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Abstract

Theoretical study on the dynamics of the vortices and the Josephson junctions of
superconductors

by

Kou Misaki

Doctor of Engineering in Applied Physics

University of Tokyo, Hongo

In this thesis, we will discuss the dynamics of the vortices in the superconductors and
the Josephson phase. We will first discuss the suppression of superfluidity by dissipa-
tion and its relevance to “failed superconductor”, and then discuss the nonreciprocity
of the Josephson junctions where the two bulk superconductors exhibits different charge
response property.

First, we will discuss the low temperature thermodynamic phase of superconductors
in the presence of the finite magnetic field. In highly crystalline superconductors with
finite magnetic field, experiments report the thermodynamic phase with very low resis-
tance (R � Rq = h/(2e)2, where Rq is the quantum resistance) down to the very low
temperature. The theoretical understanding of this low temperature phase known as “the
failed superconductor” remains unsettled.

Since the motion of vortices leads to the resistance, we believe that the dynamics of
the vortices is important in understanding the failed superconductors. The difficulty of
the theoretical understanding of the failed superconductor lies in the fact that, since the
vortices are known to behave as bosons, they exhibit the superfluidity at low temperature.
The superfluid phase of vortices physically means that the system becomes insulator, so
the resistance cannot remain low at low temperature.

However, we will argue that, although the vortices are bosons, they fail to exhibit
superfluidity because of the low energy continuum degrees of freedom inside the normal
core, which acts as the source of dissipation. We will show this suppression of superfluidity
by dissipation both in the numerical and the field-theoretical calculation, in the first-
quantized and the second-quantized formulation, respectively. The physical argument for
the suppression of superfluidity, the importance of the Galilean invariance breaking will
be further discussed.

Our theory predict that, the failed superconductor exists for the moderately clean
regime ∆2/εF � 1/τ, kBT , where ∆ is the superconducting gap, εF is the Fermi energy,
τ is the relaxation time, T is the temperature of the system, while it disappears for the
superclean regime ∆2/εF � 1/τ, kBT . This prediction can be verified in experiments.

Secondly, we will discuss the theory of Josephson effect when the two bulk super-
conductors show different charge response property. In this case, the system lacks the
inversion symmetry, and the shape of the I-V curve is not antisymmetric under the sign
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change of the current bias I, i.e., V (I) 6= −V (−I). This asymmetry of I-V curve is
called the nonreciprocity. The important example of the nonreciprocal system is the p-n
junction, where the difference of the dopant of the two bulk semiconductors lead to the
drastically different behavior for positive and negative bias case.

The aim of our study is to extend this nonreciprocity caused by the difference of the
bulk materials in normal junction system to the Josephson junctions. We will discuss
the nonreciprocity both for the classical and quantum dynamics of the superconducting
phase variable. In the classical case, the nonreciprocity is realized for the relatively small
junction where the dynamics of the superconducting phase variable is underdamped.
In the absence of the thermal fluctuation, we analyze the dynamics using the methods
developed in the dynamical systems: We will show that the nonreciprocity is enhanced
near the critical external current where the bifurcation of the dynamics occurs. For finite
temperature case, the nonreciprocity in the distribution function of the energy will be
discussed. In this case, not only the average value of V but also the fluctuation of V
exhibits the nonreciprocity. For the quantum case, we will discuss the nonreciprocal
I-V curve caused by the nonreciprocal Bloch oscillation and the nonreciprocal Zener
tunneling. The experimental detection of the nonreciprocity from the 2ω measurement
will be further discussed. We will show that the experimentally detectable 2ω response
V2ω is expected for the Josephson junctions with parameters realizable in experiments.
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Chapter 1

Introduction

The important effective degree of freedom inside the superconductor is the supercon-
ducting phase, which emerges because of the coherence of the wavefunction of cooper
pairs established below the superconducting transition temperature. Although the su-
perconducting phase is gauge dependent and therefore not measurable in experiments,
the difference of the phases between two superconductors is well-defined. In Josephson
junctions where the two superconductors are separated by the normal state thin film,
I − V curve is determined by the dynamics of the superconducting phase difference,
which is described by the Josephson relation,~ϕ̇ = 2eV

Q̇+ Ic sinϕ+
V

R
= Ix,

(1.1)

where V is the voltage drop, ϕ is the phase difference, i.e., Josephson phase, e is the
charge of the electron, Q is the charge accumulated on the junction, Ic is the critical
current of the superconductor, R is the shunt resistance, and Ix is the external current.
The fact that the experimentally obtained I−V curve matches with the prediction of the
theory of Josephson effect is an important experimental evidence of the coherence inside
the superconductors.

Another important feature of the superconductor is the rigidity against the magnetic
field, known as “generalized rigidity” à la P. W. Anderson [1]. The magnetic field inside
the superconductor obeys the London equation, ∇2B = [4πe2ns/(mc

2)]B, where B is the
magnetic field, m is the electron mass, c is the speed of light, e is the electric charge of the
electron, and ns is the superfluid density. According to this equation, the magnetic field
cannot penetrate into the bulk superconductor beyond the so-called London penetration
depth, λ =

√
mc2/(4πe2ns). The left hand side of the London equation comes from the

usual Maxwell term, while the right hand side is peculiar to the superconducting system,
and comes from the generalized rigidity.

The existence of the low energy superconducting phase degree of freedom and the
generalized rigidity can both be understood as consequences of the spontaneous U(1)
gauge symmetry breaking. The superconducting phase is nothing but the Goldstone
mode associated with the continuous symmetry breaking, and the generalized rigidity
comes from the long ranged nature of the static current-current correlation function.
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Figure 1.1: The schematic phase diagram for (a) type I superconductor and (b) type II
superconductor. “SC”, “Mixed” and “Normal” represent the superconducting phase, the
mixed phase, and the normal phase, respectively.

In addition to the London penetration depth, there is another characteristic length
scale for superconductors: The coherence length ξ = ~vF/(π∆), where vF is the Fermi
velocity and ~ is the Planck constant, determines the characteristic length of the variation
of the superconducting gap ∆. The relative magnitude of these lengths can be quantified
by the dimensionless parameter κ = λ/ξ, which is called the Ginzburg-Landau parameter.
Since the variation of the magnetic field and the superconducting gap occurs at the
boundary between the normal state system and the superconducting system, the value
of κ determines the physical property of this boundary. In particular, the surface energy
of the boundary is positive for κ� 1 and negative for κ� 1. To understand it, here we
consider the system where the region x ≤ 0 is in the normal state, while the region x > 0 is
superconducting with the gap size ∆. When ξ is much larger than λ, the superconducting
gap is smalller than the bulk value ∆ for the region with the width δx ∼ ξ, and because
of the loss of the condensation energy, the surface energy is positive. When ξ is much
smaller than λ, the magnetic field penetrates deep into the bulk superconductor with the
width δx ∼ λ, and because of the reduction of the diamagnetic energy of the Gibbs free
energy, the surface energy is negative. The precise critical value of κ where the surface
energy becomes positive from negative is at κ = 1/

√
2. The system with κ < 1/

√
2 is

called the type I superconductor, while κ > 1/
√

2 is called the type II superconductor.

The consideration of the surface energy of the boundary between the normal state
system and the superconducting system is crucial to understand the property of the su-
perconductor under the application of the magnetic field. For type I superconductors,
because of the Meissner effect, the magnetic field B cannot penetrate into the super-
conductor up to the critical field Hc. Hc satisfies the equation H2

c /8π = fn(T ) − fs(T )
where fn(T ) and fs(T ) is the normal state and the superconducting Helmholtz free energy
density at temperature T , respectively. The schematic phase diagram is shown in Fig.
1.1(a). The situation is qualitatively different for type II superconductor. In this case,
the magnetic field does not penetrate into the superconductor up to the lower critical field
Hc1(T ), and for the magnetic field Hc1(T ) < H < Hc2(T ), the magnetic field penetrates



3

into the system in the form of the thin flux lines. This phase is called the mixed phase.
The thin flux line, called the vortex, has the following property: Each vortex contains
the quantized flux Φ = h/(2e), and the core of the vortex is in the normal state with
vanishing superconducting gap, ∆ = 0. The characteristic length of the variation of the
magnetic flux and the normal core is again λ and ξ, i.e., the magnetic field penetrates
into the superconductor up to the length λ, and the size of the normal core is determined
by ξ. Since each vortex hosts the boundary between the normal and the superconducting
state, for type II system where the surface energy is negative, the state where the vortices
penetrate into the system is favored. The schematic phase diagram of type II supercon-
ductors is shown in Fig. 1.1(b). In particular, for the superconducting thin films, the
effective London penetration depth λ is very large if the film thickness d is sufficiently
small, i.e., if d � λ, so that thin film superconductors are type II superconductors with
very small Hc1 [2].

At low temperature, the vortices should be treated quantum mechanically, so the
particle statistics of the vortices plays a crucial role. In Refs. [3–5], it was pointed out
that the vortices behave as bosons. They also noted that the cooper pairs are bosons too,
and there are two equivalent descriptions of the superconductor as the system of cooper
pairs and the one of vortices. The transformation which relates these two theories is
called “particle-vortex duality”. Now, the possible low temperature phases of the vortices
inside the superconductors can be stated as follows: When the vortices bose condenses,
the superconductivity is destroyed and the system becomes an insulator, while when the
cooper pairs bose condenses, the system remains to be a superconductor.

In Ref. [6], the interesting theoretical argument was given: When we tune a parameter,
the system changes from the superconducting state to the insulating state through the
superconductor-insulator transition point. In the superconducting state, the cooper pairs
condense and the vortices and the antivortices are bound to pairs. In the insulating state,
the vortices condense and the cooper pairs, which are charged objects, are immobile. At
the transition point, neither the cooper pairs nor the vortices are condensed. The authors
of Ref. [6] further assumed that, at the transition point, two descriptions are equivalent
as a bosonic system, i.e., the system is self-dual at the transition point. The important
consequence of this self-duality is the universal value of the resistance at the transition
point. To understand this universal resistance, here we review the relationship between
the motion of the vortex and the resistance of the system [7].

We consider the two dimensional sample with open boundary as is shown in Fig. 1.2.
At t = 0, the vortex penetrates into the system from the left boundary x = 0, and it
moves across the sample from left to right and reaches the right boundary x = L at t = T .
We assume that originally the superconducting phase difference along y direction, ϕ2−ϕ1,
is 0. At t = T , because of the branch cut emanating from the vortex, ϕ2−ϕ1 = 2π. Now
we use the Josephson relation (1.1):

~ϕ̇ = 2eVy ⇔ Vy =
~
2e

2π

T
=

~
2e

2πṅv, (1.2)

where ṅv is the flux of vortices and Vy is the voltage drop along y direction. Here, the
supercurrent along the y direction is given as Iy = (2e)ṅc, where ṅc is the flux of cooper
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Figure 1.2: The motion of the vortex and the time evolution of the phase difference across
the sample. The dashed line represents the branch cut, and the blue arrow with circle
represents the vortex.

pairs. Then, the resistance is given as,

R =
Vy
Iy

=
h

(2e)2

ṅv
ṅc
. (1.3)

Now, if the system is self-dual, we can set ṅv = ṅc to get the universal resistance,

R = Rq =
h

(2e)2
. (1.4)

Early experimental study [8] supported this theoretical proposal of the self duality
and the universal resistance at the transition point. As we can see from the experimental
measurement of the resistance as a function of temperature shown in Fig. 1.3, as we tune
the thickness of the thin film of Bismuth, the system evolves from the superconducting
state to the insulator state. Here, the superconducting state is defined as the state where
the resistance monotonically decreases as T → 0, and the insulating state is the one
where the resistance monotonically increases as T → 0. We can see that these two states
are separated by the single transition point where the resistance approaches constant as
T → 0, and, importantly, its value is very close to the universal value R ∼ Rq.

It turned out that this was not the end of the story. As more and more experimental
studies have been conducted on the highly crystalline thin film superconductors [10],
it turned out that many samples do not show this behavior [11]. Rather than that,
the superconducting state and the insulating state is intervened by the metallic phase
rather than the metallic transition point. For example, Fig. 1.4 shows the experimentally
obtained superconductor-insulator transition of the thin film of ZrNCl as we apply the
magnetic field. As we can see, there is a broad range of the magnetic field where the
resistance approaches constant as T → 0. Therefore, the simple self-duality scenario
proposed in Ref. [6] does not apply to this system. This metallic phase is known as
“failed superconductor” [11].

Theoretically interesting question is the possibility of the metallic phase of bosons at
T = 0, also known as “bose metal”. In the clean system at T = 0, usually only two
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Figure 1.3: The superconductor-insulator transition with the single transition point where
the resistance at the transition point is close to the universal resistance Rq = h/(2e)2 ∼
6.45 kΩ. The transport experiment is conducted for the thin film of Bismuth, and the
number in the figure indicates the thickness of the film. Reproduced with permission
from [8].
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Figure 1.4: The superconductor-insulator transition in the thin film of ZrNCl. As we can
see, the two phases are separated by the metallic phase, where the resistance changes in a
continuous manner, rather than the transition point. The number in the figure represents
the magnetic field applied perpendicularly to the system. Reproduced with permission
from [9].

possibilities of the thermodynamic phase of bosons are considered: The superfluid and
the insulator. In both cases, the resistance cannot be finite: it is either zero or infinity.
We know the two descriptions of the superconducting system from the cooper pair picture
and the vortex picture, but both of them are the bosonic systems, so that it is difficult
to explain the finite resiatance observed in experiments. The theoretical understanding
of this failed superconductor remains unsettled.

Another important feature of the superconducting van der Waals materials is the
effect of the spatial symmetry breaking coming from the underlying crystal structure. In
particular, for the inversion asymmetric materials such as MoS2, the system exhibits the
nonreciprocal response, which is defined as the following response property:

I(V ) 6= −I(−V ), (1.5)

where V is the externally applied voltage, and I is the current response. The nonreciproc-
ity measured in the experiment on 2H stacking of van der Waals crystal MoS2 is shown
in Fig. 1.5F. The nonreciprocity of this material is quantified by γ, which is defined by

R = V/I = R0(1 + γBI), (1.6)

where B is the out-of-plane magnetic field, and R0 is the resistance in the absence of B.
As we can see, the nonreciprocity is enhanced for T . 10K where the system becomes
superconductor. The large value of γ for the temperature region near the mean-field
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Figure 1.5: The second harmonic generation signal from 2H stacking of the two dimen-
sional van der Waals crystal MoS2 in the superconducting phase with the top ionic gate.
Although the 2H stacking of MoS2 is inversion symmetric, the top gate leads to the finite
displacement field along the out-of-plane direction and breaks the inversion symmetry.
The panel A shows the superconducting transition near T ∼ 8 K. R2ω

sheet, which is 2ω
component of the sheet resistance against the applied bias voltage V ω, as a function of
the out-of-plane magnetic field B is shown in the panel B. The panel C shows the mag-
netoresistance for various temperature. The panel D shows the temperature dependence
of the nonreciprocal signal R2ω

sheet. The panel E shows the temperature dependence of
the maximum value of R2ω

sheet as a function of B. If we fit the resistance by the formula
R = R0(1 + γBI), γ quantifies the nonreciprocity intrinsic to the material. γ obtained
by the fitting to the experimentally measured R2ω

sheet as a function of the temperature T
is shown in the panel F. We can see that γ is strongly enhanced in the superconducting
phase. Reproduced with permission from [12].

transition temperature |T − Tc|/Tc . 1 can be understood as the consequence of the
superconducting fluctuation current [12]. As we can see from Fig. 1.5F, in addition to
the enhancement of γ in the region where the fluctuation is large, the value of γ remains to
be large down to T lower than Tc. In this region, the superconductivity is fully developed
and the fluctuation of the order parameter is small. Because of the finite magnetic field
perpendicular to the sample, the resistance in this region is presumably caused by the
motion of unpinned vortices. As is discussed in Ref. [13], the large nonreciprocity in this
region can be understood as the consequence of the classical ratchet effect of the vortices
from the inversion asymmetric crystal potential.
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The natural question to ask is the nonreciprocal nature of the vortex dynamics for
much lower temperature T → 0 where the quantum effect is significant. As we can see
from Fig. 1.5F, γ value exhibits the peak structure at the intermediate temperature scale
T ∼ 5 K, and starts to decrease towards the zero temperature where the quantum effect
is not negligible. The theoretical challenge here is to show that, as is indicated by this
experimental data, the quantum effect suppresses the nonreciprocity. Theoretically, the
quantum effect is important already for the single particle dynamics, where the quantum
dissipation leads to the nontrivial scaling theory of the quantum ratchet [14]. Even more
important quantum effect is the particle statistics: As we have already discussed, since the
vortices are bosons [3–5], at zero temperature without the lattice potential or disorder, the
vortices exhibit superfluidity and the resistance becomes infinite. However, just as ZrNCl
sample shown in Fig. 1.4, at low temperature, the resistance under the application of the
magnetic field B is finite also for MoS2, as is shown in Fig. 1.5C. Therefore, this MoS2

sample at low temperature is also in the failed superconductor phase. To understand the
nonreciprocal nature of the two dimensional highly crystalline superconductors at very
low temperature, we first need to understand the nature of the failed superconductor
phase. In particular, we need to understand why the vortices, which are bosons, do not
condense at very low temperature. We will answer this question in Chapter 2, where we
will show that the dissipation acting on the vortices suppresses the superfluidity.

In addition to the nonreciprocity caused by the dynamics of the vortices, we will con-
sider the nonreciprocity caused by the dynamics of the superconducting phase variable.
In contrast to the highly crystalline superconductors with failed superconductor phase,
early experiments conducted on the dirty superconducting thin films reported the single
transition point between the superconducting and the insulating states [8]. To understand
this behavior, the model where the puddles of superconducting islands are connected by
the resistive shunt, the resistively shunted Josephson junctions, was proposed [15, 16].
This model exhibits the superconductor-insulator transition as a function of the normal
state resistance, and is consistent with the experiments with the single transition point,
although the model is not suitable for the clean superconductors with the failed super-
conducting phase. If the system is inversion asymmetric, we can have a nonreciprocal
response in these dirty superconducting thin films.

In Chapter 3, as a first step to understand the nonreciprocity in this resistively shunted
Josephson junction model, we will consider a much simplified model, where the two su-
perconducting islands are connected by the resistive shunt, i.e., the single Josephson
junction. As we will discuss, by introducing the inversion asymmetry through the quan-
tum capacitance, I − V curve of the system exhibits the nonreciprocity. Moreover, we
will show that this nonreciprocity can be detected by the 2ω component measurement for
the experimentally realizable Josephson junctions. Our result is not only important to
understand the nonreciprocity in the granular superconductor described by the resistively
shunted Josephson junction model, but also is an important step towards the realization
of the Josephson diode consisting of the single Josephson junction.
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Chapter 2

Suppression of superfluidity by
dissipation — An application to
failed superconductor

2.1 Background

In this chapter, we will discuss the suppression of superfluidity of bosons by dissipation
and its application to the understanding of failed superconductors. As we argued in
Chapter 1, the theoretical difficulty of failed superconductors lies in the fact that the
vortices are bosons, which usually condenses at very low temperature and leads to the
diverging resistance, which contradicts the finite resistance.

We believe that, what is crucial here is the fact that the vortex is not really a pure
bosonic excitation, and it is a composite object. In particular, vortex is always associated
with the normal core with the low energy excitation [17, 18], which leads to the dissipation
to the motion of the vortex known as “mutual friction” [18, 19]. The nature of this
dissipation depends on the amount of the disorder of the system.

In the superconducting phase, according to the disorder strength, the system can be
classified into three regimes: (I) dirty regime, where ∆ � ~/τ , (II) moderately clean
regime, where ∆2/εF � ~/τ � ∆, and (III) superclean regime, where ~/τ � ∆2/εF [20].
Here ∆ and τ represent the superconducting gap and the relaxation time, respectively.
When the energy scale of the disorder ~/τ is comparable to or larger than the supercon-
ducting gap ∆, i.e., in the dirty regime (I), the scattering length l is comparable to or
smaller than the coherence length ξ which characterizes the size of the normal core of the
vortex1 [20], and the disorder potential strongly affects the motion of the vortices. As for
the systems where ~/τ is smaller than ∆, i.e., the regime (II) and (III), in the presence of
the vortex, there is another characteristic energy scale δε = ∆2/εF which is much smaller
than ∆: As is shown in Fig. 2.1, the energy spectrum in the presence of the vortex has
a low energy bound states in the superconducting gap, and its energy difference is given

1The coherence length ξ for the clean superconductor is, up to the numerical factor, ξ ∝ ~vF /∆, and
ξ for the dirty superconductor is ξ ∝

√
~vF l/∆, so that, noting that l = vF τ , the condition ~/τ � ∆

and ~/τ � ∆ is equivalent to the condition ξ � l and ξ � l, respectively [20].
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APPLICATION TO FAILED SUPERCONDUCTOR

Figure 2.1: The energy spectrum of the system in the presence of the single vortex [17,
18, 20]. The linear spectrum with the energy difference δε ∼ ∆2

εF
extends over the whole

range of the superconducting gap from ε = −∆ to ε = ∆. The orange and blue dots
represent the filled and empty energy levels, respectively.

by δε = ∆2/εF [17, 18, 20]. If ~/τ is larger than δε = ∆2/εF , because of the energy
broadening, the bound states energy spectrum can be regarded as continuous, and the
vortex dissipates its energy into these states. This regime, where the motion of the vortex
is dissipative, is called the moderately clean regime (II). If ~/τ is smaller than ∆2/εF ,
the energy broadening is so small that the bound states spectrum should be regarded as
discrete, and the vortex cannot dissipate its energy. This regime is called the superclean
regime (III).

The important difference between the thin film sample of Bismuth (Fig. 1.3) and
ZrNCl (Fig. 1.4) is the strength of disorder, which is characterized by the dimensionless
quantity kF l, where kF is the Fermi wavenumber, or, equivalently, the quantity εF τ/~ ∼
kF l/2, where εF is the Fermi energy. This quantity characterizes the disorder strength in
the normal state, and it can be read off from the resistivity at the normal state. In two
dimensional systems, the Boltzmann theory gives the relation between the resistance and
kF l:

R2D =
h

e2
(kF l)

−1 ∼ 26(kF l)
−1 [kΩ]. (2.1)

From the residual resistance at the normal state around the transition point of Bismuth
shown in Fig. 1.3, we can estimate kF l ∼ 3.7 and εF τ/~ ∼ 1.9. As for ZrNCl sample
shown in Fig. 1.3, we can estimate kF l ∼ 260 and εF τ/~ ∼ 130. Since εF � ∆, the thin
film sample of Bismuth, where εF τ/~ ∼ 1.9, shown in Fig. 1.3, is in the dirty regime.
As for ZrNCl sample shown in Fig. 1.3, since εF ∼ 100 meV [21] and ∆(T = 0) ∼
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1.764kBTC ∼ 2.2 meV,
∆τ

~
=
εF τ

~
∆

εF
∼ 130× 2.2

100
∼ 2.9. (2.2)

Therefore, ZrNCl sample is in the clean regime. Also,

∆2

εF

τ

~
=
εF τ

~

(
∆

εF

)2

∼ 130×
(

2.2

100

)2

∼ 0.063, (2.3)

so ZrNCl sample is in the moderately clean regime. Therefore, although the disorder
strength of ZrNCl sample is weak compared to that of Bismuth sample, the disorder
strength is still large, so that the motion of the vortices is dissipative.

Another important thing is that the application of the magnetic field is equivalent
to the doping of the vortices into the superconductors, so we expect that the density of
vortices increases continuously as we apply the magnetic field. As we noted earlier, the
motion of the vortex causes the voltage drop, so, as the density of the vortex increases,
we expect that the resistance also increases continuously.

Now the problem is whether or not the system of vortices can host the thermodynamic
phase which is neither insulator nor superfluid, at T = 0, in the presence of the dissipation.
Before we move on to answer this question, we will first discuss why the superfluidity is a
rule rather than an exception at T = 0 in bosonic system without the periodic potential or
the disorder. Here the Galilean invariance plays a crucial role [22–25]. The superfluidity
is characterized by the order parameter ρs, which is defined as the free energy difference
of the system when we twist the phase of the wavefunction θ at the system boundary [26,
27]:

∆f := f(∆θ)− f(0) =
1

2
ρs

(
∆θ

L

)2

, (2.4)

where f(∆θ) is the free energy density when we impose the boundary condition that the
phase of the wavefunction should be 0 at x = 0 and ∆θ at x = L. In its local form, the
expression becomes

f(θ(~r)) =
1

2
ρs(∇θ)2. (2.5)

When the system is in the superfluid state, the low energy effective theory is governed
by the gapless Goldstone mode, which in this case is the phase of the field operator
ψ = |ψ|eiθ. We can explicitly derive the effective action for θ [28], but it is enough for
our purpose to write down the most general expression of the effective action. First, the
action should be invariant under the uniform shift of the phase θ → θ + δθ. Therefore,
the Lagrangian density is given as

L(θ(~r, t)) = P̃ (∂tθ,∇θ), (2.6)

where P (∂tθ,∇θ) is the arbitrary polynomial of ∂tθ and ∇θ. Now, we note that, under
the Galilean transform

t→ t′ := t, ~r → ~r′ := ~r − ~vt, ψ(~r, t)→ eim(~v·~r−v2t/2)ψ(~r′, t′), (2.7)
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where ψ(~r, t) is the bosonic annihilation operator. Then, we get

θ′(~r′, t′) = θ(~r, t) +mv2t/2−m~v · ~r. (2.8)

From this equation, we get the following transformation rule for ∂tθ and ∇θ:

∂t′θ
′ = ~v · ∇′θ′ + ∂tθ +mv2/2, ∇′θ′ = ∇θ −m~v. (2.9)

Therefore, ∂tθ and ∇θ are not singlets under Galilean transformation. Since the effective
action Eq. (2.6) should be invariant under the Galilean transformation, it should be
the polynomial of the Galilean singlet. Using Eq. (2.9), we can easily verify that the
combination ∂tθ + (∇θ)2/(2m) is a Galilean singlet:

∂t′θ
′+

1

2m
(∇′θ′)2 = ~v ·(∇θ−m~v)+∂tθ+mv2/2+

1

2m
(∇θ−m~v)2 = ∂tθ+

1

2m
(∇θ)2. (2.10)

Therefore, L should be the polynomial of this combination, and we get the following
effective action:

L(θ(~r, t)) = P

(
∂tθ +

1

2m
(∇θ)2

)
= P (0) + P ′(0)

[
∂tθ +

1

2m
(∇θ)2

]
+
P ′′(0)

2
(∂tθ)

2 +O((∂tθ)
3, (∇θ)3). (2.11)

Now, if we set θ = −µt [29], we get the ground state pressure density p:

p = L(−µt) = P (0)− P ′(0)µ, (2.12)

and using the thermodynamic relation n = ∂p/∂µ where n is the particle density, we get

P ′(0) = −n, (2.13)

so that, from Eq. (2.11),

L(θ(~r, t)) = P (0)− n
[
∂tθ +

1

2m
(∇θ)2

]
+
P ′′(0)

2
(∂tθ)

2 +O((∂tθ)
3, (∇θ)3). (2.14)

Then, comparing to the definition of the superfluid density, Eq. (2.5), we get

n = ρs. (2.15)

Therefore the system is always in the superfluid phase, where ρs > 0, in the presence of
Galilean invariance. We note that the superfluid density ρs and the condensate fraction n0

are different quantities, and, although for the system with Galilean invariance at T = 0,
ρs = n holds, the condensate fraction n0 is depleted in the presence of the interaction
and n0 6= n.

At finite temperature, from the fluctuation-dissipation relationship

GK(ω, k) = coth

[
β(ω − µ)

2

]
(GR(ω, k)−GA(ω, k)), (2.16)
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where GK,R,A are the Keldysh, retarded and advanced Green functions respectively, the
Galilean invariance is broken. To see this, we note that, under the Galilean transform
t → t, x → x − vt, ψ(x, t) → eim(vx−v2t/2)ψ(x − vt, t), the Green functions transform
as GK,R,A(ω, k) → GK,R,A(ω − vk + mv2/2, k − mv)2, so the fluctuation-dissipation re-
lationship is inconsistent with the Galilean invariance. Therefore, at finite temperature
ρs 6= ρ, in accordance to the Landau’s famous expression of ρs in terms of the thermal
distribution of the quasiparticle [30].

The Galilean invariance at T = 0 is explicitly broken if we introduce the lattice
potential or the disorder, leading to the Mott insulator [31] or the Bose glass [32–34].
Another possible source of the loss of the Galilean invariance is the nonlocal interaction
along the time-direction which arises after we integrate out the gapless degrees of freedom.
This depletion of superfluid component due to retarded interaction has been studied in
Ref. [35], where the gapless degrees of freedom is the gauge field which mediates the
interaction between vortices. In our case, it is broken by the gapless states inside the
vortex, which leads to the nonlocal interaction in time when we integrate them out to
get the effective action for vortices. Therefore, we expect the suppression of superfluidity
by dissipation because of the explicit Galilean symmetry breaking for vortices inside the
superconductor at T = 0.

An appropriate framework to treat the dissipation in the quantum regime is formu-
lated by Caldeira and Leggett [36]. In this model, we couple the particle with the heat
bath, and integrate them out to get the action which is nonlocal in time. We can natu-
rally generalize their treatment for single particle system to many particle system in the
first quantized formulation, as we will discuss later (see Eq. (2.31)).

Now we need the way to identify the superfluidity in the first quantized formulation.
This problem was addressed by Feynman in his insightful paper [37, 38]. He not only
analytically addressed the problem and revealed the essence of the superfluidity, but also
laid the foundation of the later developed path integral Monte Carlo method [39, 40].
In short, the superfluidity in the first quantized picture is characterized by the exchange
events with very large size [37, 38]. The partition function for the interacting bosonic
system can be written as,

Z =
∑
σ

∫ ∏
i

d~ri0

∫ {~ri(τ=β)}={~rσ(i)0}

{~ri(τ=0)}={~ri0}

∏
i

D~ri(τ) exp

[
−
∫ β

0

dτ

(∑
i

m

2
~̇r2
i +

∑
i>j

Vi,j

)]
,

(2.17)
where β is the inverse temperature, i is the labeling of the particles, m is the mass of
the particle, Vi,j is the interaction energy of the particles i and j. Also, σ represents
the permutation of the particle number i, and the particles at τ = 0 and the particles
at τ = β can exchange their positions. This summation over the permutation is an
important property of the quantum system, and for the system of fermions, for odd
permutation the weight is multiplied by −1. This negative weight leads to the very slow
convergence of the physical quantities well-known as the sign problem, but for bosonic
particles the weight is always positive, and we do not suffer from it.

2This follows from G(ω, k) =
∫
dxdtei(kx−ωt)G(x, t) →

∫
dxdtei((k−mv)x−(ω−vk+mv2/2)t)G(x, t) =

G(ω − vk +mv2/2, k −mv). We assumed the spatial and time translation invariance.
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Now, the effect of the interaction is twofold. First, it renormalizes the mass of the
particles. Secondly, it forces the particles to remain far apart from each other. Then we
can approximate the positions of the particles at τ = 0 to be some lattice, say the cubic
lattice3. If the temperature is not too low, the particles cannot wander from {~ri0} at
τ = 0 to the position far apart at τ = β. Then, the important configuration is the one
where the particles exchange their positions from some vertex of the lattice at τ = 0 to
the next nearest vertex of the lattice at τ = β. Here, the action of this exchange event
can be approximated as,

y(d) = exp

[
−m

∗d2

2β~2

]
, (2.18)

where d is the interparticle distance and m∗ is the effective mass of the particle. Now,
we can regard this problem as the statistical problem of the polygons on the lattice. The
weight of each line of the polygons on the edge of the lattice is given by (2.18). Then,
the above action can be approximated as

Z =
∑
L

y(d)Lg(L), (2.19)

where L represents the length of the polygon, and we represented the number of config-
urations of the polygon with size L on the lattice as g(L). One way to roughly estimate
the scaling form of g(L) is as follows: We need to count the number of closed loops with
the length L on the lattice. The total number of the string both open and closed with size
L starting from some position is given by zL, where z is the number of adjacent vertex
on the lattice. For example, z = 6 for the cubic lattice, z = 4 for square lattice, z = 3
for honeycomb lattice, etc.. Now, to count the number of the closed loops, we regard this
problem as the random walk on the lattice. The probability distribution P (~r, t) of the
random walk problem at position ~r and time t starting from ~r = 0 at t = 0 is given as

P (~r, t) ∝ t−d/2 exp

[
− ~r2

2Dt

]
, (2.20)

where d is the dimensionality of the system. Then, the probability of the particle to
come back to ~r = 0 at time t = L is P (0, L) = L−d/2. Then, we get an estimation of the
number of closed loops:

g(L) ∝ zLP (0, L) ∝ exp

[
L ln z − d

2
lnL

]
. (2.21)

Therefore, the partition function given by Eq. (2.19) can be written as,

Z ∝
∑
L

exp

[
L(ln z − ln y−1)− d

2
lnL

]
. (2.22)

Now, as we can see from Eq. (2.18), as we lower the temperature, y−1 monotonically
increases. At y−1 = z, we can see that the configuration with diverging L has exponen-
tially larger weight, i.e., the very large exchange events proliferate. This transition is

3This assumption is just for the illustrative purpose, following the analytical estimation by Feynman
[38]. In the quantum Monte Carlo calculation, we will not assume any lattice order.
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nothing but the superfluid transition. Therefore, to detect the superfluidity in the first
quantized picture, we should look at the statistical weight of the large exchange event.
More quantitatively, we can calculate the superfluid weight from the following winding
number formula [39, 40]:

ρs
ρ

=
1
N
L2〈 ~W 2〉
2dβ ~2

2m

, (2.23)

where N is the number of particles, L is the linear size of the system. Here, ~W is the
winding number vector and is defined as

~W =
N∑
i

~ri(β)− ~ri(0)

L
. (2.24)

We will utilize this winding number formula to calculate the superfluid weight in the
quantum Monte Carlo calculation.

We will also discuss the complementary field theoretical model formulated in the
second quantized language. In this case, the superfluid density can be calculated from
the transverse current-current correlation function. To see this concretely [41–43], we
note that the paramagnetic current correlation function in the isotropic system can be
decomposed as the sum of the longitudinal and the transverse component:

Kpara
ij (~k) = Π⊥(k)

(
δij −

kikj
k2

)
+Π‖(k)

kikj
k2

= Π⊥(k)δij +
(
Π‖(k)− Π⊥(k)

) kikj
k2

, (2.25)

In the normal phase, the correlation function in the real space is short-ranged. Therefore,
the correlation function in momentum space, Eq. (2.25), exhibits no singularity near
k = 0, so that the second term in Eq. (2.25) vanishes in the limit k → 0, i.e.,

Π⊥(k = 0) = Π‖(k = 0) in the normal phase. (2.26)

When the system exhibits the superfluidity, because of the long-ranged nature of the
correlation function in real space, the correlation function in momentum space exhibits
the nonanalytic behavior near k = 0, i.e., the longitudinal and the transverse correlation
function as k → 0 is different:

Π⊥(k = 0) 6= Π‖(k = 0) in the superfluid phase, (2.27)

in sharp contrast to the normal state.
Now, the full response function can be calculated by adding the paramagnetic term,

Eq. (2.25), to the diamagnetic term, which is given by

Kdia
ij = − ρ

m
δij = − ρ

m

(
δij −

kikj
k2

)
− ρ

m

kikj
k2

, (2.28)

i.e.,

Kresp
ij = Kpara

ij +Kdia
ij =

(
Π⊥ − ρ

m

)(
δij −

kikj
k2

)
+
(

Π‖ − ρ

m

) kikj
k2

(2.29)
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Here, the gauge invariance imposes the condition that the full response function as k → 0
be purely transverse, i.e., Π‖(k = 0) = ρ/m. Then, in the normal state, because of Eq.
(2.26) Π⊥(k = 0) = Π‖(k = 0) = ρ/m so that Kresp

ij (k → 0) = 0. In contrast, in the

superfluid state, because of Eq. (2.27), Π⊥(k = 0) = ρn/m 6= Π‖(k = 0) = ρ/m where
we defined the normal density ρn as the k → 0 limit of mΠ⊥(k), and from Eq. (2.29), we
get, as k → 0,

Kresp
ij = Kpara

ij +Kdia
ij = −ρs

m

(
δij −

kikj
k2

)
, ρs := ρ− ρn. (2.30)

Noting that Ji = Kresp
ij Aj = −(ρs/m)ATi , where Aj is the gauge potential and ATi is

the transverse component of Ai, Eq. (2.30) represents nothing but the London equation.
The London equation in the neutral bose liquid can be interpreted as the nonclassical
effect of inertia [41, 44], and is one of the defining property of the superfluidity. From
the argument above, we can calculate the normal density and the superfluid density from
the transverse static current-current correlation function. We will calculate it using the
Bogoliubov approximation.

In the following sections, we will establish the suppression of superfluidity by dissipa-
tion in two different models, and we believe that this phenomenon is rather universal, and
is important when we will discuss the low temperature phase of bosons in the presence
of the gapless degrees of freedom.

Here, we note the difference of our work from the previous study. There are many
papers on the dissipative XY model [45–48], describing the dynamics of the resistively
shunted Josephson junction array [15, 16]. However, the XY model is an effective model of
bosons only at integer fillings [32, 49]. Away from integer fillings, e.g., in the dilute limit,
the action contains the first order time derivative term [50], which is complex and the
Monte Carlo study in the phase representation is difficult because of the sign problem.
This difference is important in the context of the positive magnetoresistance of failed
superconductor, since in the dilute limit the number of vortices change continuously as we
increase the magnetic field. Also, the effect of dissipation on dilute boson system has been
studied in Ref. [51], but their study is only for one dimensional system. The analytical
argument we will discuss here is different from their argument relying on bosonization
which is valid only in one dimensional system.

2.2 Purpose and assumptions of the model

Here, we explicitly state the purpose of our work and the assumption of our model.

As we discussed, our primary purpose is to understand the physics of the failed su-
perconductor. Theoretical challenge of the failed superconductor is the presence of the
zero temperature metallic phase of bosons. Once we can establish it, the experimentally
observed positive magnetoresistance can be easily understood as a consequence of the in-
creasing density of vortices, i.e., it simply comes from the flux-flow resistivity. Therefore,
we focus on the discussion of the suppression of the superfluid phase of bosons at low
temperature in this work.
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The assumptions of our model are, (1) we can ignore the effect of the pinning of
vortices coming from the point defect, and (2) the energy of the moving vortex dissipate
to the lattice through the gapless excitation inside the normal core, i.e., the system is in
the moderately clean regime ∆2/εF � 1/τ, kBT among the three regions, i.e., the dirty
regime, the moderately clean regime, and the superclean regime, as we discussed.

As for the assumption (1), since the important difference of the recent experiments on
the failed superconductor [9] from the early experiments [8] is that, because of the exper-
imental progress, many recent experiments are done for the highly crystalline supercon-
ducting thin films. Therefore, we believe this assumption is legitimate. The assumption
(2) is important, and this assumption leads to the experimentally possible verification or
objection to our model. Namely, since the presence of the dissipation is crucial in our
discussion, if the system is super clean, i.e., ∆2/εF � 1/τ, kBT , the excitation at the
normal core is discrete and there exists no source of dissipation, so the bose metal or
the failed superconductor should be gone. To see this experimentally, the experimental
determination of the relaxation time τ , for example by the measurement of the residual
resistivity in the normal state, is important. Once τ is fixed, we can determine whether
the system is in the super clean or the moderately clean regime. Our model predicts the
metallic phase for the latter, while for the former case the system behaves as predicted
by the original self duality scenario, since the vortices without the dissipation are simply
bosons.

2.3 Model

The phenomenological action for the system of many bosons in the presence of the dissi-
pation is,

S =

∫ β

0

dτ

(∑
i

m

2
~̇r2
i +

∑
i>j

Vi,j

)
+

η

4π

∑
i

∫ β

0

dτ

∫ β

0

dτ ′
π2

β2

(
~ri(τ)− ~ri(τ ′)
sin π

β
(τ − τ ′)

)2

, (2.31)

where i is the labeling of the bosons, Vi,j is the repulsive interaction between bosons, m
is the mass of the bosons, β is the inverse temperature, and the last term represents the
effect of the Ohmic heat bath [52, 53]. Here, η is the viscosity coefficient of the vortex, as
is introduced by Bardeen and Stephen [54]. η ∝ τ in the moderately clean regime, and
η ∝ τ−1 in the superclean regime [20]. We neglected the effective interaction between the
bosons induced by the coupling to the heat bath [55]. For later convenience, we transform
the last term in Eq. (2.31) as follows:∫ β

0

dτ

∫ β

0

dτ ′
π2

β2

(
~ri(τ)− ~ri(τ ′)
sin π

β
(τ − τ ′)

)2

=

∫ β

0

dτ

∫ β

0

dτ ′
1

β2

∞∑
n=−∞

(
~ri(τ)− ~ri(τ ′)

τ−τ ′+nβ
β

)2

=

∫ β

0

dτ

∞∑
n=−∞

∫ β

0

dτ ′
(
~ri(τ)− ~ri(τ ′)
τ − τ ′ + nβ

)2

=

∫ β

0

dτ

∫ ∞
−∞

dτ ′
(
~ri(τ)− ~ri(τ ′)

τ − τ ′
)2

, (2.32)
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where, in the first line we used the following identity,

π2

sin2(πa)
=

∞∑
n=−∞

1

(n+ a)2
, (2.33)

and in the last line we extended the range of ~ri(τ) periodically from 0 ≤ τ ≤ β to
−∞ < τ < ∞. Therefore, the last term in Eq. (2.31) is equivalent to the form given in
Ref. [52].

Here, we will derive the equation of motion for Eq. (2.31) [56]. First, using the Fourier
transform

riα(ωn) =

∫ β

0

dτriα(τ)eiωnτ , (2.34)

where ωn is the Matsubara frequency, Eq. (2.31) can be rewritten as,

S =
1

β

∑
ωn,i,α

[
mω2

n

2
+
η

2
|ωn|

]
|riα(ωn)|2 +

∑
i>j

∫ β

0

dτV (~ri(τ)− ~rj(τ)). (2.35)

To derive the equation of motion in real time, we need to perform the analytic continuation
in time.

As for the first term, we perform the analytic continuation in frequency space, noting
that the expression in the square brackets is nothing but the inverse of the Matsubara
Green function. Although the analytically continued Green function is analytic on the
upper and lower half plane in complex frequency space, we have a branch cut on the real
axis. This branch cut is a consequence of the continuum degrees of freedom of the heat
bath. In the real time, noting that the retarded and advanced Green function can be
obtained from the analytic continuation from the upper and lower half plane, respectively
[29], and using the fluctuation dissipation relationship,

GK(ω) = (GR(ω)−GA(ω)) coth
βω

2
, (2.36)

we get

S1 =
∑
iα

∫
dω

2π

(
rcliα(−ω) rqiα(−ω)

)( 0 −iηω +mω2

iηω +mω2 2iηω coth βω
2

)(
rcliα(ω)
rqiα(ω)

)
, (2.37)

where rcl/q(ω) = (r+(ω) ± r−(ω))/2, and r± are the position variable on the Keldysh
Contour C±, since the Green function can be obtained from the inverse of the matrix in
Eq. (2.37):

(
GK(ω) GR(ω)
GA(ω) 0

)
=

1

2

(
0 −iηω +mω2

iηω +mω2 2iηω coth βω
2

)−1

=
1

2

(
−2iη coth βω

2

η2ω+m2ω3
1

iηω+mω2

1
−iηω+mω2 0

)
.

(2.38)



2.4. EXTENDED FEYNMAN’S ARGUMENT 19

As for the second term, we can simply modify the imaginary time integration path to
the Keldysh contour C = C+ ∪ C− = [−∞,∞] ∪ [∞,−∞] on the real time. Then,

S2 = −
∑
i>j

∫ ∞
0

dt
[
V (~r+

i (t)− ~r+
j (t))− V (~r−i (t)− ~r−j (t))

]
= −

∑
i>j

∫ ∞
0

dt
[
V
(
~rcli (t)− ~rclj (t) + ~rqi (t)− ~rqj (t)

)
− V

(
~rcli (t)− ~rclj (t)− ~rqi (t)− ~rqj (t)

)]
= −2

∑
i>j

∫ ∞
0

dt∇V
(
~rcli (t)− ~rclj (t)

)
· (~rqi (t)− ~rqj (t)) +O((rqiα)3). (2.39)

Combining Eqs. (2.37) and (2.39), we get

S =

∫ ∞
0

dt

[∑
iα

(
−2rqiα(mr̈cliα + ηṙcliα)

)
− 2

∑
i>j

∇V
(
~rcli (t)− ~rclj (t)

)
· (~rqi (t)− ~rqj (t))

]
+O((rqiα)2). (2.40)

From Eq. (2.40), if we neglect the second or higher order terms in rqiα (semiclassical
approximation), we get the classical equation of motion with Ohmic dissipation:

δS

δrqiα
= 0⇔ mr̈cliα + ηṙcliα = −

∑
j

∇αV (~rcli − ~rclj ). (2.41)

Therefore, the action (2.31) correctly describes the bosonic system with Ohmic dissipa-
tion.

2.4 Extended Feynman’s argument

Here, we argue the effect of the dissipative term from the perspective of Feynman’s picture
of superfluidity [37, 38]. As we argued, in the absence of the dissipation, if we assume that
the effect of the repulsive interaction is simply renormalizing the mass of the bosons, the
action for the macroscopic exchange process can be obtained from the single particle off-
diagonal density matrix of the free particle, which is given by y(|r − r′|) ∝ exp[−m(r −
r′)2/(2β~2)], so the action is proportional to β−1. Therefore, as β → ∞, the entropy
of the macroscopic exchange processes, which is constant as a function of temperature,
overcomes the action for the exchange process, so the bosonic system shows superfluidity
at finite temperature. As we noted, the partition function is given by Z =

∑
L y(d)Lg(L),

where L is the number of links between vertices of the lattice, d is the lattice constant, and
g(L) is the total number of the polygons with L links. Here we again note that y can be
approximated by the off-diagonal single particle density matrix, rather than the diagonal
one as is used for the criterion of the superfluidity in a previous literature [57], although
the Lindemann type criterion may be a good necessary condition for the superfluidity. In
other word, what determines the action for the exchange is 〈p2〉, the second moment of the
momentum, rather than 〈r2〉, the second moment of the position, since the off-diagonal
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density matrix represents the information of the momentum distribution through the
Wigner transform as y(|r−r′|) ∝ exp[−(r−r′)2 〈p2〉 /(2~2)]. Here y is gaussian since the
Caldeira-Leggett action is quadratic, and we assume that this form remains valid even
in the presence of the interaction between particles. 〈p2〉−1

and 〈r2〉 show drastically
different behavior in the presence of the dissipation: The former remains constant down
to β → ∞, while the latter diverges as log β [58]. The reason for finiteness of 〈p2〉−1

was clearly explained by Caldeira and Leggett [52]. To see this, as we have shown in Eq.
(2.32), we transform the last term in Eq. (2.31) as

η

4π

∫ ∞
−∞

dτ ′
∫ β

0

dτ

(
~ri(τ)− ~ri(τ ′)

τ − τ ′
)2

, (2.42)

where the finite temperature kernel is replaced by the zero temperature kernel, but now
we need to consider the interaction of the boson at 0 ≤ τ ≤ β with the infinite family
of “image lines”, periodically extended from 0 ≤ τ ′ ≤ β to −∞ ≤ τ ′ ≤ ∞. When we
consider the process where ~ri(0) 6= ~ri(β), i.e., the off-diagonal component of the single
particle density matrix, the integral diverges because of the discontinuity at τ ′ = 0 and
τ ′ = β; this divergence is regularized by the ultraviolet cutoff of the heat bath, but this
contribution to the off-diagonal density matrix coming from the discontinuity remains
finite even if we take the limit β →∞ 4.

If we assume that the effect of the interaction can be renormalized to the effective
mass of the particle, from the well known result of the quantum Brownian motion [58],

〈p2〉 =
M

β
+ 2M

µ1µ2

µ1 − µ2

[ψ (1 + µ1β)− ψ (1 + µ2β)] , (2.43)

where M is the effective mass of bosons, ψ(x) is the digamma function, µ1/2 = ~(ωD ±√
ω2
D − 4γωD)/(4π), γ = η/M , and ωD is the cutoff of the spectrum of the bath. Then,

since 〈p2〉 decreases as we lower the temperature and saturates at finite value, we ex-
pect that the transition temperature, which is the temperature where the entropy of
macroscopic exchange g(L) and the action for the exchange yL compete, monotonically
decreases and reaches zero as we increases the coupling η. To obtain the phase boundary,

we transform 〈p2〉d2

~2 as,

〈p2〉d2

~2
=

1

2

(
d2

λβ

)
+

(
d2

λβ

)
(µ1β)(µ2β)

(µ1β)− (µ2β)
[ψ(1 + µ1β)− ψ(1 + µ2β)], (2.44)

where λ = ~2/(2M). Eq. (2.44) has three dimensionless parameters: d2/(λβ), µ1β and
µ2β. Since µ1/2β is given as,

µ1/2β =
1

4π

(~ωDβ)±
√

(~ωDβ)2 − 8η̃

(
d2

λβ

)−1

(~ωDβ)

 , (2.45)

where η̃ = ηd2/~, the phase boundary is determined by three dimensionless parameters:

d2

λβ
, ~ωDβ, η̃. (2.46)

4We note that there is a similar problem in the treatment of the effective mass of polaron [59, 60].
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Figure 2.2: Schematic phase diagram obtained from Feynman’s argument combined with
the expression for the off-diagonal density matrix in the presence of the Ohmic dissipation,
Eq. (2.43). η̃ = ηd2/~, where d is the interparticle distance. We set λ = ~2/(2M) =
6.0596 Å2K, d = 3.570 Å, and ~ωD = 10 K. The phase boundary is calculated from
the condition 〈p2〉 (T, η̃) = 〈p2〉 (T = 2 K, η̃ = 0), i.e., we assumed that the transition
temperature for the dissipationless system is T = 2 [K].

Now we set λ = 6.0596 Å2K, which is the mass parameter for 4He, and d = 3.570 Å which
corresponds to the particle density used in the numerical calculation for three dimensional
system in section 2.5. We also set the cutoff for the bath ~ωD = 10 K. The phase diagram
obtained by using these parameters is shown in Fig. 2.2.

The critical η at T = 0 can be estimated from

d2 〈p2〉T=0 /~
2 = 2Md2µ1µ2[ln (µ1/µ2)]/[~2(µ1 − µ2)] ∼ 1. (2.47)

If we further assume ωD � γ, the above condition simplifies to

η̃[ln(ωD/γ)]/(~π) ∼ 1. (2.48)

From Eq. (2.48), there exists the critical η̃ = η̃c where the system is in the normal
state for η̃ ≥ η̃c and in the superfluid state for η̃ ≤ η̃c. Also, from Eq. (2.48), we can
draw the schematic phase diagram of the two dimensional superconductor in τ−1~ − H
plane. As we argued, our model is applicable to the moderately clean regime where
∆2/εF � ~/τ � ∆. Here, nV ∝ 1/d2 ∝ H, where nV is the density of the vortex, d is
the average distance between vortices, and H is the magnetic field perpendicular to the
system. The τ dependence of η is given by [20]

η ∝ δετ/~
(δετ/~)2 + 1

,

(
δε =

∆2

εF

)
. (2.49)

Therefore, η ∝ δετ/~ in the moderately clean regime where ~/τ � δε [54], and η ∝
(δετ/~)−1 in the superclean regime where ~/τ � δε. Therefore, for the moderately
clean regime, ignoring the weak logarithmic dependence on η, η̃ = ηd2/~ ∝ τ/H, and
the vortex exhibits the superfluidity, i.e., the system is in the Bose insulator phase for
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H ≥ Cτ and the vortex is in the normal state, i.e., the system is Bose metal for H ≤ Cτ ,
where C is the constant factor independent of τ and H. The phase diagram obtained
by this estimation is shown in Fig. 2.3. For the dirty regime where ∆ � ~/τ , the
disorder potential is strong so that the vortex introduced by H is pinned and immobile,
and we can have a superconducting phase. This phase is absent for the clean regime
~/τ ≤ ∆ where the vortex can move freely in space. In the moderately clean regime
where ~/τ � ∆2/εF , since η ∝ τ , the metallic region enlarges as τ increases. For fixed
τ in the moderately clean regime, if we increase H, there exists two critical H: The one
associated with the Bose metal-Bose insulator transition, which we denote as HBM−BI,
and the other one associated with the destruction of superconductivity, i.e., Hc2. In Fig.
2.3 (a), we assumed that Hc2 > HBM−BI for all ~/τ inside the moderately clean regime.
If Hc2 < HBM−BI for some ~/τ , the system should exhibit the phase transition from the
Bose metal phase to the normal state without the intervening Bose insulator phase as we
increase H, as is shown in Fig. 2.3 (b). To determine whether or not Hc2 > HBM−BI holds
inside the moderately clean regime, we need to calculate HBM−BI for τ in the moderately
clean regime, and it is beyond the scope of our work. In the superclean regime where
~/τ � ∆2/εF , the dissipation strength becomes weak, and the Bose metal region shrinks
in the phase diagram. Inside the superclean regime, we need to consider the Landau
level physics of the energy spectrum, so this range is outside the scope of our work, but,
because of the absence of dissipation, there cannot be Bose metal phase. For H ≥ Hc2,
the superconductivity is destructed so that the system is in the normal state, and we
expect the finite resistance because of the applied magnetic field which counteracts the
localization of electrons by disorder.

Below, we will show a strong support for this physical argument by the numerical
Monte Carlo calculation of the superfluid density. This calculation confirms that the
interaction between particles does not drastically affect the picture of superfluidity by
Feynman even in the presence of the dissipation.

2.5 Result of the numerical calculation

We calculated the superfluid density for the boson system characterized by the action
(2.31) with the worm algorithm in continuous space [61, 62] using the winding number
formula [39, 40]. We implemented the canonical version [63, 64] where the Monte Carlo
moves do not change the number of particles. We performed the numerical calculation
for three dimensional system and two dimensional system. In both cases, we employed
the Aziz potential [65] for the interaction between particles. The Aziz potential is defined
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Figure 2.3: The schematic phase diagram of two dimensional superconductor in τ−1~−H
plane for fixed superconducting coherence length ξ and Hc2. In (a), we assumed Hc2 >
HBM−BI for moderately clean regime, where HBM−BI is the critical magnetic field between
the Bose metal region and the Bose insulator region. In (b), we assumed Hc2 < HBM−BI

near ~/τ ∼ ∆2/εF , and the system exhibits the direct phase transition from the Bose
metal phase to the normal state near this region. It is beyond the scope of our work to
determine which phase diagram is realized experimentally.

as follows:

V (r) = ε

[
Ae−αx − F (x)

2∑
j=0

C2j+6

x2j+6

]
, (2.50)

F (x) =

{
e−(Dx −1)

2

(x < D)
1 (x > D)

, (2.51)

x =
r

rm
, (2.52)

where

ε = 10.8 K, rm = 2.9673 Å, D = 1.241314, α = 13.353384,

C6 = 1.3732412, C8 = 0.4253785, C10 = 0.1781, A = 0.5448504× 106.

This potential simulates the interaction between the 4He particles. For three dimensional
system, we set the particle density ρ = 0.02198 Å−3, where, from the numerical calculation
performed on clean system [62], Tc = 2.193 ± 0.006 K. For two dimensional system,
we set the particle density ρ = 0.0432 Å−2, where the numerical estimation gave Tc =
0.653 ± 0.010 K [62]. We set the temperature T = 2 K for the three dimensional system
and T = 0.5 K for two dimensional system, both below the numerically estimated Tc in the
clean system. The convergence was checked by the binning analysis [66]. Following Ref.
[62], we employed the Chin approximation [67] for the interaction term. The dissipative
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Figure 2.4: The superfluid fraction ρs/ρ and the kinetic energy EK for three dimensional
system as a function of η̃ = ηd2/~, where d = 3.570 Å is the interparticle distance. The
number of particles is N = 64, the particle density ρ is ρ = 0.02198 Å−3, the temperature
is T = 2 K, the imaginary time step is 5×10−3 K−1, and the cutoff of the bath is set to be
τc = 0.2. The blue circle represents the kinetic energy, while the green triangle represents
the superfluid fraction.
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Figure 2.5: The superfluid fraction ρs/ρ and the kinetic energy EK for three dimension
as a function of η̃ = ηd2/~, where d = 3.570, as we vary the number of particles N for
fixed density. The particle density ρ is ρ = 0.02198 Å−3, the temperature is T = 2 K, the
imaginary time step is 5× 10−3 K−1, and the cutoff of the bath is set to be τc = 0.2.

term was discritized as [68, 69],

η

2π

∑
i

∑
k>k′

π2

N2
τ

(~ri(k)− ~ri(k′))2

sin2( π
Nτ

(k − k′)) =:
∑
i

∑
k>k′

K(k − k′)(~ri(k)− ~ri(k′))2, (2.53)

where Nτ is the number of the Trotter step, k, k′ is the labeling of time slice. To avoid
the divergence associated with the discontinuity at k = 0 and Nτ , we introduce the UV
cutoff for K as K(k− k′) = K((1− τc)Nτ ) for (1− τc)Nτ ≤ k− k′ ≤ Nτ − 1; this form of
cutoff is naturally realized if we introduce the ultraviolet cutoff for the spectrum of the
heat bath. We set τc = 0.2 for the cutoff in the three dimensional system and τc = 0.05
for two dimensional systems.

Superfluid density and kinetic energy in three dimension

The result of the calculation is shown in Fig. 2.4 (green triangle). We can clearly see
that ρs monotonically decreases as a function of η. We also calculated the kinetic energy
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Figure 2.6: The condensate fraction at zero momentum, ñ0, estimated from the off-
diagonal density matrix, for three dimensional system. The number of particles is N = 64,
the particle density ρ is ρ = 0.02198 Å−3, the temperature is T = 2 K, the imaginary time
step is 5 × 10−3 K−1, and the cutoff of the bath is set to be τc = 0.2. η̃ = ηd2/~, where
d = 3.570 Å.

(blue circle), which characterizes how strong the bosons fluctuate in the imaginary time.
We can see the increase of the kinetic energy as a function of η, which comes both from
the suppression of fluctuation of each boson and the suppression of the exchange event,
which lowers the kinetic energy [40]. In Fig. 2.5, we show the numerical calculation
of the superfluid density and the kinetic energy for the system with smaller particle
number N . As we can see, the result at N = 64 is qualitatively similar to the result at
N = 24. Overall the system with smaller N overestimates the superfluid density, which
is reasonable since the number of the exchange event necessary for the system to have a
finite winding number is smaller for smaller N .

Condensate fraction and off diagonal density matrix in three
dimension

Here, we will discuss the result of the numerical calculation of the condensate fraction and
the off diagonal density matrix. From the off diagonal density matrix, we can estimate
the condensate fraction ñ0 from the asymptotic value, and the result is shown in Fig. 2.6.
We can see the monotonic decrease of ñ0 as a function of η.

As for the more detailed structure of the off diagonal density matrix, we show the
result for the single particle and the many particle (N = 64) system in Fig. 2.7. As we
can see, as for the single particle case, the effect of dissipation appears in the decrease of
the width of the Gaussian distribution. To see this, we showed the off-diagonal density
matrix for the single particle case obtained both from the numerical calculation and the
analytical expression [58],

n(r) = exp

(
−〈p

2〉 r2

2~2

)
, (2.54)
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Figure 2.7: The off-diagonal density matrix in three dimension for the single particle and
the particles with interaction. The number of particles is N = 64, the particle density ρ
is ρ = 0.02198 Å−3, the temperature is T = 2 K, the imaginary time step is 5× 10−3 K−1,
and the cutoff of the bath is set to be τc = 0.2. η̃ = ηd2/~, where d = 3.570 Å. The
solid lines for the single particle case is an analytical result based on the Eqs. (2.43) and
(2.54).

where 〈p2〉 is given by Eq. (2.43). The cutoff for the expression Eq. (2.43) is the Drude
type cutoff, i.e., J(ω) = ηω/(1 + (ω/ωD)2), where J(ω) is the spectral function of the
bath. Although the form of the cutoff in the numerical calculation is different from the
Drude cutoff, we can see that the numerical and analytical result agrees well.

For the many particle case, the dissipation does not change the width very much, but
it leads to the decrease of the condensate fraction n0. We fitted the off diagonal density
matrix with ñ0 + (1 − ñ0)f(r), where f(x) = exp(−ᾱ2x

2/2! + ᾱ4x
4/4! − ᾱ6x

6/6!). The
result is shown in Fig. 2.8. Although the α2, which represents the second cumulant of the
distribution, does not change drastically as a function of η, α4 and α6 decreases, which
indicates that the distribution becomes more and more Gaussian-like distribution.

Numerical calculation in two dimension

Here, we will show the suppression of the superfluidity in two dimension to show that
our scenario for the suppression of superfluidity does not depend on the dimensionality
of the system. As we mentioned above, we performed the quantum Monte Carlo in two
dimension with the following parameters: the temperature T = 0.5 K; the particle density
ρ = 0.0432 Å−2; the cutoff of the bath τc = 0.05; the imaginary time step 5 × 10−3 K−1.
The result is shown in Fig. 2.9. As we can see, the superfluid fraction decreases as a
function of η. Also, the tail of the off diagonal density matrix is drastically suppressed
in the presence of the dissipation. The superfluid density and the kinetic energy for the
systems with smaller N is shown in Fig. 2.10. We can see that the superfluid density is
well converged at N = 25 as a function of N .
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Figure 2.8: The parameters for the off diagonal density matrix in three dimension. The
number of particles is N = 64, the particle density ρ is ρ = 0.02198 Å−3, the temperature
is T = 2 K, the imaginary time step is 5× 10−3 K−1, and the cutoff of the bath is set to
be τc = 0.2. η̃ = ηd2/~, where d = 3.570 Å. The fitting function is ñ0 + (1 − ñ0)f(r),
where f(x) = exp(−ᾱ2x
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Figure 2.9: The kinetic energy EK , the superfluid fraction ρs/ρ and the off diagonal
density matrix for the two dimensional system. The number of particles is N = 25, the
particle density ρ is ρ = 0.0432 Å−2, the temperature is T = 0.5 K, the imaginary time
step is 5× 10−3 K−1, and the cutoff of the bath is set to be τc = 0.05. η̃ = ηd2/~, where
d = 4.811 Å.
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Figure 2.10: The superfluid fraction ρs/ρ and the kinetic energy EK for two dimension
as a function of η̃ = ηd2, where d = 4.811 Å as we vary the number of particles N for
fixed density. The particle density ρ is ρ = 0.0432 Å−2, the temperature is T = 0.5 K, the
imaginary time step is 5× 10−3 K−1, and the cutoff of the bath is set to be τc = 0.05.

2.6 Field theoretical Model

Here, we discuss the effect of dissipation on the superfluidity in the following field theo-
retical model:

S =
∑
ωn,k

(
−iωn +

k2

2m
− µ

)
ψ̄n,kψn,k +

g

2

∫
dτdrψ̄ψ̄ψψ

+ α
∑
ωn,k

|ωn|ρnkρ−n−k, (ρnk =
∑
ωm,q

ψ̄n+m,k+qψm,q), (2.55)

where ψ, ψ̄ are the bosonic annihilation and creation operator, ωn is the Matsubara
frequency for bosons, g is the interaction strength and α is the strength of the dissipation.
This model obviously breaks the Galilean invariance because of the last term.

The idea behind the model Eq. (2.55) is the following. In the first quantized model
above, each particle is subject to the dissipation. This can be mapped to the finite diffu-
sion constant or the conductivity of the many-particle system, and hence the dissipation
enters as the many-body interaction. More explicitly, the propagator of the density ρ(q, ω)
is expressed by

Π(q, ω) = 〈ρ(q, ω)ρ(−q,−ω)〉 =
N(0)Dq2

Dq2 + |ω| (2.56)

where N(0) is the density of electronic states at the Fermi energy, D is the diffusion
constant related to the conductivity σ = e2N(0)D. In the action, the inverse of Π(q, ω)

appears in front of ρ(q, ω)ρ(−q,−ω) which is 1
N(0)

+ |ω|
Dq2 . For simplicity, we replace Dq2

in the denominator by a constant. Then we obtain the last term of Eq. (2.55).
We calculated the superfluid density by the Bogoliubov approximation, i.e., substitute

ψ =
√
ρ0 +φ and ψ̄ =

√
ρ0 + φ̄ and retained the terms up to quadratic order in φ, φ̄. From

the general argument [41, 70], the normal component ρn = ρ− ρs can be obtained from
the transverse current-current response function χt(ω, q) as ρn/m = limq→0 χ

t(0, q). At
one-loop order, it is given as [71]:

ρn
m

= lim
q→0

∫
dεk
2π

dω

2π

εk
4i

tr[σ3G
K
ω,kσ3(GR

ω,k+q +GA
ω,k−q)], (2.57)
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where we assumed the two dimensional system. The green functions are given as,

G
R/A
ω,k =

1

ω2 − ω2
k ± 2iηωεk

(
ω + εk + gρ0 ∓ iηω −gρ0 ± iηω
−gρ0 ± iηω −ω + εk + gρ0 ∓ iηω

)
, (2.58)

and GK
ω,k = coth(βω/2)[GR

ω,k − GA
ω,k], where η = 2ρ0α. The number density can be

calculated as:

ρ = ρ0 +
1

V

∑
k

∫ ∞
−∞

dω

2π
nB(ω)i((GR

ω,k)11 − (GA
ω,k)11) (2.59)

Here, we will discuss the derivation of the superfluid density formula (2.57) and the
Green function (2.58) starting from the bosonic system coupled to the phonon bath [52]:

S =
∑
ωn,k

(−iωn + ξk)ψ̄n,kψn,k +
g

2

∫
dτ
∑
i

ψ̄iψ̄iψiψi

+

∫
dτ
∑
i

ψ̄iψi
∑
α

(Vαaiαn + V ∗α āiαn) +
∑
ωn,k

(−iωn + εα)āiαnaiαn

=
∑
ωn,k

(−iωn + ξk)ψ̄n,kψn,k +
g

2

∫
dτ
∑
i

ψ̄iψ̄iψiψi +
∑
ωn,k

A(iωn)ρnkρ
−n
−k

+
∑
ωn,k

(−iωn + εα)

(
ānα +

Vα
−iωn + εα

ρni

)(
an,k +

V ∗α
−iωn + εα

ρ−ni

)
,

where

ρnk =
∑
ωm,q

ψ̄n+m,k+qψm,q, A(iωn) = −
∑
α

|Vα|2εα
ω2
n + ε2α

. (2.60)

Here, we subtract A(0) to ignore the effect of potential renormalization:

A(iωn) =
∑
α

|Vα|2εα
(

1

ε2α
− 1

ω2
n + ε2α

)
(2.61)

Then, if we assume the Ohmic bath, A(iωn) = α|ωn| (α > 0). Now we decompose ψ, ψ̄
into k = 0 condensed part (

√
N0) and uncondensed k 6= 0 part (φ) i.e., ψ =

√
N0 + φ,

and drop the terms higher than quadratic in the uncondensed component φ:

S = −µN0 +
g

2
N2

0 +
∑
ωn,k

[−iωn + ξk + 2N0(g + A(iωn))]ψ̄n,kψn,k

+
N0

2

∑
ωn,k

(g + 2A(iωn)) (ψ̄n,kψ̄−n,−k + ψn,kψ−n,−k).

Here we introduce the Nambu spinor Ψ̄n,k = (ψ̄n,k ψ−n,−k). Then,

S =
∑

ωn,k,kx>0

Ψ̄n,k(−G−1)Ψn,k − µN0 +
g

2
N2

0 , (2.62)
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where

−G−1 =

(
−iωn + ξk + 2N0[g + A(iωn)] N0[g + 2A(iωn)]

N0[g + 2A(iωn)] iωn + ξk + 2N0[g + A(iωn)]

)
. (2.63)

Then, the Green function for Bogoliubov quasiparticle Gαβ(τ) = −〈TτΨα(τ)Ψ†β(0)〉 is:

G =
−1

ω2
n + ω2

k + 4N0εkA

(
iωn + εk +N0[g + 2A(iωn)] −N0[g + 2A(iωn)]
−N0[g + 2A(iωn)] −iωn + εk +N0[g + 2A(iωn)]

)
,

and the total number density is given as,

N

V
=
N0

V
−G11(0−) =

N0

V
+

1

βV
lim
δ→0

∑
ωn,k

eiωnδ
iωn + εk +N0g + 2N0A(iωn)

ω2
n + ω2

k + 4N0εkA(iωn)

=
N0

V
+

1

V

∑
k

∫ ∞
−∞

dω

π
nB(ω)Im

[
ω + εk +N0g − 2iαN0ω

−ω2 + ω2
k − 4iαN0εkω

]
=
N0

V
+

1

V

∑
k

∫ ∞
−∞

dω

π
nB(ω)

ηω(εk + ω)2

(ω2 − ω2
k)2 + 4η2ε2kω

2
. (2.64)

Here we assumed the relation N0g = µ. We introduce the cutoff for the heat bath at
ω = ωc.

Assuming the two dimensional system, here we transform the above expression as,

1 =
ρ0

ρ
+
m

ρ

∫ εc

0

dε

2π

∫ ωc

−ωc

dω

π
nB(ω)

ηω(ε+ ω)2

(ω2 − ω2
k)2 + 4η2ε2ω2

=
ρ0

ρ
+mg

∫ εc/P

0

dε̃

2π

∫ ωc/P

−ωc/P

dω̃

π
nB(Pω̃)

ηω̃(ε̃+ ω̃)2

(ω̃2 − ω̃k
2)2 + 4η2ε̃2ω̃2

,

where

P = ρg, ω̃k
2 = ε̃k

2 +
2ρ0

ρ
ε̃k. (2.65)

The superfluid density ns is obtained from the current-current correlation function.
To derive it, we couple the system with the gauge field A, and derive the effective action
for A. Here we define ∆(iωn) = N0(g + 2A(iωn)), then from Eq. (2.62) and (2.63),

S =
∑

ωn,k,kx>0,k′,k′x>0

Ψ̄n,k

(
−G−1δk,k′ +

i

2m
σ3([∇,A])k,k′ +

1

2m
(A2)k,k′

)
Ψn,k′

=:
∑

ωn,k,kx>0,k′,k′x>0

Ψ̄n,k

(
−G−1δk,k′ + (χ1)k,k′ + (χ2)k,k′

)
Ψn,k′ .

Then, we integrate over the Nambu spinor to obtain the effective action for A:

S = Tr ln(−G−1 + χ1 + χ2)

= Tr ln(−G−1) + Tr ln(1−Gχ1 −Gχ2)

= S0 − Tr(Gχ2)− 1

2
Tr(Gχ1Gχ1) +O(A3)

∼= S0 −
∑
q

Aq ·A−q
(∑

p

tr(Gp,p) +
1

m

∑
p

tr(Gp,pσ3Gp+q,p+qσ3)
(p + q/2)2

2md

)
+O(A3),

(2.66)
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where p = (iωn,p; kx > 0) and we dropped higher derivative terms. The first term in
the curly bracket represents the diamagnetic term, while the second term represents the
paramagnetic term. Here we calculate the paramagnetic contribution:∑

p

tr(Gp,pσ3Gp+q,p+qσ3)
(p + q/2)2

2md
=

1

βV

∑
ωn,k

−ω2
n + ω2

k + 4N0Aεk
[ω2
n + ω2

k + 4N0Aεk]2
εk
d
. (2.67)

Here we perform the analytic continuation, assuming the external frequency ωl is positive.
Then, there are contributions from cuts on Im(z + iωl) = 0 and Im(z) = 0:

1

βV

∑
ωn,k
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4
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ω+Ω,k+q +GA
ω−Ω,k−q)], (2.68)

where GK = coth(βω/2)(GR − GA), and in the last line we assumed two dimensional
system. Ω → 0 and q → 0 limit of this term is nothing but the normal component ρn,
and we note that this expression is the same as the one in Ref. [71], obtained from the
Keldysh formalism.

Here, the retarded/advanced Green function for the Bogoliubov quasiparticle can be
obtained from the analytic continuation of the imaginary time Green function from the
upper/lower half plane and is given as, denoting 2ρ0A = ηω,

GA/R =
1

ω2 − ω2
k ∓ 2iηωεk

(
ω + εk + gρ0 ± iηω −gρ0 ∓ iηω
−gρ0 ∓ iηω −ω + εk + gρ0 ± iηω

)
,

and

GK = coth(βω/2)[GR −GA]

=
−2i coth(βω/2)ηω

ω4
k − 2ω2(ω2

k − 2η2ε2k) + ω4

(
(ω + εk)2 −(ω2 − ε2k)
−(ω2 − ε2k) (ω − εk)2

)
.

From now on, we consider the zero temperature case, where the destruction of the
superfluidity comes purely from the dissipation. The finite temperature case can be
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Figure 2.11: ρs/ρ and ρ0/ρ obtained from Eqs. (2.57) and (2.59). The parameters are
εc/(ρg) = 900, ωc/(ρg) = 1000, mg = 1.

treated in a similar manner. We introduce the cutoff for η as ηΘ(ω2
c − ω2), where Θ(x)

is the step function. We also introduced the cutoff for the energy εk at εc, and choose
εc < ωc, so that the whole energy spectrum of the system is coupled to the heat bath.
The result of the calculation is shown in Fig. 2.11. We can see that ρs rapidly decreases
and vanishes so the superfluidity is destroyed by the dissipation. This kind of behavior
is also shown in Ref. [33], where the authors discussed the destruction of the superfluid
by the static impurity potential, which is in contrast to our system where the translation
symmetry is preserved but the time non-local action breaks the Galilean invariance.

From Fig. 2.11, we can see that, at the critical η where ρs = 0, ρ0 remains finite. This
behavior is similar to the system with disorder [33, 34], but the depletion of ρ0 is large
in this parameter region, so our one-loop calculation cannot decide whether or not ρ0 is
finite at the critical point. In fact, assuming the smooth behavior of the single particle
Green function at the critical point, the Josephson relation [72, 73] requires that both
ρ0 and ρs becomes zero. In spite of this uncertainty, we believe that the transition to
the phase with ρs = 0 in this model remains intact, as is supported by our numerical
calculation in a model with the different source of the Galilean symmetry breaking.

2.7 Discussion

At a moderately clean regime 1/τ, kBT � ∆2/εF [20], where τ is the relaxation time,
∆ is the superconducting gap and εF is the Fermi energy, the particle-hole excitation at
the normal core [17, 74] can be regarded as a heat bath with a continuum spectrum, so
we can regard Eq. (2.31) as a model for the vortices with normal core in that regime.
Our theory does not apply to the super-clean system 1/τ � ∆2/εF at temperature below
kBT ∼ ∆2/εF . Since the motion of vortex induces the resistivity [54] and the density
of vortices is proportional to the magnetic field, we expect a giant magnetoresistance,
as is observed experimentally [9, 11]. In particular, since the vortices do not exhibit
superfluidity even at lowest temperature, the vortex can be treated as a classical object
and we expect the flux-flow resistivity ρ ∝ ρn(B/Hc2) [2], which is linear in the magnetic
field B, where ρn is the residual resistivity of the normal state and Hc2 is the critical
magnetic field of the type II superconductor. This behavior is observed over finite range
of magnetic field [9]. For a weak magnetic field, the resistance can be much smaller than
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the quantum resistance h/(4e2). We note that the long range interaction between the
vortices does not spoil our scenario if we include the effect of the screening [35, 75–77].
Also, the Berry phase of vortices [78], which is absent in the present study since we
assume the integer-filling of the electrons, leads to the interference of the exchange events
so that the superfludity is further suppressed if we include the Berry phase term.

We also speculate that the effect of the normal core or dissipation discussed above
affects the phase transition associated with the proliferation of the vortices, i.e., the
transition not associated with the magnetic field. The point is that, if we extend the
above dissipative action to the closed loop in the space-time, in the parameter region
where the typical size of the vortex ring in the space-time is macroscopic, the exchange
process between the rings is still suppressed from the same reason as above. Therefore,
we expect a different phase compared to the usual proliferation of vortices in the bosonic
superfluid.

In summary, we have shown both analytically and numerically that the presence
of the heat bath, which is the continuous degrees of freedom, drastically affects the
thermodynamic phase realized by the bosons. Our first model is in a first-quantized
form, and we discussed the reduction of the superfluid density because of the modification
of the off-diagonal density matrix of each particle in the presence of dissipation. We
also numerically showed the reduction of the superfluid density at finite temperature to
show the strong support for our scenario. Our second model is a second-quantized field
theoretical model, and we calculated the superfluid density from the transverse current-
current correlation function at zero temperature.
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Chapter 3

Theory of nonreciprocal Josephson
effect

3.1 Background

The nonreciprocal effect of the material is characterized by the difference of the current
response property when we apply higher voltage bias on the left/right side of the mate-
rial1. Concretely, as for the electric current, the nonreciprocity is defined by the following
current response property:

~I( ~E) 6= −~I(− ~E), (3.1)

where ~E and ~I are the external electric field and the electric current, respectively. Equiv-
alently, if we represent the voltage bias as V = VL − VR, where VL/R are the voltage at
the left and right side of the sample, respectively,

~I(V ) 6= −~I(−V ). (3.2)

Physically, it is obvious that the system does not exhibit the nonreciprocity (3.2), if the
material is symmetric between left and right. In fact, if the material has certain symmetry
which acts on ~I and ~E as

~I → −~I, ~E → − ~E, (3.3)

then we get the reciprocal response ~I( ~E) = −~I(− ~E) as is expected. The examples of
such symmetries are the inversion symmetry P and the mirror symmetry M.

The nonreciprocal responses in noncentrosymmetric materials in general have been
intensively studied both from the theoretical and the experimental viewpoint [79]. It of-
ten happens that broken T is needed in addition to broken P to obtain the nonreciprocal
responses, but there are cases where only P breaking is enough. The p-n junction is a
representative example, where the hetero junction of n-type and p-type semiconductors
acts as a rectifier without magnetic field or magnetization. On the other hand, the direc-
tion of the arrow of time is determined by the dissipation associated with the resistivity,

1In this work, we focus on the nonreciprocal electric transport at ~q = 0, i.e., at zero wavenumber,
although the nonreciprocal response at finite ~q like the natural circular dichroism is also an important
research topic [79].
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i.e., irreversibility. In the case of p-n-junction, the existence of the depletion layer due
to the Coulomb interaction is essential for its rectification function. Another example of
the nonreciprocal response without T -breaking is the Zener tunneling [80]. In this case,
the inter-band tunneling probability across the band gap differs between right and left
directions due to the shift vector originating from the Berry connection [81] even without
the broken T . This shift vector is also relevant to the shift current for the interband
photoexcitation [82]. Therefore, the quantum geometry, which encodes the information
of the microscopic inversion asymmetry inside a unit cell, plays an important role. The
nonreciprocity in optical systems has been widely studied [83], and in particular, the
quantum diode of light has been theoretically studied [84] and experimentally realized
[85]. Here the two isolated two level system act as nonlinear mirrors and lead to left-right
asymmetric Fabry-Perot interferometer.

The nonreciprocal signal in solids can be utilized to experimentally detect the inversion
symmetry breaking coming from the magnetic order, the structural phase transition, the
inversion asymmetric crystal structure, etc.. For the range of the strength of the external
voltage imposed in experiments, the nonreciprocal signal is relatively small compared
to the linear response signal, so that it is hard to detect the nonreciprocity in the DC
transport experiment. Instead, we can impose AC voltage Vω, and measure DC current
component I0 [82, 86] (see Fig. 3.1) or the 2ω current component I2ω [12, 87] using the
band pass filter. In the inversion symmetric system, both components are forbidden from
the general group theoretical argument [88], so they directly quantify the nonreciprocity
of the material. Also, the conversion from the AC signal to the DC signal, i.e., the
rectification effect, is important from the engineering perspective, since the earth is filled
with the AC electromagnetic wave coming from the sun, and to utilize this energy, we first
need to convert them to DC signal, which is done by the solar cells where the inversion
symmetry is structurally broken by the junction structure.

Theoretical challenge of the nonreciprocal transport lies in the fact that the nonre-
ciprocal nature can only be captured by the nonlinear response, since at linear order in
~E, from Iα = σαβEβ, we always get the reciprocal response, ~I( ~E) = −~I(− ~E). In the

perturbative treatment in ~E, the nonreciprocity arises only at even orders of ~E, so we
need to calculate at least the second order nonlinear response. This can be done by calcu-
lating the third order current correlation function by the nonlinear extension of the Kubo
formula [89], directly calculating the current expectation value by the Keldysh formalism

[82], or resorting to the higher order expansion in the electric field ~E in the Boltzmann
equation [90].

Aside from the perturbative calculation of I−V curve mentioned above, we can show
the nonreciprocity by the nonperturbative exact calculation of I − V curve, which is
usually very difficult in solid state systems because of the large number of degrees of
freedom. In this respect, the Josephson junction system is convenient since its I − V
curve is fully governed by the dynamics of the single Josephson phase ϕ which is the
difference of the superconducting phases of left and right bulk superconductors. There
are studies on the Josephson diode [91–98], but the nonreciprocity of the single Josephson
junction system has not been much explored.

The Josephson effect is important both theoretically and experimentally. From the
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Figure 3.1: The experimental measurement of DC shift current associated with the local
photo irradiation on the tetrathiafulvalene-p-chloranil (TTF-CA) sample. In this ma-
terial, the inversion symmetry is intact in N phase, while it is broken in I phase with
the appearance of the macroscopic electric polarization. In N phase, we can only see
the small signal coming from the difference of the distance between the photo irradiation
point and the left/right electrode. In I phase, we can see the giant uniform DC signal
associated with the microscopic inversion symmetry breaking of TTF-CA. Reproduced
with permission from [86].

theoretical side, it is a clear evidence of the coherence of the wave function inside the
superconductors. From the experimental side, since the phase degree of freedom ϕ is
almost isolated from the other degrees of freedom due to the superconducting gap and
exhibits the quantum nature, it is an important building block of the quantum computers.
The dynamics of ϕ in the dissipationless case is described by the following Hamiltonian:

H =
Q2

2C
+ EJ

(
1− cos

2eφ

~

)
− Ixφ, (3.4)

where φ = ~ϕ/(2e), C is the capacitance of the Josephson circuit, Q is the charge
accumulated at the capacitance, EJ is the Josephson coupling energy, −e < 0 is the
charge of an electron, [φ,Q] = i~, and Ix is the external current bias, which is assumed to
be constant. Here we assumed the symmetric charging energy Q2/(2C), i.e., Q and −Q
are equivalent. We will discuss the consequences of the asymmetric charging energy later.
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Eq. (3.4) can be regarded as the Hamiltonian of a particle under the tilted cosine type
potential with the period δφ = π~/e, where Q and φ represent the momentum and the
position, respectively. When Ix is small, near the local minimum, the potential energy
can be approximated by the one of the harmonic oscillator where the mass m = C and
the characteristic frequency ω = (2e/~)

√
EJ/C. Then, the width of the wavefunction

is given by ∆φ =
√

~/(mω), and the overlap of the wavefunction between the adjacent
minima is negligible when ∆φ � δφ ⇔ EJ/EQ � 1 (case (I)), and large when ∆φ �
δφ⇔ EJ/EQ � 1 (case (II)), where EQ = e2/(2C). We also include the resistive shunt,
and the Josephson circuit we will discuss is schematically shown in Fig. 3.2.

In the case (I), φ is well-localized inside the minima, and including the resistive shunt,
the dynamics is described by the semiclassical Josephson equation given by [2]

~ϕ̇ = 2eV, (3.5)

Q̇|cap. + Ic sinϕ+
V

R
= Ix, (3.6)

where Ic = 2eEJ/~, Q|cap. is the charge accumulated at the capacitance, V is the chemi-
cal potential (voltage) drop, and R is the shunt resistance. Here we neglected the quan-
tum decay probability, which is known [52] to be expressed as P ∝ exp[−AEJ/(~ω)] =
exp[−A

√
EJ/(8EQ)] at zero temperature in the dissipationless case, where A is the con-

stant factor. We note that the dissipation further suppresses the quantum decay proba-
bility [52].

In the absence of the capacitance, i.e., Q̇|cap. = 0, the Ix − V characteristic is
solved easily to be V = 0 for |Ix| < Ic = 2eEJ/~ and the time-averaged voltage
V̄ = sign(Ix)R

√
I2
x − I2

c for |Ix| > Ic = 2eEJ/~. Therefore, there occurs no nonre-
ciprocal response in this case. In the presence of the capacitance C, i.e., Q|cap. = CV ,
the differential equation becomes second order, i.e., the inertia term appears, which re-
sults in the coexistence of the two solutions for a range of Ix and hysteresis behavior of
Ix − V characteristic, see Fig. 3.3B, blue curve. We will numerically show that, in this
case, the nonreciprocal Ix − V curve is realized if we include the effect of the asymmetry
coming from Q̇|cap.. To understand why Q̇|cap. term is necessary for the nonreciprocal
effect, here we discuss the inversion symmetry, P , and the time reversal symmetry, T , of
Eqs. (3.5) and (3.6), in the absence of Q̇|cap. term. T transforms Ix → −Ix, ϕ → −ϕ,

J

I2

C

I1

Ix

R

I3

Ix

Figure 3.2: The Josephson circuit. The Josephson circuit, where C, J and R represent
the capacitor, the Josephson junction, and the resistive shunt, respectively.
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while V → V as we can see from Eq. (3.5). Note here that the last term on the l.h.s.
of Eq. (3.6) changes sign when T is applied, although V is even with respect to T .
This is usual since 1/R represents the dissipation and irreversiblity, and introduces the
asymmetry between the two directions of time. As for the inversion symmetry P , on the
other hand, the transformation gives Ix → −Ix, ϕ → −ϕ, and V → −V since the two
superconductors are exchanged. Therefore, the nonreciprocal response, it it exists, comes
from the term Q̇|cap. in Eq. (3.6) when the spatial inversion symmetry P is broken.

In the case (II), since the cosine potential is small, Q is almost the good quantum
number. In the same spirit as the nearly free electron approximation, EJ(1− cos[2eφ/~])
term in the Hamiltonian can be treated perturbatively, and it leads to the Bragg reflection
and opens up a gap at the momentum Q = ±~π/δφ = ±e. The size of the gap is
proportional to EJ , and the energy at Brillouin zone edge is EQ, so the dimensionless
quantity EJ/EQ is roughly the ratio of the bandgap to the bandwidth. The last term in
Eq. (3.4) can be regarded as the potential coming from the external electric field E = Ix,
and, including the dissipation term, the dynamics is described by

dQ

dt
= Ix −

1

R

∂Ẽch(Q)

∂Q
, (3.7)

where Ẽch(Q) is the band energy with the gap at Q = ±e.
In the present work, we study theoretically the nonreciprocal nature of Ix-V char-

acteristics of the asymmetric Josephson junction, which is modeled by the asymmetric
charging energy Ech(Q)(6= Ech(−Q)). We will show that, both for case (I) and case (II),
the asymmetry of Ech(Q) leads to the nonreciprocity.

Before getting into the detailed analysis, here we discuss the origin of the asymmetric
charging energy. The capacitance of small junction system originates from two contribu-
tions: One is the classical capacitance, determined by the electrostatic energy inside the
thin film, and the other one is the quantum capacitance, which depends on the property of
the charge response of two sandwiching bulk systems [99–103]. Among these two contri-
butions, the latter one is in general nonlinear. In the discussion section, we will estimate
the order of the quantum capacitance in real systems and discuss how to experimentally
measure the nonreciprocity.

3.2 Purpose and assumptions of the model

The purpose of our work is to clarity that the nonreciprocity is present in the usual
Josephson junction system if the charge response property of the left/right superconduc-
tor is different. Quantitatively, the nonreciprocity is caused by the nonlinearity of the
charging energy. We will estimate the charging energy for the realistic system and discuss
that it is possible to detect the nonreciprocity by 2ω measurement.

There are three experimental parameters which affects the behavior of the dynamics
of φ and I − V curve: The shunt resistance R, the capacitance C, and the Josephson
energy EJ . We ignore the quasiparticle tunneling, which is suppressed exponentially at
low temperature because of the superconducting gap.
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The quasiparticle tunneling and the shunt can be regarded as the parallel circuit, so
if the tunneling conductance is comparable or large relative to the shunt conductance, we
cannot ignore the effect of quasiparticle tunneling. Experimentally, this happens if the
temperature is comparable to or larger than the superconducting gap, and also the shunt
conductance is small, i.e., if the junction structure is S-I-S type rather than S-N-S. We
do not consider this case in our work. However, we note that our theory is still applicable
to S-I-S junction if the temperature is small enough.

The capacitance C and the Josephson energy EJ ∝ Ic are both proportional to the
junction area S. Those parameters determine the two dimensionless quantities, EJ/EQ =

2CEJ/e
2 and r = R

√
(2eCIc)/~. EJ/EQ is proportional to S2, and is large for large

junctions. Therefore, our model (I) is applicable to the large junctions, while our model
(II) is applicable to the small junctions. r is proportional to RS, so its smallness depends
on the shunt resistance. Our theory for model (I) predicts the nonreciprocity for the
system with r � 1, so the larger junction and/or the large shunt resistance is better
suited for the measurement of the nonreciprocity.

We will estimate the nonlinear capacitance using the Thomas-Fermi approximation
[102, 103], and show that the 2ω signal V2ω ∼ 10nV is expected for the usual Josephson
junction system. This can be measured in the current experimental technology.

3.3 Models

Model for case (I)

The dc Josephson effect is described by the constant ϕ, Q and V = 0, where ϕ is
determined by Ix = 2eEJ

~ sinϕ = Ic sinϕ. For |Ix| > Ic, there is no solution for constant ϕ
and the voltage V appears. In this picture, Ic is identical for both directions, while one
needs to solve the dynamics, i.e., the time dependence, of Q and ϕ when finite voltage
appears. In this case, the functional form of Ech(Q), which is related to the voltage V by
V = ∂Ech

∂Q
, is important. Often the form Ech(Q) = Q2/(2C)− VgQ is taken with C being

the capacitance and Vg the gate voltage. This seems to break the symmetry between
right and left, i.e., Q and −Q, but the shift in the origin of Q recovers that symmetry.
Therefore, the essential asymmetry between right and left comes from the higher order
terms in Q such as

Ech =
Q2

2C
+ αQ3 + α′Q4. (3.8)

Then we consider the following generalized Josephson equation as

~
2e
ϕ̇ =

∂Ech
∂Q

, Q̇ = Ix + Ĩ(t)− Ic sinϕ− 1

R

∂Ech
∂Q

, (3.9)

where we added the fluctuating current Ĩ satisfying 〈Ĩ(t)Ĩ(t′)〉 = 2(βR)−1δ(t − t′), to
discuss the finite temperature system.

It is useful to rewrite Eqs. (3.8) and (3.9) with the dimensionless parameters ĩ = Ĩ/Ic,
ix = Ix/Ic, r

−1 = R−1
√
~/(2eCIc), A = αC3/2

√
EJ , A′ = α′C2EJ and T̃−1 = EJβ. Also,
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we rescale t and Q as τ = t
√

2eIc/(~C) and q =
√

2e/(~CIc)Q. Then, Eq. (3.9) becomes

dϕ

dτ
=
∂εch
∂q

,
dq

dτ
= ix + ĩ(t)− sinϕ− r−1∂εch

∂q
, (3.10)

where

εch =
q2

2
+ Aq3 + A′q4. (3.11)

Let us discuss here the analogy of Eq. (3.10) with the particle motion under the periodic
potential. The Josephson phase ϕ corresponds to the position x, while the charge transfer
q to the momentum p. In this particle picture, the potential energy is − cosx and the
kinetic energy is εch(q → p). In this sense, one can define the “time-reversal symmetry”
T ′ and “inversion symmetry” P ′ as

T ′ :x→ x, p→ −p, (3.12)

P ′ :x→ −x, p→ −p.

Then, our system breaks both P ′ and T ′, while it preserves P ′T ′ except the dissipative
term in Eqs. (3.9) and (3.10). Namely, the periodic potential is inversion symmetric, while
the kinetic energy is asymmetric with respect to p and −p. In the quantum mechanical
case, this leads to the asymmetric dispersion ε(k) 6= ε(−k).

We will discuss the nonreciprocity of Eq. (3.10) with Eq. (3.11) for two cases: First,
we discuss the system with no thermal fluctuation, at T = 0. For |ix| > 1, where the bias
is so strong that the potential barrier disappears, the dynamics is characterized by the
limit cycle in (ϕ, q) space. For |ix| < 1 and sufficiently small r−1, there coexists the stable
fixed point and the limit cycle [104, 105], which represents the metastable steady state.
Secondly, we discuss the system with thermal fluctuation at finite temperature T > 0,
where the phase slip is caused by the thermal fluctuation [106, 107]. In both cases, we
will show that the asymmetry of the charging energy leads to the nonreciprocity.

Here we note that, since the voltage drop V in the presence of A satisfies V (A,−ix) =
−V (−A, ix), the nonreciprocity characterized by Vasym = [V (A, ix)+V (A,−ix)]/[V (A, ix)−
V (A,−ix)] can be rewritten as [V (A, ix)− V (−A, ix)]/[V (A, ix) + V (−A, ix)], so we cal-
culate the voltage drop V (A, ix) for positive ix and change the sign of A. We set the
parameters A = ±0.6 and A′ = 0.3 in the following.

Model for case (II)

As we mentioned in section 3.1, the dynamics in this case is governed by Eq. (3.7), and
EJ/EQ characterizes the ratio of the band gap to the bandwidth, see Fig. 3.12C.

In this case, because of the periodicity of the Brillouin zone, the system starts to
exhibit Bloch oscillation, which affects the Ix − V curve in a substantial way [108, 109].
Physically, the Bloch oscillation in Q space corresponds to the cooper pair tunneling
through the Josephson junction [108], and it reduces the current flowing through the
resistive shunt, so the voltage drop V is suppressed. The Bloch oscillation is hindered
by the Zener tunneling process where the state is excited to higher energy bands, and
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Ix − V curve is determined by the competition between the Bloch oscillation and the
Zener tunneling process [109–111].

For the discussion of Bloch oscillation, for simplicity, we work in the lowest order
approximation in EJ , i.e., we neglect the gap at Brillouin zone boundary but assume the
periodic structure of the energy dispersion, Ẽch, i.e.,

Ẽch(Q) = min
n∈Z

Ech(Q− 2ne). (3.13)

Setting Q = eq̃, t = RCτ̃ , Ix = ĩxe/(RC), Eq. (3.7) becomes

dq̃

dτ̃
= ĩx −

∂ε̃

∂q̃
, (3.14)

where

ε̃(q̃) = min
n∈Z

E ′ch(q̃ − 2n), E ′ch(q̃) =
q̃2

2
+ Ãq̃3 + Ã′q̃4, (3.15)

where Ã = αCe, Ã′ = α′Ce2. We set Ã = 0.6 and Ã′ = 0.3 in the following.

3.4 Results

Nonreciprocal Ix − V curve at T = 0 for case (I)

In Fig. 3.3 (blue curves), we show the Ix − V curve for the system without the Q̇|cap.

term (panel A) and the system with P breaking Q̇|cap. term (panel B) at T = 0. As we
mentioned in the background section, the nonreciprocity is realized only for the latter
system, see panel C.

An important feature of Ix − V curve at T = 0 with finite Q̇|cap. (Fig. 3.3B, blue
curve) is the hysteresis at iRc1 < ix < ic3 and −iLc3 < ix < −iLc1. This comes from the
coexistence of the limit cycle and the stable fixed point [104, 105]. As can be seen from
Figs. 3.4B and C, because of the presence of the limit cycle, for the initial condition
inside the dark blue region, the stationary state at long time is governed by the limit
cycle so that the finite voltage drop results. On the contrary, for the initial condition
inside the green region, the particle is attracted to the fixed point and the voltage drop
is zero. Sweeping ix from the large value to the small value corresponds to the former
case, while sweeping ix from the small value to the large value corresponds to the latter
case. Namely, the hysteresis behavior occurs. On the contrary, there exists no hysteresis
for Ix − V curve at T = 0 without Q̇|cap. term (Fig. 3.3A, blue curve).

Here we review the qualitative aspect of the bifurcation of limit cycle in the system
with T = 0 [104, 105] for ix > 0. The system shows qualitatively different behavior
depending on the value of the dissipation strength r, defined above Eq. (3.10).

For r−1 � 1 (Fig. 3.3A), we can neglect the inertia term (the capacitance)2 and the
equation becomes

r−1dϕ/dτ = ix − sinϕ. (3.16)
2This approximation is called “overdamped approximation” in the literature. This is the first order

term of the systematic γ−1 expansion as we will discuss in Appendix B.1. We will also show that, up to
the third order terms, the system does not exhibit nonreciprocity.
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Figure 3.3: Ix − V curve for case (I) at T = 0 and T > 0. Ix − V curve calculated by
the classical Langevin equation (3.10) and (3.11) (case (I)), for the system (A) without
Q̇|cap. term and (B and C) with Q̇|cap. term (for the definition of r−1, see Eq. (3.10)),
where ix = Ix/Ic and V0 = RIc with Ic = 2eEJ/~. In (C), we show Vasym(ix) = [V (ix) +
V (−ix)]/[V (ix) − V (−ix)] which quantifies the degree of nonreciprocity calculated from
the Ix − V curve (B). We note that Vasym = 0 identically for the Ix − V curve (A), i.e.,
when Q̇|cap. = 0. The arrows on blue curves represents the direction of the sweep of ix.
We set T̃ = 0.25 for T > 0 data, i.e., for orange curves, and A = 0.6, A′ = 0.3 in Eqs.
(3.10) and (3.11).
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Figure 3.4: The bifurcation of the system with Q̇|cap. 6= 0. The bifurcation of the system
with finite capacitance, Eqs. (3.10) and (3.11). We set A = 0.6, A′ = 0.3, r−1 = 0.1 and
(A) ix = 0.1, (B) ix = 0.288 ∼= iRc1, (C) ix = 0.5, (D) ix = 1 = ic3 and (E) ix = 1.1.
The blue and red dots represent the stable fixed point and the saddle point, respectively.
Black curves are (meta)stable limit cycle, and the green and dark blue regions are the
basins of attraction of the stable fixed point (blue dot) and the limit cycle (black curve),
respectively. We present the case of positive ix, while the behavior is similar also for
ix < 0. However, the critical iLc1 is different from iRc1.
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Figure 3.5: The bifurcation of the system with Q̇|cap. = 0. The bifurcation of the system
with Q̇|cap = 0, Eq. (3.16) for (A) ix = 0.5, (B) ix = 0.8 and (C) ix = 1.2. The blue
curve represents dϕ/dτ and the arrow on the black curve represents the direction of the
velocity. The blue and red dots represent the stable fixed point and the saddle point,
respectively. We can see that the limit cycle disappears for ix < 1.

For ix > 1, dϕ/dτ > 0 and there is only a limit cycle (Fig. 3.5C). At ix = ic3 = 1,
the saddle-node (blue-sky) bifurcation leads to the vanishing of the limit cycle and the
birth of the stable and unstable fixed points at ϕ = sin−1 ix and π − sin−1 ix for ix < 1,
respectively, see Figs. 3.5 B and C. For ix < 1, the long time dynamics is governed by the
stable fixed point, see Figs. 3.5A and B. Therefore, in this case the disappearance of the
limit cycle and the birth of the stable fixed point occur simultaneously, i.e., iRc1 = ic3 = 1.
Above ic3, the flow of ϕ occurs, and the time-average of dϕ/dτ gives that of the voltage
drop V̄ = sign(Ix)R

√
I2
x − I2

c as we mentioned in the introduction.
For r−1 � 1 (Fig. 3.3B), we cannot neglect the inertia term (the capacitance) and the

bifurcation mentioned above splits into two bifurcations. One is at ix = ic3 = 1, where
the saddle-node bifurcation leads to the birth of the stable fixed point and the saddle
point at (ϕ, q) = (sin−1 ix, 0) and (π − sin−1 ix, 0), as is shown in Figs. 3.4 C, D and E;
The other one is the homoclinic bifurcation at ix = iRc1, where the limit cycle collides with
the saddle point at (ϕ, q) = (π − sin−1 ix, 0) to become the homoclinic orbit and then
disappears, as is shown in Figs. 3.4A and B. We will review what a homoclinic orbit is
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Figure 3.6: Nonreciprocity for various ix and r−1 for case (I) at T = 0. (A) Vasym(ix) =
[V (ix) + V (−ix)]/[V (ix)− V (−ix)] as a function of ix and r−1 calculated by Eqs. (3.10)
and (3.11) with T̃ = 0. (B) The voltage drop V/V0 where V0 = RIc for A > 0 and
A < 0 with r−1 = 1 and T̃ = 0 in Eqs. (3.10) and (3.11). Here Vasym < 0 for the
parameter region shown in (A). (C) The phase diagram in (ix, r

−1) space for Eqs. (3.10)
and (3.11) with T̃ = 0. St., Mst. and LC. represent the phase with stable fixed point
only, stable fixed point coexisting with limit cycle, and limit cycle only, respectively.
The black curves are the phase boundary calculated from Eq. (3.17). (D) Vasym(ix) =
[V (ix)+V (−ix)]/[V (ix)−V (−ix)] near the phase boundary, where V (ix) is calculated for
the metastable limit cycle of Eqs. (3.10) and (3.11) with T̃ = 0, i.e., the plot corresponds
to the sweeping of ix from the large value in Fig. 3.3D. Vasym < 0 for the parameter
region shown in (B).

and discuss its role in the phase diagram later. As for the bifurcations for ix < 0, the
qualitative nature of the bifurcations are the same, but importantly, iLc1 6= iRc1 because of
the asymmetry of the charging energy. It leads to the enhancement of Vasym near iLc1 and
iRc1 as can be seen in Fig. 3.3C.

Nonreciprocity for various ix and r−1 at T = 0 for case (I)

For |ix| > 1, Vasym as a function of ix and r−1 is shown in Fig. 3.6A. We can see that the
nonreciprocity is enhanced for small ix and r−1. Since |ix| > 1, the dynamics is governed
by the limit cycle traversing from ϕ = −π to π at finite q as is shown in Figs. 3.7A and
B. As we can see, finite A modifies the limit cycle and leads to the asymmetry.
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Figure 3.7: The limit cycle for ix > 1. The limit cycle, shown by black curves with Eqs.
(3.10) and (3.11) for ix = 1.2, r−1 = 1, and (A) A > 0 and (B) A < 0.
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Figure 3.8: The homoclinic orbit for ix = r−1 = 0. The homoclinic orbit (black curves)
at r−1 = ix = 0 for (A) A > 0 and (B) A < 0 in Eqs. (3.10) and (3.11). The red dots
represent the fixed point. Note that (ϕ, q) = (π, 0) and (−π, 0) are equivalent.

For |ix| < 1, the homoclinic bifurcation occurs at iRc1 and −iLc1. As we explained in
the last section, at this bifurcation point the limit cycle becomes the homoclinic orbit.
In short, a homoclinic orbit is a variant of a limit cycle. However, in contrast to a limit
cycle, there exists a fixed point on it, so its time period is infinite, since it takes infinite
time to reach and depart from the fixed point. For example, the black curves in Figs.
3.4B and 3.8A and B are homoclinic orbits where the fixed point is shown by red dots.
In our case, the presence of the homoclinic orbit indicates the homoclinic bifurcation, so
by identifying the parameter where there exists a homoclinic orbit on the (ix, r

−1) plane,
we can identify the phase boundary.

For small ix and r−1, we can perturbatively calculate the phase boundary from the
parameter point ix = r−1 = 0, where we can analytically obtain the homoclinic orbit,
see Figs. 3.8A and B. For that, we calculate the simple zero of the following Melnikov
function [112]: ∫ ∞

−∞
dtϕ̇0(t)(ix − r−1ϕ̇0(t))

=2πix − 2r−1

∫ qmax

0

dq

(
dεch(q)

dq

)2
1√

εch(q)[2− εch(q)]
, (3.17)

where ϕ0(t) is the homoclinic orbit for ix = r−1 = 0 shown in Fig. 3.8, and qmax is the
maximum of q along the orbit. As we can see, the homoclinic orbit for A > 0 (Fig. 3.8A,
black curve) and A < 0 (Fig. 3.8B, black curve) is quite different and that leads to the
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difference of the Melnikov function and the phase boundary in two cases. In Fig. 3.6C,
we show the phase boundary obtained from direct numerical calculation (red dotted and
green dot-dashed curves) and the one obtained from the condition that Eq. (3.17) should
be zero (black solid curve). We can see that the prediction of Eq. (3.17) agrees well
with the numerically obtained boundary for small ix and r−1. For (ix, r

−1) such that
metastable limit cycle does exist for A < 0 but not for A > 0, we observe very large
|Vasym|, as is shown in Fig. 3.6D, since the time-averaged velocity dϕ/dτ = 0 for A > 0

but dϕ/dτ is finite for A < 0. We also note that the large |Vasym| for ix & 1 (Fig. 3.6A)
can be understood as a consequence of the difference of ic1 for A > 0 and A < 0: As we
can see from Fig. 3.6B, the voltage drop V is larger at ix & 1 for A < 0, because ic1 is
smaller for A < 0.

Nonreciprocal Ix − V curve at finite temperature T > 0 for case
(I)

For the finite temperature T > 0 case, we numerically simulated the Langiven equation
Eq. (3.9) with stochastic Heun’s scheme [113] to calculate the physical quantities and
then took an ensemble average. Numerically calculated Ix−V curve is shown in Fig. 3.3
(orange curves). As is shown in Fig. 3.3B, we can see that the voltage drop V suddenly
increases around iRc2 and −iLc2 and merges to the curve V/V0 = ix. This behavior can be
understood as the dynamical transition, from the state where the dominant probabilistic
weight is on the stable fixed point so that the voltage drop is around zero, to the one where
the limit cycle is primarily realized and the finite voltage drop results [114, 115]. Since
the system is at the finite temperature, the transition is not sharp, but as T → +0 this
transition becomes sharper and sharper and the jump of V from 0 to finite value occurs
at ix = iRc2 and −iLc2 when T = +0. At the same time, the relaxation time between the
two configurations diverges as T → +0, and when the experimental measurement time
is shorter than the relaxation time, we observe the hysteresis behavior as we discussed
above for T = 0 case. In the similar manner to T = 0 case, the large Vasym near iRc2 and
−iLc2 is realized because iRc2 6= iLc2.

Nonreciprocity for various ix and r−1 at T > 0 for case (I)

We numerically calculated the nonreciprocity for various ix and r−1, and the result of the
numerical calculation is shown in Fig. 3.9.

As we can see, the nonreciprocity is enhanced for small r−1, i.e., small dissipation,
region. This is consistent with the fact that, for r−1 � 1, we can neglect the inertia term
in Eq. (3.10) to obtain the usual inversion-symmetric overdamped Langevin equation3.
In addition, we can see the peak structure at finite value of ix for fixed r−1. To understand
this behavior, it is useful to plot the normalized mobility r−1µ = V/(V0ix), where V0 =
RIc, as a function of ix [114], see Fig. 3.10A. We can see that for small ix, the mobility
is almost zero, but at some finite ix the mobility jumps to µ = r and saturates. This

3For the derivation, see Appendix B.1. We will also show that up to third order terms in γ−1, the
system does not exhibit nonreciprocity.
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Figure 3.11: Variance of JT =
∫ T

0
dτ dϕ

dτ
for case (I) at T > 0. Variance of JT as a function

of ix. The blue dotted and orange dashed curves are the lower bound predicted by the
thermodynamic uncertainty relation, Var(JT ) ≥ 2〈JT 〉2/(T σ), where σ is the entropy
production rate and is calculated as σ = ix〈JT 〉/T̃ [116]. We numerically simulated the
Langevin equation (3.10) and (3.11) for 100 ensembles with time τ = 107 and ∆τ = 10−2

by the stochastic Heun scheme, and set T = 1000. The parameters are set to be r−1 = 0.1,
T̃ = 1.

kind of behavior can be understood from the distribution function of the energy W±(E),
defined as

P (E) =

{
N+e

−W+(E)/T̃ (q ≥ 0)

N−e−W−(E)/T̃ (q < 0)
, E = εch(q)− cosϕ. (3.18)

where N+/− is the normalization factor, P (E) is the distribution function of E, and we
introduced two functions W+ and W−, corresponding to the two branches of momentum
q as a function of the energy E [114]. Numerically calculated W+(E) for A > 0 and
A < 0 is shown in Figs. 3.10B and C. We can see that, as we increase the bias ix, W+(E)
at large E becomes small and eventually the local minimum at E > 1 drops below the
value at E = −1. This corresponds to the dynamical transition of the typical trajectory
from the static one at E = −1 to the running one at E > 1. We can see that the critical
value of ix which we denote ic2, where this transition occurs is different for A > 0 case
(ic2 ∼ 0.6) and A < 0 case (ic2 ∼ 0.5). The fact that ic2 is larger for A > 0 is consistent
with the larger ic1 where the limit cycle emerges, as is shown by blue dot-dashed and
orange dashed curves in Fig. 3.10A.

Because of the presence of the thermal fluctuation, we can discuss not only the av-
erage value of the velocity, but also the whole distribution of the time-averaged current
JT =

∫ T
0
dτ dϕ

dτ
[116]. The numerically calculated variance is shown in Fig. 3.11. Since the

system does not have T ′ symmetry (For the definition of T ′ and P ′ symmetry, see section
3.3), we might have a violation of the lower bound of the variance known as thermody-
namic uncertainty relation [116–118], as is observed in the underdamped Langevin system
with magnetic field [119], but we did not observe any violation as far as for the parameter
regions we have checked. As we can see, the fluctuation of the current becomes large for
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Figure 3.12: Ix − V curve, energy dispersion and nonreciprocal Zener tunneling for case
(II). (A) Ix − V curve and (B) Vasym(̃ix) = [V (̃ix) + V (−ĩx)]/[V (̃ix) − V (−ĩx)] in the
presence of the Bloch oscillation, calculated from Eqs. (3.20) and (3.21), where V0 = e/C.
(C) Energy dispersion of the two lowest energy bands with the asymmetric changing
energy E ′ch(q̃) = q̃2/2 + Ãq̃3 + Ã′q̃4 with Ã = 0.6 and Ã′ = 0.3, and we set EJ/EQ = 0.2,
where EQ = e2/(2C), to open up a gap in the spectrum. Dotted curve represents the
energy dispersion without the Josephson coupling term EJ cosϕ in the Hamiltonian.
(D) The LZ rate calculated from Eq. (3.22) with EJ/EQ = 0.1 (EQ = e2/(2C)) and
R/Rq = 100.

intermediate ix. This reflects the fact that there coexists the stationary trajectory and
the running trajectory, and these two trajectories, which have quite different average ve-
locities, are probabilistically realized, leading to the large fluctuation of the current. For
larger ix the fluctuation decreases, since the stationary fixed point disappears. Reflecting
the difference of the critical current ic2, the region where the current fluctuation enhances
is different for A > 0 and A < 0 cases, and that leads to quite different current fluctuation
as we can see in Fig. 3.11.

Nonreciprocal Bloch oscillation for case (II)

First, we will discuss the effect of nonreciprocity in Bloch oscillation in Josephson junc-
tion. For the energy dispersion (3.15), denoting the left and right Brillouin zone boundary
q̃L,R, the conditions for the Bloch oscillation for ĩx > 0 and ĩx < 0 cases can be written
as,

ĩx ≥
∂ε̃(q̃R)

∂q̃
=: ĩRc,bl, ĩx ≤

∂ε̃(q̃L)

∂q̃
=: −ĩLc,bl, (3.19)
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respectively. The periods of the Bloch oscillation for ĩx > 0 and ĩx < 0 cases are,

τ̃R =

∫ q̃R

q̃L

dq̃

ĩx − ∂ε̃
∂q̃

, τ̃L =

∫ q̃L

q̃R

dq̃

ĩx − ∂ε̃
∂q̃

. (3.20)

The voltage drop can be calculated by Eq. (3.14) as [108]

VL,R =
e

C

〈
∂ε̃

∂q̃

〉
=

e

C

(
ĩx −

2

τ̃L,R

)
. (3.21)

We show the voltage drop calculated by Eq. (3.21) in Figs. 3.12A and B. As we can see,
since the critical currents where the Bloch oscillation sets in are different for ĩx > 0 and
ĩx < 0, i.e., ĩRc,bl 6= ĩLc,bl, Ix − V curve exhibits nonreciprocity.

Nonreciprocal Zener tunneling for case (II)

Next, we discuss the nonreciprocity in Zener tunneling rate. The general expression of
the Zener tunneling rate was derived in Ref. [110], where the argument is only for the
quadratic charging energy. Generalizing their argument to include the asymmetry of the
charging energy, we obtain4

P± = exp

[
−
(
πEJ
2EQ

)2
R

Rq

1

|VC,±||v±|

]
,

(
Rq =

e2

2π~

)
(3.22)

where we neglected the effect of the fluctuation of the charge. Here

VC,± =
d

dq̃
(E ′ch(q̃)− E ′ch(q̃ ∓ 2))

∣∣∣∣
q̃=q̃R/q̃L

,

and, as we can easily see, |VC,+| = |VC,−|. v± is the velocity of the charge at q̃R,L given
by the solution of Eq. (3.14), i.e.,

v± = ĩx −
∂ε̃

∂q̃

∣∣∣∣
q̃=q̃R/q̃L

= ĩx ∓ ĩR/Lc,bl , (3.23)

where ĩ
R/L
c,bl are defined in Eq. (3.19). As we noted ĩRc,bl 6= ĩLc,bl, so |v+(̃ix)| 6= |v−(−ĩx)| and

P+ 6= P−. The Landau-Zener tunneling probability P± obtained from Eq. (3.22) is shown
in Fig. 3.12D. We can see the threshold behavior coming from the dissipation [120].

Here we note the importance of the effect of dissipation in obtaining the nonreciprocal
Zener tunneling rate. In the present semiclassical approximation, there occurs no quan-
tum tunneling when the classical solution does not reach the band crossing point due to
the dissipation. Then the asymmetric threshold current is the origin of the nonreciprocal
tunneling rate, and hence the dissipation is required for the nonreciprocity. On the other
hand, it was shown in Ref. [80] that the nonreciprocal Landau-Zener tunneling occurs
if we have nonzero shift vector even without the dissipation. Here, as we discussed in

4For the derivation, see Appendix B.2.
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section 3.3, we are considering the system where P ′ and T ′ is broken by the asymmetry of
the dispersion relation, but the system still has P ′T ′ symmetry. Then, from the general
transformation rule [82], the shift vector is identically zero. Furthermore, we can show
that, in the absence of the shift vector, there is no nonreciprocity in the LZ rate even in
the presence of the asymmetry in the band energy. To show this, we observe that, in the
absence of shift vector, the amplitude for the tunneling process during one cycle of Bloch
oscillation under the electric field E = −Ex < 0 is given as [80],

a
(−Ex)
+ = iei argA+−(−π)

∫ π

−π
dk1|A+−|(k1)e−i

∫ k1
−π dk2

∆(k2)
−eEx , (3.24)

where A+− = 〈u+|∂k|u−〉, |u±〉 is the wavefunction for upper/lower band, and ∆(k) is the
k dependent difference of the upper band energy and the lower band energy. Although
the standard estimation utilizes the integration path in the complex k plane, here we
only consider the integration path on the real k line. From Cauchy’s theorem, this does
not spoil any generality of our result. Then, the expression for the reverse process with
the electric field E = Ex > 0 is given as,

a
(Ex)
+ = iei argA+−(π)

∫ −π
π

dk1|A+−|(k1)e−i
∫ k1
π dk2

∆(k2)
eEx ,

By taking the complex conjugate of Eq. (3.24), we can show that
(
a

(−Ex)
+

)∗
= eiχa

(Ex)
+ ,

where

χ = − argA+−(−π)− argA+−(π)−
∫ π

−π
dk2

∆(k2)

eEx
.

Therefore, we conclude that
∣∣∣a(−Ex)

+

∣∣∣ =
∣∣∣a(Ex)

+

∣∣∣ in the absence of shift vector, even if the

system breaks P symmetry. The situation is different if we include the dissipation to the
system, as we can see from Eq. (3.22). Since the semiclassical dynamics of Q reflects the
asymmetry of the dispersion through the dissipative term, the nonreciprocal LZ effect is
realized.

3.5 Discussion

Nonlinear capacitance

Here, we estimate the nonlinear capacitance α [99–103] using the scaling form derived by
the Thomas-Fermi approximation [102, 103]:

α ∝
[

(4π)2

εF,2

(
Sλ2λ

−2
2 e−2

)−2 − (4π)2

εF,1

(
Sλ1λ

−2
1 e−2

)−2
]

1

e3
,

∝
[

1

n2

− 1

n1

]
4π

eS2
(3.25)
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where S is the area of the cross section of the Josephson Junction, λ1/2, εF,1/2 and n1/2

are the Thomas-Fermi screening lengths, the Fermi energy and the carrier density of the
bulk superconductors, and we replaced d/dε with 1/εF (εF is the Fermi energy) for the
order estimation. Now, the linear capacitance in the Thomas-Fermi approximation can
be written as

C =
εr
4π

S

a+ λ1 + λ2

, (3.26)

where εr and a are the relative dielectric constant and the thickness of the thin film,
respectively.

First we consider the case (I), where the dynamics is governed by Eqs. (3.10) and
(3.11). Then, in the dimensionless unit, we get

A = αC3/2
√
EJ

∝
[

εr
n2S(a+ λ1 + λ2)

− εr
n1S(a+ λ1 + λ2)

]√
EJ

2EQ
(3.27)

Now, we set the typical values n1,2 ∼ 1022 cm−3, εr ∼ 10, S ∼ 0.1µm2, a = 1 nm,
EQ/EJ ∼ 10−1 and assume a� λ1,2. Then, A ∼ 10−5.

If we consider the case (II), where the dynamics is governed by Eqs. (3.14) and (3.15),
in dimensionless unit,

Ã = αCe ∼
[

εr
n2S(a+ λ1 + λ2)

− εr
n1S(a+ λ1 + λ2)

]
. (3.28)

Since EJ ∝ S and EQ ∝ 1/S, EJ/EQ � 1 is satisfied for the system with small S.
Therefore, we assume small Josephson junction and set S = 0.01µm2, n1,2 ∼ 1022 cm−3,
εr ∼ 10, a = 1 nm and assume a� λ1,2. Then, Ã ∼ 10−4.

Experimental measurement

From the above estimate, A ∼ 10−5 for case (I) and Ã ∼ 10−4 for case (II), so the
asymmetry is relatively small in the experimental settings, but it is possible to measure
the 2ω response V2ω to the AC driving current Ix(t) = Ia cosωt with small ω with a
high precision. Assuming ω is small compared to the characteristic frequency of the
dynamics, we can calculate the 2ω component of the response voltage by the adiabatic
approximation:

V2ω =
ω

2π

∫ 2π/ω

0

dt cos(2ωt)V (Ia cosωt)

=
1

4π

∫ 2π

0

dτ cos τ
[
V
(
Ia cos

τ

2

)
+ V

(
−Ia cos

τ

2

)]
. (3.29)

Now, we estimate V2ω for three cases: (A): case (I) with T = 0, (B): case (I) with
T > 0 and (C): case (II). As we discussed, the asymmetry of V is pronounced near the
various critical value of ix or ĩx, so, to obtain large V2ω we set the amplitude of the
external voltage Ia near these critical currents, i.e., (A) Ic, (B) ic2Ic and (C) ĩ

L/R
c,bl e/(RC).
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For the case (A), i.e., case (I) with T = 0, if we set I0 > IC , the above measurement
of 2ω component reflects the difference of iRc1 and iLc1. We set the critical current density
Ic/S = 100 A/cm2 and the resistance times area RS = 10−5 Ω cm2, and the capacitance
C/S ∼ 10−5 F/cm2, where we used Eq. (3.26) with a = 1 nm, S = 0.1µm2 and εr = 10.
Then we get r−1 ∼ 0.1, and for A ∼ 10−5, A′ = 0.5A, the numerical calculation yields
V2ω ∼ 0.00001RIc ∼ 10 nV.

Next, we consider the case (B), i.e., case (I) with T > 0. We use the same pa-
rameters as the case (A) and set T = 50 K. Then, the numerical calculation yields
V2ω ∼ 0.00001RIc ∼ 10 nV.

For the case (C), i.e., case (II), for Ã = 10−4 and Ã′ = 0.5Ã, the numerical calculation
yields V2ω ∼ 0.0001e/C ∼ 10 nV, where we used the parameters C/S ∼ 10−5 F/cm2 and
S = 0.01µm2.

In summary, V2ω is about 10 nV for the usual Josephson junction systems, and it
can be measured by the current experimental technology. As concrete superconducting
materials, it is better to use different superconductors with the different carrier density
in the normal state, so that the nonlinear capacitance becomes large.

Conclusion

We have shown that, in inversion asymmetric Josephson junctions, the nonreciprocal
Ix − V curve is realized if we include the asymmetry of the charging energy both for
the system with (I) EJ/EQ � 1 and (II) EJ/EQ � 1. In case (I), the nonreciprocity is
realized when the shunt resistance is large so that the dynamics of the Josephson phase
is underdamped. When the thermal fluctuation is small, the nonreciprocity is enhanced
near the critical current of the hysterisis. When the thermal fluctuation is not negligible,
we expect the large nonreciprocity near the critical current of the dynamical transition
where the minimum of the distribution function changes from the static configuration
to the running configuration. In case (II), the nonreciprocal Bloch oscillation leads to
nonreciprocal I − V curve, and also the Zener tunneling exhibits nonreciprocity. In both
cases, the nonreciprocity induced by the nonlinear capacitance can be detected by 2ω
component measurement of the voltage drop V2ω induced by the external AC current
Ix(t) = Ia cosωt, in the current experimental technology.
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Chapter 4

Summary and perspectives

In chapter 2, we discussed the quantum dynamics of the vortices in the superconductors
in the presence of dissipation. We showed that the dilute bosons in the presence of strong
dissipation does not exhibit superfluidity even at zero temperature, based on the physical
argument, the numerical quantum Monte Carlo calculation, and the perturbative field
theoretical calculation.

Theoretically, the effect of the dissipation caused by the normal core on the motion of
the vortex has been known for a long time [54]. However, the discussion has been mainly
at the classical level, and its effect at the quantum regime near zero temperature remained
unclear. To clarify it, we constructed the model describing the dynamics of the vortices in
the presence of low energy excitation at the normal core. Although the effect of dissipation
on the single particle problems is well-known [36, 52, 121], the effect of dissipation in the
many body problems have not been discussed in detail. We quantitatively showed that
the dissipation suppresses the genuine many-body effect, i.e., superfluidity.

As we discussed, our theory describes the physics of the low temperature metallic
phase of two dimensional superconductors, i.e., “failed superconductor”. Not only that,
our model gives the concrete prediction that the failed superconductor should be present
for the moderately clean regime and absent for the superclean regime. This prediction
can be verified experimentally by measuring the relaxation time of the sample through
the residual resistivity at the normal state. Therefore, we believe that our model plays
an important role in understanding the generic failed superconductor phase in highly
crystalline superconductors.

As a future work, it will be interesting to discuss the effect of dissipation on the
many-body fermionic systems or phonon systems. For fermionic systems, the effect of
low energy degrees of freedom is well explored in the field theoretical model [122, 123],
but the fermionic dissipative model in the first quantized formulation seems to be less
explored. For phonon systems, depending on the density of states at low energy, the
combination of the phonon degrees of freedom and the dissipative low energy degrees of
freedom may lead to the novel phase of matter if both degrees of freedom are relevant
in the sense of renormalization group. Also, since our model is relevant to the failed
superconductors where the control parameter is the magnetic field, for other experiments
where the control parameter is the dirtiness of the sample or the gate voltage [11], our
model does not apply. Whether or not our theory give insights into these situations is
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unclear, and clarifying whether or not the vortices play important role in those situations
is an important future work.

In chapter 3, we discussed the nonreciprocity of Josephson junctions where the in-
version symmetry is broken by the asymmetric charging energy. In the case of large
junctions where the capacitance is large, the dynamics of the junction is described by the
phase degree of freedom, while for small junctions the charge degree of freedom is a good
quantum number.

In the former case, we showed that the nonreciprocity is realized when the shunt
resistance is large so that the dynamics of the Josephson phase is underdamped, while
for the system with small shunt resistance the nonreciprocity is not observed. When the
thermal fluctuation can be neglected, I − V curve shows hysteresis behavior, and the
nonreciprocity is enhanced near the critical current of the hysteresis. In the presence of
thermal fluctuation, the hysteresis disappears, and the voltage drop is appreciable above
some critical current. This can be understood as a consequence of the dynamic transition,
where the minimum of the large deviation function switches from the static configuration
to the running configuration. We showed that the nonreciprocity is large near the critical
current of this transition.

In the latter case, the dynamics of the charge degree of freedom is described by the
Bloch oscillation phenomenon, where the charge accumulated on the junction period-
ically exhibits tunneling because of the Josephson coupling. The period of the Bloch
oscillation is different for the positive external current and the negative external current,
and that leads to the nonreciprocity in I − V curve. Also, the rate of Zener tunneling
shows nonreciprocity. Although we can show that nonzero Berry connection is necessary
for the nonreciprocal Zener tunneling in the absence of dissipation [80], the Josephson
junction is inherently dissipative because of the shunt resistance, so that nonreciprocal
Zener tunneling is realized in Josephson junctions with asymmetric charging energy even
without the Berry connection.

The natural question to ask is the role of the superconductivity in the nonreciprocal
response. Even without the superconductivity, the asymmetric charging energy already
breaks the inversion symmetry, so we expect the nonreciprocal response. In this case,
I − V curve is determined by the dynamics of the charge degree of freedom, and we
need to investigate the nonreciprocity of the single electron tunneling and the Coulomb
blockade phenomenon [124].

In this thesis, we discussed the dynamics of the two systems related to superconduc-
tivity where the dissipation plays an important role. Since the dissipation leads to the
nonlocal action in imaginary time, it leads to the phenomenon qualitatively different from
the clean systems where the action is local in time. Understanding the effect of dissipation
on many-body systems is demanded because of the experimental progress in cold atom
systems, where the many body phenomena like the antiferromagnetism [125] is observed.
The solid state systems are much more dirty compared to the cold atom systems and
we do observe robust thermodynamic phase even in the presence of the environment in
solids, but the number of particles in cold atom systems is extremely small compared
to the solid state systems, so the thermodynamic phase is expected to be less robust
against the environmental effect for cold atom systems. Therefore, it will be important
to understand the effect of environment on cold atom systems and see whether or not the
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interesting thermodynamic phase survives even in the presence of dissipation.
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Appendix A

Appendix to chapter 2

A.1 Microscopic derivation of Green function in

Keldysh formalism

Here, we will discuss the microscopic derivation of Green function in the Keldysh formu-
lation. The action of the system is as follows:

S =

∫
C

dt

[∑
k

ψ̄k(i∂t − ξk)ψk −
g

2

∑
i

ρ2
i

−
∑
i

ρi
∑
α

(Vαaiα + V ∗α āiα) +
∑
i,α

āiα(i∂t − εα)aiα

]
,

where C is the Keldysh contour and ρi = ψ̄iψi. Introducing ψcl,q = (ψ+±ψ−)/
√

2, acl,q =
(a+ ± a−)/

√
2, ρcl,q = (ρ+ ± ρ−)/

√
2, Ψ = (ψcl, ψq)T , A = (acl, aq)T and P = (ρcl, ρq), it

can be transformed into,

S =
∑
k

∫ ∞
−∞

dtΨ†kg
−1
k Ψk −

g

2

∑
i

∫ ∞
−∞

dtP T
i σxPi

−
∫ ∞
−∞

dt
∑
i,α

[VαPiσxAiα + V ∗αPiσxA
†
iα] +

∑
i,α

∫ ∞
−∞

dtA†iαD
−1
α Aiα,

where

g−1
k =

(
0 i∂t − ξk − i0

i∂t − ξk + i0 2i0 coth(βξk/2)

)
, D−1

α =

(
0 i∂t − εα − i0

i∂t − εα + i0 2i0 coth(βεα/2)

)
.

Then, integrating over A,A†, we obtain

S =
∑
k

∫ ∞
−∞

dtΨ†kg
−1
k Ψk −

g

2

∑
i

∫ ∞
−∞

dtP T
i σxPi −

∑
i

∫ ∞
−∞

dtP T
i

(∑
α

|Vα|2σxDασx

)
Pi.

(A.1)
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Here,

∑
α

|Vα|2σxDα(ω)σx =

(
0

∑
α
|Vα|2

ω−εα−i0∑
α
|Vα|2

ω−εα+i0
−2iπ coth(βω/2)

∑
α |Vα|2δ(ω − εα)

)

=:
1

2

(
0 ReΣ(ω) + iImΣ(ω)

ReΣ(ω)− iImΣ(ω) −2i coth(βω/2)ImΣ(ω)

)
,

and

P =
1√
2

(
ψ̄clψcl + ψ̄qψq ψ̄qψcl + ψ̄clψq

)T
,

We note that ReΣ(0) < 0, so ReΣ(ω) represents the effective attractive interaction. Here
we just concentrate on the effect of ImΣ(ω) = A(ω) which describes the dissipation. Here
we consider the decomposition ψcl =

√
ρ0 + φcl, ψq = φq and expand up to second order

terms in φ. Then,

ψ̄clψ̄qψclψcl + ψ̄clψ̄qψqψq + h.c. = ρ0φ̄
clφ̄q + 2ρ0φ̄

qφcl + ρ0φ
clφq + 2ρ0φ̄

clφq +O(φ3),

and

√
2P T = ρ0

(
1 0

)
+
√
ρ0

(
φcl + φ̄cl φq + φ̄q

)
+
(
φ̄clφcl + φ̄qφq φ̄qφcl + φ̄clφq

)
.

Then,

2P TσxP =
(
φ̄cl φcl φ̄q φq

)
0 0 2ρ0 ρ0

0 0 ρ0 2ρ0

2ρ0 ρ0 0 0
ρ0 2ρ0 0 0



φcl

φ̄cl

φq

φ̄q


and

2P T
−ω

(
0 iA(ω)

−iA(ω) −2iA(ω) coth(βω/2)

)
Pω

=iρ0A(ω)
(
φ̄clω φcl−ω φ̄qω φq−ω

)
0 0 1 1
0 0 1 1
−1 −1 −2 coth(βω/2) −2 coth(βω/2)
−1 −1 −2 coth(βω/2) −2 coth(βω/2)



φclω
φ̄cl−ω
φqω
φ̄q−ω

 .

In total, Eq. (A.1) can be rewritten as,

S =
1

2

∑
k,ω

ϕ†k,ω

(
0 ωσz − Ĥk − iâ(ω)

ωσz − Ĥk + iâ(ω) 2i coth(βω/2)â(ω)

)
ϕk,ω,

where

ϕTk,ω =
(
φclk,ω φ̄cl−k,−ω φqk,ω φ̄q−k,−ω

)
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and, assuming µ = ρ0g,

Ĥk =

(
εk + gρ0 gρ0

gρ0 εk + gρ0

)
, â(ω) = ρ0A(ω)

(
1 1
1 1

)
.

Therefore, the Green functions for the Bogoliubov quasiparticle are

GA/R =
1

ω2 − ω2
k ∓ 2iρ0Aεk

(
ω + εk + gρ0 ± iρ0A −gρ0 ∓ iρ0A
−gρ0 ∓ iρ0A −ω + εk + gρ0 ± iρ0A

)
,

and

GK = coth(βω/2)[GR −GA]

=
−2i coth(βω/2)ρ0A

ω4 − (2ε2k + 4gρ0εk)ω2 + ε4k + 4gρ0ε3k + 4ρ2
0ε

2
k(g2 + A2)

(
(ω + εk)2 −(ω2 − ε2k)
−(ω2 − ε2k) (ω − εk)2

)
.
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Appendix B

Appendix to chapter 3

B.1 Projection operator analysis

In this section, we will discuss γ−1 expansion of the Fokker-Planck equation, following
van Kampen’s [126] procedure for the elimination of fast variables. Those who are only
interested in the final results can skip the detailed derivation and directly go to Eqs.
(B.24) and (B.25).

Here we consider the following Langevin equation:{
ẋ = ∂pG(p)

ṗ = −∂xV (x)−mγẋ+ ξ(t),
(B.1)

where 〈ξ(t)ξ(t′)〉 = 2mγkBTδ(t − t′). Instead of the variables ϕ and Q, we used the
notation similar to the Browinan particle. We can easily transform Eq. (B.1) into Eq.
(3.9) in the main text by the substitution mγ → R−1, x → ~ϕ/(2e), p → Q, G → Ech

and

V → −~Ix
2e

ϕ− Ic~
2e

cosϕ. (B.2)

Physically, G(p) and V (x) represent the kinetic energy and the potential energy, respec-
tively. If we set G(p) = p2/(2m), we get the usual Langevin equation for the Brownian
particle. Here we consider the more general G(p) including the odd powers of p, which
corresponds to the odd power of Q of the charging energy Ech in the main text. Using
the Chapman-Kolmogorov expansion [127], this Langevin equation can be transformed
to the following Fokker-Planck equation for the probability distribution ρ(x, p, t).

∂tρ = [−(∂pG)∂x + ∂xV ∂p]ρ+mγ∂p((∂pG)ρ+ β−1∂pρ)

⇔∂tρ = L1ρ+
1

ε
L0ρ (ε = 1/γ), (B.3)

where

L0 = m∂p((∂pG) + β−1∂p), L1 = −(∂pG)∂x + ∂xV ∂p.
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Here we note the following property of the operator L0:

LT0 = m(−(∂pG) + β−1∂p)∂p = m(−(∂pG) + β−1∂p)∂p(e
βGe−βG)

= eβGm∂p((∂pG) + β−1∂p)e
−βG

= eβGL0e
−βG.

This property can be used to define the following inner product:

(φ, ψ) =

∫
dxdp eβGφψ, (B.4)

where the following convenient relation holds:

(φ, L0ψ) =

∫
dxdp eβGφL0ψ

=

∫
dxdpψLT0 (eβGφ)

=

∫
dxdp eβGψL0φ = (ψ,L0φ),

which means that L0 is symmetric operator for the inner product defined in Eq. (B.4).
Now we define the projection operator P which satisfies,

PL0 = 0.

P can be constructed from the full set of left null vector {α̃r}r of L0, α̃rL0 = 0, as

Pq,q′ =
∑
r

αr(q)α̃r(q
′), αr(q) = e−βGα̃r(q),

where q = (x, p) and we used the inner product (B.4) to define the right vector αr(q)
from the left vector α̃r(q). This P has a nice property that

L0P = 0,

since

L0αr = L0(e−βGα̃r) = e−βGLT0 α̃r = 0.

We further define the projection operator Q = 1− P . Then, from Eq. (B.3),

∂tPρ = PL1Pρ+ PL1Qρ,

∂tQρ =
1

ε
QL0Qρ+QL1Pρ+QL1Qρ.

We rewrite the above equation as

∂tv = Av +Bw,

∂tw =
1

ε
Fw + Cv +Dw,
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where

A = PL1P , B = PL1Q, C = QL1P , D = QL1Q,
F = QL0Q, Pρ = v, Qρ = w.

Then, the reduced equation for v is,

∂tv = [A− εBF−1C + ε2(BF−1DF−1C −BF−2CA)]v +O(ε3)v, (B.5)

and the third order term is

ε3[−BF−1DF−1DF−1C +BF−2CBF−1C +BF−2DF−1CA

+BF−1DF−2CA−BF−3CA2]v. (B.6)

Now we apply the above scheme to our present model. We will show that O(ε2) term
vanishes, and calculate O(ε) term and O(ε3) term.

First, we construct the left null vector of L0:

LT0 α̃ = m(−(∂pG) + β−1∂p)∂pα̃ = 0.

We set ∂pα̃ = ψ and ψ = eβGψ̄. Then, ∂pψ̄ = 0, so ψ = eβGc(x). Therefore ∂pα̃ = c(x)eβG,
so φ = c(x)

∫ p
dpeβG+d(x) we impose the condition that the left vector φ is normalizable,

i.e.,
∫
dpdxe−βGφ2 < ∞. Then c(x) = 0. Therefore, we obtain α̃r = φr(x), where φr(x)

are the complete basis in x space. Now we can construct the projection operator as

Pq,q′ = e−βG(p)
∑
r

φr(x)φr(x
′) = e−βG(p)δ(x− x′).

Then, v = Pρ = e−βGρ̃, ρ̃(x, t) =
∫
dp ρ(x, p, t), and

Av = P(−∂pG∂x + ∂xV ∂p)e
−βGρ̃ = P(−∂pGe−βG∂xρ̃+ ρ̃∂xV (∂pe

−βG))

= e−βG
∫
dp(−∂pGe−βG∂xρ̃+ ρ̃∂xV (∂pe

−βG))

= 0,

and

Cv = Q(−∂pG∂x + ∂xV ∂p)e
−βGρ̃ = ∂pe

−βG(β−1∂xρ̃+ ρ̃∂xV ).

Now we solve Cv = Fw where Qw = w to obtain w = F−1Cv. To do that, we first
calculate Fw:

Fw = L0w = m∂p((∂pG) + β−1∂p)w = ∂pe
−βG(β−1∂xρ̃+ ρ̃∂xV ).

We integrate over p for both sides:

m((∂pG) + β−1∂p)w = e−βG(β−1∂xρ̃+ ρ̃∂xV ) + c(x). (B.7)
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We set w = e−βGw̄. Then, Eq. (B.7) can be rewritten as,

∂pw̄ =
β

m
((β−1∂xρ̃+ ρ̃∂xV ) + eβGc(x)). (B.8)

we integrate both sides of Eq. (B.8) over p to obtain

w = e−βG
β

m
[p(β−1∂xρ̃+ ρ̃∂xV ) + e−βG

∫ p

dp′eβG(p′)c(x)] + e−βGd(x).

From the normalizability condition, c = 0, and from the condition Qw = w, we obtain

w = e−βG
1

m
(p− 〈p〉)(∂xρ̃+ βρ̃∂xV ),

where the averaging is with respect to the weight e−βG(p):

〈f(p)〉 =

∫
dp′e−βG(p′)f(p′)∫
dp′e−βG(p′)

.

From now on, we choose the origin in p space so that 〈p〉 = 0. Then, since w = F−1Cv,

BF−1Cv = Bw = P(−∂pG∂x + ∂xV ∂p)e
−βG p

m
(∂xρ̃+ βρ̃∂xV )

= e−βG
[∫

dp(−∂pG)e−βG
p

m

]
∂x(∂xρ̃+ βρ̃∂xV )

= −e−βG 1

βm
∂x(∂xρ̃+ βρ̃∂xV ). (B.9)

This is the term at order O(γ−1).
We next consider the second order terms. Noting Av = 0, among the two terms shown

in Eq. (B.5), we need to consider

BF−1DF−1Cv = BF−1Q(−∂pG∂x + ∂xV ∂p)e
−βG p

m
(∂xρ̃+ βρ̃∂xV )

= BF−1[(−∂pG∂x + ∂xV ∂p)e
−βG p

m
+ e−βG

1

mβ
∂x]Dxρ̃

where Dx = ∂x + β(∂xV ). We need to solve following the equation for w:

Fw = DF−1Cv

⇔m∂p((∂pG) + β−1∂p)w = m−1[β−1(∂ppe
−βG)∂xDxρ̃+ ∂xV (∂pe

−βGp)Dxρ̃)]. (B.10)

We integrate over p on both sides of Eq. (B.10) and set w = e−βGw̄:

mβ−1∂pw̄ = m−1p[β−1∂xDxρ̃+ ∂xV Dxρ̃)] + eβGc(x). (B.11)

We further integrate over p in Eq. (B.11) to obtain,

mβ−1w̄ =
p2

2m
[β−1∂xDxρ̃+ ∂xV Dxρ̃)] +

∫ p

dp′eβG(p′)c(x) + d(x)

⇔w =
β

m
e−βG

p2

2m
[β−1∂xDxρ̃+ ∂xV Dxρ̃)] + e−βG

β

m

∫ p

dp′eβG(p′)c(x) + e−βG
β

m
d(x).
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From the normalizability, c = 0, and from the condition Qw = w, we obtain

w = F−1DF−1Cv = e−βG
p2 − 〈p2〉

2m2
D2
xρ̃.

Then,

BF−1DF−1Cv = −e−βG
∫
dp′β−1e−βG(p′) p

′

m2
∂xD

2
xρ̃ = 0.

Therefore, the terms at order O(γ−2) vanishes.
Now we move on to the third order terms. Among the five terms in Eq. (B.6), we

need to consider following two terms:

ε3[−BF−1DF−1DF−1C +BF−2CBF−1C]v. (B.12)

First, we consider the first term in Eq. (B.12):

BF−1D(F−1DF−1Cv) = BF−1De−βG
p2 − 〈p2〉

2m2
D2
xρ̃

= BF−1Q(−∂pG∂x + ∂xV ∂p)e
−βGp

2 − 〈p2〉
2m2

D2
xρ̃

= BF−1[(−∂pG∂x + ∂xV ∂p)e
−βGp

2 − 〈p2〉
2m2

D2
xρ̃

− e−βG
∫
dp′(−∂pG(p′))e−βG(p′)p

′2 − 〈p2〉
2m2

∂xD
2
xρ̃]

= BF−1(−∂pG∂xD2
xρ̃+ ∂xV D

2
xρ̃∂p)e

−βGp
2 − 〈p2〉
2m2

. (B.13)

To calculate F−1DF−1DF−1Cv, we need to solve Fw = DF−1DF−1Cv for w:

Fw = DF−1DF−1Cv

⇔m∂p((∂pG) + β−1∂p)w = (−∂pG∂xD2
xρ̃+ ∂xV D

2
xρ̃∂p)e

−βGp
2 − 〈p2〉
2m2

. (B.14)

Now we integrate both sides of Eq. (B.14) over p:

m((∂pG) + β−1∂p)w

=β−1

[
e−βG

p2 − 〈p2〉
2m2

−
∫ p

dp′e−βG(p′) p
′

m2

]
∂xD

2
xρ̃+ (∂xV D

2
xρ̃)e−βG

p2 − 〈p2〉
2m2

+ c(x).

(B.15)

We introduce w = e−βGw̄. Then, Eq. (B.15) can be rewritten as,

mβ−1∂pw̄ = β−1[
p2 − 〈p2〉

2m2
D3
xρ̃− ∂xD2

xρ̃e
βG

∫ p

dp′e−βG(p′) p
′

m2
] + eβGc(x). (B.16)
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We integrate both sides of Eq. (B.16) over p:

mβ−1w = β−1e−βG
[
p3/3− 〈p2〉 p

2m2
D3
xρ̃− ∂xD2

xρ̃

∫ p

dp′′eβG(p′′)

∫ p′′

dp′e−βG(p′) p
′

m2

]

+ e−βG
∫ p

dp′eβG(p′)c(x) + e−βGd(x).

From the normalizability, c = 0, and from Qw = w,

w = e−βG
[
p3 − 〈p3〉 − 3 〈p2〉 p

6m3
D3
xρ̃− (g(p)− 〈g(p)〉)∂xD2

xρ̃

]
,(

g(p) =

∫ p

dp′′eβG(p′′)

∫ p′′

dp′e−βG(p′) p
′

m3

)
.

Now we apply B to w:

Bw =BF−1DF−1DF−1Cv

=P(−∂pG∂x + ∂xV ∂p)e
−βG[

p3 − 〈p3〉 − 3 〈p2〉 p
6m3

D3
xρ̃− (g(p)− 〈g(p)〉)∂xD2

xρ̃]

=− β−1e−βG
∫
dpe−βG[

p2 − 〈p2〉
2m3

∂xD
3
xρ̃− g′(p)∂2

xD
2
xρ̃]

=β−1∂2
xD

2
xρ̃e
−βG 〈g′(p)〉 , (B.17)

here,

g′(p) = eβG(p)

∫ p

dp′e−βG(p′) p
′

m3
.

Now, we calculate the second term in Eq. (B.12):

BF−2C(BF−1Cv) = −BF−2 1

βm
Dx∂pe

−βG∂xDxρ̃.

To calculate F−1CBF−1Cv, we need to solve Fw = CBF−1Cv for w:

Fw = CBF−1Cv

⇔m∂p((∂pG) + β−1∂p)w =
−1

βm
∂pe
−βGDx∂xDxρ̃. (B.18)

Integrating both sides of Eq. (B.18) with respect to p,

((∂pG) + β−1∂p)w =
−1

βm2
e−βGDx∂xDxρ̃+ c(x). (B.19)

Introducing w = e−βGw̄, Eq. (B.19) can be rewritten as,

∂pw̄ =
−1

m2
Dx∂xDxρ̃+ eβGc(x), (B.20)
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and integrating both sides of Eq. (B.20) over p,

w̄ =
−p
m2

Dx∂xDxρ̃+

∫ p

dp′eβG(p′)c(x) + d(x),

then, from the normalizability and Qw = w,

w = F−1CBF−1Cv =
−p
m2

e−βGDx∂xDxρ̃,

To calculate F−1F−1CBF−1Cv we further solve the equation Fw = F−1CBF−1Cv for
w:

Fw = F−1CBF−1Cv

⇔m∂p((∂pG) + β−1∂p)w =
−p
m2

e−βGDx∂xDxρ̃. (B.21)

Integrating both sides of Eq. (B.21) over p,

m((∂pG) + β−1∂p)w =

∫ p

dp′
−p′
m2

e−βG(p′)Dx∂xDxρ̃+ c(x)

⇔mβ−1∂pw̄ = eβG
∫ p

dp′
−p′
m2

e−βG(p′)Dx∂xDxρ̃+ eβGc(x)

∴mβ−1w̄ =

∫ p

dp′′eβG(p′′)

∫ p′′

dp′
−p′
m2

e−βG(p′)Dx∂xDxρ̃+

∫ p

dp′eβG(p′)c(x) + d(x)

∴w = −βe−βG(g(p)− 〈g(p)〉)Dx∂xDxρ̃,

where we used the normalizability and the condition Qw = w in the last line. Now we
apply B to w:

Bw =BF−2CBF−1Cv

=P(−∂pG∂x + ∂xV ∂p)(−β)e−βG(g(p)− 〈g(p)〉)Dx∂xDxρ̃

=β−1e−βG 〈g′(p)〉 ∂x(Dx∂xDxρ̃) (B.22)

Therefore, combining Eqs. (B.17) and (B.22), at order O(γ−3),

β−1γ−3e−βG〈g′(p)〉∂x[Dx∂x − ∂xDx]Dxρ̃ (B.23)

Combining Eqs. (B.9) and (B.23), in total,

∂tρ̃ = ∂x

(
1

mγβ
− 〈g

′(p)〉
βγ3

[∂xDx −Dx∂x]

)
(Dxρ̃), (B.24)

where we again note that,

ρ̃(x, t) =

∫
dpρ(x, p, t), Dx = ∂x + β(∂xV ), 〈g′(p)〉 =

∫∞
−∞ dp

∫ p
−∞ dp

′e−βG(p′) p′

m3∫∞
−∞ dpe

−βG(p′)
.

(B.25)
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This equation is invariant under the inversion x→ −x, so up to order O(γ−3), the system
does not exhibit nonreciprocity.

For example, if we take the usual kinetic energy G(p) = p2/(2m), then,

〈g′(p)〉 = − 1

m2β
. (B.26)

Therefore, Eq. (B.24) becomes

∂tρ̃ =
1

mβγ
∂x

(
1 +

1

mγ2
∂2
xV (x)

)
(Dxρ̃). (B.27)

This expression reproduces the γ−1 expansion up to third order terms [126]. Also, up to
order O(γ−1), this equation is known as the Smoluchowski equation.

We can also take the limit β → ∞ in Eq. (B.24) to discuss the fluctuationless case.
In this limit, denoting m2β〈g′(p)〉 →β→∞ −g, from Eq. (B.24),

∂tρ̃ =
1

mγ
∂x

(
1 +

g

mγ2
∂2
xV

)
(∂xV ρ̃). (B.28)

Not surprisingly, the equation becomes first order differential equation in x, since there
is no fluctuation which leads to the higher order derivatives in x. Eq. (B.28) is the
deterministic Liouville equation equivalent to the following deterministic equation:

ẋ = −∂xV
mγ
− g

m2γ3
(∂2
xV )(∂xV ). (B.29)

Comparing to Eq. (B.1), we note that, up to O(γ−1), Eq. (B.29) is equivalent to Eq.
(B.1) at T = 0 and without the inertia term. Therefore, the overdamped approximation
where we drop the inertia term is the first order term of γ−1 expansion. Furthermore, we
can see that Eq. (B.29) is invariant under x→ −x, so again the system do not exhibits
the nonreciprocity in this fluctuationless case.

B.2 Derivation of Zener tunneling rate

For convenience, we restate the setting of the Josephson junction. We consider the
situation where the two superconductors are connected by the Josephson coupling and
shunted by the ohmic resistor. Then, denoting the voltage drop across the circuit as V
and the total current as Ix, we obtain

V =
∂EC
∂Q

=
dφ

dt
= RI3, Ix = I1 + I2 + I3 =

dQ

dt
+ EJ sinφ+

V

R
, (B.30)

where EC is the charging energy of the capacitor, and the circuit is as is shown below.
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J

I2

C

I1

Ix

R

I3

Ix

Then, the equations describing this circuit is,

dφ

dt
= V =

∂EC
∂Q

,
dQ

dt
= Ix − EJ sinφ− 1

R

∂EC
∂Q

,

so if we drive the circuit by the current Ix, the phase slip dφ/dt leads to the voltage drop
V .

Now, the second equation of (B.30) can be transformed to

R (I1 + I2) + V = RIx(=: Vx). (B.31)

This equation can be regarded as the balance of voltage drop of the following circuit:

J

I2

C

I1

RI1 + I2
L

Vx

I1 + I2 is now the current flowing through the whole circuit, and V is the voltage drop
across the Josephson junction. Here we introduced the inductor L, which provides the
high frequency cutoff of the Ohmic conductance. In this setting, we set the external
voltage Vx and measures the voltage drop V .

Now we write the Lagrangian of the above system. To do that, we need the following
degrees of freedom: {φ,Q; q, p;Xk, Pk}. Among them, Q, φ represents the degrees of
freedom of Josephson junction; q, p represents the normal current I1 + I2, i.e., q̇ = I1 + I2

and p is conjugate to q; Xk, Pk is the degrees of freedom of heat bath, and couples to q.
The coupling of q to φ is represented as ∆L = q̇φ/(2e), or equivalently ∆L = −φ̇q/(2e),
which only differs from the former by the total time derivative. For the former case,
φ/(2e) is treated as the vector potential for q, p, while for the latter case, −q/(2e) is
treated as the vector potential for φ,Q. Here we consider the first case. Then, the total
Lagrangian is,

L = Qφ̇+
Lq̇2

2
−
(
Ec(Q)− EJ cosφ+

∑
k

[
MkẊ

2
k

2
+
Mkω

2
k

2

(
Xk + λk

q

Mkω2
k

)2
])

+
q̇φ

2e
.

(B.32)
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Then, the equation of motion is,

Q̇ = −EJ sinφ+
q̇

2e
, 0 = φ̇− ∂EC

∂Q
, (B.33)

Lq̈ +
φ̇

2e
= −

∑
k

λk

(
Xk + λk

q

Mkω2
k

)
.

After integrating out Xk and Pk, we get

q̈ +
φ̇

2eL
= −R

L
q̇

∴v = e−Rt/L
(
v(0) +

1

2eL

∫ t

0

dt′eRt
′/Lφ̇(t′)

)
, (v = q̇).

Now we assume the modulation of φ̇ is slow compared to the time scale L/R. Then,

v = q̇ ∼= φ̇

2eR

Then, from (B.33),

Q̇ = −EJ sinφ+
φ̇

(2e)2R
, φ̇ =

∂EC
∂Q

,

which is the desired equation for the circuit dynamics. Therefore, we use the Lagrangian
(B.32) in the following.

Here, we use the real-time formalism to calculate the density matrix. The expression
is given as,

ρ(t, φ+f , φ−f )

=

∫
dqfdqi

∫
Dq+Dq−ρ̃(t, φ+f , φ−f ; {q+(τ), q−(τ)}) exp (iS[{q+(τ), q−(τ)}]) ,

where S is the Caldeira-Leggett action [36]

S[q+, q−]

=

∫ t

0

dτVxqq(τ) +

∫ t

0

dτ

∫ t

0

ds

[
−qq(τ)Zs(τ − s)qcl(s) +

i

2
qq(τ)Gq(τ − s)qq(s)

]
, (B.34)

Zs(t) =

∫
Zs(ω)e−iωt

dω

2π
, Gq(t) =

∫
ω coth

( ω
2T

)
Re[Zs(ω)]e−iωt

dω

2π
,

and

Vx(t) =

∫ t

0

Zs(t− s)Ix(s)ds.
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And we defined qcl = (q+ + q−)/2, qq = q+ − q−. The initial conditions are qcl(0) =
qq(t) = 0, qcl(t) = qf , qq(0) = qi Here, ρ̃(t, φ+f , φ2f ; {q+(τ), q−(τ)}) is obtained by solving
the dynamics of φ in the presence of q(t):

ρ̃(t, φ+f , φ−f ; {q+(τ), q−(τ)}) =

∫
ρ(0, Q+, Q−)ψQ+q+(t, φ+)ψ∗Q−q−(t, φ−)dQ+dQ−,

where the wave function ψQq obeys the following equation:

i
d

dt
ψQq(t, φ) =

[
EC

(
−i2e ∂

∂φ

)
− EJ cosφ− q̇(t)φ

2e

]
ψQq(t, φ), ψQq(0) =

ei
Qφ
2e√
2π

We set ψ = ei(q(t)−q(0))φ/(2e)ψ̃. Then,

i
d

dt
ψ̃Qq(t, φ) =

[
EC

(
−i2e ∂

∂φ
+ q(t)− q(0)

)
− EJ cosφ

]
ψ̃Qq(t, φ), ψ̃Qq(0) =

ei
Qφ
2e√
2π
.

Because of the periodicity of φ, in an analogous manner to the Bloch function, the solution
can be written as,

ψ̃Qq(t) = eiQφ/(2e)
∑
n

cn(t)
e−inφ√

2π
.

Then cn is the solution of the following equation:

i
dcn
dt

= EC (Q+ q(t)− q(0)− 2en) cn −
EJ
2

(cn+1 + cn−1). (B.35)

Now,

ρ̃(t, φ+f , φ−f ; {q+(τ), q−(τ)}) =

∫
ρ(0, Q+, Q−)

∑
n,m

cn[q+]c∗m[q−]

× ei[Q++q+(t)−q+(0)−2en]φ+/(2e)e−i[Q−+q−(t)−q−(0)−2em]φ−/(2e)dQ+dQ−

=

∫
ρ(0, Q+, Q−)

∑
n,m

cn[q+]c∗m[q−]

× ei[Q++qf−qi/2−2en]φ+/(2e)e−i[Q−+qf+qi/2−2em]φ−/(2e)dQ+dQ−

Here, we introduce

q̃+(τ) = q+(τ) +Q+ − q+(0) = q+(τ) +Q+ − qi/2 =: q+(τ) + qs+,

q̃−(τ) = q−(τ) +Q− − q−(0) = q−(τ) +Q− + qi/2 =: q−(τ) + qs−

Then,

q̃+(t) = q+(t) +Q+ − qi/2 = qf +Q+ − qi/2 =: q+0, q̃+(0) = Q+

q̃−(t) = q−(t) +Q− + qi/2 = qf +Q− + qi/2 =: q−0, q̃−(0) = Q−.
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Now we relabel q̃ as q. Then,

ρ̃(t, φ+f , φ−f ; {q+(τ), q−(τ)}) =

∫
ρ(0, Q+, Q−)

∑
n,m

cn[q+]c∗m[q−]

× ei[q+0−2en]φ+/(2e)e−i[q−0−2em]φ−/(2e)dQ+dQ−,

and

ρ(t, φ+f , φ−f )

=

∫
dq+0dq−0

∫ q+0

Q+

Dq+

∫ q−0

Q−

Dq−

× ρ̃(t, φ+f , φ−f ; {q+(τ), q−(τ)}) exp (iS[{q+(τ)− qs+, q−(τ)− qs−}])

=
∑
n,m

∫
dq+0dq−0

2π
ρnm(t, q+0, q−0)ei[q+0−2en]φ+/(2e)e−i[q−0−2em]φ−/(2e),

where

ρnm(t, q+0, q−0) =

∫
Jnmq (t, q+0, q−0, Q+, Q−)ρ(0, Q+, Q−)dQ+dQ−,

and

Jnmq (t, q+0, q−0, Q+, Q−)

=

∫ q+0

Q+

Dq+

∫ q−0

Q−

Dq−cn[q+(τ)]c∗m[q−(τ)] exp (iS[{q+(τ)− qs+, q−(τ)− qs−}]) .

For later use, we solve Eq. (B.35) for c0(0) = 1, c1(0) = 0. Because of the shift of q
mentioned above, (B.35) is now written as

i
dcn
dt

= EC (q(t)− 2en) cn −
EJ
2

(cn+1 + cn−1). (B.36)

We introduce

c0(t) = exp

(
−i
∫ t

0

EC(q(τ))dτ

)
u0(t), c1(t) = exp

(
−i
∫ t

0

EC(q(τ)− 2e)dτ

)
u1(t).

Then, assuming only c1 and c0 is nonzero, Eq. (B.36) becomes

du0

dt
=
iEJ
2

exp

(
i

∫ t

0

[EC(q(τ))− EC(q(τ)− 2e)]dτ

)
u1,

du1

dt
=
iEJ
2

exp

(
−i
∫ t

0

[EC(q(τ))− EC(q(τ)− 2e)]dτ

)
u0.

integrating these equations over 0 to t and using u0(0) = 1 and u1(0) = 0,

u0(t) = 1 +
iEJ
2

∫ t

0

dτ ′ exp

(
i

∫ τ ′

0

[EC(q(τ))− EC(q(τ)− 2e)]dτ

)
u1(τ ′),

u1(t) =
iEJ
2

∫ t

0

dτ ′ exp

(
−i
∫ τ ′

0

[EC(q(τ))− EC(q(τ)− 2e)]dτ

)
u0(τ ′).
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Then,

u0(t) = 1− E2
J

4

∫ t

0

dτ ′ exp

(
i

∫ τ ′

0

[EC(q(τ))− EC(q(τ)− 2e)]dτ

)

×
∫ τ ′

0

dτ ′′ exp

(
−i
∫ τ ′′

0

[EC(q(τ̃))− EC(q(τ̃)− 2e)]dτ̃

)
u0(τ ′′)

= 1− E2
J

4

∫ t

0

dτ ′
∫ τ ′

0

dτ ′′ exp

(
i

∫ τ ′

τ ′′
[EC(q(τ))− EC(q(τ)− 2e)]dτ

)
u0(τ ′′)

= 1− E2
J

4

∫ t

0

dτ ′
∫ τ ′

0

dτ ′′ exp

(
i

∫ τ ′

τ ′′
[EC(q(τ))− EC(q(τ)− 2e)]dτ

)
+O(E4

J)

= exp

[
−E

2
J

4

∫ t

0

dτ ′
∫ τ ′

0

dτ ′′ exp

(
i

∫ τ ′

τ ′′
[EC(q(τ))− EC(q(τ)− 2e)]dτ

)]
+O(E4

J)

Here, Zener tunneling rate is given as,

Γ↑ =
Ix
2e
w(2e/Ix) =

Ix
2e

∫
ρ00(2e/Ix; qD, qD)dqD,

i.e., we consider the case where q+0 = q−0 = qD. In that case, since the Caldeira-Leggett
action (B.34) is invariant under the shift of the classical component qcl → qcl + qD, the
following relation holds:

S[{q+(τ)− qs+, q−(τ)− qs−}] = S[{q+(τ), q−(τ)}].

Then,

w(t) =

∫
dqDdQ+dQ−ρ(0, Q+, Q−)

∫ qD

Q+

Dq+

∫ qD

Q−

Dq−c0[q+(τ)]c∗0[q−(τ)]

× exp (iS[{q+(τ), q−(τ)}])

=

∫
dqDdQ+dQ−ρ(0, Q+, Q−)

∫ qD

Q+

Dq+

∫ qD

Q−

Dq−u0[q+(τ)]u∗0[q−(τ)]

× exp

(
iS[{q+(τ), q−(τ)}]− i

∫ t

0

[EC(q+(τ))− EC(q−(τ))]dτ

)
. (B.37)

Now we note that the action in the exponent in Eq. (B.37) is for the dissipative system
with the energy potential EC(q) in the Keldysh formalism. Then, the natural way to
interpret Eq. (B.37) is that it is the expectation value of the quantity u0[q+(τ)]u∗0[q−(τ)].
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Now,

u0[q+(τ)]u∗0[q−(τ)]

= exp

{
−E

2
J

4

∫ t

0

dτ ′
∫ τ ′

0

dτ ′′
[

exp

(
i

∫ τ ′

τ ′′
[EC(q+(τ))− EC(q+(τ)− 2e)]dτ

)

+ exp

(
−i
∫ τ ′

τ ′′
[EC(q−(τ))− EC(q−(τ)− 2e)]dτ

)]}
=: e−f .

Now, we approximate the above expression only by considering the zeroth order terms in
qq. Then,

〈f〉 ∼= E2
J

2

∫ t

0

dτ ′
∫ τ ′

0

dτ ′′Re exp

(
i

∫ τ ′

τ ′′
[EC(〈qcl(τ)〉)− EC(〈qcl(τ)〉 − 2e)]dτ

)

Here we note that the expression EC(〈qcl(τ)〉) − EC(〈qcl(τ)〉 − 2e) =: ∆(〈qcl(τ)〉) is the
energy difference between the band in the first Brillouin zone and the one shifted by 2e.
This term becomes zero when the two bands touch. Also, the integrand is symmetric
with respect to the change τ ′ ↔ τ ′′. Then,

〈f〉 ∼= E2
J

4
Re

∫ t

0

dτ ′
∫ t

0

dτ ′′ exp

(
i

[∫ τ ′

0

∆(〈qcl(τ)〉)dτ −
∫ τ ′′

0

∆(〈qcl(τ)〉)dτ
])

Now we approximate this integral by the method of steepest descent. The saddle point
is the time t = t0 where the two band crosses. Then,

〈f〉 ∼= E2
J

4

2π

〈q′cl(t0)〉∆′(〈qcl(t0)〉) =
E2
Jπ

2∆′(〈qcl(t0)〉)
1

〈q′cl(t0)〉 =:
IZ

〈q′cl(t0)〉

Then, the expression of the Zener tunneling probability is,

P = exp

[
− IZ
〈q′cl(t0)〉

]
.

In the presence of the antisymmetry of the dispersion, 〈q′cl(t0)〉 is different for the right-
moving case and the left-moving case. In the limit of 1/Rs → 0, 〈q′cl(t0)〉 = Ix for both
left and right-moving case, and we obtain the symmetric Zener tunneling probability.
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