
Doctoral Thesis

博士論文

Towards a Paradigm Shift from Error to

Uncertainty in Neuronavigation

（ニューロナビゲーションにおける誤差から不確実性へのパ

ラダイムシフトに向けて)

羅　捷





i

Contents

Contents i

Abstract v

Acknowledgements ix

1 Introduction 1

1.1 Brain tumor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 A Taxonomy of Brain Tumor . . . . . . . . . . . . . . 1

1.1.1.1 Classification by Origin . . . . . . . . . . . . 2
1.1.1.2 Classification by Grade . . . . . . . . . . . . . 2

1.1.2 Diagnosis of Brain Tumor . . . . . . . . . . . . . . . . 3
1.1.3 Treatment of Brain Tumor . . . . . . . . . . . . . . . . 4

1.2 Neuronavigation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Brain Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Causes of Brain Shift . . . . . . . . . . . . . . . . . . . 8
1.3.2 Brain Shift Compensation . . . . . . . . . . . . . . . . 9

1.3.2.1 Predictive Modeling . . . . . . . . . . . . . . 9
1.3.2.2 Intraoperative Images . . . . . . . . . . . . . 9

1.4 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Deformation Model and Regularization . . . . . . . . . 11
1.4.3 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . 13
1.4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 14



ii

1.4.6 Registration Uncertainty . . . . . . . . . . . . . . . . . 15
1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . 18

2 Active Image Registration 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The Role of US-to-US Registration . . . . . . . . . . . . . . . 23
2.3 Feature-based Registration Strategy . . . . . . . . . . . . . . . 24

2.3.1 Feature Extraction and Matching . . . . . . . . . . . . 24
2.3.2 Dense Deformation Field . . . . . . . . . . . . . . . . . 25
2.3.3 GP Kernel Estimation . . . . . . . . . . . . . . . . . . 26

2.3.3.1 Variograms . . . . . . . . . . . . . . . . . . . 26
2.3.3.2 Discrete Grid Search . . . . . . . . . . . . . . 28

2.3.4 Active Registration . . . . . . . . . . . . . . . . . . . . 28
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 On the Applicability of Registration Uncertainty 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Clinical Motivation . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 The Ambiguity of Registration Uncertainty . . . . . . . . . . . 36
3.2.1 The DPR Set Up . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Transformation Uncertainty and Label Uncertainty . . 37
3.2.3 Real Data Examples . . . . . . . . . . . . . . . . . . . 40

3.3 Credibility of Label Distribution . . . . . . . . . . . . . . . . . 41
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Are Registration Uncertainty and Error Monotonically Asso-

ciated? 45



iii

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Review of the GP Registration Uncertainty . . . . . . . 48
4.2.2 Spearman’s Rank Correlation Coefficient . . . . . . . . 49
4.2.3 Point-wise Posterior Predictive Checking . . . . . . . . 50
4.2.4 Patch-wise Correlation Test . . . . . . . . . . . . . . . 52

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Point-wise Experiment . . . . . . . . . . . . . . . . . . 53
4.3.2 Patch-wise Experiment . . . . . . . . . . . . . . . . . . 54

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Related Projects 57

5.1 Vector-outlier Screening for Feature-based Image Registration 57
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 Summarizing Variogram in the Context of FBR . . . . 59
5.1.3 Random Process Model . . . . . . . . . . . . . . . . . . 60
5.1.4 The Variogram and Empirical Variogram . . . . . . . . 60
5.1.5 Estimating the Empirical Variogram in FBR . . . . . . 61
5.1.6 Variogram and Vector-outlier Removal . . . . . . . . . 64
5.1.7 Global and Local Outliers in FBR . . . . . . . . . . . . 64
5.1.8 Outliers in the Variogram Cloud . . . . . . . . . . . . . 65
5.1.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Do Public Datasets Assure Unbiased Comparisons for Registra-
tion Evaluation? . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Constructing the Variogram . . . . . . . . . . . . . . . 72

5.2.3.1 Potential FLEs . . . . . . . . . . . . . . . . . 73
5.2.3.2 Atypical Variogram Patterns . . . . . . . . . 74

5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4.1 Findings . . . . . . . . . . . . . . . . . . . . . 76

5.2.5 Potential Evaluation Bias . . . . . . . . . . . . . . . . 78
5.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 79



iv

6 Conclusions and Future Work 81

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 87

List of Figures 103

List of Tables 107



v

Abstract

Surgical resection is the initial treatment for nearly all brain tumors. The
achieved extent-of-resection is strongly correlated with prognosis and is the
single greatest modifiable determinant of survival. Since brain tumors are
intimately involved in surrounding functioning brain tissue, aggressive resection
must be balanced against the risk of causing new neurological deficits.

Due to its potential for minimizing surgical trauma, neuronavigation (image-
guided neurosurgery system) has been a ubiquitous tool for many neurosurgical
procedures. In preoperative (p-) planning, neuronavigation offers surgeons
the images, i.e., Magnetic Resonance (MR), necessary to understand patient-
specific information and allow them to choose the most appropriate surgical
strategy. During the surgery, neuronavigation provides a patient-to-image
mapping so that surgeons can point to a specific location on the patient and
see the corresponding anatomy in the p-MR image, helping them achieve a
complete tumor resection while avoiding damage to surrounding functioning
brain tissue. However, intraoperative (i -) deformation of the brain, also
known as brain shift, invalidates the image-to-patient mapping, thus makes it
unreliable to use p-MR for intraoperative surgical guidance.

The most successful way to compensate for the brain shift is using intra-
operative images, i.e., i -MR or i -Ultrasound (US). By transforming the brain
shift invalidated p-MR image to i -images via image registration, surgeons can
get an updated view of the pre-surgical planning during surgery. The limitation
of this strategy is that, even though the brain is clearly experiencing non-rigid
deformation due to tumor resection or retraction, standard neuronavigation
in clinical practice only integrates sub-optimal rigid registration, which is
insufficient for accurate brain shift compensation. As a result, most surgeons
use neuronavigation to approach a surgical target but justifiably do not trust
it throughout the entire operation.

Incorporating non-rigid registration has long been a goal for neuronavigation,
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yet this goal is hampered because it is harder to predict, validate and understand
non-rigid registration error. In practice, if surgeons see a discrepancy between
two aligned image features, they may not be able to tell if it is caused by
a registration error or an actual tissue deformation. In this case, providing
surgeons with a spatial distribution of the expected registration error could
help them make more informed decisions, e.g., ignoring the registration where
the expected error is high. However, determining this spatial distribution
of error is particularly difficult for neurosurgery because: 1) Many existing
methods conduct multiple runs of the non-rigid registration algorithm and
estimate the error based on the (in)consistency of registration results. These
methods are too time-consuming to be practical in the operating room because
feedback is required within a few minutes of i -image acquisition; 2) More
importantly, most error estimation methods essentially look for discrepancies
in aligned image features. They are inappropriate for neurosurgery because
tumor resection and retraction significantly alter the vicinity of the surgical
field, particularly at tumor margin. Thus inconsistency near the tumor margin,
which is often expected, can be mistakenly reported as registration errors.

To address these challenges, we propose to use registration uncertainty
as a surrogate to indicate registration error in neuronavigation. Registration
uncertainty predicts the trustworthiness of registration results and can be
helpful in clinical practice. For example, if surgeons observe a large discrepancy
at location A and small discrepancy at location B, without knowledge of
registration uncertainty, they would most likely assume a large error everywhere
and thus ignore the registration. With accurate knowledge of uncertainty, once
surgeons know that A lies in an area of high uncertainty while B lies in an
area of low uncertainty, they would have greater confidence in the registration
at B and other locations of low uncertainty.

In this dissertation, we attempt to establish an important foundation for
utilizing registration uncertainty in neuronavigation. The main contributions
of this dissertation are as follows:

1) Most registration approaches in neuronavigation have difficulties in
registering image pairs with artifacts and missing correspondences, e.g., a
part of the tumor volume in the p-image may be missing in the i -image.



vii

Another shortcoming of existing approaches is the lack of an uncertainty
measure. Since brain shift is a complex spatio-temporal phenomenon, given the
state of registration technology, it is reasonable to expect an indication of the
confidence level in the estimated deformation. We developed a fast probabilistic
active image registration method which provides registration uncertainty and
meanwhile is robust against image pairs with missing correspondence.

2) Registration uncertainty is a useful addition to the registration result.
However, the majority of research takes registration uncertainty for granted
and use it in ad hoc ways. We investigated the applicability of registration
uncertainty and categorized it into transformation uncertainty and label un-
certainty. We pointed out that using transformation uncertainty to quantify
label uncertainty, which is a widely adopted by the registration community,
is inappropriate and can be misleading. We also shared a potentially critical
finding that making use of the label uncertainty may not always be helpful.

3) A key assumption for using uncertainty to indicate the error is that these
two quantities are monotonically related. While this notion is intuitive and be-
lieved by some clinicians, it has never been examined in the image registration
literature. We systematically investigated the putative monotonic association
between Gaussian process registration uncertainty and error based on neuro-
surgical data and showed empirically that there is a weak-to-moderate positive
monotonic correlation between point-wise GP registration uncertainty and
error. This work also opens a new vista for the uncertainty/error relationship
analysis.

4) During the course of research, we also pursued two related projects. The
first project is about using the variogram to screen outliers for vector fields.
Since a key step in the proposed active image registration is to interpolate a
dense deformation field from a set of sparse vectors, adding an outlier screening
step can improve the registration accuracy. In the second project, we used
the variogram to perform a third-party screening on the annotation of two
public datasets. We found that (1) a small number of annotations may have
fiducial localization errors; (2) the landmark distribution for some cases is not
ideal to offer fair comparisons. If unresolved, both findings could incur bias in
registration evaluation.
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In summary, this dissertation attempts to establish a foundation for using
registration uncertainty to indicate error in the context of neurosurgery. We
developed methods that estimate, investigate and understand registration
uncertainty. We believe that our contributions can initiate a paradigm shift
from error to uncertainty in neuronavigation.
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Chapter 1

Introduction

This dissertation establishes a foundation for using image registration uncer-
tainty to indicate image registration error in the context of neuronavigation. In
this chapter, we review the background, motivation, and contributions of the
dissertation. We also give a brief introduction to brain tumor, neuronavigation,
brain shift and components of medical image registration.

1.1 Brain tumor

Brain tumor is a general term that refers to a mass of abnormally growing cells
in and around the brain. Like other tumors, a brain tumor can be malignant
(cancerous) or benign (non-cancerous). Although it can occur at any age,
adults 40 to 70 years old and children 3 to 12 years old are most commonly
affected. In 2020, an estimated of at least 23890 adults in the United States
will be diagnosed with brain tumors.

This section reviews the classification, diagnosis, and treatment of a brain
tumor. The sources of information for this section are primarily from the follow-
ing articles (Assaf et al., 2017; Baig et al., 2016; cancer.net, 2020; Chilla et al.,
2015; Ellingson et al., 2015; health.harvard.edu, 2019; hopkinsmedicine.org,
2019; Krishnatry et al., 2016; Maier et al., 2000, 2010; Schaefer et al., 2000;
Villanueva-Meyer et al., 2017; Wikipedia, 2020a,b).

1.1.1 A Taxonomy of Brain Tumor

Brain tumors can be classified by the origin and by grade.
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1.1.1.1 Classification by Origin

Based on the origin, there are primary and secondary brain tumors. Primary
brain tumors arise from diseased brain tissues and can be further classified by
the tissue in which they begin, for example:

• Gliomas: As the most common primary tumors, Gliomas start in the
brain’s glial cells, a type of supportive cell in the brain, and comprise
about 80 percent of all malignant brain tumors.

• Medulloblastomas: Originated from early embryonic cells, Medul-
loblastomas are the most common malignant primary tumor in children.

• Meningiomas: Meningiomas is a slow-growing benign tumor that re-
lates to the membranous layers surrounding the brain and spinal cord.

Secondary brain tumors are metastatic and malignant. They occur when
cancer from another part of the body spreads, such as lungs and breast, to the
central nervous system. Secondary brain tumors are much more common than
primary tumors.

1.1.1.2 Classification by Grade

For brain tumors, such as Gliomas, it is common to classify them according to
their grades (aggressiveness). A higher grade indicates more aggressive and
more likely to overgrow. The types of grades include:

• Grade 1: A G1 tumor is biologically benign and have (comparatively)
low risk.

• Grade 2: A G2 or low-grade brain tumor grows slowly, yet it can spread
into nearby tissues and develop into higher grades over time.

• Grade 3: G3 or high-grade indicates a cancerous tumor that carries a
worse prognosis.

• Grade 4: A G4 brain tumor is very aggressive and often fatal. e.g.,
Glioblastoma is the G4 Glioma that is alarmingly common among adults.
It has an estimated 2-year survival rate of around 17 percent.
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Regardless of the grade, all brain tumors are serious. A growing tumor is
eventually going to compress other structures in the brain and cause implica-
tions.

1.1.2 Diagnosis of Brain Tumor

Most brain tumors are not diagnosed until after symptoms appear. The
symptoms of a brain tumor often include: headaches, seizures, sensory changes,
memory or personality changes, nausea or vomiting, and complex partial.

In the medical examination, doctors usually ask about the patient’s symp-
toms, health habits, and history of illness. Then they perform a neurological
test to examine the condition of the patient, e.g., muscle strength, eyesight,
reflexes, etc.

In conjunction with the medical examination, doctors may recommend the
following medical imaging tests because tumor tissues often show as differently
colored masses in medical images. Typical medical image modalities are:

• Computed tomography (CT) scan. The CT uses an x-ray camera
that rotates around the body to create cross-sectional images of the brain.
On a CT image, benign brain tumors look darker than normal brain
tissue. Patients are sometimes injected with a dye called contrast agent
before the scan to increase tumor visibility.

• Magnetic resonance imaging (MRI). The MR test uses magnetic
fields to produce detailed images of the brain. An MRI scan captures
some brain structures better than a CT scan, and it is the reference
standard for brain tumor diagnosis. Magnetic resonance angiogram is
an MRI variant that visualizes the blood flow. It can help doctors
find aneurysms and better define tumors. Diffusion-weighted imaging is
another MR technique that is useful in classifying tumors by grade.

• Positron emission tomography (PET) scan. Cancer cells consume
more glucose than healthy cells. In the PET test, radioactive glucose is
injected into the patient, then areas, where cells are consuming lots of
glucose, are highlighted by the PET scan.
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Using medical imaging alone can not diagnose the prognosis of a brain
tumor, i.e., whether it is a high-grade or low-grade glioma. A sample of the
tumor tissues is usually needed to confirm the prognosis. Doctors can obtain
the tumor sample via brain biopsy, which is the removal of a small amount of
tissue under a needle procedure or during tumor resection. Pathologists then
analyze the samples and conclude the prognosis.

1.1.3 Treatment of Brain Tumor

Doctors and other health care professionals often work together to create a
patient’s treatment plan.

Factors that can be taken into account for making the treatment plan
include:

• Tumor size, type, location, and grade

• The patient’s age and overall health

• The patient’s preferences

• Possible side effects

A treatment plan may combine different types of treatment. There are
three primary treatment options:

• Surgery is the process of removing the tumor mass and some surrounding
healthy tissue.

• Radiation therapy uses high-energy x-rays or other particles to kill
tumor cells. Since high-dose radiation can damage normal cells, doctors
try to precisely target the tumor, limiting the amount of radiation to
surrounding parts of the brain.

• Chemotherapy is the use of drugs to destroy tumor cells and prevent
the tumor from growing. In general, chemotherapy tends to be less
effective against gliomas than surgery or radiation therapy.
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Surgery is the preferred (initial) treatment for all brain tumors. However,
in some cases, performing the surgery is too risky. For example, the tumor may
be surrounded by functioning brain tissues. Damage to these tissues during
surgery could cause severe neurological deficits.

For a low-grade brain tumor, surgery may be the only treatment needed,
especially if all of its volume can be removed.

For higher-grade tumors, the treatment plan typically consists of a combi-
nation of surgery, radiation therapy, and chemotherapy. During the surgery,
surgeons are likely to remove as much tumor mass as possible. The goal
of surgery is to help relieve symptoms and reduce the burden of follow-up
radiation therapiey and/or chemotherapy.

1.2 Neuronavigation

Successful neurosurgery is the foundation for brain tumor treatment. neuron-
avigation can provide surgeons with precise localization of surgical targets,
thus it has been an indispensable tool for many neurosurgical procedures.

This section gives a brief review of neuronavigation. The sources of in-
formation for this section are the following articles (Chartrain et al., 2017;
Enchev, 2009; Gerard et al., 2017; Mercier et al., 2010; Muacevic et al., 2000;
Orringer et al., 2012; Reinertsen et al., 2007; Seeger and Zentner, 2002; Slavin,
2008; Wikipedia, 2020c; Willems et al., 2006).

1.2.1 Overview

With the advent of modern medical imaging techniques, intracranial anatomy,
such as the tumor and surrounding soft tissues, can be presented to the surgeon
in detail via, e.g., MRI images.

In essence, neuronavigation is the set of imaging-assisted technologies that
allow surgeons to “navigate” within the skull confines during surgery. The
benefits of neuronavigation are two folds:

• Preoperative use: Based on the information provided by neuronaviga-
tion systems, surgeons can preoperatively evaluate the operating risks
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and make the most appropriate surgical plan. Moreover, such systems
help surgeons find potential surgical corridors through non-critical areas
and enable surgeries of previously inoperable cases.

• Intraoperative use: During the surgery, neuronavigation systems can
help surgeons determine the position of a surgical instrument relative to
the surgical field, and in advance, achieve a complete tumor resection
while avoiding damage to surrounding functioning brain tissues.

1.2.2 Workflow

The main components of neuronavigation are a computer, a display that shows
images and other information, and a tracking device. Optional accessories
include navigation probes and reference frames.

A typical workflow of using neuronavigation systems for surgical guidance
can be summarized in 4 steps:

1. Image scanning: Medical images that are necessary for the surgery are
acquired.

2. Surgical planning: Clinicians fuse anatomical information from all
preoperative images by co-registering them into the same coordinate
space and use them to make a plan towards the best surgical outcome.

3. Patient-to-Image mapping: Neuronavigation systems create a map-
ping that relates the patient’s intraoperative physical space to preoper-
ative images. This step is often carried out by landmark (or fiducial)
matching.

4. Intraoperative navigation: Based on the mapping in step 3, surgeons
can place a tracked instrument in the patient’s physical space, and its cor-
responding anatomical location can be shown on displayed preoperative
images.
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1.2.3 Limitations

The major limitation of neuronavigation is the loss of accuracy in the patient-
to-image mapping step. If the mapping is inaccurate, a physical location on
the patient could be incorrectly related to an anatomy shown on the display,
which may cause severe consequences.

There are two sources of inaccuracy:

1. Technical inaccuracies: Technical inaccuracies vary between systems
and arise when the acquired preoperative images have distortion, or the
associated hardware has positioning error.

2. Brain shift-induced inaccuracies: Since images are taken before the
surgery, for them to remain useful for intraoperative guidance, it is im-
plicitly assumed that structures of the brain stay in the same position
throughout the surgery as when they were imaged. However, intraopera-
tive deformation of the brain, also know as brain shift, invalidates the
patient-to-image mapping, thus makes it less reliable to use preoperative
images for intraoperative guidance.

Unlike technical inaccuracies that can be managed with care, there is no
obvious way to compensate for the brain shift-induced inaccuracies, which is
the most significant source of error in neuronavigation.

1.3 Brain Shift

Brain shift is defined as any factor that creates a discrepancy of anatomy
location between the physical and image spaces.

In this section, we review the causes of brain shift and strategies to com-
pensate for it. The sources of information for this section are the following
articles (Bayer et al., 2017a; Correa-Arana et al., 2017; Gerard et al., 2017;
Luo et al., 2017; Miga, 2016; Miller, 2019; Skrinjar et al., 1998).



8 Chapter 1. Introduction

1.3.1 Causes of Brain Shift

We classify the causes of brain shift into physical, surgical and biological
categories.

Physical factors

• Hardware movement: During the surgery, the patient’s head is immobi-
lized by a head clamp. Any changes to the head position or reference
frame could cause brain shift.

• Patient positioning: Compared to the position during preoperative image
acquisition, if the patient is positioned differently in the operating room,
it can lead to a discrepancy between the anatomy location in physical
and image spaces.

• Gravity: Gravitational forces are perhaps the most substantial physi-
cal factor that contributes to brain shift. The patient has to be well-
positioned to minimize the loss of blood and cerebrospinal fluid (CSF),
as well as the sagging of brain tissues.

Surgical factors

• Tissue loss: The removal of pathological and healthy tissue is the main
contributor to brain shift. Because of the effect of gravity, tumor resection,
or retraction can cause the unsupported surrounding tissue to sag. As
the surgery progresses, the brain also deforms due to swelling, fluid loss,
and other surgical interactions.

• Fluid loss: For many surgical procedures, the CSF is intentionally evacu-
ated to reduce the Intracranial pressure and allow brain relaxation. Since
avoiding excessive bleeding is prioritized during surgery, the loss of blood
is an insignificant factor for causing brain shift.

Biological factors
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• Tumor type: Some research have reported that the type of tumor could
affect the underlying movement of the brain. Gliomas tend to cause
frequent and unpredictable brain shift during surgeries.

• Drugs: Before surgery, the patient sometimes are given drugs to reduce
intracranial pressure. These drugs change the conformation of anatomy,
and as a result, induce brain shift.

1.3.2 Brain Shift Compensation

Brain shift compensation is the key to increasing the feasibility of neuron-
avigation and is an active area of research. There are two main streams in
the literature of brain shift compensation. Their difference is whether to take
advantage of intraoperative images (images taken during the surgery).

1.3.2.1 Predictive Modeling

Predictive modeling-based methods do not need intraoperative information
(images). These methods attempt to directly predict the intraoperative brain
deformation to correct “obsolete" preoperative images (Dumpuri et al., 2007;
Zhuang et al., 2010). However, any changes caused by the surgery are not
taken into account.

Predictive modeling-based methods are useful in scenarios when intra-
operative data is absent or insufficient. They can even be regarded as a
complementary tool for intraoperative image-based compensation methods.

1.3.2.2 Intraoperative Images

The most successful way to compensate for the brain shift is using intraoperative
images, i.e., intraoperative MR (i -MR) or intraoperative Ultrasound (i -US).

Image Registration Image registration-based methods estimate a mathe-
matical transformation that spatially aligns preoperative images to the coordi-
nate space of intraoperative images (Goshtasby, 2012; Maintz and Viergever,
1998; Sotiras et al., 2013). They provide surgeons with updated pre-surgical
planning during surgery. Image registration-based methods may add extra
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operation time to the surgery. However, they are currently the most accurate
brain shift compensation approaches (Gerard et al., 2017).

Biomechanical Modeling Biomechanical modeling methods attempt to
describe the mechanics of brain deformation using linear elastic (for small
deformation) or hyperelastic (for large deformation) models (Luo et al., 2017,
2019b; Miga, 2016; Miller, 2019). These methods are often used in conjunction
with image registration to achieve a faster and more accurate brain shift
compensation (Frisken et al., 2020). The drawbacks of biomechanical modeling
is that building such a model with unknown boundary conditions is time-
consuming and patient-specific, which in general yield poor generality.

In general, image registration is the most promising strategy for brain shift
compensation. We explain each step of image registration in detail in the next
section.

1.4 Image Registration

Medical image registration is the process of bringing two sets of image data into
spatial alignment (Goshtasby, 2012; Maintz and Viergever, 1998; Oliveira and
Tavares, 2014; Pluim et al., 2003; Sotiras et al., 2013; Viergever et al., 2016).
It has become a standard routine for a large number of clinical applications.

In this section, we introduce the basics of image registration to give an
overview of topics related to our work for a broader scope of the field.

1.4.1 Introduction

In radiology, modality is the term which refers to one form of imaging, e.g.,
MRI scanning (Robb, 2009). In general, there are two kinds of modalities:

• Anatomical modalities, such as MRI and US, depict the shape morphology
of organs and some tissue information.

• Functional modalities, such as functional MRI, capture the information
on the metabolism.
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Since the information provided by two images acquired during a clinical
workflow can be complementary/correlated, proper integration of different
images is beneficial and highly sought after by clinicians. Image registration
is the first step of this integration process. Based on the modalities of input
images, image registration can be categorized into uni-modal and multi-modal
registration (Maintz and Viergever, 1998).

For the two images that are going to be registered, let S : Ω→ R,Ω ⊂ Rd

and T : Ω→ R,Ω ⊂ Rd denote the source (moving) and target (fixed) image
respectively, where Ω is the image domain, and d indicates the image dimension
(d = 2 or 3).

Image registration attempts to spatially map S to the coordinate system of
T by estimating a transformation W : Ω→ Ω that minimize the cost function:

M(T, S ◦W ) +R(W ). (1.1)

The cost function has two terms: the first termM is a similarity metric that
measures the disagreement between target image T and transformed source
image S ◦W . The second term R is a regularization term which works to
encourage specific properties of the transformation W (Maintz and Viergever,
1998; Sotiras et al., 2013).

In summary, the main components of a registration algorithm consist of
(1) a transformation model W (including regularization R); (2) a similarity
measure M; and (3) an optimization method. W and M have significant
impact on the performance of the registration algorithm.

1.4.2 Deformation Model and Regularization

The choice of transformation model W implies an assumption with the under-
lying tissue deformation to be compensated. The complexity of W governs the
performance of the registration algorithm (Sotiras et al., 2013).

As the degrees of freedom increase, W is expected to have more expressive
power. As a result, the number of parameters that have to be estimated also
increases. Thus there is a trade-off between the computational efficiency and
richness of the description.
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Rigid transformation is a simple geometric transformation that preserves
the Euclidean distance between every pair of points in the coordinate system.
Let x ∈ Ω be the position of a point, and its rigid transformation can be
written as:

Wrigid(x) = Qx + b. (1.2)

Here, Q is a rotation matrix and b is a translation vector. A rigid transforma-
tion has minimal descriptive power with only six parameters. However, due
to the simplicity, it has been the most prevalent transformation model and
sometimes good enough for skull registration (Goshtasby, 2012; Maintz and
Viergever, 1998; Song, 2017).

Non-rigid transformation models offer more degrees of freedom and are
more suitable for modeling tissue deformation. The free-form deformation
model is a popular non-rigid transformation model that has had great success
in many clinical applications (Rueckert et al., 1999).

The most descriptive non-rigid transformation model is the dense displace-
ment field (DDF). For x ∈ Ω, its DDF is

WDDF(x) = x + u(x), (1.3)

where u is a displacement vector associated with position x.
Regularization R has a close relationship with non-rigid transformation

models. It is in the cost function of non-rigid image registration for two
purposes:

1. In the case that non-rigid transformation model W is parameterized by
a large number of variables, the registration is often a under-determined
problem, i.e., W has more unknown parameters than equations needed to
estimate them. A regularization term can reduce the degree of freedom
for W by inducing correlations among parameters. i.e., it is common to
minimize the bending energy to correlate displacement vector values in a
local neighborhood at each position x (Sotiras et al., 2013).

2. In the case that non-rigid transformation model W only has a small
set of parameters, a regularization term can introduce prior knowledge
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(task-specific constraints) to improve the registration.

Image registration algorithms can incorporate one or more types of regular-
ization.

1.4.3 Similarity Metrics

Similarity metricsM measure the disagreement between two images. Most
registration approaches use hand-crafted similarity metrics. Designing an
appropriateM should take into account two factors:

1. Convexity: The convexity of the cost function depends on the choice of
M and the images being registered. A convexM reduces the difficulty
of parameter search, and facilitate the inference of registration solutions.
However, since being non-convex is the nature of most spatial alignment
problems, convexity may also lead to unrealistic deformation (Sotiras
et al., 2013).

2. Discrimination: An ideal M should accurately reflect the quality of
image registration: taking low values when two images are well aligned.

Since the same anatomical structures share a similar intensity range on the
same image modality, a similarity metric for a uni-modal image registration is
straightforward to define. Popular choices include sum-of-squared differences
(SSD) (Bajcsy and Kovacic, 1989) and attribute-based methods (Shen and
Davatzikos, 2002).

Devising the similarity metric M for a multi-modal image registration
is more challenging because M should be able to account for the intensity
relation between physical principles behind different image acquisition methods.
Information theoretical similarity metrics are proven to be effective in some
multi-modal registration problems (Maes et al., 1997; Wells et al., 1996).

Some similarity metrics work for both uni-modal and multi-modal registra-
tion problems, thus are called modality-independent metrics(Heinrich et al.,
2012).

If some anatomical landmarks on S, and their corresponding counterparts
on T can both be identified, landmark distance (LD) is another useful similarity
metric that works for both uni- and multi-modal registration(Song, 2017).
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It’s noteworthy that, even though the majority of existing registration
methods use hand-crafted similarity metrics, some deep learning-based regis-
tration approaches propose to automatically learn a task-specific metric, which
may be advantageous (Simonovsky et al., 1998).

1.4.4 Optimization

Some registration methods have an exact solution for their cost functions, e.g.,
affine registration with corresponding landmarks. More registration methods
use iterative optimization to update the transformation parameters so that the
cost function is minimized (Sotiras et al., 2013).

Based on the nature of estimated parameters, optimization method can be
categorized as:

• Continuous: When the cost function is differentiable, continuous opti-
mization can be used to obtain real-valued transformation parameters.

• Discrete: Discrete optimization, e.g., graph-based methods, are entitled
to problems where the variables take discrete values (Glocker et al., 2009).

Traditionally, given a complex transformation model, iterative optimization
methods tend to be time-consuming. However, there are exceptions, even
though new learning-based registration methods use gradient descent to up-
date the transformation parameters iteratively, these methods transfer the
computational burden to the training stage, and can considerably speed up
the registration process(Dalca et al., 2018; Hu et al., 2019).

1.4.5 Evaluation

Evaluation for image registration is a challenging and less studied topic. The
main criterion for registration evaluation is the registration accuracy, which
can be categorized as

1. Qualitative: Qualitative accuracy can usually be assessed using visual
inspection, e.g., when registering MRI and US brain images, overlaying
the registered region of interest can provide clinicians with a reasonable
knowledge of accuracy (Goshtasby, 2012; Maintz and Viergever, 1998).
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2. Quantitative: Because of the lack of “ground truth” correspondences,
direct estimation of quantitative accuracy is particularly difficult. One
strategy is to use the target registration error (TRE). TRE is defined
as the sum of Euclidean distance between each pair of registered points.
In practice, such points are annotated corresponding landmarks on the
source and target images (Fitzpatrick, 2007; Song, 2017; Sonka, 2000;
West et al., 1997).

Registration precision is defined as the systematic error of the registration
algorithm. It is another useful criterion for registration evaluation, yet less
prevalent than registration accuracy (Maintz and Viergever, 1998).

Synthetic, phantom, and clinical data can all be used to evaluate the
accuracy and precision of registration algorithms.

1.4.6 Registration Uncertainty

Given the current state of the registration technology and the difficulty of
some problems, it is expected that the registration algorithm has errors. An
uncertainty measure that highlights locations where the algorithm had difficulty
finding a proper alignment can be beneficial. (Risholm et al., 2010; Risholm
and Wells, 2011).

Among the approaches that characterize the uncertainty of image regis-
tration, the most popular, or perhaps the most successful framework is the
probabilistic image registration (PIR) (Luo et al., 2018b; Risholm et al., 2013)

In contrast to traditional “point-estimate” image registration approaches
that report a unique set of transformation parameters that best align two
images, PIR models transformation parameters as random variables and esti-
mates distributions over them. The mode of the distribution is then chosen as
the most likely value of that transformation parameter. PIR has the advantage
that the registration uncertainty can be naturally obtained from the distribu-
tion of transformation parameters. PIR methods can be broadly categorized
into discrete probabilistic registration (DPR) (Cobzas and Sen, 2011; Heinrich
et al., 2016; Lotfi et al., 2013; Popuri et al., 2013) and continuous probabilistic
registration (CPR) (Dalca et al., 2018; Folgoc et al., 2017; Janoos et al., 2012;
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Luo et al., 2018b; Risholm et al., 2013; Sedghi et al., 2018; Simpson et al.,
2015, 2012; Wang et al., 2018; Wassermann et al., 2014; Yang and Niethammer,
2015; Zhang et al., 2013)

The transformation distribution estimated by DPR and CPR have different
forms. DPR discretizes the transformation space into a set of displacement
vectors. It then uses discrete optimization techniques to compute a categor-
ical distribution for every voxel as its transformation. CPR is essentially a
probabilistic inference model with the estimated transformation given by a
multivariate continuous posterior distribution.

1.5 Motivation

A limitation of the current neuronavigation systems is that, even though the
brain is clearly undergoing non-rigid deformation due to tumor resection or
retraction, standard neuronavigation in clinical practice only integrates rigid
registration, which is insufficient for accurate brain shift compensation. As a
result, most surgeons use neuronavigation to approach a surgical target but
justifiably do not trust it throughout the entire operation, especially near the
end of the procedure when the information is most important (Gerard et al.,
2017).

Even though some non-rigid registration approaches have achieved better
accuracy in brain shift compensation (Luo et al., 2018b; Machado et al., 2019,
2018; Xiao et al., 2020), in the operating room, rigid-registration is still the
clinical routine. Incorporating non-rigid registration has long been a goal for
neuronavigation, yet this goal is hampered because it is harder to predict,
validate and understand non-rigid registration error.

In practice, if surgeons see a discrepancy between two aligned image features,
they may not be able to tell if it is caused by a registration error or an actual
tissue deformation. In this case, providing surgeons with a spatial distribution
of the expected registration error could help them make more informed decisions,
e.g., ignoring the registration where the expected error is high.

However, determining this spatial distribution of error is particularly difficult
for neurosurgery because:
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1. Many existing methods conduct multiple runs of the non-rigid regis-
tration algorithm and estimate the error based on the (in)consistency
of registration results. These methods are too time-consuming to be
practical in the operating room because feedback is required within a
few minutes of intraoperative image acquisition (Datteri and Dawant,
2012; Hub and Karger, 2013; Hub et al., 2009; Kybic, 2010; Shams et al.,
2017);

2. More importantly, most error estimation methods essentially look for
discrepancies in aligned image features (Saygill, 2018; Saygill et al., 2016;
Sokooti et al., 2019). They are inappropriate for neurosurgery because
tumor resection and retraction significantly alter the vicinity of the
surgical field, particularly at tumor margin. Thus inconsistency near the
tumor margin, which is often expected, can be mistakenly reported as
registration errors.

To address these challenges, we propose to use registration uncertainty
as a surrogate to indicate registration error in neuronavigation. Registration
uncertainty measures the trustworthiness of registration results and can be
helpful in clinical practice (Luo et al., 2020a, 2019a, 2018b). For example, if
surgeons observe a large discrepancy at location A and small discrepancy at
location B, without knowledge of registration uncertainty, they would most
likely assume a large error everywhere and thus ignore the registration. With
accurate knowledge of uncertainty, once surgeons know that A lies in an area
of high uncertainty while B lies in an area of low uncertainty, they would
have greater confidence in the registration at B and other locations of low
uncertainty.

1.6 Contributions

In this dissertation, we establish an important foundation for utilizing regis-
tration uncertainty in neuronavigation. We develop methods that estimate,
investigate and understand registration uncertainty. We believe that contribu-
tions in this dissertation could increase the feasibility of non-rigid registration
in interventional guidance and advance the state of neuronavigation.
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1.7 Dissertation Overview

This dissertation is divided into four main chapters.

Chapter 2: Active Image Registration Most registration approaches
in neuronavigation have difficulties in registering image pairs with artifacts and
missing correspondences, e.g., a part of the tumor volume in the p-image may
be missing in the i -image. Another shortcoming of existing approaches is the
lack of an uncertainty measure. Since brain shift is a complex spatio-temporal
phenomenon, given the state of registration technology, it is reasonable to
expect an indication of the confidence level in the estimated deformation. We
develop a fast probabilistic active image registration method which provides
registration uncertainty and meanwhile is robust against image pairs with
missing correspondence (Luo et al., 2018b).

Chapter 3: On the applicability of registration uncertainty Regis-
tration uncertainty is a useful addition to the registration result. However, the
majority of research takes registration uncertainty for granted and use it in
ad hoc ways. We investigate the applicability of registration uncertainty and
categorize it into transformation uncertainty and label uncertainty. We point
out that using transformation uncertainty to quantify label uncertainty, which
is widely adopted by the registration community, is inappropriate and can be
misleading. We also share a potentially critical finding that making use of the
label uncertainty may not always be helpful (Luo et al., 2019a).

Chapter 4: Are Registration Uncertainty and Error Monotonically

Associated? A key assumption for using uncertainty to predict the error is
that these two quantities have a monotonic relationship. While this notion is
intuitive and believed by many clinicians, it has never been examined in the
image registration literature. We systematically investigate the monotonic as-
sociation between Gaussian process registration uncertainty and error based on
neurosurgical data and show empirically that there is a weak-to-moderate posi-
tive monotonic correlation between point-wise GP registration uncertainty and
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error. This work also opens a new vista for the uncertainty/error relationship
analysis (Luo et al., 2020a).

Chapter 5: Related Projects During the course of research, we have also
pursued two related projects. The first project is about using the variogram,
which is a geostatistical tool for capturing spatial dependence, to screen outliers
for vector fields. Since a key step in the proposed active image registration is
to interpolate a dense deformation field from a set of sparse vectors, adding
an outlier screening step can improve the registration accuracy. In the second
project, we use the variogram to perform a third-party screening on the
annotation of two public datasets. We found that (1) a small number of
annotations may have fiducial localization errors; (2) the landmark distribution
for some cases is not ideal to offer fair comparisons. If unresolved, both findings
could incur bias in registration evaluation (Luo et al., 2018a, 2020b).

Chapter 6: Conclusion and Future Work We conclude our work with
some future prospectives of this line of research
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Chapter 2

Active Image Registration

A reliable Ultrasound (US)-to-US registration method to compensate for
brain shift would substantially improve Image-Guided Neurological Surgery.
Developing such a registration method is very challenging, due to factors such
as the tumor resection, the complexity of brain pathology and the demand
for fast computation. We propose a novel feature-driven active registration
framework. Here, landmarks and their displacement are first estimated from
a pair of US images using corresponding local image features. Subsequently,
a Gaussian Process (GP) model is used to interpolate a dense deformation
field from the sparse landmarks. Kernels of the GP are estimated by using
variograms and a discrete grid search method. If necessary, the user can
actively add new landmarks based on the image context and visualization of
the uncertainty measure provided by the GP to further improve the result.
We retrospectively demonstrate our registration framework as a robust and
accurate brain shift compensation solution on clinical data. This chapter is
based on our publication of (Luo et al., 2018b).

2.1 Introduction

Commercial IGNSs assume a rigid registration between preoperative imaging
and patient coordinates. However, intraoperative deformation of the brain, also
known as brain shift, invalidates this assumption. Since brain shift progresses
during surgery, the rigid patient-to-image mapping of IGNS becomes less and
less accurate. Consequently, most surgeons only use IGNS to make a surgical
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plan but justifiably do not trust it throughout the entire operation (Bayer
et al., 2017b; Gerard et al., 2017).

2.1.1 Related Work

As one of the most important error sources in IGNS, intraoperative brain
shift must be compensated in order to increase the accuracy of neurosurgeries.
Registration between the intraoperative MRI (iMRI) image and preoperative
MRI (preMRI) image (preop-to-intraop registration) has been a successful
strategy for brain shift compensation (Clatz et al., 2005; Drakopoulos et al.,
2014; Hata et al., 1999; Vigneron et al., 2012). However, iMRI acquisition is
disruptive, expensive and time consuming, making this technology unavail-
able for most clinical centers worldwide. More recently, 3D intraoperative
Ultrasound (iUS) appears to be a promising replacement for iMRI. Although
some progress has been made by previous work on preMRI-to-iUS registration
(Arbel et al., 2004; Fuerst et al., 2014; Gobbi et al., 2000; Letteboer et al., 2003;
Pennec et al., 2003; Reinertsen et al., 2004; Rivaz and Collins, 2015), yet there
are still no clinically accepted solutions and no commercial neuro-navigation
systems that provide brain shift compensation. This is due to three reasons: 1)
Most non-rigid registration methods (including optical flow and deep learning
registration methods) can not handle artifacts and missing structures in iUS; 2)
The multi-modality of preMRI-to-iUS registration makes the already difficult
problem even more challenging; 3) A few methods (Ou et al., 2011) can achieve
a reasonable alignment, yet they take around 50 minutes for an US pair and are
too slow to be clinically applicable. Another shortcoming of existing brain shift
compensation approaches is the lack of an uncertainty measure. Brain shift is
a complex spatio-temporal phenomenon and, given the state of registration
technology and the importance of the result, it seems reasonable to expect an
indication (e.g. error bars) of the confidence level in the estimated deformation.

2.1.2 Contributions

In this chapter, we propose a novel feature-driven active framework for brain
shift compensation. Here, landmarks and their displacement are first estimated
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from a pair of US images using corresponding local image features. Subse-
quently, a Gaussian Process (GP) model (C.E. and Williams, 2006) is used to
interpolate a dense deformation field from the sparse landmarks. Kernels of
the GP are estimated by using variograms and a discrete grid search method.
If necessary, for areas that are difficult to align, the user can actively add new
landmarks based on the image context and visualization of the uncertainty
measure provided by the GP to further improve the registration accuracy. We
retrospectively demonstrate the efficacy of our method on clinical data.

Contributions and novelties of our work can be summarized as follows:

1. The proposed feature-based registration is robust for aligning iUS image
pairs with missing correspondence and is fast.

2. We explore applying the GP model and variograms for image registration.

3. Registration uncertainty in transformation parameters can be naturally
obtained from the GP model.

4. To the best of our knowledge, the proposed active registration strategy
is the first method to actively combine user expertise in brain shift
compensation.

2.2 The Role of US-to-US Registration

In order to alleviate the difficulty of preop-to-intraop registration, instead of
directly aligning iMRI and iUS images, we choose an iterative compensation
approach which is similar to the work in (Riva et al., 2017).

As shown in Figure 2.1, the acquisition processes for pre-duraUS (preUS)
and post-resectionUS (postUS) take place before opening the dura and after
(partial) tumor resection, respectively. Since most brain-shift occurs after taking
the preUS, a standard multi-modal registration may be suffice to achieve a
good alignment Tmulti between preMRI and preUS (Fuerst et al., 2014). Next,
we register the preUS to postUS using the proposed feature-driven active
framework to acquire a deformable mapping Tmono. After propagating Tmulti

and Tmono to the preMRI, surgeons may use it as an updated view of anatomy
to compensate for brain shift during the surgery.
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Figure 2.1: Pipeline of the US-based brain shift compensation.

2.3 Feature-based Registration Strategy

Because of tumor resection, compensating for brain shift requires non-rigid
registration algorithms capable of aligning structures in one image that have no
correspondences in the other image. In this situation, many image registration
methods that take into account the intensity pattern of the entire image will
become trapped in incorrect local minima.

We therefore pursue a Feature-Based Registration (FBR) strategy due to its
robustness in registering images with missing correspondence (Toews and Wells,
2013). FBR mainly consists of 3 steps: feature-extraction, feature-matching
and dense deformation field estimation. An optional “active registration” step
can be added depending on the quality of FBR.

2.3.1 Feature Extraction and Matching

As illustrated in Figure 2.2(a)(b), distinctive local image features are automat-
ically extracted and identified as key-points on preUS and postUS images. An
automatic matching algorithm searches for a corresponding postUS key-point
for each key-point on the preUS image (Toews and Wells, 2013).

For a matched key-point pair, let xi be the coordinates of the preUS key-
point and xpost

i be the coordinate of its postUS counterpart. We first use
all matched PreUS key-points as landmarks, and perform a land-mark based
preUS-to-postUS affine registration to obtain a rough alignment. xpost

i becomes
xaffine
i after the affine registration. The displacement vector, which indicates

the movement of landmark xi due to the brain shift process, can be calculated
as d(xi) = xaffine

i − xi. where d = [dx, dy, dz].
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Figure 2.2: Pipeline of the feature-based active preUS-to-postUS registration.

2.3.2 Dense Deformation Field

The goal of this step is to obtain a dense deformation field from a set of N
sparse landmark and their displacements D = {(xi,di), i = 1 : N}, where
di = d(xi) is modeled as a observation of displacements.

In the GP model, let d(x) be the displacement vector for the voxel at
location x and define a prior distribution as d(x) ∼ GP(m(x), k(x,x′)), where
m(x) is the mean function, which usually is set to 0, and the GP kernel k(x,x′)

represents the spatial correlation of displacement vectors.
By the modeling assumption, all displacement vectors follow a joint Gaus-

sian distribution p(d | X) = N (d | µ,K), where Kij = k(x,x′) and µ =

(m(x1), ...,m(xN)). As a result, the displacement vectors d for known land-
marks and N∗ unknown displacement vectors d∗ at location X∗, which we want
to predict, have the following relationship:(

d

d∗

)
∼ GP

((
µ

µ∗

)
,

(
K K∗

KT
∗ K∗∗.

))
.

(2.1)

In Equation (1), K = k(X,X) is the N ×N matrix, K∗ = k(X,X∗) is a
similar N ×N∗ matrix, and K∗∗ = k(X∗,X∗) is a N∗ ×N∗ matrix. The mean
µ∗ = [µ∗x, µ∗y, µ∗z] represents values of voxel-wise displacement vectors and
can be estimated from the posterior Gaussian distribution p(d∗ | X∗,X,d) =

N (d∗ | µ∗,Σ∗) as
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µ∗ = µ(X∗) + KT
∗K

−1(d− µ(X)). (2.2)

Given µ(X) = µ(X∗) = 0, we can obtain the dense deformation field for
the preUS image by assigning µ∗x,µ∗y,µ∗z to dx, dy and dz, respectively.

2.3.3 GP Kernel Estimation

The performance of GP registration depends exclusively on the suitability of
the chosen kernels and its parameters. In this study, we explore two schemes
for the kernel estimation: Variograms and discrete grid search.

2.3.3.1 Variograms

The variogram is a powerful geostatistical tool for characterizing the spatial
dependence of a stochastic process (Cressie, 1991). While being briefly men-
tioned in (Ruiz-Alzola et al., 2003), it has not yet received much attention in
the medical imaging field.

In the GP registration context, where d(x) is modelled as a random quantity,
variograms can measure the extent of pairwise spatial correlation between
displacement vectors with respect to their distance, and give insight into
choosing a suitable GP kernel.

In practice, we estimate the empirical variogram of landmarks’ displacement
vector field using

γ̂(h± δ) :=
1

2|N(h± δ)|
∑

(i,j)∈N(h±δ)

‖d(xi)− d(xj)‖2. (2.3)

For the norm term ‖d(xi) − d(xj)‖, we separate its 3 components dx
dy dz and construct 3 variograms respectively. As shown in Figure 2.3(a),
for displacement vectors d(x1) and d(x2), ‖dx(x2) − dx(x1)‖ is the vector
difference with respect to the x axis, etc. h represents the distance between
two key-points.

To construct an empirical variogram, the first step is to make a variogram
cloud by plotting ‖d(x2) − d(x1)‖2 and hij for all displacement pairs. Next,
we divide the variogram cloud into bins with a bin width setting to 2δ. Lastly,
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Figure 2.3: (a) ‖dx(x2) − dx(x1)‖ and h; (b) Empirical variogram cloud; (c)
Variogram cloud divided into bins with their means marked as blue.

the mean of each bin is calculated and further plotted with the mean distance
of that bin to form an empirical variogram. Figure 2.4(a) shows an empirical
variogram of a real US image pair that has 71 corresponding landmarks.

In order to obtain the data-driven GP kernel function, we further fit a
smooth curve, generated by pre-defined kernel functions, to the empirical
variogram. As shown in Figure 2.4(b), a fitted curve is commonly described by
the following characteristics:

Nugget The non-zero value at h = 0.

Sill The value at which the curve reaches its maximum.

Range The value of distance h where the sill is reached.

Fitting a curve to an empirical variogram is implemented in most geostatis-
tics software. A popular choice is choosing several models that appear to have
the right shape and use the one with smallest weighted squared error (?). In
this study, we only test Gaussian curves

γ(h) = c0 + c{1− exp(−h
2

a
)}. (2.4)

Here, c0 is the nugget, c = Sill− c0 and a is the model parameter. Once
the fitted curve is found, we can obtain a from the equation (5) and use it as
the Gaussian kernel scale in the GP interpolation.
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Figure 2.4: (a) X-axis empirical variogram of a US images pair;(b) Sill, range
and nugget; (c) Fitting a continuous model to an empirical variogram.

2.3.3.2 Discrete Grid Search

The variogram scheme often requires many landmarks to work well (?). For
US pairs that have fewer landmarks, we choose predefined Gaussian kernels,
and use cross validation to determine the scale parameter in a discrete grid
search fashion (C.E. and Williams, 2006).

2.3.4 Active Registration

Automatic approaches may have difficulty in the preop-to-intraop image regis-
tration, especially for areas near the tumor resection site. Another advantage
of the GP framework is the possibility of incorporating user expertise to further
improve the registration result.

From Equation (1), we can also compute the covariance matrix of the
posterior Gaussian p(d∗ | X∗,X,d) as

Σ∗ = K∗∗ −KT
∗K

−1K∗. (2.5)

Entries on the diagonal of Σ∗ are the marginal variances of predicted values.
They can be used as an uncertainty measure to indicates the confidence in the
estimated transformation parameters.

If users are not satisfied by the FBR alignment result, they could manually,
guided by the image context and visualization of registration uncertainty, add
new corresponding pairs of key-points to drive the GP towards better results.
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2.4 Experiments

The experimental dataset consists of 6 sets 3D preUS and postUS image pairs.
The US signals were acquired on a BK Ultrasound 3000 system that is directly
connected to the Brainlab VectorVision Sky neuronavigaton system during
surgery. Signals were further reconstructed as 3D volume using the PLUS
(Lasso et al., 2014) library in 3D Slicer (Fedorov et al., 2012).

Table 2.1: Registration evaluation results (in mm)
Before Reg. Affine Thin-plate Variograms GaussianK

P1 5.56±1.05 2.99±1.21 1.79±0.70 2.11±0.74 1.75±0.68
P2 3.35±1.22 2.08±1.13 2.06±1.18 2.06±1.12 1.97±1.05
P3 2.48±1.56 1.93±1.75 1.25±1.95 n/a 1.23±1.77
P4 4.40±1.79 3.06±2.35 1.45±1.99 n/a 1.42±2.04
P5 2.91±1.33 1.86±1.24 1.29±1.17 n/a 1.33±1.40
P6 3.29±1.09 2.12±1.16 2.02±1.21 2.05±1.40 1.96±1.38

We used the mean Euclidean distance between the predicted and ground
truth of key-points’ coordinates, measured in mm, for the registration eval-
uation. We compared affine, thin-plate kernel FBR, variograms FBR, and
Gaussian kernel FBR during the assessment. For US pairs with fewer than 50
landmarks, we used leave-one-out cross-validation; otherwise, we used 5-fold
cross-validation, i.e., we arbitrarily partitioned all matched key-points into
five (almost) equal-sized groups. A single group is retained as the validation
data to evaluate the registration accuracy, and the remaining four groups
were used to interpolate the deformation field. This process was repeated five
times, with each group used exactly once as for the validation. Notice that the
cross-validation strategy is not an ideal evaluation. In future works, we can
improve the evaluation by using synthetic data, or public datasets (Mercier
et al., 2012; Xiao et al., 2017) with known ground truth correspondences.

This could be improved by using manual landmarks in public datasets,
such as RESECT (Xiao et al., 2017) and BITE (Mercier et al., 2012).

All of the compared methods were computed in less than 10 minutes.
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Figure 2.5: (a) FBR result of the preUS with a tumor boundary outlined in
green; (b) Overlaying the visualization of uncertainty on the preUS image.
A characteristic of GP is that voxels near landmarks tend to have smaller
uncertainty. In this example, all landmarks happen to be located near the
large sulcus, hence the incertitude looks high everywhere else except around
the sulcus. (c) Active registration result of the preUS with a tumor boundary
outlined in blue; (d) Overlaying the green and blue tumor boundary on the
target image.

The pre-defined Gaussian kernel with a discrete grid search generally yields
a better result than the variogram scheme. This is reasonable as the machine
learning approach stresses the prediction performance, while the geostatistical
variogram favors the interpretability of the model. For some cases that only
have a few matched key-points, the variogram-based method was unsuccessful.

In addition, we have performed preliminary tests on active registration as
shown in Figure 2.5, which illustrate the use of a colour map of registration
uncertainty to guide the manual placement of 3 additional landmarks to
improve the registration. By visual inspection, we can see the alignment of
tumor boundary substantially improved.

2.5 Discussion

One key point of our framework is the “active registration”idea that aims
to overcome the limitation of automatic image registration. Human and
machines have complementary abilities; we believe that the element of simple
user interaction should be added to the pipeline for some challenging medical
imaging applications. Although the proposed method is designed for brain shift
compensation, it is also applicable to other navigation systems that require



2.5. Discussion 31

tracking of tissue deformation or even to difficult natural image registration
problems. The performance of FBR is highly correlated with the quality of
feature matching. In future works, we plan to test different matching algorithms
(Jian and Vemuri, 2010), and also perform more validation with public datasets.
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Chapter 3

On the Applicability of

Registration Uncertainty

Estimating the uncertainty in (probabilistic) image registration enables, e.g.,
surgeons to assess the operative risk based on the trustworthiness of the
registered image data. If surgeons receive inaccurately calculated registration
uncertainty and misplace unwarranted confidence in the alignment solutions,
severe consequences may result. For probabilistic image registration (PIR), the
predominant way to quantify the registration uncertainty is using summary
statistics of the distribution of transformation parameters. The majority of
existing research focuses on trying out different summary statistics as well
as means to exploit them. Distinctively, in this chapter, we study two rarely
examined topics: (1) whether those summary statistics of the transformation
distribution most informatively represent the registration uncertainty; (2) Does
utilizing the registration uncertainty always be beneficial. We show that there
are two types of uncertainties: the transformation uncertainty, Ut, and label
uncertainty Ul. The conventional way of using Ut to quantify Ul is inappropriate
and can be misleading. By a real data experiment, we also share a potentially
critical finding that making use of the registration uncertainty may not always
be an improvement. This chapter is based on the publication of (Luo et al.,
2019a).
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3.1 Introduction

Non-rigid image registration is the foundation for many image-guided medical
tasks (Maintz and Viergever, 1998; Sotiras et al., 2013). However, given the
current state of the registration technology and the difficulty of the problem, an
uncertainty measure that highlights locations where the algorithm had difficulty
finding a proper alignment can be very helpful. Among the approaches that
characterize the uncertainty of non-rigid image registration, the most popular,
or perhaps the most successful framework is the probabilistic image registration
(PIR) (Cobzas and Sen, 2011; Dalca et al., 2018; Folgoc et al., 2017; Heinrich
et al., 2016; Janoos et al., 2012; Lotfi et al., 2013; Luo et al., 2018b; Popuri
et al., 2013; Risholm et al., 2013; Simpson et al., 2015, 2012; Wang et al., 2018;
Wassermann et al., 2014; Yang and Niethammer, 2015; Zhang et al., 2013).

In contrast to traditional “point-estimate" image registration approaches
that report a unique set of transformation parameters that best align two
images, PIR models transformation parameters as random variables and esti-
mates distributions over them. The mode of the distribution is then chosen as
the most likely value of that transformation parameter. PIR has the advantage
that the registration uncertainty can be naturally obtained from the distribu-
tion of transformation parameters. PIR methods can be broadly categorized
into discrete probabilistic registration (DPR) (Cobzas and Sen, 2011; Heinrich
et al., 2016; Lotfi et al., 2013; Popuri et al., 2013) and continuous probabilistic
registration (CPR) (Dalca et al., 2018; Folgoc et al., 2017; Janoos et al., 2012;
Luo et al., 2018b; Risholm et al., 2013; Sedghi et al., 2018; Simpson et al.,
2015, 2012; Wang et al., 2018; Wassermann et al., 2014; Yang and Niethammer,
2015; Zhang et al., 2013)

3.1.1 Related Work

Registration uncertainty is a measure of confidence in image alignment solu-
tions. In the PIR literature, the predominant way to quantify the registration
uncertainty is using summary statistics of the transformation distribution.
Applications of various summary statistics have been proposed in previous re-
search: the Shannon entropy and its variants of the categorical transformation
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distribution were used to measure the registration uncertainty of DPR (Lotfi
et al., 2013); the variance (Folgoc et al., 2017; Simpson et al., 2012; Yang and
Niethammer, 2015), standard deviation (Simpson et al., 2015), inter-quartile
range (Risholm et al., 2013, 2010) and the covariance Frobenius norm (Wasser-
mann et al., 2014) of the transformation distribution were used to quantify the
registration uncertainty of CPR. In order to visually assess the registration
uncertainty, each of these summary statistics was either mapped to a color
scheme, or an object overlaid on the registered image. By inspecting the color
of voxels or the geometry of that object, end users can infer the registration
uncertainty, which suggests the confidence they can place in the registration
result. Utilizing the registration uncertainty is presumably an advantage of
PIR (Risholm et al., 2010; Risholm and Wells, 2011; Simpson et al., 2013), to
date, the majority of existing research focuses on trying out different summary
statistics and means to exploit the registration uncertainty.

3.1.2 Clinical Motivation

In image-guided neurosurgery, surgeons need to correctly understand the
registration uncertainty so as to make better informed decisions, e.g., If the
surgeon observes a large registration error at location A and small error at
location B, without knowledge of registration uncertainty, s/he would most
likely assume a large error everywhere and thus entirely ignore the registration.
With an accurate knowledge of uncertainty, once the surgeon knows that A lies
in an area of high uncertainty while B lies in an area of low uncertainty, s/he
would have greater confidence in the registration at B and other locations of
low uncertainty. If surgeons are influenced by inaccurate amount of registration
uncertainty and place unwarranted confidence in the alignment solutions, severe
consequences may result (Risholm et al., 2013, 2010; Risholm and Wells, 2011).

3.1.3 Contributions

The majority of research takes the registration uncertainty for granted. In
this chapter, we investigate two rarely examined topics: (1) whether summary
statistics of the transformation distribution most informatively reflect the
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registration uncertainty; (2) Does utilizing the registration uncertainty always
be beneficial. In Section 2, we identify and discuss two types of uncertainties:
the transformation uncertainty Ut and label uncertainty Ul. By concrete
examples, we show that the conventional way of using Ut to quantify Ul is
inappropriate and can be misleading. In Section 3, by a real data example,
we share a potentially critical finding that making use of the registration
uncertainty may not always be an improvement. Finally, we summarize in
Section 4. It should be noted that registration uncertainty is not equal to
registration accuracy. There are excellent works which study standards of
registration evaluation (Fitzpatrick, 2009; Min et al., 2020; Rohlfing, 2012).
However, here we focus on the relation among different types of registration
uncertainty.

3.2 The Ambiguity of Registration Uncertainty

For illustration purpose, we use DPR in all examples.

3.2.1 The DPR Set Up

In the DPR setting, let It and Is respectively be the target and source images
It, Is : ΩI → R,ΩI ⊂ Rd, d = 2 or 3. The algorithm discretizes the transforma-
tion space into a set of K displacement vectors, D = {dk}Kk=1,dk ∈ Rd. These
displacement vectors radiate from voxels on It and point to their candidate
transformation locations on Is (Sotiras et al., 2013). For every voxel vi, the
algorithm computes a unity-sum probabilistic vector P(vi) = {Pk(vi)}Kk=1 as
the transformation distribution. Pk(vi) is the probability of displacement vector
dk. In a standard DPR, the algorithm takes a displacement vector that has
the highest probability in P(vi) as the most likely transformation dm.

Conventionally, the uncertainty of registered vi is quantified by the Shannon
entropy of P(vi) (Lotfi et al., 2013). Since the algorithm takes dm as its “point-
estimate", the entropy provides a measure of the extent of dispersion from dm

of the rest of displacement vectors in D. If other displacement vectors are all
as equally likely to occur as dm, then the entropy is maximal, which indicates
that it is completely uncertain which displacement vector should be chosen as
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Figure 3.1: The target image It and souce image Is ; (b) The discretized
transformation space D; (c) The corresponding tissue label L(dk) for D. .

the most likely transformation. When the probability of dm is much higher
than that of other displacement vectors, the entropy decreases, and there is
greater certainty that dm is the correct choice.

For example, P(vl) = [0.25, 0.25, 0.25, 0.25] and P(vr) = [0.1, 0.7, 0.1, 0.1]

are two discrete transformation distributions. P(vl) is uniformly distributed,
and its entropy is E(P(vl)) = 2. P(vr) has an obvious peak, and its entropy
is E(P(vr)) ≈ 1.36, which is lower than E(P(vl)). For a registered voxel, the
entropy of its transformation distribution is usually mapped to a color scheme,
clinicians can infer the level of confidence of the registration result by the color
of the voxel.

3.2.2 Transformation Uncertainty and Label Uncertainty

In the context of neurosurgery, the goal of image registration is frequently to
map the pre-operatively labeled tumor, and/or other tissue, onto the intra-
operative patient space for resection. Since registration uncertainty is strongly
linked to the goal of registration, here it should also reflect the confidence in
the registered labels. However, does the conventional uncertainty measure of
DPR, which is the entropy of transformation distribution, truly give insight
into the trustworthiness of registered labels?

In a hypothetical DIR example, It and Is in Figure 3.1(a) are the intra-
operative target and pre-operative source images, respectively. Voxel v1 on It is
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Figure 3.2: (a) P(v1) and corresponding labels; (b) The bar chart of P(v1).

the voxel we want to register. In Figure 3.1(b), we can see that the discretized
transformation space D = {dk}9

k=1 is a set of nine displacement vectors. Each
displacement vector is linked to a candidate corresponding voxel of v1. The
labels L(dk) are for voxels associated with dk. In this example, there are labels
for the tumor and other tissue, as shown in Figure 3.1(c).

Figure 3.2 shows a transformation distribution P(v1) = {Pk(v1)}9
k=1 and

its bar chart. We observe that P5(v1) has the highest probability in P(v1);
therefore, d5’s corresponding label, L(d5) = Tumor, will be assigned to the
registered v1.

Although P(v1) has its mode at P5(v1), the entire distribution is more or
less uniformly distributed. The entropy of P(v1), E(P(v1)) ≈ 3.15, is close to
the maximum. Therefore, the conventional uncertainty measure will suggest
that the registration uncertainty of v1 is very high and highlight it with a
bright color. Upon noticing the high degree of uncertainty in registered v1,
surgeons would place less confidence in its tumor label and make surgical plans
accordingly.

On the other hand, let us take into account the label L(dk) associated
with each dk and form a label distribution. As shown in Figure 3.3(a), even if
d1, . . . ,d8 are different displacement vectors, they correspond to the same label
as the most likely displacement vector d5. If we accumulate the probability for
all labels in L, it is clear that “tumor" is the dominant one. Interestingly, despite
being suggestive of having high registration uncertainty using the conventional
uncertainty measure, the label distribution in Figure 3.3(b) indicates that it is
quite trustworthy to assign a tumor label to the registered v1. In addition, the
entropy of the label distribution is as low as 0.4, which also differs from the
high entropy value computed from the transformation distribution.
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Figure 3.3: (a) Bar chart of the transformation distribution P(v1) taking into
account L(dk); (b) The label distribution of the registered v1.

In the example above, there appear to be two kinds of uncertainty. We
name the uncertainty computed from the transformation distribution as the
transformation uncertainty Ut, and the uncertainty relating to the goal of
registration as label uncertainty Ul. Examples of Ul can be uncertainty in a
categorical classification, or uncertainty in the intensity value of registered
voxels.

In the PIR literature, the definition of registration uncertainty is ambiguous,
because researchers do not differentiate Ut from Ul, and perhaps subconsciously
use Ut to quantify Ul. The previous counter-intuitive example demonstrates
that high Ut does not guarantee high Ul. In fact, the value of Ut can barely
guarantee any useful information at all about the Ul.

More precisely, for point-estimate image registration, let ΩT be the set of
all estimated transformation, and ΩL be the set of all possible corresponding
labels (categorical labels from semantic segmentation or intensity values). The
algorithm assigns a transformation t ∈ ΩT to a voxel. By a non-linear function
fpoint : ΩT → ΩL, the voxel will have its label l ∈ ΩL as:

l = fpoint(t). (3.1)

In this case, the function fpoint is surjective, and t always has a unique corre-
sponding l. However, in the PIR setting, the voxel transformation becomes a
random variable T . The corresponding label L is a function of T :

L = fprob(T ). (3.2)
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therefore, it is also a random variable. Even if T and L are intuitively
correlated, given different image context, there is no guaranteed analytical way
to compute the uncertainty propagation from T to L. Thus it’s inappropriate
to measure the uncertainty of L, by the summary statistics of T .

In the registration community, researchers routinely distinguish between
intensity match and e.g. DICE scores. It also makes sense to distinguish
the transformation uncertainty and label uncertainty. In practice, Ut and Ul

around certain areas, i.e., the tumor boundary, is quite dissimilar. Propagating
Ut to the surgeon, as if it is the Ul can mislead them to place unwarranted
confidence in the alignment solution and result in severe consequences.

3.2.3 Real Data Examples

Figure 3.4: (a) Input and result of the CUMC12 data example, vc and ve are
two voxels of interest on the registered source image; (b) The transformation
distribution of vc and ve in the DIR; (c) Label distributions of registered vc
and ve.

As shown in Figure 3.4, It and Is are two brain MRI images arbitrarily chosen
from the CUMC12 dataset. Subsequent to performing a DIR, we obtained the
registered source image Irs. The goal of this registration was to determine the
categorical label, whether it is a ventricle or a white matter, for registered voxels
of interest vc and ve. The transformation distribution of vc is more uniformly
distributed than that of ve. Therefore, conventional entropy-based methods
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will report vc as having higher registration uncertainty than ve. However, as we
form a label distribution in Figure 3.4(c), it is clear that ve, despite having a
lower Ut, is assigned a label that is more uncertain. Examples that demonstrate
the dissimilarity between Ut and Ul can be frequently found in the registration
of various kind of images.

3.3 Credibility of Label Distribution

Utilizing the registration uncertainty, in particular the full label distribution,
to benefit registration-based tasks is presumably an advantage of PIR. Many
research of registration uncertainty reported positively over its impact in
applications (Risholm et al., 2010; Risholm and Wells, 2011; Simpson et al.,
2013). However, to the best of our knowledge, there does not exist any
validation study about whether we should use the registration uncertainty.
In this section, we design an experiment to explore whether utilizing the
registration uncertainty always results in an improvement.

In PIR, the registered voxel has the corresponding label of the most likely
transformation L(dm), upon which the registration evaluation is also based
(Cobzas and Sen, 2011; Folgoc et al., 2017; Heinrich et al., 2016; Janoos et al.,
2012; Lotfi et al., 2013; Luo et al., 2018b; Popuri et al., 2013; Risholm et al.,
2013; Simpson et al., 2015, 2012; Wang et al., 2018; Wassermann et al., 2014;
Yang and Niethammer, 2015; Zhang et al., 2013). Likewise, we can derive the
most likely label Lm from the full label distribution. If utilizing the registration
uncertainty, like reported in previous research, always be beneficial, then Lm
should be always better than L(dm).

In the following pilot experiment: an MRI image is arbitrarily chosen from
the BRATS dataset (Menze et al., 2015) and synthetically deformed.Then we
registered the original data with the deformed data using DIR. By doing so,
we know the ground truth intensity for every registered voxel so that we can
compare whether it is L(dm) or Lm closer to the ground truth.

Here we are interested in the intensity label distributions of four registered
voxels vb, vc, vd and ve, shown in Figure 3.5(b), (c), (d), and (e) respectively. In
Figure 3.5, the red circle indicates the most likely intensity label Lm given by the
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Figure 3.5: (a) Input and result of the registration example; (b,c,d,e) Intensity
label distributions of voxels vb,vc,vd and ve; (f) Approximate locations of tested
voxels.

full transformation distribution, the orange circle indicates the corresponding
intensity label of the transformation mode L(dm), and the green circle is the
Ground Truth (GT). We observe that for vb, Lm and L(dm) are both equal
to the GT. On the other hand, Lm and I(dm) for vc, vd and ve, are not the
same. As seen in Figure 3.5(c), the Lm of the registered vc is equal to the GT
intensity, and is more accurate than I(dm). Yet, unexpectedly, for vd and ve,
their I(dm) is closer to the GT than their Lm. Voxels such as vd and ve were
found frequently in our experiments using other real data. This surprising
result indicates that utilizing the full transformation distribution can actually
give a poorer/less accurate estimation than using the transformation mode
alone.

Researchers have attempted to present the visualized full label distribution
of functional areas in fMRI to neurosurgeons (Risholm et al., 2010). However,
based on the above finding, if Lm can give poorer estimation, the full label
distribution might also have questionable credibility. Conveying such false
information to surgeons would certainly be detrimental to the outcome of
surgery.

It is noteworthy that in PIR, the estimation of T and L is influenced by the
choice of hyper parameters, priors, and image context. Other PIR approaches
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can yield different findings. Nevertheless, studying the credibility of the label
distribution before using it in practice warrants increased investigation.

3.4 Discussion

The majority of research takes the registration uncertainty for granted. We
summarize current approaches of quantifying registration uncertainty and point
out some fundamental problems which would make researchers rethink, or even
re-work approaches for quantifying and applying registration uncertainty.

At this stage, even the uncertainty is a useful addition to the registration
result, we recommend treating it with caution: (1) It is advised to distinguish
Ut and Ul in applications. Instead of using the unified term "registration
uncertainty", i.e., we can use Ut to indicate the confidence for a predicted
instrument location in neurosurgery; (2) Since the credibility of label distribu-
tion is unclear, we should avoid using Ul in clinical settings and put further
effort in studying the implication of PIR results. We believe that this chapter
will serve as a foundation and draw more attention to this topic.
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Chapter 4

Are Registration Uncertainty and

Error Monotonically Associated?

In image-guided neurosurgery, current commercial systems usually provide
only rigid registration, partly because it is harder to predict, validate and
understand non-rigid registration error. For instance, when surgeons see a
discrepancy in aligned image features, they may not be able to distinguish
between registration error and actual tissue deformation caused by tumor
resection. In this case, the spatial distribution of registration error could
help them make more informed decisions, e.g., ignoring the registration where
the estimated error is high. However, error estimates are difficult to acquire.
Probabilistic image registration (PIR) methods provide measures of registration
uncertainty, which could be a surrogate for assessing the registration error. It
is intuitive and believed by many clinicians that high uncertainty indicates a
large error. However, the monotonic association between uncertainty and error
has not been examined in image registration literature. In this pilot study, we
attempt to address this fundamental problem by looking at one PIR method,
the Gaussian process (GP) registration. We systematically investigate the
relation between GP uncertainty and error based on clinical data and show
empirically that there is a weak-to-moderate positive monotonic correlation
between point-wise GP registration uncertainty and non-rigid registration error.
This chapter is based on the publication of (Luo et al., 2020a).
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Associated?

4.1 Introduction

In image-guided neurosurgery (IGN), surgical procedures are often planned
based on the preoperative (p-) magnetic resonance imaging (MRI). During
surgery, clinicians may acquire intraoperative (i -) MRI and/or Ultrasound
(US). Image registration can be used (Maintz and Viergever, 1998; Sotiras
et al., 2013) to map the p-MRI to the intraoperative coordinate space to help
surgeons locate structures or boundaries of interest during surgery (e.g., tumor
margins or nearby blood vessels to be avoided) and facilitate more complete
tumor resection (Gerard et al., 2017; Luo et al., 2019b; Morin et al., 2017).

Even though the brain clearly undergoes non-linear deformation during
surgery, rigid registration is still the standard for clinical practice (Rivaz and
Collins, 2015). Although non-rigid registration has long been a goal for IGNs,
this goal is hampered because non-rigid registration error is less predictable
and harder to validate than rigid registration error. In practice, if surgeons see
a discrepancy between two aligned image features, they may not be able to
tell if the misalignment is caused by a registration error or an actual tissue
deformation caused by tumor resection. In this case, providing surgeons with
a spatial distribution of the expected registration error could help them make
more informed decisions, e.g., ignoring the registration where the expected
error is high. However, determining this spatial distribution is difficult since:

1. Most methods that estimate registration error, such as bootstrapping
(Kybic, 2010; Shams et al., 2017), perturbed input (Datteri and Dawant,
2012; Hub and Karger, 2013; Hub et al., 2009), stereo confidence (Saygill
et al., 2016) and supervised learning (Saygill, 2018; Sokooti et al., 2016,
2019), require multiple runs of a non-rigid registration algorithm, thus
they are too time-consuming to be practical for IGNs where feedback is
required within a few minutes of intraoperative image acquisition.

2. More importantly, existing methods estimate the error by detecting
misaligned image features (Saygill, 2018; Saygill et al., 2016; Shams et al.,
2017; Sokooti et al., 2019). These methods fail in IGNs because tumor
resection and retraction significantly alter the brain, particularly at the



4.1. Introduction 47

Figure 4.1: An example to illustrate the usefulness of registration uncertainty
in IGNs.

tumor margin where precision is most needed. Thus finding consistent
image features near the tumor margin may be difficult.

An alternative for directly estimating the registration error is to use regis-
tration uncertainty as a surrogate. Registration uncertainty is a measure of
confidence in the predicted registration and typically estimated by probabilistic
image registration (PIR)(Agn and Van Leeput, 2019; Bayer et al., 2017a; Dalca
et al., 2018; Folgoc et al., 2017; Glocker et al., 2009; Heinrich et al., 2016; Lotfi
et al., 2013; Luo et al., 2018b; Popuri et al., 2013; Risholm et al., 2013; Sedghi
et al., 2018; Simpson et al., 2015; Wang et al., 2018; Wassermann et al., 2014;
Yang and Niethammer, 2015). In IGN, utilizing registration uncertainty can be
helpful. As shown in Figure 4.1, surgeons can inspect the residual tumor after
registering the p-US image to the i -US image and decide whether to continue
the resection or end the operation. An uncertainty color map overlaid on top
of the registered images, where red indicated regions of low uncertainty, can
be used by surgeons to dismiss clear misregistration regions where uncertainty
is high and have more confidence in the registration where uncertainty is low
(e.g., red regions).

In this example, surgeons might have higher confidence inside red regions
because they assume that areas with low uncertainty also tend to have a low
error. However, this assumption is only valid if the registration uncertainty
and error have a positive monotonic association. While this notion is intuitive
and believed by many clinicians, to the best of our knowledge, it has not been
examined in the PIR literature.
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“Are registration uncertainty and error monotonically associated?" is a
crucial question that impacts the applicability of registration uncertainty. In
this pilot study, we attempt to address this question by looking at a promising
PIR method, Gaussian process (GP) registration (Bayer et al., 2017a; Luo
et al., 2018b; Wassermann et al., 2014). We systematically investigate the
GP uncertainty and error using point-wise posterior predictive checking and
a patch-wise correlation test. We note that the registration uncertainty can
be categorized as transformation uncertainty or label uncertainty (Luo et al.,
2019a). Since the applicability of label uncertainty is still in question, this
chapter will focus solely on the transformation uncertainty when it refers to
’registration uncertainty’.

4.2 Methods

In this section, we briefly review GP registration uncertainty. Then we introduce
Spearman’s correlation coefficient and provide details about our point-wise
and patch-wise experiments.

4.2.1 Review of the GP Registration Uncertainty

The stochastic GP registration approach has shown promising results in IGNs
(Bayer et al., 2017a; Luo et al., 2018b; Wassermann et al., 2014). As shown in
Figure 4.2, a key step in the GP registration is to estimate N∗ unknown dis-
placement vectors D∗ from N known ones D that were derived from automatic
feature extraction and matching.

Let x be the grid coordinate and d(x) = [dx, dy, dz] be the associated
displacement vector. For d(x) being one of dx, dy, and dz, it is modeled as
a joint Gaussian distribution d(x) ∼ GP(m(x), k(x,x′)) with mean function
m(x) = 0 and covariance function k(x,x′). Thus D and D∗ have the following
relationship: [

D

D∗

]
∼ N

(
m(x),

[
K K∗

KT
∗ K∗∗.

])
. (4.1)
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Figure 4.2: (a) 3 displacement vectors; (b) A 10 × 10 interpolated dense
deformation field; (b) A visualization of registration uncertainty.

In Eq.(1), K = k(X,X) ∈ RN×N and K∗∗ = k(X∗,X∗) ∈ RN∗×N∗ are intra-
covariance matrices of d and d∗ respectively. K∗ = k(X,X∗) ∈ RN×N∗ is the
inter-covariance matrix. The interpolated displacement vector values can be
estimated from the mean µ∗ of the posterior distribution of p(D∗ | X∗,X,D):

µ∗ = KT
∗K

−1D. (4.2)

From Eq.(1), the posterior covariance matrix can also be derived as

Σ∗ = K∗∗ −KT
∗K

−1K∗. (4.3)

Diagonal entries of Σ∗ are the marginal transformation variances, and they
can be used as the GP registration uncertainty. In this study, we choose the
same kernel k(x,x′) = exp(−x2

a
) for all three displacement components.

Figure 4.2(b) shows a 10×10 dense deformation field interpolated from three
landmark displacement vectors. Each voxel is associated with an estimated
displacement vector and uncertainty value. Figure 4.2(c) is an uncertainty
color map for the displacement field.

4.2.2 Spearman’s Rank Correlation Coefficient

Spearman’s correlation coefficient, often denoted by ρs, is a non-parametric
measure of statistical dependence between the rankings of two variables. It
assesses how well their relationship can be described using a monotonic function
(Corder and Foreman, 2014).
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In this study we prefer ρs over Pearson’s correlation ρp for the following
reasons:

1. ρp measures the strength of a linear relationship. To be clinically useful,
registration uncertainty does not have to be linearly correlated with
the error. In this sense, we prefer ρs which measures a less “restrictive"
monotonic relationship;

2. Since ρs limits the influence of outliers to the value of its rank, it is less
sensitive than ρp to strong outliers that lie in the tails of the distribution
(Corder and Foreman, 2014).

Assume there are M test points, u(i) and ε(i), which represent the un-
certainty and error for point i respectively. Let U and E denote discrete
random variables with values {u(1), u(2), ..., u(M)} and {ε(1), ε(2), ..., ε(M)}.
To measure ρs, we have to convert U and E to descending rank vectors rU and
rE, i.e., the rank vector for [0.2, 1.2, 0.9, 0.5, 0.1] would be [2, 5, 4, 3, 1]. Then
ρs can be estimated as

ρs =
cov(rU, rE)

σrUσrE
, (4.4)

where cov is the covariance, σ’s are the standard deviations. Noticing that ρs

is by design constrained as −1 ≤ ρs ≤ 1, and 1 indicates a perfect positive
monotonic relationship.

4.2.3 Point-wise Posterior Predictive Checking

When a surgeon is removing a tumor mass near a critical structure, it is
vital that s/he knows how close the predicted instrument location is from
the structure and how confident the prediction is. With GP registration, we
can predict the instrument location using a displacement vector. Meanwhile,
we can also provide the registration uncertainty to indicate how likely the
estimated instrument location is accurate. Here, we designed a point-wise
experiment to investigate whether the true location is close to the predicted
location when the uncertainty is low and vice versa.
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Figure 4.3: (a) An illustrative example for the point-wise posterior predictive
checking experiment; (b) An illustration for how to compute ε and u in the
context of IGNs

The point-wise experiment is inspired by posterior predictive checking
(PPC) (Gelman et al., 2004). PPC examines the fitness of a model using
the similarity between values generated by the posterior distribution and the
observed ones.

In an illustrative 1D example shown in Figure 4.3(a), L1 and L2 are two
landmarks whose values are indicated by the length of vertical bars. The
goal is to interpolate the value at location P. Here the blue bell-curve is the
estimated posterior distribution p(P|L1,L2) and it has a mean of p∗. Since
we know the ground truth value pg, we can compute the estimation error as
ε(P) = |pg − p∗|. The standard deviation σ of the posterior is often used to
represent the uncertainty u of the estimation.

In the context of GP registration shown in Figure 4.3(b), the white circle is
the initial location of voxel v on the p-US image. The green circle represents
the ground truth location of deformed v on the i -US image and the blue circle
is the predicted location. In Figure 4.3(b), dg and d∗ are the ground truth
and predicted displacement vectors respectively, and the registration error
can be computed as ε = ‖dg(i)− d∗(i)‖. As u is the registration uncertainty
associated with d∗, it is visualized by a circle where the magnitude of u is the
radius of the circle (a larger circle indicates a higher uncertainty).

In the point-wise experiment, we compute u and ε for every voxel-of-interest
and form two discrete variables U and E. Using ρs, we can measure how strong
their monotonic relationship is.
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Figure 4.4: An illustration for using the HI metric to compute Spearman’s
rank correlation coefficient for patches.

4.2.4 Patch-wise Correlation Test

We also investigate the correlation between u and ε over image-patches. Because
in IGNs, surgeons may be more interested in registration errors over region of
interest. We plan to present the uncertainty to surgeons via color overlays so
that they can get a higher level understanding of registration error.

Given a voxel v located at xv ∈ R3, we define an image patch Ω ⊂ R3 as a
sub-volume centered at xv, let Ω have size N . Assuming ux is the voxel-wise
uncertainty at location x, we can compute the patch-wise uncertainty as the
mean voxel uncertainty over Ω as u(Ω) = 1

N

∑
x∈Ω ux. The estimation of ε over

a patch is not straightforward. An ideal way for measuring the patch-wise
registration error would be to use the residual Euclidean distance over densely-
labeled and well-distributed landmarks placed on both patches. However, to
our knowledge, none of the existing neurosurgical datasets has such landmarks.

In this study, since all experiments are based on uni-modal registration,
we use intensity-based dissimilarity metrics to measure the error between
ground truth patches Ωg’s and predicted patches Ω∗’s. In a previous study
that attempted to use patch-wise dissimilarity measures to indicate registra-
tion quality, the Histogram Intersection (HI) metric achieved the best result
(Schlachter et al., 2016). Therefore, we use HI as a dissimilarity metric together
with the commonly known Sum of Squared Differences (SSD).
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For Ωg and Ω∗, let p(t) and q(t) be the intensity probability mass functions.
K is the number of intensity bins in the histogram. HI can be estimated as

HI(Ω∗,Ωg) = 1−
K∑
i=1

min(p(ti), q(ti)). (4.5)

Figure 4.4 illustrates using HI in the patch-wise correlation test. For SSD
and HI, their scalar outputs are used as ε(Ω) for estimating ρs. Noticing that
the size of patches may influence the test result, thus we conduct multiple
patch-wise experiments using different patch sizes.

4.3 Experiments

We conducted the experiments on two clinical datasets for neurosurgical
registration, RESECT (Xiao et al., 2017) and MIBS. RESECT is a public
benchmark dataset for IGN (Xiao et al., 2020), while MIBS is a proprietary
dataset from a local hospital. Both datasets in total contain 23 sets of p-US and
i -US scans that were acquired from patients with brain tumors. US data were
provided as a reconstructed 3D volume. In the p-US to i -US GP registration
context, we tested manually annotated landmarks in the RESECT dataset
and automatically detected landmarks in MIBS [35,36], which does not have
manual annotations. Noticing that all tested points were not used for GP
interpolation.

4.3.1 Point-wise Experiment

In the point-wise experiment, for each landmark on the i -US image, GP
registration estimated d∗ and σ. Since dg is known, we can calculate ε and
then combine all points to compute ρs for a pair of images.

The estimated point-wise ρs’s are summarized inFigure 4.5. For manual
landmarks in RESECT, the mean value of ρs is 0.2899, which indicates a
weak-to-moderate positive monotonic correlation. Automatically extracted
landmarks achieved an average ρs of 0.4014, which can be categorized as a
moderate-to-strong correlation. However, both scores are significantly lower
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Figure 4.5: The estimated ρs for the point-wise experiment. We can see a
moderate positive monotonic relationship between u and ε.

than what is required for a perfect positive monotonic relationship. At this
stage, it’s still too early to conclude definitively whether it is safe to use GP
registration uncertainty to assess the accuracy of predicted, e.g., instrument
location.

We suspect that the ρs discrepancy between these two groups of landmarks
is due to the nature of GP uncertainty and the distribution of landmarks:
In GP registration, the uncertainty of a voxel depends on its distance to
neighboring interpolating points, e.g., the closer to interpolating points, the
lower uncertainty it has. If an annotated landmark is far away from all
interpolating landmarks, it is likely to have high uncertainty. In case it
happens to be located in a region with less severe deformation, that highly
uncertain landmark would have a low registration error, thus lower the overall
score for ρs.

4.3.2 Patch-wise Experiment

In the patch-wise experiment, we padded ±k surrounding voxels to each
landmark. For example, ±2 padding generates a patch of the size of 5× 5× 5.
Tested values of k include 3 and 5. We calculated ε using SSD/HI for all
patches and computed ρs(Ω) afterward.

The estimated patch-wise ρs’s are shown in Figure 4.6. It can be seen that
values of ρs(Ω)’s are consistently low for both datasets. We deduce the reasons
for low ρs(Ω) values are: (1) In the presence of large deformation, e.g., tumor
resection, a pair of well-matched patches may look drastically different. In this
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Figure 4.6: The estimated ρs(Ω) for the patch-wise experiment. Values of
ρs(Ω)’s are consistently low for both datasets.

case, instead of the residual Euclidean distance over densely-labeled and well-
distributed landmarks, other appearance-based dissimilarity measures become
sub-optimal for estimating the registration error; (2) σ used in the calculation
is transformation uncertainty, while intensities over patches is label uncertainty
(Luo et al., 2019a). These two quantities may be inherently uncorrelated in GP
registration. (3) Features that surgeons are interested in, e.g., tumor margins
or nearby blood vessels, may be limited to a small region. It may make more
sense to estimate the regional ρs(Ω) instead of using the whole image.

4.4 Conclusion

“Are registration uncertainty and error monotonically associated?’ is a funda-
mental question that has been overlooked by researchers in the medical imaging
community. There has been significant progress in the development of fast
and accurate methods for performing non-rigid registration. Since all of these
methods are subject to some error and rarely used in the operating room, an
answer to this question, which enables the use of registration uncertainty as a
surrogate for assessing registration error, can increase the feasibility of non-rigid
registration in interventional guidance and advance the state of image-guided
therapy.

In this pilot study, we systematically investigate the monotonic association
between Gaussian process registration uncertainty and error in the context
of Image-guided neurosurgery. At the current stage, the low-to-moderate
correlation between GP uncertainty and error indicates that it may not be
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feasible to apply it in practice. Nevertheless, this work opens a research area
for uncertainty/error relationship analysis and may inspire more research on
this topic to verify and enhance the applicability of registration uncertainty.
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Related Projects

During the course of research, we also pursued two related projects which are
intertwined with the proposed active image registration (AIR) method. In the
first project, we added a variogram-based outlier removal step to improve the
feature extraction and matching in AIR. In the second project, we used the
variogram to perform a third-party screening on annotations of two public
datasets. Since both projects are based on the variogram, we summarize them
together in this chapter. In Section 5.1 and Section 5.2, we explain in detail
how to use the variogram for vector outlier screening and annotation quality
control. This chapter is based on the publications (Luo et al., 2018a) and (Luo
et al., 2020b).

5.1 Vector-outlier Screening for Feature-based

Image Registration

Matching points that are derived from features or landmarks in image data is a
key step in some medical imaging applications.For tasks such as feature-based
registration in image-guided neurosurgery, even a few mismatches, in the form
of invalid displacement vectors, could cause serious consequences. As a result,
having an effective tool by which operators can manually screen all matches
for outliers could substantially benefit the outcome of those applications.
We introduce a novel variogram-based outlier screening method for vectors.
The variogram is a powerful geostatistical tool for characterizing the spatial
dependence of stochastic processes. Since the spatial correlation of invalid
displacement vectors, which are considered as vector outliers, tends to behave
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differently than normal displacement vectors, they can be efficiently identified
on the variogram. We validate the proposed method on 9 sets of clinically
acquired ultrasound data.

5.1.1 Introduction

Matching points that are derived from features or landmarks in image data is a
key step in many medical imaging applications, such as 3D reconstruction and
image registration for surgical navigation. Since most robust point matching
algorithms claim to be able to deal with outliers (Chui and Rangarajan,
2013; Fischler and Bolles, 1981; Fitzpatrick, 2009; Jian and Vemuri, 2010;
Myronenko and Song, 2010), users may place high confidence in the matching
result and use it without further examination. However, for tasks where
precision is of paramount importance, even a few mismatches can cause serious
consequences. As a result, having an effective tool by which operators can
manually screen all matches for outliers could substantially benefit the outcome
of those applications.

Image-guided neurosurgery is a task that requires precise localization of
tumor boundaries. Conventionally, surgeons use commercial Image Guided
Neuro-navigation Systems (IGNSs) to map the preoperative image data to
an intraoperative patient coordinate system so as to get an updated view of
the brain. Unfortunately, intraoperative brain deformation, also known as
brain shift, invalidates this mapping and limits the trustworthiness of using
preoperative images in intraoperative surgical navigation (Bayer et al., 2017b;
Gerard et al., 2017). In order to compensate the brain shift and increase
the accuracy of neurosurgery, non-rigid image registration (Hata et al., 1999;
Letteboer et al., 2003; Reinertsen et al., 2007; Riva et al., 2017) is sometimes
adopted to spatially align the preoperative and intraoperative images.

Because of tumor resection, the same structure may not exist on both
preoprative and intraoperative images, hence Feature-Based Registration (FBR)
becomes a promising strategy due to its robustness in registering images with
missing correspondence (Toews and Wells, 2013). FBR consists of three steps.
In the feature extraction step, distinctive local image features are automatically
extracted and identified as key-points on preoperative and intraoperative
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images. In the feature matching step, a matcher searches for a corresponding
intraoperative key-point for each key-point on the preoperative image. From
every matched key-point pair, a displacement vector can be obtained to indicate
the movement of the preoperative key-point due to the brain shift process. In
the last step of FBR, the algorithm generates a dense deformation field for the
entire preoperative image from the displacement vectors and uses it to map the
preoperative image to the intraoperative space. If invalid displacement vectors,
which falsely reflect the tissue movement under brain shift, are obtained from
mismatched key-point pairs, it will negatively affect the registration result.

In this section, we introduce a simple yet informative variogram-based
outlier screening method for vectors and demonstrate its usefulness in the
context of feature-based registration. While variograms are extensively used in
geostatistics to capture the spatial dependence of stochastic processes (Cressie,
1991), they have not yet received much attention in the medical imaging
field. Since the spatial correlation of invalid displacement vectors, which are
considered vector outliers, tend to behave differently than valid displacement
vectors, they can be identified on the variogram cloud and flagged for further
examinations.

5.1.2 Summarizing Variogram in the Context of FBR

In the feature matching step of FBR, we obtain a displacement vector from
every matched key-point pair. For example, as shown in Figure 5.1(a)(b),
assume kp is the coordinate of an extracted preoperative key-point, and ki is
the coordinate of its corresponding intraoperative counterpart. After overlaying
both images in Figure 5.1(c), the displacement vector d from the preoperative
key-point pointing to the intraoperative key-point can be calculated as ki− kp.

All displacement vectors form a vector field, which is supposed to indicate
the intraoperative brain shift. We attempt to model the spatial dependence of
the vector field and use the dependency as a criterion for identifying displace-
ment vector outliers.
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Figure 5.1: (a) The extracted key-point on the preoperative image; (b) The
extracted key-point on the intraoperative image; (c) Overlaying two images;
(d) The displacement vector d for the preoperative key-point.

5.1.3 Random Process Model

Brain shift is caused by the interaction of physical, surgical and biological fac-
tors. Due to the complexity and incomplete understanding of the phenomenon,
we model the deformation of the brain as a stochastic process. In our model,
let x ∈ Rd be a generic data location in the d -dimensional Euclidean space.
Suppose Z(x) is a random quantity at location x, its realization z(x) is a
displacement vector like the one in Figure 5.1(d). Given an index set D ⊂ Rd,
we can model the vector field as

{Z(x) : x ∈ D}. (5.1)

For brain shift, the deformation at a particular location is likely to have
influence in all directions. Capturing the spatial correlation of deformation is
essential for understanding the phenomenon. The definition of the variogram
comes naturally as we quantify the spatial dependence of Z(x).

5.1.4 The Variogram and Empirical Variogram

The pairwise dependence between displacement vectors in a random field is
the variance of the difference between the values at two locations across the
field (Cressie, 1991):

2γ(x1,x2) := var(Z(x1)− Z(x2)). (5.2)
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Figure 5.2: (a) Two key-points x1,x2; (b) The displacement differences between
z(x1) and z(x2), and the lag h.

We make the mild assumption that the random field has a constant mean
and is intrinsically stationary. Intrinsic stationarity states that the variance
of difference is the same between any two points that are separated by the
same distance. Adopting a terminology from time series analysis, we represent
the separation between two spatial locations by a lag vector h = x2 − x1 and
rewrite (2) as

2γ(x1,x2) = E[((Z(x1)− Z(x1 + h))2]

= 2γ(h).
(5.3)

γ(h), also known as the variogram (sometimes is called the semivariogram)
of a random field Z(x), is defined as one-half the average squared difference
between the value at locations separated by distance h Cressie (1991). The
variogram function γ(h) depends only on h and it measures the correlation as
a function of distance.

Notice that γ(h) is a theoretical function. In practice, we do not have the
displacement vector for every location to estimate γ(h), so we use its empirical
alternative (Matheron, 1963). This definition will be clarified in Section 2.3.

γ̂(h± δ) :=
1

2|N(h± δ)|
∑

(i,j)∈N(h±δ)

‖z(xi)− z(xj)‖2. (5.4)

5.1.5 Estimating the Empirical Variogram in FBR

In FBR, there are several ways to represent ‖z(xi) − z(xj)‖ and h. In this
paper, we use the following representations. In Figure 5.2(a), on a preoperative
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Figure 5.3: (a) The variogram cloud; (b) Binning the variogram cloud with the
bin width 2δ; (c) Computing the mean for every bin; (d)Plotting γ̂(hbink ± δ)
and hbink.

Magnetic Resonance Image (MRI), there are two key-points whose coordinate
are x1 and x2. z(x1) and z(x2) are their associated displacement vectors. As
can be seen in Figure 5.2(b), ‖z(x1)− z(x2)‖ is equal to the norm of the vector
z(x2)− z(x1), and lag h is the Euclidean distance between the two key-points
‖x2 − x1‖.

Estimating an empirical variogram can be analogous to building a histogram
based on samples from a continuous distribution. The strategy is to group
pairs of points that have similar h into the same bin, and approximate the
variogram by combining information from all of the bins. Here we illustrate
the 4 steps of estimating an empirical variogram using Figure 5.3.

(a) Construct the variogram cloud by plotting ‖z(xi)− z(xj)‖2 for all key-
point pairs with their lag hij.

(b) Introduce a variable δ as the tolerance range for lag h, and divide the
variogram cloud into bins whose width is set to 2δ.
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Figure 5.4: (a)The variogram cloud for a set of US data; (b)The empirical
variogram for the same US data.

(c) Calculate the mean γ̂(hbink±δ), which are marked as blue in Figure 5.3(c),
for every bin using Equation (4). |N(hbink ± δ)| represents the number
of key-point pairs of bin k.

(d) Plotting all γ̂(hbink±δ) with their hbini to obtain the empirical variogram.

The lag tolerance δ should be neither too large nor too small, since it may
veil the short-distance correlations or produce empty bins. Typically, δ is
determined in Ad hoc fashion. When δ = 0, the empirical variogram γ̂(h±δ) is
an unbiased estimator of the theoretical variogram γ(h) (Cressie, 1991). Notice
that the proposed variogram based outlier screening method primarily uses
the variogram cloud, hence the choice of δ has no impact on its performance.

In Figure 5.4, we display a variogram cloud and the empirical variogram
estimated from a set of preoperative and intraoperative ulstrasound (US) data.
For this US data, we were able to find 71 pairs of matched key-points, and
the δ used to estimate the empirical variogram is 0.5mm. Here the x-axis
represent lag h, and the y-axis is the value difference among pairs. The
empirical variogram does indicate that nearby key-points tend to have more
similar displacement vectors than those that are far apart. In the rest of this
article, we use the variogram and empirical variogram interchangeably.
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5.1.6 Variogram and Vector-outlier Removal

In FBR, the feature matching algorithm, e.g., (Toews and Wells, 2013), may
identify feature correspondences between preoperative and intraoperative im-
ages solely based on the local image appearance similarity. While the algorithm
is claimed to be robust against outliers, similar image patches and artefacts
at non-corresponding locations of the brain will sometimes be extracted and
matched. These mismatched key-point pairs produce invalid displacement
vectors, as outliers, that fail to reflect the actual brain deformation. Since all
displacement vectors will be used to generate the dense deformation field, we
want a simple yet informative tool so that operators can efficiently screen all
displacement vectors for outliers.

In Section 2, we mentioned that the variogram cloud can capture the spatial
dependence of displacement vectors. Since the spatial correlation of vector
outliers tend to behave differently than valid displacement vectors, they can be
spotted on the variogram. There are two key features for the variogram-based
outlier screening: 1) It is effective and easy to use. Operators can quickly spot
and flag potential outliers on the variogram cloud. 2) The variogram is also
very informative. Operators also can grasp the quality/trend of the vector field
by observing variogram patterns.

5.1.7 Global and Local Outliers in FBR

Outliers are extreme values that deviate from other observations in the data.
In FBR, there are generally two types of outliers:

1. A global outlier is a sample point that has a very high or a very low value
compared to all the values in a dataset. For example, due to the symmetry
of cerebral hemispheres, similar intensity patterns exist on the opposite
half of the brain for MRI images. If these patterns are mismatched as
corresponding key-point pairs, they produce global outliers. These global
outliers are clearly incorrect, and should be removed.

2. A local outlier is a sample key-point that has a value within the normal
range for the entire dataset, but is unusually high or low compared to
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Figure 5.5: (a) Displacement vectors and a red global outlier; (b) The global
outlier identified in the variogram cloud.

its neighboring points. In FBR, some displacement vectors may seem to
be local outliers at first, yet they capture the actual local deformations
that are induced by the brain shift phenomenon. These key-points are
vital for understanding and correcting the brain shift, and may be the
most significant points in the registration. Therefore, it is unnecessary
to remove all local outliers, but suppress them to a certain degree or
perhaps to flag them for manual intervention.

5.1.8 Outliers in the Variogram Cloud

Here we explain how to look for global and local outliers in a variogram cloud
by the following two examples.

In a synthetic vector field shown in Figure 5.5(a), we have 25 valid dis-
placement vectors and a manually added global outlier. Since the displacement
vector of that global outlier is drastically different from other key-points, all
pairings of points involving that global outlier, regardless of the lag distance h,
have high ‖z(xi)− z(xj)‖2 values. From the variogram cloud in Figure 5.5(b),
we can see two main strata of points. All the higher values, which are marked
as red, come from pairings with the manually added global outlier. On the
other hand, the lower strata is composed of pairings among the rest of valid
displacement vectors.

In another synthetic vector field shown in Figure 5.6(a), we have 25 valid
displacement vectors and a manually added local outlier. The local outlier
does not have high values across all distance in the variogram cloud. However,
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Figure 5.6: (a) Displacement vectors and a red local outlier; (b) The local
outlier identified in the variogram cloud.

the variogram values of its close neighbors are relatively high. In Figure 5.6(b),
all values from pairings with the local outlier are marked as red. On the
bottom-left of the variogram cloud, we can notice a small cluster of abnormally
high values as expected. Sometimes, even the local outlier is hard to notice in
the displacement vector field, it is easy to spot in the variogram cloud.

Given the characteristics of global and local outliers, screening using the
variogram is very straightforward. Since the variogram provides a distinct
visualization for outliers, users can get an overview of potential outliers by
simply looking at the patterns on the top and bottom-left corner of the
variogram cloud. If abnormal variogram values are found, it is easy to trace
back to the key-point matches for further examinations.

5.1.9 Experiments

In the experiments we tested the proposed variogram-based outlier screening
method on a clinically acquired US data set. This 9-patient data set contains US
images taken from 3 different stages of neurosurgery: before opening the dura
(predura), after opening the dura (postdura) and during the tumor resection
(intraoperative). We registered the intraoperative image to the predura image.
In case the intraoperative image is not available, we register the postdura
image instead.

After the feature matching, an operator quickly looked for abnormal pat-
terns on the top and bottom-left corner of the variogram cloud and flagged the
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Figure 5.7: The variogram for all potential outliers that were flagged by the
operator in a total of 9 cases.

matches that are in correspondence with those patterns. All flagged matches,
mixed with some valid matches, are further sent to 8 experienced medical
imaging researchers for rating.

In the rating process, without knowing how many potential outliers are in
the group, raters assign a score from 1 (bad) to 5 (good) to every match. After
a zero-mean normalization for each rater, we calculated the score difference
of every potential outlier to the mean score of valid matches and recorded it
as Ourlier Score (OLS). The number of matches, number of potential outliers
(#OL) suggested by the variogram, and the OLS of each potential outlier are
presented in table 1. Here OLS1 means the OLS for potential outlier 1, etc.

The feature matching algorithm we use is claimed to be robust (Toews and
Wells, 2013), yet despite the two cases which have less than 15 displacement
vectors, we were able to flag at least one potential outlier using the variogram.
Given the fact that all flagged potential outliers for cases 1–3 and cases 5–6
and 9 have substantially lower scores than normal matches, it is reasonable to
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Table 5.1: Experimental results of the proposed outlier screening method
Case 1 2 3 4 5 6 7 8 9
Data intra intra postd postd intra intra intra postd intra

Matches 123 71 84 14 49 98 12 37 64
#OL 1 2 1 0 2 1 0 3 2
OLS1 -1.3 -1.4 -2.3 n/a -0.9 -2.3 n/a -0.8 -2.0
OLS2 n/a -1.9 n/a n/a -2.2 n/a n/a -0.4 -2.2
OLS3 n/a n/a n/a n/a n/a n/a n/a -1.8 n/a

conclude that adding an outlier screening step after the feature matching is
beneficial.

Figure 5.7 shows the variogram for all potential outliers that were flagged
by the operator. In Figure 5.8, we show the axial, sagittal and coronal views
of some found outlier matches together.

5.1.10 Conclusion

Matching points that are derived from features or landmarks in image data
is a key step in some medical application. For application that demand a
high precision, such as feature-based preop-to-intraop registration, adding an
outlier screening step could make it less prone to mismatches and improve the
overall result. In this paper, we proposed to use the variogram to estimate the
spatial dependence of displacement vectors. Since the spatial correlation of
vector outliers behave differently than valid displacement vectors, they can be
efficiently identified on the variogram and flagged for further examinations.

5.2 Do Public Datasets Assure Unbiased Com-

parisons for Registration Evaluation?

With the increasing availability of new image registration approaches, an
unbiased evaluation is becoming more needed so that clinicians can choose
the most suitable approaches for their applications. Current evaluations typi-
cally use landmarks in manually annotated datasets. As a result, the quality
of annotations is crucial for unbiased comparisons. Even though most data
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Figure 5.8: Screen shots of axial (top left), sagittal (bottom left) and coronal
(top right) views of 3 outliers found by the variogram. Note the matching
quality of the axial slice of case 1, the sagittal slice of case 2 and the cases 3
are considerably poor.

providers claim to have quality control over their datasets, an objective third-
party screening can be reassuring for intended users. In this study, we use the
variogram to screen the manually annotated landmarks in two datasets used
to benchmark registration in image-guided neurosurgeries. The variogram pro-
vides an intuitive 2D representation of the spatial characteristics of annotated
landmarks. Using variograms, we identified potentially problematic cases and
had them examined by experienced radiologists. We found that (1) a small
number of annotations may have fiducial localization errors; (2) the landmark
distribution for some cases is not ideal to offer fair comparisons. If unresolved,
both findings could incur bias in registration evaluation.

5.2.1 Introduction

The evaluation of non-rigid registration is challenging for two reasons: firstly,
quantitative validation between aligned images is sometimes difficult due to lack
of ground truth. Secondly, the location where accurate registration is needed
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may vary by surgical procedure, e.g., in brain atlas building, good alignment
of the ventricle region is sought after, while in image-guided neurosurgery,
surgeons are interested in accurate registration of the preoperative (p-) tumor
boundary to the intraoperative (i -) coordinate space (Gerard et al., 2017; Luo
et al., 2018b, 2019b; Morin et al., 2017). Because of these issues, it is difficult
to set up a unified standard to characterize registration error (Maintz and
Viergever, 1998; Sotiras et al., 2013).

In early work, image similarity measures, such as the sum of squared differ-
ences or mutual information, were used as evaluation criteria for registration
(Maintz and Viergever, 1998; Song, 2017; Sotiras et al., 2013). The “Retro-
spective Image Registration Evaluation" (RIRE) project (Fitzpatrick, 2007;
Sonka, 2000; West et al., 1997) introduced Target Registration Error (TRE)
and Fiducial Registration Error (FRE) to evaluate registration. TRE is the
true error of registered target points in physical space, while FRE represents
the error of registered annotated fiducial markers in image space. Even though
annotated fiducial markers may not be truly accurate due to operator error,
FRE is often used as a surrogate of TRE for convenience (Danilchenko and
J.M., 2011; Datteri and Dawant, 2012; Min et al., 2020). The Vista (Hellier
et al., 2003) and NIREP (Christensen et al., 2006) projects included additional
registration error measures, e.g., the region of interest (ROI) overlap, the
average volume difference and the Jacobian of the deformation field. Recently,
multiple registration approaches were compared based on Computed Tomogra-
phy of the abdomen (Kabus et al., 2009; Murphy et al., 2011; Xu et al., 2016)
and Magnetic Resonance (MR) images of the brain (Klein et al., 2009, 2010;
Ou et al., 2011; Yassa and C.E., 2009).

Due to its simplicity and the reliability issues of other criteria (Rohlfing,
2012), FRE has become the most widely used registration error measure.
However, using FRE has certain limitations:

1. Because fiducial markers (landmarks) are annotated by localization
algorithms (manual, automatic or semi-automatic methods), they may
contain Fiducial Localization Error (FLE) (Sonka, 2000), which measures
the discrepancy between an annotated landmark and its true location.
FLEs cause false registration errors and should be avoided.
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2. The FRE only estimates the error at specific landmark locations, thus
a dense population of landmarks is preferred. If landmarks are sparse
or are not distributed evenly across the entire ROI, a bias that favors
regions with landmarks in the registration evaluation may be introduced.

Recently, more annotated data sets are becoming publicly available and
these sets are being used to compare existing algorithms and evaluate new
methods. Newly proposed registration algorithms are then characterized only
by demonstrating superior performance on these datasets (Machado et al.,
2018; Xiao et al., 2020).

To provide an unbiased evaluation of registration, the quality of the anno-
tations is crucial. However, to the best of our knowledge, objective quality
control over annotation in public datasets has been overlooked by the image
registration community. Even though many providers claim to have mitigated
FLEs and other problems by having multiple observers localize the landmarks
(and averaging their results) (Song, 2017), an objective third-party screening
can be reassuring for intended users.

In this study, we perform a third-party screening of the annotations of
two benchmark datasets for image-guided neurosurgery, RESECT (Xiao et al.,
2017) and BITE (Mercier et al., 2012). Both datasets have corresponding
landmarks on p-MR and i -Ultrasound (US) images. Minimizing the FLE for
these landmarks is the standard evaluation method in related registration
challenges (Xiao et al., 2020). The tool we choose for the screening is called the
variogram, which has been extensively used to describe the spatial dependence
of minerals in geostatistics. The variogram has been brought to the medical
imaging field as a means to identify vector outliers for landmark-based image
registration (Luo et al., 2018a). In this screening, we want to (1) detect any
obvious FLEs; and (2) examine the distribution of annotated landmarks. We
also provide constructive discussion about the impact of our findings.

5.2.2 Method

For each pair of annotated images, we compute displacements between pairs
of corresponding landmarks to generate a 3D vector field D. By analyzing D,
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we can assess the quality of the annotations. The variogram characterizes the
spatial dependence of D and provides an intuitive 2D representation for visual
inspection (Luo et al., 2018a).

In this section, we explain how to use the variogram to flag potential FLEs
and problematic landmark distributions.

5.2.3 Constructing the Variogram

In an image registration example, let Ω ⊂ R3, If : Ω→ R and Im : Ω→ R be
the fixed and moving images. (x,x′) ∈ Ω represents a pair of manually labeled
corresponding landmarks on If and Im. d(x) = x′ − x is the displacement
vector from x to x′. For K pairs of landmarks, we have a set of displacement
vectors D = {d(xk)}Kk=1.

Given a landmark location s, let h represent the distance to s. The
theoretical variogram γ(h) is the expected value of the differences between
d(s) and other d’s whose starting points are h away from s:

γ(h) =
1

2
E[(d(s)− d(s + h))2], (5.5)

here γ(h) describes the spatial dependency of displacement vectors as a function
of the distance.

In this study, we are interested in the pairwise spatial dependence of all
displacement vectors. Therefore we use the empirical variogram cloud γ̂(h)

instead of γ(h). Given a vector field D, γ̂(h) can be constructed as follows:

1. For each pair of vectors (d(xi),d(xj )), compute εij = ‖d(xi)− d(xj)‖2;

2. Compute hij = ‖xi − xj‖;

3. Plot all (hij , εij ) to obtain γ̂(h).
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Figure 5.9: (a) An Illustration of how to compute ε and h. Here d(x1) and d(x2)
are two displacement vectors for landmark x1 and x2 respectively. h = ‖x1−x2‖
is the distance between x1 and x2. While ε = ‖d(x1)− d(x2)‖2 measures the
displacement difference; (b) A hypothetical γ̂(h) generated from the vector
field in Fig.1(a). Since the vector field has 5 displacement vectors, γ̂(h) has
5 (5−1)

2
= 10 value points. p and q are two value points that demonstrate the

typical increasing trend of γ̂(h). Here hp < hq, thus εp < εq.

Figure 5.9(a) illustrates computing ε and h for two vectors. Figure 5.9(b)
shows a hypothetical variogram cloud generated from the vector field in Fig-
ure 5.9(a). The horizontal and vertical axes represent h and ε respectively.
Given K displacement vectors, each d(x) has K − 1 pairs of corresponding
(hij , εij ), thus γ̂(h) contains K (K−1)

2
value points.

A common dependency assumption is that displacement vectors which
are close to each other tend to be more similar than those far apart (Cressie,
1991). In other words, for a point in γ̂(h), a smaller h usually corresponds to
a smaller ε. As a result, a typical γ̂(h) tends to exhibit an increasing trend.
For conciseness, In the rest of this article, we call γ̂(h) variogram.

5.2.3.1 Potential FLEs

A pair of annotated landmarks (x,x′) forms a displacement vector d(x), which
should indicate the deformation of x. If d(x) ∈ D exhibits a spatial dependency
that differs from other vectors, it could indicate FLE for (x,x′). We call these
abnormally behaved vectors outliers. In general, there are global outliers λG

and local outliers λL:

λG: have large differences with the majority of displacement vectors in D.
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Figure 5.10: (a) Manually added atypically behaved displacement vectors.
The blue point is λG, the green point is λL (b,c) Colorized global and local
outliers identified in γ̂(h). Each point represents the difference between a
pair of displacement vectors, e.g., blue points are vector pairs that involve the
global outlier.

λL: do not have extreme values, but are considerably different from their
neighbors.

Vector outliers tend to have different spatial dependence from other land-
marks, which can be captured by the values of (h, ε), hence we can use γ̂(h)

to distinguish λG and λL. In the example of Figure 5.10(a), we deliberately
added two problematic landmarks, one with global error λG (blue) and one
with local error λL (green), to a vector field. In Figure 5.10(b), all blue points
in γ̂(h) are from adding λG, which can be easily identified because all of its
corresponding points have distinctively higher values of ε. In Figure 5.10(c),
all green points in γ̂(h) are from adding λL. We can also distinguish λL at
the bottom-left corner of γ̂(h), because some of its points yield small h while
having unusually large ε.

It is noteworthy that some critical displacement vectors, which indicate
large tissue deformation, may share the same features as outliers. Therefore,
γ̂(h) is used to flag suspicious λG and λL, which can be further examined by
experienced radiologists.

5.2.3.2 Atypical Variogram Patterns

Since h represents the distance between a pair of vectors, the distribution of
annotated landmarks can also be reflected in the pattern of γ̂(h). Compared
to observing a 3D visualization of D, where atypical patterns may be hidden
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because of the viewpoint„ the variogram’s 2D representation provides a clearer
representation of landmark distribution.Figure 5.11(a) shows the typical smooth
and steadily increasing pattern of an evenly distributed vector field D. Other
variogram patterns may indicate undesirable distributions of the vector field.
Two undesirable patters are clustered landmarks and isolated landmarks:

1. If landmarks are clustered into two (or more) distinct groups, the clus-
tering is evident in γ̂(h) as illustrated in Figure 5.11(b).

2. If a landmark is isolated from other landmarks, its points in γ̂(h) only
exist in areas where h is large. Figure 5.11(c) shows an isolated landmark
and its values in γ̂(h).

Figure 5.11: (a) γ̂(h) of an evenly distributed vector field; (b) γ̂(h) of a vector
field that has clusters; (c) γ̂(h) of a vector field that has an isolated point.

We construct γ̂(h) for all data and manually flag cases with the above
atypical patterns for further examinations.

5.2.4 Experiments

RESECT (Xiao et al., 2017) and BITE (Mercier et al., 2012) are two high-
quality clinical datasets that contain p-MR and i -US images of patients with
brain tumors. They are widely used to evaluate registration algorithms for
image-guided neurosurgery. RESECT includes 23 patients with each having
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p-MR (pMR), before-resection US (bUS), during-resection US (dUS) and
after-resection US (aUS) images. Four image pairs, i.e., pMR-aUS, pMR-bUS,
bUS-aUS and bUS-dUS, have been annotated with corresponding landmarks.
For BITE, pre- and post-operative MR, and i -US images have been acquired
from 14 patients. These images were further annotated and put into three
groups (1) Group 1: bUS and aUS; (2) Group 2: pMR-bUS; (3) Group 4: pMR
and post-MR.

In order to provide an objective, thrid-party screening of the annotations
in these two datasets, we generated γ̂(h) for all 700+ landmark pairs and
flagged those landmark pairs with potential FLE issues. Two operators visually
inspected the flagged landmark pairs and together categorized them into three
categories: (1) They are certain that the landmark pair is problematic; (2) γ̂(h)

looks atypical, but they are unsure whether the landmark pair is problematic;
(3) γ̂(h) looks normal. In addition, they also flagged cases with clusters or
isolated landmark γ̂(h) problems.

5.2.4.1 Findings

After the objective screening, we found that the vast majority of landmarks
have normal-looking γ̂(h), which indicates that both datasets have high-quality
annotations. In total, there are 29 pairs of landmarks that potentially have
FLEs. In addition, we also identified 4 cluster cases and 11 isolated landmarks.
All flagged data are summarized in Table 1. Figure 5.12 and Figure 5.13 show
the γ̂(h) of some landmark pairs that were flagged as potentially having FLE’s.
Figure 5.14 gives two examples of γ̂(h)’s of a flagged cluster and isolated
landmarks.
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Figure 5.12: Examples of category one atypical landmark pairs (red). The first
row shows their γ̂(h)’s while the second row displays their 3D displacement
vectors.

Certain Unsure Cluster Isolated

R

pMR-aUS
1(9), 2(10)

19(11), 2(8)

3(5), 4(3), 7(1, 4),

14(1),
n/a 18(14)

pMR-bUS 1(9), 16(6)
1(13), 2(14), 3(1)

15(13), 25(15)
19 2(14), 19(1)

bUS-aUS
1(7), 7(8)

12(11) , 24(14)
15(3) 25

1(11), 18(12)

19(1)

bUS-dUS 21(3), 27(11) 6(10), 7(22) 19 n/a

B

G1 3(4), 10(1) n/a 12
2(3), 4(4)

9(6)

G2 9(5) 12(1) n/a 3(21)

G4 n/a 1(6) n/a 3(16)

Table 5.2: Indexes of problematic landmark pairs, e.g., 1(9) means patient 1
and landmark pair No.9.

Since the brain may undergo deformation during surgery, atypical behaviors
of d’s may indicate actual deformation of the brain. In order to investigate
whether “problematic" landmarks contain localization errors, we sent the
findings (mixed with good landmarks) to 3 experienced neuro-radiologists for
validation and rating. They carefully examined the landmark coordinates in
physical space using Slicer (Fedorov et al., 2012) and assigned a score from
[1(poor), 2(questionable), 3 (acceptable) , 4 (good)]. Landmarks in Category
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Figure 5.13: Examples of category two landmark pairs. These landmarks have
atypical γ̂(h)’s, but their displacement vectors could be reasonable.

Figure 5.14: Examples of (a) two flagged clusters and (b) two isolated land-
marks.

one and category two received an average score of 1.5 and 2.4 respectively.
Figure 5.15(a) shows the user interface for the validation procedure.

5.2.5 Potential Evaluation Bias

FLEs and non-evenly distributed landmarks can incur bias in the registration
evaluation:

1. Since most FRE metrics takes into account all landmarks equally (not
weighted), landmarks with FLEs produce false registration error and can
drive the algorithm towards aligning those inaccurately located markers.
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Figure 5.15: (a) The user interface for the landmark validation; (b) Evaluation
bias caused by un-evenly distributed landmarks. On the left is an i -US image.
Ir and I∗r are registered p-US’s using two different registration methods.

2. cluster and isolated landmarks both are not (densely) evenly distributed,
thus they incur evaluation bias that prioritizes regions that have land-
marks. As in the p-US to i -US registration example shown in Fig-
ure 5.15(b), landmarks only exist in the sulcus region (as two clusters).
Here, we have registered p-US images Ir and I∗r , which are registered by
two different registration methods. In the landmark-based evaluation,
Ir has a better FRE score than I∗r because it perfectly aligns the sulcus
region (while ignoring the rest of image). However, in surgeons’ eyes, it
is I∗r which is more reasonable (useful) since it provides accurate tumor
boundary alignment.

5.2.6 Discussion

Manual landmark annotation is (mostly) a subjective task, thus public datasets
may inevitably have FLEs. To mitigate the evaluation bias caused by FLEs,
one strategy is to apply a landmark weighting (selection) scheme (Danilchenko
and J.M., 2011; Shamir R.R. and Y., 2012; Thompson et al., 2013). However,
at the current stage, these methods are still not thoroughly validated and
should be approached with caution. RESECT and BITE are both purposefully
created for image-guided neurosurgery. We understood that anatomical fea-
tures in the brain, mainly corner points and small holes, will most likely not
appear uniformly in image space. In order to achieve a non-biased comparison
between registration algorithms, dataset providers can add notes to describe
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the distribution (limitations) of landmarks so that users, if necessary, can
incorporate more criteria, such as surfaces (dos Santos et al., 2014), in the
evaluation.

Whether or not public datasets assure unbiased comparisons for registra-
tion evaluation is a crucial question that deserves more attention from the
image registration community. From this objective third-party screening, we
conclude that RESECT and BITE are both reliable datasets with a small
number of problematic landmarks and landmark distributions that may bias
the non-weighted FRE evaluation. Besides the fore-mentioned using advanced
evaluation criteria, some data providers offer to update their repository based
on users’ feedback, e.g., adding or correcting annotations, which is another
solution to assure unbiased registration evaluation.

As a tool for objective screening, variogram may have limitations. Never-
theless, we believe that this paper will serve as a foundation and draw more
attenton to this topic.
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Chapter 6

Conclusions and Future Work

This chapter concludes the thesis and discusses potential future research
directions.

6.1 Conclusions

This dissertation is devoted to establishing a foundation for utilizing registration
uncertainty in the context of neurosurgery. Since the spatial distribution
of registration error is particularly difficult to acquire, we propose to use
registration uncertainty as a surrogate to indicate error in neuronavigation.
We develop methods to estimate, investigate and understand registration
uncertainty, and validate them retrospectively using clinical data.

The dissertation is based on our publications (Luo et al., 2018a, 2020a,b,
2019a, 2018b). We summarize the contributions below.

• In Chapter 2, we proposed a novel landmark-driven active framework for
brain shift compensation. The proposed method is robust for aligning
preoperative and intraoperative Ultrasound images with missing corre-
spondences, and is fast enough for clinical applications. Besides, we can
obtain registration uncertainty in transformation parameters from the
probabilistic registration model. For areas that are difficult to align,
users can actively add new landmarks based on the image context and
visualization of the uncertainty measure provided by our method to
improve the registration accuracy further. To the best of our knowledge,
the proposed framework is the first method to actively combine user
expertise in brain shift compensation.
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• Misinterpreting the registration uncertainty and placing unwarranted
confidence in the alignment solutions may result in severe consequences.
In Chapter 3, we investigated the applicability of registration uncertainty
and categorized it into transformation uncertainty and label uncertainty.
We pointed out that using transformation uncertainty to quantify label
uncertainty is inappropriate and can be misleading. We also shared a
potentially critical finding that making use of the label uncertainty may
not always be helpful. How to apply the registration uncertainty is an
overlooked problem. We believe that this work will serve as a foundation
and draw more attention to this topic.

• A key assumption for using uncertainty to indicate the error is that these
two quantities have to be in a monotonic relationship. “Are registration
uncertainty and error monotonically associated?” is a fundamental
question that has been overlooked by researchers in the medical imaging
community. In Chapter 4, we systematically investigate the monotonic
association between Gaussian process registration uncertainty and error
in the context of Image-guided neurosurgery. We show empirically that
there is a weak-to-moderate positive monotonic correlation between point-
wise GP uncertainty and non-rigid registration error. At the current
stage, our findings indicate that it may not be ideal to apply the GP
uncertainty in practice. Nevertheless, this work opens a new avenue for
uncertainty/error relationship analysis and may inspire more research on
this topic.

• The variogram is a useful tool in geostatistics for capturing the spatial
dependence of stochastic processes. However, it has not received much
attention in the medical imaging field. In Chapter 5, we introduce
two variogram-based related projects. In the first project, we use a
variogram in the feature-matching step to remove vector outliers for the
proposed active image registration. In the second project, we share our
concern, according to findings from variogram-based experiments, about
the quality control of some public datasets that are used to evaluate
registration methods. By way of this chapter, we also expect researchers
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to find the variogram useful in other medical applications that involve
motion vectors analyses.

We believe that we have established a foundation for initiating a paradigm
shift from error to uncertainty in neuronavigation.

6.2 Future Work

We discuss further extensions, investigations, and other future work related to
the dissertation.

Component correlation in the deformation field interpolation The
proposed active image registration method uses the Gaussian process (GP) to
interpolate a dense deformation field from a sparse set of landmark displacement
vectors. The current version interpolates each component (i.e., elements in the
x and y directions of a 2D vector) with an independent GP and disregard any
component correlation. However, given certain physical properties of tissues,
e.g., incompressibility, the independence assumption is not ideal. In future
works, it is possible to leverage co-Kriging or multivariate GP interpolation
to take into account the interaction among components and improve the
registration.

-

User study for the interaction step One key point of the proposed
brain shift compensation framework is the “active registration” idea that
aims to overcome the limitation of automatic image registration. If users are
not satisfied by the initial registration result, they could manually add new
corresponding landmarks to drive the algorithm towards better results, guided
by the image context and visualization of registration uncertainty. Human
and machines have complementary abilities; we believe that an element of
simple user interaction should be added to the pipeline for some challenging
medical imaging applications. However, in the current version of the work,
this step has not been extensively tested. In the future, we will design more
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experiments (with clinical and synthetic data), together with user studies, to
further validate the “active registration step”.

Patch-level analysis of registration uncertainty Our analysis on the
applicability of registration uncertainty almost entirely focuses on the voxel
level discrepancies. In practice, surgeons typically may not look at these
uncertainty maps on such a fine scale and would be much more interested in
the pattern across a broad region. In future work, we will extend the work
to investigate correlation between the transformation uncertainty and label
uncertainty at the level of patches. In addition, we should further study the
implication of probabilistic registration.

In depth investigation of the association between registration uncer-

tainty and error The low-to-moderate correlation between point-wise GP
uncertainty and error from our findings indicates that it may not be ideal
for practical applications. Since the choice of the inference model, hyperpa-
rameters, priors, and image context all influence the relationship between
uncertainty and error, findings obtained by other probabilistic image registra-
tion approaches may yield different results. As a result, searching for a more
appropriate PIR framework that provides uncertainty highly correlated with
error may be another meaningful future direction,

Approaches to estimate uncertainty for non-probabilistic registra-

tion Only probabilistic image registration approaches can estimate registra-
tion uncertainty. However, non-probabilistic registration approaches are the
choice for the majority of clinical applications. In future work, we plan to
develop a universal strategy that estimates uncertainty for non-probabilistic
registration, increasing the feasibility of non-rigid registration in interventional
guidance, and advancing the state of image-guided therapy.

Beyond neuronavigation Given the trend to develop navigation system
relying on unobtrusive imaging modalities such as the intraoperative Ultra-
sound, methods developed in the dissertation can be not only useful for brain
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shift compensation, but also many other clinical applications that require the
tracking of tissue deformations.
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