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Summary 

High-value timber species play a significant economic role in forest management. In 

uneven-aged mixed conifer-broadleaf forests in northern Japan, monarch birch (Betula 

maximowicziana), castor aralia (Kalopanax septemlobus), and Japanese oak (Quercus 

crispula) are important producers of high commercial value timber. The supply of high-value 

timber from these species is exclusively dependent on selective harvesting of large-size trees 

within mixed forests. Single-tree management system has been applied for the management of 

high-value timber species. Single-tree management is a forest management approach that aims 

at enhancing selected trees of high timber quality and value in a forest stand. Under single-tree 

management system, identification and registration of target trees, measurement of their size 

and assessment of timber quality, and periodic monitoring of selected trees are three most 

important tasks. To accomplish these important steps, forest managers mostly rely on the 

extensive field survey. Recently developed remote sensing (RS) technology, such as airborne 

laser scanning (ALS), unmanned aerial vehicle digital aerial photogrammetry (UAV-DAP) 

have great potential for acquiring individual tree information of high-value timber species for 

the purpose of single tree management. The major aim of this study is to examine the potential 

use of UAV-DAP in combination with long-term forest measurement dataset for single-tree 

management of high-value timber species. To fulfill the major aim, four specific research 

questions will need to be addressed: (1) Is UAV-DAP applicable in practical forest 

measurement of high-value timber species, e.g., tree height? (2) If it is applicable, how do 

UAV-DAP could be used in single tree identification and estimation the single tree positions 

and their tree size? (3) How to assess the resource sustainability of target high-value timber 

species? and (4) How to estimate the time for a selected tree to reach a desired size? 

To apply the RS and resource assessment techniques for practical purposes, the first 

research question is whether these techniques could be used reliably. The Chapter 2 of the 

thesis deals with the assessment of accuracy of RS data in practical field application. Since 

height information can be directly derived from RS data, individual tree height derived from 

field survey, LiDAR data, and UAV-DAP data were compared. In addition, the accurate 

measurement of individual tree height is necessary for both practical management and 

scientific reasons such as estimation of stem volume. The spatial position, tree height, and 

diameter at breast height (DBH) of 178 field measured trees of monarch birch, castor aralia 

and Japanese oak were used for the purpose of comparison. Field measured trees were 

manually digitized with the aid of field recorded tree spatial position and high resolution 
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orthophotographs, and tree height were extracted for these tree crowns. Tree heights from three 

different sources were cross-compared statistically through paired t-tests, correlation 

coefficients, and height-diameter models. The results indicated that UAV-DAP derived tree 

heights were highly correlated with LiDAR tree height and field measured tree height. The 

performance of individual tree height measurement using traditional field survey is likely to be 

influenced by individual species. Overall mean height difference between LiDAR and UAV-

DAP derived tree height indicates that UAV-DAP could underestimate individual tree height 

for target high-value timber species. The results of Chapter 2 confirmed the applicability of 

UAV-DAP for the tree height measurement of large-size high-value timber species. 

 The Chapter 3 deals with the second research question of how UAV-DAP could be 

used for the retrieval of individual tree spatial positions and individual tree DBH. High-

resolution spectral information of UAV-DAP and LiDAR were applied in this Chapter. Multi-

resolution segmentation was employed on UAV-DAP orthophotographs to derived individual 

tree crown objects. Object-based image analysis with random forest classification was used to 

classify forest canopy into five categories of three high-value timber species, other broadleaf 

species, and conifer. UAV-DAP can produce overall accuracy of 73% and 63% for classifying 

forest canopy into five categories in sub-compartment 36B and 59A, respectively. These results 

were used to identify the individual tree spatial position of high-value timber species. When 

estimating DBH, UAV-DAP can produce high-prediction accuracy comparable to field and 

LiDAR data. The results of Chapter 3 are useful for forest managers for searching of high-

value timber trees with their estimated tree size in large area of mixed-wood forests.  

Assessment of sustainability was employed in Chapter 4 focusing on the third research 

question. The sustainability of three high-value timber species were investigated using nearly 

50 years of census data in long-term permanent plots. Commonly used variables in forest 

inventory, such as stocking, demographic parameters, and species proportions of these species 

were used as measures of sustainability. Results showed that the tree density and basal area of 

the three high-value timber species increased during the study period. Moreover, the basal area 

increment (BAI) of these species showed an increasing trend across census periods. However, 

while no significant differences in the tree mortality of these species were observed, the 

numbers of in-growth fluctuated across census periods. Increasing trends in species proportions 

of monarch birch and Japanese oak were observed. Even though there were some fluctuations 

across census periods, especially in smaller diameter classes, diameter distribution curves of 

high-value timber species followed a reversed J-shaped pattern. The results revealed that the 
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sustainability measures of high-value timber species can be achieved in forest stands managed 

under single-tree selection system.  

 Understanding individual tree growth of these species is important for the simulation 

and development of forest management options as well as for the purpose of periodic 

monitoring. In the Chapter 5, individual tree growth models of three high-value timber species 

were developed using long-term plot measurement data. Linear mixed-effects modelling 

approach was used to predict the individual tree basal area growth as a function of initial tree 

size, stand structure, and forest management. Model prediction followed by leave-one-out cross 

validation revealed a correlation between predicted and observed basal area increments with 

correlation coefficients of 0.62, 0.73 and 0.70 and root mean square errors values of 10.44, 

7.91, and 11.62 cm
2
/year for monarch birch, castor aralia, and Japanese oak, respectively. The 

results of model prediction were used to estimate the time for a certain diameter tree to reach 

a target diameter using compound interest formula. The results indicated that a 30 cm DBH 

tree will take 29, 28 and 48 years to reach 50 cm DBH and 48, 46, and 80 years to reach 70 cm 

DBH for monarch birch, castor aralia, and Japanese oak, respectively. 

 Overall, the results of this thesis indicated that the use of RS data and resource 

assessment techniques could facilitate the retrieval of individual tree information of high-value 

timber species and could support single-tree management systems. The applicability of UAV-

DAP data in practical forest measurement of high-value timber species was confirmed. In 

addition, the results can provide individual tree spatial positions and their tree size which can 

be used in the practical field survey. Resource assessment techniques could be used for 

adapting silvicultural practices and harvesting practices as well as for simulating various 

silvicultural and management options for managing high-value timber species in a sustainable 

manner. The development of tree growth model will provide valuable information to estimate 

the timing of management and for periodic monitoring of economically high-value timber 

species. The combined use of RS data and long-term forest measurement data in the single-tree 

management planning of high-value timber species should be analyzed further. 
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Chapter 1 

Introduction 
1.1 Background 
1.1.1 High-value timber species  

High-value timber species are those that produce high-quality wood, used especially in 

the veneer and furniture industries (Oosterbaan et al., 2009). Despite their spatial occurrence 

at very low densities (Schulze et al., 2008), high-value timber species play a significant 

economic role in forest management and are increasingly important elements of forest 

production (Hemery et al., 2008). Trees of high economic value are often large in size (Owari 

et al., 2016) contributing to heterogeneity in forest structure, dynamics, and functions within 

forest ecosystem (Vandekerkhovea et al. 2018). Because of their high commercial value, high-

value timber species can be targeted for excessive and illegal harvesting in some parts of the 

world (Ding et al., 2017; Khai et al., 2016). Due to heavy logging of high-value timber species, 

their depletion is of growing concern, with some species included on the International Union 

for Conservation of Nature (IUCN) red list (Bourland et al., 2012). Therefore, some high-value 

timber species have been designated for special attention in conservation and forest 

management practices (Prates-Clark et al., 2008). 

High-value timber species are distributed throughout the world. In Southeast Asia, 

high-value timber species include teak (Tectona grandis), rosewood (Dalbergia spp. and 

Pterocarpus spp.) (Khai et al., 2016; Winfield et al., 2016). Other high-value timber species 

include genera such as Fraxinus, Acer, Prunus, Sorbus, Juglans, Tilia, Alnus, and Betula in 

Europe (Hemery et al., 2010; Oosterbaan et al., 2009), big-leaf mahogany (Swietenia 

macrophylla), ipê (Tabebuia serratifolia and Tabebuia impetiginosa), jatobá (Hymenaea 

courbaril), and freijó cinza (Cordia goeldiana) in Latin America (Schulze et al., 2008), 

Calophyllum brasiliensis, Carapa guianensis and Virola surinamensis in the Amazon Basin 

(Prates-Clark et al., 2008).  

In uneven-aged mixed conifer-broadleaf forests in northern Japan, monarch birch 

(Betula maximowicziana Regel), castor aralia (Kalopanax septemlobus (Thunb.) Koidz), and 

Japanese oak (Quercus crispula Blume) are important producers of high commercial value 

timber (Owari et al., 2016). These high-value timber species are shown in Figure 1.1. Monarch 

birch is the most valuable timber species and the log price may reach up to 20,000 US dollar 

per cubic meter and its value increases after death due to the changes of wood colour preferred 

by customers (Owari et al., 2016). This species plays an important role in stability and 
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sustainability of forest ecosystems as a major pioneer and a long-lived tree species (Tsuda et 

al., 2010). Because of high-quality and high-value wood, its use as a commercial tree species 

from natural forests is being promoted (Tsuda and Ide, 2005). Castor aralia is the second most 

expensive timber with its prices reaching up to ca. 7,500 USD per cubic meter (Owari et al., 

2016). This species can typically be found as one of the sparsely distributed tree species in 

cool-temperate forests of northern Japan. Japanese oak, also a valuable timber species 

producing high-quality wood for whisky barrel making (Miyamoto et al., 2010), and is also 

one of the representative broadleaf species in northern Japanese forests.  

 

Figure 1.1: High-value timber species. (a) Monarch birch (Betula maximowicziana), (b) 

Castor aralia (Kalopanax septemlobus), and (c) Japanese oak (Quercus crispula). 

 

This study focuses on these three high-value timber species growing in cool-temperate 

mixed forests in northern Japan. The supply of high-quality timber from high-value tree species 

is primarily dependent on the cutting of large trees within the mixed forests. Shibano et al. 

(1990) suggested that monarch birch trees should be harvested at DBH > 60 cm, when the 

heartwood ratio is expected to be greater than 60%. According to Owari et al. (2016), DBH 

threshold to register as superior tree has been set to 50 cm under single-tree management 

system. Other study by Miyamoto et al. (2010) proposed single-tree management of Japanese 

trees for whisky barrels and they classified trees with DBH > 40cm as large-sized trees for 

(a) 

(b) 

(c) 
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single-tree management. With the right management, valuable timber trees may yield high 

quality timber within relatively short production time (Hemery et al., 2008). 

 

1.1.2 Single-tree management for high-value timber species 

Various silvicultural and forest management practices have been developed that can 

facilitate sustainable management of forest resources (Löf et al., 2016; O’Hara, 2016; O’Hara 

et al., 2007). Forest management practices generally fall into two categories – even-aged and 

uneven-aged management (Puettmann et al., 2015; Pukkala et al., 2011; Sharma et al., 2016). 

Under even-aged management, forest stands with trees of a single age-class are typically 

regenerated either naturally or artificially after a clear-cutting operation. Uneven-aged 

management is a forest management system which is implemented by maintaining multiple 

age-classes through different kinds of selection cuttings, creating continuous tree cover in a 

stand at all times (Sharma et al., 2016). Uneven-aged forest management is assumed to achieve 

greater sustainability in forest resource management in comparison with even-aged forest 

management (Dieler et al., 2017; O’Hara et al., 2007). Therefore, uneven-aged forest 

management system has gained growing interest in many parts of the world due to its stability 

in forest stand structure (Kuuluvainen et al., 2012; Laiho et al., 2011; Puettmann et al., 2015; 

Pukkala et al., 2011). However, uneven-aged forest management system is likely to be more 

stand-oriented management, and focus on the size and structure of the whole forest stand.  

Forest management focusing on the high-value timber species should aims to produce 

high-quality timber from these species with a minimum number of silvicultural interventions 

(Hemery et al., 2008). However, uneven-aged forests with complex forest structure and 

composition restrict forest management to exclusively focus on certain species with high 

commercial value. Due to operational costs and labour constraints, forest management may not 

able to focus on certain species with high-commercial value that have potential to produce high 

quality timber. Therefore, the tree-oriented or single-tree management approach are 

recommended for the management of high-value timber trees (Abetz and Klädtke, 2002; 

Giuliarelli et al., 2016; Owari et al., 2016). 

In general, single-tree management is a forest management approach that aims at 

enhancing selected trees in the forest stand by applying well-defined silvicultural practices 

such as frequent thinning, pruning, removing trees that compete the growth of selected target 

trees (Kerr, 1996; Manetti et al., 2016). Its main objective is obtaining high-quality timber in a 
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short rotation period with minimum operational costs (Oosterbaan et al. 2009). By applying 

single-tree management system, it helps to determine which trees already reached a target 

diameter, what time a target trees will reach a target diameter, which trees need certain 

silvicultural operations to improve their growth (Abetz and Klädtke, 2002).  

Previous studies reported that single-tree management of high-value timber species 

ensures their sustainable production while maintaining biodiversity of forest. Study by Löf et 

al. (2016) presented a combined management regime that may ensure the production of high-

value oak timber and biodiversity conservation in Sweden. Owari et al. (2016) analyzed more 

than 2000 inventory plots to characterize the stand types in which superior trees of high-value 

timber species can be occurred, and found that superior trees generally grew in mature species-

rich stand. They reported that single-tree management facilitates the sustainable use of high-

value timber species by explicitly monitoring the numbers, attributes and locations of high-

value trees, and contributes to stand structural heterogeneity. The silvicultural measures, that 

can be used at individual tree level, necessary to achieve the goals of improving high-value 

timber species were presented by Oosterbaan et al. (2009). By the application of adequate 

silvicultural measures, high quality timber of high-value timber species can be achieved.   

The single-tree management system for high-value timber species has been practicing 

since 1965 in northern Japanese mixed conifer-hardwood forests (Yamamoto et al. 1989). The 

system has three main components: namely (1) single tree selection and registration, (2) 

measurement and assessment of selected target trees, and (3) periodic monitoring for optimal 

harvest (Owari et al., 2016; Yamamoto et al., 1989). However, no silvicultural operations, in 

general, under single-tree management system were carried. Under this system, large-sized 

trees, with high timber quality and value, are needed to be individually selected and registered, 

as superior trees, and monitored for their management (Miyamoto et al., 2010; Owari et al., 

2016). The criteria for the selection of superior trees include both quantitative, such as DBH, 

crown length, bole height, and qualitative, such as straight trunk with few bending, twisting, 

knot, dormant bud, and decay (Oosterbaan et al., 2009; Owari et al., 2016). However, searching 

and locating of superior quality high-value timber trees within a large area of structurally 

complex forests remain a challenging task for forest managers. Forest inventory needs to 

provide information on tree size, tree vitality, and spatial position of superior high-value 

individuals to periodically monitor for harvest at optimal time for the reliable application of 

single-tree management system.  
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1.1.3 Remote sensing for single-tree management 

Forest resource information plays an important role for forest management at global, 

regional and local scales (Kangas et al., 2019). Forest managers rely upon timely information 

on important forest attributes at the stand and landscape scales derived from forest inventory 

(Hoover et al., 2020). Therefore, forests are inventoried for strategic, tactical, and operational 

planning and forest management purposes (McRoberts et al., 2010; White et al., 2016), with the 

goal of providing accurate estimates of forest vegetation characteristics, including quantity, 

quality, extent, health, and composition within the area of interest (Reutebuch et al., 2005). 

However, forest information derived from ground-based survey have proven to be less 

effective in terms of time, labour, and cost (Wang et al., 2004; Xie et al., 2008), and limited to 

provide detailed spatial variations (Kane et al., 2010). Traditional forest inventory, in addition, 

may not be feasible to provide individual tree information which play a critical role in single-

tree management.  

From forest management viewpoint, particularly for single-tree management, species-

specific information, such as tree species, tree height, DBH, and spatial position, of high-value 

timber species is necessary for individual tree selection, and periodic monitoring. Since field 

survey for searching of superior quality high-value trees is time consuming and required 

extensive resources, the use of remote sensing (RS) technology would provide promising 

information of individual trees for single-tree management system. RS technology is 

increasingly popular for acquiring forest information at large spatial scale (Kangas et al., 2018; 

Næsset, 2004; White et al., 2016; Wulder et al., 2012). However, the use of RS data for the 

purpose of single-tree management need to provide accurate estimate of individual tree 

information.  

Even though there are different sources of RS data that are acquired using various kind 

of active and passive sensors, one of RS techniques that have potential to be used in single-tree 

management is airborne laser scanning (ALS) data due to its applicability in retrieval of 

individual tree information. ALS is an active remote sensing technique, that uses LiDAR 

sensors, providing a range of features related mainly to the trees, including discrete return and 

full-waveform features. In addition, LiDAR become the dominant RS technology during the 

last two decades as it can quickly provide highly accurate and spatially detailed information 

across an entire forest landscape (Lim et al., 2003; Silva et al., 2016; Wulder et al., 2014, 2012) 

and individual tree level, e.g. the estimation of individual tree height (Andersen et al., 2006; 

Mielcarek et al., 2018; Sibona et al., 2016; Y. Wang et al., 2019), and DBH (Yu et al., 2011) 
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that are important inventory parameters for single-tree management system. LiDAR intensity 

and waveform data may provide useful information for discriminating individual species 

(Alexander et al., 2015; Fassnacht et al., 2016; Hovi et al., 2016) which have potential to be 

used for the estimation of spatial position of high-value timber trees.  

Another RS technique which has potential for single-tree management system is 

unmanned aerial vehicle digital aerial photogrammetry (UAV-DAP). UAV-DAP have become 

popular RS techniques for fine scale remote sensing due to its flexibility in planning image 

acquisition, low operational cost, high spatial and temporal resolution (Anderson and Gaston, 

2013; Colomina and Molina, 2014). Software development, such as structure-from-motion 

(SfM) technique, enables the development of photogrammetric point cloud (PPC) and high 

resolution orthophotographs (Goodbody et al., 2019; Iglhaut et al., 2019; Lisein et al., 2013). 

Several previous studies evaluated the performance of UAV-DAP derived PPC in comparison 

with highly accurate LiDAR data (Lisein et al., 2013; Ota et al., 2015; Wallace et al., 2016; 

White et al., 2013) confirming the applicability of PPC in forest variable estimation.   

RS techniques for single-tree management need to provide individual tree level species 

and structural information such as DBH and tree height. Even though UAV-DAP and LiDAR 

data were widely used in the estimation of forest resource information, their application in 

single-tree management was not yet been widely studied.  Taking the advantages of spectral, 

red-green-blue (RGB), information derived from UAV-DAP in combination with LiDAR data, 

it has the potential to be applied in individual tree selection and measurement of high-value 

timber species for single-tree management system. With the availability of highly accurate 

LiDAR DTM, the repeated UAV flight missions will be of great potential for periodic 

monitoring of selected superior tree individuals. 

 

1.1.4 Resource assessment methods for single-tree management 

The achievement of sustainability from the use of various forest management practices 

is a central precept of forestry and is therefore central to all silvicultural systems (O’Hara et 

al., 2007). As discussed in Section 1.1.1, high-value timber species may be subject to 

overharvesting and illegal harvesting in many parts of the world. Even though such issues are 

currently negligible in Japan, it is worth to examine high-value timber resources under certain 

forest management regime, i.e., selection system. Understanding the resource conditions of 

high-value timber species could provide information for management decision on whether or 
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not a specific stand structure should be maintained which favour the growth of high-value 

timber species. In general, stocking, i.e., tree density and basal area is widely used forest 

inventory parameters. These forest inventory data were widely used for strategic level forest 

and environmental decisions (Fridman et al., 2014). Stand demographic parameters, i.e., 

growth, ingrowth or recruitment, and mortality are widely used to predict the forest dynamics. 

Repeated measurement of these variables, i.e., stocking and demographic parameters, could 

provide robust indicators for determining the sustainability of forest resources.  

Single-tree management system is designed for an operational management of target 

high-value trees and the establishment of growth models play an important role under single-

tree management (Abetz and Klädtke, 2002). From practical forest management perspective, 

individual tree growth model provides useful information for the estimation of time for a tree 

of certain size to reach a desired size (Cunha et al., 2016; Tenzin et al., 2017). This information 

plays an important role for the application of single-tree management system of high-value 

timber species. One of important tasks under single-tree management include the periodic 

monitoring of superior individual to estimate the optimum time for harvesting (Owari et al., 

2016). Simple and practically applicable individual tree growth models for high-value timber 

species are required since it can be used for periodic monitoring and estimation of future 

resource conditions. 

Modelling forest growth is intrinsic part of forestry research, as growth models are 

useful for inventory updating, harvest scheduling, silvicultural treatments evaluation, and 

management planning (Vanclay, 1994). The most flexible growth model in irregular and mixed 

forests is a set of individual tree models consisting of separate models for different species or 

species groups (Orellana et al., 2016). Individual tree growth models using individual tree as 

the basic unit in the growth modelling are therefore becoming widely used as they are capable 

of simulating various silvicultural and management options in stands with diverse structure, 

species composition and management history (Pokharel and Dech, 2012). In addition, 

information on individual tree growth is an important element in sustainable forest 

management which allows the selection of tree species for logging or protection, estimating 

the cutting cycles and simulating silvicultural treatments (Adame et al., 2008).  
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1.2 Objectives of the study 

Although UAV-DAP and LiDAR data have great potential to be applied in single-tree 

management, many previous studies generally focused on the data-driven application of these 

data in the accuracy of forest resource estimation. The application of these data with well-

defined practical forest management purposes needs to be examined. The application of UAV-

DAP data in the single-tree management, which requires extensive resource for acquiring 

individual tree information of target species, will be of great benefit to forest managers. On the 

other hand, simple, easy to use, and practically applicable resource assessment techniques will 

help forestry practitioners in assessing forest management practices and allow to formulate 

future management scenarios.  Therefore, this thesis aimed to apply the RS data combined with 

resource assessment techniques for single-tree management system of high-value timber 

species. 

To apply the RS techniques for retrieval of individual tree information, the first question 

is whether RS techniques are reliable for operational forest measurement practices. Therefore, 

it is important to assess whether these techniques could be applied reliably in practical forest 

measurements. Therefore, the first objective of the study was to compare the accuracy of RS 

data, i.e., LiDAR data and UAV-DAP data, with field data for individual tree attribute 

estimation for high-value timber species. To compare the accuracy of RS data, I focused on the 

reliability of tree height derived from RS data and field data of individual tree. Previous studies 

have tested the applicability of UAV-DAP (Laurin et al., 2019; Panagiotidis et al., 2017; 

Surový et al., 2018) and LiDAR (Andersen et al. 2006; Sibona et al., 2016; Wang et al., 2019) 

data in comparison with field data for individual tree height information in different type of 

forests, mostly in the forest plantations or forest with simple structure in which tree top of 

individual tree can be easily detected. Broadleaf tree species were not generally focused in 

these previous studies. Particularly, high-value broadleaf species, e.g. target species in this 

study, produce extensive and highly heterogenous crown structure which may not be detected 

their tree tops easily. The applicability of UAV-DAP and LiDAR data in the tree height 

estimation of these tree species needs to be addressed. Further, a rigorous comparison of 

individual tree height estimation between LiDAR, UAV-DAP and field survey data is 

relatively rare. Therefore, my first objective tries to address these issues. 

If the RS techniques, i.e. UAV-DAP and LiDAR, can be applied reliably in individual 

tree height measurement of high-value timber species, further research question is that how 

these techniques could be used in estimation of individual tree information, such as tree spatial 
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position and the stem size. This question was addressed in the second objective: to estimate the 

spatial distribution and stem size of superior trees individuals, which play a critical role under 

single-tree management, using RS data. The existing literature suggests that LiDAR data in 

combination with other type of RS data, i.e., multispectral or hyperspectral data, could provide 

species-specific information (Dalponte et al., 2019; Fassnacht et al., 2016; Singh et al., 2015). 

However, the use of UAV-DAP data for the purpose of individual tree attribute estimation, 

such as species identity, DBH, etc., is still sparse, particularly those for high-value timber 

species in mixed-wood forest. In addition, the application of the research results in the field is 

still limited. These issues were tried to address in the second research objectives. 

Whether forest management practices ensured the sustainability of forest resources are 

critical question in forest management. Assessing the resource sustainability of a certain forest 

management regime, e.g. selection system, is important for reliable application of a forest 

management system. It is necessary to develop indicators that can be used for the purpose of 

sustainability assessment. However, forest trees may take several decades to assess their 

response to any changes in their surrounding environment. Therefore, it is relatively difficult 

to develop specific indicators to judge the sustainability of forest management. In this case, 

long-term forest measurement data are invaluable providing reliable data source for evidence-

based policy making. The third objective of this thesis is to assess the resource conditions of 

high-value timber species under selection system. 

Understanding individual tree growth of these species play an important role in forest 

management simulations and estimation of future forest resource conditions. One of the main 

questions in forestry is that when a tree will reach a certain target diameter. Generally, tree 

growth models were widely used in many different regions for this purpose (Cunha et al., 2016; 

Tenzin et al., 2017). In mixed conifer-broadleaf forest in northern Japan, Tatsumi et al., (2016) 

quantified the neighborhood competition on the diameter growth of 38 tree species, including 

high-value timber species, using two times DBH measurement data. Using the tree ring data of 

76 large-sized monarch trees, Shibano et al. (1995) examined the diameter growth of monarch 

birch trees in mixed conifer-broadleaf forest in northern Japan. However, these studies required 

intensive data collection of individual tree spatial positions and tree ring data from a larger 

number of trees which may need extensive resources, time and efforts. A simple and practically 

applicable tree growth model of high-value timber species was not widely studied. Therefore, 

simple, easy-to-develop, and practically applicable individual tree growth models are 

necessary. The fourth objective of the thesis is, therefore, to develop a simple and practically 
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applicable individual tree growth model that can be used to predict the time required for the 

management of selected high-value timber individuals.  

 

1.3 Organization of the thesis 

 This thesis consists of 6 chapters. The first chapter is the Introduction. Chapter 2 to 

Chapter 5 deal with each research objectives mentioned in section 1.2. The applicability of 

UAV-DAP data compared to field measured and LiDAR data, focusing on tree height 

measurement was assessed Chapter 2. Estimation of individual tree spatial position and stem 

size for high-value timber species was examined in Chapter 3. In Chapter 4, I assessed the 

resource assessment techniques for high-value timber species, using commonly used stand 

parameters and demographic parameters. Individual tree growth model for three high-value 

timber species were developed using long-term forest measurement data of permanent plots in 

Chapter 5. I estimated the time required for a certain diameter trees to reach a desirable target 

diameter using the developed growth models. Chapter 6 discussed the potential application of 

RS data and individual tree growth model for single-tree management system of high-value 

timber species. In addition, I discussed management implications, the major findings, 

limitations and future directions of the thesis as a whole in Chapter 6. The flow chart of the 

study is shown in Figure 1.2
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Figure 1.2: Flow chart of the study 
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Chapter 2 

The applicability of UAV-DAP for tree height estimation: comparison with airborne 
LiDAR and field survey 

 

2.1 Introduction 

For the purpose of single-tree management, the forest inventory needs to provide 

accurate information of high-value individuals such as tree height and diameter at breast height 

(DBH). The individual tree DBH can be measured accurately by traditional field 

measurements, but tree height is relatively difficult to measure accurately (Laurin et al., 2019). 

Further, the results of tree height measurements are greatly influenced by many factors 

including biophysical and topographic factors, instrument errors, and human errors (Hunter et 

al., 2013; Kitahara et al., 2010; Larjavaara and Muller-Landau, 2013; Stereńczak et al., 2019). 

Although errors are likely to be presented in the field measurements of tree height than other 

parameters, such as DBH (Hunter et al., 2013; Luoma et al., 2017), field-measured tree heights 

have been widely understood to be the most reliable source of tree height information (Bragg, 

2014). 

With the advancement of RS technology such as ALS and UAV-DAP, the use of RS 

technology may overcome difficulty in accurate tree height measurement in the field. ALS is 

an active remote sensing technique that uses a light detection and ranging (LiDAR) sensor, 

which enables us to measure the three-dimensional (3D) distribution of vegetation canopy 

components as well as sub-canopy topography, resulting in an accurate estimation of 

vegetation height and ground elevation (Lim et al., 2003; Wulder et al., 2014). Previous studies 

have demonstrated the ability of LiDAR data in the estimation of forest information over large 

areas of forests with high accuracy (Hyyppä et al., 2012; Kaartinen et al., 2012; Takagi et al., 

2015). Further, a LiDAR 3D forest structure can provide accurate individual tree height 

information (Ganz et al., 2019; Hirata, 2004; Imai et al., 2004; Sibona et al., 2016; Y. Wang et 

al., 2019). However, the major limitation of LiDAR data is the high acquisition cost, which 

limits its application in forest management directives (Goodbody et al., 2019; Iglhaut et al., 

2019).  

Recently UAV-DAP has become a popular RS technique for fine-scale remote sensing 

due to its flexibility in data acquisition, low operational cost, and high spatial and temporal 

resolution (Colomina and Molina, 2014). Software developments, such as Structure-from-
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Motion (SfM), offer the efficient processing of digital aerial photographs (DAPs) acquired 

from low-cost UAV platforms, providing an cost-effective alternative to generate the 3D forest 

information, i.e., photogrammetric point cloud (PPC) (Nex and Remondino, 2014; Torresan et 

al., 2018; Verhoeven et al., 2012). Although PPC fails to provide ground information especially 

in dense vegetation cover, it can provide an upper canopy surface (Vastaranta et al., 2013; 

White et al., 2013). Thus, the accurate DTM is a prerequisite for the accurate characterization 

of forest information using PPC. Where highly accurate DTM exists, PPC has been proven to 

provide a cost-effective estimation of forest information with high accuracy comparable to 

LiDAR data (Bohlin et al., 2012; Cao et al., 2019; Jayathunga et al., 2018a; Noordermeer et 

al., 2019; Ota et al., 2015; Puliti et al., 2015; Wallace et al., 2016). Moreover, recent studies 

suggested that UAV-DAP could provide highly accurate individual tree height information 

(Huang et al., 2019; Panagiotidis et al., 2017; Surový et al., 2018; Zarco-Tejada et al., 2014). 

However, most of these studies have been employed in forests with simple structural 

complexity such as plantations or even-aged forests.  

Applications of UAV-DAP for individual tree height measurement, particularly for 

large-size broadleaved trees, have not been widely studied, especially in structurally complex 

mixed forests. Moreover, a rigorous comparison of individual tree height estimation between 

LiDAR, UAV-DAP and field survey data is rare. Therefore, I tried to address these issues in 

this study. 

The aim of this Chapter is, therefore, to examine whether UAV-DAP could be used to 

derive the height of large-size high-value trees. First, I compared individual tree height derived 

from field survey, LiDAR, and UAV-DAP data. Since tree height can be predicted from the 

individual tree DBH (Feldpausch et al., 2011; Hulshof et al., 2015; Mehtätalo et al., 2015), 

secondly, I assessed the relationship between individual tree DBH and the tree height derived 

from field survey, LiDAR, and UAV-DAP through height-diameter models to examine how 

three height sources can be explained by tree diameter. 

 

2.2 Materials and methods 
2.2.1 Study area  

The study area is the University of Tokyo Hokkaido Forest (UTHF) (Figure 2.1). UTHF 

is located in Furano City, central Hokkaido Island in northern Japan (43°10–20′ N, 142°18–40′ 

E, 190–1459 m asl). UTHF is a pan-mixed forest, where uneven-aged mixed forests with 
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coniferous and broad-leaved tree species are the main vegetation cover. The mean annual 

temperature was 6.4 °C and precipitation was 1297 mm at the arboretum of the UTHF (230 m 

asl) during 2001‒2010, and snow usually covers the ground from late November to early April 

with a maximum depth of approximately 1 m. The predominant tree species included Sakhalin 

fir (Abies sachalinensis), Yezo spruce (Picea jezoensis), Japanese linden (Tilia japonica), and 

painted maple (Acer pictum var. mono) (Owari et al., 2011). Other common conifer tree species 

include Taxus cuspidata, Picea glehnii. B. maximowicziana, K. septemlobus, Q. crispula, and 

Ulmus laciniata, which are among the common deciduous broadleaved species. The forest 

floor is often occupied by evergreen dwarf bamboo (Sasa senanensis and Sasa kurilensis). 

 

 

Figure 2.1: Location of the study area. (a) The University of Tokyo Hokkaido Forest, (b) 

Sub-compartment 36B and 59A, and permanent plots (c) Field measured trees at sub-

compartment 36B, (d) Field measured trees at sub-compartment 59A. 

 

(c) 
(d) 

(b) 
(a) 
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2.2.2 Data 
2.2.2.1. Field Data 

I used field measured trees of 178 high-value timber species. Measurements were 

carried out during July and August of 2019. Measurement parameters included the DBH, tree 

height, and spatial positions of individual trees. A summary of field measurement is given in 

Table 2.1. DBH was measured using diameter tape. The tree heights were measured using a 

Vertex III hypsometer and transponder (Haglöf Sweden AB, Långsele, Sweden). Tree height 

measurements were carried out three times, and average height values were assumed as the 

corresponding tree height. Individual tree spatial positions were recorded using global 

navigation satellite system (GNSS). An R2 integrated GNSS system (Trimble Inc., Sunnyvale, 

CA, USA) was used to record individual tree spatial positions with an accuracy of less than 1 

m.  

Table 2.1: Summary statistics of field measured trees (standard deviation in 

parenthesis). 

 DBH (cm) 

 Mean Minimum Maximum 

Monarch birch (n = 62) 60.07 (10.13) 41.80 90.60 

Castor aralia (n = 64) 59.34 (12.92) 44.00 94.40 

Japanese oak (n = 52) 74.38 (14.09) 44.20 111.20 

 

2.2.2.2 LiDAR Data  

LiDAR data were acquired in September 2018 using an Optech Airborne Laser Terrain 

Mapper (ALTM) Orion M300 sensor (Teledyne Technologies, Waterloo, ON, Canada) 

mounted on a helicopter. The detail specifications of LiDAR data are summarized in Table 2.2. 

The acquired data included first, second, third and last return and waveform data. The 

classification of LiDAR data into ground and non-ground points was initially processed by the 

data provider (Hokkaido Aero Asahi, Hokkaido, Japan), and data were delivered in LAS format. 

In this study, we used first and last return data only.  
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Table 2.2: LiDAR flight parameters. 

Parameters Description 

Flying speed (km/h) 140.4 

Flying height (m) 600 

Course overlap (%) 50 

Beam divergence (mrad) 0.16 

Pulse rate (kHz) 100 

Scan angle (°) ±30 

Point density (points/m2) 16.07 

 
2.2.2.3 UAV Data 

UAV imagery was acquired on 8 and 10 July 2019 for sub-compartment 36B and 11 

and 30 July 2019 for sub-compartment 59A. We used an Inspire-2 platform mounted with a 

Zenmuse X5S RGB camera (DJI, Shenzhen, China) for image acquisition. Eight separate 

flights for sub-compartment 36B and 10 separate flights for sub-compartment 59A were 

employed. In both sub-compartments, the flying altitudes were set to 120 m, but the actual 

flying height may have varied because of the terrain conditions. The average ground sampling 

distances were 2.3 cm/pixel. Image overlaps were 80% for both longitudinal and lateral 

overlaps. Before flight missions, ground control points (GCPs), take-off and landing points 

were set in available open areas. The locations of GCPs were recorded using the Trimble R2 

GNSS. 10 GCPs in sub-compartment 36B and 9 GCPs in sub-compartment 59A were collected. 

There were total of 3292 images for compartment 36B and 2231 images for compartment 59A. 

All imagery had a photo resolution of 5280 × 3956 pixels.  

 

2.2.3 Data processing and canopy height model (CHM) generation 
2.2.3.1 LiDAR data processing and LiDAR-CHM generation 

For this study, LiDAR data processing was performed using US Forest Service 

FUSION/LDV 3.8.0 software (McGaughey, 2018). LiDAR digital terrain models (LiDAR-

DTM) of 0.5 m spatial resolution were generated using GroundFilter and GridSurfaceCreate 

functions. LiDAR point clouds were normalized to the height above ground by the subtraction 

of the LiDAR-DTM elevation from LiDAR digital surface models (LiDAR-DSM) to generate 

the LiDAR canopy height model (LiDAR-CHM). I used the CanopyModel function in 

FUSION/LDV software to generate a LiDAR-CHM with a 0.5 m spatial resolution.  
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2.2.3.2 UAV data processing and UAV-DAP-CHM generation 

I used the 3D modelling software Agisoft Metashape Professional Edition 1.5.3 

(Agisoft, St. Petersburg, Russia) for UAV photogrammetric processing. Metashape offers a 

user-friendly workflow that combines proprietary algorithms based on computer vision SfM 

and stereo-matching for image alignment and reconstruction of the 3D image (Verhoeven et 

al., 2012). The workflow included four stages: image alignment, building a dense point cloud, 

building a digital elevation model (DEM) and building an orthomosaic. During the image 

alignment stage, the stage at which camera location, orientation and other internal parameters 

are optimized (Agisoft., 2018), I used high accuracy for image matching. Using the SfM 

techniques, this stage extract features within the images and match those features to pair the 

images. This stage produced a sparse 3D point cloud. After initial alignment, I deleted 

abnormal points based on gradual selection procedures in Metashape (Agisoft., 2018) to 

optimize the camera locations. I then added GCPs in each corresponding image for a more 

accurate optimization of camera locations and orientation as well as other internal camera 

parameters. In the building dense point cloud stage, the stage that generates a dense point 

clouds, I used medium quality to reduce the image processing time and mild depth filtering to 

remove the outliers. I followed the Metashape default setting for the DEM building stage and 

orthomosaic building stage. Dense point clouds were exported in LASer (.las) format with 

average point density of 547.01 points/m2 and orthophotographs with a 3 cm pixel resolution 

were exported in GeoTiff format. 

Previous studies (Jayathunga et al., 2018a; Ota et al., 2015; White et al., 2013) 

highlighted the need for accurate DTM for the normalization of UAV-DAP point clouds. To 

generate UAV-DAP-CHM, I used LiDAR-DTM for normalization of PPC. I used the same 

procedure as the LiDAR-CHM generation in the FUSION software package, and the resulting 

UAV-DAP-CHM was exported with a 0.5 m spatial resolution. 

 

2.2.4 Individual tree height measurement using RS data 

In order to evaluate the reliability of individual tree height measurement using different 

data sources—i.e., field, LiDAR and UAV-DAP—exact individual trees need to be identified 

in all three data sources. Further, methods of measuring tree height need to be carried out 

separately to ensure independent measurements from the statistical point of view. An 

individual tree crown detection algorithm may impose errors in detecting individual trees and 

previous studies reported poor results in tree detection under a complex forest structure 
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(Kaartinen et al., 2012; Wang et al., 2016). Therefore, field measured individual tree positions 

were used to identify the exact trees on both CHMs with the help of UAV-DAP 

orthophotographs. The manual delineation of an individual tree crown was carried out using 

high resolution orthophotographs. These crown polygons were used as reference crowns and 

for extracting individual tree heights from both LiDAR-CHM and UAV-DAP-CHM.  

In forestry, tree height can be defined as the vertical distance between the ground level 

and tip of the tree (Husch et al., 2003). I also used this definition in measuring tree height in 

the field. According to this definition, the difference between maximum point within a crown 

and the ground is the tree height. Therefore, the maximum value within a manually delineated 

crown polygon was considered to be the corresponding tree height. Height measurements were 

carried out separately for LiDAR-CHM and UAV-DAP-CHM.  

It should be noted that there is a temporal discrepancy of 10 to 11 months between the 

LiDAR data acquisition and UAV imagery acquisition. Field measurements were carried out 

at the same time as UAV imagery acquisition. Previous studies suggested that trees typically 

invest heavily in height growth when young, rapidly approaching their maximum height, but 

then continue to grow in diameter throughout their lives (King, 2005). In my data, only large 

diameter trees (DBH > 40 cm) were included (Table 2.1). Therefore, I assumed that there are 

no large increments in the tree heights of large size trees. 

 

2.2.5 Data analysis 
2.2.5.1 Individual tree height comparison 

The individual tree height comparison was carried out in pairs; i.e., Field height vs 

LiDAR height, Field height vs UAV-DAP height, and LiDAR height vs UAV-DAP height. To 

access the degree of association between pairs, I calculated the Pearson correlation coefficient 

(r). Further, I calculated the root mean square difference (RMSD). The RMSD indicates the 

average height difference between measurement methods and clarifies the magnitude of the 

differences between measurement methods. Further, I calculated the mean difference (MD) to 

indicate whether tree heights derived from one measurement technique were generally greater 

or smaller than those derived from another measurement technique.  
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2.2.5.2 Height-Diameter relationships 

Tree height-diameter (H-D) models are widely used to predict individual tree heights 

(Hulshof et al., 2015; Imani et al., 2017; Mehtätalo et al., 2015). Tree height data predicted 

from DBH using these models can be used as an input variable in various forest models such 

as growth and yield models, and biomass models (Hunter et al., 2013; Takagi et al., 2015). 

Most of the previously published studies used one tree height measurement technique, i.e., field 

survey, in H-D models. As UAV-DAP and LiDAR data could provide accurate tree height 

information, it is worth to examine how different tree height data sources perform in H-D 

models. To assess the performance of different tree height measuring techniques in the H-D 

model, I tested a simple non-linear function (Equation 2.1) which was widely used in the 

height-diameter allometric models: 

Height = 1.3 + a´DBHb                                      Equation (2.1) 

where, a and b are parameters to be estimated. The value of 1.3 is included in all models to 

account for the fact that DBH is measured at 1.3 m above the ground. It was excluded when 

height values from LiDAR and UAV-DAP were used in model development. I tested species-

specific non-linear models to examine the relationships between DBH and tree height derived 

from field, LiDAR and UAV-DAP data. RMSE and coefficient of determination (R2) values 

were used for model evaluation. All statistical analyses were performed in R software (R Core 

Team, 2019). 

 

2.3 Results 
2.3.1 Correlation between observed tree heights  

Observed tree heights are listed in Table 2.3. The comparison of field, LiDAR and 

UAV-DAP tree height for the three species is summarized in Table 2.4 and Figure 2.2. The 

RMSD and r values showed good agreement and consistency between the field, LiDAR and 

UAV-DAP tree height measurement. Among the three pairs for the individual tree height 

comparison of all species, the LiDAR vs UAV-DAP pair has the highest r values and lowest 

RMSD values, while the lowest r values and highest RMSD values occurred in Field vs UAV-

DAP pair. The same results were also found for species specific comparison. The correlation 

coefficients in Table 2.4 also indicate that tree height measurement accuracy could differ 

between species. 
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Table 2.3: Observed tree height from field, LiDAR and UAV-DAP (standard deviation in 

parenthesis). 

Species 
Field Height (m) LiDAR Height (m) UAV-DAP Height (m) 

Mean Min Max Mean Min Max Mean Min Max 

Monarch 
birch (n = 62) 

25.35 
(2.65) 20.87 32.83 25.39 

(1.66) 22.13 30.64 25.21 
(2.01) 21.43 30.73 

Castor aralia 
(n = 64) 

23.40 
(3.10) 14.10 29.73 23.70 

(2.51) 16.58 30.27 23.52 
(2.75) 15.92 30.50 

Japanese oak 
(n = 52) 

24.67 
(2.64) 20.43 30.13 24.56 

(1.79) 20.81 28.80 24.24 
(2.03) 20.21 29.48 

 

Table 2.4: Correlation of tree height derived from field, LiDAR and UAV-DAP data for 

three high-value timber species. 

Species Field vs LiDAR Field vs UAV-DAP  LiDAR vs UAV-DAP 
r RMSD Bias r RMSD Bias r RMSD Bias 

Monarch birch  
(n = 62)  0.69 1.91 −0.05 0.61 2.12 0.14 0.77 1.29 0.19 

Castor aralia  
(n = 64) 0.76 2.04 −0.30 0.74 2.14 −0.12 0.92 1.07 0.18 

Japanese oak  
(n = 52) 0.63 2.05 0.11 0.55 2.31 0.43 0.91 0.91 0.31 

All (n = 178) 0.73 2.00 −0.93 0.68 2.18 0.13 0.89 1.11 0.22 
Note: all values of r were statistically significant at p < 0.001. Paired sample t-tests were not 

statistically significant for all pairs of comparison at 0.05 significant levels. 

 

Figure 2.2: Correlation between tree heights derived from field survey, LiDAR, and UAV-

DAP data. Red, green, and blue dots represent individual monarch birch, castor aralia, and 

Japanese oak tree heights, respectively. 
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2.3.2 Height differences between three height measurement methods 

Height differences between Field vs LiDAR, Field vs UAV-DAP and LiDAR vs UAV-

DAP are shown in Table 2.5 and Figure 2.3. As shown in Figure 2.3 (a), the height differences 

between field and LiDAR tree height increase as the field measured tree heights increase. A 

similar trend was observed in the height differences of field-measured and UAV-DAP tree 

height (Figure 2.3 (b)). However, tree height differences between LiDAR and UAV-DAP 

decreased with increasing UAV-DAP tree height as shown in Figure 2.3 (c).  

Table 2.5: Height differences between field measured and RS tree height (standard deviation 

in parenthesis). 

Species Field vs LiDAR (m) Field vs UAV-DAP (m) LiDAR vs UAV-DAP (m) 
 Mean Min Max Mean Min Max Mean Min Max 

Monarch 
birch 

−0.05 
(1.9) 

−3.85 3.60 0.14 
(2.13) 

−4.88 3.10 0.19 
(1.29) 

−2.47 4.00 

Castor aralia −0.30 
(2.0) 

−3.80 3.95 −0.12 
(2.15) 

−4.27 4.47 0.18 
(1.07) 

−2.70 3.19 

Japanese oak 0.11 
(2.1) 

−3.72 3.87 0.43 
(2.29) 

−4.68 4.66 0.31 
(0.86) 

−1.56 2.20 

All −0.09 
(2.0) 

−3.85 3.95 0.13 
(2.19) 

−4.88 4.66 0.22 
(1.09) 

−2.74 4.00 

 

 

Figure 2.3: Height differences between measurement methods. (a) Difference between field 

height and LiDAR height, (b) Difference between field height and UAV-DAP height, and (c) 

Difference between LiDAR height and UAV-DAP height. Red, green, and blue dots 

represent individual monarch birch, castor aralia, and Japanese oak tree height respectively. 

According to Figures 2.3 (a) and (b), field tree height measurements were likely to 

produce lower tree height values for lower height trees and higher tree height values for higher 

trees when compared with RS data. Figure 2.3 (c) indicates that UAV-DAP could produce 

higher tree height values of higher trees and lower tree height values for lower trees when 

compared with LiDAR data. However, the mean difference in Table 2.5 indicates that UAV-
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DAP underestimates the individual tree height in comparison with LiDAR data. The lowest 

and highest individual tree height differences between LiDAR data and UAV-DAP were −2.74 

m and 4.00 m, respectively, with mean tree height differences for all species of less than 1 m.  

 

2.3.3. Relation between tree height and DBH 
2.3.3.1 Height-Diameter relationships 

Correlations between individual tree DBH and tree height derived from the field survey, 

LiDAR, and UAV-DAP are summarized in Table 2.6 and Figure 2.4. The tree height derived 

from LiDAR data showed a stronger correlation with DBH than field-measured and UAV-

DAP tree height. A better correlation between tree height and DBH was observed for castor 

aralia than the other two species, while Japanese oak exhibited a significant but relatively poor 

correlation among the three species.  

Table 2.6: Pearson’s correlation coefficient between tree height and DBH. 

Species Field Height LiDAR Height  UAV-DAP Height  

Monarch birch 0.41 * 0.58 *** 0.47 *** 

Castor aralia 0.56 *** 0.67 *** 0.65 *** 

Japanese oak 0.34 * 0.35 * 0.25 

All 0.41 *** 0.46 *** 0.40 *** 

Significance: *** p < 0.001, * p < 0.05. 

 

Figure 2.4: Correlation between individual tree DBH and tree height derived from Field, 

LiDAR, and UAV-DAP. Red, green, and blue dots represent individual monarch birch, castor 

aralia, and Japanese oak tree respectively. 
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2.3.3.2 H-D models 

The results of the non-linear H-D models are summarized in Table 2.7. In comparison 

with the field measured tree height, the UAV-DAP tree height showed better prediction power 

in terms of RMSE for all species (Table 2.7). H-D model using LiDAR derived tree height 

exhibited lower RMSE values and higher R2 values for all target species. Figure 2.5 indicates 

the distribution of prediction errors across DBH and tree height which also shows the lower 

variation for LiDAR derived tree height estimation. It also shows that UAV-DAP derived tree 

height can be predicted from tree DBH with comparable level of prediction errors to field and 

LiDAR derived tree height. Figure 2.5 also reveals the smaller prediction errors for LiDAR 

derived tree height and UAV-DAP derived tree height. The mean prediction errors across 

height classes were shown in Figure 2.6. According to Figure 2.6, highest negative mean 

prediction errors were observed for field measured tree height in the lower high classes and 

larger positive mean prediction errors were observed in higher height classes for all species. 

Lower positive and negative mean prediction errors were found for LiDAR and UAV-DAP 

derived tree height. In Figure 2.7, I showed the similarity of LiDAR and UAV-DAP tree height 

predicted from tree DBH to the field measured tree height for height diameter curve.  

 

Table 2.7: H-D models using tree height derived from field survey, LiDAR and UAV-DAP 

data. 

 Field Height LiDAR Height UAV-DAP Height 

 a b RM
SE R2 a b RM

SE R2 a b RM
SE R2 

Monarch 
birch 

9.22 
** 

0.25 
** 2.42 0.18 9.95 

*** 
0.23 
*** 1.35 0.50 10.10 

*** 
0.22 
*** 1.77 0.27 

Castor 
aralia 

5.35 
*** 

0.36 
*** 2.53 0.47 5.74 

*** 
0.35 
*** 1.81 0.88 5.20 

*** 
0.37 
*** 2.04 0.77 

Japanese 
oak 

10.69 
** 

0.19 
** 2.46 0.13 13.96 

*** 
0.13 

* 1.67 0.13 15.49 
*** 0.10 1.96 0.10 

a and b are the parameters of Equation (2.1). Significance: *** p < 0.001, ** p < 0.01, 

* p < 0.05. 
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Figure 2.5: Distribution of prediction error across DBH and height. Red, green, and blue dots 

represent prediction errors for field height, LiDAR height, and UAV-DAP height, 

respectively. 

 

 

Figure 2.6: Mean prediction errors and height classes (field measured height). Blue, red, and 
gray lines represent mean prediction errors for field height, LiDAR height, and UAV-DAP 

height, respectively. 
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Figure 2.7: Height-Diameter curves. Blue, red, and black lines represent field measured 

height, predicted LiDAR height, and predicted UAV-DAP height, respectively. 

 

2.4 Discussion 

In this Chapter, I demonstrated the ability of UAV-DAP to perform the individual tree 

height estimation of high-value timber individuals in mixed conifer-broadleaf forests in 

northern Japan. The results showed that UAV-DAP enabled individual tree height estimation 

with comparable accuracy to airborne laser scanning or LiDAR data and field-measured data.  

According to Table 2.4, stronger correlation coefficients were observed in LiDAR and 

UAV-DAP tree height comparison among three pairs of comparison. LiDAR derived tree 

height showed better correlation with field measure tree height than UAV-DAP derived tree 

height. This result is consistent with a previous study (Wallace et al., 2016). They also reported 

a stronger correlation between Field vs LiDAR than Field vs UAV-DAP. However, the 

correlation between LiDAR and field measured tree height in this study was lower than other 

studies (Ganz et al., 2019; Hirata, 2004; Sibona et al., 2016; Y. Wang et al., 2019). This lower 

correlation could be related to the species, the tree height itself and measurement errors in the 

field. In addition, the accuracy of tree heights derived from RS data might also be influenced 

by many factors such as structural complexity of the forest canopy which could affect 

photogrammetric reconstruction (Jayathunga et al., 2018b; Lisein et al., 2013; Wallace et al., 

2016). Moreover, LiDAR data also have limitations such as tree height estimation errors due 

to different canopy height model generation methods (Mielcarek et al., 2018), susceptibility to 

influence of slope and crown shape on canopy height (Khosravipour et al., 2015).  

One of the key questions when using field-measured tree height as reference data for 

the evaluation of LiDAR or UAV-DAP is the accuracy of field measurement. A previous study 
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(Sibona et al., 2016) assessed the accuracy of LiDAR tree height using actual tree height 

derived from 100 felled trees. They found that tree height derived from LiDAR data was closer 

to actual height than field measurement. Since target species in my study are large-size high-

value broadleaved trees, some error in field measurement could be expected because of the tree 

height itself and tree crowns which limit the visibility to the tree tops. This was also highlighted 

by Hunter et al. (2013) and Stereńczak et al. (2019). These studies reported that small 

measurement errors were found in conifer species and larger trees were subjected more to 

height measurement errors in the field. Further, the number of leaves present in my study 

species may impact the accuracy of field tree height measurement. Huang et al. (2019) also 

highlighted that the effect of number of leaves in the canopy may affect the tree height 

estimation for deciduous trees.  

For all three high-value broadleaved species, the highest correlation and consistency 

was observed between UAV-DAP tree height and LiDAR tree height. Using the area-based 

approach, previous studies comparing the performance of UAV-DAP and LiDAR data also 

reported the high correlation and accuracy in forest attribute estimation such as mean height, 

and dominant height (Bohlin et al., 2012; Cao et al., 2019; Jayathunga et al., 2018b; 

Noordermeer et al., 2019).  

Among the three broadleaved species, castor aralia showed a higher correlation than 

the other two species in all three pairs of comparison. The crown of castor aralia is somewhat 

rounded and regular in shape, which makes it easier for the surveyor to detect the tree tops 

from the ground during the field measurement than other two species. The size and shape of 

monarch birch crown are highly irregular. Moreover, the maximum size of field measured trees 

of Japanese oak was 110 cm in DBH with an average DBH larger than other two species. The 

older and larger oak tree crowns may produce extensive crowns, causing difficulty in 

determining the position of the highest point of the oak trees. This could contribute to some 

errors in estimating tree height using height measuring instruments. Larjavaara and Muller-

Landau (2013) also reported that, under typical forest conditions with limited visibility to the 

tree tops, tree height measurement instruments cannot produce manufacturer-reported 

accuracies. 

Positive height differences were observed for higher trees and negative height 

differences were found for lower height trees between field and RS-derived tree height (Figure 

2.3), meaning field measured tree height overestimated the tree height of higher trees and 

underestimated the height of lower trees. This result is consistent with previous studies. For 
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example, a previous  study in the Brazilian Amazon (Hunter et al., 2013) reported that ground-

based measurements of tree heights of emergent crowns exceeded LiDAR-measured tree 

heights by an average of 1.4 m. Moreover Laurin et al. (2019) and Wang et al. (2019) reported 

that traditional field measurement techniques may overestimate the tree height of tall trees. 

Imai et al. (2014) also concluded in their study in Japan that LiDAR data tend to estimate the 

tree height as lower than the actual height.  

In terms of LiDAR and UAV-DAP tree height differences; there was a positive height 

difference in lower trees and negative height difference in higher trees. Tree height differences 

between LiDAR and UAV-DAP varied with species. The largest height difference was found 

for monarch birch (-2.74 m and 4.00 m). A previous study in a mixed conifer-broadleaf forest 

in northern Japan (Jayathunga et al., 2018b) reported that the mean differences between 

LiDAR-CHM and UAV-DAP-CHM in terms of the maximum tree heights of the sample plots 

were 2.96 m and 1.05 m in two study compartments. However, higher mean height differences 

were found in UAV-DAP data (Jayathunga et al., 2018b). 

The consistency of three tree height sources were also accessed by H-D model. UAV-

DAP derived tree height can be explained by tree diameter with high accuracy compare to 

LiDAR and field measured tree height (Table 2.7, Figures 2.5 – 2.7). Mean prediction errors 

of the tested height-diameter models also revealed the lowest errors for LiDAR and UAV-DAP 

derived tree height in all height class. In Figure 2.5, highest negative mean prediction errors 

were found for castor aralia which may be due to the unequal high distribution of field 

measured tree of castor aralia trees with minimum height values of 14.1 m which could affect 

the model performance. For all species, higher prediction errors were observed for field 

measure tree height (Figure 2.6). This can also be confirmed by the larger RMSE values of 

field measured tree height. Therefore, this study confirmed the applicability of the UAV-DAP 

for tree height estimation of large-size high-value trees and its potential for estimating tree 

diameter. The use of UAV-DAP could facilitate the periodic monitoring and assessment of 

high-value timber species.  

 

2.5 Conclusions 

This Chapter demonstrates the applicability of UAV-DAP for individual tree height 

estimation of large-size high-value timber species in mixed conifer-broadleaf forests in 

northern Japan. I compared the tree heights derived from field survey, LiDAR data and UAV-
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DAP data through statistical analysis and height-diameter models. The results revealed the high 

similarity between three different height sources. Lower tree height values for higher trees and 

higher values for lower trees may occur in UAV-DAP derived tree height in comparison with 

field-based measurement. Although overall mean tree height difference between LiDAR and 

UAV-DAP data indicates that UAV-DAP could underestimate the tree height, it is likely to 

observe higher tree height values for higher trees and lower tree height values for lower trees 

in UAV-DAP derived tree height when comparing with LiDAR derived tree height for the 

study species. In addition, the height-diameter models revealed that tree height derived from 

UAV-DAP can be used reliably as an alternative data sources to field and LiDAR data for tree 

height information of high-value timber species. Smaller mean prediction errors across RS-

derived tree height classes were observed in comparison with field measured tree height 

confirming the high accuracy of UAV-DAP which can facilitate tree height estimation of high-

value timber species.  

Main focus in this Chapter only includes high-value broadleaf species. As this Chapter 

demonstrated the applicability of UAV-DAP for tree height estimation, it would be better to 

further examine other species so that it can use in the periodic monitoring of permanent sample 

plots in the study area. I focused on how UAV-DAP in combination with LiDAR data would 

be useful for species-specific or single-tree management planning by accurately locating the 

spatial position and stem size of high-value tree individuals in the next chapter. 
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Chapter 3 

Estimation of spatial positions and DBH of high-value timber species 

 

3.1 Introduction 

To identify the individual tree spatial positions of high-value timber species using RS 

data for the purpose of single-tree management, the first task is to discriminate the forest 

canopy into species level. Previous studies demonstrated the applicability of multispectral or 

hyperspectral data in forest species detection (Dalponte et al., 2019, 2012b; Franklin and 

Ahmed, 2018). LiDAR intensity or waveform data were also used for classifying forest canopy 

into species level (Cao et al., 2016; Marselis et al., 2018; Yao et al., 2012). Studies suggested 

that the accuracy of tree species detection using multispectral or hyperspectral data could 

improve when it combines with LiDAR data (Dalponte et al., 2012a; Matsuki et al., 2015; Shi 

et al., 2020). In addition, multi-spectral or hyperspectral data have many constraints in their 

acquisition and need complex data processing (Nguyen et al., 2019). In this case, spectral 

information included in very high-resolution UAV-DAP data may be an alternative source to 

multispectral or hyperspectral data and LiDAR data. Therefore, I examined the use of UAV-

DAP for the estimation of individual tree spatial positions of high-value timber species in this 

Chapter.  

The use of LiDAR and UAV-DAP for forest attribute estimation generally followed 

two common approaches: area-based approach (ABA) and individual tree detection (ITD) 

approach (Dalponte et al., 2017; Goodbody et al., 2019; Guerra-Hernández et al., 2018; 

Hyyppä et al., 2012; Jayathunga et al., 2018a). In the ABA, plot- and stand-level forest 

structural attributes were estimated from vegetation metrics derived from LiDAR and UAV-

DAP canopy height models (CHM). In the ITD approach, the CHMs or normalized point 

clouds were segmented into tree crown, and variables such as tree height, crown area, and 

structural metrics within the segmented tree crown were extracted. However, the accuracy of 

tree crown detection largely depends on the forest conditions, i.e., tree density, forest types, 

and tree species (Kaartinen et al., 2012; Vauhkonen et al., 2012). Even though satisfactory 

results were obtained for conifer trees and plantation (González-Ferreiro et al., 2013; Guerra-

Hernández et al., 2018; Kukunda et al., 2018), studies suggest that individual tree detection 

(ITD) algorithms may not produce highly accurate results when target species are broadleaf 

(Kaartinen et al., 2012; Vauhkonen et al., 2012; Wang et al., 2016). Estimation of individual 
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tree size information for large size high-value timber trees with highly heterogeneous tree 

crowns remains a challenging task. In this Chapter, I examined this issue. 

This Chapter deals with the second objective of estimation of individual tree spatial 

position of high-value timber species and their tree sizes that can be used for the single-tree 

management of high-value timber species. RGB information derived from UAV-DAP data 

together with LiDAR data were used to estimate the tree spatial positions. Individual tree DBH 

was estimated from LiDAR and UAV-DAP structural metrics.  

 

3.2 Materials and methods 
3.2.1 Study area and field survey 

The study area and field survey used in this Chapter are same as the Chapter 2. Please 

refer to Section 2.2.1.  

Field measured data of 213 sample trees of target high-value timber species, i.e., 

monarch birch, castor aralia, and Japanese oak, and 77 sample trees of other common broadleaf 

trees, i.e., A. pictum var. mono, T. japonica, Ulmus spp., and Fraxinus mandshurica were used 

in this Chapter. In addition to field measured trees, surrounding large trees near field measured 

trees that can be easily identified on the UAV-DAP orthophotographs were also recorded. 

Therefore, there were 132 trees of high-value timber species and 62 trees of other broadleaf 

species in sub-compartment 36B (194 broadleaf trees), and 88 trees of high-value timber 

species and 33 trees of other broadleaf species in sub-compartment 59A (121 broadleaf trees) 

were obtained. These datasets were used for the purpose of classifying forest canopy. 

Individual tree crowns of all these trees were manually digitized using the field measured 

crown information and visual interpretation of UAV-DAP orthophotographs. These manually 

digitized tree crown polygons were used as reference tree crowns for classification of forest 

canopy into species level described in sub-section 3.2.3. For individual tree DBH estimation 

of high-value timber species described in sub-section 3.2.4, I used 213 field measured sample 

trees and their field measured crown information and manually digitized tree crown area. A 

summary of field measurement data for high-value timber species is given in Table 3.1.  
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Table 3.1: Summary statistics of field measured trees 

 DBH (cm) Height (m) Crown area (m2) 

 Mean  
(SD) Min - Max Mean 

(SD) 
Min - 
Max 

Mean 
(SD) Min - Max 

Monarch birch 
(n = 77) 

60.1  
(10.1) 41.8 - 90.6 25.4  

(2.7) 20.9 - 32.8 182.8 
(63.1) 69.5 - 366.1 

Castor aralia 
(n = 73) 

59.3  
(12.9) 44.0 - 94.4 23.4  

(3.1) 14.1 - 29.7 101.9 
(44.3) 37.4 - 251.0 

Japanese oak 
(n = 63) 

74.4 
 (14.1) 44.2 - 111.2 24.7  

(2.6) 20.4 - 30.1 158.6 
(55.1) 72.7 - 305.3 

Note: SD, Min and Max stand for standard deviation, minimum and maximum, respectively. 

 

3.2.2 Remote sensing data 

 The LiDAR data and UAV-DAP data used in this Chapter are same as the Chapter 2. 

Please refer to Chapter 2 (Sub-section 2.2.2.2 and 2.2.2.3 for LiDAR data and UAV-DAP data, 

respectively). LiDAR and UAV-DAP data processing methods are described in the sub-section 

2.2.3.  

 

3.2.3 Classification of forest canopy into species level 

 Classification of forest canopy into species level was performed through the following 

steps: image segmentation, variable extraction, and variable selection, classification and 

accuracy assessment.  

3.2.3.1 Image segmentation 

RGB information embedded in UAV-DAP data would provide more successful 

delineation for large and highly heterogenous broadleaf tree crown. The object-based-image-

analysis (OBIA) method was used to delineate forest canopy into individual tree crown 

(Apostol et al., 2020; Baena et al., 2017; Blaschke, 2010). OBIA is based on a segmentation 

procedure that starts from individual pixels that are merged to most similar adjacent regions. 

This method is particularly suitable in the case of high spatial resolution imagery in which 

pixels are significantly smaller than the objects of interest (Blaschke, 2010).The information 

from three image spectral bands (i.e., red, green and blue) of UAV-DAP orthophotographs 

together with LiDAR CHM, were used together for image segmentation using a multiresolution 

segmentation algorithm in eCognition Developer (Trimble Inc., Sunnyvale, CA, USA). This 

algorithm chooses the importance (weight) of data layer, i.e., RGB layers and CHM layer, used 
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for image segmentation. The importance of CHM layer was set at three times higher than the 

RGB layers (Apostol et al., 2020). 

 

3.2.3.2 Variable extraction  

After the segmentation of each tree crown, various spectral and texture variables 

(Alonzo et al., 2018; Lisein et al., 2015; Michez et al., 2016) and structural variables (Alonzo 

et al., 2018; Dalponte et al., 2009) were extracted from each individual tree crown. Since the 

target species were broadleaf trees with high heterogeneity within an individual tree crown, the 

exact overlap of algorithm-derived tree crowns and manually digitized tree crowns were not 

achieved. The same problem was also reported in previous studies (Apostol et al., 2020; Ma et 

al., 2015; Michez et al., 2016; Singh et al., 2015). Therefore, segmented objects (tree crown in 

this case) with high percentage of overlap were selected for variable extraction. In this study, 

I selected largest tree crown objects within the manually digitized tree polygon for variable 

extraction. In the case of Ma et al. (2015), they selected 60% overlap objects for variable 

extraction to classify land cover classes. Apostol et al. (2020) used enclosed parts of algorithm-

derived tree crowns on the target tree crown for variable extraction. Other studies (Heinzel et 

al., 2008; Immitzer et al., 2012) used sunlit parts of the tree crown objects for variable 

extraction for species classification purposes. The variables extracted from individual tree 

crowns were listed in Table 3.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 33 

Table 3.2: Spectral, textural, and structural variables extracted from each tree crown 

polygon 

Variables names 
Formula  

(for spectral variables) 

Spectral variables   

Mean value of R, G and B R" , G" , B" 

Sum of mean R, G and B R" + G" + B" 

Normalized R = R"  / (R" + G" + B") 

Normalized G = G"  / (R" + G" + B") 

Normalized B = B"  / (R" + G" + B") 

Mean brightness = (R" + G" + B")/3 

Normalized Green-Red Vegetation Index (NGRVI) = (G"  - R" ) / (G"  + R" ) 

Normalized Red-Blue Vegetation Index (NRBVI) = (R" - B") / (R" + B") 

Normalized Green-Blue Vegetation Index (NGBVI) = (G"  - B" ) / (G"  + B" ) 

Textural variables (Grey Level Co-occurrence Matrix 

(GLCM)) 

 

Homogeneity, standard deviation, mean, variance, 

contrast, dissimilarity, entropy  

 

Structural variables  

Maximum height (H-max), mean H, percentile height of 

5%, 10-90% (H05, H10 – H99), intensity at different 

height fraction of 5%, 10-90% (Int05, Int10 – Int99), 

crown area 

 

Note: R, G and B represent red, green, and blue respectively. 
 

3.2.3.3 Variable selection, classification and accuracy assessment 

Various variable selection and classification algorithm were applied in remote sensing 

image classification. Non-parametric methods are widely popular for this purpose as they can 

be used with arbitrary data distributions (Immitzer et al., 2012). Among non-parametric 

methods, random forest (RF) is one of the most used classification methods in the field of 

image classification as it is simple and does not require sophisticated parameter tuning 

(Immitzer et al., 2012; Rodriguez-Galiano et al., 2012). RF can handle high data dimensionality 

(i.e., small number of observations with high number of independent variables) (Belgiu and 
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Drăgu, 2016). Using the object information described in Table 3.2, image objects derived from 

multiresolution segmentation were classified into five classes: monarch birch, castor aralia, 

Japanese oak, other broadleaf, and conifer. Other broadleaf includes major canopy species of 

A. pictum var. mono, T. japonica, Ulmus spp., and F. mandshurica. Conifer trees were not 

measured in the field. I, therefore, used visual interpretation of orthophotographs for digitizing 

conifer tree crowns. I used 50 conifer tree crowns in each sub-compartment to extract variables 

described in Table 3.2. The data were divided into training and validation data at a ratio of 

70:30. I used randomForest package (RColorBrewer and Liaw, 2018) implemented in R 

statistical software package (R Core Team, 2019) for the classification. The accuracy 

assessment was carried out by generating a standard confusion matrix, as applied in previous 

studies. The resulting image objects were assumed as the individual tree locations of high-

value timber species. 

 

3.2.4 Estimation of DBH 

Although largest tree crown objects within manually digitized tree crown were selected 

for variable selection, these tree crowns may not be useful for the estimation of tree DBH. In 

previous studies, segmented tree crowns with one-to-one relationship with manually digitized 

polygons or manually digitized crown variables were selected for individual tree parameter 

estimation (e.g., (Chen et al., 2007; Dalponte et al., 2011; Iizuka et al., 2018; Yu et al., 2011)). 

In this study, I used manually delineated tree crown to extract structural metrics from LiDAR 

and UAV-DAP CHM. A total of 30 crown, height, and structural variables (Table 3.2) were 

derived for each tree crown and these variables were used for the estimation of individual tree 

DBH. For the purpose of comparison, I also predicted the DBH values using field measured 

tree heights and crown areas. I used a linear mixed effects model, considering the sub-

compartments as a random effect. For LiDAR- and UAV-DAP derived metrics, stepwise 

variable selection was carried and the final models were selected based on Akaike’s 

information criterion (AIC) (Akaike, 1973). However, the variables with a variance inflation 

factor (VIF) larger than five were neglected in the final model in order to avoid 

multicollinearity (Kock and Lynn, 2012). The accuracy of the selected models was validated 

using leave-one-out-cross validation. The coefficient of determination for fixed effect 

parameters (marginal R2), root-mean-square-error (RMSE) and Pearson’s correlation 

coefficient (r) were determined for each species to assess the goodness of fit of the selected 

model.  
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3.3 Results 
3.3.1 Multiresolution segmentation of forest canopy 

 Comparison of crown areas (CAs) were carried out in three pairs (i.e., field-measured 

CAs versus manually digitized CAs, field-measured CAs versus multiresolution segmented 

CAs, and manually digitized CAs versus multiresolution segmented CAs. The results of the 

comparison were shown in Figure 3.1. The results indicated the lower correlation between 

field-measured and multiresolution segmented crown areas for all species. A slightly better 

correlation was observed between manually digitized crown areas and multiresolution 

segmented crown areas. Among the three pairs of comparison, field-measured crown area and 

manually digitized crown area exhibited the highest correlation coefficients. Since the target 

tree species were large in size and their crown areas were highly heterogenous, tree crown area 

underestimation was observed in all species (Figure 3.1). Figure 3.2 shows the visual 

comparison between manually digitized tree crowns and multiresolution segmentation-derived 

tree crowns. 
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Figure 3.1: Correlation between crown areas derived from field measurement, manual 

delineation, and multiresolution segmentation of UAV orthophotograph. CA represent crown 

area. First, second, and third row represent monarch birch, castor aralia and Japanese oak, 

respectively. RS derived CA represents CA derived from multi-resolution segmentation. 
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Figure 3.2: Individual tree crown derived from multiresolution segmentation for three high-

value timber species. (a) Monarch birch, (b) castor aralia, and (c) Japanese oak in sub-

compartment 36B and (d), (e), and (f) are the monarch birch, castor aralia and Japanese oak 

in sub-compartment 59A respectively. 

 

3.3.2 Variable selection, classification of forest canopy and accuracy assessment 

 The results of the RF classification of the forest canopy into three high-value timber 

species, other broadleaf species, and conifer species are shown in Tables 5 and 6. Based on 75 

validation crowns consisting of 11 monarch birch, 18 castor aralia, 12 Japanese oak, 21 other 

broadleaf, and 13 conifer trees, an overall accuracy classification value of 73% was obtained 

with a kappa coefficient of 0.66 in sub-compartment 36B (Table 3.3). Table 3.4 shows the 

results of the classification for sub-compartment 59A. The overall accuracy of 63% was 

obtained with a kappa coefficient of 0.53 based on the validation data (58 crowns) for 12 

monarch birch, 9 castor aralia, 6 Japanese oak, 12 other broadleaf, and 19 conifer trees. Figures 

3.3 and 3.4 show the important variables for the classification of the forest canopy in sub-

compartments 36B and 59A, respectively. 
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The spatial positions of individual trees can be extracted from the classification results. 

Figure 3.5 shows monarch birch, castor aralia, Japanese oak, other broadleaf, and conifer tree 

crowns. These individual tree crowns indicate the tree locations of high-value timber species. 

 

Table 3.3: Confusion matrix for RF classification forest canopy into high-value 

timber, other broadleaf and conifer classes based on 75 validation crowns from 

known tree positions in sub-compartment 36B. 

Classified 
crowns 

Reference crowns  
UA/PA % Monarch 

Birch 
Castor 
aralia 

Japanese 
oak 

Other 
broadleaf Conifer 

Monarch birch 8 2 1 2 1 57/73 
Castor aralia 0 14 0 2 1 82/78 
Japanese oak 1 0 10 3 0 71/83 

Other broadleaf 1 1 1 13 1 76/62 
Conifer 1 1 0 1 10 77/77 

Overall accuracy   73% (kappa = 0.66) 
UA and PA stand for user’s accuracy and producer’s accuracy, respectively. 

 
 
Table 3.4: Confusion matrix for RF classification of forest canopy into high-value 

timber species, other broadleaf and conifer classes based on 58 validation crowns 

from known tree positions in sub-compartment 59A. 

Classified crowns 
Reference crowns  

UA/PA % Monarch 
Birch 

Castor 
aralia 

Japanes
e oak 

Other 
broadleaf Conifer 

Monarch birch 7 0 0 0 1 87/58 
Castor aralia 0 6 0 2 1 67/67 
Japanese oak 0 0 5 6 0 45/83 

Other broadleaf 1 2 0 3 1 43/25 
Conifer 4 1 1 1 16 70/32 

Overall accuracy   63 % (kappa = 0.53) 
UA and PA stand for user’s accuracy and producer’s accuracy, respectively. 
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Figure 3.3: Species separability boxplots for classification of the forest canopy in sub-

compartment 36B. 

 

 
Figure 3.4: Species separability boxplots for classification of the forest canopy in sub-

compartment 59A. 

 

 

 

 

 

.  
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Figure 3.5: Individual tree crowns derived from the RF classification, where each tree crown 

also indicates the individual tree’s spatial position: (a) sub-compartment 36B and (b) sub-

compartment 59A. 

 
3.3.3 DBH estimation 

The selected models for DBH estimation using field, LiDAR and UAV-DAP data were 

shown in Table 3.5. Figure 3.7 showed the correlation between observed DBH and predicated 

DBH for three high-value timber species. The results indicated that models based on LiDAR 

data obtained higher correlation coefficients and lower RMSE values. Models based on UAV-

DAP revealed a comparable prediction power to LiDAR based models and field survey-based 

models. Among the three data sources, models using field measured data exhibited the highest 

RMSE values and lower correlation values for all species. In general, the results showed the 

higher correlation for castor aralia while lower correlation values were observed for Japanese 

oak (Table 3.6 and Figure 3.7).  
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Table 3.5. DBH estimation models. 

Species Model Parameter 
estimates R2 (marginal) RMSE 

(cm) 
Field  
Monarch birch Intercept  

CAf  
Field Height 

33.38*** 
0.08*** 

0.45 
0.32 8.90 

Castor aralia Intercept 
CAf 
Field Height 

16.03* 
0.13*** 
1.29*** 

0.47 10.57 

Japanese oak Intercept 
CAf 
Field Height 

34.01** 
0.12*** 

0.92 
0.32 14.01 

LiDAR 
Monarch birch Intercept 

CAD 
H-max 

8.75 
0.10*** 
1.29*** 

0.59 7.05 

Castor aralia Intercept 
CAD  
H99 

-11.83 
0.23*** 
2.34*** 

0.70 7.39 

Japanese oak Intercept 
CAD  
H99  
H30 

22.43 
0.17*** 
3.18*** 
-3.06*** 

0.54 11.87 

UAV-DAP 
Monarch birch Intercept 

CAD 
H99 

16.97* 
0.11*** 
0.97*** 

0.56 7.30 

Castor aralia Intercept 
CAD 
H99 

0.89 
0.22*** 
1.81*** 

0.60 8.51 

Japanese oak Intercept 
CAD 
H99 

24.51 
0.20*** 

1.07 
0.40 13.29 

Note: CAf represents field-measured crown area and CAD represents manually digitized 

crown area, respectively, for UAV orthophotographs. Significance code: *** p < 0.001, ** p 

< 0.01, * p < 0.05. 
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Figure 3.6: Observed and predicted DBH for monarch birch (first row), castor aralia 

(middle row), and Japanese oak (third row). 

 
3.4 Discussion 
3.4.1 Segmentation of forest canopy 

In this Chapter, tree crown segmentation was conducted using the multiresolution 

segmentation method, which showed low segmentation accuracy (Figure 3.1) for all target 

high-value timber species. As shown in Figure 3.2, the crowns of target high-value timber 

species are largely heterogeneous, which could produce a lower segmentation accuracy. For 

all target species, underestimation of individual tree crown areas was observed. Deciduous 

species have a relatively flat outer canopy envelope and therefore, generally have more 

complex crown structures compared to coniferous species (Nuijten et al., 2019). In addition, 

the branching pattern of large size deciduous trees may lead tree detection algorithm to detect 
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a heterogenous individual tree crown as different tree crowns. In this Chapter, I used spectral 

band  (i.e., R, G and B) derived from UAV-DAP together with LiDAR CHM for delineation 

purposes. The within crown heterogeneity of large size high-value timber species produced 

different tree crown objects for manually delineated tree crowns (Figure 3.2). Spectral variation 

due to shadow within an heterogenous individual tree crown could lead to segmentation of 

individual tree crown into several crowns (Figure 3.2). 

Higher tree crown detection accuracies were reported for conifer species and planation 

in previous studies (González-Ferreiro et al., 2013; Guerra-Hernández et al., 2018). The results 

in this Chapter were consistent with other previous studies using different tree crown detection 

algorithms. Previous studies also reported that the results of individual tree crown detection 

algorithms could not produce highly accurate results especially when the target species were 

broadleaf (Kaartinen et al., 2012; Vauhkonen et al., 2012; Wang et al., 2016). Using the UAV-

DAP derived canopy height models, Nuijiten et al. (2019) accessed the seasonal variation in 

the result of individual tree crown delineation using marker-controlled watershed segmentation 

algorithm in mixed deciduous forest stands. They reported the accuracy of 55% in the summer 

and 77% in the fall season. Dalponte et al. (2019) used hyperspectral data for the segmentation 

of the forest canopy, reporting that on average, 34% of the area of the delineated by tree crown 

detection algorithm overlapped the area of the manually delineated tree crown. 

 

3.4.2 Classification of forest canopy  

I classified forest canopy into three high-value timber species, other broadleaf, and 

conifer classes (Table 3.3 and Table 3.4). Even though the classification of forest canopy into 

two categories of broadleaf and conifer produce high accuracy as indicated in previous studies 

(Alonzo et al., 2017; Jayathunga et al., 2020), classification of forest canopy into several 

classes could be challenging since our data consisted of R, G, and B bands only. I obtained 

overall classification accuracy of 73% and 63% in sub-compartment 36B and 59A, respectively 

(Table 3.3, Table 3.4 and Figure 3.5). The important variables (Figure 3.3 and 3.4) for 

classification of forest canopy were different for the two sub-compartments. In sub-

compartment 36B, NGRVI appeared to be the best spectral variable for classification, while 

the mean value of B was the best variable in sub-compartment 59A. This could be due to the 

timing of UAV flight missions between two sub-compartments. In addition, the weather 

condition during the flight missions may have influenced the spectral response of forest canopy, 

affecting the classification accuracy.  
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Lower classification accuracy was observed in sub-compartment 59A. The lower 

classification accuracy result in the current study could be due to the confusion of spectral 

signatures of each species. This issue was also highlighted in the previous studies (Franklin 

and Ahmed, 2018; Singh et al., 2015). The accuracy in the current study was relatively lower 

than other previous studies that used more spectral information, such as multispectral or hyper-

spectral information. For example, Franklin et al. (2018) used multispectral data derived from 

UAV-DAP to classify forest canopy into five categories. They reported the overall 

classification of 78% for 23 validation tree crowns. A study by Lisein et al. (2015) tested the 

multitemporal UAV flights with multispectral camera to determine the best time window for 

classifying forest species. Using the random forest classification approach, they reported a 

lower error of 16% in discriminating 5 different categories of tree species. The use of 

hyperspectral data and LiDAR data for tree species classification were examined by Matsuki 

et al. (2015) and Dalponte et al. (2019). They reported the maximum classification accuracy 

values of 82% for 16 classes of tree species (Matsuki et al., 2015) and 88.1% for 9 classes 

(Dalponte et al., 2019).  

 

3.4.3 Estimation of individual tree DBH 

In addition to species classification, this Chapter demonstrated the applicability of RS 

data for the estimation of DBH, which is one of the important variables for single-tree 

management purpose. I compared the accuracy of field, LiDAR and UAV-DAP data for DBH 

estimation for three high-value timber species. In the DBH estimation models of RS data, 

significant variables used for prediction are tree-height-related variables (Table 3.5). The RS 

variables related to point density did not play important role in individual tree DBH estimation. 

This result is consistent with the previous studies (Chen et al., 2007; Yu et al., 2011). Yu et al. 

(2011) examined the use of LiDAR height and intensity metrics for the estimation of tree basal 

area and stem volume in Finland. They found that the best model for estimation individual tree 

DBH were models that included tree crown and height metrics. In addition, a study by Chen et 

al. (2007) also reported that models that included LiDAR height and crown metrics rather than 

intensity metrics seemed to be the best model for individual tree stem volume and basal area. 

However, all returns (i.e., first, second, third, and last return) were used to derived intensity 

metrics. The intensity metrics derived separately for each return within specific tree crown area 

could relate more to individual tree DBH. 
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The results of DBH estimation models also revealed that manually delineated tree 

crown area values, together with tree height values, could better estimate the individual tree 

DBH than field-measured crown area. The correlation between observed and predicted DBH 

was higher in DBH models that used manually delineated crown area. Among the tree species, 

the accuracy of DBH estimation for castor aralia seemed to be higher than for the other two 

species. Visually, castor aralia was relatively easier to distinguish in most case. Therefore, 

manual tree crown delineation may likely to be more accurate than other two species. In the 

literature, field measured tree crown and tree height were used for developing the tree diameter 

estimation models (Hulshof et al., 2015; Jucker et al., 2017; Verma et al., 2014). RS data could 

improve the accuracy of these diameter estimation models.  

 
3.5 Conclusions 

In this Chapter, I demonstrated the applicability of UAV-DAP and LiDAR data for the 

estimation of individual tree spatial positions and DBH values. I performed multiresolution 

segmentation of UAV-DAP orthophotographs, together with rasterized LiDAR CHM, in order 

to segment the forest canopy into individual tree crowns. I applied object-based image analysis 

and random forest classification techniques to classify the forest canopy into three high-value 

timber species, other broadleaf species, and conifer. The results indicated overall accuracy 

values of 73% and 63% in sub-compartment 36B and 59A, respectively. The DBH estimation 

results showed high prediction accuracy when using manually digitized tree crown area and 

LiDAR- and UAV-DAP derived tree height values. The UAV-DAP data had comparable 

prediction accuracy to field-measured data and LiDAR data. The results of this Chapter could 

be useful for forest managers when searching of high-value timber trees and estimating tree 

size in large area of mixed-wood forests. 
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Chapter 4 

Resource assessment of high-value timber species 

 

4.1 Introduction 

The achievement of sustainability from the use of various forest management practices 

is a central precept of forestry and is therefore central to all silvicultural systems (O’Hara et 

al., 2007). Uneven-aged forest management or selection system has gained growing interest in 

many parts of the world due to its stability in forest stand structures (Kuuluvainen et al., 2012; 

Laiho et al., 2011; Puettmann et al., 2015; Pukkala et al., 2011), and there has been increasing 

criticism for even-aged forestry, wherein the whole forest area is clear-cut and regenerated 

artificially. Furthermore, sustainable forest management (SFM) has been encouraged as a 

guiding principle in forest management (MacDicken et al., 2015) and uneven-aged forest 

management is assumed to achieve greater sustainability in forest resource management in 

comparison with even-aged forest management (Dieler et al., 2017; O’Hara et al., 2007). It is 

sometimes referred to as close-to-nature forest management (O’Hara, 2016; Schütz et al., 

2016), which implies the achievement of a form of silviculture that emulates natural processes 

resulting in stand structures that are natural, and it promotes natural processes such as soil 

productivity maintenance, nutrient cycling, and biodiversity (O’Hara, 2016). 

In uneven-aged mixed conifer–broadleaf forests in northern Japan, the selection system 

has been practiced as a common management system since the early twentieth century (Yasuda 

et al., 2013). In fact, the selection management system attempts to mimic natural disturbances 

through the use of various management practices. General expectations of the use of selection 

management are the increased growth, recruitment, and survival of remaining trees (Yoshida 

et al., 2006). Several research attempts have been made in different parts of the world to 

investigate the impacts of selection management on the remaining forest stand demographic 

parameters, i.e., growth, recruitment, and mortality (Amaral et al., 2019; Klopcic and Boncina, 

2011; Laiho et al., 2011; Schuler, 2004), as well as species composition and stand structure 

(Dieler et al., 2017; Ediriweera et al., 2020; Poudyal et al., 2019; Young et al., 2017). Many 

previous studies in mixed conifer–broadleaf forests in northern Japan have also assessed the 

impact of selection management on the growth, recruitment, and mortality of the remaining 

forest stand (Miya et al., 2009; Noguchi and Yoshida, 2009; Tatsumi et al., 2014; Yoshida et 

al., 2006; Yoshida and Noguchi, 2010). However, few studies have examined the sustainability 
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of forest stands, especially high-value timber species. Information on the sustainability of high-

value timber species within mixed forests is important for forestry practitioners, especially 

when the goal of forest management is to manage certain species. Moreover, understanding the 

sustainability of uneven-aged mixed forests is useful for forest management decision (Müller 

et al., 2000) because it helps to determine whether or not a specific stand structure should be 

maintained (Kuuluvainen, 2002; Schall et al., 2018). 

The assessment of sustainability in uneven-aged mixed forest is relatively difficult 

because forests are slow growing and it may take several decades to examine the long-term 

impacts of any given forest management activities. It requires criteria and indicators that can 

be measured during stand development (O’Hara et al., 2007) after forest management 

activities. The availability of long term forest measurement data, therefore, is an important 

source of information (Pretzsch et al., 2019), not only for providing information of forest stand 

dynamics but also to assess the sustainability of forest stands subjected to various natural and 

anthropogenic disturbances. 

The parameters derived from long-term forest measurement data would be useful for 

assessing the sustainability of a forest management system. O’Hara et al. (O’Hara et al., 2007) 

compared forest stand parameters such as stocking (tree density and basal area), species 

diversity, stand structure, and increment between even-aged forest and a selection system in 

Central Europe as measures of sustainability using over 90 years of forest measurement data. 

In addition, Schuler (Schuler, 2004) examined the species composition, diversity, and growth 

of tree species in mixed mesophytic forest in the USA after 50 years of partial harvesting. In 

mixed conifer–broadleaf forest in northern Japan, Yoshida et al. (Yoshida et al., 2006) assessed 

the dynamics of a forest stand after 20 years of selection harvest. However, these studies 

examined long term changes in the stocking and demographic parameters of major tree species 

or stand level stocking, species diversity, and stand structure. The sustainability of high-value 

timber species after selection harvest has not been widely studied. Understanding the 

sustainability of high-value timber species will be useful for the reliable application of a 

selection system and species-specific forest management or a single-tree management system, 

which was recommended in previous studies (Lindenmayer et al., 2013; Owari et al., 2016). 

The aim of this Chapter is, therefore, to assess the sustainability of high-value timber 

species in mixed forests managed under selection systems. Using 48 years of measurement 

data, I derived the stocking, demographic parameters, and species proportion of high-value 

timber species as measures of sustainability. To reach the objective, firstly, I assessed the 
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changes in stocking and demographic characteristics of high-value timber species over time. 

Secondly, the changes in the species proportion of high-value timber species were assessed. In 

addition, I also showed how the forest stand structure was changing by assessing the 

sustainability measures of all conifer and broadleaf species. 

 

4.2 Materials and methods 
4.2.1 Study site and data 

The study area was located in UTHF. Figure 4.1 shows the location of study area. The 

information of the study area is described in Chapter 2 (sub-section – 2.2.1). Permanent plots 

were established throughout the UTHF to record long-term growth and stand development for 

the management of uneven-aged mixed forests (Owari, 2013). A stratified purposive sampling 

scheme was employed for the plot establishment to represent the major stand types, soil, and 

terrain conditions (Ishibashi and Hirokawa, 1986). Harvesting and management of forest stands 

were monitored using permanent plot data by assessing temporal dynamics of stand structure 

and fluctuation of forest resources. Within these plots, diameter at breast height (DBH) 

measurements of all trees with DBH ≥ 5 cm are performed by UTHF staff at regular, in most 

cases, 5-years interval with 0.1 cm precision. All trees were tagged with identification numbers 

(IDs) on metal plates nailed to steel rods to ensure that DBH measurements were repeated on 

the same trees. Plot data included species, DBH, survival status, and harvest of all trees with 

DBH ≥ 5.0 cm. For growth model development, I used tree census data from 31 permanent 

sample plots (plot sizes range from 0.22 to 1.00 ha) in the UTHF (Figure 4.1) where the 

selection system has been implemented. I used the tree census data of the plots measured 

between 1968 and 2016. Measurement intervals ranged from 3 to 12 years, and the number of 

measurements in the plots ranged from 8 to 11. The plots were subjected to selection harvest 3 

to 5 times during the observation period. 
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Figure 4.1: Locations of the permanent plots.  

 
4.2.2 Measures of sustainability 

In order to assess the sustainability of high-value timber species, I considered the 

stocking and demographic characteristics, and species proportion, as suggested by O’Hara et 

al. (O’Hara et al., 2007). Stocking included the tree density (number of trees per hectare - N, tree 

ha−1) and basal area per hectare (BA, m2 ha−1). Demographic characteristics included basal area 

increment (BAI, m2 ha−1 yr−1); number of recruitment or in-growth (N-rec, tree ha−1), and 

number of tree mortality (N-mor, tree ha−1). BAI was calculated based on two consecutive 

measurements of DBH. I excluded negative BAI values in the analysis, as these were assumed 

to be measurement errors. I also excluded dead trees in the second measurement of two 

consecutive measurements in BAI calculations. N-rec was calculated as the number of trees 

that were entered into the minimum 5.0 cm DBH in the second measurement of two 

consecutive measurements. I considered the dead trees in the second measurement of two 

consecutive measurements as N-mor, and I counted the number of dead trees between two 

measurements. In addition, I compared the changes in N, BA, and BAI to understand the 

general temporal trend of the study forest stand. Changes in the species proportions of high-

value timber species as well as the proportion of conifer and broadleaf trees were also analyzed. 

I also assessed the selection harvest of conifer and broadleaf trees across the census periods. 
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4.2.3 Data analysis  

For simplicity in the comparison of sustainability measures, I divided the measurement 

records into 5 census periods; I (1968–1978), II (1978–1988), III (1988–1998), IV (1998–

2008), and V (2008–2016). The year of measurement was used to determine the census periods, 

i.e., all censuses that were measured in the years between 1968 and 1978 were assumed as 

period I. Friedman test was used to test stand level changes in stocking, demographic 

characteristics, and proportion of high-value timber species. For significant Friedman test 

results (p < 0.05), a post-hoc test was applied to detect which census periods showed significant 

increase or decrease in stocking, demographic characteristics, or species proportion. A linear 

mixed effect model was used to quantify whether the stocking, demographic characteristics, 

and species proportion increased or decreased over time. The model form can be described as 

the following equation:  

Yij = a0 + a1Xij + plotj + εij.   Equation (4.1) 

where Yij represents the sustainability measures mentioned in Section 4.2.2 for census year i in 

plot j, and Xij is census year i in plot j. ao and a1 are fixed effect parameters, and plotj is the 

random effect parameter for plot j. The symbol εij stands for residuals. The significant slope 

coefficient (p < 0.05) was used as an indicator of either positive or negative trends of the forest 

characteristics mentioned in Section 4.2.2 over time (O’Hara et al., 2007). All statistical 

analysis were carried out in R software version 3.6.1 (R Core Team, 2019). 

 

4.3 Results 
4.3.1 Changes in stocking of high-value timber species 

Changes in N and BA are shown in Table 4.1. Diameter distribution of high-value 

timber species are shown in Figure 4.2. During the 48-year period, the N of monarch birch 

significantly increased (Friedman test, p < 0.05) in the study permanent plots with the mean N of 

the last census period (2008–2016) being significantly higher than in the first two census periods 

(Table 4.1). The BA of monarch birch also increased, reaching the highest in the last period. 

Monarch birch BA in the last two periods was significantly higher than in the previous three 

periods. The N of castor aralia did not increase or decrease significantly (p = 0.75) in any 

period. However, the BA of castor aralia increased significantly (p < 0.001). The N of Japanese 

oak did not significantly increase in the first three periods, but it significantly increased in the 

last two periods. Similar to other two species, the highest BA of Japanese oak occurred in the 
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last period. According to the mixed effect model, the slope coefficients for N and BA for all 

species showed significant positive trends over time (Table 4.2). 

Table 4.1: Stocking of high-value timber species (mean (standard deviation)). 

Census 

Periods 

Monarch Birch Castor Aralia Japanese Oak 

Density 

(N/ha) 

Basal area 

(m2/ha) 

Density 

(N/ha) 

Basal area 

(m2/ha) 

Density 

(N/ha) 

Basal area 

(m2/ha) 

I 
3.83  

(5.80) a 

0.13  

(0.20) a 

19.26 

(14.51) a  

0.30  

(0.34) a 

11.03 

(15.92) a 

0.55  

(0.99) a 

II 
3.59  

(4.77) a 

0.16  

(0.22) a 

21.18 

(16.85) a  

0.40  

(0.37) ab 

11.64 

(15.39) a 

0.53  

(0.85) b 

III 
5.49  

(7.58) ab 

0.17  

(0.25) a 

21.79 

(14.77) a 

0.43  

(0.39) b 

12.54 

(15.25) a 

0.48  

(0.84) b 

IV 
11.37 

(18.5) ab 

0.20  

(0.26) b 

24.39 

(17.25) a 

0.48  

(0.41) c 

16.26 

(16.17) b 

0.62  

(0.95) c 

V 
11.24 

(20.61) b 

0.26  

(0.33) c 

23.39 

(17.43) a 

0.56  

(0.40) d 

15.05 

(16.48) b 

0.68  

(1.08) d 

Note: Census periods with different letters show significant differences (p < 0.05). 

 

 

Figure 4.2: Diameter distribution of high-value timber species across census periods. (a) 

Monarch birch, (b) Castor aralia, and (c) Japanese oak. Number of trees indicate the mean 

values. 
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Table 4.2: The results of linear mixed-effect models showing the general temporal trend of 

stocking, demography and diversity indices for high-value timber species. 

 Variable 
Monarch Birch Castor Aralia Japanese Oak 

ao a1 ao a1 ao a1 

Tree density (N/ha) −477.64*** 0.24*** −207.00* 0.11* −359.84*** 0.19*** 

Basal area (m2/ha) −6.13*** 0.003*** −0.11*** 0.006*** −0.11*** 0.006*** 

Basal area increment 

(m2/ha/year) 
−0.27*** 0.0001*** −0.21*** 0.0001* −0.19*** 0.0001** 

Mortality (N/ha) −32.57** 0.02** −10.04ns 0.01ns −24.77* 0.012* 

In-growth (N /ha) −45.43ns 0.02ns 27.52ns −0.01ns −34.63ns 0.02ns 

Species proportion (%) −45.87*** 0.02*** −5.29ns 0.004ns −27.78*** 0.015*** 

Significant code: * p < 0.05, ** p < 0.01, *** p < 0.001. ns stands for non-significant. a0 and 

a1 are fixed-effect parameters of equation (4.1).  

 

For the purpose of comparison, Figure 4.3 shows changes in the N and BA of forest 

stand, conifer, and broadleaf across census periods. The Friedman test showed significant 

differences in both N and BA over time (p < 0.05). In addition, Figure 4.3 also shows the 

changes in the N and BA of conifer and broadleaf species during the 48-year period. The figure 

shows increasing trends in broadleaf N and BA, while decreasing trends can be observed for 

conifer N and BA. Friedman test also showed significant differences (p < 0.05). The results of 

the mixed effect model also confirmed the significant and positive trends in N and BA over 

time. However, significant and negative trends were observed for conifer N and BA, while a 

positive trend was observed for broadleaf species (Table 4.3). 

 

Figure 4.3: Development of stand level density (a), and basal area (b) of all species (mean 

(standard error)). 

 

(a) (b) 
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Table 4.3: The results of linear mixed-effect models showing the general temporal trend of 

stocking and demography of forest stand. 

 Variable 
Total Conifer Broadleaf 

ao a1 ao a1 ao a1 

Tree density (N/ha) −3114.45* 2.07** 6423.42*** −3.01*** −9561.88*** 5.08*** 

Basal area (m2/ha) −164.20*** 0.10*** 98.31*** −0.04*** −262.40*** 0.14*** 

Basal area increment 

(m2/ha/year) 
−4.48*** 0.002*** 2.58** −0.001* −7.09*** 0.004*** 

In-growth (N/ha) −1056.16ns 0.57ns 186.50ns −0.08ns −1240.98* 0.65* 

Mortality (N/ha) −1550.45** 0.82** 313.36ns −0.14ns -1859.66*** 0.95*** 

Species proportion (%)   664.93*** −0.31*** −564.93*** 0.31*** 

Significant code: * p < 0.05, ** p < 0.01, *** p < 0.001. ns stands for non-significant. a0 and 

a1 are fixed-effect parameters of equation (4.1). 

 
 

4.3.2 Changes in the demographic characteristics of high-value timber species 

Changes in the demographic parameters of high-value timber species are shown in 

Table 4.4. The BAI of monarch birch in the last two census periods was significantly higher 

than the first three periods (p < 0.001). A significant higher BAI of Japanese oak (p < 0.001) 

was found in the last two measurement periods with the highest increment in the fourth census 

period. An increasing trend in the BAI of castor aralia was also observed. The mixed effect 

model also revealed a positive slope coefficient for the BAI of all species (Table 4.2). The 

Friedman test showed no statistically significant difference between census periods for N-mor 

(Table 4.4). However, a significant positive slope was observed for monarch birch and 

Japanese oak, meaning that the N-mor of monarch birch and Japanese oak may be likely to 

increase over time (Table 4.2). In all target species, an increased N-rec was observed in the 

second, third, and fourth census periods. However, a significant decline in the N-rec was 

observed in the last census period (Table 4.4), and no significant positive or negative slope 

coefficients were observed for any species in the results of the mixed effect model (Table 4.2). 
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Table 4.4: Demographic characteristics of high-value timber species (mean (standard 

deviation)). 

Census 

Period 

Monarch Birch Castor Aralia Japanese Oak 

BAI  
Mort-

ality  

In-

growth  
BAI  

Mort-

ality  

In-

growth  
BAI  

Mort- 

ality 

In-

growth 

I 
0.0023 

(0.004)a 

0.21 

(0.92)a  

0.10 

(0.65)a 

0.0053 

(0.006)a 

1.56 

(3.29)a 

0.93 

(2.32)a 

0.0057 

(0.009)a 

0.07  

(0.45)a 
0.00a 

II 
0.0021 

(0.003)a 

0.39 

(1.07)a 

0.13 

(0.90)a 

0.0074 

(0.007)ab 

2.37 

(4.81)a 

3.19 

(7.45)b 

0.0057 

(0.010)a 

0.46  

(1.48)a 

1.25 

(4.39)b 

III 
0.0027 

(0.004)a  

0.16 

(0.76)a 

1.81 

(4.98)b 

0.0080 

(0.008)b 

2.40 

(4.14)a 

3.95 

(6.94)b 

0.0062 

(0.010)a 

0.15  

(0.58)a 

1.77 

(3.24)b 

IV 
0.0058 

(0.009)b 

0.39 

(1.18)a 

2.86 

(8.01)b 

0.0099 

(0.007)c 

1.72 

(3.34)a 

2.89 

(5.75)ab 

0.0092 

(0.012)b 

0.52  

(1.60)a 

1.65 

(2.64)b 

V 
0.0069 

(0.012)b 

0.96 

(2.21)a 

0.28 

(1.51)a 

0.0094 

(0.008)bc 

2.47 

(4.19)a 

0.94 

(2.28)a 

0.0078 

(0.012)b 

0.53  

(1.03)a 

0.61 

(1.82)a 

Note: Census periods with different letters show significant difference (p < 0.05). 

 

Figure 4.4 shows changes in the BAI, N-mor and N-rec of all species. The total BAI of 

all species showed no statistically significant difference in the first three census periods. 

However, it was significantly higher in the last two periods than in the first three periods (p < 

0.05). The total BAI of broadleaf species increased while the conifer BAI decreased in the last 

census period. These results are also confirmed by the results of the mixed effect model in 

which a significant negative slope was observed for conifer and a positive slope was observed 

for broadleaf. The broadleaf N-rec that entered into the 5.0 cm DBH was higher than that of 

the conifer N-rec. For both conifer and broadleaf species, the N-rec decreased from the third 

census period (Figure 4.4). The number of total N-mor significantly increased since third 

census period. When comparing the conifer and broadleaf N-mor, the broadleaf N-mor 

increased from the third census period. However, there was no significant increase or decrease 

in conifer N-mor after the third census period. The mixed effect model also revealed an increase 

in the total N-mor over time. In addition, the broadleaf N-mor also increased over time. 
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Figure 4.4: Development of demographic parameters of all species (mean (standard error)). 

(a) Basal area increment (m2/ha/year), (b) Mortality (N/ha), and (c) In-growth (N/ha). 

 

4.3.3 Changes in species proportion of high-value timber species 

Table 4.5 shows the changes in species proportion of high-value timber species. 

Significant differences in the proportion of Japanese oak were observed (p < 0.001), while no 

significant differences were observed for monarch birch (p < 0.22) or castor aralia (p < 0.31) 

across census periods. However, a significant positive trend in the monarch birch proportion 

was observed over time (Table 4.2). Similarly, Table 4.2 shows a significant positive trend in 

the Japanese oak proportion. Table 4.5 also shows the changes in the proportion of conifer and 

broadleaf across census periods. The proportion of conifer declined after the first census period 

while that of broadleaf increased after the first period. These trends were also confirmed by the 

positive coefficients of mixed-effect models (Table 4.2). 

 

 

 

 

 

(b) (a) 

(c) 
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Table 4.5: Changes in species proportion (%) of high-value timber species. 

Census 

Period 

Monarch 

Birch 

Castor 

Aralia 
Japanese Oak Conifer Broadleaf 

I 0.37 (0.48) a 1.87 (1.38) a 1.01(1.43) a 48.35(22.89) a 51.65 (22.89) a 

II 0.41 (0.48) a 2.37 (1.72) a 1.25(1.64) b 41.38(20.17) a 58.62 (20.17) ab 

III 0.58 (0.82) a 2.15 (1.30) a 1.22(1.56) ab 41.43(19.76) b 58.56 (19.76) bc 

IV 1.13 (1.72) a 2.24 (1.38) a 1.46(1.44) bc  38.13(18.69) bc 61.84 (18.69) cd 

V 1.10 (1.79) a 2.23 (1.39) a 1.38(1.34) c 33.01(14.30) c 66.99 (14.30) d 

Note: Census periods with different letters show significant difference (p < 0.05). 

 

4.3.4 Selection harvest 

Table 4.6 shows the total N and BA harvest of high-value timber species. The small N 

and BA of high-value timber species were harvested during the 48-year period. Table 4.7 shows 

the total N and BA harvest of conifer and broadleaf across census periods. The number of 

broadleaf trees harvested in the first census period was higher than the number of conifer trees 

harvested. Starting from the second census period, more conifer trees than broadleaf trees were 

harvested. According to Table 4.6, the BA harvest for conifer was larger than the BA harvest 

for broadleaf in all periods. The BA harvest for broadleaf in the first census period was 

significantly higher than in the later four periods, with the lowest BA harvest occurring in the 

third period. The largest BA harvest for conifer occurred in the fourth census period. 
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Table 4.6: Harvest of high-value timber species (mean (standard deviation)). 

Census 

Periods 

Monarch Birch Castor Aralia Japanese Oak 

Number 

(N/ha) 

BA 

(m2/ha) 

Number 

(N/ha) 

BA 

(m2/ha) 

Number 

(N/ha) 
BA (m2/ha) 

I 
0.50  

(2.09) a 

0.04 

(0.25) a  

2.20  

(5.36) a 

0.02  

(0.04) a 

0.47  

(1.50) a 

0.03  

(0.18) a 

II 
0.04  

(0.26) a 

0.01 

(0.07) a 

0.28  

(0.94) b 

0.007 

(0.03) ab 

0.28  

(1.16) ab 

0.09  

(0.38) ab 

III 
0.05  

(0.37) a 

0.006 

(0.05) a 

0.61  

(3.17) bc 

0.012 

(0.05) ab 

0.04  

(0.32) bc 

0.0003 

(0.002) b 

IV 
0.06  

(0.52) a 

0.003 

(0.02) a 

0.04  

(0.28) c 

0.002 

(0.01) b 

0.04  

(0.31) bc 

0.0001 

(0.001) b 

V 0 a 0 a 
0.31  

(1.05) bc 

0.03  

(0.11) b 

0.06  

(0.45) c 

0.02  

(0.15) b 

Note: Census periods with different letters show significant difference (p < 0.05). 

 

Table 4.7: Harvest of conifer and broadleaf (mean (standard deviation)). 

Census Period 
Conifer Harvest Broadleaf Harvest 

Number (N/ha) BA(m2/ha) Number (N/ha) BA(m2/ha) 

I 32.87 (51.11) a 1.87 (2.60) ab 55.25 (82.84) a 1.31 (2.08) a 

II 11.07 (23.56) bc 0.73 (1.43) bc 10.33 (20.58) ab 0.47 (0.96) abc 

III 14.16 (30.15) c 1.10 (2.03) c 7.98 (32.31) c 0.26 (0.70) c 

IV 16.87 (26.22) ab 2.02 (2.87) a 4.58 (6.94) bc 0.41 (0.73) ab 

V 9.92 (18.38) bc 1.37 (2.40) abc 4.72 (9.31) bc 0.34 (0.78) bc 

Note: Census periods with different letters show significant difference (p < 0.05). 

 
 
4.4 Discussion 

In this Chapter, I investigated the long-term changes in stocking, demographic 

characteristics, and species proportion of high-value timber species as measures of 

sustainability. I used these parameters as criteria and indicators to evaluate the sustainability 

of high-value timber species as proposed by O’Hara et al. (2007). However, they used these 

criteria and indicators to evaluate the stand level sustainability of even-aged and uneven-aged 



 58 

forest management. The changes or consistency of these parameters would be useful for 

establishing sustainable forest management by adjusting the tree marking for harvesting.  

The main common characteristics of the targeted high-value timber species in this study 

were increases in N and BA. The increasing trend was also observed in the total N and total 

BA of forest stands. An increase in the N of forest stands managed under the selection system 

has occurred in the last few decades in other parts of the world with different environment and 

forest types. For example, Klopcic et al. (2011) found an increased total number of trees in 

their study in Slovenia. Compared with an unmanaged stand, a higher mean density and basal 

area in the managed stand was also reported by Young et al. (2017) in USA. Moreover, a 

decreasing tree density and basal area in an unmanaged stand was reported by Ediriweera et al. 

(2020) in their study in mixed-dipterocarp forests over a 40-year period. 

One possible reason for increasing the N and BA of forest, including those of high-

value timber species, would be due to some major disturbance, including natural (e.g., strong 

typhoon) and anthropogenic (e.g., selection harvest) factors (Noguchi and Yoshida, 2009). In 

the mixed conifer–broadleaf forest in northern Japan, a large typhoon occurred, causing 

widespread canopy opening (Yoshida and Noguchi, 2009) in some plots. Selection harvesting 

was carried out three to four times during the 48 years period. The increasing trend of both 

total N and BA of forest stand was greatly contributed by broadleaf species. These increasing 

trends in both N and BA are consistent with previous studies in mixed conifer–broadleaf forests 

in northern Japan such as that done by Yoshida et al. (2006). Those studies also highlighted 

the increasing trend of broadleaf tree density in mixed conifer–broadleaf forests managed under 

selection system. 

Reversed J-shaped diameter distributions were observed for all target high-value timber 

species (Figure 4.2). Diameter distribution curves indicated an increasing number of smaller 

diameter class trees for all species across census periods. Owari et al. (2011) also reported a 

large number of smaller diameter class trees in northern Japanese mixed conifer–broadleaf 

forests. More fluctuation in size structure of monarch birch and Japanese oak were observed. 

Similar to N and BA, the mean BAI of high-value timber increased over time. The 

increasing trend was also observed for the mean stand BAI even though it was not significantly 

different in the first three census periods. The results of regression modeling suggested 

temporal trends of BAI for high-value timber species and the total BAI of forest stands. In 

terms of the stand level BAI, a significant positive trend was observed. In northern mixed 
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conifer–broadleaf forests, similar results have been reported for the broadleaf species (Hiura et 

al., 2019; Yoshida et al., 2006). 

The mean N-mor across census periods showed no significant difference for all high-

value timber species. However, Japanese oak N-mor increased over time. Furthermore, no 

significant increasing or decreasing trends in N-rec were observed for high-value timber 

species across census periods in this study. These results are also consistent with previous 

studies by Hiura et al. (2019). For all target species, a significantly lower N-rec was observed 

in the first and last census periods, while a higher N-rec was observed in the second, third and 

fourth census periods. This trend can also be observed for the total N-rec of all species. This 

pattern may also be explained by a large disturbance caused by a large typhoon in 1981 (second 

census period) which created a canopy opening causing high light availability (Ishikawa and 

Ito, 1988) in some plots, favoring natural regeneration. As a result, higher N-rec in these plots 

would be expected following a large natural disturbance. This was also highlighted by previous 

studies in the mixed conifer–broadleaf forest in Northern Japan. Yoshida et al. (2006), for 

example, reported that a higher N-rec of castor aralia would be expected after a disturbance, 

and harvesting treatment in their study. In addition, Takahashi et al. (2003) reported that 

Japanese oak may tend to regenerate after a large disturbance before the establishment of other 

species. 

The results in this Chapter also clearly show another important temporal trend of the 

forest stand. The forest composition and structure in the study area changed over time after the 

first census period (1968 to 1978). The proportion of conifer in the first census period was 

48.35%, and it decreased to 33% in the last census period. An increasing broadleaf proportion 

might contribute to an increased N of high-value timber species (Table 4.2). Broadleaf N and 

BA exceeded those of conifer after the first census period, wherein the N and BA of conifer 

were larger than those of broadleaf. Even though there might be several reasons for this, one 

of the possible reasons for decreased conifer N and BA would be due to a bias in tree marking 

for harvesting. Table 4.6 showed that the total harvested basal area for conifer always exceeds 

that of broadleaf in all census periods. Owari et al. (2010) indicated that even though spatially 

unbiased tree marking was obtained, tree species that were marked for selection harvest in the 

study area was mostly conifer species. In addition, they observed that the trees marked for 

harvesting were larger than the unmarked trees. 

In terms of BAI, conifer showed a decreasing trend over time (Table 4.3). Even though 

the mean BAI of conifer exceeded the mean BAI of broadleaf throughout the census periods, 
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both were almost similar in the last census period (0.379 m2/ha for conifer and 0.369 m2/ha for 

broadleaf). In addition, the mean BAI of conifer was significantly lower in the last census 

period than in the first four periods. Yoshida et al. (2006) reported that the growth of shade-

intolerant broadleaf species was less than that of most common conifer species (i.e., A. 

sachalinensis), even after selection harvesting. However, this Chapter found that even though 

a larger mean BAI was observed for all conifer species, its BAI showed a decreasing trend 

while the total BAI of broadleaf species exhibited increasing trend. Harvesting of more conifer 

trees may contribute lower mean value in total BAI. The results are in line with a previous 

study by Hiura et al. (2019) in mixed conifer–broadleaf forest in northern Japan. According to 

this trend, the future forest composition of the study area would be more of a broadleaf-

dominating type in terms of both N and BA. A similar decreasing trend in the conifer proportion 

has been reported in different regions (Klopcic and Boncina, 2011; Schuler, 2004). 

The results of the sustainability measures revealed that there have been inconstancies 

in these measures over time. However, such inconsistencies could relate to a number of 

reasons. A recent study (Hiura et al., 2019) in mixed conifer–broadleaf forest with very little 

human disturbance in northern Japan revealed that changing climate conditions such as an 

increased temperature, precipitation, and decreased snowfall and snow cover period have led a 

to reduction in growth rate of conifer and an increasing in that of broadleaf species. Moreover, 

these inconsistencies in sustainability measures due to a changing climate have been widely 

reported in different regions (McMahon et al., 2010; Pretzsch et al., 2014). Similar to the results 

by O’Hara et al. (2007), the results of this Chapter indicate that a single-tree selection system 

is more of a dynamic entity. 

The sustainability measures described in this Chapter would be useful for adjusting 

forest management activities, and various silvicultural activities, which could lead to 

consistency in sustainability measures in different forest types. Through the understanding of 

sustainability measures used in this Chapter, forest management can maintain the stocking of 

uneven-aged forest stand over time, BAI can be balanced by tree removals, and recruitment 

can be assessed whether it is sufficient. In addition, it would provide information for forest 

management operations such as stocking control, which is central to uneven-aged silviculture. 

Many stocking control approaches have been developed including reversed J-shape diameter 

distribution, selection system or plenter system, stand density index, and leaf area allocation, 

etc. (O’Hara and Gersonde, 2004). Sustainability measures can be achieved through these 
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stocking control approaches by removing those trees that surpass or maintain those of limited 

numbers in a certain diameter class. 

 

4.5 Conclusions 

In this Chapter, I examined the sustainability of high-value timber species in mixed 

conifer–broadleaf forest managed under selection system. Changes in the stocking, 

demographic characteristics, and species proportion of high-value timber species over a 48-

year period have been used as measures of sustainability. These measures could provide useful 

information for their management in the long-run. In addition, I examined the general temporal 

trend of a selection forest stand. The main common characteristics of high-value timber species 

were increases in the tree density, basal area, and BAI across the census period. In terms of 

tree mortality, no significant differences were observed among census periods with no 

significant downward or upward trends. High fluctuation in the number of in-growth also 

occurred. Other important long-term characteristics of the forest stands are the changes in forest 

structure and composition to broadleaf forest in terms of the tree density and basal area. Even 

though some fluctuations in sustainability measures were observed, the results indicated that 

sustainability of high-value timber species was achieved under a single-tree selection system. 

The results of this Chapter would be useful for adapting silvicultural practices and harvesting 

practices such as single-tree selection, and also to maintain desired stocking of the forest stand. 

For example, attention should be paid to possible changes in species proportion and diameter 

distribution of remaining forest stand when marking trees for harvesting. The influence of 

natural and anthropogenic factors on long-term changes in stocking and demography of high-

value timber species should be analyzed further.  
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Chapter 5 

Predicting individual tree growth of high-value timber species 
 

5.1 Introduction 

Quantifying the tree growth of high-value timber species will provide useful 

information for single-tree management practice, since it will allow the estimation of time to 

reach desirable size, as well as the simulation of various silvicultural practices (Orellana et al. 

2016). Individual tree growth models help explore the forest management alternatives, as they 

are flexible in predicting tree growth in stands with diverse structure, species composition and 

management history (Orellana et al. 2016). Tree growth models that use individual trees as the 

basic unit for modeling were also widely used in many different regions (Adame et al. 2008; 

Rohner et al. 2017; Schelhaas et al. 2018; Tenzin et al. 2017; Zhao et al. 2013). In mixed 

conifer-broadleaf forest in northern Japan, Tatsumi et al. (2016) quantified the neighborhood 

competition on the diameter growth of 38 tree species, including high-value timber species, 

using two times DBH measurement data. Using the tree ring data of 76 large-sized monarch 

birch trees, Shibano et al. (1995) examined the diameter growth of monarch birch trees in 

mixed conifer-broadleaf forest in northern Japan. Other studies, such as Noguchi and Yoshida 

(2009) and Fukuoka et al. (2013), examined the effects of selection cutting on individual tree 

growth and dynamics of Japanese oak. However, a simple and practically applicable tree 

growth model of high-value timber species was not widely studied, and data from long-term 

measurement plots in particular has not yet been used for the growth model development. In 

this Chapter, this issue will be addressed. 

Forest trees, including high-value timber species, are slow growing and it may take 

several decades to detect their radial growth pattern (Pretzsch et al. 2019). In such case, long-

term and repeated measurement data is indispensable offering robust empirical dataset to 

develop individual tree growth models for high-value timber species. Several studies derived 

individual tree growth information from tree ring data (Cunha et al. 2016; Shibano et al. 1995; 

Tenzin et al. 2017). However, growth measurement using tree ring data is relatively costly, and 

need extensive resources, time, and effort. Moreover, historical information of stands that are 

important in individual tree growth process may not be able to include in growth modeling 

using tree ring data. On the other hand, long-term and repeated measurement data provide 

information on the past stand conditions and management history (Pretzsch et al. 2019) 
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corresponding to tree growth process that are important for individual tree growth modeling 

(Noguchi and Yoshida 2009; Pretzsch et al. 2019).  Therefore, the empirically derived data can 

provide valuable information for developing simple and practically applicable individual 

growth models for high-value timber species. 

This Chapter aimed to develop practically useful growth models for three high-value 

timber species growing in northern Japan. The long-term data from forest measurement plots 

was used to predict the individual tree growth of high-value timber species and to determine 

the time required for high-value timber species to reach desirable size.  

 

5.2 Materials and Methods 
5.2.1 Study are and data 

The study area and data used in this Chapter are same as the Chapter 4. Please refer to 

Chapter 4 for more detail (Sub-section 4.2.1).  

 

5.2.2 Data preparation  

The data analyses were based on the single-tree DBH data collected in the permanent 

plots. I used data from 168 monarch birch trees, 484 castor aralia trees, and 219 Japanese oak 

trees for model development.  The frequency distribution of DBH among all observations is 

shown in Figure 5.1. The dependent variable was individual tree basal area increment (BAI; 

cm2/year), which was calculated from the two consecutive DBH measurements on the same 

living tree, as verified using individual tree IDs. Some studies have indicated a preference for 

diameter increment models (Schelhaas et al. 2018); however, Vanclay (1994) reported that 

both are essentially the same because one can be derived from the other. Negative BAI values 

were excluded from the analysis as measurement error. Tree BA generally increases with an 

asymmetrical sigmoidal function through time with a slower rate in the younger trees, rapidly 

increasing at establishment, and then declining during senescence (Tomé et al. 2006). 

Theoretically, tree BAI can never reach zero because the creation of new tree rings is essential 

for water transport (Schelhaas et al. 2018); however, we included observations of zero BAI 

because they may represent to poor growth conditions due to environmental factors. BAI values 

> 100 cm2/year were excluded from the analysis as outliers because BAI differences with BAI 

values > 20 cm2/year represent < 0.01% of the total observations for all species.  
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In addition, variables normalized by area were derived, including total number of trees 

(T-tree; tree ha-1), number of conifer trees (N-tree; tree ha-1), number of broadleaf trees (L-tree; 

tree ha-1), total stand BA (T-BA; m2 ha-1), conifer BA (N-BA; m2 ha-1), broadleaf BA (L-BA; 

m2 ha-1) and basal of trees larger than target trees (BAL; m2 ha-1). These variables were derived 

from the first measurement of the two consecutive DBH measurements of the permanent plots 

(e.g., when the DBH measurements were carried out in 2005 and 2010, the measurement data 

of 2005 was used to derive stand variables).  

The study permanent plots are located in selection stands where selection harvests are 

carried out with cutting cycle of 15 to 20 years (10 to 20 years until 2005). Attention was paid 

to be spatially unbiassed when marking trees for selection harvest and larger trees are more 

likely to be marked than smaller ones while dominant species, i.e., A. sachalinensis, is more 

likely to be marked (Owari et al. 2010). In Chapter 4, the BA harvest of high-value timber 

species, conifer, and broadleaf species were analyzed. Chapter 4 found that small number of 

trees and BA of high-value timber species were harvested during the study period, and more 

conifer BA were harvested than broadleaf BA. The removal of trees by selection harvest may 

affect the growth of remaining trees. Therefore, basal area of harvested trees (BA-Har; m2 ha-

1) was calculated that may positively affect the growth target trees. 

 

 

Figure 5.1: Frequency distribution of trees used for model development. 

 

5.2.3 Individual tree BAI model 

Individual tree BAI models were fitted separately for three target high-value timber 

species. The analysis used initial tree size, competition, and forest management variables as 



 65 

independent variables. Tree size variables included initial DBH, square of initial DBH, and 

logarithm of initial DBH. Distance-dependent and distance-independent competition indices 

were generally used in individual tree growth modeling (Contreras et al. 2011; Cunha et al. 

2016; Pokharel and Dech 2012; Rohner et al. 2017). Distance-dependent index accounts for 

spatial position of individual trees, while distance independent index does not require the 

spatial position of individual trees. Both indices may provide the comparable accuracy of 

growth prediction (Kahriman et al. 2018; Kuehne et al. 2019). On the other hand, distance-

independent competition index can be derived easily from the long-term and repeated 

measurement data. Therefore, distance-independent competition index was considered in the 

model. Stand level variables, such as tree density and basal area, were generally considered to 

reflect stand scale competition (Kuehne et al. 2019; Wang et al. 2019). In this Chapter, stand-

level variables, such as T-tree, N-tree, L-tree, T-BA, N-BA, L-BA and BAL were considered 

as competition variables. Further BA-Har was considered as the forest management variable. 

  

5.2.4 Mixed-effects modeling 

Repeated measurements of the same trees in long-term permanent plots result in a 

hierarchical data structure; such data lack independence among observations and are highly 

spatially and temporally correlated (Adame et al. 2008; Calama and Montero 2005). The 

mixed-effects approach has been widely used in individual tree growth modeling for repeated 

measurement data because it handles spatial and temporal correlation by incorporating 

variables as fixed, random or both effects in the model (Kiernan et al. 2008; Pokharel and Dech 

2012; Uzoh and Oliver 2008; Wang et al. 2019). Using mixed-effects modeling approach, 

initial tree size, stand structure, and management variables were included as fixed effects, and 

plots, trees, and measurement years were included as random effects. Thus, the individual tree 

BAI model is as follow:  

ln (BAIijk +1) = β0 + β1DBHijk + β2DBH2ijk + β3logDBHijk +  β4BALijk + β5T-treejk + β6N-treejk 

+ β7L-treejk + β8 T-BAjk  + β9 N-BAjk + β10 L-BAjk +  β11 BA-Harjk + Treei + Plotj + 

Measurement yeark   Equation (5.1) 

where BAIijk is the basal area increment of the tree i in plot j in year k; DBHijk is the initial DBH 

of the tree i in plot j measured in year k; BALijk is the total BAL of tree i in plot j in year k; T-

treejk, N-treejk, L-treejk, T-BAjk, N-BA jk, and L-BAjk are the stand variables of the plot j in year 
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k; and BA-Harjk is the selectively harvested BA of the plot j in year k. Treei, Plotj, and 

Measurement yeark are random effects parameters for tree i in the plot j at year k.  β0 – β11 are 

fixed effects parameters to be estimated.  

 

5.2.5 Data analysis 

Data analysis was carried out in R Software (R Core Team 2019) with “lme4” (Bates 

et al. 2020) and “lmerTest” (Kuznetsova et al. 2020) packages. The best models were selected 

using backward stepwise selection method based on Akaike’s information criterion (AIC). 

However, variables with variance inflation factor (VIF) <5 were included in the models to 

avoid multicollinearity and overfitting of the models. Marginal and conditional R2 was used to 

evaluate the goodness of fit of the selected models following Nakagawa and Schielzeth (2013). 

Because the dataset contained relatively few observations given the size distribution of 

individual trees (Figure 5.2), it was impractical to perform cross-validation by dividing the 

dataset into training and validation datasets, which would impose an uneven distribution of tree 

sizes in both datasets. Therefore, the leave-one-out cross validation approach was used, which 

allowed us to exclude one observation and fit the selected model to the remaining observations. 

Root mean square error (RMSE) and r values were calculated to compare observed BAI and 

predicted BAI.  

From forest management perspectives, it is important to estimate the time required for 

a certain tree to reach target size. Based on the Equation (5.1), the number of years for a tree 

to reach a target size were predicted as follows (Cunha et al., 2016; Tenzin et al., 2017): 

 t = [ln(BAi+n) – ln(BAi)] / ln(1+PBAIi%),  Equation (5.2) 

where t is the time (year), ln is the natural logarithm, BAi is the initial tree BA, BAi+n is the 

target tree BA. PBAIi% is the BAI productivity potential for the ith tree, calculated as: 

 PBAIi % = (Predicted BAIi / BAi) * 100, Equation (5.3)  

where predicted BAIi is the BAI of the ith individual tree predicted from Equation (5.1).   

Equation (5.2) is based on compound interest law. Many natural phenomena follow the 

compound interest law (Han et al., 2014) and it was widely applied in forestry, e.g., estimation 

of growth period for a tree to reach a certain size (Cunha et al., 2016; Tenzin et al., 2017). It 

considered the interest rate, i.e., growth rate in this Chapter, to predict the value in the future, 
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i.e., DBH. The prediction of tree DBH in a given year is based on growth rate calculated from 

the final model of Equation (5.1). Even though the past forest stand conditions were considered 

in predicting the growth rate, the changes in future forest stand conditions could not be 

considered in the estimation of number of years for a tree to reach a certain DBH.  

 

5.3 Results  
5.3.1 Observed basal area increment (BAI) 

The relationship between initial tree DBH and observed BAI is shown in Figure 5.2, 

and Table 5.1 shows the correlation between observed BAI and explanatory variables used in 

the model development. A significant positive correlation was found between initial tree DBH 

and observed BAI (p < 0.001), with correlation coefficients of 0.56, 0.77 and 0.72 for monarch 

birch, castor aralia and Japanese oak, respectively. As a pioneer species, monarch birch had a 

higher BAI at a smaller DBH size; as DBH increased, the growth decreased. Castor aralia and 

Japanese oak exhibited more stable BAI.  

 

Figure 5.2: Relationships between initial tree diameter at breast height (cm) and 

observed basal area increment (cm2/year). 

 

 

 

 

 

 



 68 

Table 5.1: Correlation between observed basal area increment and explanatory variables. 

Variable Monarch birch Castor aralia Japanese oak 

DBH (cm) 0.56*** 0.77*** 0.72*** 

BAL (m2 ha-1) -0.62*** -0.65*** -0.65*** 

T-tree (tree ha-1) ns -0.23*** -0.10** 

N-tree (tree ha-1) 0.08* -0.24*** ns 

L-tree (tree ha-1) -0.15*** -0.10*** -0.16*** 

T-BA (m2 ha-1) 0.22*** ns ns 

N-BA (m2 ha-1) 0.15*** -0.21*** -0.15*** 

L-BA (m2 ha-1) ns 0.21*** 0.10** 

BA-Har (m2 ha-1) ns ns ns 

Significant code: *** p < 0.000, ** p < 0.001, * p < 0.05, ns represents not significant. DBH 

= diameter at breast height, BAL = basal area of trees larger than target trees, T-tree = total 

number of trees, N-tree = number of conifer trees, L-tree = number of broadleaf trees, T-

BA=total basal area, N-BA=conifer basal area, L-BA = broadleaf basal area, and BA-Har = 

basal area of harvested trees. 

 

5.3.2 Model fitting, parameter estimation and goodness of fit 

The estimated parameters using the individual tree BAI model (Equation (5.1)) for each 

species are listed in Table 5.2. Variables selected in the final models were only included in the 

table. For each species, a mixed-effects model including individual trees, plots, and 

measurement year as random factors obtained lowest AIC values and was selected as the final 

model. High R2 values of the selected models for fixed (marginal R2) and random (conditional 

R2) factors indicated an acceptable fit the data (Table 5.2). Negative coefficient value was 

observed for monarch birch DBH while significant positive coefficients were observed for 

castor aralia and Japanese oak DBH. For all species, significant negative coefficients of BAL 

were observed. Significant negative coefficient of conifer tree density was observed for castor 

aralia, and negative coefficients of broadleaf tree density were observed for monarch birch and 

castor aralia. Conifer basal area showed significant negative coefficient for Japanese oak. 
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Table 5.2: Estimated parameters of individual tree BAI models for three high-value timber 

species. 

Variable  Monarch birch Castor aralia Japanese oak 

Intercept β0 4.00*** 2.92*** 2.82*** 

DBH (cm) β1 -0.01 0.02*** 0.02*** 

BAL (m2 ha-1) β4 -0.07 *** -0.04*** -0.04*** 

N-tree (tree ha-1) β6 -2.1e-05 -3.7e-04* - 

L-tree (tree ha-1) β7 -5.7e-04** -3.8e-04*** -1.7e-04 

N-BA (m2 ha-1) β9 - - - 0.02** 

BA-Har (m2 ha-1) β11 0.007 0.01 0.07* 

AIC  1231.3 3742.9 2087.8 

R2 – marginal   0.39 0.51 0.61 

R2 – conditional   0.77 0.80 0.85 

Significant code: *** p < 0.000, ** p < 0.001, * p < 0.05. DBH = diameter at breast 

height, BAL = basal area of trees larger than target trees, N-tree = number of conifer 

trees, L-tree = number of broadleaf trees, N-BA = conifer basal area, BA-Har = basal 

area of harvested trees, AIC = Akaike’s information criterion. 

 

5.3.3 Model prediction for BAI and years to reach target DBH 

Figure 5.3 shows the relationship between observed and predicted BAI for three high-

value timber species. Model prediction produced BAI RMSE of 10.44, 7.91, and 11.62 

cm2/year; significant positive correlations were detected between observed and predicted BAI, 

with r values of 0.62, 0.73 and 0.70 for monarch birch, castor aralia, and Japanese oak 

respectively (p < 0.001 for all species).  

 The derived models of Equation (5.1) were used to predict the time required for a tree 

of a given initial DBH to reach an expected target DBH using Equation (5.2). The Equation 

(5.1) was predicted based on the best model described in Table 5.2 for all species. It can be 

assumed that variables related to initial tree size, stand, and management were included for the 

prediction of time using Equation (5.2). As an example, the time for a given tree with DBH 

=30 cm to reach DBH = 50 cm and 70 cm was estimated. The predicted durations for a tree 

with DBH = 30 cm to reach DBH =50 cm were 29, 28, 48 years in average and 48, 46, and 80 

years in average to reach DBH = 70 cm for monarch birch, castor aralia and Japanese 

oak respectively (Table 5.3 and Figure 5.4).  
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Figure 5.3: Observed and predicted basal area increment (cm2/year) for three high-value 

timber species. 

 

Table 5.3: The predicted number of years for a tree with 30 cm of initial DBH to reach target 

DBH of 50 cm and 70 cm. 

Species 
Average years (SD) 

50 cm DBH 70 cm DBH 

Monarch birch (n = 168) 29(40) 48(65) 

Castor aralia (n = 484) 28(20) 46(32) 

Japanese oak (n = 219) 48(37) 80(61) 

SD stands for standard deviation. 

 

Figure 5.4: The predicted years for a tree with 30 cm of initial DBH to reach target DBH. 

Each marker represents the average time (years) to reach the target DBH. 
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5.4. Discussion  

I used a linear mixed-effects model including fixed effects and random effects 

parameters to predict individual tree growth using a long-term repeated measurements dataset. 

The individual tree growth models developed in this study exhibited acceptable predictive 

accuracy (Table 5.2). Explanatory variables were selected in consideration of statistical fitting 

and biological importance to individual tree growth.  

BAI of monarch birch followed a sigmoidal relationship with initial tree DBH, whereas 

those of castor aralia and Japanese oak increased steadily as DBH increased. The effect of DBH 

on BAI was positive and significant in all species except for monarch birch (Table 5.2). 

Negative coefficient of DBH was observed for monarch birch, even though it was not 

significant, meaning that the BAI of monarch birch decreased with increasing DBH. This 

pattern could be explained by Figure 5.2, showing that the BAI of monarch birch became larger 

in the smaller DBH and then declined after reaching certain DBH size. Even though BAI for 

monarch birch was underestimated in larger DBH, the R2 and RMSE values indicated the 

acceptable prediction power.   

Stand variables related to tree density and basal area were included as competition 

variables in the individual tree growth models. Negative relationships between BAI and stand 

variables, i.e., broadleaf tree density, conifer tree density and conifer basal area, were observed 

suggesting that trees in dense stands exhibit slower growth than those in sparsely populated 

stands. Using the long-term thinning experiments data, Lhotka (2017) also reported the 

negative effect of tree density on the growth of individual trees. From the practical forest 

management perspective, these stand variables could be manipulated for improved growth of 

target trees through the use of various silvicultural interventions.  

In the selected models (Table 5.2), stand variables related to tree density (i.e., N-tree 

and L-tree) were selected more often than variables related to BA. However, BAL, a stand-

level variable related to BA, were selected in the final models for all species. The inclusion of 

BAL in the all selected models indicated that individual tree BAI could be explained better by 

BAL than by BA. Significant negative relationships between BAL and BAI were observed for 

all three targeted high-value timber species (Table 5.2). As BAL increases, individual tree BAI 

decreases. These results are biologically meaningful, since BAL accounts for a subject tree’s 

social ranking and the stand density simultaneously (Schröder and Gadow 1999). When there 

are higher numbers of trees that are larger than subject tree in an area, the BAI of subject trees 

will be lower. Similar results have been obtained in recent previous studies in different forest 
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types using different growth modelling approaches (Contreras et al. 2011; Rohner et al. 2017; 

Ruslandi et al. 2017; Schelhaas et al. 2018). 

General expectation of selection harvest include increased growth of remaining trees 

(Yoshida et al. 2006). Previous studies indicated that the canopy gaps created by selection 

harvest improved the growth of remaining trees especially that of smaller trees (Amaral et al. 

2019; Yoshida et al. 2006; Yoshida and Kamitani 1998). Positive coefficients of BA-Har for 

all high-value tree species was observed, although the coefficients were not significant (Table 

5.2). The result of no significant coefficient of BA-Har can be explained by the fact that BA-

Har is a stand scale variable and the gap created by selection harvest may not represent the 

intensity of canopy gap around the target individual trees that included in the model 

development. 

The models developed in this study would be useful tools for prediction of the growth 

of high-value individual trees and have potential to be applied in forest management. Shibano 

et al. (1990) examined the relationship between the DBH and wood quality of monarch birch 

and suggested to harvest trees with DBH > 60 cm, when the heartwood ratio is expected to be 

greater than 60%. According to Owari et al. (2016), DBH threshold to register as superior tree 

has been set to 50 cm under single-tree management system. From a practical forest 

management perspective, key question is the length of time a tree of certain size requires to 

reach such desirable DBH. As shown in Table 5.3 and Figure 5.4, the BAI model allows 

predicting the time to reach a target DBH. As an example, the time of a tree with 30 cm DBH 

to reach 50 cm DBH and 70 cm DBH for all species were estimated (Table 5.3) using derived 

BAI models (Equation (5.1) and Table 5.2). Japanese oak is predicted to take longer time than 

the other two species to reach the target DBH. Since, such information was scarce, BAI models 

developed in this study can be used for this purpose, and it allows planning for harvest and 

sustainable production of high-value timber species. In models developed in this Chapter, it 

implicitly assumed that stand-structure variables (e.g., BAL, T-tree) are not subject to change 

over time. As a given tree grows higher, it will overtop the surrounding trees. Consequently, it 

will most likely become less affected by the competition which might positively affect its 

growth. It should be careful when interpreting the results, since the assumption may have 

caused the overestimation of years to reach target DBH. It could be useful for short term 

prediction of the growth of individual trees because there would be variation in growth rates of 

trees depending on the size of the target trees. 
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The individual tree growth models developed in this Chapter will provide useful 

information for forestry practitioner. The variables used for model development can be derived 

simply and easily from long-term and repeated measurements data. Further, variables used in 

this Chapter do not require the data of tree coordinates and distance between trees. Similar 

models can be developed for the other species because the long-term plot data included every 

tree species within the UTHF permanent plots with DBH ≥ 5 cm. 

 

5.4 Conclusion 

This Chapter demonstrated the use of long-term UTHF measurement dataset for 

predicting individual tree growth useful for forest management purpose. Individual tree BAIs 

were predicted from a long-term plot measurement dataset using a linear mixed-effects 

modeling approach. Initial tree size, competition, and management variables were considered 

in the models; the results showed reasonable predictive accuracy. However, the model was 

unable to include some important factors affecting tree growth such as natural disturbance, soil, 

elevation, slope, slope direction, and climatic data. Therefore, it should be generalized carefully 

in other regions considering possible change in species composition and stand conditions, 

which might alter ecosystem functions of the forests.  
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Chapter 6 

General discussion and conclusion 
 

6.1 General discussion 

This study aims to examine the potential use of UAV and LiDAR data combined with 

resource assessment technique for single- tree management system. Several research attempts have 

been made on the use of RS data, i.e. UAV and LiDAR data, in the estimation of forest resource 

(Dalponte et al., 2019; Dalponte and Coomes, 2016; Goodbody et al., 2019; Hyyppä et al., 2012; 

Iglhaut et al., 2019; Sibona et al., 2016; Takagi et al., 2015; Wulder et al., 2014, 2013) at both 

individual tree level and forest stand level. However, their applicability for management of high-

value timber species remains uncertain and, needs more detailed study. In addition, resource 

assessment techniques that support the single-tree management of high-value timber species still 

require detailed analysis for the reliable application of the system. My study addressed these issues. 

Further, this study will support forest managers with the information of tree locations, stem size 

estimation method, sustainability assessment method, and individual tree growth information that 

can be applied simply and practically in management planning of high-value timber species.  

	
6.1.1 General consideration of RS and resource assessment techniques for the single-tree 

management of high-value timber species 
6.1.1.1 RS technique  

Since large-size trees with high commercial value were the target species under single-tree 

management system, how RS data could be applied reliably for individual tree height measurement 

of these species remains uncertain. Due to the problems related to automatic tree detection 

(Kaartinen et al., 2012; Nuijten et al., 2019; Vauhkonen et al., 2012), the accuracy of tree height 

measurement using RS data for large-size tree with heterogeneous crowns were not widely 

assessed and reported. In particular, I evaluated the similarity of three height data sources to assess 

the reliable application of RS data in the individual tree height measurement of high-value timber 

species.  

Chapter 2 confirmed the applicability of RS data for tree height measurement of large-size 

high-value timber species. However, the results indicated that the accuracy of individual tree 

height measurement could vary with species and tree height classes. In addition to statistical 

comparison, I evaluated the reliability of three tree height sources using tree-height diameter 

models since tree height and DBH are highly correlated (Hulshof et al., 2015; Jucker et al., 2017; 

Mehtätalo et al., 2015). The results indicated that LiDAR derived tree height was strongly 



 75 

correlated with individual tree DBH compared to field and UAV derived tree height. UAV derived 

tree height showed comparable level of accuracy to field and LiDAR data. This result indicated 

the important implications of UAV in practical forest measurement purpose. I assumed that this 

result is meaningful since the target trees species were large-size in terms of DBH and crown area. 

Large tree crown with limited visibility to the tree top could contribute to the accuracy of tree 

height measurement in the field (Hunter et al., 2013; Larjavaara and Muller-Landau, 2013; 

Stereńczak et al., 2019). UAV and LiDAR data can overcome this problem, and therefore produce 

more accurate tree height compared to field measurement. However, there were not existing 

literature, to the best of my knowledge, on the performance of different tree height measurement 

methods on the height-diameter models. Tree height data derived from UAV and LiDAR could 

improve the height-diameter allometric models.  

In Chapter 3, I demonstrated the applicability of RS data to predict the individual tree 

spatial position and their stem size of high-value timber species. To estimate the tree spatial 

positions, I first classified the forest canopy into three high-value timber species, other broadleaf 

and conifer classes. The results of classification were used to estimate the individual tree spatial 

position of high-value timber species.  

Even though the classification results in Chapter 3 were lower than other studies using 

multispectral or hyperspectral data (Dalponte et al., 2019; Franklin and Ahmed, 2018; Matsuki et 

al., 2015; Michez et al., 2016), I assumed the results were reasonable given at fewer spectral bands, 

and the UAV data were taken at only one time. The result of classification accuracy could be 

improved through determining of best season and timing of UAV-DAP data acquisition to identify 

the high-value timber species and their locations since the target species were deciduous broadleaf 

species with significant changes in leaf phenology especially in the autumn. In addition, further 

inclusion of more spectral bands, such as near infrared, etc., could improve the accuracy of 

classification results. Further research attempts should be emphasized on these issues.  

As indicated by the results of tree crown segmentation in Chapter 3, one of the major 

problems of DBH estimation of high-value timber species was the accuracy of automatic tree 

crown delineation. The lower accuracy in tree crown delineation could lead to significant errors in 

the estimation of DBH of individual trees since estimation of DBH relied on the crown area and 

tree height (Hulshof et al., 2015; Jucker et al., 2017). Several previous studies reported the same 

problem (Dalponte et al., 2019; Kaartinen et al., 2012; Nuijten et al., 2019) and it is an active area 

of research. However, I assumed that with the estimated tree locations, visual interpretation of tree 

crown on UAV-DAP orthophotograph would help to determine the tree crown area that can be 

used for the estimation of tree size. The availability of tree location map could help reduce the 
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effort and time of tree searching within large area of forests. The DBH estimation could be also 

possibilities through the use of other data collection techniques such as under-canopy UAV laser 

scanning (Hyyppä et al., 2020), mobile laser scanning, and personal laser scanning techniques 

(Bauwens et al., 2016; Chen et al., 2019). However, given the trade-off between costs, time and 

resolution, the methods presented in Chapter 3 could be an alternative source of data acquiring 

individual tree information of sparsely distributed high-value timber species in mixed-wood 

forests.  

  

6.1.1.2 Resource assessment techniques 

 I demonstrated the assessment of sustainability and the prediction of individual tree growth 

in Chapter 4 and Chapter 5 that can be applied in single-tree management system. Assessing the 

resource sustainability of forest under a certain forest management system play a critical role since 

the achievement of sustainability is a central precept in forestry. I applied commonly used stocking 

and demographic parameters to assess the resource sustainability. These variables were mainly 

used for assessing the dynamics of a forest stand (Amaral et al., 2019; Pretzsch et al., 2014; 

Yoshida et al., 2006; Yoshida and Noguchi, 2010; Young et al., 2017).  Through the use of long-

term forest measurement data, these variables could be used to assess sustainability of forest 

resources under a certain forest management system.  

The results of the Chapter 4 indicated that the current forest management system employed 

in the study area ensured the sustainability of high-value timber species. The results of this Chapter 

would be useful for adapting silvicultural practices and harvesting practices such as single-tree 

selection, and also to maintain stocking and demography of the forest stand through various forest 

management and silvicultural operations. Even though overharvesting and illegal harvesting are 

not common in the study area, the methods used in this Chapter could be used for the monitoring 

of high-value timber species as well as other tree species. For example, I found the significant 

variation in the in-growth of all species with significantly low number in the last census interval. 

In such case, further studies should be emphasized on the influences of natural and anthropogenic 

factors on the in-growth of high-value timber species.  The results of Chapter 4 contributed to the 

existing knowledge of forest dynamics of high-value timber species as well as the methods to 

assess the sustainability of forest resources. In addition, the importance of long-term forest 

measurement data was highlighted. 

Taking advantage of long-term forest management dataset, I developed simple and 

practically applicable individual tree growth models for high-value timber species in Chapter 5. I 

demonstrated the use of developed models to predict the time for a certain tree to reach desirable 
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size. Individual tree growth models play a critical role in forestry since they can be used in the 

simulation of silvicultural and forest management options. With the tree location and size data 

derived from Chapter 3, the growth models developed in this Chapter would be a powerful tool 

for single-tree management planning. Further simulation study combining remote sensing data and 

individual tree growth model in a forest management compartment level or larger area would 

contribute to sustainable utilization and management of high-value timber species. 

 

6.2 Conclusion 
6.2.1 Summary of the results 

Chapter 2: The applicability of UAV-DAP for tree height estimation: comparison with airborne 

LiDAR and field survey 

The results of this Chapter highlighted applicability of UAV-DAP data for individual tree 

height measurement of high-value broadleaf trees. However, lower tree height values for higher 

trees and higher values for lower trees may occur in UAV-DAP derived tree height in comparison 

with field-based measurement. It is likely to observe higher tree height values for higher trees and 

lower tree height values for lower trees in UAV-DAP derived tree height when comparing with 

LiDAR derived tree height. Height-diameter models revealed that tree height derived from UAV-

DAP can be explained by tree DBH with comparable accuracy to LiDAR and field measured tree 

height. This results confirmed the practical application of UAV-DAP for measuring tree height of 

large size high-value timber species in northern Japanese mixed-wood forests. 

 

Chapter 3: Estimation of spatial positions and DBH of high-value timber species 

The applicability of UAV-DAP and LiDAR for the estimation of individual tree spatial 

position and individual tree DBH was demonstrated in this Chapter. The estimation of individual 

tree spatial positions was carried out though forest canopy classification. The results indicated that 

the classification of forest canopy into three high-value timber species, other broadleaf, and conifer 

classes produced overall accuracy of 73 % in sub-compartment 36B and 63% in sub-compartment 

59A. Since target species in this study included only large-size high-value timber species with 

highly heterogenous crown, the multiresolution segmentation revealed low accuracy of individual 

tree crown segmentation. When estimating DBH, UAV-DAP could produce high-prediction 

accuracy comparable to field and LiDAR data. The results of this Chapter contribute to single tree 

management of high-value timber species by providing useful information for searching of high-

value timber trees and their estimated tree size in large area of mixed-wood forests. 
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Chapter 4: Resource assessment of high-value timber species 

In this Chapter, the sustainability of high-value timber species in mixed conifer–broadleaf 

forest managed under selection system. The main common characteristics of high-value timber 

species were increases in the tree density, basal area, and BAI over nearly 50 years period. In terms 

of tree mortality, no significant differences were observed among census periods with no 

significant downward or upward trends. High fluctuation in the number of in-growth also occurred.  

Through the understanding of sustainability measures used in this study, forest management can 

maintain the stocking of uneven-aged forest stand over time, BAI can be balanced by tree 

removals, and recruitment can be assessed whether it is sufficient. Since commonly used forest 

variables were used for the purpose of sustainability assessment, the method could be generalized 

to other tree species and regions. 

 

Chapter 5: Predicting individual tree growth of high-value timber species 

In this Chapter, individual tree BAI were predicted from a long-term plot measurement 

dataset using a linear mixed-effects modeling approach. Initial tree size, distance independent 

competition index, stand structure, and management variables were considered in the models; the 

results showed reasonable predictive accuracy. In addition, the developed model in this Chapter 

could be used for prediction of time for a tree to reach a certain diameter. The results were 

comparable prediction accuracy comparing with previous studies. Since variables used in this 

Chapter are simple and easy to derive from forest measurement data, the models can be easily 

adapted to other species.   

 

6.2.2 Main Conclusion 

This study demonstrated the potential use of UAV-DAP data and LiDAR data in the single-

tree management of high-value timber species. In addition, this thesis examined the resource 

assessment techniques that can be applied in the monitoring and future resource estimation of high-

value timber species. These two techniques could provide useful information for single-tree 

management of high-value timber species. The results of Chapter 2 and Chapter 3 could be applied 

in operational measurement of individual tree parameters, i.e. DBH and tree height, of target high-

value timber species. Further, Chapter 3 could contribute to the estimation of individual tree spatial 

positions that play one of the crucial roles in single-tree management. Chapter 4 could help to 

examine the recourse conditions of target species under a selection system. Prediction of future 

resource conditions could be facilitated by the growth models developed in Chapter 5. The 
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application of RS technique and resource assessment techniques, as a whole, contribute to 

necessary information that is important for the single-tree management of high-value timber 

species in northern Japanese mixed-wood forest. 

 

6.3 Limitations and future direction 

UAV-DAP derived CHMs were mainly used in Chapter 3 and Chapter 4. However, these 

CHMs were normalized using the accurate DTM derived from LiDAR data. When the LiDAR 

data were not available, the applicability of UAV-DAP data could be limited. In addition, to derive 

species specific information, such as species classification, the use of RGB information only may 

limit the classification accuracy. Since the time and weather conditions at the time of UAV data 

acquisition might greatly influence spectral response of forest canopy, the method followed in this 

study needs to be generalized carefully to other sites. In addition, the phenology of forest tree 

species varied from time to time, through for the spring, summer, autumn, and winter, the repeated 

flight missions of UAV might improve spectral separability between canopy species. Since the 

target species were deciduous broadleaf species with significant changes in leaf phenology 

especially in the autumn, the result of classification could be improved through searching of the 

best timing of UAV flights.  

Even though the results revealed that LiDAR and UAV-DAP derived height metrics were 

more important than intensity metrics for individual tree DBH estimation, the calculation of 

LiDAR intensity metrics for each specific return (1st to last) would improve the DBH estimation 

accuracy especially for high-intensity LiDAR data. The use of under-canopy laser scanning 

(Hyyppä et al., 2020), mobile laser scanning and personal laser scanning techniques (Bauwens et 

al., 2016; Chen et al., 2019) could be alternative DBH estimation techniques.  

I analyzed the resource conditions of high-value timber species under selection 

management stands. However, analysis on the influence of natural and anthropogenic factors 

affecting the growth, regeneration, and mortality of high-value timber species be analyzed further.  

The growth model developed in this study used the long-term forest measurement data set. 

Even though estimation of number of years for a certain diameter tree to reach a target diameter 

was carried out, the results need to be validated with more accurate growth data such as 

dendrochronological study with the use of tree-ring data. In addition, the model was also unable 

to include some important factors affecting tree growth such as natural disturbance, soil, elevation, 

slope, slope direction, and climatic data. Therefore, it should be generalized carefully in other 

regions considering possible change in species composition and stand conditions, which might 

alter ecosystem functions of the forests. The individual tree growth models developed in this study 
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could be improved by the incorporation of LiDAR and UAV-DAP derived crown metrics. For 

example, Ma et al. (2018) examined the growth and competition at individual tree level with the 

use of bi-temporal LiDAR data. Using similar approach with low cost UAV data, it would be one 

of the potentials to improved growth prediction of target species. Further studies focusing on the 

use of multi-temporal UAV-DAP for quantifying individual tree crown competition would be 

analyzed further. 
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