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Abstract

Urban rail transit, with its high capacity and punctuality, serves as the major solution
to commuters’ travel demand during rush hours in most metropolises. However, travel
experience of commuting by rail transit is frequently deteriorated by severe congestion and
chronic delays. Moreover, passenger crowding both in-vehicle and on-platform and delays of
trains can easily develop into a vicious circle especially in a high-frequency operated rail
transit system. Therefore, a new solution to improve the level of service of congested rail
transit is urgently needed.

On one hand, most of the efforts so far have been made to increase the supply of
system, but these efforts are gradually reaching the ceiling due to financial and constructional
limitations. On the other hand, practices of demand management for rail transit are still few
and not successful to alleviate the congestion and delay issues. Most existing studies on
rail transit optimization and management either treated passenger demand distribution as
given information or ignored the influence of passenger demand concentration on railway
operation. In order to derive insights into policy implications of management strategies, an
appropriate model considering the interaction between demand and supply is indispensable
for a congested rail transit.

The objectives of this study is threefold. First, to comprehensively understand influence of
passenger demand concentration on rail transit operation by investigating a train fundamental
diagram model and its variants using empirical data. Second, to macroscopically develop a
dynamic model capable of describing equilibrium distribution of passenger arrivals in a con-
gested rail transit system based on information of timetable and passenger preferences. Third,
to derive insights into the design of probable management strategies and their combinations
from a macroscopic view by applying the proposed model.

Through the analysis of Boston subway red line passenger flow and operation data, the
influence of passenger demand concentration on rail transit operation is confirmed to be
significant. By calibrating and evaluating the three variants (i.e., assumption of train dwell
time constant, monotonically increasing or first constant then monotonically increasing with
boarding passenger number) of rail transit fundamental diagram (train-FD) models using
empirical data, the original train-FD model assuming monotonically increasing relation
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between trains’ dwell time and waiting passenger number is found to be adequate to describe
influence of passenger demand concentration from a macroscopic point of view.

The equilibrium model to describe passenger arrivals in a congested rail transit system is
developed by employing the train-FD model with a novel particle-based dynamic approach.
The conceptual structure of the proposed equilibrium model is a two-level model different
from the existing one-level one for road traffic. The particle-based approach is found to
be tractable for deriving insights into management strategies. A microscopic simulation
program is also developed to verify the results from the equilibrium model. Outputs from the
simulation and the model are found to be consistent to a great extent.

By applying the proposed model, three issues are investigated. First, optimum peak/off-
peak timetable which minimizes the sum of travel time cost (TTC) and schedule delay
cost (SDC) is explored. An optimum peak/off-peak timetable in free-flow regime of train-
FD is proposed and numerically compared with different timetable patterns. Second, the
user equilibrium under first-best pricing scheme is theoretically derived and numerically
compared with the user equilibrium without pricing. Third, because the first-best pricing
scheme requires time varying pricing which is difficult to realize in real world, an appropriate
single-step coarse pricing scheme is specified and its effectiveness is numerically evaluated.
The coarse pricing scheme is compared by indicators such as the change of sum of TTC and
SDC, and change of in-vehicle crowding.

If all dispatched trains operate in free-flow regime of train-FD, peak/off-peak timetable
is found to be optimized when average train flow before and after desired departure time
are the same, and the flow of train with maximum passenger concentration reaches the
critical state of train-FD. It is proved that the user equilibrium under first-best pricing scheme
can significantly reduce the sum of TTC and SDC by flattening the change rate of riding
passenger number among dispatched trains compared with the user equilibrium without
pricing. Riding passenger number difference between successive trains under first-best
pricing is exactly half of that in the equilibrium without pricing. The effectiveness of single-
step coarse pricing is found to strongly depend on the temporal design of the scheme. The
appropriately designed coarse pricing scheme without breaking the equilibrium shows an
acceptable reduction of sum of TTC and SDC compared to the first-best one. Finally, a
complex pricing scheme by jointly giving reward and imposing surcharge is examined, and it
is found that a Pareto-improvement situation may occur depending on the timetable pattern
with significant reduction of sum of TTC and SDC.
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Chapter 1

Introduction

1.1 Background

1.1.1 Severe congestion and chronic delays of urban rail transit

Urban rail transit, with its high capacity and punctuality, serves as the major solution to
commuters’ travel demand during rush hours in most metropolises (Vuchic, 2017). However,
travel experience of commuting by rail transit is frequently deteriorated by severe congestion
and chronic delays. In many metropolises, congestion and delay of rail transit have brought
about tremendous psychological stress to commuters and considerable economic loss to the
whole society. For example, Kariyazaki et al. (2015) estimated that the social cost due to
the delay of trains in Japan exceeded 1.8 billion dollars per year. Xu et al. (2019) reported
that around one third of subway stations in Beijing adopted ordinary passenger flow control
to avoid extreme congestion on the platform. According to the New York Times, only 58%
weekday trains arrived on time in January of 2018, mainly due to equipment failure and
persons on the track (Hu, 2018).

One tricky issue for high-frequency operated urban rail transit is that passenger congestion
(both on-platform and in-vehicle) and delay could easily develop into a vicious circle. More
specifically, during rush hours, the dwell time of a train at one station is highly probable to be
extended due to an unexpected longer time for passenger exchange. As a result, the following
train is forced to stop ahead of the station to keep the safety clearance (this phenomenon is
generally called as “knock-on delay” on the track, see Carey and Kwieciński (1994)). The
extra stop time between stations disturb the regular operation headway and further exacerbate
the congestion on the platform. In fact, most short delays within 5 minutes in Japan are
caused by this viscous circle, and this kind of chronic delay due to passenger congestion
happens almost everyday in many railway lines (Railway Policy Planning, 2020). Therefore,
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any model aiming at preventing delay or relieving congestion for urban rail transit should
take into consideration of this mechanism.

1.1.2 Necessity of flattening demand for urban rail transit

In order to provide a reliable and high-level rail transit service, most of efforts so far were
made on physically increasing the supply of railway system. For example, to dispatch more
trains during the peak hours, to add more cars for one train, or even to build multiple tracks
for one direction. These efforts were undoubtedly effective, but were severely limited in
many cases.

On the other hand, strategies to temporally flatten the travel demand, which has long been
discussed and practiced for road traffic, was seldom implemented for urban rail transit. Some
trials by differentiating peak/off-peak fares of metro system were carried out in Washington
and London, although not only at the purpose of alleviating congestion. Melbourne introduced
an “Early Bird” scheme to allow commuters to enjoy free travel by rail before 7 a.m (Currie,
2010). They reported that 23% of passengers have shifted the time of travel. A similar
experiment to shift peak-hour ride was also done in Netherlands by rewarding passengers
travelling during off-peak (Peer et al., 2016). Nevertheless, strategies to flatten the demand,
especially when it comes to fare, are controversial since it relates to other issues like mobility
and equity. Commuters in Japan’s metropolitan areas have long suffered from jamming in
the morning trains, but the strategies to flatten the demand was hardly implemented, the
congestion so far was gradually relieved mainly due to increase of supply. Meanwhile, newly
operated rail transit systems in metropolises of developing countries like China, India or
Philippines have encountered or will surely encounter huge commuting demand over available
supply. Since increasing the supply is costly and takes long time, to temporally flatten the
commuting demand is probably the only choice to maintain an acceptable congestion level.

In fact, studies on flattening commuting travel demand (e.g., fare scheme design, flexible
work time) for urban rail transit were relatively few compared to road traffic. Most studies just
simply employed the framework for road traffic without considering passenger congestion
influence. As the first step, it is necessary to deeply understand the characteristics of passenger
demand for rail transit system.

1.1.3 Lack of appropriate model considering interaction between de-
mand and supply

With regard to existing models for rail transit, most of them were either microscopic sim-
ulation or mathematical approach specifically for timetable optimization. A critical issue
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for these models is that their discussions are based on a given passenger demand pattern,
either static or dynamic. However, temporal distribution of demand is inevitably affected by
supply condition. For example, if the seats for a portion of morning trains can be reserved,
it can be expected that some commuters would depart from their home earlier or later to
utilize these train services. In real-world situations, some travellers were also found to wait
outside the station until they could ride the trains with off-peak fares (Winward, 2016). The
change of demand distribution according to supply adjustment is self-evident since most
commuters are rational to make a travel decision. So far, models considering the interaction
between demand distribution and supply of rail transit were still very rare. Yet, the ability to
properly describe this interaction would surely be crucial for any model to design or evaluate
strategies of flattening the demand.

In addition, compared to most microscopic simulation models that tried to include
practical settings of rail transit operation as mush as possible, a macroscopic model, if well-
developed, is much more tractable and interpretable. Research works based on macroscopic
modelling are again receiving a growing concern in recent years (see e.g., macroscopic
fundamental diagram for road network by Daganzo 2007). Similar framework can also be
considered for urban rail transit system.

1.2 Objective

This study aims to propose a macroscopic model capable of describing dynamics of passenger
arrivals and rail transit operation to derive insights into management strategies from both
demand and supply sides. More specifically, the objectives can be divided into three levels:

• To comprehensively understand passenger congestion influence on rail transit operation
by investigating a train fundamental diagram model and its variants using empirical
data.

• To build a dynamic model that can estimate equilibrium distribution of passenger
arrivals at a station by inversely using train fundamental diagram.

• To derive insights into effectiveness of typical management strategies and their combi-
nations by comparing indicators such as total travel cost, congestion level or duration
of peak hours.
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1.3 Composition of dissertation

The remaining chapters of this dissertation are structured as follows. Chapter 2 comprehen-
sively reviews existing studies on modelling, optimization and management of rail transit
system. The review starts from the basics of train operation, followed by representative
macroscopic modelling frameworks of traffic dynamics. Further, researches on optimization,
control and management strategies of rail transit are summarized from both supply and
demand sides.

Chapter 3 introduces the train fundamental diagram (train-FD), a tractable model which
can describe steady state macroscopic performance of rail transit considering passenger
congestion influence in a simple manner. Based on different assumptions of dwell time,
variants of train-FD are derived and compared. Then, by employing empirical data from the
Boston subway system, train-FDs are calibrated and evaluated.

Chapter 4 expands the steady state train-FD into a dynamic model which can describe
the temporal evolution of system performance with time-dependent passenger demand. Two
approaches, namely the fluid-based one and the particle-based one are formulated with
consideration of their advantages and limitations. Then, the dynamic models are verified by
a microscopic simulation.

Chapter 5 derives the equilibrium distribution of passenger arrivals by solving the inverse
problem of dynamic model introduced in chapter 4. The solution method and existence
conditions of equilibrium are presented. The characteristics of equilibrium are also discussed
by a series of numerical experiments.

Chapter 6 focuses on application of the proposed model. The optimization problem
of a conventional peak/off-peak timetable pattern is investigated. User equilibrium under
first-best pricing is theoretically derived and numerically evaluated. A single-step coarse
pricing is also specified and numerically evaluated.

Chapter 7 summarizes the findings of dissertation and discusses the possible future works
of this study.
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Literature review

The second chapter aims to summarize the existing studies which focused on either supply
side (e.g., improving the service quality by optimizing timetable) or demand side (e.g.,
designing fare scheme to flatten the travel demand) of rail transit system to reveal the
research gap that will be filled by this study.

Except for unexpected incidents (e.g., equipment failure, person on the tracks or extreme
weather), the delay of trains are closely related to surging passenger demand during rush
hours (Palmqvist et al., 2020). Especially in a high-frequency operated urban rail transit
system, extra dwell time of one train can easily lead to the propagation of delay along
the railway line. Furthermore, this kind of delay exacerbated the on-platform congestion
and in-vehicle crowding, and finally developed into a vicious circle (Tirachini et al., 2013).
To tackle this problem, strategies have long been considered from two aspects: one is to
precisely predict the travel demand and then optimize the timetable. As a result, all the
dispatched trains could operate punctually as the optimized timetable; Another one is to
affect individual’s time choice behavior by some incentives, which is expected to temporally
redistribute the travel demand. As a result, the capacity could always meet the demand, and
delay could hardly happen. In fact, strategies from both aspects have their advantages and
limitations. The existing studies on both aspects would be reviewed in this chapter.

Firstly, the basic rules of train operation is introduced (i.e., cruising and dwelling behavior,
prevailing control strategy). Secondly, studies on timetable optimization and dynamic control
of trains are reviewed. Thirdly, studies on individual’s departure time choice problem,
together with studies on designing pricing scheme to flatten the travel demand, are widely
reviewed. Although most of these studies are targeted at road traffic, their theoretical
framework and implications serve as the foundation of this study. Finally, based on the
reviewed works, the position of this study is briefly described.
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2.1 Basics of train operation

Railway system, especially the urban rail transit, has its unique characteristics that differs
from other transportation system. The basic operational characteristics of urban rail transit
has to be first made clear before moving to the discussion of modelling and management. In
an urban transit system, one train generally has three action patterns during the operation.
The first one is cruising between adjacent stations, the second one is dwelling at stations, and
the third one is shunting to turn around for the next run. We skip the discussion of shunting
since it mainly serves as a constraint of dispatch frequency and does not have interaction
with passengers.

2.1.1 Safely cruising on the track

Several decades ago, a cruising train kept safety spacing with the preceding train relying on
confirming signal light along the track by the train driver. Thanks to the development of signal
and control system, trains nowadays can run much faster with higher dispatch frequency than
before. Nevertheless, the basic idea to keep a safety distance based on cruising speed never
changed. Take the prevailing automatic train control (ATC) system (Takashige, 1999) as an
example, the relation between distance from preceding train and speed can be illustrated as
Fig. 2.1.
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Fig. 2.1 An illustration of prevailing ATC system.

The red lines indicated the speed limit for a block (i.e., a section of track that can
only be occupied by one train, either fixed or moving) and the black curves showed an
example of speed reduction pattern of a train. The multi-break ATC shown in Fig. 2.1a is
generally designed for fixed-block track circuit. Since the multi-break is not comfortable for
passengers on the train, many of these old systems have been gradually replaced by the new
one shown in Fig. 2.1b. The one-break ATC system (or digital ATC called by some railway
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companies) judges the real-time position of preceding train and sends the information by
wayside equipment to the control center and following train. In this way, the breaking can
be optimized while keeping ride comfort at a high level. In recent years, more advanced
automatic train operation (ATO) system has been put into use in many urban rail lines (Yin
et al., 2017a), by which the driver is not necessary or is only responsible for handling the
unexpected incidents.

Since the objective of this study is not to improve the operation system, we prefer a
simple way to describe the cruising behavior of a train. In fact, Newell (2002) proposed a
simplified car-following model which is also appropriate for railway system. This model is
a special case of the well-known road traffic flow model, the Lighthill–Whitham–Richards
(LWR) model (Lighthill and Whitham, 1955; Richards, 1956). The basic idea is that a train
either travels at its desired speed or follows the preceding train while keeping the safety
clearance. This can be described by the following formula:

xm(t +∆t) = min{xm(t)+ vf∆t, xm−1(t +∆t − τ)−δ}, (2.1)

where m−1 refers to the preceding train of train m. xm(t) is the position of train m at time t,
vf is the desired cruising speed, τ is the safety headway and δ is the minimum spacing. For a
better understanding of τ and δ , the relation between spacing and cruising speed is drawn in
Fig. 2.2a. In addition, an example of trajectories of two succeeding trains considering safety
clearance is shown in Fig. 2.2b.
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(b) Trajectories of two succeeding trains

Fig. 2.2 An illustration of simplified train-following model.

One can easily find that Fig. 2.2a is equivalent to an linear approximation of ATC system
shown in Fig. 2.1 (convert distance to spacing and exchange the two axes). Regarding
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Fig. 2.2b, the red dotted line indicated the safety clearance of train m−1, which means the
following train cannot enter the left side of this line. For example, the trajectory of train m
(green line) always lies at the right side of red dotted line so its position is always obtained
from the first term of Eq. (2.1). On the other hand, train m′ (blue line) approached the safety
clearance before station 2, so it has to stop to keep the safety clearance.

Although there are many high-order car-following models that might be more accurate
to capture the realistic trajectory of a train, the parsimonious Newell’s model are quite
parsimonious and tractable to be employed in traffic flow models.

2.1.2 Dwell time

Unlike private car dominated road traffic, an unique characteristic of rail transit system is
that all the operated trains have to stop at stations. The dwell time at stations is of crucial
importance to the timetable planning, operational control of railway system. However, dwell
time is one of the most susceptible components of railway operation, mostly due to the
fluctuating number of alighting and boarding passengers. In general, dwell time at stations
are determined by the following factors:

• Time required for door opening and closing.

• Time required for passengers alighting and boarding. This time is actually affected by
many sub-factors like in-vehicle crowding or on-platform congestion level (Lam et al.,
1999; Sun et al., 2014), re-open and re-close of doors due to passengers rushing into
the train.

• Timetable. In most countries, trains are not allowed to depart ahead of schedule (Jiang
et al., 2015).

• Stop signal ahead. Sometimes due to the on-track congestion or accident, the train
dwelling at the station is not permitted to depart.

For a better understanding, Fig. 2.3 showed an example of dwell time components when
a train arrived slightly later than the timetable. A/B is the abbreviation of alighting and
boarding.

Researches on dwell time can roughly be classified into two categories: microscopic
simulation models and data-driven statistical models. The former ones originated from
applications of pedestrian behavior modelling, and usually aimed to reproduce or evaluate the
detailed process of alighting and boarding behavior, but required complex setting of situation
and behavior rule of passengers. For example, Zhang et al. (2008) proposed a cellular



2.1 Basics of train operation 9

Doors open Passenger exchange

Scheduled dwell time

Doors close

Scheduled      

arrival  

time

Actual 

arrival 

time

Start 

time of 

A/B

End   

time of 

A/B

Scheduled      

departure  

time

Actual   

departure  

time

Time

Fig. 2.3 Example of dwell time components.

automata-based simulation model capable of reproducing the cooperation and negotiation of
passengers at a microscopic level. As a by-product, dwell time in Beijing metro network was
estimated. Yamamura et al. (2013) developed a multi-agent simulation model to estimate
dwell time considering the in-vehicle crowding and on-platform congestion at the same time.
They also compared the efficiency of possible measures to reduce the dwell time like using
trains with more and wider doors or without seats.

The statistical models on dwell time have been conducted from several decades ago
(Levinson, 1983; Weidmann, 1994). The common idea was to use simple or multivariate
regressions to relate dwell time to factors mentioned above. Most studies define dwell time
as the time for passengers to alight and board plus the time to open and close doors like the
following formula:

T = a×N +b, (2.2)

where a is the average alighting or boarding time per passenger, N is the total number of
alighting and boarding passengers, and b is the time for opening and closing the doors. The
automated fare collection (AFC) system widely introduced in the 2000s made it possible to
acquire huge amount of public transport data, by which influence of vehicle characteristics
(e.g., door width, floor height) and passenger related factors (e.g., age, friction effects)
were investigated (Dueker et al., 2004; Fernández et al., 2010; Sun et al., 2014; Tirachini,
2013). For example, Sun et al. (2014) used smart card data in Singapore to conduct a
deeper analysis of bus boarding and alighting process, and they found a critical occupancy
beyond which the process was slowed down due to the friction among passengers. Instead of
deterministic description of dwell time, some studies added stochastic component into the
dwell time since its random variation could not be neglected (Cornet et al., 2019; Larsen et al.,
2014). For example, Cornet et al. (2019) proposed a method for estimating deterministic
minimum dwell time depending on passenger flow while considering a random deviation
due to stochastic influence such as inhomogeneous passenger distribution on the platform
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or passenger carrying luggage. They included their model into a simulation platform and
reported good performance using Paris real-world data set.

In addition, there are some implicit models to estimate dwell time without the knowledge
of passenger flow (Kecman and Goverde, 2015; Li et al., 2016). For example, Li et al. (2016)
predicted the dwell time of a train at a station using the information of dwell times of the
same train at previous stations and dwell times of previous trains at the same stations.

2.2 Macroscopic modelling of traffic dynamics

With the knowledge of basic rules of train operation, how to describe the dynamics of
railway system deserves a concise organization. The widely used macroscopic models for
dynamic traffic representation will be introduced in this section. The modelling of any
dynamic system should start from its basic component. Since most of the early studies on
transportation system originated from road traffic, macroscopic modelling of the road link
should be summarized first.

2.2.1 Exit-flow model

The exit-flow model first proposed by Merchant and Nemhauser (1978) discretely described
the link volume n(i+1) at the beginning of time period i+1 as:ni+1 = ni +λi −µi,

µi = g(ni) ,
(2.3)

where λi and µi are the number of vehicles entering into/departing from this link during
time period i, respectively. g(n) here is generally called the exit-function, and it was usually
written as:

g(n) = min{γmn, Gm}, (2.4)

where γm is an constant parameter smaller than 1 and Gm represents the maximum number of
vehicles can be discharged from the link during a time period. This model has been deeply
discussed by Carey (1986), and widely extended by many following studies (e.g., Carey and
McCartney, 2004; Friesz et al., 1989).
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2.2.2 Delay function model

Instead of specifying the function of outflow, delay function model (Friesz et al., 1993; Nie
and Zhang, 2005b; Wu et al., 1998) directly specified the link travel time when a vehicle
enters the link. The most general form of this model using a linear delay function can be
expressed as: 

ṅ(t) = λ (t)−µ(t),

T T (t) = αd +βdn(t),

µ(t +T T (t)) = λ (t)
1+ ˙T T (t) ,

(2.5)

where αd and βd are parameters describing a linear delay function, and T T (t) is the travel
time when an vehicle enters the link at time t. The third equation imposes First-In-First-Out
(FIFO) principle on the dynamics. However, Nie and Zhang (2005a) pointed out that finding
an appropriate delay function seems challenging and there exists probably no FIFO-consistent
delay functions other than this linear one.

2.2.3 Point queue model

Point queue model (Kuwahara and Akamatsu, 1997; Smith, 1984) is also a widely used
approach to describe the dynamics of the link. It has two basic assumptions: (1), the physical
length of a vehicle is zero so if a queue is formed at the bottleneck, it also does not have a
physical length; (2), vehicles travels along the link at free flow speed before they arrive at
bottleneck. The derivative of queuing vehicle number nq(t) at time t, outflow µ(t), and link
travel time T T (t) can separately be described as:

ṅq(t) =

0, if nq(t) = 0 and λ (t −T T0)< Gm,

λ (t −T T0)−Gm, otherwise,
(2.6)

µ(t) =

λ (t −T T0), if nq(t) = 0 and λ (t −T T0)< Gm,

Gm, otherwise,
(2.7)

T T (t) = T T0 +nq(t +T T0)/Gm, (2.8)

where T T0 is the free-flow/minimum travel time.
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2.2.4 Cell transmission model

The cell transmission model (CTM) proposed by Daganzo et al. (1994) used discrete cells to
approximate LWR (Lighthill and Whitham, 1955; Richards, 1956) hydrodynamic traffic flow
flow. The number of vehicle in cell i at time t +1 equals its occupancy at time t, plus the
inflow and minus the outflow, i.e.,ni(t +1) = ni(t)+ yi(t)− yi+1(t),

yi(t) = min{ni−1(t), Qi, Ni −ni(t)}.
(2.9)

where yi(t) represents number of vehicles entering cell i from cell i−1 during time interval
t, Qi is the capacity flow into cell i, Ni is the holding capacity of cell i, thus Ni −ni(t) is the
amount of empty space in cell i at time t.

CTM has been widely employed in many dynamic traffic assignment models and showed
good robustness although it was not tractable in most situations. Nie and Zhang (2005a)
compared the performance of these four link models under various inflow profiles. He found
that point queue model behaved identically as the CTM model except for cases when the
link’s exit boundary conditions also depended on traffic conditions of downstream links.
While the delay function model systematically overestimated link traversal times. Exit-flow
model was found to overestimate link traversal times when inflow rate decreased suddenly
but underestimated link traversal times when inflow rate increased suddenly.

In recent years, modelling of dynamic traffic in network scale has received growing
concern. As a representative of these studies, macroscopic fundamental diagram and its
variants will also be briefly introduced.

2.2.5 Macroscopic fundamental diagram

Macroscopic fundamental diagram (MFD), with its theoretical foundation established by
Daganzo (2007) and Geroliminis and Daganzo (2007), described the well-defined relation
between travel production (i.e., the product of average flow and trip length) and accumulation
in an aggregate manner. There are two important assumptions for the existence of an MFD:
(1), the targeted area should be homogeneously congested; (2), the inflow into the area
changes slowly compared with system relaxation time. When these two assumption hold or
approximately hold, the dynamics of an area can be described by:

ṅ(t) = λ (t)−G(n(t)) , (2.10)
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where G(n) is a non-negative unimodal exit function indicating the relation between out-
flow/trip completion rate and accumulation. The existence of MFD has also been empirically
confirmed by Geroliminis and Daganzo (2008).

Recently, some new studies (Arnott, 2013; Daganzo and Lehe, 2015; Lamotte and Geroli-
minis, 2016) proposed an trip-based MFD to overcome the drawback of strong assumptions
of above-mentioned accumulation-based MFD although it is analytically difficult to solve.
This type of MFD is generally expressed as:

L =
∫ t

t−T T (t)
V (n(s))ds, (2.11)

where L is the travel distance of a trip and V (n) is the mean speed of travelers. Mariotte
et al. (2017) made a thorough comparison of these two types of MFD and suggested that the
trip-based one was a promising tool to account for heterogeneity in travel distance. There
also emerges many MFD-like concepts for multi-modal transportation networks (see e.g.,
Chiabaut, 2015; Geroliminis et al., 2014) which will not be further introduced here.

2.3 Optimization and control from supply side

The macroscopic modelling is aimed at describing the system dynamics in an aggregate
manner, but an crucial issue for an operator is how to optimally dispatch trains during a day
to maximize its profit while guaranteeing an acceptable level of service. This section mainly
introduces studies from supply side (i.e., timetable optimization and dynamic control) of
railway system.

2.3.1 Timetable optimization

Timetable of railway system determines the arrival and departure times for each train at each
station. The design and optimization of timetable should consider both the time-dependent
passenger demand information and many practical constraints such as available number of
rolling stocks and limited capacity of the train. In general, the timetables can be categorized
into two types: (1) periodic timetable (i.e., a timetable that is constantly repeated, for example
with departures at 0, 20 and 40 min every hour), which has the advantage of being easily
memorized by passengers; (2) non-periodic timetable (or demand/service-oriented), which is
aimed to meet the time-dependent demand of passengers to a greater degree. Most of studies
(e.g., Goverde, 2007; Nachtigall, 1996; Odijk, 1996; Peeters, 2003) on periodic timetable
originated from the Periodic Event Scheduling Problem (PESP) formulation first proposed by
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Serafini and Ukovich (1989). For example, Odijk (1996) built a model consisting of periodic
time window constraints by means of which arrival and departure time can be associated.
Goverde (2007) studied the robustness and stability of periodic timetable by introducing a
max-plus system theory and analyzed train delay propagation processes. A complete review
of the PESP models’ characteristics can be referred to Liebchen and Möhring (2007). An
application of PESP timetable for large-scale networks can be found in Kroon et al. (2009).
Moreover, periodic timetabling under an elastic demand for a railway network has also been
investigated by Cordone and Redaelli (2011). However, periodic timetables generally cannot
respond very well to time-dependent passenger demand, which may lead to long waiting
time especially in a high-frequency operated railway system like urban rail transit.

One the other hand, another branch of studies focused on designing timetable depending
on a given passenger demand pattern. Based on fluid traffic flow models, the early studies
(Hurdle, 1973; Newell, 1971; Osuna and Newell, 1972) did many mathematical analysis on
deriving an optimal dispatching frequency in a very idealized public transportation system.
For example, Newell (1971) and Hurdle (1973) analytically minimized total passenger
waiting time by using cumulative curves from queuing theory. Ceder (1984) firstly addressed
the importance of ridership information and he pointed out that service frequency should
correspond to temporal passenger demand. In a follow-up study, Ceder (1987) introduced
an alternative approach for the transit timetable design problem, with the objective to
synchronize vehicle-departure times under dynamic passenger demands. Further, Ceder
(2016) provided a comprehensive modeling framework to adjust vehicle departure times and
smooth the transitions between time periods by regular time headways or average passenger
loads.

For any optimization problem, there are two key components that should be clarified, i.e.,
objective functions and constraints. Since the objective of optimization can be considered
from two perspectives, namely the operator and passengers, prevailing objective functions
can be categorized to minimize:

• Total/average waiting time of passengers,

• Total travel time (including transfer time) of passengers,

• Operation cost/energy consumption,

• Multi-objectives by combining the above objectives.

While the major constraints can be categorized as:

• Arrival/departure sequence for no over-taking system,
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• Total passenger demand,

• Available number of rolling stocks,

• Limited capacity of train,

• Minimum headway of consecutive trains,

• Limited cruising speed or minimum travel time between stations.

Take the first objective function as an example, it can generally be written as:

min∑
i∈S

∑
j∈M

(
Ai

p(t
i
j)−Di

p(t
i
j)
)(

t i
j − t i

j−1
)
, (2.12)

where Ai
p(t) and Di

p(t) are cumulative passenger arrivals and departures at station i at time t,
respectively. t i

j is the departure time of train j at station i.
In recent two decades, most of timetable optimization studies, especially those targeted at

handling dynamic passenger demand, are based on integer and mixed integer programming
formulations including linear or nonlinear ones. In fact, binary variables are widely employed
in the timetable optimization models since they can conveniently describe the usage of train
or path, the loading condition of a specific train and so on. Carey (1994) and Higgins
et al. (1996) were probably the first researchers to introduce binary variables to describe
the order between train services. They developed models and heuristic algorithms to solve
the optimization problem of train pathing and scheduling for a station and a single line rail
corridor. Carey and Crawford (2007) extended the approach of Carey (1994) to a series
of complex stations linked by multiple railway lines. The recent studies introduced in the
remaining part of this sub-section mainly followed this formulation style of optimization
problem and a brief summary of these studies are shown in Table 2.1.

Niu and Zhou (2013) focused on optimizing timetable under a dynamic demand sce-
nario, especially they considered the case when the system is over-congested so that some
passengers may not be able to board the next arriving train. Their objective function was
to minimize total number of waiting passengers and weighted remaining passengers. Their
nonlinear optimization problem was solved by a genetic algorithm through a special binary
coding method. They showed the effectiveness of their model by using a real-world data set
with 13 stations.

Barrena et al. (2014) developed two nonlinear optimization models to minimize the
average passenger waiting time at stations, which generalized the non-periodic timetabling
problem on a single line under a dynamic demand environment. They also proposed a fast
adaptive large neighborhood search (ALNS) algorithm to solve large instances of the problem
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within short computation times, and they reported the average reduction in passenger waiting
times could reach 26% with their optimized timetable.

Canca et al. (2014) proposed a nonlinear integer programming model that aimed to
optimize arrival and departure time of trains under dynamic passenger demand. Their
objective function jointly considered passenger waiting times and operation cost. They tested
their model on the C5 line of Madrid rapid transit system and discussed the trade-off between
system supply and service quality.

Sun et al. (2014) formulated three optimization models to design demand-sensitive
timetables by representing train operation using equivalent time (interval) concept. The
three models had the same objective function to minimize the average waiting time, but the
first model did not consider capacity constraints, the second one considered, and the third
one further adopted a step-shape peak and off-peak timetable pattern. They compared the
performance of the three models using data from a metro line in Singapore and they reported
that the second model with time-varying headway was the best.

Niu et al. (2015) further proposed a quadratic integer programming to minimize total
passenger waiting time with given dynamic passenger demand in a railway system with
predetermined skip-stop patterns. They examined the effectiveness of their model through
numerical experiments of real-world test cases.

Yin et al. (2017b) considered an integrated approach to jointly minimize the operational
costs (i.e., energy consumption) and passenger waiting time. They developed a Lagrangian
relaxation-based heuristic algorithm to decompose the primal problem into two sets of
sub-problems and thus found the solution in short computational time. They verified the
effectiveness of their approaches with operation data of Beijing metro system.

Wang et al. (2018b) studied the integrated optimization of timetable and rolling stock
circulation plans under dynamic passenger demand for an urban rail transit line. They
formulated a multi-objective mixed integer nonlinear programming model with three solution
approaches. They compared the performance and computation cost of the three approaches
with real-world data.

Shi et al. (2018) proposed a method to jointly optimize timetable and accurate passenger
flow control strategies for an over-saturated metro line. They developed a hybrid algorithm
to solve the problem and conducted numerical experiments for a small-scale case and a
real-world instance.

Yan and Goverde (2019) combined the line planning and timetable optimization problem
for a railway system where strongly heterogeneous train services are operated. They designed
a multi-objective function to provide both periodic and non-periodic plans considering
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timetable robustness, regularity and passenger travel time. They also verified the performance
of their model by a case study.

All the above mentioned studies focused on uni-direction (single or multiple) or bi-
direction railway lines. There are also a number of studies that considered the optimization
problem for railway networks. Wong et al. (2008) presented a mixed integer programming
optimization model for schedule synchronization problem with non-periodic timetables that
minimized the interchange waiting times of all passengers. They tested their models for the
mass transit railway system in Hong Kong and indicated that their approach significantly
improved the synchronization of timetable compared to current ones. Wang et al. (2015)
proposed an even-driven model to optimize timetable for a simple railway network with two
railway lines. The routing and transfer behavior of passengers at transfers stations were also
taken into consideration. Robenek et al. (2016) presented a timetable optimization framework
to maximize train operator’s profit while maintaining a certain level of passenger satisfaction.
They found that non-periodic timetables could perform better under high demand by a
sensitivity analysis using data from railway network of Switzerland. In their follow-up study
Robenek et al. (2018), elastic demand was included by considering the mode choice behavior
of passengers. Similar studies on the timetable optimization for railway networks can also be
found in Canca et al. (2016) and Wang et al. (2020).

2.3.2 Dynamic control

Once an timetable is put into operation, disturbances and disruptions are inevitable due to the
stochastic nature of passenger demand and unpredictable accidents. A considerable number
of dynamic control strategies have been proposed towards a robust operation. According to
the type of strategy, a brief introduction is made on studies focusing on bunching control and
rescheduling.

The bunching phenomenon, especially for bus system, has been known for nearly 60
years since the first explanation by Newell and Potts (1964). As pointed out by many studies,
bus systems are naturally unstable due to a small disturbance. When one bus is delayed, it
will encounter more passengers at stops ahead, these extra passengers delay it further. On
the contrary, the following bus will encounter fewer passengers and tends to catch up the
preceding bus. Although the cruising time of a train between two stations is generally not
affected by external environment like buses being caught in a traffic jam, the high frequency
operated rail transit system also suffers from such kind of bunching phenomenon, which is
also called “knock-on delay” by some scholars in railway field (Carey and Kwieciński, 1994).
Since the essence of bunching does not have significant difference between bus and railway
systems, we hopefully expect that most of control strategies for bus bunching can also be
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Table 2.1 Summary of recent studies on timetable optimization

Publications Environment Objective(s) Model
structure

Solution
algorithm

Wong et al. (2008) Network Transfer waiting time MILP CPLEX
Niu and Zhou (2013) Bi-direc Total waiting time Nonlinear GA
Barrena et al. (2014) Uni-direc Average waiting time MILP,

nonlinear
ALNS

Canca et al. (2014) Uni-direc Average waiting time
and average load factor

MINLP GAMS

Sun et al. (2014) Uni-direc Average waiting time MILP CPLEX
Niu et al. (2015) Uni-direc Total waiting time MINLP GAMS
Wang et al. (2015) Small

network
Total travel time and
energy consumption

Nonlinear SQP, GA

Canca et al. (2016) Network Total travel time and
operation cost

MINLP Cutting
plane

Robenek et al. (2016) Network Operator profit and
passenger satisfaction

MILP CPLEX

Yin et al. (2017b) Bi-direc Total waiting time and
energy consumption

MILP CPLEX,
heuristic

Shi et al. (2018) Bi-direc Total waiting time with
passenger flow control

ILP CPLEX,
heuristic

Wang et al. (2018b) Bi-direc Headway and load fac-
tor variations, number
of depot

MINLP Iterative
approach,
CPLEX

Yan and Goverde
(2019)

Uni-direc-
multi

Total travel time,
timetable robustness
and regularity

MILP Iterative
approach

Wang et al. (2020) Network Total waiting time,
transfer failure

MILP CPLEX,
GA

Symbols in the table: bi-directional single line (Bi-direc); uni-directional single line (Uni-direc); uni-directional
multiple lines (Uni-direc-multi); mixed integer linear programming (MILP); Cplex solver (CPLEX); genetic
algorithm (GA); adaptive large neighborhood search (ALNS); mixed integer nonlinear programming (MINLP);
Gams software (GAMS); sequential quadratic programming (SQP); integer linear programming (ILP).



2.3 Optimization and control from supply side 19

effective for urban rail transit. Here, the prevailing bunching control can be categorized into
three types:

• Headway-based holding strategies (e.g., Bartholdi III and Eisenstein, 2012; Daganzo,
2009; Xuan et al., 2011)

• Speed regulation strategies (e.g., Daganzo and Pilachowski, 2011; Li et al., 2019),

• Skip-stop strategies (e.g., Delgado et al., 2009; Fu et al., 2003; Suh et al., 2002; Sun
and Hickman, 2005).

Here, the general idea of headway-based holding strategies is introduced since this type
of strategy is the most applicable one also for rail transit system. Follow the paper by Xuan
et al. (2011), consider a railway system in which trains are dispatched from the first station
with a constant time interval H, the scheduled arrival time of train n at station s+1 can be
written as:

Tn,s+1 = Tn,s +βsH +ds + cs, (2.13a)

Tn,s = Tn−1,s +H, (2.13b)

where βs is a dimensionless parameter for demand level at station s, ds is the amount of slack
time in schedule at station s, cs is the average cruising time from station s to s+1. Similarly,
the actual arrival times can be described as:

tn,s+1 = tn,s +βshn,s +Dn,s + cs +νn,s+1, (2.14)

where hn,s is the actual time headway between train n and n+1 at station s, Dn,s is the holding
time of train n at station s that should be designed, and νn,s+1 is a random noise for the trip
of train n from station s to s+1. By combining Eq. (2.13) and (2.14), the deviation from
schedule can be written as:

εn,s+1 = εn,s +βs(εn,s − εn−1,s)+νn,s+1 +(Dn,s −ds). (2.15)

Now, it is clear that the objective of holding strategies is to set a series of Dn,s to make εn,s+1

converges to zero or a small enough value with the increase of n and s. However, when we
consider the morning commute problem with this control strategy, one critical issue is that
demand parameter βs and slack time should be time-dependent, otherwise the dwell time
would be either too long for off-peak and too short for the peak hours.

Regarding the speed regulation strategy, Daganzo and Pilachowski (2011) presented an
adaptive control scheme that adjusted the cruising speed of a bus in real-time based on both,
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its front and rear spacings much as if successive bus pairs were connected by springs. They
proved that this scheme could yield regular headways with faster bus travel than existing
control methods. A overview of dynamic control for bus systems can be found in Chapter 6
of Ibarra-Rojas et al. (2015)’s paper.

Recent studies tend to design the bunching control using hybrid strategies with more
consideration of stochastic dynamic passenger demand. For example, Wu et al. (2017)
allowed the overtaking of buses and modeled the distributed passenger boarding behavior
to design a holding control scheme. Li et al. (2019) proposed a robust hybrid bus control
scheme combining holding and speed regulation strategies to reduce bunching and improve
the schedule adherence and headway regularity.

With regard to the rescheduling, it is designed to adjust the current timetable in an
efficient way when a disturbance or disruption occurs. In general, strategies can be divided
into two categories, one is to recover the original timetable and the other is to redesign a
new scheduling plan. For disturbances that affected limited segment of the railway line in a
short period, to recover the original timetable might be a good choice. In this case, control
strategies are more or less similar to bunching control. However, when a large disruption
occurs, some scheduled trains have to be cancelled and a new timetable might be more
appropriate to re-assign available rolling stocks and crews. Cacchiani et al. (2014) did a
thorough review of rescheduling models. According to his classification, the existing studies
can be categorized as shown in Table 2.2.

Table 2.2 Classification of rescheduling models

Target Model level Standpoint

Disturbance
(small delay)

Microscopic
(precise modelling)

Operator-centric
(minimize loss for operators)

Disruption
(large accident)

Macroscopic
(high-level modelling)

Passenger-centric
(minimize loss for passengers)

For example, Corman et al. (2010) developed a series of tabu search algorithms to solve
alternative graph model for rescheduling and rerouting trains from disturbances. Binder
et al. (2017) formulated a multi-objective model to deal with rescheduling problem from
a macroscopic perspective in case of large disruptions. Li et al. (2017) systematically
investigated a joint optimization of train regulation and passenger flow control for a metro
system.
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2.4 Modelling and management from demand side

The previous section summarized studies that focused on how to optimally dispatch the train
services and how to dynamically control the operation. However, the passenger demand,
either static or dynamic, is usually treated as given information. In fact, to estimate the
temporal or spatial distribution of demand itself remains as a challenging task especially
when management strategies to flatten the demand are implemented. This section briefly
summarizes studies on the modelling and management of travel demand, more specifically,
departure time choice problem and fare scheme design.

2.4.1 Departure time choice

The essence of departure time choice problem is to understand how an individual choose
his/her departure time from home when he/she has a desired time to arrive the destination.
Departure time choice problem has a premise that if all travelers tried to arrive at their desired
time, the total travel time they experienced would significantly increase due to the limited
capacity of transportation infrastructure (either road or railway system). Therefore, travellers
trade off their total travel time and schedule delay (i.e., time difference between desired and
actual arrival time at destination) to decide their departure time from home.

Economists like Vickrey (1969) and Henderson (1974) might be the first to consider indi-
viduals’ departure time decisions for commuting problem by private cars. They considered
the existence of a bottleneck on the road and assumed that passengers minimized their total
travel costs to determine their departure time. When the total travel cost is minimized for
any individual, no one would have the incentive to change his/her departure time, which is
generally referred to as an equilibrium state. The early studies (e.g., Hendrickson and Kocur,
1981; Hurdle, 1981) employed deterministic queuing theory to derive the time-dependent
demand at a bottleneck under equilibrium state. Hurdle (1981) studied two different situ-
ations, i.e., a morning case where travellers had their desired arrival time for work and a
afternoon case where travellers had desired departure time after work, but he did not consider
the schedule delay cost. Hendrickson and Kocur (1981) considered the linear schedule delay
cost and found that the equilibrium arrival rate at a bottleneck for a scheduled event should
be two constant values related to bottleneck capacity and users’ value of time. Further,
they discussed the system optimum with time-dependent tolls to eliminate the queue. They
concluded that no increase in capacity was capable of eliminating peak period congestion
with many workers starting work at the same time. Smith (1984) and Daganzo (1985) further
strengthened the theoretical foundation of deterministic departure time choice problem at a
bottleneck by proving the existence and uniqueness of the solution.
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A review study of departure time choice problem for bottleneck based road traffic can be
found in Kuwahara (1998). Fig. 2.4 illustrates the conventional framework of this problem
by cumulative curves. W (·) is the cumulative desired departures from the bottleneck, A(·)
and D(·) are cumulative arrivals/departures at/from the bottleneck, respectively. µ is the
bottleneck capacity and λ (t) is the arrival rate of car that should be solved. In general,
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Fig. 2.4 Cumulative curves for single bottleneck departure time choice problem.

deterministic model solve λ (t) by assuming the total travel cost of an user like:

TC{t, t∗, x⃗}= fm{m(⃗x)}+ fw{w(t)}+ fs{s(t, t∗)}
= fm{m(⃗x)}+ p{t, t∗}.

(2.16)

f (·) represent functions converting time to cost. m(x) is the constant part of travel time which
is only determined by the distance vector x⃗ from home to workplace. w(t) is the queuing
time at the bottleneck and s(t, t∗) is the schedule delay when a user departs from bottleneck
at t with a desired departure time t∗. p(t, t∗) concisely represents the dynamic cost of the
travel. Then, an equilibrium state refers to the situation when the total travel cost of any user
is minimized, which can be written as:

∂TC(t, t∗, x⃗)
∂ t

=
∂ p(t, t∗)

∂ t
= 0. (2.17)

Now, if fs(·) and fw(·) are given, equilibrium queuing time w(t) can be solved using Eq.
(2.17). Finally, according to the conservation law, w(t) is determined by λ (t) and µ , thus
equilibrium λ (t) can also be solved.
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With this basic framework, subsequent researches expanded the original problem in many
different dimensions. For example, some studies analyzed multiple bottlenecks situations
with different configurations (see “Y-shape” by Arnott et al. 1993a or along one corridor by
Kuwahara 1990 and Akamatsu et al. 2015). Some studies discussed the conditions when
commuters are heterogeneous (i.e., they have different values of time, see e.g., Newell
1987, Lindsey 2004, Takayama and Kuwahara 2017). Some studies considered the dis-
tributed/staggered work start time cases (see e.g., Henderson, 1981; Takayama, 2015). There
are also a considerable number of studies that introduced random utility theory to departure
time choice problem (see e.g., Ben-Akiva et al., 1986; De Palma et al., 1983; Mahmassani
and Chang, 1986). Elastic demand issue (Arnott et al., 1993b; Ben-Akiva et al., 1986) or
route choice problem (Arnott et al., 1990a) has also been considered for departure time
choice problem.

All the studies mentioned above are targeted at road traffic. In fact, studies on departure
time choice problem for rail transit are relatively few. Sumi et al. (1990) proposed a stochastic
model to estimate commuters’ decisions of departure time and route choice, they tested their
model with survey data and concluded that their model could well represent departure time
choice within mass transit systems. Tabuchi (1993) analyzed the commuting congestion
when there is mass transit parallel to a road. They investigated the optimality and efficiency
of several railroad fare and road toll regimes and provided practical rules for attaining the
social optimum. Alfa and Chen (1995) proposed an equilibrium model to estimate temporal
demand distribution along a transit corridor with multiple origins and destinations, where
they assumed a random boarding order of passengers. Kraus and Yoshida (2002) considered
the time-of-use decision into a model of optimal pricing and service in urban mass transit.
Their model is closely related to the highway bottleneck model, with difference arising in
the intermittent nature of mass transit capacity provision. Tian et al. (2007) considered a
many-to-one transit system where passengers were assumed to trade off in-vehicle crowding
cost and schedule delay cost to decide their departure time. They analyzed the equilibrium
properties and derived plausible insights such as: (1), trains arriving the destination at the
desired time by everyone were utilized by commuters from all stations; (2) the duration of
commute was longer for stations farther from the destination. Recent studies on departure
time choice for rail transit usually took in-vehicle crowding or seat availability as the main
factor for decision making process. For example, Sumalee et al. (2009) proposed a stochastic
dynamic transit assignment model with an explicit seat allocation process for a general
transit network. Xie and Fukuda (2014) presented an empirical study which examined the
theoretical time-varying marginal utility model introduced by Vickrey (1973), using data
on urban rail commuters in Tokyo. De Palma et al. (2015) discussed the formulation of
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crowding in public transport and its implications for pricing, seating capacity and optimal
scheduling.

Probable limitations of these studies are: (1), most studies considered a constant travel
time between the origin and destination. This assumption is acceptable when operation is
totally independent of passenger congestion condition. However, as discussed in Chapter
1, the operation was found to be frequently disturbed by the extended dwell time due to
passenger congestion. Therefore, the constant travel may not be an appropriate assumption
for a high-frequency operated congested rail transit system; (2), the departure time choice in
most studies is considered as a beforehand decision making process, while more practically,
it is also affected by real-time operation information available for commuters (Noursalehi
et al., 2018).

2.4.2 Fare scheme design

As a major demand management strategy to alter users’ travel behavior, to collect surcharges
or to provide monetary incentives has long been studied for road traffic. For example, based
on the bottleneck model introduced in last subsection, time-dependent optimal toll and its
approximated form, step tolls have been thoroughly investigated (Arnott et al., 1990b; Laih,
1994; Lindsey et al., 2012). However, discussions of fare scheme design for rail transit are
still emerging.

Kraus and Yoshida (2002) analyzed the optimal fare and service frequency in urban mass
transit by analogously treating waiting time at the station as queuing time of bottleneck
model. They showed that increased ridership led to higher average user cost, and relationship
between optimal service frequency and ridership did not conform to the square root principle.

Zhang et al. (2014) examined the impact of incentives on commuters’ travel behavior
based upon a questionnaire survey conducted in Beijing subway system. They confirmed
that offering monetary incentives such as fast-food coupons or reduced fares were effective
to encourage some passengers to avoid travel during the morning peak.

Rey et al. (2016) proposed a lottery-based revenue-neutral incentive mechanism to
reduce the congestion in urban rail transit systems. They tested the validity of the proposed
mechanism through monetized laboratory experiments and they concluded that risk attitudes
played a significant role in explaining behavior in lottery-based incentive mechanisms.

De Palma et al. (2017) did an economic analysis of time decisions of rail transit users
who trade off the crowding and schedule delay cost. They pointed out that without fare
or a uniform fare led to concentrated ridership on timely trains. The time-dependent fares
based on marginal-cost-pricing could smooth the unbalanced load of trains and generate
more revenue than an optimal uniform fare.
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Yang and Tang (2018) designed a revenue-neutral fare-reward scheme to incentivize a
shift in departure time to the shoulder periods of the peak hours by rewarding a commuter
with one free trip during shoulder periods after a certain number of paid trips during the peak
hours. Their studies indicated that depending on the original fare, the proposed fare scheme
resulted in an optimal reward ratio up to 50% and yielded a reduction of system total time
costs and average equilibrium trip costs by at least 25% and 20%, respectively. Tang et al.
(2020) further extended this fare scheme to a hybrid one by offering alternative options to
heterogeneous commuters with different scheduling flexibility. They showed that the hybrid
fare scheme was not only revenue-neutral but also Pareto-improving.

Wang et al. (2018a) considered a fare scheme to spatially redistribute the commute
demand by encouraging an appropriate number of passengers to utilize the neighboring
uncongested stations. They proved the existence of the unique Pareto-optimal solution in the
absence of explicit demand functions. A trial-and-error fare design scheme was proposed to
identify the Pareto-optimal solution.

Facilitated by the availability of smart card (AFC) data, Ma and Koutsopoulos (2019)
proposed a general framework for the optimal design of promotion based demand manage-
ment strategies in urban rail systems. Their framework consisted of two major components:
network performance and optimization. They demonstrated the applicability of their frame-
work through a case study focusing on the design of a pre-peak discount promotion scheme
for the Hong Kong MTR subway system.

Zhang et al. (2020) developed a model for congested urban rail transit with heterogeneous
users under monopoly. They considered both travel time delays and crowding externalities
and characterized the user heterogeneity by a three-dimensional space of value of time, value
of crowding, and willingness to pay. They proved the existence of a unique user demand
equilibrium. They also derived the operator’s fare and frequency decisions using a bi-level
equilibrium approach.

2.5 Position of this study

Based on the literature review in previous four sections, the major research gaps can be
concluded as two issues:

First, most studies on optimization and control from supply side ignored the interaction
between demand and supply by taking passenger demand, either static or dynamic, as a given
information or obeyed a given distribution. This is acceptable if the modification of supply is
so insignificant that passengers do not notice and accordingly change their commute behavior.
But as suggested by both theoretical studies (De Palma et al., 2017; Zhang et al., 2020) and
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empirical practices (Currie, 2010; Peer et al., 2016; Zhang et al., 2014) from demand side,
passengers, especially those with high flexibility, would probably adjust their departure time
for a travel if they could expect some benefits (i.e., available seats or monetary reward) from
such adjustments. Therefore, for any model aiming at improving the service level of rail
transit by management strategies, the interaction of supply and demand cannot be ignored.

Secondly, very few studies on modelling and management from demand side considered
the dynamics of rail transit system, especially passenger congestion influence on trains’
operation. Most of them assumed a constant travel time between two stations, which means
the chronic delays frequently happened during peak hours were ignored. In fact, many
empirical studies (Kariyazaki et al., 2015; Kato et al., 2012; Tirachini et al., 2013) reported
that total travel time by rail transit during peak hours were significantly longer than that of
off-peak hours. Therefore, this congestion influence should be considered when modelling
passengers’ time choice behavior.

To fill these gaps, this study focused on the equilibrium demand distribution for a
congested rail transit and its application for management strategies with the consideration
of demand and supply interaction dynamically. An illustration of position of this study is
shown in Fig. 2.5.

Macroscopic

Demand Supply

Microscopic

B

AC

This study

Fig. 2.5 An illustration of position of this study.

As can be seen from this figure, most existing studies lay in the three areas: (A), macro-
scopic approach for supply analysis (most early studies on transit optimal frequency belong
to this area, see e.g., Hurdle 1973; Mohring 1972; Newell 1971); (B), microscopic approach
for supply analysis (recent studies on timetable optimization or dynamic control introduced
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in Section 2.3 belong to this area); (C), macroscopic approach for demand analysis (relatively
few studies for rail transit introduced in Section 2.4). This study took the position at the
intersection of demand, supply and macroscopic approach. By considering the dynamic
interaction of demand and supply in a congested urban rail transit system using a macroscopic
approach, this study is expected to provide insights on management strategies to relieve
congestion and prevent the occurrence of delay.





Chapter 3

Fundamental diagram of urban rail
transit

As explained in Chapter 1, to properly describe passenger congestion influence on trains’
operation is crucial for any model targeted at urban rail transit system. This chapter aims to
comprehensively understand this influence by investigating a macroscopic model (i.e., funda-
mental diagram of urban rail transit by Seo et al. 2017, abbreviated to train-FD hereinafter)
with empirical data from Boston subway system. This chapter is structured as follows:

The first section introduced the nature of data source and derived the empirical train-FD
from the data. The second section analytically derived the train-FD and its variants based
on different dwell time assumptions. The third section calibrated the variant train-FDs and
evaluated them using the Akaike information criterion (abbreviated to AIC, Akaike, 1998).

3.1 Analysis of Boston red line operation data

To understand passenger congestion influence on railway operation, the data set should
include both the movements of trains and the arrival of passengers. Fortunately, the Mas-
sachusetts Bay Transportation Authority (MBTA) recently published a substantial amount of
required data through its APIs. The raw data includes per minute turnstile entry counts at
each station, as well as subway operation conditions in Google’s GTFS format (Barry and
Card, 2014). Here the busiest section of the red line (from Alewife to JFK/Umass with 13
stations, shown in Fig. 3.1) was chosen as the analysis target. The flow and density of the
railway system are calculated by employing Edie’s definition (Edie, 1963) of traffic flow
written as:

q(A) =
∑n∈N dn

|A|
, (3.1a)



30 Fundamental diagram of urban rail transit

k(A) =
∑n∈N τn

|A|
, (3.1b)

where A is the measurement time-space area and |A|= L×∆t. dn and τn are the total travel
distance and travel time of vehicle n in A, respectively. The total length of the selected railway
line section L = 14.4 km and the time unit ∆t = 10 min. This implies that one data point in
the FD represents the 10 min average flow and density of the railway system. Accordingly,
the per minute passenger entry data is also aggregated into 10 min average entries at each
station, and is then converted to arrivals per hour (pax/h). The calculation utilizes data
from 18 normal weekdays from 6:00 to 24:00. Fig. 3.2 shows the time evolution of train
flow (southbound) and the passenger arrival rate within-day, where the curve represents the
mean values and the shadow indicates the variation. It can be observed that during the rush
hours, the train flow declines after the peak of the passenger arrival rate, which implies that
passenger congestion influences railway operation.

Fig. 3.1 Map of selected section of Boston red line

To obtain relatively steady state data, the unsteady data was filtered out by judging the
adjacent train flow change over 20%. Finally, the train-FD of the Boston red line is depicted
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in Fig. 3.3. The color used represents the value of the passenger arrival rate, as illustrated
in the color bar (pax/h). As can be seen from Fig. 3.3, the approximately linear relation
between train density and flow became more insignificant under high passenger arrival rate
(i.e., more yellow and red points lay lower for a given train density). This results also implied
that high passenger volume affected the operation of trains.
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Fig. 3.2 Train and passenger flow evolution during one day

Fig. 3.3 Weekday train-FD of the Boston red line (southbound)

3.2 Model formulation

In this section, three different train-FD models are derived. One is proposed by Seo et al.
2017 and the others are slightly modified versions of the former, based on different train
dwell time assumptions. The first subsection explains the assumptions of railway operation,
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the second subsection derives the train-FD, which is almost the same contents referred from
Seo et al. 2017.

3.2.1 Assumptions on railway operation

The operation of the railway system basically depends on the dwelling and cruising behaviors
of each train. With regard to the dwelling behavior at stations, we assume that the dwell time
tb is determined by the number of boarding passengers Np on the platform 1. Here, three
assumptions for dwell time are considered:

1. tb keeps constant at tbcon regardless of Np, which indicates that passenger congestion
does not affect railway operation;

2. tb monotonically increases with Np from a minimum value tb0 (buffer time), which is
the same assumption made by Seo et al. 2017;

3. tb keeps constant until a critical passenger number N0 is reached. It then starts increas-
ing. This idea is inspired by the empirical work on passenger boarding by Kariyazaki
et al. 2015.

It is also assumed that all of the waiting passengers can always board the next approaching
train, which means Np = apH, where ap is the passenger arrival rate at stations and H is the
time headway of consecutive trains. Now, the three assumptions of tb can be expressed as
Eq. (3.2) - (3.4), respectively. µ here can be interpreted as the dwell time growth rate with
increase of boarding passenger number.

tb = tbcon, (3.2)

tb = tb0 +µapH, (3.3)

tb =

tb0, if apH ≤ N0

tb0 +µ(apH −N0). if apH > N0
(3.4)

The cruising behavior of a train is modeled using Newell’s simplified car-following model
(Newell, 2002). More specifically, the position xm(t) of train m at time t is expressed as:

xm(t) = min{xm(t − τ)+ vfτ, xm−1(t − τ)−δ}, (3.5)

1Np can also be interpreted as the total number of alighting and boarding passengers. However, this
will complicate the following discussions. Even though alighting and boarding passengers are carefully
distinguished, the following derivations are still valid and this would not affect the final results
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where m−1 indicates the preceding train, τ is the minimum time headway of consecutive
trains, and δ is the minimum spacing. The first term represents the free-flow regime where
the train cruises with desired speed vf. The second term indicates the congested regime where
the train decreases its speed to maintain the minimum headway and spacing. For clarity,
hereinafter, we refer to each model, based on assumptions 1, 2 and 3, as models A, B, and C,
respectively.

3.2.2 Derivation

To derive a train-FD, we consider railway operation under the steady state (also known as
equilibrium state). Specifically, the following conditions are considered:

• Parameters tbcon, tb0, µ , ap, N0, τ , δ are time-independent.

• Headway H and desired cruising speed vf are also time-independent.

Also, for simplicity, a homogeneous railway system is considered, which indicates:

• Trains stop at each station.

• ap for each station is the same.

• Distance between any two adjacent stations is the same, referred to as l.

Now, the train-FD as expressed in Eq. (3.6) can be separately derived in free-flow and
congested regime by combining the above-mentioned assumptions.

q = Q(k, ap) = kv̄, (3.6)

where q is the steady state train flow (tr/h) and q = 1/H, k (tr/km) is the average density
of the railway line, and v̄ is the average traveling speed of a train (or system), which can be
described by Eq. (3.7).

v̄ =
l

tb + l/v
, (3.7)

where v is the average cruising speed of a train. In the free-flow regime, v = vf so that the
explicit expression of q for models A, B and C can be easily derived by substituting Eq. (3.2)
- (3.4) and Eq. (3.7) into Eq. (3.6).

In the congested regime, the headway H should satisfy:

H ≥ tb +
δ + vτ

v
. (3.8)
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By taking the equal boundary condition of Eq. (3.8) and employing q = 1/H, Eq. (3.2) -
(3.4) can be substituted into Eq. (3.8) so that q can be described as a function of v and ap:

q = f1(v,ap). (3.9)

Then, by inserting Eq. (3.7) and Eq. (3.9) into Eq. (3.6), we can also obtain k as a function
of v and ap:

k = f2(v,ap). (3.10)

By using Eq. (3.9) and Eq. (3.10), the slope of the train-FD in the congested regime dq/dk
can be derived since dq/dk = (dq/dv) · (dv/dk). Finally, employing the critical state train
flow q∗:

q∗ =
1

tb +δ/vf + τ
, (3.11)

as a boundary condition, the train-FDs of models A, B and C can be formulated in Eq. (3.12)
and (3.13) (see also, Seo et al. 2017, for the details of the derivation of the train-FD).
When ap/N0 < q∗c

1 ,

Q(k,ap) =


kl −µap

tb0 + l/vf −µN0
, if µap/l ≤ k < kc

1

kl
tb0 + l/vf

. if kc
1 ≤ k < k∗c

1

(3.12a)

Q(k,ap) =


− δ l
(l −δ )tb0 + τl

(k− k∗c
1 )+q∗c

1 , if k∗c
1 ≤ k < kc

2

− δ l
(l −δ )(tb0 −µN0)+ τl

(k− k∗c
2 )+q∗c

2 . if k ≥ kc
2

(3.12b)

When ap/N0 ≥ q∗c
1 ,

Q(k,ap) =


kl −µap

tb0 + l/vf −µN0
, if µap/l ≤ k < k∗c

2

− δ l
(l −δ )(tb0 −µN0)+ τl

(k− k∗c
2 )+q∗c

2 . if k ≥ k∗c
2

(3.13)

Where
q∗c

1 =
1

tb0 +δ/vf + τ
, (3.14a)

k∗c
1 =

tb0 + l/vf

(tb0 +δ/vf + τ)l
, (3.14b)
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q∗c
2 =

1−µap

tb0 +δ/vf + τ −µN0
, (3.14c)

k∗c
2 =

(1−µap)(tb0 + l/vf −µN0)

(tb0 +δ/vf + τ −µN0)l
+

µap

l
, (3.14d)

kc
1 =

ap

N0l
(tb0 + l/vf), (3.14e)

kc
2 =

(
q∗c

1 +
δ lk∗c

1
(l −δ )tb0 + τl

−
ap

N0

)
· (l −δ )tb0 + τl

δ l
. (3.14f)

Model A is expressed by Eq. (3.13) by taking µ = 0, N0 = 0 and tb0 = tbcon. Model
B is also expressed by Eq. (3.13) by taking N0 = 0. For model C, the equation has to be
separately written, depending on the relation between ap/N0 and q∗c

1 .
Eq. (3.12) actually describes the situation when ap is not large enough to force a condition

in which the dwell time is always larger than tb0. More specifically, when kc
1 ≤ k ≤ kc

2, the
dwell time tb = tb0, which implies that operation under this condition can guarantee the dwell
time is not extended due to passenger influence. While out of this range, dwell time would
be extended either because trains in operation are insufficient or abundant (train bunching).
On the contrary, Eq. (3.13) describes the situation when ap is large enough so that dwell time
is always larger than tb0.

For a better understanding of passenger influence on train flow, two numerical examples
of the train-FDs for model B and C are given, as shown in Fig. 3.4, based on the parameters
in Table 3.1. From the comparison of Fig. 3.4a and 3.4b, it can be observed that under the
same ap, model C can achieve higher train flow due to a relatively short dwell time.

Table 3.1 Parameters used in the numerical example

Parameter Value

tb0, N0, µ 30/3600 h, 500 pax, 0.1/3600 h/pax
l, vf, δ , τ 1.5 km, 40 km/h, 0.4 km, 1/60 h

ap [0, 30000] pax/h

3.3 Model calibration and evaluation

In this section, the proposed models will be calibrated and evaluated employing data from
the Boston red line.
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(a) Model B (b) Model C

Fig. 3.4 Numerical examples of the train-FDs.

3.3.1 Calibration based on enumeration method

The three models are calibrated using the enumeration method. Specifically, by pre-selecting
the variation range for each parameter, a parameter set is built by accounting for all possible
combinations. The parameter set is then sorted based on root mean square error (RMSE),
which is calculated by Eq. (3.15):

RMSE =

√
1
n

n

∑
i=1

(qm
i −qe

i )
2 =

√
1
n

n

∑
i=1

(
qm

i −Q(km
i , am

p,i)
)2

, (3.15)

where qm
i , km

i , am
p,i are, respectively, train flow, density, and passenger arrival rate, measured

from the Boston red line train-FD (southbound), while qe
i is the train flow estimated from the

three models (calculated by Eq. (3.12) and (3.13)).
Finally, the parameter vector with the smallest RMSE will be regarded as the best fitting

one, denoted by β̂ββ . Since almost all of the data points from the Boston red line were found to
lie in the free-flow regime of the train-FD (as shown in Fig. 3.2), parameters δ and τ cannot
be calibrated using this data source. In addition, the average distance between adjacent
stations can be measured from Google maps as l = 1.2 km. Therefore, there are two (tbcon,
vf), three (tb0, µ , vf), and four (tb0, N0, µ , vf) parameters that need to be calibrated for models
A, B, and C, respectively. The variation range and number of combinations for the three
models are listed in Table 3.2, where ∆ is the increment.

As can be seen from Table 3.2, the number of combinations increased from around eight
thousand, to nearly twenty million, when two more parameters were added. The smallest
RMSE and β̂ββ for the three models are listed in Table 3.3. From Table 3.3 it can be found
that model A has a larger RMSE than both model B and model C. Also, in model A, the
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Table 3.2 Variation range of the calibrated parameters

Model A:
116×71 = 8236

Model B:
56×71×100 ≈ 4×105

Model C:
56×71×100×50 ≈ 2×107

tbcon ∈ [5, 120], ∆ = 1 s tb0 ∈ [5, 60], ∆ = 1 s tb0 ∈ [5, 60], ∆ = 1 s
vf ∈ [10, 80], ∆ = 1 km/h vf ∈ [10, 80], ∆ = 1 km/h vf ∈ [10, 80], ∆ = 1 km/h

µ ∈ [0.01, 1],
∆ = 0.01 s/pax

µ ∈ [0.01, 1],
∆ = 0.01 s/pax

N0 ∈ [5, 250], ∆ = 5 pax

values of t̂bcon and v̂f appear to be rather unrealistic, considering the actual travel experience
of the authors, in a practical subway systems. On the other hand, identical RMSE and µ̂ , and
similar values of v̂f and N̂0 (model B can be considered as a special case of model C with
N0 = 0) all imply that model B and C perform quite similarly, yet better than model A.

Table 3.3 Calibration results

Model A:
RMSE = 1.041

Model B:
RMSE = 0.940

Model C:
RMSE = 0.940

t̂bcon = 101 s t̂b0 = 27 s t̂b0 = 18 s
v̂f = 80 km/h v̂f = 38 km/h v̂f = 35 km/h

µ̂ = 0.16 s/pax µ̂ = 0.16 s/pax
N̂0 = 5 pax

3.3.2 Sensitivity analysis and performance evaluation

To show the sensitivity of the parameters, the contour maps of the RMSE with respect to the
variation of parameters for the three models were drawn in Fig. 3.5 - 3.6. On the contour
maps, color is used to represent the value of the RMSE.

In Fig. 3.5, low RMSE values appear as a blue strip. Because tbcon and l/vf in Eq.
(3.13) are linearly combined, the calibration just ensures the sum of these two terms remains
constant. In other words, only two parameters cannot be separately determined by minimizing
the RMSE of the train flow. However, for model B and C, RMSEs derived from the relations
between µ − tb0 and l/vf − µ minimized in the enclosed area (blue ellipses in Fig 3.6b and
3.6c, Fig 3.7e and 3.7f), which yielded realistic estimates for the parameters. Here, other
parameters in Fig 3.6 and 3.7 took the corresponding values of β̂ββ in Table 3.3. From Fig 3.7b
it can be observed that the RMSE is not sensitive to the change of N0, since l/vf dominates
the denominator of Eq. (3.12a) when tb0 = t̂b0 and µ = µ̂ . In addition, the RMSE in the
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blank area of Fig 3.7c is not available because the product of µ and N0 approaches t̂b0 + l/v̂f,
causing the denominator of Eq. (3.12a) to become zero.

To compare the performance of the three models, AIC (Akaike, 1998) was adopted to
assess the trade-off between goodness of fit and parsimony. The fitness of a model generally
increases with the number of free parameters. However, a simple form of the model is always
desirable and over-fitting should be avoided. A model with a smaller AIC value is better, and
the AIC is generally defined as Eq. (3.16):

AIC =−2ln(ML)+2P, (3.16)

where ML is the maximum likelihood (MLE) and P is the number of estimated parameters.
Here we assume that the measured train flow qm obeys the normal distribution of N(q̂e,σ2).
Then, ML can be derived by Eq. (3.17) - (3.19).

ML
(

β̂ββ

)
=

n

∏
i=1

f
(

qm
i |β̂ββ
)
=
(
2πσ

2)− n
2 exp

(
− 1

2σ2

n

∑
i=1

(qm
i − q̂e

i )
2

)
. (3.17)

q̂e
i = Q

(
km

i ,a
m
p,i|β̂ββ

)
. (3.18)

σ
2 =

1
n

n

∑
i=1

(qm
i − q̂e

i )
2. (3.19)

Finally, submitting Eq. (3.17) - (3.19) into Eq. (3.16), the AIC can be obtained by Eq.
(3.20). The calculation results for the AIC of the three models are listed in Table 3.4. The
calculation results show that model B produced the smallest AIC, although it was quite similar
to model C. The AICs of both models were much smaller than that of model A. Therefore, it
can be concluded that models that consider the influence of passenger congestion on railway
operation perform much better.

AIC = n ln(2π)+n ln

(
n

∑
i=1

(qm
i − q̂e

i )
2/n

)
+n+2P. (3.20)

Table 3.4 Calculation results of model evaluation

Model A Model B Model C

n ln
(
∑

n
i=1(q

m
i − q̂e

i )
2/n
)

116.63 -180.58 -180.62
2P 4 6 8

AIC 4286.64 3991.42 3993.39
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Fig. 3.5 Parameter sensitivity of model A
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Fig. 3.6 Parameter sensitivity of model B.
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(a) RMSE: tb0 and N0
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(c) RMSE: µ and N0
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(d) RMSE: l/vf and tb0
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(e) RMSE: µ and tb0
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Fig. 3.7 Parameter sensitivity of model C.
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3.4 Brief summary

This chapter investigated three variants of train-FDs, which are based on different assumptions
of train dwell time, by employing operation data from the Boston red line. The conclusion
indicates that passenger congestion influence on operation of urban rail transit was significant,
and that train dwell time monotonically increasing with the number of boarding passengers,
might be sufficient to describe this influence. However, since the Boston subway system
lacked data in high-frequency operation, open questions remain for future work on the
verification of congested regime of the train-FD.





Chapter 4

Dynamics of urban rail transit

The train-FD introduced in Chapter 3 only described the steady state operation of trains.
However, during the morning commute period, passenger arrivals are undoubtedly not evenly
distributed, the conventional dispatch frequencies of trains are also not a constant value.
Therefore, rail transit system during peak hours are essentially under an unsteady state which
means the density and flow of trains along the railway line are time-dependent and space-
dependent. This chapter aims to describe the dynamic performance of rail transit system with
two approaches, one is an fluid-based approach based on the widely used exit-flow model
(Carey and McCartney, 2004; Merchant and Nemhauser, 1978), and the other one is a newly
developed particle-based approach. The two approaches are verified by a micro-simulation.

4.1 Fluid-based approach

Fluid-based approach in this study describes the dynamic performance of the railway system
as a function of continuous time, and it is essentially an expansion of exit-flow model applied
in rail transit system. In fact, Seo et al. (2017) first proposed a dynamic model based on
train-FD exit-flow function. This study considered the more general form of their model. The
advantage of this approach is that it is mathematically tractable for analysis of a dynamic,
large-scale, and complex transportation systems. There have been some applications of this
approach to avoid congestion (Daganzo, 2007) or to design pricing scheme (Fosgerau, 2015;
Geroliminis and Levinson, 2009) for road traffic.

4.1.1 Formulation

Consider the railway system as an input-output system, trains and passengers enter the system
to finish the trip and leave the system. The dynamic performance of the system are mainly
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described by its instantaneous density k(t) and flow q(t). The input and output of the system
and their cumulative numbers are summarized as follows:

• a(t): train inflow rate entering the system at time t,

• A(t): cumulative number of trains that have entered the system at time t,

• ap(t): passengers’ arrival rate at their origin station at time t,

• Ap(t): cumulative number of passengers that have entered the origin station at time t,

• d(t): train outflow rate leaving the system at time t,

• D(t): cumulative number of trains that have left the system at time t,

• dp(t): passengers’ departure rate from their destination station at time t,

• Dp(t): cumulative number of passengers that have left the destination station at time t,

• T (t): travel time of a train/passenger from the origin station to the destination station
when leaving the system at time t. Thus, the time entering the system becomes t−T (t).

According to the above definitions, the cumulative variables can be written as:

A(t) =
∫ t

0
a(s)ds, (4.1a)

D(t) =
∫ t

0
d(s)ds, (4.1b)

Ap(t) =
∫ t

0
ap(s)ds, (4.1c)

Dp(t) =
∫ t

0
dp(s)ds. (4.1d)

If denote the total length of railway line as L, according to the conservation law, the density
and its derivative with respect to time can be respectively written as:

k(t) =
A(t)−D(t)

L
, (4.2)

dk(t)
dt

=
1
L
[a(t)−d(t)] . (4.3)

Meanwhile, to express the instantaneous average train flow q(t) as a function of inflow
a(t) and outflow d(t), the spatial heterogeneity of railway system is simplified so that for
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any x ∈ [0,L], either q(0, t) ≤ q(x, t) ≤ q(L, t) or q(L, t) ≤ q(x, t) ≤ q(0, t) is met. Since
q(0, t) = a(t) and q(L, t) = d(t), the q(t) can therefore be represented as:

q(t) =
1
L

∫ L

0
q(x, t)dx = (1−ζ )a(t)+ζ d(t) (0 ≤ ζ ≤ 1). (4.4)

Where ζ is a dimensionless parameter between zero and one to express the weight of inflow
and outflow when deriving the mean value.

Now, the task of a dynamic rail transit model is to solve the system performance (i.e, k(t)
and q(t)) and output (d(t), dp(t)) when inputs (a(t), ap(t)) are given. The original exit-flow
model assumed that the exit function describing the steady state situation could roughly
predict outflow in the dynamic case (see Daganzo, 2007; Geroliminis and Levinson, 2009;
Seo et al., 2017). By employing the train-FD as the exit function, the train outflow d(t) can
be approximated by

d(t) = Q
(
k(t),ap(t)

)
. (4.5)

However, this study assumed that steady state train-FD could roughly predict the system
average flow in the dynamic case as:

q(t) = Q
(
k(t),ap(t)

)
. (4.6)

Then, by substituting Eq. (4.6) and (4.4) into Eq. (4.3), the dynamics of system is described
by:

dk(t)
dt

=
1

Lζ

[
a(t)−Q

(
k(t),ap(t)

)]
. (4.7)

Here, Eq. (4.7) is a first order ordinary differential equation and can be solved if a(t), ap(t)
and initial condition k(0) are given.

In addition, since FIFO is assumed in this study, the cumulative departures of trains and
passengers can also be written as:

D(t) = A(t −T (t)) , (4.8)

Dp(t) = Ap (t −T (t)) . (4.9)

When d(t) is solved from Eq. (4.7), D(t) can be integrated from d(t) and T (t) can then
be calculated by Eq. (4.8). Finally, Dp(t) and dp(t) can be obtained by Eq. (4.9) and its
derivative form if T (t) and Ap(t) are known.

So far, the dynamic model based on fluid approach was built. Given the environmental
parameters (such as L and parameters used in train-FD) and time-dependent input information
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(i.e, a(t) and ap(t)), the dynamic performance and output of the system can be obtained using
the proposed model. In addition, the dynamic model by Seo et al. is a special case of this
formulation when ζ = 1.

4.1.2 Numerical examples

To intuitively grasp the characteristics of the proposed dynamic model, numerical examples
are presented under two types of train inflow a(t) pattern. The first one is the simplest
constant case, and the second one is a conventional two-step case. The passenger arrival rate
ap is set to obey a uni-modal distribution. The train-FD in Eq. (4.7) employed the model B
introduced in the previous chapter. The parameter settings are listed in Table 4.1, and input
information of a(t) and ap(t) are shown in Fig. 4.1, or equivalently written as:

a1(t) = a0 (4.10a)

a2(t) =

{
al, if t ∈ [120,280],

ah, Otherwise ,
(4.10b)

ap(t) =


a0

p +
am

p −a0
p

150
(t −50), if t ∈ [50,200],

a0
p +

am
p −a0

p

150
(350− t), if t ∈ (200,350],

a0
p, Otherwise ,

(4.10c)

Table 4.1 Parameter settings for numerical examples (fluid).

Parameter Value Parameter Value

l 1.2 km ζ 0.5
L 18 km a0 12 tr/h
vf 40 km/h al 10 tr/h
tb0 20 sec ah 15 tr/h
µ 0.1 sec/pax a0

p 1200 pax/h
δ 0.4 km am

p 21000 pax/h
τ 1.0 min

In fact, one may find that cumulative dispatched trains in the two cases are the same at
the end of experiment time. This setting aims to fairly check the rationality of employing
two-step timetable in practice during morning commute. Fig. 4.2 presented the dynamic
performance of railway system calculated from the proposed model. It can be observed from
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(b) Passenger arrival rate ap(t)

Fig. 4.1 Input information for numerical examples (fluid).

Fig. 4.2a that the evolution of train density in both cases had the unique peak appearing at
almost the same time with the peak of ap(t). Meanwhile, due to sudden change of dispatch
frequency, the change rate of density was significant higher in the two-step case. Regarding
the system average flow q(t) in Fig. 4.2b, it is easier to see from the first case that the sudden
changes of dq(t)/dt were exactly simultaneous with those of dap(t)/dt. Further, the change
direction of this two variables are opposite, which means when the derivatives of ap(t) started
to increase (e.g., at 50 min and 350 min), derivatives of q(t) would start to decrease, or vice
versa. When sudden changes emerged in a2(t), q(t) also quickly reacted to these sudden
changes. In addition, the increase of q2(t) around 250 min was mainly due to entering the
congested regime of train-FD.
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0 50 100 150 200 250 300 350 400

Time (min)

8

10

12

14

16

18

20

T
ra

in
 f
lo

w
 (

tr
/h

)
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Fig. 4.2 Dynamic performance of railway system (fluid).
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Fig. 4.3 showed the cumulative curves of trains and passengers. It can again be confirmed
from Fig. 4.3a that the total dispatched trains at 400 min are the same for the two cases.
The density k(t) and travel time T (t) are the vertical and horizontal distance between A(t)
and D(t), respectively. Similarly, the vertical distance between Ap(t) and Dp(t) in Fig. 4.3b
represents the passenger number in the railway system. It can be found that passenger
numbers around 200 min and 300 min are slightly smaller in the second case. This confirmed
that compared to a constant dispatch frequency, two-step timetable might be more efficient
to carry passengers arriving with a single peak.
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(a) Cumulative curves of trains
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(b) Cumulative curves of passengers

Fig. 4.3 Cumulative curves of trains and passengers (fluid).

The travel time T (t) for two cases are depicted in Fig. (4.4). Under a uni-modal ap, it can
be seen that when a(t) is constant, T (t) is also uni-modal. However, when a(t) has sudden
changes, T (t) becomes rather unstable with multiple small peaks.

4.2 Particle-based approach

Particle-based approach in this study describes the dynamic performance of railway system
by each cruising train. This approach is developed based on two assumptions:

• FIFO principle is strictly complied.

• The whole trip of each train can be approximated as a steady state 1.
1The ground of this assumption is that by taking the macroscopic average variables like density and flow,

their sudden changes during the trip can be flattened, and the traffic states represented by the averaged variables
can approximately be regarded as the steady state.
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Fig. 4.4 Travel time of trains and passengers (fluid).

4.2.1 Formulation

Consider one trip of a train i from the origin station to the destination station. Denote Ha(i)
and Hd(i) are the time headways of train i−1 and train i (simply referred to as the headway
of train i hereinafter) at the origin station and the destination station, respectively. T (i) is
the travel time of train i and ap(i) represents the average passenger arrival rate during T (i).
In fact, one can imagine that if Ha(i), Hd(i) and T (i) are known for any dispatched train
i ∈ I, the dynamics of the whole railway system has been figured out from a macroscopic
view. One can also understand that the travel time T (i) is mainly determined by the dwell
time (dwell time further determined by ap(i) and headway with its preceding train i− 1)
and bunching deceleration (if any) if the cruising speed is pre-given and fixed. Then, it is
natural to employ train-FD developed from microscopic operation rule to relate travel time,
headway and passenger arrival rate. To do this, one has to first express the density and flow
by headway and travel time. This is not difficult if macroscopically considering the whole
trip of a train. More specifically, the average flow q(i) experienced by train i (or equivalently
average headway H(i)) can be written as:

q(i) =
1

H(i)
=

(
Ha(i)+Hd(i)

2

)−1

. (4.11)

Similarly, the average density k(i) (or equivalently average spacing s(i)) can be written as:

k(i) =
1

s(i)
=

(
sa(i)+ sd(i)

2

)−1

, (4.12)
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sa(i) = v̄(i)Ha(i) =
L

T (i)
Ha(i), (4.13a)

sd(i) = v̄(i)Hd(i) =
L

T (i)
Hd(i). (4.13b)

Where v̄(i) is the average travelling speed of train i. For a more intuitive understanding, the
definitions of these variables are illustrated in Fig. 4.5.
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(b) Simplified trajectories of trains

Fig. 4.5 An example of variable definitions in particle-based approach.

Fig. 4.5a gives an example of trajectories of trains operating on a railway line with four
stations from "Sta1" to "Sta4". When the morning commute starts, passenger arrival rate
increase with time so that the dwell time of trains is gradually extended at each station as can
be understood from Fig. 4.5a. To describe the average density and flow, the trajectories are
simplified by connecting the start and end point on the time-space diagram. Then, the whole
trip of a train i can macroscopically be described by its average travelling speed v̄(i) or travel
time T (i) as shown in Fig. 4.5b2.

Now, according to the first assumption, there is a relation between headways and travel
time for two succeeding trains i−1 and i:

Hd(i)−Ha(i) = T (i)−T (i−1). (4.14)

Meanwhile, according to the second assumption, the average flow q(i) can be approximated
by

q(i) = Q
(
k(i),ap(i)

)
. (4.15)

2In addition, if the time-space diagram is delimited as the trapezium in red dotted line like T S(i) in Fig.
4.5b, one may find that the definitions of q(i) and k(i) in Eq. (4.11) and Eq. (4.12) are consistent with Edie’s
definition in a time-space diagram.
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Then, substitute Eq. (4.11 - 4.13) into Eq. (4.15) and employ Model B of train-FD, Eq. (4.15)
can be explicitly rewritten as two equations corresponding to free-flow and congested regime
of train-FD, respectively:

T (i) =
L
l

[
(Ha(i)+Hd(i))

2
·µap(i)+ tb0 + l/vf

]
, (4.16a)

T (i) =
L
l

[
(Ha(i)+Hd(i))

2
·
(

l
δ
−µap(i)

(
l
δ
−1
))

−
(

l
δ
−1
)

tb0 −
l
δ

τ

]
. (4.16b)

The implication of Eq. (4.16a) derived from free-flow regime of train-FD is very straight-
forward: the travel time of a train is determined by the sum of dwell time (minimum dwell
time plus average dwell time increase for passenger exchanging) and cruising time l/vf.
Finally, substitute Eq. (4.14) into Eq. (4.16), the travel time T (i) (or Hd(i)) can be expressed
as a function of T (i−1), Ha(i) and ap(i). This indicates that when Ha(i) and ap(i) are given
for all i ∈ I, if an initial travel time T (1) is known, the Hd(i) and T (i) for all the other trains
can be solved.

So far, the dynamic model based on particle-based approach was built. Given the
environmental parameters (including initial conditions) and time-dependent input information
(i.e, Ha(i) and ap(i)), the dynamics of the railway system can be solved using the proposed
model.

4.2.2 Numerical examples

Similar as the fluid-based approach, the parameters used for numerical examples are listed in
Table 4.2. Since the second assumption requires an approximate steady state, the trip length
was shortened and the passenger congestion influence was also weakened for the following
numerical examples. The input information is given by Fig. 4.6.

Table 4.2 Parameter settings for numerical examples (particle).

Parameter Value Parameter Value

l 1.2 km Ha1 5 min
L 7.2 km min{H1

a } 4 min
vf 40 km/h max{H2

a } 6 min
tb0 20 sec H2

a peak number [21,40]
µ 0.05 sec/pax min{ap(i)} 1200 pax/h
δ 0.4 km max{ap(i)} 12000 pax/h
τ 1.0 min ap(i) peak period [50,350]
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(a) Train headway Ha(i)
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(b) Passenger arrival rate ap(i)

Fig. 4.6 Input information for numerical examples (particle).

The horizontal axis of Fig. 4.6 was replaced by the train sequence number i while the
total dispatched train numbers are kept the same with the previous numerical examples for
fluid approach. Fig. 4.7 shows the density and flow evolution for all dispatched trains. It
can be observed that the combination of high and low dispatch frequency in the second case
led to significant change of both density and flow for the corresponding trains. In addition,
compared to fluid-based approach, the particle-based approach is relatively vulnerable to the
change of input as can be understood from the fluctuations at the time when input suddenly
changed.
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(a) Train density k(i)
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(b) Train flow q(i)

Fig. 4.7 Dynamic performance of railway system (particle).

Fig. 4.8 gives an example of cumulative trains and passengers with time only for the
second case since the difference of the two cases are rather small. Although the calculation
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of particle-based approach was based on each train i, the entering and departure time to/from
the system can easily be inferred from Ha(i) and Hd(i). The travel time of two cases are
depicted in Fig. 4.9. It can be found that different from fluid approach, travel time under
high dispatch frequency is continuously smaller than that of the constant case. This result
is plausible since high dispatch frequency reduced the waiting passenger number on the
platform and under the same arrival rate. Therefore, the dwell time decreased, which led to
the shorter travel time.

0 50 100 150 200 250 300 350 400

Time (min)

0

10

20

30

40

50

60

70

80

T
ra

in
 n

u
m

b
e
r 

(t
r)

(a) Cumulative curves of trains

0 50 100 150 200 250 300 350 400

Time (min)

0

0.5

1

1.5

2

2.5

3

3.5

P
a

s
s
e

n
g

e
r 

n
u

m
b

e
r 

(p
a

x
)

10
4

(b) Cumulative curves of passengers

Fig. 4.8 Cumulative curves of trains and passengers (particle).
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Fig. 4.9 Travel time of trains and passengers (particle).
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4.3 Verification by micro-simulation

This section aims to verify the proposed dynamic models by a simple micro-simulation of
urban rail transit. The operation rules of the simulation will first be introduced. Then, the
simulation will be used to reproduce the situations under the same settings with the numerical
examples of the two dynamic models. The results from the simulation and the dynamic
models will be compared to verify whether the models can well describe the dynamics of the
railway system.

4.3.1 Operation rules

The micro-simulation in this study is built based on the two rules. One determines how long
a train should dwell at the stations and the other specifies how a train should cruise between
the stations. Here, the simplest dwell strategy is considered: try to carry all the waiting
passengers with a maximum dwell time limit. This strategy can be described as the following
equation:

T Ds
i = min{T Dmax, tb0 +

∫ T Ds
i

T Ds
i−1

ap(t)dt}, (4.17)

where T Ds
i is the dwell time of train i at station s, T Dmax is the maximum dwell time limit

and takes the value of 5 min.
The cruising behavior again employs the Newell’s simplified car-following model

(Newell, 2002) as introduced in Chapter 2. For convenience, equation ruling the cruis-
ing behavior is again written here:

xi(t +∆t) = min{xi(t)+ vf∆t, xi−1(t +∆t − τ)−δ}, (4.18)

where i− 1 refers to the preceding train of train i. xi(t) is the position of train i at time t.
Now, for a given rail transit system (i.e., parameters such as L, l, tb0, vf, δ and τ are given),
input ap(t) and Ha(i) for all i ∈ I, the trajectories of all dispatched trains can be produced
from the simulation.

Based on the trajectories, the instantaneous average density and flow of whole railway
system can be derived as:

k(t) =
n(t)

L
, (4.19)

q(t) =
1
L

n(t)

∑
i=1

v̄i, (4.20)
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where n(t) is the number of trains within the railway system at time t, and v̄i here takes the
average travelling speed of train i, which means v̄i = L/T (i).

4.3.2 Verification of fluid-based approach

As an example, the trajectories produced under the first case of settings in Table 4.1 is shown
in Fig. 4.10. It can be observed that with the increase of ap from 50 min, the dwell time of
trains also grew. Meanwhile, the bunching phenomenon became severer and trains arriving
the destination "in groups" during [150,300] min. This is largely due to the no-control dwell
strategy (Daganzo, 2009; Xuan et al., 2011). The bunching phenomenon disappeared from
around 350 min and system returned the initial condition in the end.

Then, comparisons of density and flow evolution are made between the dynamic model
and the simulation in Fig. 4.11. It can be confirmed from the both graphs that before the peak
of ap (i.e, 200 min), the results from dynamic model and simulation fitted very well with
each other. However, due to the severe bunching after the peak of passenger arrival, density
k(t) produced from micro-simulation was significantly higher than that from the dynamic
model; flow q(t) from micro-simulation first lower and then higher than that from dynamic
model until the bunching phenomenon disappeared.

With regard to the departure curves D(t) in Fig. 4.12a and travel time T (t) in Fig. 4.12b,
the results form dynamic model and simulation were differed in a similar way: due to the
bunching phenomenon, trains leaving the system after the peak of ap experienced longer
travel time in the micro-simulation. Therefore, it can be conclude that when bunching
phenomenon is significant, the results from fluid-based dynamic model are not consistent
with micro-simulation.
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(a) Comparison of train density k(t)
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(b) Comparison of train flow q(t)

Fig. 4.11 Comparison of dynamic performance of railway system (fluid).
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(a) Comparison of cumulative departures D(t)
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(b) Comparison of travel time T (t)

Fig. 4.12 Comparison of cumulative departures and travel time (fluid).

4.3.3 Verification of particle-based approach

Similarly, comparisons between dynamic model and simulation are also made for particle-
based approach. Here, the passenger arrival information takes the output value from equilib-
rium model example in Chapter 5. From Fig. 4.13a it can be observed that the difference of
density between dynamic model and simulation mainly appears around the peak of T (t). This
is also due to the bunching phenomenon as explained in the previous subsection. From Fig.
4.13b it can be seen that the different from dynamic model, sudden change of flow can not be
achieved by micro-simulation. Besides, the flow produced from micro-simulation fluctuates
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even when the value from dynamic model is constant. This is due to the discontinuous
counting required by Eq. (4.19).

The comparison of trains’ cumulative curve and travel time is shown in Fig. 4.14.
It can be seen that except for the time period during the peak of travel time (bunching
phenomenon), results from particle-based dynamic model are also consistent with those from
micro-simulation.
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(a) Comparison of train density k(t)
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(b) Comparison of train flow q(t)

Fig. 4.13 Comparison of dynamic performance of railway system (particle).
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(a) Comparison of cumulative departures D(t)
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(b) Comparison of travel time T (t)

Fig. 4.14 Comparison of cumulative departures and travel time (particle).



4.4 Brief summary 59

4.4 Brief summary

This chapter introduced two dynamic models to describe the operation performance of rail
transit under time-dependent system inputs. The fluid-based approach is a more general form
of exit-flow model by Seo et al. (2017), which assumes that system instantaneous average
flow used for train-FD is a liner combination of inflow and outflow. The particle-based
approach introduces a strong assumption that the whole trip of a train can be approximated
as a steady state. The density and flow are therefore time averaged values for one train during
the trip. Through the numerical experiments and verification by microscopic simulation, the
fluid-based model is found to be robust under most situations while particle-based model is
rather fragile due to the strong assumption. However, particle-based model can works well
together with equilibrium model introduced in the next chapter.





Chapter 5

Equilibrium distribution of passenger
arrivals

The dynamic models proposed in Chapter 4 takes the passenger arrival distribution as a given
information. However, as explained in Section 2.5, passengers would temporally adjust
their travel plans if they could expect some benefits (e.g., fare discount, available seats or
shorter travel time) or contrarily receive some penalties (e.g., surcharge, severe in-vehicle
crowding or longer travel time). Therefore, it is important to understand the interaction
between passengers’ time choice behavior and operational information of rail transit system
(e.g., timetable and congestion condition, pricing scheme). Especially for models designed
to derive insights on management strategies, this interaction cannot be ignored. This chapter
aims to estimate equilibrium distribution of passenger arrivals at a station and analyze the
characteristics of the equilibrium.

5.1 Passenger travel cost

Before defining the travel cost, four assumptions are made here.

• Travel time in rail transit system changes due to both passenger congestion and train
congestion on the track.

• Passengers are considered not to change their travel mode or give up their travel
(inelastic travel demand).

• Individuals mainly trade off among the travel time, schedule delay and monetary
reward/penalty to determine their departure time from home.
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• The travel time from home to the nearest station for any individual is assumed to be
constant and homogeneous, so it should not be considered in the cost function.

For the sake of clarity, "passenger arrival" means arrival at the origin station of the trip,
"passenger departure" refers to the departure from the destination station hereinafter. Under
the above assumptions, the total travel cost (TC) of individual i when he or she departs the
destination station at time t is defined as

TC(t, t∗i ) = α (T (t)−T0)+ s(t, t∗i )+ p(t), (5.1)

where t∗i is the desired departure time from the destination station for individual i,1 α (α > 0)
is value of time for extra travel time, T (t) is the travel time of an individual when he or she
leaves the rail transit system at time t,2 T0 is the minimum travel time before the morning
commute starts. For the sake of clarity, the first term of Eq.(5.1) is called travel time cost
(TTC). The second term, s(t, t∗i ), is the schedule delay cost (SDC) for individual i when he or
she departs the system at time t. When all passengers have the same fixed desired departure
time or work start time t∗, t∗i = t∗ for any i. p(t)> 0 represents the surcharge a passenger
should pay when he or she leaves the system at time t, and p(t)< 0 represents the reward.
The fare scheme will be discussed in detail in Chapter 6, so discussions in this chapter takes
p(t)≡ 0.

Here, the widely used piece-wise linear schedule delay function (e.g., De Palma et al.,
2017; Geroliminis and Levinson, 2009; Hendrickson and Kocur, 1981; Tian et al., 2007;
Yang and Tang, 2018) was employed in this study. Schedule delay cost s(t, t∗i ) is defined as

s(t, t∗i ) =

{
β (t∗i − t), if t < t∗i ,

γ(t − t∗i ), if t ≥ t∗i ,
(5.2)

where β and γ (γ > β > 0) are the value of time for early and late departures, respectively.
For simplicity, it is assumed that all individuals have the same time cost α , β and γ .

Before moving to the next section, it should be addressed that the travel time increase in
Eq. (5.1) are mainly caused by two reasons. One is the passenger congestion which leads
to longer dwell time of train at stations, the other one is on-track congestion which leads to

1Here, t∗i is also equivalent to the work start time for individual i if the time from the destination station to
workplace is assumed as a constant value.

2For simplicity, T (t) is the travel time of both trains and passengers if the boundary of the input-output
system is set by the origin and the destination station for those commuting passengers. In this sense, this model
can be applied to either one section or the whole rail transit line. But more practically, it is better to pick up the
most congested section of a rail transit line and then consider the largest OD demand in this section.
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the deceleration or stop of trains between the stations. The congestion will be described by
train-FD model introduced in Chapter 3.

5.2 User equilibrium

In this section, the passenger arrival rate under user equilibrium (UE) is first derived. Then,
solution method is given, and finally, the existence conditions of the equilibrium are briefly
discussed.

5.2.1 Derivation

The equilibrium state is reached when the total travel cost of any individual can not be
reduced. Denote ti as the departure time of individual i from rail transit under equilibrium,
the following equation holds

∂TC
∂ t

(ti, t∗i ) = 0. (5.3)

The derivative of travel time T (t) can therefore be obtained by substituting Eq. (5.1) and Eq.
(5.2) into Eq. (5.3) as

dT
dt

(ti) =

{
β/α, if ti < t∗i ,

− γ/α, if ti ≥ t∗i .
(5.4)

It can be observed that the values of travel time derivative do not depend on the desired
departure time t∗i . This is, however, not a general conclusion but a special result when
piece-wise linear schedule delay function is employed. Eq. (5.4) implies that for passengers
who depart the last station earlier than their desired departure time, the travel time they have
experienced is increasing. On the contrary, for passengers who depart late, the travel time is
decreasing. Since the derivatives of travel time in Eq. (5.4) are two constant values, travel
time evolution under the equilibrium will be a piece-wise linear function with a single peak.
If FIFO and First-In-First-Work (FIFW) hold, the travel time T (t) maximizes at tmax when
the schedule delay is zero. When all passengers have the same fixed desired departure time
t∗, tmax = t∗. When the demand is distributed, tmax is denoted by t̂. Finally, the travel time
T (t) under user equilibrium can be described as

T (t) =


T0 +

β

α
(t − t0), if t0 ≤ t < tmax,

T0 +
β

α
(tmax − t0)−

γ

α
(t − tmax), if tmax ≤ t ≤ ted,

(5.5)
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where t0 and ted represent the start and end time of the equilibrium, respectively. Meanwhile,
t0 and ted are also the time when commuters start and finish departing the rail transit system,
respectively. The results so far are almost the same with most previous studies (Arnott et al.,
1990b; De Palma et al., 2017; Geroliminis and Levinson, 2009; Hendrickson and Kocur,
1981; Tian et al., 2007; Yang and Tang, 2018).

In order to derive the equilibrium distribution of passenger arrivals, the dynamic model
of rail transit system introduced in Chapter 4 has to be employed. The basic idea is to assume
that average density and flow of trains follow the steady state train-FD introduced in Chapter
3. Thus, the equilibrium passenger arrival rate can be calculated by the inverse function of
train-FD as:

ap = Q−1 (k̄, q̄
)
. (5.6)

The ground of this assumption is that by aggregating the density and flow, their sudden
change with time can be flattened, and the traffic states represented by the averaged variables
can approximately be regarded as the steady state.

Due to an incompatibility problem of fluid-based dynamic model with equilibrium state,
the particle-based dynamic model introduced in Chapter 4 is adopted. Since equilibrium
travel time in Eq. (5.5) is defined in continuous time period, it has to be converted to
particle-based variables in order to obtain headways. First, train inflow a(t) (or equivalently
Ha(i)) should be treated as given information, then the outflow d(t) can be obtained by
differentiating the both sides of Eq. (4.8) (FIFO) as:

d(t) = a(t −T (t))
(

1− dT (t)
dt

)
. (5.7)

Substitute the given a(t) and equilibrium travel time in Eq. (5.5), d(t) under equilibrium can
also be obtained from Eq. (5.7). Next, according to the definition, Ha(i) and Hd(i) can be
derived from

Ha(i) =
d(t −T (t))

di
=

1
a(t −T (t))

, (5.8a)

Hd(i) =
dt
di

=
1

d(t)
. (5.8b)

Again, rewrite Eq. (4.14) in Chapter 4 to obtain travel time T (i) for each train i:

T (i) = T (i−1)+Hd(i)−Ha(i). (5.9)
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With Ha(i), Hd(i) and T (i), the density and flow can be calculated from Eq. (4.12) and (4.11).
For convenience, these two equations are re-written here:

k(i) =
T (i)

L× (Ha(i)+Hd(i))/2
, (5.10)

q(i) =
1

L× (Ha(i)+Hd(i))/2
. (5.11)

Finally, passenger arrival rate under equilibrium can be derived by substituting the q(i) and
k(i) into Eq. (5.6) as:

ap(i) = Q−1 (k(i),q(i)) . (5.12)

For an intuitive understanding, the explicit expression of inverse function of Model B train-FD
are given as:

Q−1(k,q) =


kl − (tb0 + l/vf)q

µ
, if k < k∗(q),

l −δ lk− [(l −δ )tb0 + τl]q
(l −δ )µ

, if k ≥ k∗(q),
(5.13)

where
k∗(q) =

1+[(l −δ )/vf − τ]q
l

. (5.14)

5.2.2 Boundary conditions

For a specific morning commute situation, boundary conditions have to be introduced to get
feasible results. Two types of passenger demands are considered in this study, one is that all
passengers have the same desired departure time (or work start time), referred to as Case S
hereinafter; another one is that the desired departure time is distributed within a time period,
referred to as Case D hereinafter.

First, with regard to Case S, the inverse problem can be solved if the start and end time
(i.e., t0 and ted) of the morning commute are determined. Therefore, two boundary conditions
should be introduced. The first one is that the travel time when commuters finish departing
the rail transit system should be the same with the initial travel time before morning commute
starts, as described by Eq. (5.15). The second one is that there is a total travel demand
denoted by Np for commuters as described by Eq. (5.16).

T (ted) = T0 = L/l (tb0 + l/vf) . (5.15)
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∫ I

1
ap(i)di = Np. (5.16)

In addition, ap(n) calculated from Eq. (5.12) should be adjusted so that commuters only
arrive during [t0, tea] (i.e., Eq. (5.17)), where tea is the time when final commuters arrive the
rail transit system as explained in Eq. (5.18).ap(i)≥ 0, if t0 ≤ t(i)≤ tea

ap(i) = 0, otherwise
(5.17)

tea = ted −T (ted) = ted −T0 (5.18)

Then, when the demand is distributed, a demand curve W (t) has to be introduced which
indicates the cumulative number of passengers whose desired departure time from system (or
work start time) is equal or before t. Although commuters in Case D have different work start
time, there is a unique time instant t̂ when the travel time T (t) is maximized and schedule
delay becomes zero (Daganzo, 1985; Smith, 1984). Therefore, at t̂, W (t̂) should be equal to
Dp(t̂) and further equal to Ap(t̂ −T (t̂)) as described by Eq. (5.19).

Dp(t̂) = Ap(t̂ −T (t̂)) =W (t̂). (5.19)

Similarly, when the morning commute ends at ted, the demand curve W (·) should again
intersects with departure curve Dp(·) and coincides with each other after ted, as described by
Eq. (5.20).

Dp(ted) = Ap(ted −T (ted)) = Ap(tea) =W (ted). (5.20)

Together with another two boundary conditions as shown in Eq. (5.15) and Eq. (5.18), the
critical time instant (i.e., t0, t̂, tea, and ted) to determine the equilibrium can also be solved for
Case D.

5.2.3 Solution method

The calculation process to solve Case S is shown in Algorithm 1, where ∆ is the step size of
time, and Nε is the tolerance limit of passenger number.

The calculation process for Case D is very similar to Algorithm 1, just to add another
step to calculate t̂ by Eq. (5.19) after Step 1, and replace Eq. (5.16) in Step 8 with Eq. (5.20).
This algorithm converges when two conditions are met. The first one is that the demand is
appropriate with regard to the operational parameters. The second one is that the setting of ∆

and Nε should be matching which means large setting of ∆ requires larger Nε .
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Algorithm 1 Solution to Case S

Input: Operational parameters l, L, tb0, µ , vf, δ , τ ; cost function TC(t, t∗), train inflow a(t),
total travel demand Np;

Output: Train flow q(i), train density k(i), and passenger arrival rate ap(i);
1: Set an initial t0;
2: Calculate ted and tea by Eq. (5.15) and Eq. (5.18);
3: Calculate T (t) and d(t) by Eq. (5.5) and Eq. (5.7);
4: Derive Ha(i) and Hd(i) by Eq. (5.8);
5: Calculate k(i) and q(i) by Eq. (5.10) and (5.11);
6: Calculate ap(i) by Eq. (5.12);
7: Adjust ap(i) according to Eq. (5.17);
8: Calculate LHS−RHS of Eq. (5.16), denoted as error;
9: if error <−Nε , then

10: t0 = t0 −∆, repeat Step 2 to 8;
11: else if error > Nε , then
12: t0 = t0 +∆, repeat Step 2 to 8;
13: else
14: Calculation converges, t0, tea and ted determined;
15: end if
16: Outputs are derived from Step 5 and Step 6 when the calculation converges.



68 Equilibrium distribution of passenger arrivals

5.2.4 Existence conditions of equilibrium

When the travel time under the equilibrium and train-FD are jointly employed, several
constraints have to be imposed to ensure the calculation results are physically feasible. In
fact, train-FD is a bounded set in which all feasible traffic states (i.e., sets of {k, ap, q} that
conform to Eq. (3.13)) are included. In other words, any traffic state outside of train-FD
cannot be reached due to the physical limits of a rail transit system.

The first constraint is that the outflow of trains should always be positive,3 which means

d(t) = a(t −T (t))
(

1− dT (t)
dt

)
> 0, ∀t. (5.21)

Train inflow a(t), in this study, is treated as a positive given input so that 1−dT (t)/dt > 0
should hold all the time. Substitute Eq. (5.4) into Eq. (5.21), the following formula can be
obtained:

α > β . (5.22)

This constraint is consistent with most equilibrium models for road traffic (e.g., Arnott et al.,
1990b; Hendrickson and Kocur, 1981).

The second constraint is that passenger arrival rate ap(i) calculated from Eq. (5.12)
should not be negative as written in Eq. (5.23).

ap(i)≥ 0, ∀i. (5.23)

In fact, this constraint is equivalent to that the set of (k(i),q(i)) calculated from equilibrium
travel time should not exceed the boundary of train-FD. However, the evolution of (k(i),q(i))
depends on not only the constant operational parameters, but also the settings of train inflow
and total travel demand. To obtain an explicit expression of Eq. (5.23), a simplified case when
inflow a(t)≡ ac is considered. From the discussion in Section 5.3.1 it can be understood that
as long as the upper right corner of (k(i),q(i)) loop does not exceed the congested regime
boundary of train-FD, the whole loop of (k(i),q(i)) will lie inside the train-FD. According to
the equilibrium condition, the upper right corner of (k(i),q(i)) loop refers to the state when
the travel time is just maximized and starts to decrease. Therefore, the right corner krc(i) and
qrc(i) can be written as:

krc(i) =
Tmax(

1
ac
+ 1

ac(1+γ/α)

)
L/2

, (5.24)

3The conditions when trains are stopped by an accident and when the rail transit is not in operation are not
considered
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qrc(i) =
1(

1
ac
+ 1

ac(1+γ/α)

)
/2

. (5.25)

Then, the constraint that krc(i) and qrc(i) does not exceed congested regime boundary of
train-FD can be derived by substituting krc(i) and qrc(i) into lower branch of Eq. (3.13) as:

α + γ

α + γ/2
ac

[
Tmax

L
+

(l −δ )tb0 + τl
δ l

]
≤ 1

δ
. (5.26)

Where Tmax is an indicator of total travel demand since t0 is negatively correlated with total
travel demand as can be understood from Eq. (5.5).

Finally, Eq. (5.22), Eq. (5.23) can be considered as the existence conditions of the
equilibrium while Eq. (5.26) gives an explicit expression of Eq. (5.23) for a simplified case
when train inflow is constant.

5.3 Characteristics of the equilibrium

In this section, the characteristics of the equilibrium by the proposed model are discussed by
a series of numerical examples. The first subsection introduces the parameter settings for the
numerical examples, interprets the dynamics of rail transit and passenger arrival distribution
under equilibrium for both high and low demand conditions. The second subsection describes
the train timetable (i.e., a(t) or Ha(i)) impact by a comparison of different train dispatch
frequency plans.

5.3.1 Rail transit and passenger arrival distribution under equilibrium

The parameter settings used in the following numerical examples are listed in Table 5.1.
For simplicity, the train inflow a(t) is set as constant and "Z" shape demand curve W (t) is
adopted. The slope of W (t) is denoted as wp, and time period for the increase of W (t) is
[210,270] min.

Since dynamics of rail transit system is almost the same for Case S and Case D, Fig.
5.1 takes Case S as an example. It can be seen from Fig. 5.1a that D(t) will first diverge
from A(t) from t0 to t∗ and then approach to A(t) from t∗ to ted. In this way, the travel time
is under user user equilibrium as described in Eq. (5.5). Fig. 5.1b shows the headways of
trains Ha(i) and Hd(i). Fig. 5.2 shows the costs for the two cases. For Case S, the total travel
cost under the equilibrium (i.e., during [t0, ted]) is minimized and constant so that no one has
the incentive to change his time choice behaviour. For Case D, an example for a commuter
whose t∗i < t̂ is taken. It can be observed that his total travel cost is minimized before t∗i
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Table 5.1 Parameter settings for numerical example (equilibrium).

Parameter Value Parameter Value

l 1.2 km α 20 $/h
L 18 km β 8 $/h
vf 40 km/h γ 25 $/h
tb0 20 sec t∗ 240 min
µ 0.1 sec/pax a(t) 12 tr/h
δ 0.4 km wp 500 pax/min
τ 1.0 min Np 30000 pax
∆ 1.0 min Nε 100 pax

which means he will depart the rail transit system no later than t∗i (in other words, he will
not be late for his work). Under FIFW, his actual departure time from the system can be
obtained by jointly confirming the Fig. 5.2b and Fig. 5.3b. More specifically, find t∗i on W (t)
and draw a horizontal line towards the left, the intersection point with Dp will be his actual
departure time.
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Fig. 5.1 Dynamics of rail transit system.

Fig. 5.3 shows the cumulative arrival and departure of passengers, the difference of two
adjacent circles on the curve indicates the number of passengers carried by the preceding
train. Since the travel demand for the two cases is set the same and the time midpoint of
W (t) slope is equal to t∗, characteristics of Ap and Dp for the two cases are almost the same.
However, compared to Case S, the schedule delay in Case D (i.e., distance between Dp and
W (t)) becomes significantly smaller so that the total travel cost differs among passengers.
As can be understood from Fig. 5.2b, passengers whose t∗i equalled to t̂ endured the highest
total travel cost TC(t, t̂) while TC decreased with the difference between t∗i and t̂ in case D.
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(b) Case D with t∗i < t̂

Fig. 5.2 Travel cost for the two cases.
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(b) Case D

Fig. 5.3 Cumulative number of passengers.
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Passenger arrival rate ap(i) and departure rate dp(i) are depicted in Fig. 5.4a. It can be
observed that ap has two peaks in this example, the large one corresponds to the arrival of
commuters who experienced the longest travel time but departed the system just before t∗

while the small one corresponds to the arrival of commuters who experienced shorter travel
time at the cost of departing the system after t∗. Since ap is derived from the inverse function
of train-FD, how k(i) and q(i) evolve on train-FD is also drawn in Fig. 5.4b. It can be seen
that the evolution of (k(i),q(i)) during the morning commute starts from the left boundary of
train-FD and formulates a counter-clockwise closed loop within the train-FD. Divided by
a(t) = 12 tr/h, the lower half of the loop represents the average density and flow experienced
by trains departing the system from t0 to t∗, while the upper half represents the dynamics
from t∗ to ted. The maximum of ap is reached at the lower right corner of the loop. In fact,
if train inflow a(t) is constant and late departure in the schedule delay function (i.e., the
condition t > t∗i in Eq. (5.2) is valid) is permitted, passenger arrival rate with two-peaks
appear when high travel demand forces (k(i),q(i)) to enter the congested regime of train-FD.
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(a) Passenger flow (Np = 30000)
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(b) Dynamics of density and flow on train-FD

Fig. 5.4 An example of passenger flow and dynamics of trains on train-FD.

On one hand, if late departure is not permitted (i.e., only the condition t ≤ t∗i in Eq. (5.2)
is valid), the travel time under the equilibrium will continue increasing until t∗ so that k(i)
calculated from Eq. (5.10) also keeps increasing. As a result, (k(i),q(i)) goes deeper into the
train-FD from the left side so that ap increases in the free-flow regime and decreases in the
congested regime. Then, after t∗, no commuter departs from the system (i.e., ap = 0) so that
(k(i),q(i)) suddenly jumps up to the upper boundary of train-FD and finally returns to the
initial point along the boundary of the train-FD. In this way, ap will only have one peak.

On the other hand, if the late departure is permitted but the total travel demand is rather
low, ap may also have only one peak. Fig. 5.5 gives an example when ap has one peak under
the travel demand Np = 8000. The comparison of (k(i),q(i)) evolution between high and
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low demand is also shown in Fig. 5.4b. It can be understood that if (k(i),q(i)) after t∗ (upper
right of the loop) does not enter the congested regime of train-FD, there will be only one
peak for ap. In other words, commuters who departed the system after t∗ are represented in
the decline side of ap if total travel demand is low. On the contrary, when the demand is high,
arrivals of early and late commuters are separated on the two peaks. This is a rather new and
interesting characteristic of equilibrium distribution of passenger arrivals for a rail transit
system.
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(c) Passenger flow
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(d) Cumulative number of passengers

Fig. 5.5 An example under the travel demand Np = 8000.

5.3.2 Impact of train timetable

So far, a(t) or Ha(i) in all above-mentioned examples are set as constant. However, as can
be experienced in our daily life, the dispatch frequency of trains are higher during the peak
hours and lower during the off-peak. This strategy is undoubtedly reasonable and empirically



74 Equilibrium distribution of passenger arrivals

correct. While in fact, we have very limited knowledge about the interaction between the
time choice behaviour of commuters and the change of train timetable, especially from a
theoretical point of view. As mentioned in Section 2.5, most existing studies focused on the
optimization of train timetable under a given passengers’ arrival pattern. But some passengers
may adjust their time choice when the timetable is updated, which again makes the optimized
timetable not optimized under the new arrival pattern. In this sense, the value of the proposed
model lies in its capability to estimate an equilibrium distribution of passenger arrivals when
the train timetable is updated. Here, influence of train timetable is discussed by a series of
numerical experiments comparing three train inflow patterns.

To make a fair comparison, it is ensured ensured that the cumulative arrivals of trains
before t∗ are the same for the three cases (other parameters kept the same with Table 5.1 for
Case S, Np = 30000). As shown in Fig. 5.6a, a1(t) is still set as constant, referred to as Case
H1; a2(t) makes a step shape to simulate the conventional train timetable during morning
rush hours, referred to as Case H2; a3(t) sets a larger gap between the peak and off-peak
compared to a2(t), referred to as Case H3. Here, compared to average passenger arrival rate
ap(i), the boarding passenger number for each dispatched train np(i) defined in Eq. (5.27)
can more intuitively compare the duration of morning commute and in-vehicle crowding , so
np(i) are depicted for the three cases in Fig. 5.6b.

np(i) = ap(i) ·
Ha(i)+Hd(i)

2
. (5.27)

It can be observed that np(i) calculated from Case H1 has the earliest start time and the
highest peak while Case H3 has the latest start time and the lowest peak. This is reasonable
because on one hand, when larger train inflow (or high dispatch frequency) matches with the
period of high passenger arrival rate, passenger numbers carried by each train will decrease
at the ascending side of np. On the other hand, smaller train inflow after t∗−T (t∗) will
relieve the bunching phenomenon of trains, which again makes it possible for trains to carry
more passengers at the descending side of np. As s result, trains are more efficiently used
so that the in-vehicle crowding is relieved and the morning commute period (i.e., ted − t0)
is shortened. In addition, since t0 increased from Case H1 to H3, equilibrium travel cost
TC(t0, t∗) = β (t∗− t0) decreased so that overall system cost Np ·TC(t0, t∗) also decreased.
In this sense, timetable modification can serve as an effective measure to approach system
optimal. As a supplementary material, the cumulative curves of trains and passengers for Case
H2 and H3 are also shown in Fig. 5.7. As can be understood from 5.7c, by a combination of
high and low dispatch frequencies, d(t) increased before t∗ and decreased after t∗ compared
to Case H1, thus average headway (Ha(i)+Hd(i))/2 was shortened before t∗ and extended
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after t∗. In this way, in-vehicle crowding was alleviated before the peak of np and bunching
phenomenon was relieved after t∗.
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(b) Number of boarding passenger (Np = 30000)
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(c) Train inflow (Np = 8000)
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(d) Number of boarding passenger (Np = 8000)

Fig. 5.6 A comparison of boarding passenger numbers between different train inflow patterns.

Moreover, a similar comparison was done also for the low demand situations (i.e.,
Np = 8000) as shown in Fig. 5.6c and 5.6d. Since the start time of passenger arrivals will be
later when the demand is low, peak period of a(t) is accordingly adjusted to match ap, but the
values are kept unchanged. This three cases can be referred to as L1, L2, and L3, respectively.
It can again be confirmed from Fig. 5.6d that similar to the high demand cases, the step size
train inflow can shorten the morning commute period and reduce the in-vehicle crowding,
although the difference is relatively small compared to high demand cases. In this numerical
example, the travel demand and system supply (i.e., total number of dispatched trains) are the
same, but boarding passenger number (ascending side) at a given time decreased around 50%
and morning commute period shortened around 14% from Case H1 to Case H3. From Case
L1 to Case L3, these two indices reduced 40% and 8%, respectively. Although the efficiency
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improvement by modifying the timetable in this example is a matter of course from our travel
experience, the capability to show passengers’ interaction to the updated timetable can be
regarded as a remarkable achievement of the proposed model.
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(a) Cumulative number of trains (Case H2)
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(b) Cumulative number of passengers (Case H3)
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(c) Cumulative number of trains (Case H3)
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(d) Cumulative number of passengers (Case H3)

Fig. 5.7 Cumulative number of trains and passengers for Case H2 and Case H3.

5.4 Incompatibility of fluid-based approach with equilib-
rium model

This section briefly explains why fluid-based approach to describe the railway dynamics
cannot work together with the equilibrium model mentioned in Section 5.2.1. In one word,
the reason lies in the fact that dynamics described by spatial instantaneous average variables
(such as fluid-based dynamic model) inevitably moves out of train-FD under user equilibrium,
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which yields physically infeasible condition of density, flow and passenger arrival rate for
the railway system.

More specially, the difference between train-FD and road traffic macroscopic fundamental
diagram (MFD) should be clarified. MFD is basically a two-dimensional relation between
the aggregated instantaneous spatial average density and flow in a road network. Both the
inside and outside of MFD can be interpreted as unsteady traffic state from a macroscopic
view. However, the three-dimensional train-FD with an additional passenger arrival rate
dimension does not have convincing interpretation of traffic state out of train-FD. The
microscopic derivation of train-FD determines that the left boundary of train-FD is the
maximum achievable density and flow when no passenger affects the operation of railway
system. Therefore, the traffic state out of train-FD cannot be feasibly interpreted unless it is
modified considering the interpretation of traffic state out of train-FD.

Next, why dynamic traffic state described by fluid-based model would move out of train-
FD under user equilibrium is explained. To simplify the explanation, consider a constant
train inflow (denoted as ac) case.4 In general, it is considered that the traffic state at the
start and end of equilibrium should be the same which means k(t0) = k(ted) (or equivalently
T (t0) = T (ted) from the cumulative curve of trains). If the passenger arrival rate at t0 starts
from zero which means ap(t0) = Q−1(k(t0),q(t0)) = 0, since equilibrium flow approaching
ted larger than that at t0 (i.e., q(ted)> q(t0)), passenger arrival rate at the end of equilibrium
state would inevitably be smaller than zero on free-flow regime of train-FD, which means:

ap(ted) = Q−1 (k(ted),q(ted)) = Q−1 (k(t0),q(ted))< 0. (5.28)

The explanation so far can be illustrated by the evolution of density and flow on train-FD in
Fig. 5.8. Even if one assumes the existence of captive users at the start of equilibrium like
ap(t0) = Q−1(k(t0),q(t0)) = apc (equivalent as moving the loop to rightward), ap(ted)< apc

is also not interpretable.
One may try to change the boundary condition of k(t0)= k(ted) to k(ted)= (1+ζ γ/α)k(t0)

to avoid jumping out of train-FD like shown in Fig. 5.9. This boundary condition can avoid
traffic state out of train-FD, but it leads to a new contradictory that for ap(t∗ < t < ted)> 0,
some of these passengers may leave the railway system after ted. Since the travel time decline
on the left boundary of train-FD in Fig. 5.9 is slower than the horizontal line on Fig. 5.8, their
travel time cost would be larger than the equilibrium cost, which means these passengers still

4By ingeniously set a large inflow before t∗ and a small inflow after t∗, dynamics described by fluid-based
model may avoid jumping out of train-FD, but this kind of setting will lose the generality and makes the model
only available under specific setting.



78 Equilibrium distribution of passenger arrivals

𝑡 ≤ 𝑡∗

𝑡 ≥ 𝑡∗𝑡𝑒𝑑

𝑡0

𝑎𝑐

1 +
𝜁𝛾

𝛼
𝑎𝑐

1 −
𝜁𝛽

𝛼
𝑎𝑐

𝑘0 = 𝑘𝑒𝑑

Fig. 5.8 Density and flow evolution on train-FD for fluid-based approach (k(t0) = k(ted)).

can reduce their travel costs by arriving earlier at the station. This breaks the equilibrium
state and is also not acceptable.
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Fig. 5.9 Density and flow evolution on train-FD for fluid-based approach (k(t0) ̸= k(ted)).

5.5 Brief summary

This chapter derived the equilibrium distribution of passenger arrivals for the morning
commute problem from the particle-based dynamic model by employing the inverse function
of train-FD. The solution method and existence conditions of the equilibrium are given, and
characteristics of the equilibrium are discussed based on a series of numerical experiments.



5.5 Brief summary 79

Through the numerical examples, it is found that total travel demand and train timetable all
had significant influence on the characteristics of the passenger arrival distributions. More
specifically, if all passengers have to depart the rail transit system no later than their desired
departure time, there will be only one peak for the equilibrium distribution of passenger
arrivals, otherwise, there may exist two peaks depending on the travel demand. When the
travel demand is low so that train density and flow do not enter the congested regime of
train-FD, the equilibrium distribution will also be unimodal. In addition, the proposed model
numerically confirmed that compared to a constant dispatch frequency, the combination use
of high and low dispatch frequencies can shorten the morning commute period and relieve
the in-vehicle at the same time since this strategy improved the efficiency use of trains. At
the end of this chapter, why fluid-based approach is not used in equilibrium model is briefly
discussed.





Chapter 6

Model applications

By applying the equilibrium model developed in Chapter 5, this chapter aims to evaluate
management strategies from both demand and supply sides. First, as a further investigation
of supply management briefly discussed Section 5.3.2, conventional peak/off-peak timetable
is optimized based on inference of dynamics evolution on train-FD. Second, user equilibrium
under first-best pricing is analytically derived. Finally, a demand management strategy-coarse
pricing scheme (including surcharge, reward and their combinations) is numerically evaluated
based on indicators such as user cost, social cost and in-vehicle crowding.

6.1 Peak/off-peak timetable optimization

In this section, the optimization problem of a conventional peak/off-peak timetable without
pricing is discussed. Peak/off-peak timetable here refers to a simplified timetable pattern that

• only two types of dispatch frequencies (or inflow) are employed,

• the high dispatch frequency lasts for an uninterrupted period enclosed by the low
dispatch frequency.

Since this timetable pattern is widely employed in practice, it is desirable to explore the opti-
mal setting of peak/off-peak timetable by the proposed model. This issue can be generalized
as a bi-level optimization problem described as:min F(N)

F(N) = min
a1,a2∈Ω

f (a1,a2|N).
(6.1)

Where N represents the number of dispatched train number required to carry Np passengers,
a1 and a2 are peak and off-peak train inflow (a1 ≥ a2), respectively. F(N) is the function to
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minimize individual equilibrium cost Ce with relate to N, which is referred to the upper-level
optimization. The lower-level optimization in the second formula means to minimize F(N)

when N is determined by designing a1 and a2. The upper-level optimization is still not solved
at the completion time of this dissertation, so the next subsection discusses a specific case for
the lower-level optimization problem.

6.1.1 Lower-level optimization in a specific case

An ideal temporal setting of a1 and a2 can be described as the situation that trains which
carry commute passengers and leave the system before t∗ are exactly dispatched with high
inflow a1, and other trains are dispatched with low inflow a2. This is reasonable because
under equilibrium before t∗, train outflow is smaller than inflow, while after t∗, outflow is
larger than inflow. This setting can maintain a relatively high average flow before t∗ and
avoids a extremely high outflow after t∗. Fig. 6.1 describes this situation.
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Fig. 6.1 An specific case of train cumulative curve for peak/off-peak timetable pattern.

Under this specific case, the lower-level optimization can be formularized. More specif-
ically, individual equilibrium cost Ce can be written as the SDC at the start or end of the
equilibrium period:

Ce = β (t∗− t0) = γ(ted − t∗). (6.2)
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According to the description in Fig. 6.1, the number of trains N that carried these Np

passengers can be derived as:

a1 [t∗−Tmax − (t0 −T0)]+a2 [ted −T0 − (t∗−Tmax)] = N. (6.3)

Meanwhile, according to the equilibrium travel time defined in Eq. (5.5), the maximum
travel time increase can be described as:

Tmax −T0 =
β

α
(t∗− t0). (6.4)

Next, substitute Eq. (6.2) and (6.4) into Eq. (6.3), Ce can be re-written as:

Ce =
N

α−β

αβ
a1 +

α+γ

αγ
a2

. (6.5)

The lower-level optimization problem can therefore be considered as a problem to minimize
the following objective function with four constraints:

min
a1,a2∈Ω

f (a1,a2|N) = min
a1,a2∈Ω

{ N
α−β

αβ
a1 +

α+γ

αγ
a2

} (6.6)

s.t. 0 < a2 ≤ a1 ≤ 1/τ, (6.7a)

s.t. ωa1 +(1−ω)a2 ≤ a0, (6.7b)

s.t. a1 ≤
α −β/2

α −β

(
δ

L
Tmax +

(
1− δ

l

)
tb0 + τ

)−1

= a∗1. (6.7c)

s.t. a2 ≤
α + γ/2
α + γ

(
δ

L
Tmax +

(
1− δ

l

)
tb0 + τ

)−1

= a∗2. (6.7d)

The Ω is the enclosed area set by the four constraints. The first constraint clarifies that
train inflow can not be larger than the reciprocal of minimum time headway τ . The second
constraint limits the achievable train inflow (due to available train fleet) as a0. The third and
fourth constraints comes from the feasible density and flow within train-FD, which is related
to demand and has been explained in Eq. (5.26). In fact, ω can be explicitly derived from the
duration ratio for a1 and a2 as:

ω =
γ(α −β )

β (α + γ)+ γ(α −β )
, (6.8a)
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1−ω =
β (α + γ)

β (α + γ)+ γ(α −β )
. (6.8b)

Now, to minimize the objective function of lower-optimization problem is equivalent to
maximize the denominator of Eq. (6.6). This problem can be discussed by Fig. 6.2.
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Fig. 6.2 Optimization of train inflow for ideal peak/off-peak timetable pattern.

It can be understood from Fig. 6.2 that the first and second constraint enclose an feasible
area (i.e., shadowed area) for a1 and a2. The denominator of objective function can be
expressed as the red line with the same slope with the second constraint. Let its value as
M, then to maximize M is to find the largest intercept on a2 axis for the red line within the
shadowed area. However, the position of a∗1 a∗2 (green and blue vertical lines) depends on
the total travel demand. Therefore, the optimal setting of a1 and a2 can only be determined
when the relation between a0, a∗1 and a∗2 is clarified.

Nevertheless, the optimal conditions can be separately discussed. Fig. 6.2 shows three
possible combinations of the third and the fourth constraint (a∗1 > a∗2).

• When a∗2 < a∗1 < a0, the optimum is reached at point C which means a1 = a∗1 and
a2 = a∗2. This case refers to the situation that the capability to dispatch trains is
abundant compared to train-FD constraint.

• When a∗2 < a0 < a∗1, the optimum is reached at point D, similar as the first case. In
fact, depending on the relation between a∗1 and a∗2 (a∗1 further larger), the optimum may
also be reached on the line of the second constraint.
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• When a∗1 > a∗2 > a0, the optimum is reached at any point on line AB. This case refers
to the situation that capability to dispatch trains is relatively insufficient. Under this
situation, to adopt the constant timetable can also reach the optimum (i.e., point A).

6.1.2 Optimum in free-flow regime of train-FD

In fact, the discussion in the previous subsection avoids the upper-level optimization. To solve
upper-level optimization is difficult because it inevitably relates to regime-dependent utiliza-
tion of train-FD (only free-flow or free-flow + congested). Therefore, a more conservative
optimum only in free-flow regime of train-FD is presented in this subsection.

The optimization objective is still to minimize the total travel cost defined as the sum of
travel time cost (TTC) and schedule delay cost (SDC) under the constraint of total passenger
travel demand Np and total available trains N. Since the description of total travel cost by
fluid-based model involves tedious integration which is difficult for analytical derivation,
only the description by particle-based model is discussed hereinafter.

min{
N

∑
i=1

α (T (i)−T0)np(i)+
N1

∑
i=1

β (t∗− ti)np(i)+
N

∑
i=N1+1

γ (ti − t∗)np(i)}, (6.9)

s.t.
N

∑
i=1

np(i) = Np, (6.10)

where np(i) is the riding passenger number in train i, ti is the time when train i exits the
system, and N1 is the number of train that exited the system before t∗. TTC written in the
first term of Eq. (6.9) can be further simplified by substituting the relation between travel
time T (i) and riding passenger number np(i) = ap(i) · (Ha(i)+Hd(i))/2 (i.e., Eq.(4.16) in
Chapter 4). As a result, TTC for train i can be described by the following two equations in
free-flow and congested regime of train-FD, respectively.

T TC(i) = αµ
L
l
(np(i))2, (6.11a)

T TC(i) =−αµ

(
L
δ
− L

l

)
(np(i))2 +α

L
δ

(
q(i)−1 − tb0 −δ/vf − τ

)
np(i). (6.11b)

On one hand, it can be understood from Eq. (6.10) and (6.11a) that if all dispatched
trains operated in free-flow regime of train-FD, the minimum of total TTC (i.e., the first term
of Eq. (6.9)) is reached when all np(i) are the same and equal to Np/N. However, without
pricing interference, travel time T (i) inevitably first increase from T0 and then decrease back
to T0 under equilibrium. As a result, np(i) also increase from zero to the maximum and then
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decrease back to zero. On the other hand, the maximum of Eq. (6.11b) is reached when np(i)
takes the value:

nmax
p (q(i)) =

q(i)−1 − tb0 −δ/vf − τ

2µ(1−δ/l)
. (6.12)

Meanwhile, at the boundary of free-flow and congested regime, critical riding passenger
number n∗p(i) can be calculated as:

n∗p(i) = a∗p(i) ·
Ha(i)+Hd(i)

2
=

a∗p(i)
q∗(i)

=
a∗p(i)(tb0 +δ/vf + τ)

1−µa∗p(i)
. (6.13)

Now, if substitute q∗(i) into Eq. (6.12), it can be found that when 1/(1−δ/l)< 2,

nmax
p (q∗(i))< n∗p(i). (6.14)

From practical experience, minimum safety distance δ < l/2 should be a general situation.
Thus, Eq. (6.14) indicates that if q(i) remains constant, when np(i) or equivalently ap(i)
enters into the congested regime from the critical state, T TC(i) would increase. Therefore,
under optimal situation, traffic state on train-FD should not enter the congested regime.

Next, let’s express the SDC in a more explicit way. For simplicity, the sum of the second
and the third terms in Eq. (6.9) can be approximated by the two right-angled triangular area
between cumulative passenger departure curve Dp and demand curve W (t). Thus, SDC can
be approximately written as:

SDC ≈
β (t∗− t0)Np1

2
+

γ(ted − t∗)Np2

2
, (6.15)

where Np1 is the total number of passengers who exited the railway system before t∗ and Np2

is the passenger number departing after t∗. Thus, the following equation hold.

Np1 +Np2 = Np. (6.16)

Note, different from previous subsection, if the passenger congestion influence is considered,
N should be a increasing function of Np, say for example, N = f (Np). Then, substitute
individual equilibrium cost Ce (i.e., Eq. (6.2) and (6.5)) and Eq. (6.16) into Eq. (6.15), SDC
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can be written as:

SDC ≈
β (t∗− t0)Np1

2
+

γ(ted − t∗)Np2

2
=

Ce(a1,a2,Np)Np

2

=
f (Np)Np

2
(

α−β

αβ
a1 +

α+γ

αγ
a2

) . (6.17)

Now, it can be understood from Eq. (6.17) that even though passenger congestion
influence is considered, the optimization problem of train inflow does not change essentially.
The conclusion is still the same as the previous subsection from the perspective of reducing
the travel cost.

However, there is a paradox between adopting high dispatch frequency and stability of
operation. This paradox can be understood from the density and flow dynamics on train-
FD under the equilibrium. Basically, the evolution of (k(i),q(i)) on train-FD horizontally
(because equilibrium train flow are separately constant for the peak/off-peak timetable before
or after t∗) first moves rightward and then moves leftward back. In this way, the travel time
T (i) would linearly increase and then decrease as required by the equilibrium. If a quite
high inflow is adopted, the number of passengers that can be carried by trains operating in
the free-flow regime of train-FD would decrease (this is because the upper part of train-FD
is narrower). As a result, the operation condition quickly enters the congested regime, the
system becomes unstable and bunching phenomenon occurs. Therefore, the high dispatch
frequency which leads to lower SDC should be balanced with the stability of operation. Here,
an approximate optimum situation is considered for the peak/off-peak timetable pattern:

• All the dispatched trains operate in free-flow regime of train-FD and only the train
experienced the longest travel time reaches the critical state on train-FD.

• Average equilibrium flow before and after t∗ should be the same.

Let’s explain why this is an approximate optimum situation. First, it is necessary to prove
that total TTC should be approximate minimized in the described situation. This can be done
by jointly considering the characteristic of free-flow regime train-FD (i.e., Eq. (4.16a)) and
relation between headway and travel time (i.e., Eq. (4.14)) under equilibrium.

np(i)−np(i−1) =
T (i)−T (i−1)

µL/l
=

Hd(i)−Ha(i)
µL/l

. (6.18)
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Meanwhile, according to FIFO under equilibrium, departure headway can further be written
as functions arrival headway:

Hd(i) =


1

1−β/α
·Ha(i), if i ∈ [1,N1],

1
1+ γ/α

·Ha(i), if i ∈ [N1 +1,N],

(6.19)

Substitute Eq. (6.19) into Eq. (6.18) and use inflow to replace Ha, Eq. (6.18) can be further
written as:

np(i)−np(i−1) =


β l

(α −β )µL
· 1

a1
, if i ∈ [1,N1],

− γl
(α + γ)µL

· 1
a2

, if i ∈ [N1 +1,N],

(6.20)

Now, it is clear that the difference of riding passenger number between two successive trains
is inversely proportional to the inflow. Also notice that total TTC is a sum of Eq. (6.11a)
under the constraint Eq. (6.10). Therefore, a small difference of np is preferable to reduce
the total TTC. This means an sufficiently larger train inflow can reduce the total TTC to the
maximum extent. Meanwhile, higher inflow would also reduce SDC as can be understood
from Eq. (6.17). Thus, it is always beneficial to adopt inflow as high as possible. However,
when inflow is too high that traffic state enters the congested regime, TTC would contrarily
increase (see discussion after Eq. (6.14)), and the operation becomes unstable due to the
bunching phenomenon. Therefore, to adopt a as high as possible inflow while keeping traffic
state within the free-flow regime of train-FD should be an approximate optimum situation.
This situation is described by the previous two items.

6.1.3 Solution and numerical example

This subsection further solves the approximate optimum situation introduced in the previous
subsection. A numerical example of system performance under optimum situation is given
and compared with other situations. First, average flow under equilibrium before t∗ calculated
from particle-based dynamic models can be written as:

q1 =

[
Ha +Hd

2

]−1

=

(
(a1)

−1 +((1−β/α)a1)
−1

2

)−1

=
α −β

α −β/2
a1. (6.21)

Similarly, average equilibrium flow after t∗ can be derived as:

q2 =
α + γ

α + γ/2
a2. (6.22)
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Then, on one hand, from the second requirement of optimum situation q1 = q2 = q, the ratio
of inflow a1 and a2 can be determined from Eq. (6.21) and (6.22) as:

q1 =
α −β

α −β/2
a1 = q2 =

α + γ

α + γ/2
, (6.23)

a1

a2
=

(α + γ)(α −β/2)
(α −β )(α + γ/2)

. (6.24)

It can be seen that the optimum ratio of peak/off-peak train inflow only relates to the
passengers’ value of time. This is a valuable insight for railway operator to verify and refer.

On the other hand, from the first requirement of optimum situation, the maximum density
kmax should not be larger than the critical density k∗(q), which can be written as:

kmax =
Tmax

L
·q ≤ k∗(q) =

1+[(l −δ )/vf − τ]q
l

. (6.25)

Substitute Tmax = T0 +β/α(t∗− t0) into the above formula, use q1 as an example:[
T0 +β/α(t∗− t0)

L
− (l −δ )/vf − τ

l

]
α −β

α −β/2
a1 ≤

1
l
. (6.26)

Now, take the equal condition of Eq. (6.26), optimum inflow a1 and also a2 can be expressed
as a function of t0. Therefore, the solution problem becomes the same as the one described
in Algorithm 1 in Chapter 5. The only difference is that inflow is not pre-determined but as a
function of t0.

The numerical example here still use the same parameters as shown in Table 5.1. The
cumulative curves of trains and passengers are drawn in the following figure. By comparing
the cumulative curves of trains under optimum situation with constant case (i.e., Fig. 5.1a), it
can be observed that the change of travel time is realized mainly by adjusting train inflow. In
this way, the outflow is always kept at a relatively high level, and schedule delay cost will
be reduced compared to the constant case. The cumulative passenger curve under optimum
situation also becomes smoother compared to constant case.

The evolution of density and flow is also depicted on train-FD as shown in Fig. 6.4. It can
be seen that under this optimum situation, the average flow of railway system is always kept
constant during the equilibrium period. The maximum density reached the critical state on
train-FD. Therefore, the result of numerical experiment is consistent with the first description
of optimum situation in the previous subsection.

In order to further understand the advantage of this approximate optimum situation over
other timetable situations, the costs (including TTC and SDC) are compared among the



90 Model applications

0 50 100 150 200 250 300 350 400

Time (min)

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 
tr

a
in

 (
tr

)

(a) Cumulative number of trains

0 50 100 150 200 250 300 350 400

Time (min)

0

0.5

1

1.5

2

2.5

3

P
a

s
s
e

n
g

e
r 

n
u

m
b

e
r 

(p
a

x
)

10
4

(b) Cumulative number of passengers

Fig. 6.3 Cumulative curves for optimal peak/off-peak timetable pattern.
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Fig. 6.4 Dynamics of density and flow on train-FD for optimal peak/off-peak timetable
pattern.
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optimum case (OPM), constant case (CON) and three practical cases (PR1 to PR3) in Table
6.1.

Table 6.1 Comparison of passenger costs for different timetable patterns.

Scenario a1
(tr/h)

a2
(tr/h)

Duration
(a1, min)

∑T TC
(104 $)

∑SDC
(104 $)

∑TC
(104 $)

TC
Change

(%)

OPM 15.3 8.3 74 33.34 16.09 49.43 -
CON 10.3 10.3 - 38.09 17.12 55.20 +10
PR1 20.0 7.5 60 33.09 18.51 51.60 +4
PR2 24.0 6.0 60 36.85 21.55 58.40 +15
PR3 20.0 9.5 30 34.88 16.72 51.60 +4

The number of dispatched train that carry Np = 30000 passengers is kept constant as N = 43 in all scenarios.
This is realized by adjusting train inflow, especially a2. The last column presents the TC change compared to
OPM case.

As can be confirmed from Table 6.1, compared to OPM case, the TC in CON case
increased 10%. This is mainly due to the increase of TTC since the operation of some trains
after t∗ entered congested regime of train-FD as can be understood from comparison of Fig.
5.4b and Fig. 6.4. As discussed in the previous subsection, operation under congested regime
would raise the TTC since more time is wasted on cruising with lower speed between stations.
Regarding the three practical cases, the increase of TC in PR1 and PR3 are relatively small
while PR2 using a quite high a1 yields a 15% increase of TC. This can be explained from
two aspects: 1, adopting extremely high peak inflow leads to a vulnerable operation that
trains easily enter the congested regime of train-FD; 2, due to the total available train fleet N
constraint, high peak inflow makes the available train number for off-peak frequency less,
these trains have to carry more passengers since trains dispatched with peak frequency did
not carry enough passengers in congested regime. As a result, the capacity of trains are not
efficiently used, so both TTC and SDC significantly increased for PR2. This can also be
understood from the density and flow evolution on train-FD as shown in Fig. 6.5.

From the comparison in Table 6.1, two insights for trains operation without pricing
scheme can be concluded:

• A moderate peak/off-peak timetable is preferable from the perspective of both reducing
total travel cost and robust operation.

• Adopt a relatively small difference between peak/off-peak dispatch frequencies and
extends the duration of peak frequency might be a good direction towards the optimum
situation.
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Fig. 6.5 Dynamics of density and flow on train-FD for scenario PR2.

6.2 User equilibrium with pricing

In this section, user equilibrium under first-best pricing is firstly derived and compared with
no pricing condition both theoretically and numerically. Then, a more practical (or second-
best) one-step pricing scheme is proposed and evaluated. Policy implication is derived from
the evaluation of this one-step pricing scheme.

6.2.1 First-best pricing

The first best pricing generally describes the pricing scheme which is able to minimize social
cost (SC). In this study, SC consists of TTC and SDC, thus the objective is still to minimize
the sum of TTC and SDC as written in Eq. (6.9). Here, the user equilibrium under first-best
pricing is described as the following condition.

Lemma 1. Assume that (1), np(i)> 0 for any available train i∈ [1,N] that carry Np commute
passengers, and (2), any train i operate in free-flow regime of train-FD. Then, time boundary
(i.e., t0 and ted) is determined by Np and N, and the riding passenger number is monotonically
increasing for trains leaving the system before t∗, and decreasing for trains leaving after t∗.
The increments are respectively:

np(i)−np(i−1) =


βHa(i)

2(α −β )µL/l
, if i ∈ [2,N1],

− γHa(i)
2(α + γ)µL/l

, if i ∈ [N1 +2,N].

(6.27)
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Meanwhile, the relation between arrival and departure headway before and after t∗ can
respectively be derived as:

Hd(i) =


2α −β

2(α −β )
Ha(i), if i ∈ [2,N1],

2α + γ

2(α + γ)
Ha(i), if i ∈ [N1 +2,N],

(6.28)

Proof. As a preparation work to prove the proposed lemma, the social cost described in Eq.
(6.9) can be re-written as:

SC =α

N

∑
i=1

(T (i)−T0)np(i)+β

N1

∑
i=1

[
t∗−

(
t0 −T0 +

i

∑
j=1

Ha( j)+T (i)

)]
np(i)

+ γ

N

∑
i=N1+1

[(
t0 −T0 +

i

∑
j=1

Ha( j)+T (i)

)
− t∗

]
np(i).

(6.29)

where N1 is the number of trains that leave the system before t∗ and N2 = N −N1 is the
number of trains after t∗. Since all dispatched trains are assumed to operate in free-flow
regime of train-FD, inspired by Eq. (6.11a), Eq. (6.29) can be further simplified as:

SC =(α −β )µ
L
l

N

∑
i=1

(np(i))2 +β

N1

∑
i=1

(
t∗− t0 −

i

∑
j=1

Ha( j)

)
np(i)

+(α + γ)µ
L
l

N

∑
i=N1+1

(np(i))2 + γ

N

∑
i=N1+1

(
t0 +

i

∑
j=1

Ha( j)− t∗
)

np(i).

(6.30)

Now, it can be observed from Eq. (6.30) that SC is basically determined by the combina-
tion of linear and quadratic function of np(i) with given information such as α , β , γ , L/l, µ ,
t∗ and Ha(i), and t0 determined by Np. Under the total available train fleet constraint N and
total travel demand constraint Np (i.e., Eq. (6.10)), the minimum of SC can be derived by the
method of Lagrange multiplier. Introduce a Lagrange function as:

L (np(i),λ ) = SC−λ (
N

∑
i=1

np(i)−Np). (6.31)

If the minimum of SC exists, the partial derivative of Lagrange function with any np(i) should
be zero, that is:

∂L

∂np(i)
= 0, ∀i. (6.32)
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More specifically, Eq. (6.32) can be written as:

2(α −β )µ
L
l

np(1)+β

(
t∗− t0 −

1

∑
j=1

Ha( j)

)
−λ = 0,

... ,

2(α −β )µ
L
l

np(N1)+β

(
t∗− t0 −

N1

∑
j=1

Ha( j)

)
−λ = 0,

2(α + γ)µ
L
l

np(N1 +1)+ γ

(
t0 +

N1+1

∑
j=1

Ha( j)− t∗
)
−λ = 0,

... ,

2(α + γ)µ
L
l

np(N)+ γ

(
t0 +

N

∑
j=1

Ha( j)− t∗
)
−λ = 0.

(6.33)

Now, the difference of two successive equations of Eq. (6.33) can be easily obtained as:

np(i)−np(i−1) =


βHa(i)

2(α −β )µL/l
, if i ∈ [2,N1],

− γHa(i)
2(α + γ)µL/l

, if i ∈ [N1 +2,N].

(6.34)

The first statement of the lemma is therefore proved.
Next, the second statement can be proved by employing the relation between travel time

difference and headway difference (i.e., Eq. (4.14)). In free-flow regime of train-FD, this
relation can be further written as:

Hd(i) = T (i)−T (i−1)+Ha(i)

= µ
L
l
(np(i)−np(i−1))+Ha(i).

(6.35)

Substitute Eq. (6.34) into Eq. (6.35), the relation between departure headway Hd(i) and
arrival headway Ha(i) can be derived as:

Hd(i) =


(

1+
β

2(α −β )

)
Ha(i) =

2α −β

2(α −β )
Ha(i), if i ∈ [2,N1],(

1− γ

2(α + γ)

)
Ha(i) =

2α + γ

2(α + γ)
Ha(i), if i ∈ [N1 +2,N],

(6.36)

The second statement of the lemma is therefore proved.
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Under the situation described in Lemma 1, the riding passenger number on each train
i is actually determined since combining Eq. (6.33) with Np constraint, there are N + 1
unknown variables and N +1 linearly independent equations. Therefore, λ and all np(i) can
be uniquely solved if Ha(i) for any i is given. Note, t∗− t0 here can be obtained as:

t∗− t0 =
N1

∑
i=2

Hd(i) =
2α −β

2(α −β )

N1

∑
i=2

Ha(i). (6.37a)

ted − t∗ =
N

∑
i=N1+2

Hd(i) =
2α + γ

2(α + γ)

N

∑
i=N1+2

Ha(i). (6.37b)

Since solving the general case of Eq. (6.33) with Np constraint is tedious, a special case
when Ha(i)≡ Ha is picked up as an example to show the explicit calculation result. When
Ha is constant, N1 and N2 can be solved by jointly using the equal boundary cost (i.e., Eq.
(6.2)) and Eq. (6.37) as:

N1 =
γ(2α + γ)(α −β )

(β + γ) [α(2α −β + γ)−βγ]
N, (6.38a)

N2 =
β (2α −β )(α + γ)

(β + γ) [α(2α −β + γ)−βγ]
N, (6.38b)

By summing all the equations in Eq. (6.33), the Lagrange multiplier λ under constant Ha

case can be solved as:

λ =
βγ [αγ(2α + γ)+(α(2α −β + γ)−βγ)(2α −β )]

2(β + γ)(α(2α −β + γ)−βγ)(2α −β + γ)
NHa

− βγ

2(2α −β + γ)
Ha +2µ

LNp

lN

(
α − βγ

2α −β + γ

)
.

(6.39)

In order to reach the minimum SC, the first-best (or continuous) pricing scheme can be
derived considering the total travel cost (TC), or user cost (UC) hereinafter as:

UCEP(t, t∗) = α
(
T EP(t)−T0

)
+ s(t, t∗)+ p(t). (6.40)

Here, the superscript "EP" means equilibrium with first-best pricing. Since directly solving
T EP(t) relates to Eq. (6.33) and makes the derivation difficult, it is easier to first rewrite Eq.
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(6.36) using inflow and outflow as:

d(t) =


2(α −β )

2α −β
a(t −T (t)) =

(
1− β

2α −β

)
a(t −T (t)), if t ∈ [t0, t∗],

2(α + γ)

2α + γ)
a(t −T (t)) =

(
1+

γ

2α + γ

)
a(t −T (t)), if t ∈ (t∗, ted].

(6.41)

Meanwhile, notice the FIFO principle that D(t) = A(t −T (t)), differentiate this equation and
compare with Eq. (6.41), it can be understood that the derivatives of T EP can be obtained as:

dT EP(t)
dt

=


β

2α −β
, if t ∈ [t0, t∗],

− γ

2α + γ
, if t ∈ (t∗, ted].

(6.42)

Then, since the individual cost does not change under equilibrium, ∂UCEP(t, t∗)/∂ t = 0, the
derivatives of first-best pricing can be derived as:

d p(t)
dt

=


(α −β )β

2α −β
, if t ∈ [t0, t∗],

− (α + γ)γ

2α + γ
, if t ∈ (t∗, ted].

(6.43)

Finally, consider the boundary condition of np(N1) and T (N1), the first-best pricing p(t) can
be expressed as:

p(t) =


(α −β )β

2α −β
(t − t∗)+ pm, if t ∈ [t0, t∗],

− γ

2α + γ
(t − t∗)+ pm, if t ∈ (t∗, ted],

(6.44)

where

pm =

(
1+

α

2(α −β )

)
β (t∗− t0)−

α

(
λ +β ∑

N1
i=1 Ha(i)

)
2(α −β )

=

(
1+

α

2(α −β )

)
· 2α −β

2(α −β )

N1

∑
i=2

Ha(i)−
α

(
λ +β ∑

N1
i=1 Ha(i)

)
2(α −β )

.

(6.45)

For a better understanding, the UCEP, SDC and p(t) under first-best pricing are depicted
in Fig. 6.6. p(t0) and p(ted) can be determined when N is given or by vertically move p(t)
upward or downward, N can be raised or reduced. But since np(1) and np(N) are undoubtedly
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positive according to the assumption, p(t0)< 0 and p(ted)< 0 should hold even in the general
case. This indicates that giving time-dependent reward to a portion of passengers departing
at the shoulder of the rush hours might be necessary to reach the minimum social cost for a
urban rail transit system. This is a rather novel insight from this study.
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Fig. 6.6 Costs under first-best pricing.

6.2.2 Comparison of UE with/without pricing

This subsection first theoretically compares the change of travel time and riding passenger
number under user equilibrium with or without first-best pricing. Then, a numerical example
is given to compare the cost change when the first-best pricing is applied.

The derivative of travel time in UE and EP have been derived in Chapter 5 and previous
subsection. Here, it is clearly compared again as:

dTUE(t)
dt

=


β

α
, if t ∈ [t0, t∗],

− γ

α
, if t ∈ (t∗, ted].

(6.46a)

dT EP(t)
dt

=


β

2α −β
, if t ∈ [t0, t∗],

− γ

2α + γ
, if t ∈ (t∗, ted].

(6.46b)

It can be understood from Eq. (6.46) that the absolute value of travel time derivatives for
EP are always smaller than those for UE as long as α > β holds. This means passenger
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arrival influence is weakened in EP compared to UE. Besides, the riding passenger difference
between successive two trains for UE and EP can also be summarized as:

nUE
p (i)−nUE

p (i−1) =


βHa(i)

(α −β )µL/l
, if i ∈ [2,N1],

− γHa(i)
(α + γ)µL/l

, if i ∈ [N1 +2,N].

(6.47a)

nEP
p (i)−nEP

p (i−1) =


βHa(i)

2(α −β )µL/l
, if i ∈ [2,N1],

− γHa(i)
2(α + γ)µL/l

, if i ∈ [N1 +2,N].

(6.47b)

It can be seen from Eq. (6.47) that the increment/decrement of np for EP is exactly half of
that for UE. This indicates that passengers are more evenly distributed in the dispatched
trains when first-best pricing is applied.

Next, UE and EP are numerically compared by the change of total TTC, SDC and
UC. The environmental parameters still take the same values as in Table 5.1. Train inflow
a(t) ≡ 12 tr/h (i.e., Ha ≡ 5 min). A comparison when number of trains used to carry Np

is the same (i.e., NEP = NUE) are shown in Table 6.2. It can be confirmed from Table 6.2

Table 6.2 Comparison of total costs between UE and EP when NEP = NUE .

∑T TC
(104 $)

∑SDC
(104 $)

SC
(104 $)

∑UC
(104 $)

UE 33.69 19.59 53.29 53.29
EP 26.28 16.53 42.80 58.67

Change -22.0% -15.7% -19.7% +10.1%

the sum of TTC and SDC decreased 22% and 15.7% respectively from UE to EP when
NEP = NUE . As a result, the sum of social cost declined around 20%. This is a remarkable
reduction from the comparison. To realize the change from UE to EP, a maximum pm = 5.3$
is charged from passengers who want to leave the system on time. Due to this first-best
pricing, the user cost increased around 10%.

Further, the sensitivity of pricing amount (or equivalently NEP) is numerically analyzed.
First, it has to be clarified that by changing the setting of boundary p, the equilibrium period
may be extended or shortened as can be understood from Fig. 6.7. If p(t) is raised up or
pulled down as a whole, the TTC would act in an opposite way because their sum should
be zero at the t0 and ted (otherwise equilibrium cost is not continuous at the boundary).
When TTC is raised up or pulled down as a whole, np(i) in each train increases or decreases
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accordingly. As a result, the number of train NEP needed to carry Np passengers decreases or
increases.
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Fig. 6.7 An illustration of pricing amount sensitivity.

Moreover, from the perspective of NEP, the travel costs under different NEP are compared
with the no pricing equilibrium in Fig. 6.8. First, it can be observed that social cost is not
sensitive to the change of NEP because sum of TTC and SDC almost neutralizes as long
as the first-best pricing is implemented. In fact, SC slightly decreases with the increase of
NEP until np(1) = 0 or np(NEP) = 0. Second, user cost can be found to change sensitively
with NEP, this is reasonable because when more trains are used to carry the same amount
of passengers, the pricing value should be higher to force the passengers to use earlier or
later trains. As a result, UC increases. Third, on the contrary, to excessively reduce NEP by
shifting p(t) lower leads to heavier in-vehicle crowding. Therefore, governor or operator
should balance the social cost, user cost and in-vehicle crowding when setting the amount of
first-best pricing.

6.2.3 Coarse pricing

In this section, a more practical pricing scheme: coarse pricing is discussed and evaluated.
Through the numerical experiments, Pareto-improvement is found to exist by appropriately
implementing the coarse pricing scheme.

Since the first-best pricing derived in previous section involves practical difficulties in col-
lecting time-dependent fare or giving time-dependent reward, an approximation, step-tolling,
has been widely discussed for road traffic context (Arnott et al., 1990b; Laih, 1994; Lindsey
et al., 2012). With regard to rail transit, studies on fare scheme design and optimization
are still at the beginning stage compared to road traffic (De Palma et al., 2017; Yang and
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Fig. 6.8 Sensitivity of NEP under first-best pricing

Tang, 2018; Zhang et al., 2020). Inspired by the first-best pricing derived above and previous
step-tolling studies, a single-step pricing scheme, i.e., coarse pricing is evaluated in this
subsection.

When a coarse pricing scheme is introduced, user cost (UC) can be written as the
following equation (for simplicity, only consider the case when t∗i = t∗ for any i):

UC(t, t∗) = α (T (t)−T0)+ s(t, t∗)± p, if t ∈ [t+, t−], (6.48)

where +p > 0 refers to the single-step surcharge, −p < 0 refers to the single-step reward.
t+ and t− are the start and end time of the pricing period, respectively. In order to keep UC
unchanged during [t+, t−], sudden change of TTC will inevitably appear at t+ and t−. An
illustration of costs when coarse pricing is applied is shown in Fig. (6.9).

Further, since TTC is proportional to travel time T (t), the change of travel time at time
boundary of pricing scheme ∆T = p/α has to be appropriately interpreted. For road traffic,
Arnott et al. (1990b) proposed the concept of mass departures, Laih (1994) assumed the
existence of additional lanes for drivers to wait. Lindsey et al. (2012) considered a more
practical braking model to describe this phenomenon. For rail transit, mass departures are
physically not possible since trains are cruising on the same track. Also, multiple trains
(∆n ≥ 3) departing with minimum headway to realize ∆T (i.e., ∆n(Hd − τ) = p/α) will
break the equilibrium requirement since at least two trains would appear at one side of
time boundary with minimum headway τ , which is different from Hd. Note, the coarse
pricing is not valid for the situation when trains are departing with minimum headway. The
only feasible situation is that the change of travel time due to pricing is carried out by the
two trains departing just before and after the time boundary. An example of surcharge is
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Fig. 6.9 Travel costs when coarse pricing applied

shown in Fig. 6.10. It can observed that the headway of train m+1 and n+1 departing just
after t+ and t− decreases/increases p/α . In this way, the sudden change of TTC is realized
without breaking the equilibrium. Meanwhile, a constraint of p/α exists due to the FIFO
and minimum headway as:

p
α

≤ Hd − τ. (6.49)
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Then, when an appropriate pricing value p is set, solution to the equilibrium model is
basically the same with original problem, but only modifies the travel time with ∆T = p/α

and corresponding k(i) for trains departing between [t+, t−]. The effectiveness of coarse
pricing are evaluated by the following three indicators in this study:

• Social cost (SC) change (%) compared to no pricing situation;

• User cost (UC) change (%) compared to no pricing situation;

• Standard deviation (STDEV) of riding passenger number change (%) compared to no
pricing situation.

First, SC change evaluates whether the social welfare is improved or not since the monetary
circulation between passengers and the operator is neutral from a social perspective. Second,
UC change assess whether passengers benefit or not when the pricing scheme is implemented.
Third, the change of np STDEV is employed to check whether the in-vehicle crowding is
relieved or not because STDEV of np reflects the evenness of passenger distribution among
dispatched trains. The decrease of this STDEV indicates the difference of np between
congested and uncongested trains is narrowed.

Since the effect of pricing value is obvious and limited by Eq. (6.49), it is more interesting
to examine how the temporal settings affect the effectiveness of the coarse pricing. The
duration (i.e., t+− t−) and end time of the coarse pricing are picked here as the indicators
of temporal settings. Fig. 6.11 shows a series of numerical experiments of SC and UC
change for the surcharge case p = 2 $. The train inflow in these scenarios takes the constant
value a(t) = 12 tr/h. The color represents the percentage of cost change as illustrated by the
legend. On one hand, it can be observed from Fig. 6.11a that SC change strongly depends
on the end time of surcharge. When the surcharge covers the both side of t∗ and ends at an
appropriate time after t∗ (in this example 20 min), its effect is maximized. This is reasonable
because when surcharge ends before t∗, the most congested trains carrying passengers who
want to be on time are not surcharged, thus the reduction of TTC is weakened. The first-best
pricing p(t) in Fig. 6.6 also suggests similar insight that the surcharge should be higher
around t∗. On the other hand, the user cost in Fig. 6.11b basically increases as long as the
surcharge is imposed. The longer the duration, the earlier or later it ends, the higher user cost
would be.

To further interpret the interior reason of UC and SC change, UC is decomposed to the
sum of TTC, SDC and total pricing cost (TP). Fig. 6.12 shows an example of each cost
component change under a given duration (i.e., t−− t+ = 100 min in Fig. 6.12a) or under
a given end time (i.e., t−− t∗ = 20 min in Fig. 6.12b). On one hand, it can be observed
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Fig. 6.11 Cost sensitivity to temporal settings of surcharge.

from Fig. 6.12a that when the end time of 100 min surcharge moves from the left side to
the right side of t∗, TP significantly increases while TTC first decreases until 260 min (i.e.,
20 min after t∗) and then inversely increases. The increase of TP means more passengers
are surcharged. The change of TTC indicates that there may exist an optimal end time of
the surcharge, if it ends further later, the surcharge will cover all late departed commuters
and forces some of them to use earlier trains including those that have already been heavily
congested. As a result, riding passenger number difference is not efficiently reduced and
TTC inversely increases. SDC in this comparison slightly increases or decreases and does
not show a consistent result. On the other hand, when the end time of the surcharge is fixed
to cover the both sides of t∗ and the duration increases as shown in Fig. 6.12b, it can be
observed that the TTC slightly declines and then rises with duration extension while SDC
almost remains unchanged. This indicates that when the surcharge coves an appropriate
period of both sides of t∗, it is not efficient to excessively extend the duration of surcharge
(in this example, a duration around 100 min is optimal).

Similarly, the sensitivity of cost change is also conducted for the reward case as shown in
Fig. 6.13 (Reward p = 2 $ only given before t∗ and train inflow still takes the constant value
a(t) = 12 tr/h). On one hand, it can be understood from Fig. 6.13a that SC change varies in
a relatively small range compared to surcharge depending on both end time and duration,
and there is an optimal end time and duration around (170 min, 90 min). When the end time
of reward approaches t∗, SC inversely increase. This is because giving reward to passengers
who should be surcharged according to first-best pricing would encourage passengers to
utilize congested trains, as a result, TTC and SC increase. On the other hand, UC generally
decreases as long as the reward is given as can be confirmed from Fig. 6.13b. The longer the
duration, the earlier it ends, the lower user cost would be. However, there also exists a limit
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Fig. 6.12 An example of cost breakdown for surcharge case.

for the reduction of UC around the left top of Fig. 6.13b since giving reward before the start
of commute does not have effect.
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Fig. 6.13 Cost sensitivity to temporal settings of reward.

An example of cost breakdown for reward case is shown in Fig. 6.14 to further understand
the reward effect on different components of the cost. On one hand, when the duration of the
reward is fixed, it can be seen from Fig. 6.14a that TTC significantly decreases when the
reward ends earlier before t∗. This is because the reward encourages some of the passengers to
use the earlier trains, as a result, the difference of riding passenger number between congested
and uncongested trains narrows, thus TTC declines. In addition, it can also be observed
that when the reward ends earlier, SDC increases. This is reasonable because when more
passengers are encouraged to ride on earlier trains, their schedule delay undoubtedly raise.
Therefore, when the increase of SDC just exceeds the decrease of TTC, SC is minimized
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(in this example around 170 min). On the other hand, when the end time of reward is fixed
as 70 min before t∗, TTC decreases with the extension of the reward period. The reason is
the same as explained before. However, the minimum of SDC appears at 70 min, which is
also the minimum of SC. This result indicates that the use of reward is not the longer the
better. If the reward period is too long, the increase of SDC may exceed the decrease of TTC.
Therefore, an appropriate period of reward sufficiently earlier before t∗ is the most desirable
situation. This conclusion is also consistent with the implication of first-best pricing in Fig.
6.6.
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Fig. 6.14 An example of cost breakdown for reward case.

In addition, change of np STDEV for both surcharge and reward cases are shown in Fig.
6.15. It can be observed from Fig. 6.15a that when surcharged is imposed, the change of np

STDEV behaves similar as that of SC in Fig. 6.11a. The decrease of np STDEV indicates
that the in-vehicle crowding is more evenly distributed. Differently, np STDEV change for
reward case seems sensitive to both the pricing duration and end time as can be understood
from Fig. 6.15b. np STDEV even significantly increases when the reward lasts 30 min and
ends 20 min before t∗. To conclude, the change of np STDEV is basically consistent with SC
change, which implies that to reduce the SC basically will also alleviate in-vehicle crowding.

The implications from the above numerical experiments can be concluded as:

• By implementing one-step coarse pricing without breaking the user equilibrium, social
cost can be reduced up to 10%.

• The surcharge period should cover both sides of t∗, while its duration is not necessary
to be excessively long.
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Fig. 6.15 Sensitivity of riding passenger number standard deviation.

• The reward period should end before t∗ with an appropriate time interval, while its
duration has an optimal length from the perspective of social cost.

6.3 Joint pricing for different timetable patterns

This subsection discusses the effectiveness of coarse pricing scheme that jointly imposes
surcharge and gives reward. Inspired by the first-best pricing and previous numerical
examples that surcharge raises the UC but reward reduces the UC, if giving the reward
at the very beginning of the rush hours and then imposing the surcharge, both UC and SC
may decrease while UC − SC > 0. This indicates a Pareto-improvement situation since
both passengers and the operator benefit from the implementation of the pricing. Fig.
6.16a presents such a situation that 2 $ reward is given to passengers who depart during
[110,170] min, and 2 $ surcharge is imposed on passengers who depart during [180,260] min.
The train inflow takes the constant value a(t) = 12 tr/h. Under this pricing scheme, the
comparison of riding passenger number on each train with no pricing situation is drawn in
Fig. 6.16b. As can be seen from Fig. 6.16b, motivated by the pricing, a portion of passengers
gave up utilizing the most congested trains and rode on the trains at the both shoulders of the
peak hours. As a result, SC decreased 12.3%, TPN decreased 15.5% compared to no pricing
situation. Meanwhile, although very slight, UC also reduced 1.5%. Since there are more
passengers been surcharged than been rewarded, the operator gained from total surcharge
minus total reward, equals around 5.4×104 $ in this example. This result suggested that
both passengers and the operator benefited from the implementation of this pricing scheme,
which is a Pareto-improvement.
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Fig. 6.16 Cost and riding passenger number comparison when surcharge and reward jointly
implemented.

Further, the joint pricing experiments were also conducted for different timetable patterns
listed in Table 6.1. Due to the constraint of FIFO principle under equilibrium explained in
Eq. (6.49), feasible value of surcharge/reward varies according to the scenario. This value is
calculated to approach the constraint, and for simplicity, the value of surcharge and reward
are set the same. The duration of reward is set for those who depart during [120,160] min
and the surcharge during [180,260] min. Train inflow takes the same setting as in Table 6.1.
The comparison results of various costs for different timetable patterns under joint pricing is
listed in Table 6.3.

Table 6.3 Comparison of costs for different timetable patterns under joint coarse pricing.

Scenario p
($)

∑T TC
(104 $)

∑SDC
(104 $)

SC
(104 $)

∑UC
(104 $)

T P
(104 $)

OPM 1.9 30.27
(−9.2%)

17.04
(+5.9%)

47.31
(−4.3%)

52.38
(+6.0%)

5.07

CON 2.0 31.17
(−18.2%)

16.71
(−2.3%)

47.88
(−13.3%)

53.40
(−3.3%)

5.52

PR1 1.3 31.88
(−3.7%)

19.04
(+2.8%)

50.91
(−1.3%)

54.40
(+5.4%)

3.49

PR2 1.0 32.01
(−13.1%)

19.84
(−8.0%)

51.84
(−11.2%)

54.80
(−6.2%)

2.96

PR3 1.3 32.72
(−6.2%)

16.82
(+0.6%)

49.55
(−4.0%)

52.80
(+2.3%)

3.25

Np = 30000 in all scenarios. The percentages in the parentheses indicate the change compared to no pricing
case.
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First, it can be seen that TTC in all scenarios decrease as long as the coarse pricing is
jointly implemented. The maximum reduction comes from constant timetable scenario, and
this may due to the largest decrements of riding passenger number difference among the
dispatched trains. However, the change of SDC does not show a consistent result when coarse
pricing is implemented. Next, social cost, which is a sum of TTC and SDC, also declines in
all scenarios. This further confirms that the decrease of TTC usually exceeds the increase of
SDC (if any) as long as the coarse pricing is appropriately designed, and as a result, social
cost will be reduced. Then, similar like SDC, user cost may increase or decrease depending
on the setting of the timetable. For scenarios that UC decrease, Pareto-improvement is
realized since positive TP will be the additional revenue for the operator, and if UC also
drops, both the passengers (as a group) and the operator benefit from the implication of coarse
pricing. The sum of pricing value, TP, is always positive since passengers who are surcharged
are significantly more than those who are given the reward. In addition, the amount of TP
can be observed to be approximately proportional to the amount of surcharge/reward (i.e., p).

It can also be concluded from the above comparison that coarse pricing mainly works
on the reduction of TTC. If TTC is originally not absurdly high due to reasonable timetable
setting (e.g., OPM and PR1 scenarios), the effect of coarse pricing is relatively insignificant
(SC only declines around 4% and 1% for OPM and PR1 scenarios). In these situations,
multi-steps pricing scheme can be further considered.

To conclude, by the proposed model, this section numerically applied a single-step pricing
scheme including surcharge, reward and their combinations to derive the policy implication
for the demand management. It is found that the effectiveness of the pricing scheme is
strongly dependent on the temporal settings of the scheme, and if appropriately designed,
Pareto-improvement situation exists which benefits both passengers and the operator.

6.4 Brief summary

By applying the proposed model, three issues are investigated in this chapter. First, optimal
peak/off-peak timetable which minimizes the social cost (defined as the sum of travel time
cost and schedule delay cost) is explored. An optimum peak/off-peak timetable in free-flow
regime of train-FD is proposed and numerically compared with different timetable patterns.
Second, the user equilibrium under first-best pricing scheme is theoretically derived and
numerically compared with the user equilibrium without pricing. Third, because the first-best
pricing scheme requires time varying pricing which is difficult to realize in real world, an
appropriate single-step coarse pricing scheme is specified and its effectiveness is numerically
evaluated.
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If all dispatched trains operate in free-flow regime of train-FD, peak/off-peak timetable
is found to be optimized when average train flow before and after desired departure time
are the same, and the flow of train with maximum passenger concentration reaches the
critical state of train-FD. It is proved that the user equilibrium under first-best pricing scheme
can significantly reduce the social cost by flattening the change rate of riding passenger
number among dispatched trains compared with the user equilibrium without pricing. Riding
passenger number difference between successive trains under first-best pricing is exactly half
of that in the equilibrium without pricing. The effectiveness of single-step coarse pricing is
found to strongly depend on the temporal design of the scheme. The appropriately designed
coarse pricing scheme without breaking the equilibrium shows an acceptable reduction of
social cost compared to the first-best one. Finally, a complex pricing scheme by jointly
giving reward and imposing surcharge is examined, and it is found that a Pareto-improvement
situation may occur depending on the timetable pattern with significant reduction of social
cost.





Chapter 7

Conclusions and future work

This chapter summarizes the findings and conclusions from the previous chapters and presents
the probable directions to be improved for the future work.

7.1 Findings and conclusions

This study proposed a macroscopic model capable of describing distribution of passenger
arrivals and rail transit operation given their dynamic interaction based on equilibrium theory
and a train fundamental diagram traffic model. Through the literature review on basics of
train operation, macroscopic modelling, optimization and management from both supply
and demand sides, the major research gap are defined as the lack of an appropriate model
that simultaneously considers the passenger congestion influence on railway operation and
dynamic interaction between demand distribution and supply information. The findings and
conclusions from Chapter 3 to Chapter 6 are separately summarized as follows:

Chapter 3 investigated a traffic flow model and its variants for urban rail transit (i.e., train
fundamental diagram by Seo et al. 2017) with empirical data from Boston subway system
to comprehensively confirm the passenger congestion influence on railway operation. The
conclusions can be summarized as:

• The assumption of train dwell time at stations plays a key role in model’s description
of passenger congestion influence.

• By analyzing the operation data of Boston subway red line, passenger congestion influ-
ence to deteriorate the performance of railway system was confirmed to be significant.
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• By comparing three variants of train-FD models, the original one which assumes train
dwell time monotonically increasing with boarding passenger number, was found to
be sufficient to describe passenger congestion influence from a macroscopic view.

Chapter 4 expanded the steady state train-FD to the dynamic case. Two approaches:
fluid-based one developed from exit-flow model and particle-based one originally developed
in this study, are considered to describe the dynamics of railway operation when inputs
are time-dependent. Numerical examples are given to show the performance of these two
dynamic models. A micro-simulation is also developed to verify the results calculated from
the two dynamics models. The findings can be summarized as:

• Both approaches can acceptably approximate the dynamics of rail transit system when
their assumptions hold.

• Fluid-based model is more robust for the forward problem (i.e., when train and passen-
ger inflows are given information) compared to particle-based one, but it has intrinsic
incompatibility when jointly employed with equilibrium theory.

• Particle-based model has a strong assumption that the whole trip of a train can be
approximated as a steady-state, so it is only applicable to a short section of railway line.
However, it works well with equilibrium theory and is more tractable for the analysis
of management strategies.

Chapter 5 introduced the travel cost assumption and further derived the equilibrium
distribution of passenger arrivals for the morning commute problem from the particle-based
dynamic model by employing the inverse function of train-FD. The solution method and
existence conditions of the equilibrium are given, and characteristics of the equilibrium are
discussed based on a series of numerical experiments. The findings on characteristics of the
equilibrium passenger arrivals can be concluded as:

• Cost function assumption, total travel demand and train timetable all have significant
influence on the characteristics of the passenger arrival distributions.

• There may exist one or two peaks of passenger arrivals depending on the cost assump-
tion and total travel demand.

• Conventional peak/off-peak timetable pattern is numerically confirmed to be effective
in shortening the morning commute period and relieving the in-vehicle crowding due
to more efficient use of dispatched trains.
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Chapter 6 applied the proposed equilibrium model to evaluate management strategies
from both demand and supply sides. The optimization problem of peak/off-peak timetable
pattern is first discussed in a general situation. Then, a more conservative optimum condition
only in free-flow regime of train-FD is proposed and numerically compared with other
timetable patterns. Next, user equilibrium under first-best pricing is analytically derived and
compared with equilibrium without pricing. Besides, a one-step coarse pricing (including
surcharge, reward and their combinations) is proposed and numerically evaluated based on
indicators such as social cost, user cost and in-vehicle crowding. Finally, the coarse pricing
is also applied to different timetable patterns. The findings can be summarized as:

• The optimal peak/off-peak timetable which minimizes the social cost exists and its
values mainly depend on the relation among total travel demand, available train fleet
and coefficients of passengers’ values of time.

• Optimal peak/off-peak timetable only operated in free-flow regime of train-FD pro-
duces shows an acceptable reduction of social cost compared to other timetables, and
it also avoids the unstable operation in congested regime of train-FD which may lead
to bunching phenomenon.

• User equilibrium under first-best pricing scheme can significantly reduce the social
cost by flattening the change rate of riding passenger number among dispatched trains.
Riding passenger number difference between successive trains under first-best pricing
is exactly half of that in the equilibrium without pricing.

• The effectiveness of single-step coarse pricing is found to strongly depend on the
temporal design of the scheme. The appropriately designed coarse pricing scheme
without breaking the equilibrium shows an acceptable reduction of social cost compared
to the first-best one.

• The surcharge period of coarse pricing should cover both sides of desired departure
time from the railway system, while its duration is not necessary to be excessively long.
The reward period should end before desired departure time with an appropriate time
interval, while its duration has an optimal length from the perspective of social cost.

• By jointly giving reward and imposing surcharge, a Pareto-improvement situation may
occur depending on the timetable pattern. The social cost reduction under joint coarse
pricing is significant.

Nevertheless, the findings and conclusions derived above still deserve further investigation
since the proposed model made several very ideal assumptions like homogeneity of railway
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system and passengers, unlimited capacity of train and station, steady state during the whole
trip of a train. When some of these assumptions do not hold, the quantitative findings and
conclusions may change to some extent, but qualitative results should still hold.

7.2 Future work

To the end of this study, there are still many issues that can be improved to further strengthen
the reliability of the findings above and make the insights more applicable to practice. Here,
three directions of future work can be considered:

• First, improvement and further investigation of the train-FD should be conducted. On
one hand, traffic flow model used in this study assumes a homogeneous railway system,
which can be improved to be more realistic by developing a train-FD model also
applicable for heterogeneous railway system. On the other hand, the newly proposed
train-FD variant which assumes a first constant and then increasing relation between
dwell time and boarding passenger number deserves further investigation by station
specific data.

• Second, the equilibrium can be extended from two aspects. One is to consider the
heterogeneity of commuting passengers which means the passenger’s value of time
should be various and group-dependent. Another aspect is to consider including the
in-vehicle crowding cost into the cost function. These improvements may improve the
reliability of the proposed model.

• Third, two probable issues can be considered to improve the practicality of the proposed
model. One is to expand the single railway line system to simple network since
passengers’ transfer at major stations plays a non-negligible role in morning commute.
Another one is to conduct case studies on timetable optimization and pricing schemes
with the proposed model.
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