but may have a smaller spatial coverage and be 

limited by satellite storage and processing capacities. In a specific case, all of 

these factors (e.g., spatial resolution, temporal resolution, and image coverage) 

need to be considered comprehensively so that appropriate products can be 

applied to achieve the study or application purpose properly. 

 The additional application of landslide susceptibility map or conditioning 

factors to SAR-based landslide detection could help improve landslide 

detection results by drawing attention to areas with high risk, narrowing down 

target area for analysis, and excluding areas of no interest or areas where 

landslides were unlikely to occur. Moreover, the combination application of 

them can provide more reasonable information for efficient and effective 

response and rescue operations following a landslide event. For instance, 

referring to the combination of the landslide susceptibility map and the SAR-

detected landslides, the prioty order of rescue process can be arranged more 

reasonably. 

 

7.2. Recommendations 

Based on these studies and conclusions, several recommendations for landslide 

disaster management are listed as follows. 

 The special characteristics of the landslide event remind us to pay attention to 

the dynamic characteristics of volcano activity related soil. Moreover, areas 

with special characteristics (in this case, areas covered by special soil types 

even with very gentle slope) should also be taken seriously, when landslide 

triggers such as rainfall and earthquake occur even with a low intensity, as the 
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combinational impact of several different conditioning factors that are not 

very significant might cause a severe landslide event.  

 According to the GIS-based landslide susceptibility analysis and SAR-based 

landslide detection, corresponding to a disaster process, a following landslide 

disaster management procedure is suggested: before the disaster, updating the 

predicted or actual rainfall and/or earthquake term in the landslide 

susceptibility map according to actual situation, to understand the dangerous 

condition of landslide occurrence in different areas and to remind local people 

for better preparation; after the disaster, detecting the induced landslides 

rapidly by suggested SAR features and combining them with the updated 

landslide susceptibility map to provide more reasonal information for 

efficient and effective rescue and response operations; after that, when 

available and applicable, analyzing optical remote sensing images and 

carrying out field survey to obtain more detailed information of the landslide 

event from other aspects. The obtained information, data, experience, and 

lessons can then be used to improve the developed models and approaches in 

the previous two procedures or to develop more advanced and accurate 

models and approaches combining new technologies. 

 The important landslide conditioning factors and the weights of different 

conditioning factors might vary from area to area. It is suggested to develop 

its own landslide susceptibility model for a specific area, based on local 

condition of landslide history and mechanism, according to the procedure and 

suggestions in this study, to be accurate and suitable, as there is usually much 

time before the disaster to prepare such data and to construct such models. 

The relatively effective conditioning factors in this case, such as the standard 

curvature and PSA03, can be referred, and the ratio of 1:1 between landslide 

presence and absence is suggested for analysis.  

 SAR data with only intensity information can first be used to save the 

processing time following a landslide event. For instance, for Sentinel-1 Level 

1.1 products, GRD products (include only intensity information) can first be 

downloaded instead of SLC products (include both intensity and phase 

information) to save the processing time. For products including different 
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types of information (e.g., phase and intensity), the intensity parameters can 

first be analyzed to understand the landslide condition, as they showed 

favorable performances and could be calculated quickly and easily. Intensity 

difference is suggested for a quick response, a combinational application of 

several different parameters can be carried out to make full use of different 

parameters’ advantages to provide more information when there were more 

time. For instance, by compositing several calculated parameter images into 

a color image (e.g., red: intensity difference, green: correlation coefficient 

difference, blue: coherence difference), the different information provided by 

different parameters can be used in combination. Moreover, in a specific case, 

different factors (e.g., spatial resolution, temporal resolution, and image 

coverage) of SAR products need to be considered comprehensively  so that 

appropriate products can be applied to achieve the study or application 

purpose properly. 

 

7.3. Limitations and Future Research Directions 

Several limitations and future research directions concerning this research are 

listed as follows. 

 The GIS-based statistical analysis is very suitable and powerful to provide 

information about the extensive and widespread landslides in an overall 

aspect and a wide view. But it cannot provide as detailed information as 

physical analysis to understand the mechanism of the landslide occurrence 

(e.g., limit equilibrium state of the slope stability). The physical mechanism 

of the landslide occurrence and the dynamic characteristics of the volcano 

activity related soil can be studied further. Moreover, the important landslide 

conditioning factors and the weights of different conditioning factors might 

be different in different area. It is suggested to develop its own landslide 

susceptibility model for a specific area, based on local condition of landslide 

history and mechanism, according to the procedure and suggestions in this 

study, to be accurate and suitable. Furthermore, other advanced machine 
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learning approaches can also be explored for the landslide susceptibility 

analysis, especially when there are much more recored data in the future. 

 Only SAR intensity and coherence features were investigated and compared 

for the detection of these densely distributed shallow landslides. The 

polarimetry information in SAR data should also have favorable performance 

for landslide detection, as the changes of different scattering mechanisms (e.g., 

surface scattering and volume scattering) caused by ground changes can be 

clearly understood by decomposing the polarimetry data using model-based 

and/or eigenvalue-eigenvector-based decompositions. When available, the 

application of SAR polarimetry information for landslide detection can also 

be investigated and compared. Moreover, this study explored SAR-based 

landslide detection in a pixel level, to merge similar pixels for analysis, 

approaches in an object level can also be investigated. 

 Only the additional application of landslide susceptibility map and 

conditioning factors of ground motion, precipitation, and slope gradient to 

SAR-based landslide detection was explored in this case. Depending on actual 

situation, other data (e.g., pre-event optical image and landslide hazard map) 

and other landslide conditioning factors (e.g., geology and landuse) can also 

be applied as supplementary information to improve the reuslts. Moreover, 

different ways to fuse the different information can also be investigated 

further to get as much information as possible for landslide disaster 

management. 
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APPENDIX 

A REVIEW ON SYNTHETIC APERTURE RADAR (SAR)-BASED 

BUILDING DAMAGE ASSESSMENTS IN DISASTERS 

 

A prompt and overall understanding of building damages following a disaster is 

critical, as they are usually closely related to casualties. As an important active RS 

technology, SAR is also a valuable tool for assessing building damages in disasters, 

owing to its large coverage, quick response, non-contact, and independence of 

weather and light capabilities. Over the years, various approaches have already been 

proposed for SAR-based building damage assessment with the development of radar 

technology and interpretation techniques. While providing numerous choices, these 

multifarious approaches also make it burdensome to ponder the applicable approach 

in a specific case, and to reflect on potential fields for further research.  

Therefore, instead of developing new approches for building damage assessment 

using SAR data, this chapter hierarchically classified and summarized the existing 

approaches to provide a structured understanding for assisting in approach decisions 

and promising field considerations. First, depending on the pre-event data availability, 

the numerous approaches were classified into change detections employing both pre- 

and post-event data, and assessments applying only post-event data. Then, determined 

by the data resolution level and acquisition mode, the plentiful change detection 

approaches were further distinguished into block-unit approaches analyzing intensity, 

coherence, or polarimetry features, and building-unit approaches that simply 

generalize the block-unit approaches, or that concretely explore the detailed individual 

building features. The post-event data-based assessments, with relatively fewer 

approaches, were further introduced as methods exploring polarimetry or/and texture 

features. In each classification category, the principle was first introduced to explain 

the basic concept and essence of the approaches. An approach review was then 

provided by organizing relevant studies in a logical or structured way, to facilitate a 

clear understanding of the overall research status. Favorable parameters in each 

category were also summarized for easy reference and application in the future. 
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1. Introduction 

In the crisis management phase of the comprehensive disater management system 

(Figure 2.6), that is, the damage assessment and disaster response, a rapid and overall 

understanding of damage distribution is of vital importance for making reasonable 

and effective rescue decisions. Among them, building damage evaluation in an early 

stage is a crucial issue, as the distribution of damaged buildings is usually closely 

related to life saving in emergency response (Xie et al., 2016). Moreover, the time for 

information acquisition is of critical importance, as people trapped in collapsed 

buildings can generally survive for only approximately 48h (Karimzadeh et al., 2014, 

2017; Karimzadeh and Matsuoka, 2018). Nevertheless, it is difficult and sometimes 

dangerous to conduct field surveys for the entire influenced areas in a short time after 

a disaster. In addition, transportation and communication systems may have been 

destroyed by the disaster, impeding the implementation of an on-site survey. RS can 

observe and respond quickly over a wide field, without physically being on site. When 

properly selected in terms of sensor type, spatial resolution, and return time, as well 

as the availability of pre-disaster data, ancillary maps, and the like, it can be efficiently 

and effectively applied in building damage assessment after a disaster (Yamazaki and 

Matsuoka, 2007; Dong and Shan, 2013). 

Mainly, two types of RS technologies - optical sensors and SAR can be applied 

for building damage assessment in and after disasters. As has introduced in chapter 5, 

optical sensors can provide intuitive optical images, which show the earth’s surface 

as human eyes view it, and are easy to interpret. However, they are passive RS, need 

sun illumination for imaging, and cannot penetrate clouds, which severely limits their 

application as an emergency tool. In contrast, SAR data are relatively difficult to 

interpret, and can be easily influenced by speckle noises. Nevertheless, they can be 

obtained both at night and in harsh weather conditions, owing to the active 

characteristics of SAR sensors and the long wavelength of the applied microwaves 

(Hanssen, 2001; Elachi and Zyl, 2006; Franceschetti and Lanari, 2016). Therefore, 

SAR is considered to be more flexible and reliable for damage assessment at an early 

time following a disaster.  

Various approaches for SAR-based building damage assessment in disasters have 

been proposed, owing to the advantages of SAR technologies, together with the 
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development of microwave RS and interpretation techniques. Depending on the data 

availability, resolution level, and acquisition mode, these approaches vary from 

methods applying both pre-event and post-event data to methods employing only post-

event data, from methods carrying out analysis in a block unit to methods executing 

analysis in a building unit, from methods based on intensity information to methods 

based on coherence or polarimetry information, and from methods exploring 

traditional physical relationships to methods exploiting machine learning technologies. 

These massive and multifarious approaches provide many choices for achieving 

expected results, yet they also make it burdensome to select the applicable one in a 

specific case, to understand the overall research status in this field, and to find 

promising fields for further study. 

Therefore, this paper aimed to classify the various approaches and summarize the 

favorable parameters, to provide a clear and comprehensive understanding in this field. 

Even though it is impossible to recommend a single data type or processing solution 

that will work under all conditions (Joyce et al., 2009), the overall overview is an 

attempt to provide some references for considering the applicable methods and 

pondering future efforts, through a designed classification (Figure 1).  

First, the massive set of SAR-based building damage assessment approaches was 

divided into two major categories: change detection (applying both pre- and post-

event data), and assessment (applying only post-event data), according to the pre-

event data availability. Then, the numerous change detection approaches were further 

classified into block-unit approaches analyzing the intensity, coherence, or 

polarimetry features in each regular or irregular block, and building-unit approaches 

that perform analysis in each original, modified, or buffered building footprint area, 

by simply generalizing the block-unit approaches or concretely exploring the clear 

individual building features. The post-event data-based assessments, with relatively 

fewer approaches, were further introduced as methods exploring polarimetry features 

by polarimetry indices, and methods exploiting texture features through SAR 

simulators or machine learning classifiers. In each classified category, the principle 

was first explained, in order to provide a basic understanding of the concept and 

essence of the approaches in this category. Relevant studies were then organized and 

introduced in a logical or structured way, to facilitate a clear and comprehensive 
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understanding of the research status. A summary of different approaches and 

favorable parameters in each category was also provided to facilitate future reference 

and application. 

 

Figure 1. A classification of synthetic aperture radar (SAR)-based building damage 

assessment approaches. 

 

2. Change Detection Approaches Based on Both Pre- and Post-event SAR Data 

When appropriate pre-event SAR products are available, change detection can be 

carried out by applying both pre- and post-event data. It is based on variations of 

intensity, phase, or polarimetry features in the SAR images before and after a specific 

disaster. As different damage degrees cause different changes in these SAR features, 

the physical relationships between the image change characteristics and building 

damage conditions can be analyzed, constructed, and then applied to identify actual 

building damage levels.  

Depending on the resolution level of the applied SAR images, change detection 

can either be carried out in a block unit, or in a building unit. On one hand, for low-

resolution data such as the SAR images obtained by spaceborne satellite sensors 

before 2007 (e.g. ERS-1/2 and RADARSAT-1), several ground targets contribute to 
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one resolution cell, making it difficult to identify the features of one individual 

building. Therefore, only block-unit analyses are feasible. On the other hand, for high-

resolution SAR images acquired from either airborne sensors or high-resolution 

spaceborne sensors, individual building information in the image such as edges can 

be observed, enabling approaches in a building unit.  

 

2.1. Block-unit Approaches 

Change detection in a block unit, dating back to the 1990s, was first developed in 

the field of SAR-based building damage assessment, owing to the limitations of image 

resolution in the initial stages. In this type of method, building damage conditions are 

usually represented by damage levels or damage ratios in each block. According to 

actual field conditions and study purposes, three types of blocks (Figure 2) have been 

applied, including tiles formed by one (Matsuoka and Yamazaki, 2004a) or several 

(Bai et al., 2017a) pixels, irregular blocks divided by the street or urban boundaries 

(Zhai and Huang, 2016), and irregular blocks segmented based on homogeneous 

features (Gokon et al., 2017a, 2017b). 

 

(a) 

 

(c) 

 

 

(b) 
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Figure 2. Three types of block units that have been applied: (a) Tiles formed by one pixel 

(the thick black grids indicate that the severe damage ratio equals to 100%) (Matsuoka and 

Yamazaki, 2004a); (b) Irregular blocks divided by street or urban boundaries (Zhai and Huang, 

2016); (c) Irregular blocks segmented based on homogeneous features (Gokon et al., 2017a). 

 

Various approaches for block-unit change detection have been proposed over the 

years. Depending on the applied satellite and its image acquisition mode, intensity, 

phase, and polarimetry features can be analyzed alone, or in combination for building 

damage assessment (Table 1). Intensity information is relatively easy to obtain, as it 

poses no requirement for the radar acquisition mode. Changes of intensity information 

are usually quantified by the intensity difference, correlation coefficient, correlation 

coefficient difference/ratio, highlight area ratio, texture features, etc. Coherence, 

which means the correlation coefficient of phase information, can be acquired when 

the satellite works in an interferometry mode. The ratio/difference of pre- and co-

event coherence is commonly used in coherence-based change detection. Polarimetry 

features can facilitate the understanding of radar scattering mechanisms, and are 

available when a satellite works in a polarimetry mode. Favorable indicators for 

distinguishing damaged and undamaged urban areas include surface scattering, 

volume scattering, double bounce scattering decomposed through model-based 

decomposition, entropy decomposed through eigenvalue-eigenvector-based 

decomposition, and several additional polarimetric parameters, such as polarization 

coherence.  

 

Table 1. A summary of block-unit change detection approaches. 

Approaches Classification Commonly-used 

parameters 

Image requirement 

(number/ acquisition 

mode) 

Representative 

studies 

Other descriptions 

Intensity-

based 

change 

detection 

Classic 

discriminant 

analysis 

Intensity difference 

and correlation 

coefficient 

One pre-event and 

one post-event 

images/no mode 

requirement 

Matsuoka and 

Yamazaki (2004a, 

2004b, 2010); 

Matsuoka et al. 

(2010); An et al. 

(2016), etc. 

Classic approaches with 

many references/ 

coefficients of parameters 

(i.e., intensity difference 

and correlation 

coefficient) vary with the 

applied images 

Improved 

discriminant 

analysis for 

densely built-up 

areas 

Intensity difference 

and correlation 

coefficient 

One pre-event and 

one post-event 

images/no mode 

requirement 

Matsuoka and 

Yamazaki (2005) 

Suitable for congested 

building areas as both 

intensity increases and 

decreases were considered 
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Approaches Classification Commonly-used 

parameters 

Image requirement 

(number/ acquisition 

mode) 

Representative 

studies 

Other descriptions 

Improved 

analysis for low 

damage ratios in 

less density 

built-up areas 

The ratio/difference of 

pre- and co-event 

correlation coefficient 

Two pre-event 

and one post-

event images/no 

mode requirement 

Matsuoka et al. 

(2005); Matsuoka 

and Yamazaki 

(2006) 

Suitable for small building 

damage ratios in less 

density built-up areas/can 

minimize impacts from 

signal noises and earth’s 

surface changes/need two 

pre-event images 

Others Intensity difference, 

correlation 

coefficient, the 

proportion of 

highlight areas, 

texture features, K-

distribution and Getis 

statistics, etc. 

One pre-event and 

one post-event 

images/no mode 

requirement 

Liu and Yamazaki 

(2011); Liu and 

Yamazaki (2017);  

Gokon et al. 

(2017a, 2017b); 

Cui et al. (2018); 

Dell’Acqua et al. 

(2010, 2011); 

Wang and Jin 

(2009) 

Other ways to explore the 

intensity changes/the 

correlation coefficient is 

more sensitive to minor 

changes than intensity 

difference 

Coherence

-based 

change 

detection 

Approaches 

based on co-

event coherence 

Co-event coherence One pre-event and 

one post-event 

images/ 

interferometry 

mode 

Matsuoka and 

Yamazaki (2000); 

Chen et al. (2011); 

Liu and Yamazaki 

(2017) 

Need only one pre-event 

image/can be influenced 

by other changes/impacts 

from other changes can be 

reduced by extracting 

built-up areas first to 

improve the assessment 

performance 

Approaches 

based on the 

ratio of pre- and 

co-event 

coherence 

The ratio of pre-event 

and co-event 

coherence 

Two pre-event 

and one post-

event images/ 

interferometry 

mode 

Ito and Hosokawa 

(2002); Ito et al. 

(2003); Hoffmann 

(2007); Liu and 

Yamazaki (2017) 

Can reduce common 

coherence variations 

caused by other effects/ 

need two pre-event 

images/histogram 

matching between pre- 

and post-event coherence 

can mitigate bulk changes 

Approaches 

based on the 

difference of 

pre- and co-

event coherence 

The original, 

normalized, or 

histogram-matched 

difference of pre-

event and co-event 

coherence 

Two pre-event 

and one post-

event images/ 

interferometry 

mode 

Arciniegas et al. 

(2007); Fielding 

et al. (2005); Yun 

et al. (2011, 

2015a, 2015b); 

Watanabe et al. 

(2016) 

Earthquake 

damage 

visualization 

(EDV) 

technique 

The normalized 

difference (both 

forward and 

backward) and 

average value of pre-

event and co-event 

coherence 

Two pre-event 

and one post-

event images/ 

interferometry 

mode 

Sharma et al. 

(2017) 

More sensitive to 

damaged buildings 

Polarimetry-

based 

analysis 

Approaches 

applying 

model-based 

decomposition 

Surface scattering, 

double-bounce 

scattering, volume 

scattering, and 

additional parameters 

such as polarization 

orientation angle 

One pre-event and 

one post-event 

images/full-

polarization mode 

Yamaguchi 

(2012); Singh et 

al. (2013); Chen 

and Sato (2013); 

Chen et al. (2016) 

Have a clear physical 

meaning with respect to 

the backscattering 

mechanisms of damaged 

and intact buildings/ 

building damages usually 

cause the decreases of 

double bounce scattering 

and the increases of 

surface scattering and/or 

volume scattering 

Approaches 

applying 

eigenvalue-

eigenvector-

based 

decomposition 

Entropy, anisotropy, 

average scattering 

angle, etc. 

One pre-event and 

one post-event 

images/full-

polarization mode 

 Have a clear mathematical 

background 
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Approaches Classification Commonly-used 

parameters 

Image requirement 

(number/ acquisition 

mode) 

Representative 

studies 

Other descriptions 

Approaches 

based on both 

decomposition 

methods 

Parameters derived 

from both 

decomposition 

methods mentioned 

above, four 

component 

parameters (HH, HV, 

VH, and VV), and 

additional parameters 

such as polarization 

orientation angle 

One pre-event and 

one post-event 

images/full-

polarization mode 

Sato et al. (2012); 

Watanabe et al. 

(2012); Park et al. 

(2013) 

Make full use of all 

polarimetry features 

 

 

Integrated 

approaches 

The 

combination 

of intensity 

and coherence 

information 

Parameters in 

intensity- and 

coherence-based 

change detection 

approaches mentioned 

above 

One pre-event and 

one post-event 

images/ 

interferometry 

mode 

Arciniegas et al. 

(2007); Zhang et 

al. (2018) 

Achieve higher accuracy 

than applying only one 

type of information/ 

intensity is stable and 

coherence is sensitive to 

minor changes 

The addition 

of dual-

polarization 

information to 

coherence-

based 

approaches 

Parameters in 

coherence-based 

change detection 

approaches mentioned 

above considering 

dual-polarization 

information 

One pre-event and 

one post-event 

images or a stack 

of repeated-pass 

images/dual-

polarization and 

interferometry 

mode 

Watanabe et al. 

(2016); Sharma et 

al. (2017); Oxoli 

et al. (2018) 

Improve the accuracy of 

coherence-based 

approaches 

The addition 

of ancillary 

data to SAR 

data 

Parameters in SAR- 

based change 

detection approaches 

mentioned above and 

parameters in 

ancillary data such as 

NDVI derived from 

optical images 

SAR images and 

ancillary data 

such as optical 

images and GIS 

data 

Stramondo et al. 

(2006); Gamba et 

al. (2007); Chini 

et al. (2009); 

Trianni et al. 

(2010); 

Karimzadeh and 

Mastuoka (2017), 

etc. 

Ancillary data can be 

applied to provide 

complementary 

information or remove 

areas of no interest to 

improve detection 

accuracy 

 

2.1.1 Intensity-based Change Detection 

Principle  

If the SAR satellite is not working in an interferometry or polarimetry mode when 

images are captured, only intensity information can be obtained and used for building 

damage assessment. Here, "intensity" means the amplitude information of the 

backscattering waves received by a SAR sensor after sending microwaves to the 

ground targets. It is not only influenced by the operating parameters of the radar 

system (e.g., incidence angle and wavelength), but is also dependent on the 

characteristics of ground targets (e.g., dielectric properties and roughness). Therefore, 

intensity changes in pre- and post-event SAR images can be used to measure ground 

changes caused by a disaster event. 
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The principle of building damage assessment based on SAR intensity changes is 

as follows: owing to the slanted view of the SAR satellite sensor, an intact building 

usually shows regular layover and shadow zones in a SAR image. In parts of areas 

facing the radar sensor, a bright zone emerges, owing to double bounce effects in 

corner areas and the overlying of reflection from the roof, wall, and ground. In most 

building footprint areas and parts of areas facing backward to the radar sensor, a 

shadow zone appears, owing to the occlusion of the building (Figure 3). When a 

building collapses in a disaster, however, the layover, double bounce, and even 

shadow characteristics may disappear or decrease in the SAR image, making the 

reflection around the building more random and averaged. Therefore, by identifying 

and quantifying the intensity changes mentioned above through favorable parameters 

such as intensity difference, correlation coefficient and textures, the building damage 

condition can be speculated. Examples of high-resolution SAR image intensity 

characteristics in intact and collapsed building areas (Cui et al., 2018) are shown in 

Figure 4, to provide an intuitive understanding. 

 

 

Figure 3. Schematic of intact building backscattering in synthetic aperture radar (SAR) 

images. 
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(a) (b) (c) (d) (e) 

Figure 4. Examples of high resolution SAR image intensity characteristics in intact and 

collapsed building areas: (a) Post-event optical image of intact building areas; (b) Post-event 

SAR image of intact building areas; (c) Pre-event optical image of collapsed building areas; 

(d) Post-event optical image of collapsed building areas; (e) Post-event SAR image of 

collapsed building areas (Cui et al., 2018). As can be seen, the SAR intensity image shows 

regular shadow and layover zones in the intact building areas (b), and displays more random 

and averaged pixel distribution in the collapsed building areas (e). 

 

Approach review 

The classic and commonly-used method for intensity-based change detection is to 

calculate the intensity difference and correlation coefficient of the pre- and post-event 

images within a certain window, combine them together by a specific relationship, 

and then apply certain thresholds to discriminate building damages. This method dates 

back to the time when scholars (Aoki et al., 1998; Matsuoka and Yamazaki, 1999) 

found that in severely-damaged areas, the backscattering difference became high, and 

correlation coefficient became low. The damage levels tended to be related to SAR 

image characteristic changes. Subsequently, by utilizing discriminant analysis, a 

discriminant function combining backscattering difference and correlation 

coefficients (Equation 1) was proposed for building damage detection in 1995 Kobe 

Earthquake (Matsuoka and Yamazaki, 2004a), and later applied to damage assessment 

in 1999 Turkey Earthquake, 2001 India Earthquake, and 2003 Algeria Earthquake 

(Matsuoka and Yamazaki, 2004b, 2010). This function was developed based on the 

European Remote Sensing (ERS) satellite C-band images with a resolution of 30×30 

m. The optimum window size was examined to be 21×21 pixels for the calculation of 

backscattering difference and correlation coefficient.  
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z  = - 2.140d⁡- 12.465r + 4.183                                 (1) 

Here, z is the discriminant score, and d and r are the backscattering difference and correlation 

coefficient of the pre- and post-event SAR images (hereafter), respectively.  

 

This discriminant analysis-based method achieved good agreement with field 

survey results, and is still employed by scholars nowadays for other SAR data and 

other disasters. To generalize this model from C-band images to L-band images, 

Matsuoka et al. (2010) carried out a regression discriminant analysis for the Japan 

Earth Resources Satellite (JERS)-1/SAR L-band images in the affected areas of the 

1995 Kobe Earthquake. Intensity difference and correlation coefficient were 

calculated in a window size of 13×13 pixels. Discriminant scores were calculated by 

Equation 2, and then used to build a likelihood function for damage ratio estimation. 

This proposed function was then applied to Advanced Land Observing 

Satellite/Phased Array-Type L-band SAR (ALOS/PALSAR) L-band images with a 

resolution of 30 m in the 2007 Peru Earthquake, by rebuilding a likelihood function 

(Matsuoka and Nojima, 2010). 

𝑧𝑅𝑗= - 1.277𝑑⁡- 2.729r                                       (2) 

 

In addition, Matsuoka and Estrada (2013) developed a regression discriminant 

function for the 2007 Peru Earthquake based on field survey data and ALOS/PALSAR 

imagery, with a resolution of approximately 10 m. After an examination of window 

sizes, 13×13 pixels was adopted as the optimum one for the calculation of intensity 

difference and correlation coefficient. In this formula, the derived coefficients for the 

intensity difference and correlation coefficient were -0.089 and -2.576, respectively. 

An et al. (2016) deduced an analogous function (Equation 3) for the 2008 Wenchuan 

Earthquake and 2010 Yushu Earthquake using the ALSO/PALSAR satellite data. The 

window size used for parameter calculation was also 13×13 pixels.  

ZI = - 1.145dI⁡- 2.562rI + 0.997                                 (3) 
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Nevertheless, an actual situation, such as the building distribution and damage 

condition, is usually protean. Sometimes exceptional cases occur, making the classic 

method unable to be used directly. On one hand, in a congested building area, the 

radar reflections of damaged areas may be stronger in the post-event image than in 

the corresponding pre-event image (Matsuoka and Yamazaki, 2005). To generalize 

this method in such conditions, Matsuoka and Yamazaki (2005) revised their 

discrimination function (Equation 1) to Equations 4-6 for the 2003 Bam, Iran 

Earthquake damage assessment, by introducing another discriminant line (Equation 

6).  

z  = max(𝑧0,⁡𝑧1)                                                (4) 

𝑧0  = - 2.140d⁡- 12.465r + 4.183                                 (5) 

𝑧1  =  2.140d⁡- 12.465r + 4.183                                 (6) 

 

On the other hand, for the identification of small building damage ratios in less 

densely built-up areas, the ratio and difference of the pre- and co-event correlation 

coefficient have been applied to minimize the impacts from other factors. Matsuoka 

et al. (2005) revealed that the correlation coefficient ratio were more suitable for 

damage detection in 2004 Niigate Earthquake, owing to the small distribution of 

severely damaged building areas. Matsuoka and Yamazaki (2006) applied the 

correlation coefficient difference (Equation 7) calculated by two pre- and one post-

event ALSO/PALSAR images for damage assessment in the 2006 Mid Java 

Earthquake, in order to minimize impacts from signal noise and temporal changes of 

the earth’s surface. 

dir ab bbr r r 
                                             (7) 

In the above, rab is the correlation coefficient of one pre-event and one post-event image, and 

rbb is the correlation coefficient of two pre-event images. 

 

In addition to applying and modifying the classic approach mentioned above, 

some scholars also have proposed other methods in recent years. Liu and Yamazaki 

(2011) raised a change factor (Equation 8) that was calculated by the correlation 
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coefficient and the normalized absolute value of intensity difference for urban change 

monitoring. They thought that the correlation coefficient was sensitive to subtle 

changes, whereas the intensity difference was more stable. Therefore, they set a larger 

weight for the intensity difference. In their case, the data used were TerraSAR-X 

images with a resolution of 3 m, and the applied window size for parameter calculation 

was 9×9 pixels.  

d
z c r

max d
  

                                             (8) 

Here, c is the weight between the difference and correlation coefficient, and was determined 

as 0.25 in their research. 

 

Gokon et al. (2017a, 2017b) regressed a damage function between the actual 

building damage ratio and correlation coefficient mean value in an object scope, to 

estimate the number of washed-away buildings in the 2011 Tohoku Earthquake and 

Tsunami. The correlation coefficient image was first calculated, and then segmented 

by region growing method to form homogeneous objects. The average value of the 

correlation coefficient at each object was then calculated to regress the relationship 

between its values and actual building damage ratios. The obtained functions for the 

TerraSAR-X data with a resolution of 3 m and ALOS/PALSAR data with a resolution 

of 10 m are shown in Equation 9 and Equation 10, respectively.  

Damage function for TerraSAR-X data: 

1.20
1.20

0.21
1

0.08

X

mX

F
R

exp

 
   
   

                                          (9) 

 

Damage function for ALOS/PALSAR data: 

0.95
0.95

0.16
1

0.03

L

mL

F
R

exp

 
   
   

                                      (10) 
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In the above, FX and FL are the damage ratios of washed away buildings for the TerraSAR-X 

data and ALOS/PALSAR data, respectively, and RmX and RmL are the mean correlation 

coefficient at each object for the TerraSAR-X data and ALOS/PALSAR data, respectively. 

 

Cui et al. (2018) proposed a SAR image damage index (SARDI) based on the 

proportion of highlight (layover and bright line) areas to quantify the seismic damage 

distribution of buildings in a street block (Equation 11). The highlighted area was 

first extracted by low-pass and high-pass filtering in a frequency domain. The damage 

index in Equation 11 was then calculated and classified for building damage 

differentiation. The applied data for this study were high-resolution airborne SAR 

images with a resolution of 0.5 m. 

SAR HL SB1 /D S S 
                               (11)                                  

Here, DSAR is the average seismic damage index based on a SAR image (SARDI) of a street 

block, SHL is the highlighted area of the street block on the SAR image, and SSB is the total 

area occupied by the buildings within a street block. 

 

Moreover, texture features (Dell’Acqua et al., 2010a; Dell’Acqua et al., 2011), K-

distribution and Getis statistics (Wang and Jin, 2009), as well as hyperboloid change 

index (Nakmuenwai et al., 2016) were also said to be valuable information for 

building damage assessment in disasters. 

 

2.1.2 Coherence-based Change Detection 

Principle  

Interferometric synthetic aperture radar (InSAR) is a technique that exploits the 

interference of electromagnetic waves received from different times. It came into use 

at the end of the 1960s, when Rogers and Ingalls (1969) employed radar 

interferometry to study the Venus surface and moonscape. Then, Graham (1974) 

introduced the concept to terrain mapping. Massonnet et al. (1993) and Fruneau et al. 

(1996) introduced it to earthquake-induced displacement field mapping and landslide 

monitoring, respectively. When an InSAR system is operating, single-look complex 

(SLC) products, which preserve not only magnitude information but also phase 
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information, can be acquired (Monserrat et al., 2014). Therefore, in addition to 

intensity, phase can also be explored, to mine more information for ground change 

measurement. The "phase" in SAR data indicates the relative value of the returned 

backscattering waves in a whole period. It is very sensitive to the distance between 

the satellite sensor and ground target, and can therefore be applied for ground change 

detection. The path length of an SAR signal to ground and back usually contains a 

number of whole wavelengths, plus some fraction of a wavelength.  

Over the years, InSAR technique has been widely investigated and applied for 

ground deformation monitoring or detection (Zhao et al., 2012; Barboux et al., 2015; 

Zhao et.al., 2018; Strozzi et. al., 2018; Zhang et al., 2019) and digital elevation model 

(DEM) generation (Lanari et al., 1996; Rosen at al., 2000; Stramondo et al., 2007; 

Neelmeijer et al., 2017), by exploring the phase information in two (or a series of) 

SAR images. Nevertheless, the feasibility of InSAR depends on many observation 

characteristics, such as the spatial baseline and temporal baseline (Konishi and Suga, 

2018), and is restricted by many actual conditions, e.g., the amount of vegetation 

(Lazecký et al., 2015).  

Coherence is a by-product of SAR interferometry, and indicates the cross-

correlation of phase information (Equation 12) in two images. The decorrelation of 

coherence usually indicates ground changes (Zebker and Villasenor, 1992; Moreira et 

al., 2013; Milisavljevic et al., 2015), and can be explored for building damage 

assessment in disasters. Values of coherence range from 0 to 1, with a lower value 

indicating larger ground changes (Ram et al., 2017) (severe damage in building 

damage assessment field). As an example, Figure 5 shows the co-event coherence 

image in Yushu County urban area influenced by the 2010 Yushu Earthquake (Chen 

et al., 2011). 

1 2

1 1 2 2

E c c

E c c E c c




 


                                          (12) 

In the above, γ is the calculated coherence, c1 and c2 are corresponding complex pixel values 

of two images, respectively, c* represents the complex conjugate of c, and 𝐸 represents the 

expected value. 
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(a)                                                                    (b) 

Figure 5. An example of co-event SAR coherence image in Yushu County urban area 

influenced by 2010 Yushu Earthquake: (a) Co-event coherence map; (b) Optical image from 

Google Earth showing building damage conditions (Chen et al., 2011). As can be seen, the 

undamaged zones show clearly higher coherence as compared with the damaged urban areas. 

 

Approach review 

Coherence information is more sensitive to minor ground changes than intensity 

information. When interferometric SAR image pairs are available with suitable 

temporal and spatial baselines, coherence can provide valuable information for 

identifying building damages, especially minor damages. In the analysis of 1999 

Kocaeli, Turkey Earthquake damages, Matsuoka and Yamazaki (2000) declared that 

the coherence degree was a good index for distinguishing slight to moderate damage 

levels. In a study of the 2003 Bam, Iran Earthquake building damage conditions, 

Arciniegas et al. (2007) demonstrated that coherence difference produced relatively 

better detection accuracy than the absolute amplitude change, and the combination of 

coherence and amplitude change could further increase analysis accuracy. In the 2016 

Kumamoto Earthquake damage assessment, Liu and Yamazaki (2017) explored two 

representative coherence indices (i.e., the co-event coherence and the ratio of co- and 

pre-event coherence) and one representative intensity parameter (i.e., the z-factor in 

Equation 8) to extract areas with collapsed buildings. The results indicated that the 

coherence ratio yielded the highest accuracy among the three parameters. 

Coherence-based change detection dates back to the time when scholars (Ito et al., 

2000; Yonezawa and Takeuchi, 2001) found that the decorrelation of coherence in the 

1995 Kobe Earthquake SAR images was related to damage conditions, and could be 



 

177 

used for building damage assessment. By setting reasonable thresholds, even a single 

co-event coherence image can be applied to assess building damages. In the 2010 

Yushu Earthquake damage detection, Chen et al. (2011) set the mean value of co-

event coherence as the breaking point for judging building damages in the built-up 

areas extracted by DEM and SAR intensity information. Nevertheless, more 

commonly-used approaches are based on two-pair coherence images (i.e., pre- and 

co-event coherences). In that way, common coherence variations caused by other 

effects can be reduced through calculating the ratio or difference of the pre- and co-

coherence images. 

On one hand, the coherence ratio has been explored for building damage 

assessments. Ito and Hosokawa (2002) proposed a damage estimation model 

according to the coherence ratio in the 1995 Kobe Earthquake applying ERS-1 C-band 

and JERS-1 L-band SAR data, and examined it in the 1999 Kocaeli Earthquake 

employing ERS-1/2 SAR images (Ito et al., 2003). Their coherence ratio, calculated 

by dividing a co-event coherence image using a pre-event coherence image, was said 

to have a linear relationship with the cumulative probability of the damage degree. 

Similarly, Hoffmann (2007) quantified coherence changes by their coherence change 

index-coherence ratio for damage condition interpretation in the 2003 Bam 

Earthquake, using environmental satellite advanced synthetic aperture radar 

(ENVISAT ASAR) images. Their coherence ratio was defined as an index calculated 

by diving a coherence image not spanning the earthquake, using a coherence image 

spanning the earthquake (Equation 13).  

ref

eq







                                                    (13) 

Here, 𝜌 is the coherence change index, 𝛾𝑟𝑒𝑓 is the coherence not spanning the time of the 

earthquake, and 𝛾𝑒𝑞 is the coherence spanning the time of the earthquake. 

 

On the other hand, the coherence difference, either calculated in the original way 

or in an improved way, has been exploited for discriminating between damaged and 

undamaged buildings. Arciniegas et al. (2007) demonstrated the favorable 

performance of the coherence difference in the building damage assessment of the 



 

178 

2003 Bam, Iran Earthquake using ENVISAT ASAR data. Fielding et al. (2005) also 

applied the coherence difference of ENVISAT ASAR data for building damage 

mapping in the 2003 Bam, Iran Earthquake, to separate the coherence reductions 

caused by vegetation and other effects. Yun et al. (2011, 2015a, 2015b) proposed a 

prototype algorithm based on the difference of histogram-matched pre- and co-event 

coherence for generating damage proxy maps in disasters. Pre- and co-event 

coherence maps were first calculated and spatially registered. Histogram matching 

(Coltuc et al., 2006) was then applied to the co-event coherence map, to modify its 

pixel values in order to make the pre- and co-event coherence maps statistically 

identical. After that, the coherence difference was calculated to generate a color 

damage proxy map. It was said that bulk changes in the two coherence maps could be 

mitigated by histogram matching before the calculation of the difference. Watanabe 

et al. (2016) applied the normalized difference (Equation 14) of two coherence image 

pairs as the parameter for discriminating building damages in disasters. 

pre int

pre int

 


 


 


                                             (14) 

Here, ∆γ is the normalized coherence difference, and γ
pre

 and γ
int

 are the pre- and co-event 

coherence, respectively. 

 

In addition, by compositing several parameters calculated through pre- and co-

event coherence images, Sharma et al. (2017) presented an earthquake damage 

visualization (EDV) technique for rapid earthquake damage assessment. Their EDV 

used RGB imagery, merged using three indicators calculated through pre- and post-

event coherence images: forward change (Equation 15), backward change (Equation 

16), and change-free (Equation 17). Moreover, Ito et al. (2000) applied multi-source 

and temporal coherence images and neural classifiers to extract damaged regions in 

the 1995 Kobe earthquake. Five coherence images were used, including one generated 

from L-band JERS-1 images, and four produced by C-band ERS-1 images. The results 

showed that the average coherence of JERS-1 data has a significantly higher contrast 

than that of ERS-1 data, and that the use of it achieved better results. 
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In the above, PC and CC indicate the pre-seismic coherence (PC) and co-seismic coherence 

(CC), respectively. In that regard, PC and CC in Equations 15-17 have the same meaning as 

𝛾𝑟𝑒𝑓 and 𝛾𝑒𝑞 in Equation 13, and 𝛾𝑝𝑟𝑒 and 𝛾𝑖𝑛𝑡 in Equation 14, even though the notations 

are different depending on the authors. 

 

2.1.3 Polarimetry-based Analysis 

Principle  

Polarization is another essential property of electromagnetic waves, in addition to 

amplitude, phase, and frequency. It can be applied to investigate the propagation and 

scattering of the electromagnetic vector phenomenon. Electric field vectors of energy 

pulses emitted by a radar system can either be polarized in a horizontal (H) plane or 

in a vertical (V) plane. Regardless of wavelength, a SAR platform can transmit H 

and/or V electric field vectors, and then receive H and/or V return signals. Therefore, 

in total, four types of polarization exist: horizontal transmit and horizontal receive 

(HH), horizontal transmit and vertical receive (HV), vertical transmit and horizontal 

receive (VH), and vertical transmit and vertical receive (VV). Generally, a SAR 

system can operate in either a single polarization mode, a dual-polarization mode, or 

a full-polarization (or quad-polarization) mode. The single polarization mode denotes 

the application of only one type of polarization, which usually refers to HH or VV. 

The dual-polarization mode refers to the addition of another polarization form when 

one polarization form has been applied (e.g., HH and HV dual polarization). The full-

polarization mode includes all four types of polarization forms, and requires the 

emission of H and V pulses, along with the simultaneous reception of H and V pulses 

under each type of emitted pulses.  
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The polarization features of multi-polarized SAR data are sensitive to dielectric 

constants, physical properties, geometry, and the orientation of ground targets. 

Therefore, they can greatly improve the ability of imaging radar to acquire various 

information of the targets. The first multi-polarized SAR data were obtained after the 

launches of the ENVISAT, ALOS-1, and RADARSAT-2 satellites (Karimzadeh and 

Mastuoka, 2017). From then on, they have been widely explored and applied in studies 

on subjects such as land classification and target detection (Boerner, 2003; Huang et. 

al., 2011; Dickinson et. al., 2013), and also have been proven to provide valuable 

information for facilitating building damage assessment in disasters (Watanabe et al., 

2016; Karimzadeh and Mastuoka, 2017).  

 

Approach review 

The addition of another polarization when one polarization has been applied was 

shown to be favorable for improving the accuracy of building damage assessment. In 

the damage detection of the 2015 Gorkha Earthquake, Watanabe et al. (2016) 

demonstrated that the incorporation of HV polarization to HH polarization improved 

the accuracy of the interferometric SAR coherence change detection. In the 2016 

Amatrice Earthquake damage assessment, Karimzadeh and Mastuoka (2017) revealed 

that, for Sentinel-1 satellite imagery, the accuracy of a VV and VH combination-based 

method was higher than that of a VV-based or VH-based method; similarly, for 

ALOS-2 satellite imagery, the HH and HV combination-based method achieved better 

accuracy than the HV-based or HH-based method. In the EDV technique for rapid 

earthquake damage assessment, Sharma et al. (2017) also considered the addition of 

HV polarization to the HH polarization as one of the reasons for accuracy 

improvement. 

Whereas dual-polarization information can assist in accuracy improvement, full-

polarization information is capable of providing more rich information for 

understanding the backscattering scattering mechanisms of ground targets. When full-

polarization data are acquired, the polarized scattering, which was first proposed by 

Sinclair (1950), can be expressed as Equation 18. Subjected to a reciprocity condition, 

the Pauli scattering vector can be expressed as Equation 19, and the coherency matrix 



 

181 

T can be expressed as Equation 20. Through rational decomposition, the fully-

polarized data can be decomposed into several different components, facilitating a 

specific and effective interpretation of ground changes.  

S = [
SHH SHV

SVH SVV
]                                                (18) 

Here, SHH, SHV, SVH, and SVV indicate the backscattering coefficients of the HH, HV, VH, and 

VV polarizations, respectively. 

kP = 
1

√2
[SHH + SVV⁡⁡SHH − SVV  2SHV]

T                             (19) 

T = 〈kPkP
H〉 = [

T11 T12 T13

T21 T22 T23

T31 T32 T33

]                                      (20) 

In the above, <>  denotes the ensemble average, 𝑘𝑃
𝐻  is the complex conjugation and 

transposition of 𝑘𝑃, and Tij is the (i, j)th entry of T. 

 

Polarimetry decomposition theorems date back to the 1970s, in Huynen’s work 

(Huynen, 1970). So far, various decomposition approaches (Cloude and Pottier, 1996, 

1997; Freeman and Durden, 1998; Yamaguchi et al., 2005, 2006, 2011; Chen et al., 

2014a, 2014b, 2014c) have been proposed. Among these decomposition approaches, 

the coherency matrix (Equation 20)-based ones, including model-based and 

eigenvalue-eigenvector-based decompositions, have been commonly used for 

building damage assessment in disasters. On one hand, the model-based 

decomposition, especially the four-component scattering model (Yamaguchi et al., 

2005, 2006, 2011) which can decompose the coherency matrix (T) into surface 

scattering, double-bounce scattering, volume scattering, and helix scattering 

contributions (Equation 21), has a clear physical meaning with respect to the 

backscattering mechanisms of damaged and intact buildings (Section 2.1.1). On the 

other hand, the eigenvalue-eigenvector-based decomposition (Cloude and Pottier, 

1996, 1997) can decompose T into matrix-characterizing parameters such as entropy 

(H), anisotropy (A), and average scattering angle (α̅), having a clear mathematical 

background. The entropy can be used to measure the statistical disorder degrees in a 

scattering process, with a value close to 1 indicating a distributed target response. The 

anisotropy quantifies the relative contributions of the secondary and tertiary scattering 
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mechanisms. The average scattering angle denotes the average target scattering 

mechanism, and can be applied to distinguish between different scattering types.  

 

T = 𝑓𝑣〈𝑇𝑣𝑜𝑙〉 + 𝑓𝑑〈𝑇𝑑𝑏𝑙〉 + 𝑓𝑠〈𝑇𝑠𝑢𝑟𝑓〉 + 𝑓ℎ〈𝑇ℎ𝑒𝑙〉                   (21) 

Here, fv, fd, fs, and fh indicate model coefficients, and Tvol, Tdbl, Tsurf, and Thel represent volume 

scattering, double-bounce scattering, surface scattering, and helix scattering, respectively.  

 

Many studies have been carried out concerning the application (Yamaguchi, 2012; 

Singh et al., 2013; Park et al., 2013) and mechanisms (Kimura et al., 2005; Iribe and 

Sato, 2007; Lee and Ainsworth, 2011; Chen et al., 2013) of SAR polarimetry features 

on buildings and building damages. Both model-based and eigenvalue-eigenvector-

based decompositions are able to provide favorable polarimetry indicators for 

building damage assessment in disasters. Double-bounce scattering, surface scattering, 

and volume scattering derived from model-based decomposition, as well as H, A, and 

α̅ decomposed through eigenvalue-eigenvector-based decomposition have all been 

demonstrated to be valuable parameters for identifying damaged urban areas. Several 

additional polarimetry parameters, such as polarization coherence, which can be used 

to characterize surface roughness (Mattia et al., 1997), and the polarimetric orientation 

angle, which has a close relationship with building orientation (Lee et al., 2002), were 

also said to be favorable parameters for understanding damages in built-up areas. 

Figure 6 shows an example of pre- and post-event polarimetry color images (Singh 

et al., 2013), from which the changes of several decomposition components before 

and after the disaster can be clearly seen. 

 

 



 

183 

(a) (b) (c) (d) 

Figure 6. An example of pre- and post-event SAR polarimetry images in the 2011 Tohoku 

Earthquake and Tsunami: (a) Pre-event SAR image for patch C and surrounding areas 

(2009/04/02); (b) Post-event SAR image for patch C and surrounding areas (2011/04/08); (c) 

Pre-event Google optical image for patch C (2010/04/04); (d) Post-event Google optical 

image for patch C (2011/04/06). Red, green, and blue color in SAR images represent double-

bounce scattering, volume scattering, and surface scattering, respectively (Singh et al., 2013). 

Comparing patch C before and after the disaster, it can be seen clearly that after many 

buildings were damaged and collapsed in the disaster, the double-bounce scattering (red) 

decreased, and the volume scattering (green) and surface scattering (blue) increased. 

 

Yamaguchi (2012) synthesized full color images for the straightforward 

recognition of changes applying model-based decomposition. The red, green, and blue 

colors in the composited full color images were merged by double-bounce scattering, 

volume scattering, and surface scattering respectively, with the brightness of each 

color corresponding to the magnitude of each scattering. The results demonstrated that 

most disaster areas showed increased surface scattering. Similarly, Singh et al. (2013) 

investigated damage assessment in urban areas by analyzing RGB color-coded images 

composited by components derived through model-based decomposition. They 

concluded that different scattering parameters showed different behaviors in 

influenced areas, and the double-bounce scattering is the most promising input 

parameter for automated detection of disaster-affected urban areas at a pixel level.  

Based on model-based decomposition and polarimetric orientation angle, Chen 

and Sato (2013) proposed two polarimetry indicators - the ratio of dominant double-

bounce scattering and the standard deviation of polarization orientation angle 

differences - for damage level discrimination in the 2011 Tohoku Earthquake and 

Tsunami. These two indicators can reflect the amount of destroyed ground-wall 

structures and the homogeneity reduction of polarization orientation angles, 

respectively. They (Chen et al., 2016) then confirmed and validated the linear 

relationship between the polarimetry damage index (the ratio of dominant double-

bounce scattering mechanisms between the post- and pre-event cases) and the ground 

truth urban damage levels.  
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In addition, Sato et al. (2012) applied model-based decomposition to analyze 

damaged built-up areas and flooded river areas caused by the 2011 Tohoku 

Earthquake and Tsunami. The polarization orientation angle and eigenvalue-

eigenvector-based decomposition were also applied to provide additional information 

for understanding built-up area damages, and to further confirm scattering changes in 

flooded areas. The results indicated that the dominant scattering of washed-away 

built-up areas changed from double-bounce scattering to surface scattering after the 

disaster. Moreover, the flooded river neighborhood was dominated by surface 

scattering after the tsunami. Watanabe et al. (2012) compared representative 

polarimetry parameters of full polarimetric SAR images acquired before and after the 

2011 Tohoku Earthquake and Tsunami. They analyzed and discussed polarimetry 

coherence (HH-VV and RR-LL), four-component decomposition parameters (HH, 

HV, VH, and VV), and all parameters derived from model-based and eigenvalue-

eigenvector-based decompositions. Results showed that the α angle reduced to 30° 

after the disaster, indicating that the targets were mainly composed of surface 

scattering components. The entropy showed a higher value both before and after the 

disaster, ranging from 0.6 to 0.8, indicating that a complex scattering mechanism is 

involved in this region. In addition, the polarimetry coherence parameters were said 

to be the most important factors for distinguishing disaster areas in this case. Park et 

al. (2013) also investigated earthquake-caused backscattering mechanism changes in 

the 2011 Tohoku Earthquake and Tsunami using polarimetric indicators. The 

parameters derived from model-based decompositions (surface, double-bounce, and 

volume scattering) and eigenvalue-eigenvector-based decompositions (H, A, and α̅), 

and additional parameters such as polarization coherence and polarimetric orientation 

angle were all studied. It was said that the swept urban areas were characterized by a 

significant decrease of double-bounce scattering, whereas the partly-damaged urban 

areas did not show a distinctive double-bounce scattering reduction. Nevertheless, 

minor changes can still be identified using the polarimetric parameters such as 

anisotropy and polarimetric coherence.  

Despite the fact that full polarimetry data includes rich and effective information 

facilitating scattering mechanism interpretation, there are fewer opportunities for the 

observation of that type of data than for single/dual-polarization data (Watanabe et al., 
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2016). Besides, all high-resolution SAR systems offer multi-polarization data, at the 

cost of reduced resolution (Balz and Liao, 2010). However, when assessing the 

Tohoku earthquake damage using full polarimetric SAR data, Sato et al. (2012) 

indicated that the scattering mechanism is adequate for discriminating damaged and 

flooded areas, even though the resolution of the applied data is not fine. 

 

2.1.4 Integrated Approaches 

Intensity, coherence, and polarimetry information of SAR data can all be used for 

building damage assessment in a block unit, with different pros and cons. Coherence 

information is sensitive to smaller changes, whereas intensity information is more 

suitable for larger ground change analysis. Coherence data are highly dependent on 

factors such as spatial and temporal baseline to give favorable results, whereas 

intensity data are influenced by acquisition duration, geometry, and wavelengths 

(Plank, 2014). Polarimetry information is sensitive to ground target characteristics 

such as dielectric constants and orientation. Imaging radars can acquire various 

information of the targets when operating in a multi-polarization mode, helping to 

understand the physical scattering mechanisms. Nevertheless, there are fewer 

opportunities to acquire full-polarization SAR data, and the acquired full-polarization 

data may have relatively lower resolution. When several types of information are 

available at the same time, integrated methods that combine several types of 

information or several types of data can be investigated and developed, to compensate 

for each other and achieve better assessment results. 

 

The combination of intensity and coherence information 

The intensity and coherence information can be combined to complement each 

other. In the analysis of the Bam, Iran Earthquake damage, Arciniegas et al. (2007) 

indicated that the combination of coherence change and intensity difference could lead 

to an improved accuracy, as compared with the use of each property separately. For 

urban change detection using SAR data, Zhang et al. (2018) presented a method 

combining intensity difference and coherence coefficient. The amplitude difference 

was initially used to determine suspected change areas, and then the coherence 
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coefficient was applied to analyze if the suspected change areas were genuinely 

changed areas. The results showed that this method can achieve a much higher 

accuracy than a single amplitude difference, as it was able to remove pseudo-changes 

attributed to vegetation, tree growth, and seasonal changes. 

 

The addition of dual-polarization information to coherence-based approaches 

The dual-polarization information, which is relatively easier to acquire than full-

polarization information, can be integrated into coherence-based approaches for 

accuracy improvement. Watanabe et al. (2016) applied the coherence change 

detection technique to dual-polarization (HH and HV) images for assessing building 

damages in the 2015 Gorkha Earthquake. The incorporation of HV polarization to HH 

polarization was considered to marginally improve the detection accuracy. Sharma et 

al. (2017) indicated that calculating the average value of coherence (both pre- and co-

event coherence) in HH and HV polarization images could contribute to accuracy 

improvement in their EDV technique. Oxoli et al. (2018) applied coherence change 

detection to automatic building damage assessment in the 2016 Central Italy 

Earthquake, using a set of 20 interferometry SAR images with different polarizations 

(VV, VH, VV+VH). The ratio between the probability of no-change and that of 

change occurring after the disaster was evaluated to perform change detections, and 

the generalized likelihood ratio test (Fan et al., 2001) was applied to infer the 

significance of detected changes. 

 

The addition of ancillary data to SAR data 

Ancillary data, such as optical images and GIS maps, when available, can be 

applied in SAR-based building damage assessments as a sort of complementary 

information. Stramondo et al. (2006) explored the combination use of optical images 

and SAR data for damage assessment. The results showed that the fusion of SAR and 

optical data improved correct classification of damaged areas, and the complex 

coherence achieved a higher classification accuracy when combined with the optical 

images. Arciniegas et al. (2007) employed a pre-event advanced spaceborne thermal 

emission and reflection radiometer image to mask out vegetated areas, to thereby 
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facilitate SAR-based building damage analyses. It was said that this method achieved 

slightly higher assessment accuracy as compared to only using SAR information. 

Chini et al. (2009) processed both QuickBird very high resolution (VHR) optical 

images and SAR data to extract features for damage-level estimation, and pointed out 

their possible synergy. Uprety and Yamazaki (2012) applied both correlation 

coefficient and backscattering difference calculated through SAR images, and 

normalized difference vegetation index (NDVI) derived from optical images for 

building damage detection in the 2010 Haiti Earthquake. Tamkuan and Nagai (2017) 

proposed an approach combining optical satellite imagery and interferometric SAR 

coherence for building damage assessment. The post-event optical imagery was 

employed to extract water bodies and highly-vegetated areas, the pre-event coherence 

was used to separate urban and non-urban areas, and the co-event coherence was 

applied to judge damage levels.  

In addition, in the damage detection of the 2003 Bam Earthquake, Gamba et al. 

(2007) indicated that the combination of intensity and phase features enhanced 

damage extraction, and the use of ancillary data further improved the detection 

accuracy by discarding uninteresting parts and forcing homogeneous classification. 

Trianni et al. (2010) combined ancillary GIS information and statistical features of 

SAR images for building damage mapping, with the ancillary data used for urban 

block definition, and the SAR statistical features applied for damage discrimination. 

Karimzadeh and Mastuoka (2017) integrated all SAR image information including 

intensity, coherence, and polarimetry, as well as optical image features, for damage 

detection in the 2016 Italy Earthquake.  

 

2.2. Building-unit Approaches 

High-resolution images, when available, are able to provide more detailed 

information regarding ground targets, even though they may have smaller spatial 

coverage, and be limited by satellite storage and processing capacities (Joyce et al., 

2009a). In high-resolution SAR images, building geometric features become evident 

(Stilla at al., 2005), providing the possibility for damage assessment in a building unit. 

Additionally, the high resolution ensures that there are sufficient pixels within each 

building footprint for analysis. Nowadays, most modern sensors are designed to 
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acquire data at various ground resolutions. Since the first launch of high-resolution 

SAR satellites (e.g., TerraSAR-X and CosmoSkyMed) in 2007, not only can airborne 

imagery provide a source of single building damage information (Simonetto et al., 

2003, 2005; Stilla at al., 2005; Shi et al., 2015), but also the operative spaceborne 

platforms have reached a spatial resolution potentially allowing for change detection 

in a building scale (Plank, 2014; Nakmuenwai et al., 2016; Natsuaki et al., 2018). As 

a result, approaches for SAR-based change detection in a building unit have been 

gradually developed.  

The principles of building-unit change detection approaches were basically similar 

to those of the block-unit ones, with some simply generalizing the block-unit methods 

into building-unit methods, and some making full use of the clear individual building 

features in the high-resolution images (Table 2). Nevertheless, different from block-

unit approaches, building-unit approaches can provide more detailed and specific 

information regarding building damage conditions. Instead of showing rough damage 

levels and damage ratios in each block (Figure  2), they are able to provide the specific 

damage condition of each particular building (Figure 7). Besides, as higher resolution 

is the development trend of remote sensing technology, building-unit approaches may 

get more and more attention in the future to make full use of the rich information in 

the high-resolution images. 

Table 2. A summary of building-unit change detection approaches. 

Approaches Commonly used 

parameters 

Representative studies Other descriptions 

Approaches by 

generalizing 

block-unit change 

detection methods 

Intensity difference, 

correlation coefficient, 

coherence, texture 

features, etc. 

Uprety et al. (2013); Liu 

et al. (2013); Miura et al. 

(2016); Bai et al. (2017b); 

Natsuaki et al. (2018); Ge 

et al. (2019) 

Need building footprint 

information /building footprints 

can be shifted or buffered to 

incorporate more valuable 

double-bounce, layover, and 

shadow characteristics owing to 

the side-looking of SAR sensors 

Approaches by 

exploring the 

clear individual 

building features 

in high resolution 

images 

Double bounce effect 

features 

Guida et al. (2008, 2010a, 

2010b, 2011); Brett 

(2013); Brett and Guida 

(2013); Chini et al. (2015) 

Explore the characteristic changes 

of the double-bounce areas 

High and low 

backscattering areas 

caused by the double 

bounce, layover, and 

shadow effects 

Liu et al. (2012); Gokon 

et al. (2015) 

Explore the percentage/area/ 

statistical characteristic changes 

of the bright and/or shadow 

regions 

Others SAR image parameters 

mentioned above and 

ancillary data 

parameters 

Brunner et al. (2010); 

Wang and Jin (2012) 

Add ancillary data to provide 

complementary information and 

improve detection accuracy 
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Figure 7. An example of building-unit damage assessment results (Bai et. al., 2017b): (a) 

Damage mapping results using only post-event SAR image; (b) Damage mapping results 

using multi-temporal SAR images; (c) Ground truth data. 

 

2.2.1 Generalization of the Block-unit Approaches 

By averaging or calculating relevant parameters in the block-unit approaches (e.g., 

discriminant scores and coherence) within each original, moved, or buffered building 

footprint area, the block-unit approaches can be directly generalized into building-unit 

change detection approaches. In this type of approaches, the building footprint 

information, which is not necessary in the block-unit approaches, is needed as an 

ancillary data to set boundaries for the calculation of mean parameter values. Owing 

to the side-looking nature of SAR sensors, building footprints have sometimes been 

shifted or buffered to incorporate the valuable double bounce, layover, and shadow 

characteristics. Uprety et al. (2013) calculated the averaged value of the correlation 

coefficient within each building footprint, and then set an appropriate threshold value 

for differentiating building damage conditions in the 2009 L’Aquila Earthquake. Liu 

et al. (2013) applied the average value of the change factor (Equation 8) within each 

shifted GIS map building outline to detect impacted buildings in the 2011 Tohoku 

Earthquake and Tsunami. Miura et al. (2016) calculated the mean value of the 

intensity difference and correlation coefficient inside each displaced building 

footprints, and then constructed a two-group discriminant function (Equation 22) for 

damage grade separation in the 2010 Haiti Earthquake. 

z = 0.501|d|-2.568r+0.177                                 (22) 

Here, z indicates the discriminant score, d indicates the intensity difference, and r indicates 

the correlation coefficient. 
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Bai et al. (2017b) applied the differences of polarimetry features and texture 

features within each building footprint for damage mapping in the 2016 Kumamoto 

Earthquake. Natsuaki et al. (2018) evaluated the limitations and sensitivity of 

coherence for building damage detection at an individual building level. The 

coherence difference was applied in their study. Results indicated that, for damage 

detection of individual buildings by SAR coherence information, the damage levels 

should be larger than level-2 in the European macroseismic scale (EMS-98) (Grünthal, 

1998), and the buildings should be larger than the window size of the coherence. Ge 

et al. (2019) calculated the difference of texture features within each buffered building 

footprint area for building damage assessment in the 2015 Nepal Earthquake. 

 

2.2.2 Exploration of the Clear Individual Building Features 

Features of individual buildings, especially double bounce, layover, and shadow 

effects in the intensity image (Section 2.1.1), become clear in high-resolution SAR 

images, and therefore, can be analyzed in detail for building damage condition 

identification in disasters. Different from block-unit approaches, which usually 

calculate the intensity difference or correlation coefficient to roughly measure the 

changes of these features, this type of approaches explores more detailed 

characteristics of them (e.g., characteristic changes of double bounce areas and 

percentage/area changes of layover regions). Guida et al. (2011) investigated the 

feasibility of deterministic feature extraction method, which was proposed by them 

based on the double bounce mechanism (Franceschetti et al., 2007; Guida et al., 2008, 

2010a, 2010b) for identifying damaged and collapsed buildings in the 2009 L' Aquila 

Earthquake. Brett (2013) described two feature classification techniques based on a 

curvilinear feature detection algorithm, which was applied to extract bright lines in 

SAR images. Then, by integration of these techniques, an unsupervised tool for 

earthquake damage detection was developed and verified in the 2009 L' Aquila 

Earthquake and 2010 Haiti Earthquake (Brett, 2013; Brett and Guida, 2013). Chini et 

al. (2015) used four change indicators (intensity ratio, intensity correlation, Kullback-

Leibler divergence and interferometric coherence) calculated from pixels within 

double bounce regions for earthquake damage mapping in the 2009 L’Aquila 

Earthquake. Liu et al. (2012) applied the percentage of pixels with decreased intensity 
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within walls, and those with increased intensity outside walls, to judge building 

damage conditions in the 2011 Tohoku Earthquake and Tsunami. Gokon et al. (2015) 

proposed a parameter-change ratio of areas with high backscattering (Cr ) (Equation 

23) in the buffered building region according to layover and double-bounce principles, 

for building damage assessment. In addition, Brunner et al. (2010) and Wang and Jin 

(2012) detected building damages at an individual level based on one pre-event optical 

image and one post-event SAR image. The pre-event optical image was first used to 

estimate building information. The SAR acquisition parameters were then applied to 

expect building signatures after the disaster, assuming no damage prior to combining 

with the building information estimated from the optical image. Finally, the similarity 

between the predicted image and an actual post-event SAR image was compared to 

judge the damage condition of each building.  

intersect

pre

Areas
1

Areas
rC  

                                             (23) 

In the above, Areasintersect indicates the intersection of the pre- and post-event areas with high 

backscattering in each building and Areaspre refers to the pre-event areas with high 

backscattering in each building.  

 

2.3. Summary 

Various change detection approaches have been proposed for building damage 

assessment in disasters, either in a block unit or in a building unit. Block-unit methods, 

which have obtained extensive studies since the 1995 Kobe Earthquake, were first 

proposed because of the image resolution limitations in the initial stages. Damage 

conditions in block-unit approaches were usually illustrated by damage levels or 

damage ratios in irregular administrative division blocks, or regular artificial division 

blocks. The development of high-resolution SAR images, such as the first launch of 

high-resolution SAR satellites in 2007, promoted the development of building-unit 

assessment approaches. As the high resolution made individual building features 

observable and ensured enough pixels within each building footprint for analysis, 

change parameters and features can be calculated and analyzed within each original, 

modified, or buffered building footprint area for damage assessment. 
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As compared with block-unit methods, building-unit approaches are able to 

provide more specific and clearer damage information (e.g., the specific damage 

condition of a particular building). However, that does not mean that they are always 

the best choice under any circumstances. On one hand, high-resolution images used 

for building-unit analysis usually have smaller spatial coverage, and may be limited 

by satellite storage and processing capacities. When disasters affect wide areas, and a 

rapid even rough identification of major damage areas is needed, block-unit 

approaches may be more suitable. On the other hand, the damage of one building 

usually causes changes not only inside the building outline, but also in the surrounding 

areas. In densely built-up areas, some building-unit methods may be unable to take 

into account these factors, and therefore cannot perform very well. Hence, it is better 

to comprehensively consider the detection purpose, image information (e.g., 

resolution and coverage area), and actual field characteristics (e.g., building density 

and damage distribution) when selecting an appropriate analysis unit.  

Intensity, coherence, and polarimetry information of SAR data are all applicable 

for building damage detection in a block or building unit, with different pros and cons. 

The intensity difference, correlation coefficient, correlation coefficient 

difference/ratio, texture features, double-bounce effects, layover, and shadow areas 

are commonly used to quantify intensity changes and establish relationships with 

actual damages. The co-event coherence, coherence ratio, and original, normalized, 

or histogram-matched coherence difference have been explored for target change 

measurement in coherence-based change detection approaches. The model-based and 

eigenvalue-eigenvector-based decompositions have both been exploited to derive 

favorable polarimetry features (e.g., double-bounce scattering, surface scattering, and 

entropy) for building damage assessments. When available, several types of 

information or data can be integrated together to compensate for each other, which 

usually can improve the accuracy of the assessment results. 

Intensity information is relatively easy to obtain, as it has no requirement for the 

SAR acquisition mode. It is relatively stable for minor changes, and therefore is more 

suitable for the analysis of major damages. Moreover, between intensity difference 

and correlation coefficient, intensity difference is thought to be more stable to subtle 

changes (Liu et al., 2013). In intensity-based block-unit approaches, both intensity 
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decreases and increases may occur in congested building areas. Therefore, it is 

recommended to add another discriminant line (e.g., Equation 7.6) in the discriminant 

analysis, or to use the absolute value of intensity difference for parameter construction. 

For small building damage ratios in less densely built-up areas, the difference/ratio of 

pre- and co-event correlation coefficient is suggested in order to minimize impacts 

from signal noises and Earth’s surface changes. Matsuoka et al. (2005) analyzed the 

differences between the z value (Equation 1), correlation coefficient ratio, and 

coherence ratio for damage mapping, and demonstrated that the correlation coefficient 

ratio is suitable for damage detection in situations where the areas and distribution of 

severely-damaged buildings were rather small. Matsuoka and Yamazaki (2006) 

indicated that the correlation coefficient difference was also a favorable parameter 

under similar conditions, in the 2006 Mid Java Earthquake. 

Coherence information, which can be acquired when the SAR satellite works in 

an interferometry mode, is relatively sensitive to small changes, and hence is more 

suitable for minor damage analysis. Yet, it is also susceptible to vegetation, owing to 

its sensitivity. Therefore, if possible, built-up areas can be extracted first to reduce the 

impacts from other land uses and improve the assessment performance. Co-event 

coherence can be applied to classify building damage conditions when there are only 

one pre-event and one post-event products. The difference/ratio of pre- and co-event 

coherence can be calculated to reduce common coherence variations caused by other 

effects when another pre-event image exists. The histogram-matched coherence 

difference was thought to have better performance than simple coherence difference, 

as it can mitigate bulk changes in the two coherence images. The EDV technique was 

said to be more sensitive to building damages than the damage proxy map generated 

by the histogram-matched coherence difference, as it applied an additional 

polarization and more change parameters (Sharma et al., 2017). Liu and Yamazaki 

(2017) analyzed the intensity parameter z-factor (Equation 8), co-event coherence, 

and coherence ratio for building damage assessments in the 2016 Kumamoto 

Earthquake, and showed that the coherence ratio achieved higher accuracy (60.3%) 

than z-factor (52.6%) and co-event coherence (58.0%). Arciniegas et al. (2007) 

explored coherence difference and absolute amplitude change for mapping urban 

damages caused by the 2003 Bam, Iran Earthquake. The results indicated that 
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coherence difference led to a higher accuracy (44.5%) than absolute amplitude change 

(41.2%), and the combination of both resulted in a much higher accuracy (52.3%). In 

addition, masking out vegetated areas using a pre-event advanced spaceborne thermal 

emission and reflection radiometer image improved the accuracy by 4%.  

There are relatively fewer opportunities to acquire polarimetry data, especially 

full-polarization data. Moreover, the acquired full-polarization data may have 

relatively lower resolution. Nevertheless, they can provide rich information for the 

understanding of scattering mechanisms. Building damages usually lead to a decrease 

of double-bounce scattering and an increase of surface scattering and/or volume 

scattering, which can be explored in detail by decomposing the full-polarization data 

through model-based decomposition. Additionally, the entropy, anisotropy, and 

average scattering angle (as decomposed from eigenvalue-eigenvector-based 

decomposition) can be used to measure the scattering disorder degrees, weigh the 

relative contributions of second and third scattering mechanisms, and distinguish 

between different scattering types, facilitating the interpretation of scattering 

mechanism changes. Several other polarimetry parameters, such as polarimetry 

coherence that can reflect surface roughness, and polarimetry orientation that relates 

to building orientations, can also provide useful additional information for 

distinguishing between damaged and undamaged urban areas. In the 2011 Tohoku 

Earthquake damage analysis, Park et al. (2013) indicated that the mapping accuracy 

for tsunami-swept urban areas can be improved from 30%–40% to 89%, by applying 

polarimetry features instead of a conventional single-channel backscattering 

measurement.   

Change detection in a building unit can be carried out either by generalizing the 

block unit approaches, or by exploring clear individual building features in high-

resolution SAR images. When building footprint information can be obtained, the 

mean values of change detection parameters in the block-unit approaches can be 

calculated to judge the damage condition of each building. The correlation coefficient, 

change factor and discriminant score calculated by the intensity difference and 

correlation coefficient, coherence difference, and texture features have been explored 

in that way. Miura et al. (2016) compared the correlation coefficient, z factor 

(Equation 8), and discriminant score (Equation 22) for building damage 
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classification in the 2010 Haiti Earthquake. The results showed that the overall 

accuracies achieved by these three parameters were almost the same (72.3%, 74.2%, 

and 74.3%), yet the discriminant score could achieve a much higher producer’s 

accuracy for identifying collapsed buildings. Natsuaki et al. (2018) indicated that 

when applying coherence information for damage detection of individual buildings, 

the buildings should be larger than a window size of the coherence, and the damage 

levels should be larger than level-2 in EMS-98 (Grünthal, 1998). Individual building 

features in the second type of approach mainly refer to the double bounce, layover, 

and shadow features in SAR intensity images. By analyzing and comparing the 

characteristic, percentage, or area changes of these features in the pre-event and post-

event SAR images, the damage condition of a particular building can be speculated. 

 

3. Assessment Approaches Based on Only Post-event SAR Data 

In many cases, especially in undeveloped areas, ideal archived pre-event SAR 

images are unavailable, rendering the classic change detection approaches infeasible. 

Therefore, approaches for building damage assessment based on only post-event SAR 

data have aroused the attention of many scholars. Without desired pre-event images, 

many commonly-used parameters for damage assessment, such as intensity difference 

and coherence, cannot be calculated. Therefore, in post-event SAR data-based 

assessment approaches, exploring new favorable features in one single post-event 

image for discriminating damaged buildings is a key issue. For one thing, polarimetry 

features can be potential indicators, as damaged and undamaged structures usually 

show different characteristics in different decomposition components. For instance, 

intact parallel buildings are usually characterized by double-bounce scattering, 

whereas collapsed buildings can be characterized by volume scattering (Zhai and 

Huang, 2016). For another, texture measures (e.g., entropy and homogeneity) in post-

event SAR data also have shown some correlation to damage levels (Dell’Acqua and 

Polli, 2009; Dell'Acqua et al., 2010b), and can be employed through SAR simulators 

or machine learning classifiers for building damage assessment (Table 3). 
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Table 3. A summary of the assessment approaches based on only post-event SAR data. 

Approaches Commonly used 

methods or tools 

Commonly used characteristics Representative 

studies 

Other 

descriptions 

Polarimetry-

based 

analysis 

Model-based and 

eigenvalue-

eigenvector-based 

decomposition  

Polarimetry features (entropy, 

average scattering angle, double 

bounce scattering, polarization 

orientation angle, polarization 

coherence, etc.) 

Guo et al. (2010); Li 

et al. (2012); Zhai 

and Huang (2016) 

Need full-

polarization 

post-event SAR 

products 

Texture-

based 

analysis 

SAR simulators  

 

First-order and second-order 

statistical characteristics (mean, 

variance, entropy, etc.)  

Balz (2006); Balz 

and Liao (2010); 

Kuny et al. (2014, 

2016) 

Apply the 

texture features 

of SAR 

intensity images 

/ only intensity 

information is 

enough 

Machine learning 

classifiers (random 

forest, support 

vector machine 

(SVM), K-nearest 

neighbor (KNN), 

etc.) 

First-order (mean, variance, 

skewness, kurtosis, etc.) and 

second-order texture features 

(contrast, dissimilarity, 

homogeneity, mean, variance, 

correlation, entropy, etc.) 

Wu et al. (2016); 

Gong et al. (2016); 

Bai et al. (2017b) 

Approaches 

combing 

both 

polarimetry 

and texture 

features 

Machine learning 

classifiers (random 

forest, SVM, KNN, 

etc.) 

Polarimetry features (entropy, 

anisotropy, total scattering 

power, cross-polarization ratio, 

etc.), texture features (first-

order textures, second-order 

textures, speckle divergence, 

etc.), and color features (hue, 

saturation, value, and light) 

Zhao et al. (2013); 

Bai et al. (2017a, 

2017c) 

For dual-

polarization or 

full-polarization 

products 

Deep 

learning-

based 

approaches 

Deep learning (e.g., 

SqueezeNet 

network and 

modified wide 

residual network) 

 Bai et al. (2018) Split images 

into numerous 

tiles for training 

and learning  

 

3.1. Polarimetry-based Analysis 

Guo et al. (2010, 2012) and Li et al. (2012) proposed an H-α-ρ approach to extract 

collapsed buildings in the 2010 Yushu Earthquake, based on post-event polarimetry 

SAR data. H, α, and ρ indicated the polarimetry features of entropy, average scattering 

mechanism, and circular polarization correlation coefficient, respectively. In their 

approach, images of H, α, and ρ were first obtained via polarimetry decomposition, 

using PolSARpro software. Then the bare soil surface was removed from the ρ image 

by rational thresholds of H and α  values. After that, the spatial distribution of 

collapsed buildings was extracted through an optimal threshold of the ρ value in the 

bare surface-removed ρ image. Zhai and Huang (2016) extracted building damages 

by a single post-event PolSAR image based on the principle that collapsed buildings 

are characterized by volume scattering, whereas undamaged parallel buildings are 

characterized by double-bounce scattering. Besides, in order to solve the scattering 

mechanism ambiguity problem of undamaged buildings in traditional model-based 
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decomposition, the scheme of polarization orientation angle compensation was 

applied to enhance the double-bounce scattering, and the difference in relative 

contribution change rate of scattering components was put forward to strengthen the 

difference between undamaged and collapsed buildings. 

 

3.2. Texture-based Analysis 

SAR simulators can be employed to exploit texture features for building damage 

assessment, based only on a post-event SAR image. Balz and Liao (2010) detected 

building damages caused by the 2008 Wenchuan Earthquake using a post-event SAR 

image and a SAR simulator called SARViz (Balz, 2006), as no suitable archived pre-

event SAR images were available for the rather remote damaged areas. Kuny and 

Schulze (2014) applied simulated SAR textures of modelled debris to detect massive 

destruction regions in real SAR images. Texture features were analyzed by first-order 

and second-order statistical characteristics such as mean, variance, and entropy. Later, 

in order to improve the detection results, they also simulated high vegetation and 

gravel areas, to rule them out (Kuny et al., 2016). 

Machine learning classifiers can also be applied to explore texture features in post-

event SAR images for building damage level discrimination. Wu et al. (2016) used a 

random forest classifier to analyze destroyed buildings, based on two backscattering 

features (mean and variance of backscattering) and eight texture features (gray-level 

co-occurrence matrix (GLCM) mean, variance, homogeneity, contrast, dissimilarity, 

entropy, second moment, and correlation). The results showed that the GLCM second 

moment and homogeneity, as well as the variance of backscattering, were better 

features for distinguishing damage types. Gong et al. (2016) explored three machine 

learning classifiers and twelve statistical features for building damage detection using 

a sub-meter post-event SAR image and a building footprint map. The three machine 

learning classifiers were the random forest, support vector machine (SVM), and K-

nearest neighbor (KNN). The twelve statistical features included four first-order 

features (mean, variance, skewness, and kurtosis) and eight second-order features 

(mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and 

correlation). The results showed that the first-order and second-order statistics derived 

from the building footprints had a good ability to distinguish between collapsed and 
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standing buildings. Ge et al. (2019) applied a random forest classifier to distinguish 

damaged buildings in the 2015 Nepal Earthquake, based on texture features extracted 

from a post-event SAR image. They indicated that the data range value and standard 

deviation calculated within the buffered building footprints had favorable capabilities 

for building damage assessment. 

 

3.3. Combination of Polarimetry and Texture Features 

Zhao et al. (2013) proposed a new method combining polarimetry information and 

texture features in post-event high-resolution airborne PolSAR data for damage 

assessment. The normalized circular-pol correlation coefficient and GLCM 

homogeneity were applied as polarimetry and texture features, respectively. Bai et al. 

(2017b) applied a KNN classifier for damage assessment based on one polarimetry 

feature and thirty-two texture features derived from a post-event image. The 

backscattering coefficient of HH polarization was applied as the polarimetry feature. 

Four statistics derived from the gray-level histogram (data range, variance, skewness, 

and mean) and twenty-eight statistics obtained from the GLCM (contrast, dissimilarity, 

homogeneity, mean, variance, correlation, and entropy, calculated at 0°, 45°, 90°, and 

135°) were employed as the texture features. They (Bai et al., 2017c) also explored 

one hundred and two features for building damage assessment, including fifteen 

polarimetry features, eighty-three texture features, and four color features, through 

random forest and KNN classifiers. It was demonstrated that the random scattering 

metric and reflection symmetry metric showed good performance in determining 

damage types, whereas color information only provided a small amount of 

complementary information. They (Bai et al., 2017a) also investigated an SVM 

classifier for exploiting ninety-one features (four polarimetry features, eighty-three 

texture features, and four color features) in a post-event SAR image for earthquake 

damage assessment. This study indicated that the texture features derived from cross-

polarization intensity showed higher performance in distinguishing building damages, 

and feature reduction could improve classification accuracy.  

In addition, deep learning algorithms, which have become popular again following 

a significant breakthrough in 2006 (Hinton and Salakhutdinov, 2006), can also assist 
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in SAR-based building damage assessment. Bai et al. (2018) proposed a deep 

learning-based framework for tsunami damage mapping using only post-event 

TerraSAR-X data. Tile-based image split analyses were used to generate a dataset. A 

selection algorithm with a SqueezeNet network was constructed to classify built-up 

and unbuilt-up areas. A recognition algorithm with a modified wide residual network 

was constructed to distinguish different damage levels in the classified built-up areas.  

 

3.4. Summary 

Polarimetry and texture features can be explored for building damage assessment 

when there are only post-event SAR data. For full-polarization SAR products, 

polarimetry features can be decomposed to distinguish between damaged and 

undamaged buildings, as intact and collapsed buildings usually show different 

scattering mechanisms. Polarimetry coherence, double-bounce scattering, and volume 

scattering have shown favorable performance in damage assessment with the 

assistance of entropy, average scattering mechanisms, and polarization orientation 

angles. For single/dual-polarization SAR products, texture features and/or polarimetry 

features that can be derived from the dual-polarization information can be exploited 

for damage detection, as undamaged areas usually show regular higher-value and 

lower-value pixel distribution (bright and shadow areas), whereas damaged areas 

usually have more random and averaged pixel distribution. The variance (or standard 

deviation), GLCM second moment, and homogeneity were said to be favorable 

texture features. Moreover, in the post-event data-based assessment, advanced 

computer and mathematical technologies can work as powerful tools to make full use 

of the limited SAR information, and ancillary data can provide more supplementary 

information for the limited SAR archives. 

In addition, it has been said that feature reduction by selecting highly correlated 

features could improve classification accuracy. Bai et al., (2017a) compared the 

classification performance of ninety-one features and ten highest-correlated features 

(selected using Pearson’s correlation coefficient) by machine learning classifiers. The 

results showed that, in the SVM and KNN classifiers, the ten features achieved 

accuracies of 80.5% and 73.3%, respectively, whereas the ninety-one features led to 
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accuracies of 70.6% and 62.7%, respectively. Moreover, assessments based on only 

post-event data may achieve as good results as change detections using both pre- and 

post-event data. Bai et al., (2017b) quantitatively compared the performance of 

building damage assessment by polarimetry and texture features calculated through 

only post-event images and both pre- and post-event SAR images, using the KNN 

classifier. It was demonstrated that an accuracy of 64.5% was achieved by using only 

the post-event image, which was 2.3% higher than the accuracy achieved by using 

both pre- and post-event images (Figure 7). 

 

4. Conclusions 

As an active RS technology independent of light and weather, SAR has the ability 

to play a role in crisis management of disasters for promptly identifying damaged 

buildings and reasonably arranging rescue forces. Multifarious approaches have been 

proposed for SAR-based building damage assessments in disasters, owing to the 

various advantages of this technology, together with the development of microwave 

RS and interpretation techniques. This paper classified these plentiful approaches, and 

summarized the favorable parameters in each category, according to the pre-event 

data availability, analysis unit, and applied image features. It aimed to provide a 

comprehensive and clear understanding of this research field, so as to facilitate 

ponderation on promising study areas and approach decisions in a specific case. 

Several conclusions and future efforts can be summarized as follows. 

Depending on the data availability and affected areas, various SAR-based 

approaches have been explored to facilitate building damage assessment after a 

disaster. Both data conditions and local field situations will influence the approaches 

that can be applied. The existence of desired pre-event SAR images makes classic 

change detections feasible. The high-resolution data enables detection approaches in 

a building unit. The interferometry or polarimetry acquisition mode provides 

information for coherence- or polarimetry-based analysis. The correlation coefficient 

difference/ratio showed better performance in identifying small building damage 

ratios in less densely built-up areas. The coherence degree was said to be more suitable 

for distinguishing minor damage levels.  
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Despite the fact that there are substantial approaches, a quantitative comparison 

and evaluation of them to select an optimum one is challenging, as most of them were 

designed according to the specific characteristics of applied data and affected areas, 

and were difficult to be tested with one or more experimental data. Moreover, all 

approaches have different pros and cons, the optimal solution in one case may not 

work well in another. There is no absolute optimum approach for all cases. Therefore, 

for a specific case, if similar cases exist, they can be referred to; if no similar cases 

exist, it may be a good way to determine the general conditions of applicable methods 

(e.g., change detection or post-event data-based assessment, block- or building-unit 

method) first, according to the analysis purpose, image information, and actual field 

characteristics, and then explore corresponding favorable parameters (e.g., correlation 

coefficient, coherence difference, and double-bounce scattering) within the 

determined scope referring to the tables and summary sections in this paper.  

When desired pre-event data are available, the intensity difference, correlation 

coefficient, correlation coefficient difference/ratio, texture features, and proportion of 

highlighted areas (double bounce and layover) can be calculated to quantify intensity 

changes. The co-event coherence, coherence ratio, and original, normalized, or 

histogram-matched coherence difference can be considered for observing coherence 

changes. The double-bounce scattering, surface scattering, volume scattering, entropy, 

polarimetry coherence, and polarimetry orientation can be derived from full 

polarimetry data to analyze scattering mechanism changes. When pre-event SAR data 

are unavailable, texture features and polarimetry features can be exploited alone or 

together for identifying damaged areas, depending on the data acquisition mode. 

Several future efforts were noted as follows.  

The advanced computer and mathematical technologies can work as powerful 

tools for achieving desired results with limited data archives. The application of these 

technologies to SAR-based building damage assessment is worth further research, as 

more innovative, effective, and efficient ways may be generated. For instance, if a 

training library can be established by the popular deep learning algorithm using 

existing SAR images, the damage condition of a new disaster can be identified easily 

and promptly, by simply putting the newly-acquired images into the library. 
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The integration of different SAR features and different ancillary data is able to 

provide complementary information for assessment improvement, and is a promising 

field of exploration. For instance, the combination of intensity and coherence features 

has been shown to be mutual complementary to each other, and the optical images 

have been indicated as valuable supplementary information for SAR images. 

As compared with the comprehensive studies in block-unit change detection 

approaches, the post-event data-based approaches and building-unit approaches have 

not been adequately studied. As archived pre-event SAR images are usually not 

available in remote undeveloped areas, and higher resolution is the development trend 

of remote sensing technology, more attention can be paid to the investigation of these 

two types of approaches. 

Time is of vital importance in damage detection and disaster response. The value 

of damage mapping reduces at an exponential rate following a disaster, and any delay 

will aggravate the situation. Thus, in order to map damages as soon as possible and 

save the time for rescue, the more automated the method, the better.  

Even though substantial approaches for SAR-based building damage assessment 

have been developed, field survey remains the main method for many relevant 

departments. In order to promote these approaches from research to practical 

application, the validity and reliability of them should be verified more strictly in order 

to make them trustworthy, and detailed guidance and instructions should be compiled 

to make them accessible to the general public.  
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