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ABSTRACT

Deep learning is an algorithm that solves machine learning problems with differentiable
computational graphs andgradient-based learningmethods.While standardmachine learn-
ing techniques focus on feature engineering, deep learning made it possible to extract es-
sential features from complex datasets automatically. A key to the extraction of a good
representation is a model of an object of appropriate granularity. A number of network
architectures have been proposed to capture the structure of datasets in various domains.

However, most deep learning research focuses on the correlation between dimensions of
the data. Real-world datasets often have specific correlation structures between data points,
althoughmany algorithms typically assume the data distribution is i.i.d. An assumption on
the instance-wise structure behind the dataset in such a situation is useful from both the en-
gineering and scientific perspectives. For engineering, the structural assumption constrains
the space to be explored and improves performance. For science, the reasonable constraints
on an external world will give us the reason why efficient information processing systems
is in its present form.

Based on the aforementioned motivations, we present a numerical analysis and model
proposal of a deep learning algorithm from the perspective of instance-wise structure. By
using the representative representation learning algorithm, called variational autoencoder
(VAE), as a basic technique, we focus on three types of instance-wise structures: cluster
structure, hierarchical structure, and local structure. First, on the inference of VAE, the se-
quential application of VAE to a noisy image data gradually removes the noise from the
image. We numerically reveal that such a denoising phenomenon is caused by approach-
ing the cluster center for the dataset which has a clear cluster structure. Next, we construct a
practical probabilistic distribution for training VAEs with a hyperbolic latent space against
a hierarchical dataset. The hierarchical structure can be effectively embedded in hyperbolic
space, and our approach enables us to incorporate uncertainty into the embedding. Last,
we show that a meta-learning algorithm called model-agnostic meta-learning (MAML) is
useful for representation learning of local structures.

This thesis aims to reveal why the information processing systems work well by focusing
on the relationship between the structure behind the dataset and the learning algorithm or
the model. Neural network studies are capable of using arbitrary differentiable computa-
tional graphs, allowing for awide variety of experimental studieswith this kind of scientific
and engineering motivation. Therefore, our approach is widely applicable to other subjects
of representation learning, and we expect that this thesis will be a part of such future intel-
ligence research.
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ṽ from 1.0 to 10.0 in a log-scale. . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.6.4 Estimated proportions of remaining blocks for Vanilla and Hyper-
bolic VAEs trained on Atari 2600 Breakout screens as they vary with
the norm of latent variables sampled from a prior. . . . . . . . . . . 59

Figure 4.A.1 Visual examples of hyperbolic wrapped distribution on ℍ2. Log-
density is illustrated on ℬ2 by translating each point from ℍ2 for
clarity. We designate the origin of hyperbolic space by the × mark. . 64

Figure 4.B.1 The visual results of Vanilla and Hyperbolic VAEs applied to an ar-
tificial dataset generated by applying a random perturbation to a bi-
nary tree. The visualization is being done in the Poincaré ball. Red
points are the embeddings of the original tree, and the blue points
are the embeddings of all other points in the dataset. Pink × repre-
sents the origin of hyperbolic space. Note that the hierarchical rela-
tions in the original tree was not used during the training phase. . . 65

Figure 4.B.2 Examples of observed screens in Atari 2600 Breakout. . . . . . . . . 66
Figure 4.B.3 Images generated by Vanilla VAE with constant norm ‖ṽ‖2 = a. . . . 67
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1
I N TRODUCT ION AND BACKGROUND

Machine learning is my favorite branch of philosophy.
“Experimental philosophy” if there’s even such a thing.

— David Ha (hardmaru, 2019a,b)

Why and how can we think? What makes us intelligent? This is one of the ultimate ques-
tions in the study of artificial intelligence. This thesis attempts to approach representational
learning of neural networks from both scientific and engineering perspectives as a first step
towards answering the above challenging question. In particular, we focus on the struc-
ture of the external world, which is essential for the formation of the intelligent system. By
studying the relationship between machine learning models and the structure of various
datasets, we reveal the behavior of the system and suitable learning algorithms in some
particular structures.

1.1 art i f i c i a l neural networks

There are many approaches from various fields for intelligence research. The most direct
approach to the elucidation of biological intelligence would be the experimental sciences
for animals and humans, such as neuroscience and cognitive science. In these approaches,
researchers conduct experiments and data analysis based on the scientific motivation of
understanding the behavior and neural activity of organisms and humans. On the other
hand, research on artificial neural networks, which aims to model the brain, attempts to
construct an abstracted mathematical model of the underlying mechanism and to explain
complex phenomenawith a small number of equations andparameter relationships (Dayan
et al., 1995; Hebb, 1949; McCulloch and Pitts, 1943; Rosenblatt, 1958).

Research that originated in artificial neural networks has now grown into two major
fields: computational neuroscience andmachine learning. In the field of computational neu-
roscience, researchers have been working on the elaboration of mathematical models and
the reflection of new experimental facts to construct biologically plausible mathematical
models. On the other hand, in the field of machine learning, researchers use the simplified

1
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neural network models for engineering applications. Machine learning research focuses on
proposing models and learning algorithms to solve practical problems in the real world.
For this purpose, the explainability of biological systems and other phenomena in nature is
not necessarily the goal. Such changes in constraints sometimes lead to significant research
developments. One of these developments is deep learning.

Deep learning (LeCun, Bengio, and Hinton, 2015) is a general term for techniques that
model machine learning problems using neural networks and train the model parameters
by a gradient-based method. Research on artificial neural networks has started with the
aim of intelligent information processing that mimics neural circuits of living organisms.
In recent years, neural networks are widely used as approximators of nonlinear functions.
These algorithms outperform standard machine learning techniques and humans in vari-
ous practical applications such as image classification (Krizhevsky, Sutskever, and Hinton,
2012), audio generation (Oord et al., 2016), and agents of games (Mnih et al., 2015; Sil-
ver et al., 2017). The theoretical aspects behind them are also gradually being elucidated
(Arora et al., 2018; Jacot, Gabriel, and Hongler, 2018; Poole et al., 2016; Schoenholz et al.,
2017). Research in deep learning has progressed rapidly with the background of substan-
tial computational resources and large datasets. Especially, a differentiable computational
graph, which is the primary and common component of neural networks, makes it possible
to interchange technologies that have been cultivated in various domains.

1.2 advantage s o f art i f i c i a l neural network re s earch

Most of the deep learning models and learning algorithms proposed in recent years no
longer have the aspect of the imitation of biological systems. For example, while deep learn-
ing often uses back propagation-based optimization, there is still a debate on whether or
not the biological brain is capable of performing back propagation (Lillicrap et al., 2020;
Whittington and Bogacz, 2019). However, systems that do not necessarily have a strong
resemblance to living organisms and can solve the same problems as biological organisms
are rather highly useful for the study of intelligence. It is possible to compare the similar-
ities with organisms such as humans, monkeys, and mice by considering a mathematical
model as an experimental subject (Leibo et al., 2018; Marblestone, Wayne, and Kording,
2016; Yamins and DiCarlo, 2016). Revealing abstract compatibilities at the level of the phe-
nomenon, rather than the hardware, has important implications for the understanding of
intelligence. Also, if the computational models solve the problem in a completely different
way thanwe organisms do, they reveal that the biological systemmay not be optimal for the
problem. Deep learning is one of the most promising mathematical models for engineering
research in modern machine learning and is a suitable subject for this motivation.

One of the advantages of using mathematical models as experimental subjects is their
flexibility. There are limitations on the metrics that can be measured with human and ani-
mal subjects, and it is impossible to perform arbitrary operations on them from an ethical
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and technical point of view. Besides, it has been pointed out that it is challenging to ana-
lyze high-dimensional observations without knowing the guiding principles behind them
(Jonas and Kording, 2017). In contrast, mathematical models such as neural networks en-
able us to conduct flexible experiments with arbitrary metrics. For example, there are stud-
ies that compare the internal representation of a trained network with the neural activity of
an animal (Yamins and DiCarlo, 2016); compare representations between networks trained
with different algorithms and/or architectures (Kornblith et al., 2019); examine the impact
of removing a part of the network (Morcos et al., 2018); examine the behavior of the model
in an environment similar to a cognitive experiment on an animal (Leibo et al., 2018). It is
possible to take correspondence between the observed behavior and the principles behind
it for a machine learning model since we know the learning algorithm that serves as the
guiding principle. Also, deep learning research has the separability of objective functions,
models, and learning algorithms, as will be discussed below. This property contributes to
the flexibility of an experimental setup.

1.3 r e pr e s entat ion learn ing w i th neural networks

In this thesis, we focus on the representation learningwith deep neural networks. One of the
most notable features of deep learning is representation learning of complex datasets. The
performance of machine learning methods is heavily dependent on the choice of data rep-
resentation or features (Bengio, Courville, and Vincent, 2013). Standard machine learning
techniques have focused on feature engineering: the design of preprocessing pipelines and
data transformations. In contrast, deep learning allows us to automatically extract useful
features for a task from data with only simple preprocessing. For instance, Le et al. (2012)
showed that unsupervised learning of deep neural networks for unlabeled data allows high-
level representations, such as those known as “grandmother cells” (Quiroga et al., 2005),
to emerge.

Representation learning for unlabeled data can be considered in the following frame-
work. Let x ∈ 𝒳 be a data and g ∶ 𝒳 → 𝒵 be a function that projects the data to a latent
(representation) space. In machine learning, this function is expressed with some parame-
ters ϕ. We can model this function gϕ by a neural network. Given 𝒟 = {x(1), … , x(N)} as a
dataset, the goal of representation learning is to acquire a suitable model for the dataset by
minimizing some objective function:

min
ϕ

ℒ(gϕ; 𝒟). (1.1)

In this case, the “goodness” of themodel gϕ depends on the design of the objective function
ℒ(⋅). Typically, it is necessary to design an appropriate training (optimization) algorithm
to solve this minimization problem, depending on the objective function ℒ(⋅) and model
gϕ. Appropriate design of training algorithms can reduce the computation time and guar-
antee convergence to the optimal solution. On the other hand, deep learning research uses
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gradient-based optimization methods regardless of these constraints. Although gradient-
based training on models that are nonlinear to parameters is generally not guaranteed to
be optimal, deep learning is empirically known to achieve good performance. In addition,
its theoretical aspects have also been revealed in recent years. Since gradient-based opti-
mization requires only gradients with respect to the parameters of Equation 1.1, we can use
any differentiable computational graphs in gϕ. In other words,we can manipulate the objective
function or model independently without being aware of the training algorithm in deep learning
research. This feature has made it possible to interchange the techniques developed in var-
ious fields on the foundation of a differentiable computational graph. As a result, it leads
to rapid progress in research and the achievement of engineering motivation.

In addition to the aforementioned engineering advantages, this feature has a significant
contribution to a scientific studies. Since each element is independently interchangeable,
it can serve as a basis for a reductive study of the contribution of each element. We men-
tioned above that models acquired by machine learning can be used as experimental sub-
jects for intelligence research as well as living organisms. Examining the properties of well-
performing models can lead to an understanding of factors that are important to intelli-
gence. By treating the pair of datasets, models, and objective functions as some sort of
sandbox environment, we can take an “understanding by construct” approach to intelli-
gence research.

So what is essential to acquire good representation? A good representation should be one
which does not include factors that affect subsequent tasks, such as noise and spurious
correlation in the data (Arjovsky et al., 2019; Bengio, Courville, and Vincent, 2013; Tishby,
Pereira, and Bialek, 2000). It is essential to have a model that represents the object with
appropriate granularity. Although neural networks have the expressive power to be any
nonlinear feature extractor, their capacity is too large without proper assumptions. For ex-
ample, deep learning studies for natural images mostly use convolutional neural networks
(Fukushima and Miyake, 1982; LeCun et al., 1989). Such a convolutional layer takes ad-
vantage of shift- and location-invariance in an image to reduce the model’s search space.
Other layers that exploit structural constraints of the data have been extensively studied.
However, most deep learning research focuses on the correlation between dimensions of
the data. Many algorithms typically assume the data distribution is i.i.d. On the other hand,
real-world datasets often have specific correlation structures between data points. In such
situations, the assumption of a structure between data points can provide a better represen-
tation.

1.4 st ructure b eh ind datas e t s and the in f er ence model

An assumption on the structure behind the dataset is useful for a practical situation; it con-
strains the space to be explored and improves performance. Such an assumption is also
important in terms of elucidating the mechanisms of intelligent information processing.
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From the constraints of the external world, we can understand the reason why human in-
formation processing is as its current form. In this section, we summarize the structural
constraints used for neural networks from two perspectives: dimension-wise and instance-
wise structures.

1.4.1 Dimension-Wise Structure

A typical approach of structural constraints to datasets is interdimensional structure, which
has been the subject of a tremendous amount of neural network research. A number of lay-
ers of networks have been proposed for high-dimensional datasets, assuming correlations
between dimensions. The most standard layer, the fully-connected layer, imposes no as-
sumptions about the inter-dimensional correlations of the input. The convolutional layer
(Fukushima and Miyake, 1982; LeCun et al., 1989) is widely used for datasets where cor-
relations can be assumed between adjacent dimensions, such as image and time series. In
particular, for natural images, this layer reflects the empirical fact that adjacent pixels are
correlated, and objects contained in the image have invariance to coordinate shifts. One-
dimensional convolution can utilize temporal correlations of time-varying data, such as
audio. Furthermore, there are various layers, such as recurrent connection, attention (Cho
et al., 2014; Graves, 2013; Sutskever, Vinyals, and Le, 2014; Vaswani et al., 2017), and di-
lated convolution (Chen et al., 2014, 2017), to capture periodic or long-range correlations
that cannot be achieved by convolution alone.

1.4.2 Instance-Wise Structure

The structure between data points has been widely studied in the field of manifold learn-
ing. Manifold learning is an approach that aims to assign a low-dimensional coordinate to a
high-dimensional observation. The algorithms ofmanifold learningmodel the interinstance-
wise structure mainly by adopting a non-parametric approach based on nearest neighbor
graphs. A number of methods have been proposed to model nonlinear manifolds using
a patchwork of locally flat tangent spaces (Brand, 2003; Roweis and Saul, 2000; Tenen-
baum, Silva, and Langford, 2000; Vincent and Bengio, 2003). The locally linear embedding
(Roweis and Saul, 2000) maps the original data point to a low-dimensional space by com-
puting the weighted sum of its neighbor points. The Isomap (Tenenbaum, Silva, and Lang-
ford, 2000) constructs a distance matrix between data points using k-neighborhood graphs
and embeds the data in a low-dimensional space with multidimensional scaling so that the
distances are preserved.

Althoughmanymachine learningmethods, including deep learning, make i.i.d. assump-
tions about data distribution, real-world datasets often have specific correlation structures.
For instance, the object classification task is typically a problem for machine learning, and
there is a hierarchical structure to the concept of things that humans perceive. Other than
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such an explicit situation, varying times and environments in which data are collected can
affect their observations. Therefore, focusing on the structure between data points is useful
for learning representations using neural networks.

1.5 r e s earch que st ions

This thesis’s primary focus is the relationship between the structure of the external world
and representation learning. Most machine learning studies assume that the dataset is ob-
tained by i.i.d. In other words, consider the situation p(𝒟) = ∏i p(x(i)). On the other hand,
there are many different structures in the real world, and we cannot guarantee that such an
assumption holds true. We can consider the following research questions in this situation.

que st ion 1 As mentioned above, most models proposed in existing machine learning
research assume i.i.d. for the data distribution. Then, how would the resulting model gϕ,
trained under those assumptions, behave for a dataset with a particular structure? Are there
any principles or unique properties in its behavior, or is there any correlation with the bio-
logical information processing?

que st ion 2 We can assume a typical structure of a real-world dataset by narrowing it
down to a certain domain. Can we design amodel gϕ that is more appropriate than existing
methods when assuming a specific structure for the data distribution p(𝒟)?

que st ion 3 Under an assumption of a particular structure for the data distribution
p(𝒟), is it possible to consider a training algorithm that achieves better performance, with-
out changing the model gϕ?

We study the above questions individually, assuming the structure of a typical dataset.
If the structure of the external world is different, the information processing system suit-
able for it should be different. By studying inference models that assume the structure of
a dataset, we aim to gain insight into the relationship between intelligent systems and the
external world with which they are in contact.

In addition to the aforementioned questions, there is also room to consider an objective
function suitable for the purpose. However, in this study, we follow the Bayesian principle
to maximize the log likelihood. We also assumed several explicit structures as data distri-
butions throughout the study. On the other hand, a good data distribution to replicate the
real world is not inherently self-evident and could be a challenging and essential question.
Although there is a possibility of approaching this issue using deep learning, we do not go
into it in this thesis.
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1.6 contr i but ion of th i s the s i s

As remarked before, deep learning studies less focused on a structure between data points
than dimension-wise structure. The instance-wise structure has been incorporated by a non-
parametric approach in the context of manifold learning. In this thesis, we present a nu-
merical analysis and model proposal of a deep learning algorithm from the perspective
of instance-wise structure. In particular, we discuss the relationship between instance-wise
structures and their learning algorithms, not only from an engineeringmotive but also from
a scientific one. Machine learning is a practical discipline that aims to solve real-world prob-
lems by finding the rules behind data rather than writing an explicit code. On the other
hand, we emphasize that we can also consider machine learning and statistical learning
problems as scientific objects. A model or algorithm that has been shown to be useful for
a given task can itself capture a part of the nature of information processing for intelligent
agents, including humans. Also, insights into objects revealed by scientific motivation lead
to the discovery of practical engineeringmethods. As such, both scientific and engineering mo-
tives can complement each other. In Chapter 3, we investigate the behavior of a trained model
from a scientific perspective, and in Chapter 4 and 5, we propose practical models from an
engineering perspective.

The target of this thesis is representation learning for a dataset in which the structure
between instances can be assumed. We focus on three types of instance-wise structures:
cluster structure, hierarchical structure, and local structure.

In Chapter 2, we briefly explain the representative methods of training generative mod-
els with deep neural networks (called deep generative models). First, we explain the la-
tent variable-based generative model, which is the typical graphical model for represen-
tation learning in neural networks. Then, we show three methods of deep generative mod-
els, called variational autoencoder (VAE), generative adversarial network, and normalizing
flow. We summarize the properties of each model and explain that the VAE is suitable for
our research motivation.

In Chapter 3, we verify the characteristics of the existing VAE inference for cluster struc-
tures from numerical experiments. VAE can remove noise from image data by using an
encoder and a decoder. It is known that the noise is gradually reduced by repetition of en-
coding and decoding. However, the effect of this repeated inference is only empirically re-
ported. In this chapter, we analyze the inference process of VAE numerically using a dataset
with clustered structures that are widely available in the real world to understand themech-
anism of such phenomena.

In Chapter 4, we propose useful probability distributions for datasets with a hierarchical
structure and a representation learning method using them. Since there are many phenom-
ena that have a hierarchical structure in nature, a generative model specific to this situation
is valuable. In recent years, embedding hierarchical datasets into hyperbolic spaces has been
a hot topic of research in the field of natural language processing. These studies provide a



8 introduct ion and background

method to deterministically embed observations into hyperbolic space. In this chapter, we
construct a probability distribution for embedding datasets in hyperbolic space with uncer-
tainty and propose a deep generative model using this distribution.

In Chapter 5, we propose a training method for deep generative models that is useful for
datasetswith local structures. Here, we also discuss disentanglement under the assumption
of local structure. Since many of the datasets targeted by machine learning are governed by
the consistent rules of the physical world, it is reasonable to assume that high-dimensional
observations are represented using a small number of control variables. Disentanglement
representation, which aims to extract these control variables, has attracted a lot of attention
in recent years and has been intensively studied. Although it has been shown that disen-
tanglement representation cannot be achieved without some kind of inductive bias to the
dataset or model, the specific form of inductive bias has not been actively discussed so far.
In this chapter, we show that meta-learning can be a useful inductive bias by considering
locality in the dataset.

Finally, we summarize these studies in Chapter 6 and discuss future prospects.



2
PREL IM INAR I E S : D EEP GENERAT IVE MODEL S

In this chapter, we first explain the latent variable-based generative model, which is the
typical graphical model for representation learning in neural networks. Then, we briefly
review the algorithms to train a generative model with neural networks, called deep gener-
ative models. After comparing the properties of each model, we explain the suitability of
using the model called Variational Autoencoder for this study.

2.1 lat ent var iab l e - ba s ed generat i v e model s

Conditional distributionswith latent variables are often usedwhenmodeling high-dimensional
data such as images, video, and audio. For example, observations of natural images take a
pixel-by-pixel intensity vector, so the higher the resolution, the higher the dimension of the
observation. In contrast, the content of an image can be represented by a small number of
control parameters, obviously independent of resolution. In other words, we consider the
probability distribution to be in a dimension smaller than the dimension of x (Rifai et al.,
2011). Conceptually, let the data be x, we give its probability distribution

x ∼ p(x) (2.1)

as

z ∼p(z), (2.2)
x ∼p(x|z) (2.3)

using the latent variable z. Once we get conditional distributions, we can calculate the pos-
terior distribution

p(z|x) =
p(x|z)p(z)

∫ p(x|z)p(z)dz
(2.4)

of the latent variable by Bayes’ theorem. This posterior distribution can be used to estimate
the low-dimensional control parameters from the high-dimensional data. Such an operation
is called recognition, and its opposite, the inference of data from latent variables, is called
generation (Figure 2.1). Note that, if the conditional distribution from z to x is complex, the

9
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integration of the denominator of Equation 2.4 is not analytically tractable in general. This
is exactly the case with the parameterization using neural networks described below.

Recognition

Generation

Figure 2.1: Schematic diagram of recognition and generation

Here the representationpower of the entiremodel depends on themodel andparametriza-
tion of p(x|z). As mentioned earlier, real-world datasets are high-dimensional and complex,
thus we require tools to model such probability distributions. Neural networks are widely
used to model high-dimensional and nonlinear probability distributions. Models such as
theHelmholtzmachine (Dayan et al., 1995) and the restricted Boltzmannmachine (Hinton,
2002; Smolensky, 1986) have been proposed so far, but they are known to be challenging to
scale to large datasets. In the following, we describe methods for modeling conditional dis-
tributions using neural networks, with particular focus on those that have been developed
in recent years.

2.2 parameter i z ing generat i v e model s w i th neural networks

The deep learning technology has made it possible to learn a complex probability distribu-
tionwith high dimensional observation and high nonlinearity. By using the deep generative
model, we can generate large-scale datasets such as natural images (Brock, Donahue, and
Simonyan, 2019; Kingma and Dhariwal, 2018; Oord and Vinyals, 2017) and audio (Oord
et al., 2016) with high quality. Variational autoencoder (VAE) (Kingma and Welling, 2013;
Rezende, Mohamed, andWierstra, 2014) maximizes the variational lower bound of the log-
likelihood. It extracts the latent representation of a dataset using an encoder that projects
from the space of the data to the space of the latent variables and a decoder that gives an
inverse mapping. Generative adversarial network (GAN) (Goodfellow et al., 2014) learns a
probability density that spans in dimensions lower than the dimensions of the observation
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space by using likelihood-free adversarial learning. Normalizing flow (NF) (Dinh, Sohl-
Dickstein, and Bengio, 2017; Rezende and Mohamed, 2015) allows us to train a complex
probability distribution with an exact log-likelihood by using an invertible network and
change-of-variable trick. Here, we briefly summarize the latent variable-based deep gener-
ative model.

2.2.1 Variational Autoencoder

VAE (Kingma andWelling, 2013; Rezende, Mohamed, andWierstra, 2014) is one of the typ-
ical approaches to model the probabilistic distribution for high-dimensional observation.
As described above, the simplest, and most common, graphical model with latent variables
is one that is specified as factorization with the following structure (Kingma, 2017):

pθ(x, z) = pθ(z)pθ(x|z). (2.5)

Bymodeling the conditional distribution pθ(x|z)with a deep neural network,we can sample
x efficiently even when the data space 𝒳 is high-dimensional. However, training in such a
model is challenging because of the intractability of the marginal distribution. When we
optimize the model parater θ for the dataset 𝒟 = {x(i)}Ni=1, we maximize the log-likelihood
under an i.i.d. assumption:

max
θ

log pθ(𝒟) = max
θ

N
∑
i=1

log pθ(x(i)). (2.6)

Although the posterior distribution pθ(z|x) is necessary to calculate the above marginal dis-
tribution, this posterior distribution is generally intractable when a neural network is used
for pθ(x|z).

VAE solves the above problem by introducing an additional parameter ϕ and approx-
imate the posterior distribution of z to evaluate the lower bound on the variation of the
log-likelihood.

log pθ(x(i)) = log∫ pθ(x(i), z)dz = log∫ pθ(x(i)|z)pθ(z)dz

= log∫ qϕ(z|x)
qϕ(z|x)pθ(x

(i)|z)pθ(z)dz

≥ ∫ qϕ(z|x) log pθ(x(i)|z)pθ(z)
qϕ(z|x) dz

= ∫ qϕ(z|x){log pθ(x(i)|z) − log
qϕ(z|x)
pθ(z) }dz

=𝔼qϕ(z∣x)[log pθ(x(i) ∣ z)] − DKL(qϕ(z ∣ x(i))∥pθ(z)) = ℒ(θ,ϕ; x(i)), (2.7)



12 pre l im inar i e s : d e e p generat i v e model s

where the third line is derived through Jensen’s inequality. In the above equation,DKL(q‖p)
is the Kullback–Leibler divergence of probability distributions q and p. The first term of the
objective function corresponds to the reconstruction error, and the second term corresponds
to the regularization. This objective function is called as the variational lower bound or the
evidence lower bound (ELBO). In summary, we can evaluate the objective functionwithout
a true posterior pθ(z|x).

The VAEmodels conditional distributions pθ(x(i)|z) and qϕ(z|x(i)) using neural networks:
a decoder and an encoder. Therefore, the encoder gives a mapping of data, such as natural
images to a latent variable space, and the decoder gives an inverse mapping. Conceptu-
ally, the conditional distribution with the encoder neural network are given by following
equation:

ξe =encoderϕ(x), (2.8)
z ∼p(z|ξe), (2.9)

and the same for the decoder network as:
ξd =decoderθ(z), (2.10)
x ∼p(x|ξd), (2.11)

where ξe and ξd represent the parameter for the probabilistic distributions. We typically
model these probabilistic distributions by a simple distribution such as an independent
Gaussian or an independent Bernoulli. The VAEminimizes the negative of the ELBO (Equa-
tion 3.1) according to two neural networks (Equation 2.8 and Equation 2.10) typically by
using a gradient-based method such as stochastic gradient descent.

One of the difficulties inmaximizing ELBOwith a gradient-based approach is evaluating
the gradient with respect to an encoder parameter ϕ.

∇ϕℒ(θ,ϕ; x) =∇ϕ𝔼qϕ(z∣x)[log pθ(x, z) − qϕ(z ∣ x)]

≠𝔼qϕ(z∣x)[∇ϕ(log pθ(x, z) − qϕ(z ∣ x))]. (2.12)
Because the expectation itself also depends on the parameter ϕ, the second equation is not
equal to the gradient, and the gradient can not be computed from the naive Monte-Carlo
estimator. In VAE, the probability distribution of the encoder qϕ(z ∣ x) is modeled by using
a parameter-free random variable ϵ and a deterministic transformation g.

z = g(ϵ,ϕ, x), ϵ ∼ p(ϵ). (2.13)
A simple Monte-Carlo estimator of the encoder’s gradient is given by this modeling:

∇ϕℒ(θ,ϕ; x) =∇ϕ𝔼qϕ(z∣x)[log pθ(x, z) − qϕ(z ∣ x)]

=∇ϕ𝔼p(ϵ)[log pθ(x, z) − qϕ(z ∣ x)]

≃1
L

L
∑
l=1

∇ϕ(log pθ(x, z) − qϕ(z ∣ x))∣
ϵ=ϵ(l) (2.14)
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where z in above equations depends on the actual realization of ϵ through g. Such a tech-
nique is called the reparameterization trick.

2.2.2 Generative Adversarial Network

VAE needs to give the probability distribution of observations as described above explic-
itly. Such modeling leads to support for the probability distribution of the data across all
dimensions of observation. On the other hand, considering datasets such as natural images,
the support of probability distributions is low-dimensional, and the observation process is
not given by simple distributions such as Gaussian. GAN (Goodfellow et al., 2014) solves
these problems by optimizing a likelihood-free objective function.

GAN framework is a training algorithm that estimates generative models via an adver-
sarial process. In the GAN framework, we train two models simultaneously: a generative
model G that maps the latent variable to the data space, and a discriminator D that es-
timates whether each sample comes from the dataset or the model. Compared with the
conventional algorithms, this method receives attention since high-fidelity samples can be
obtained, particularly in image generation task. GAN optimizes the generator G and the
discriminator D through the following two-player minimax game:

min
G

max
D

V(D,G) = min
G

max
D

{𝔼x∼P(x)[logD(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]}. (2.15)

In the approach of GAN, the generated samples are computed by the deterministic gener-
ator x = G(z), so the randomness only comes from the latent variable z ∼ p(z). Because
of the construction, the samples generated by the generator are distributed at most in the
dimensions of the latent variables.

2.2.3 Normalizing Flow

While VAE and GAN can model probability distributions of high-dimensional observa-
tional data, they do not have explicit log-likelihood. One needs to be careful to apply these
methods to situations where log density values are useful, such as anomaly detection. On
the other hand, NF (Dinh, Sohl-Dickstein, and Bengio, 2017; Rezende,Mohamed, andWier-
stra, 2014) provides a model in which the log-likelihood can be rigorously evaluated using
a deep neural network. In NF, x is generated from the random variable z via a deterministic
map, similar to GAN. In this case, NF limits the transformations of each layer to those that
are invertible. Let the transformation of ℓ-th layer be fℓ ∶ ℝd → ℝd, the overall network is

x = zL = fL ∘ ⋯ ∘ f2 ∘ f1(z0). (2.16)
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Now, between the invertible randomvariables a, b inwhich b = f(a)holds, p(b) = p(a)∣det 𝜕f/𝜕a∣−1

holds. Using this change-of-variables law, the logarithmic density of the data in the obser-
vation space can be expressed as follows.

log p(x) = log p(z0) −
L

∑
ℓ=1

log ∣det 𝜕fℓ
𝜕zℓ−1

∣. (2.17)

NF is a method to optimize the objective function given in the above equation by calcu-
lating the gradient for each parameter of each layer. The log-determinant of the Jacobian
for each layer is required to evaluate the log density, but the log-determinant of the high-
dimensional Jacobian is generally computationally expensive. A number of layers have
been proposed that have expressive power and its log-determinant can be easily evaluated
(Behrmann et al., 2019; Dinh, Sohl-Dickstein, and Bengio, 2017; Hoogeboom, VanDen Berg,
and Welling, 2019; Kingma and Dhariwal, 2018; Kingma et al., 2016; Tomczak and Welling,
2016, 2017).

As mentioned above, we reviewed a representative latent variable-based deep genera-
tive models. The characteristics of each model are as follows. VAE can encode data into

Table 2.1: Comparison of typical deep generative models

VAEs GANs NFs

Tractable density lower bound 7 3

Inference availability 3 7 3

Dimensionality reduction 3 3 7

latent variables and reduce the dimension of latent variables with respect to the observed
dimension. This is a useful property for representation learning. On the other hand, the
objective function of VAE is not an exact log-likelihood, but a variational lower bound of
the log-likelihood. GAN generates high-dimensional observations from low-dimensional
latent variables, but there is no encoder network, so it cannot extract the latent representa-
tion from observation. Also, since it is a likelihood-free learning method, we need to use
some kind of metrics such as inception score (Salimans et al., 2016) or Fréchet inception
distance (Heusel et al., 2017) to assess the model. NF takes a slightly different approach
from these models. Since NF uses the variable transformation of the integral as described
above, the dimension of the latent variable must be the same as the observed dimension.
Due to this constraint, NF cannot perform dimensionality reduction for high-dimensional
datasets such as images, which leads to an increase in the model size. Since we aim at repre-
sentational learning, a model that has an encoder network and is capable of dimensionality
reduction is suitable. For the above reasons, we conducted this study using VAE as a basic
tool.



3
I N F ERENCE DYNAM IC S OF VAE S AGA INST CLUSTER STRUCTURE

Deep neural networks are good at extracting low-dimensional subspaces (latent spaces)
that represent the essential features inside a high-dimensional dataset. Deep generative
models represented byvariational autoencoders (VAEs) can generate and infer high-quality
datasets, such as images. In particular, VAEs can eliminate the noise contained in an image
by repeating the mapping between latent and data space. To clarify the mechanism of such
denoising, we numerically analyzed how the activity pattern of trained networks changes
in the latent space during inference. We considered the time development of the activity
pattern for specific data as one trajectory in the latent space and investigated the collective
behavior of these inference trajectories for many data. Our study revealed that when a clus-
ter structure exists in the dataset, the trajectory rapidly approaches the center of the cluster.
This behavior was qualitatively consistent with the concept retrieval reported in associative
memory models. Additionally, the larger the noise contained in the data, the closer the tra-
jectory was to a more global cluster. It was demonstrated that by increasing the number
of the latent variables, the trend of the approach a cluster center can be enhanced, and the
generalization ability of the VAE can be improved.

3.1 in troduct ion

Research on deep generative models, which extract essential features from an unlabeled
dataset, is currently an active research area. Deep generative models have been reported to
be useful in a broad range of applications, including generating images (Goodfellow et al.,
2014; Kingma and Welling, 2013; Radford, Metz, and Chintala, 2015; Rezende, Mohamed,
and Wierstra, 2014), movies (Saito, Matsumoto, and Saito, 2017; Vondrick, Pirsiavash, and
Torralba, 2016; Walker et al., 2016), and text (Li et al., 2017; Serban et al., 2017; Yu et al.,
2017). In particular, the conventional bidirectional network structure for the recognition
and generation of images has made it possible to eliminate noise from cluttered images
and smoothly interpolate between different images. Recognition is the process of mapping
a data point to a latent variable, and generation is the inverse of this process.

15
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Several studies have qualitatively highlighted the importance of repeating inferences be-
tween data space and latent space multiple times (Arulkumaran, Creswell, and Bharath,
2016; Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014). In the present
study, repeated inferences are defined as a process by which a deep generative model re-
peats the recognition and generation of images. It was shown that by using noise-containing
images as initial values, deep generative models can eliminate noise by repeating recog-
nition and generation several times (Rezende, Mohamed, and Wierstra, 2014). Moreover,
compared to generating an output image from latent space to smoothly morph one image
into another, repeating inferences several times improves the quality of the output image
(Arulkumaran, Creswell, and Bharath, 2016). However, most of these studies only quali-
tatively evaluate output data through a one-shot inference from the latent space to output
data. To fill this gap in the literature, we quantified the dynamics of repeated inferences to
investigate why repeating inferences are effective for a wide range of applications.

In many cases covered by deep generative models, the data distribution is concentrated
in the low-dimensional sparse subspace of the high-dimensional observation space. For
example, in the case of natural image datasets, most of the space formed by the entire image
corresponds to an image inwhich each pixel value is randomly chosen, but it is not plausible
for natural images. The deep generativemodels extract a low-dimensional subspace in such
a high-dimensional space by nonlinear mapping using neural networks. Because various
factors, such as noise in real environments, cause original data points to deviate from this
low-dimensional subspace, we are interested in how the dynamics of the activity pattern during
the inference phase is drawn into the subspace formed by the original training data. In this study,
we clarify how the activity pattern during inference in deep generative models approach
the subspace where data are concentrated. In particular, we focused on the dataset that has
a cluster structure, which is typically seen in image generation tasks and exists widely in
nature.

We numerically analyzed the collective behavior of repeated inferences in a variational
autoencoder (VAE) (Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014),
which is a typical type of deep generative model. We used the Modified National Institute
of Standards and Technology (MNIST) dataset and Fashion-MNIST dataset, which are con-
sidered to have cluster structures consisting of 10 types of labels. We input noise-containing
images to the trained VAE as initial values, and we numerically analyzed the transition of
the activity patterns in the data space and the latent space. In particular, we calculated the
time evolution of the distance to the vector in the latent space corresponding to quantify
how the activity patterns approach the subspace of training data points, and we calculated
the time development of the distance between the activity patterns in the latent space and
the center of the clusters.

There are three major findings in our study. First, we numerically demonstrated that the
dynamics of repeated inferences rapidly approach a center of the cluster in the latent space.
Such transient behavior cooccurredwith the perceptual refinement of the generated images
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in the data space. Second, by averaging all of these centers in the latent space, we consid-
ered the center of the cluster centers; by definition, training patterns, cluster centers, and
the center of the cluster centers are hierarchically related in ascending order. We found
that the inference dynamics approach the center of the cluster centers to the extent that the
uncertainty of the input data increases due to noise. This result suggests that the model
selects appropriate inference strategies in accordance with the fraction of the noise added
to the input data. Third, we examined the effect of the latent variable dimension on infer-
ence behavior. As the number of latent variables increases, the internal representations of
the clusters tend to become orthogonal, and the dynamics of repeated inferences approach
each corresponding center. The generalization performance of the model was improved to
the extent that the center of the cluster attracts the dynamics of repeated inferences. We
also discuss the practical insight into the optimal number of inference steps from our exper-
imental findings.

3.2 method

Here, we first describe the summary of the VAE. Then, we describe the network architecture
which we used in numerical experiments and how to train the VAE. Last, we describe about
an inference procedure.

3.2.1 Variational Autoencoder

A VAE is a generative model consisting of two neural networks: an encoder and a decoder
(Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014). An encoder gives a
mapping of data, such as natural images to a latent variable space, and the decoder gives an
inverse mapping. The objective function of the VAE is obtained by finding the variational
lower bound of log-likelihood ∑i log p(x(i)) for N training data X = {x(i)}Ni=1. In the follow-
ing, we consider a parameter θ that maximizes the log-likelihood log pθ(x(i)) at each data
point. Using the latent variable z and its conditional probability distribution qϕ(z ∣ x(i))
and taking the variational lower bound of the log-likelihood gives the following objective
function:

log pθ(x(i)) ≥ −DKL(qϕ(z ∣ x(i))∥p(z)) + 𝔼qϕ(z∣x)[log pθ(x(i) ∣ z)]

= ℒ(θ,ϕ; x(i)). (3.1)

In the above equation, p(z) is the prior distribution of latent variable z, and DKL(q‖p) is
the Kullback–Leibler divergence of probability distributions q and p. The first term of the
objective function corresponds to the regularization, and the second term corresponds to
the reconstruction error. The VAE models conditional distributions pθ(x(i) ∣ z) and qϕ(z ∣
x(i)) using neural networks. To optimize parameters θ and ϕ by backpropagation, samples
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were generated using a method called reparameterization trick with encoder qϕ(z ∣ x(i)). The
latent variable is modeled as follows:

z = gϕ(ϵ, x)
= μ + σ ⊙ ϵ, (3.2)

to decompose z into random variable ϵ and deterministic variables μ and σ, where ⊙ indi-
cates Hadamard–Schur product. Giving ϵ as a sample from the standard Gaussian distribu-
tion eliminates the need for a complicated integral during training. If the above conditions
are assumed and the expected reconstruction error 𝔼qϕ(z∣x)[log pθ(x(i) ∣ z)] is approximated
by a sample average, Equation 3.1 can be rewritten as follows:

ℒ(θ,ϕ; x(i)) ≃ 1
2

Nz

∑
j=1

(1 + log((σ(i)
j )2) − (μ(i)

j )2 − (σ(i)
j )2) + 1

L
L

∑
l=1

log pθ(x(i) ∣ z(i,l)). (3.3)

ϕ parameterizes the outputs of the encoder μ and σ. Both parameters θ and ϕwere trained
by the gradient ascent method tomaximize Equation 3.3. The output of the decoder was set
as the probability of the Bernoulli distribution, and the expectation of the conditional prob-
ability, namely, the second term of the objective function, was approximated by averaging
L samples.

3.2.2 Network Architecture and Optimization Procedure

Since our research focuses on the behavior of VAE inference, we need to reduce dependence
on network structure as much as possible. Based on this motivation, we used a separate
three-layer, fully connected neural network for the encoder qϕ(z ∣ x(i)) and decoder pθ(x(i) ∣
z) mentioned above. The fully connected neural network is consists of a fully connected
layer:

hli = activation⎛⎜⎜
⎝

# units
∑
j=1

Wijhl−1
j + bj

⎞⎟⎟
⎠

. (3.4)

hli expresses the i-th unit (neuron) of the l-th layer, and {Wij} and {bj} are the parameters of

each layer. The input to the first layer of the encoder h0 = [⋯ , h0
j , ⋯]

⊤
corresponds to a data

point x, and the output of the encoder h2 corresponds to μ and logσ2 in Equation 3.2 and
3.3. Likewise, the input and the output of the decoder correspond to z and x, respectively.
The number of units in the middle layer was set to 1,024, and the activation function was
set as tanh:

tanh(x) = e2x − 1
e2x + 1

. (3.5)
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We used the sigmoid function

sigmoid(x) = 1
1 + e−x (3.6)

for the activation function of the decoder’s last layer to normalize the output of the model
to [0, 1]. The number of units of latent variable Nz was set to 100 unless otherwise noted.

We used Adam (Kingma and Ba, 2014) as the parameter optimization algorithm. Adam
updates the model parameter θ according to the objective function f with the following
equations:

gt ←∇θft(θt−1), (3.7)
mt ←β1 ⋅ mt−1 + (1 − β1) ⋅ gt, (3.8)
vt ←β2 ⋅ vt−1 + (1 − β2) ⋅ g2

t , (3.9)
m̂t ←mt/(1 − βt1), (3.10)
v̂t ←vt/(1 − βt2), (3.11)
θt ←θt−1 − α ⋅ m̂t/(√v̂t + ϵ). (3.12)

The lower script t in the above equations expresses the time step of the optimization.Wenote
that this time step is for the training phase and is not for the inference phase. g,m, v, m̂, and
̂v are the intermediate variables to compute the parameter θ of the next time step. α, β1, β2,

and ϵ in the above equations are the hyperparameters for the optimization. α is the learning
rate or step size of the optimization. β1 and β2 ∈ [0, 1) control the exponential decay rates
of moving averages. We set β1, β2, and ϵ to the default values 0.9, 0.999, and 10−8. The
learning rate αwas reduced in descending order as follows: 0.0005, 0.0001, and 0.00005. In
our setup, we used the variational lower bound of the log-likelihood (Equation 3.3) as the
objective function, and the parameters of the encoder ϕ and the decoder θ are the target to
optimize.We set the number of samples for calculating the reconstruction error to L = 2.We
trained the VAE against the MNIST dataset for 1,500 epochs. The MNIST dataset consists
of 28 × 28-pixels ‘0’–‘9’ handwritten images with 60,000 training data and 10,000 test data.
These data are considered to have cluster structures consisting of 10 types of labels, namely,
‘0’–‘9’.

3.2.3 Inference Procedure and Noise Injection

Here, we describe how to perform repeated inference. In this study, noisyMNIST data were
inferred using the trained network according to the following procedure, and the time evo-
lution of latent variable z(t) was obtained. First, noise was added to an image of the training
dataset. Pixels with probability pwere selected from 784 pixels, the image intensities of the
selected pixels were swapped, and the image was set as x0. Next, the data variable in step
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t = 0 was taken as x(0) = x0. Finally, generation and recognition were repeated T times
according to the following two equations:

x(t + 1) = 𝔼pθ(x∣z(t))[x], (3.13)
z(t) = 𝔼qϕ(z∣x(t))[z], (3.14)

to obtain the time evolutions of data variable x(t) and latent variable z(t). We modeled the
observation process by an independent Bernoulli distribution, so the output of the decoder
corresponds to the expected value of x:

x(t + 1) = 𝔼pθ(x∣z(t))[x] = decoderθ(z(t)). (3.15)

Also, sincewe used theGaussian encoder aswementioned above, the first half of the output
of the encoder (μ) is the expected value of z. Therefore,

z(t) = 𝔼qϕ(z∣x(t))[z] = μϕ(x(t)). (3.16)

We expressed the first half of the encoder’s output as μϕ(⋅). We note that we do not need
any approximation to compute the expected values thanks to the model definition. The
dynamics of x(t) and z(t) were numerically analyzed. The randomness of these dynamics
x(t) and z(t) only comes from the randomness of the input x(0).

3.3 r e sult s

3.3.1 Dynamics of inference trajectory: An approach to cluster centers

First, we show that the dynamics of the latent space activities inVAEs are rapidly drawn into
a low-dimensional subspace. In this study, we define the following operations as repeated
inferences:

x(t + 1) = 𝔼pθ(x∣z(t))[x], (3.17)
z(t) = 𝔼qϕ(z∣x(t))[z], (3.18)

where qϕ(z ∣ x) is the encoder network thatmaps x to the latent space activity z, and pθ(x ∣ z)
is the decoder network that gives the inverse mapping. First, we add the noise with noise
fraction p to an image of the training dataset, and we set the image as x(0) = x0. By re-
peating the above two equations T times, we obtain the trajectory of the repeated inference
on data space x(t) and latent space z(t). In this study, we call the processes that gradually
infer the plausible image by the above update rule as repeated inferences. We numerically
analyze the dynamics of the activity patterns in data space x(t) and latent space z(t) from
the qualitative/quantitative point of view.
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Figure 3.1: Consecutive samples in the data space (from left to right, one row after the other). The
image of ‘6’ with p = 0.2 noise appliedwas used as the initial value. The image 𝔼pθ(x∣ ̄ξ6)[x]
generated by the concept vector ̄ξ6 is shown on the right.

Figure 3.1 expresses the consecutive samples of the repeated inference in the data space.
We used the MNIST database as the training dataset. The time development of the activity
pattern in data space x(t) is aligned from left to right, one row after the other. The upper-left
image corresponds to the initial value, x0. The image of ‘6’ with p = 0.2 noise applied was
used as the initial value. From the figure, the VAE removes the noise contained in the image
in the first few steps and then gradually shifts to the specific image of ‘6’. We also show the
consecutive samples for another image in Section 3.A.

(a) t = 0 (b) t = 1 (c) t = 10 (d) t = 50 (e) t = 200

Figure 3.2: (a–e): PCA visualization of the VAE’s latent activity patterns. The x- and the y-axes repre-
sent the first and second principal components. Each figure corresponds to the snapshot
of the activity patterns at time t. We used a different image of ‘1’ with a different noise
realization as the initial value for each trial. The noise faction was set to p = 0.2.

Then,we visualize the time development of the latent space activities during the repeated
inferences. The temporal evolution z(t) of the latent activity pattern for one initial image
can be regarded as a trajectory in the latent space. Figure 3.2 shows the collective behavior
of these trajectories in the latent space for multiple images. We used a different image of ‘1’
with a different noise realization as the initial value for each trial. We embedded the activity
patterns in latent space into twodimensions using the principal component analysis (PCA).
Because PCA has the degree of freedom of rotating eigenvectors, we performed PCA for the
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latent activity patterns included within [t, t + Δt] for every t to stabilize the eigenvectors.
Let Z(t) be the matrix that collects the activity patterns of the latent space within [t, t+ Δt]:

Z(t) =
⎡⎢⎢⎢
⎣

| | | |
z(1)(t) ⋯ z(N)(t) ⋯ z(1)(t + Δt) ⋯ z(N)(t + Δt)

| | | |

⎤⎥⎥⎥
⎦

⊤

∈ ℝN∆t×Nz . (3.19)

We derived the matrix of eigenvectors Q(t) = [q1(t), ⋯ , qNz
(t)] for each time step:

Z(t)⊤Z(t) = Q(t)Λ(t)Q(t)⊤, (3.20)

and embedded the activity patterns in the two largest eigenspace as [q1(t), q2(t)]⊤z(i)(t).
Each point in the figure corresponds to the latent activity pattern for the specific initial im-
age. The x- and the y-axes represent the first and second principal components. At the be-
ginning of the inference t = 0 (Figure 3.2a), the latent activities were widely distributed as
one large cluster. These activity patterns branched into two clusters at t = 10 (Figure 3.2c).
The first cluster was widely distributed in the upper part of the figure, and the second clus-
ter formed a string-like distribution concentrated in the lower part of the figure. After that,
the activity patterns converged to individual points or string-like regions.

We show the visualization of the perceptually generated images during the repeated in-
ferences in Figure 3.3. Each figure (from Figure 3.3a to Figure 3.3e) corresponds to the
two-dimensional PCA embeddings. The x- and the y-axes represent the first and the sec-
ond principal components. At every time step t, the activity pattern z(i)(t) for i-th initial
image specifies the coordinate in the principal component space. We plotted the inferred
images 𝔼pθ(x|z(i)(t))[x] for the latent activity patterns in these coordinates. We cropped the
x- and the y-axes in the range of [−2, 2] for clarity.

At the initial phase (Figure 3.3a and Figure 3.3b) of repeated inferences, the inferred
images moderately included some noise. At the time step t = 10 (Figure 3.3c), the crowd of
the activity patterns branched into two clusters. We found that the upper half of these two
clusters corresponded to the trials where the inferred images deviated from ‘1’. The lower
half of the cluster shaped like a string expressed various angles of ‘1’ smoothly. The angle of
the inferred image of ‘1’ gradually shifted from left to right. These continuously distributed
angles converged to several specific values at the end of the inference (Figure 3.3e). The
crowd of these activity patterns branched to multiple string-shaped clusters and slowly
converged to points. These results suggest that there aremultiple saddle points, which have
stable and unstable directions, in the latent space of trained VAEs. It is indicated that the
data points which typically appear in the training dataset became stable fixed points and
the lines between these points appeared as string-shaped subspaces.

From the aforementioned results, we numerically clarified that the latent activity patterns
gradually branch into several clusters during repeated inference. Specifically, the collective
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(a) t = 0 (b) t = 1

(c) t = 10 (d) t = 50

(e) t = 200

Figure 3.3: (a–e): The inferred images that correspond to the dynamics of activity patterns in latent
space. The x- and y-axes indicate the first and the second principal components. Each
figure shows the snapshot of the activity patterns at the specific time step from t = 0 to
t = 200. The x- and the y-axes are cropped in the range of [−2, 2] for clarity.
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behavior rapidly approached the low-dimensional subspace near t = 10. We numerically
quantify this type of approaching behavior. In the following, we assume that the dataset is
composed of one cluster for each label for the clarity of numerical analysis.We now evaluate
the distance between latent activity patterns and the center of the clusters.

̄ξnum = 1
Nnum

Nnum

∑
i

ξ(i)
num, (3.21)

where ξ(i)
num indicates the activity pattern of the latent variable for the i-th training data with

label num:
ξ(i)
num = 𝔼qϕ(z|x(i)

num)[z]. (3.22)

This definition is known as the mathematical quantity called “concept”, in studies on asso-
ciativememorymodels (Amari, 1977; Matsumoto et al., 2005). The attraction of the activity
patterns of neural networks into subspaces has been mainly studied with associative mem-
ory models (Amari, 1977; Matsumoto et al., 2005). In the problem setting of Matsumoto
et al. (2005), they first randomly generated a small number of concept patterns, and then
theymadememory patternswith a precise correlationwith these concept patterns. In other
words, the concept pattern vector corresponds to the center of each cluster. We call ̄ξnum a
concept vector and ξ(i)

num amemory vector for the i-th training data in the following sections.
The relationship between the time development of inference and the concept vector of each
label (‘0’–‘9’) represented in the MNIST data was numerically analyzed.

We show the image 𝔼pθ(x∣ ̄ξ6)[x] generated by the concept vector of ‘6’, ̄ξ6 on the right side
of Figure 3.1. By qualitatively comparing this image and the consecutive samples, it is sug-
gested that the result of theVAE inference approaches the image generated by ̄ξ6 once.Here,
we define a trajectory “approaching to a concept vector” as follows: the trajectorywhose dis-
tance to the concept vector takes a minimum at a unique halfway point and is closer than
its synthetic linear interpolation. We quantitatively evaluated the gradual changes of the
Euclidean distance; namely,

∥z(t) − ̄ξnum∥2, (3.23)
between the neural activity patterns and the cluster center for every label of MNIST data
in the latent space (Figure 3.4a). The distance between the cluster center and 300 differ-
ent initial images was calculated. Each figure corresponds to each label, which was used
as initial input for the VAE. The x-axis expresses the time step t of repeated inference, and
the y-axis expresses the Euclidean distance (Equation 3.23). It was clarified that the tra-
jectory of the VAE’s inference rapidly find the cluster structure. This result is qualitatively
consistent with all labels of the MNIST data. A previous study using associative memory
models (Matsumoto et al., 2005) reported that activity patterns approached the concept
vector once in the middle of inference when the inference was started from data with noise
applied to each memory pattern. Figure 3.4b shows the same figure for the distance be-
tween the activity patterns and the memory vector. As same for the concept vector, the
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Figure 3.4: Time development of the Euclid distance for all labels of the MNIST data. The distances
from ̄ξnum are shown in (a) and the distances from ξ(i)

num are shown in (b). The shades
represent the ±1 standard error of the mean (300 trials). We used a different image of
each label with a different noise realization as the initial value for each trial. All figures
were generated with the noise fraction p = 0.2.
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activity patterns were closest to the memory vector early in the inference. If the concept vec-
tor is a stable fixed point, the activity patterns should monotonically approach the concept
vector. In other words, these results suggest that the latent space of the trained VAE has a
saddle point structure that attracts in the direction to which noise is applied and diverges
in the orthogonal direction. The results obtained in this study were qualitatively consistent
with these previous findings. We also performed the same numerical experiment on the
Fashion-MNIST dataset (Xiao, Rasul, and Vollgraf, 2017), which is a dataset of Zalando’s
article images consisting of various fashion images. The numerical results for the Fashion-
MNIST dataset were also qualitatively consistent with those for the MNIST dataset. Please
see Section 3.B for more details.

3.3.2 Relationship between data hierarchy and inference

We arbitrarily determined the amount of noise added to the initial input images in the pre-
vious section. To examine the effect of noise on the dynamics of repeated interferences, we
then modulated the amount of noise. Because noise in input images causes the data to de-
viate from the original distribution, we created another class, the “abstract concept vector”
for convenience, which averages all the labels’ concept vectors, as well as the concept and
memory vectors. By measuring the distance between the trajectory of each neural activity
pattern and its corresponding classes in the latent space, we identified the class that most
attracts the neural activity patterns.

(a)
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(b)
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Figure 3.5: (a): Minimum distances from concepts according to noise fraction p. The bars represent
the ±2 standard error of the mean (500 trials). We used a different image of ‘6’ with a
different noise realization as the initial value for each trial. (b): Time step of which the
distance takes a minimum.
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We define the “abstract concept vector” as

̄ξall = 1
10

9
∑

num=0
̄ξnum. (3.24)

The three classes (memory vectors, concept vectors, and the abstract concept vector) are in
a hierarchical relationship from detailed to coarse information in the order ξ(i)

num, ̄ξnum, and
̄ξall. Note that the abstract concept vector is not a useful representation from the practical

viewpoint. We chose this metric as an anchor to unveil the dynamics of repeated inferences.
We calculated theminimumdistances between neural activity patterns z(t) and correspond-
ing classes,

min
t

∥z(t) − ξ∥2. (3.25)

Figure 3.5a shows the minimum distances according to the noise fraction. In Figure 3.5a,
the x-axis represents noise fraction p, which is the probability that the image intensities of
the pixels are swapped. For every noise fraction, the minimum distances between the firing
pattern z(t) and hierarchical concept vectors were calculated by changing the initial image
500 times. The dots in the figure express themean of theminimumdistance, and the bars are
the ±2 standard error of the mean (500 trials). We divided the parameter regions into three
stages, I, II, and III, corresponding to the minimum distance between the firing pattern z(t)
and hierarchical concept vectors, ξ(i)

6 , ̄ξ6, and ̄ξall, respectively. In stage I, the firing activity
was closest to the original pattern ξ(i)

6 with a small amount of noise. Interestingly, the closest
class was ̄ξ6 with moderate noise in stage II. The activity was close to the abstract concept
vector ̄ξall in stage III. In stages I and II, the memory was successfully retrieved because
the inference path was close to the cluster in which the input data belonged; however, in
stage III, the model could not determine the original cluster, so recall failed. Accordingly,
themodel achieves the inference dynamics depending on the input uncertainty. Figure 3.5b
shows the time step ofwhich the distance takes itsminimumaccording to the noise fraction.
The activity pattern approached the memory vector earliest in all stages. In addition, the
time step of which the activity patterns are closest to the memory vector was dependent on
the amount of noise. The dependence on the noise fraction of theminimum time step for the
concept or the abstract concept vectorwas less significant than the one of thememory vector.
These results suggest that the number of inference steps should be increased according to
the amount of noise included in the inputwhenperforming noiseless reconstruction.On the
other hand, the inference step should be around 20-30 independent from the noise fraction
when performing label detection.

To confirm the abovementioned suggestion about the label prediction, we estimated the
class label of the generated images at each step of inference. Figure 3.6 represents the label
with the highest number of predictions in 200 trials. We used another convolutional neural
network as a classification network in each trial. The classification network has the following
structure: Input-Convolution-Convolution-Pooling-Dropout1-FullyConnected-Dropout2-SoftMax.
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Figure 3.6: Estimated label of generated images. The class labels of the generated images at each step
of inference were predicted using the classification network. The heatmap represents the
label with the highest number of predictions in 200 trials. We used a different image of
‘6’ with a different noise realization as the initial value for each trial.

The kernel size of the convolution is three, the pooling size is two, and the dropout probabil-
ity is 0.25 and 0.5 in order from the input side. We used a rectified linear unit (ReLU) as the
activation function. The classification network was trained on the original MNIST dataset
before classifying the generated images of VAE. Based on the figure, the generated images
started from ‘6’ were classified correctly in every time step in stages I and II (p < 0.4). In
stage III, the generated images were classified as ‘3’ or ‘4’ at the beginning of inference and
were classified as ‘0’ at the end of inference. There was a particular region of inference steps
that the generated images were ‘6’ for p < 0.7, and the region was close to 20-30. This result
was consistent with the above mentioned suggestion.

As shown previously, the VAE extracts the cluster structures inherent in the MNIST data
and infers images through the center of each cluster. These experimental results indicate
that the dynamics of this inference are as shown in Figure 3.7. As shown in Figure 3.8a,
when the dimensionality of the latent variable is large, only a few neurons contribute to
representing the MNIST dataset. They would span a space that expresses each number
(depicted as the numeric space in Figure 3.7). According to the manifold hypothesis (Rifai
et al., 2011), adding noises to images will cause the initial value to deviate from the numeric
space, which is believed to be low-dimensional. The results of our first analysis suggest that
when the inference beginswith a position far from the space expressing theMNISTdata, the
activity patterns first approach thememory vector and then quickly go to the corresponding
concept vectors.
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Figure 3.7: Schematic diagram of firing patterns in the latent state space.

3.3.3 Effect of latent variable dimensionality

Because the VAEs are the generative models that learn the mapping between the high-
dimensional data space and the low-dimensional latent space, the dimensionality of the
latent space is the essential hyperparameter for acquiring internal representation. The set-
ting of the latent space dimensionality is predicted to drastically affect not only the quality
of generated images and generalization ability but also the dynamics of repeated inferences.
In this section, we numerically analyze the effect of the latent space dimensionality on the
dynamics of repeated inferences.

We first show the relationships between the cluster centers of each label for the afore-
mentioned setting (Figure 3.8). We set the dimension of the latent space to 100 in these ex-
periments. The activity patterns in the latent variable space of each numerical concept are
shown in Figure 3.8a. The heat map expresses the activity pattern of each neuron, which
corresponds to the latent variable, where the x-axis represents the hidden neuron’s index,
and the y-axis represents the label. Only a few neurons out of 100 contribute to information
representation, andmany neurons are pruned and inactive. According to our observations,
14 out of 100 neurons were active. The dimensions of the latent space were examined using
the cumulative contribution ratio determined by principal component analysis. The cumu-
lative contribution ratios of each principal component when the training images were given
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Figure 3.8: (a) Activity pattern in the latent variable space of each cluster center. The x-axis rep-
resents the neuron index of the latent variable, the y-axis represents the label, and the
heat map shows the activity pattern of each neuron. (b) Cumulative contribution ratio
of principal components.

to the VAE were shown in Figure 3.8b. The variance in the latent space was explained en-
tirely by 14 dimensions, and 70% of this was explained by nine dimensions. Then, we quan-
tified howmuch the concept vectors on latent space, which correspond to the row vector of
Figure 3.8a, correlate with each other. We define the cosine similarity matrix C, where the
element of the i-th row and j-th column is the cosine similarity between the concept vectors
of labels i and j:

Cij =
̄ξi ⋅ ̄ξj

∥ ̄ξi∥2∥ ̄ξj∥2

. (3.26)

We quantified the orthogonality between the concept vectors as ∥C − I∥2
F, where ∥A∥2

F is the
Frobenius norm of A: ∥A∥2

F = √∑ijA
2
ij. By definition, the cosine similarity between con-

cepts of the same label is one. However, the cosine similarity between concepts of different
labels in nondiagonal terms is minimal, namely, near zero. In other words, as the vectors
between the labels are orthogonal, the above quantity approaches zero. The left side of Fig-
ure 3.9 shows the aforementioned orthogonality according to the dimension of the latent
space Nz. We trained VAEs from scratch for each Nz and calculated the orthogonality for
learned representations. From the figure, the orthogonality of the internal representation
increased with Nz, and the orthogonality converged to a value close to zero when Nz was
approximately 10–20. We also visualized the typical dynamics of repeated inferences for
Nz = 2, 20, 100 on the right side of the figure as (A), (B), and (C). We used the same set-
ting as that of Figure 3.4 except for Nz, and the trained VAEs started repeated inferences
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from the images of ‘6’ with input noise. The approach to the cluster center mentioned above
appeared remarkably with the increase in the orthogonality of the internal representation.
Because previous studies on the associative memory models (Amari, 1977; Matsumoto et
al., 2005; Okada, 1996) also identified an approach to the concept vector during inferences
under the assumption that the concept vectors were orthogonal, our findings were qualita-
tively consistent with these studies.

(A) (A)

(B)

(C)

(B) (C)

Figure 3.9: The orthogonality between the concept vectors in latent space. The error bars represent
the ±1 standard deviation.

The detailed change in the cosine similarity matrix C and its corresponding latent dy-
namics is in Figure 3.10. Figure 3.10a to Figure 3.10e visualize the cosine similarity matrices
for corresponding latent space dimensionality Nz. The x- and the y-axes indicate the row
and column of the matrix, and the figures visualize the value of each element as a heatmap.
Because the cosine similarity matrix is symmetric, we omitted the upper half of the figures.
The number of neurons in the latent variableNz was controlled in the following order: 2, 5,
10, 20, and 100, and we trained the VAEs from scratch for each hyperparameter. By defini-
tion, the value of the diagonal elements is one. According to Figure 3.10a to Figure 3.10e, the
values between structurally similar labels such as ‘0’ and ‘6’ or ‘7’ and ‘9’ were large. The co-
sine similarity between these values remained high even for the largeNz. We also compared
the time evolution of the distance from a cluster center of ‘6’ with different model hyperpa-
rameters in Figure 3.10f to Figure 3.10j. Under condition Nz = 5, the trajectory escaped the
cluster center, and the trajectory also did not approach the cluster center.

These results and the previous findings imply that orthogonality is necessary between
cluster centers for the trajectory of inference to be drawn into the cluster center. Because the
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Figure 3.10: (a–e): Cosine similarity between the memory patterns of each concept. The number of
elements in the latent variable is written as Nz. (f–j): Time development of the distance
with a concept of ‘6’ in (a–e).

number of latent variables decreases, it is necessary to express data in fewer dimensions,
and the orthogonality is lost. The reduction in the number of latent variables is considered
to cause unstable memory patterns corresponding to the training data, and only the center
of clusters is stabilized. As a result, the trajectory of inference goes straight to a stable point.
We also numerically assessed whether other labels confuse repeated inferences in the VAE
(e.g., although an inference starts from label ‘6’, it is incorrectly attracted to the concept
associated with label ‘0’). The result of this assessment is shown in Section 3.C.

We also numerically analyzed the generalizationperformance according toNz (Figure 3.11).
The performance of the model was evaluated using the variational lower bound (Equa-
tion 3.1) of the log-likelihood for the testMNIST data. In eachNz, parameters that minimize
the generalization error at epoch 100with a total of nine conditionswere selected from learn-
ing rates 0.01, 0.001, and 0.0001 and minibatch sizes of 50, 100, and 200. The generalization
error was the minimum value in the vicinity of Nz = 14, and it did not change significantly
afterward. In total, 14 of 100 latent variable neurons express training data under condition
Nz = 100 (Figure 3.8a), and the number of neurons that minimize the generalization error
is consistent with this result. These results suggest that approximately 14 latent neurons are
required to express the MNIST data in the network structure used in this study. Moreover,
in the vicinity of Nz = 14, the cluster structure appears in the representation of the la-
tent variable space, and the trajectory of inference is drawn into the concept. These results
suggest that it is possible to judge the generalization performance of the model without
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computing the generalization error or orthogonality of internal representations by simply
observing the dynamics of repeated inference.
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Figure 3.11: Generalization error for the number of elements of latent variablesNz. The y-axis repre-
sents the variational lower bound of the log-likelihood of the test data.

3.4 d i s cu s s ion

In this study, we numerically analyzed the dynamics of repeated inferences in VAEs for the
datasetswith a cluster structure. Based on the numerical analysis of the collective behaviors,
the activity patterns in latent space rapidly approached a specific subspace. We also found
that VAEs extract the cluster structures inherent in the MNIST and infer images via the
center of each cluster. The results of the first analysis suggest that when the inference starts
from a point far away from the original data distribution, the repeated inferences approach
the concept vector at high speed. The approach of activity patterns to the area where the
training dataset is concentrated is considered to be the cause of the improvement in the
quality of the generated image by repeated inference, which was perceptually noted in the
previous research.

The learning and inference of multiple memory patterns have been widely studied us-
ing associative memory models (Amit, Gutfreund, and Sompolinsky, 1985; Hopfield, 1982;
Okada, 1996). In an associative memory model with multiple embedded, correlated pat-
terns, the centroid of the correlated patterns spontaneously evolves to a fixed point (Amari,
1977), and the time evolution of the activity patterns approaches the concept (Matsumoto
et al., 2005). The results of our first and second analyses are qualitatively consistent with
these findings, suggesting that the mechanism underlying the dynamics of repeated infer-
ences in the VAE is related to the traditional associative memory model.
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Previously, several studies demonstrated that repeated inferences successfully denoise
(Rezende,Mohamed, andWierstra, 2014) and improve the quality of inferred images (Arulku-
maran, Creswell, and Bharath, 2016). Our study suggests that the dynamics of repeated
inferences approaching the center of the cluster inherent in the data lead to denoising and
improving the quality of output images, which were quantitatively observed in the data
space. It is critical to use a sufficient number of latent variables to precisely represent the
concept inherent in the data; if the number of the latent variables is insufficient, the cluster
structures will not be realized in the latent space, so the concept will be hardly identified.
Our results suggest that stage II in Figure 3.5a appears only when the number of latent
variables is sufficiently large, and the number of latent variables qualitatively changes the
dynamics of repeated inferences.

We also studied the time profile of repeated inference. Our numerical experiments re-
vealed that the latent activity pattern, which started from noisy input, approached the
noiseless embedding (memory vector) earliest. In addition, the time step of this approach-
ing was dependent on the amount of noise. These results gave us the practical implication
about the optimal number of steps of VAE’s repeated inference. The VAE can be used for
several purposes, including noiseless reconstruction and embedding unknown data points
for label detection. Our numerical experiments suggest that the number of inference steps
should be increased according to the amount of noise when performing noiseless recon-
struction. In addition, when performing label detection, the inference step should be larger
than noiseless reconstruction.

In this study,wenumerically analyzed the repeated inferences ofVAEs for specific datasets.
We mainly focused on the MNIST and the Fashion-MNIST, which have clear cluster struc-
tures. Hierarchical structures are one of the primary concerns of previous studies on the
relationship between the structure of datasets and the behavior of deep neural networks.
For example, deep neural networks are claimed to express abstract information in deep
layers (Bengio et al., 2013; Lee et al., 2009). In particular, Bengio et al. stated that deep
layers speed up the mixing of Markov chains using their ability to manifest abstract infor-
mation. Moreover, Saxe et al. analytically showed that deep neural networks learn data in
order from large to smallmodes, and the internal representations branch accordingly (Saxe,
McClelland, and Ganguli, 2014). To clarify the universal behavior regarding the inference
dynamics of deep generative models, we need to address the structure of various datasets
that are not limited to the cluster structure, including the hierarchical structure.

Recently, researchers have been actively working on models that can capture features in-
herent in data as forms of internal representations (Grattarola, Livi, and Alippi, 2018; Hig-
gins et al., 2017; Mathieu et al., 2019; Nagano et al., 2019; Nickel and Kiela, 2017; Ovinnikov,
2019; Tomczak and Welling, 2017). The VAE used in this study embeds the data points in
a simple isomorphic Gaussian distribution. As a next step to expand on these works us-
ing other deep generative models, we aim to further investigate what factors influence the
behavior of repeated inferences approaching the concept. In addition, we will analyze the
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dynamics of repeated inferences in another model using training datasets with more and
varied hierarchies.





CHAPTER APPEND IX

3.a consecut i v e sample s for mn i st datas e t

We showed the consecutive samples for the initial image of ‘6’ in Section 3.3.1. In this section,
we additionally show the consecutive samples for other initial images in Figure 3.A.1. The
visualizations and the experimental conditions all follow the one of Section 3.3.1. From the
figures, the noise of the generated images gradually decreased with the inference step. In
Figure 3.A.1, we note that we visualized the trials where the generated image at the last
inference step clearly remained at the same label. The result of repeated inferences at the
final step varies stochastically due to the effect of noise applied to the initial value. To clarify
this effect, we also show the trials where the trained model failed to infer the appropriate
images in Figure 3.A.2. The generated images tended to transition to perceptually similar
images to the initial images when the inference fails: ‘2’ to ‘8’ or ‘5’ to ‘3’. We also verified
the effect of such a type of failure on the distance from the concept vector in a later section.
Please see these sections for more detail

Figure 3.A.1: Consecutive samples for the MNIST dataset. All figures only show the trials where the
generated image at the last inference step clearly remained at the same label.
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Figure 3.A.2: Consecutive samples for the MNIST dataset. All figures show the trials where the
trained model failed to infer the appropriate images.

3.b numer i cal evaluat ions on fash ion -mn i st datas e t

We numerically analyzed the collective behavior of latent activity patterns using theMNIST
dataset in Section 3.3.1. This section shows the same numerical experiment on the Fashion-
MNIST dataset, which is a dataset of Zalando’s article images consisting of various fashion
images. The Fashion-MNIST dataset was created to replace the original MNIST dataset for
benchmarking machine learning algorithms. The size of images and the number of labels
are exactly the same as the MNIST dataset. Based on this construction, the Fashion-MNIST
dataset is also considered to have a cluster structure.Weused the same network architecture
and the hyperparameters as the experiments on the MNIST in the following.

Both Figure 3.B.1 and Figure 3.B.2 are the consecutive samples for the Fashion-MNIST
dataset. Figure 3.B.1 shows the trials where the trained VAEs succeeded to infer the original
label at the final step of repeated inferences, and Figure 3.B.2 shows the trials where the
inference failed. The VAEs succeeded in removing the noise in the initial images as well as
the case of the MNIST dataset. Notably, they reduced the noise drastically during the first
several steps of repeated inferences. Fine structures such as the design of T-shirts were lost.
Such behavior is considered to occur due to the limitation of multilayer perceptrons’ ability
to express and the noise applied to the initial image. In trials where inference has failed,
the trained models inferred the images that only preserve the rough structure in the initial
images. For example, the detailed structure of the handle of the bag was lost and became
a jacket-like image. The lower half of the pants was integrated and changed to a dress-like
image.

Then, we analyzed the distance between the latent activity patterns and the cluster cen-
ters. Figure 3.B.3 shows the time development for all labels. The meaning of the figure is
as same as in Section 3.3.1. The distance between the cluster center and 300 different initial
images was calculated. Each figure corresponds to each label that was used as initial input
for the VAE. The x-axis expresses the time step t of repeated inference, and the y-axis ex-
presses the Euclidean distance. All results were qualitatively consistent with the results of
the MNIST dataset. The activity patterns in the latent space quickly approached the cluster
centers and slowly left.
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Figure 3.B.1: Consecutive samples for the Fashion-MNIST dataset. All figures only show the trials
where the generated image at the last inference step clearly remained at the same label.

Figure 3.B.2: Consecutive samples for the Fashion-MNIST dataset. All figures show the trials where
the trained model failed to infer the appropriate images.
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Figure 3.B.3: Time development of the distance from ̄ξnum for all labels of the Fashion-MNIST data.
The shades represent the ±1 standard error of the mean (300 trials). All figures were
generated with the noise fraction p = 0.2.
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3.c ver i f y ing the e f f ec t o f mov ing other number s

The possibility that other labels confused the repeated inferences in the VAE was numeri-
cally tested. It is conceivable that the escape from the cluster center is caused by attraction
to another cluster. To eliminate this possibility, a discriminative neural network was con-
structed separately from the VAE, and the final state of inference of the VAE was classified.

In the following analysis, a model with an Input-Convolution-Convolution-Pooling-
Dropout1-FullyConnected-Dropout2-SoftMax structure was constructed as the discrimina-
tive neural network. The kernel size of the convolution was set to three, the pooling size
was set to two, and the dropout probability was set to 0.25, 0.5 in order from the input side.
A rectified linear unit (ReLU) was used as the activation function. This model recorded a
discrimination ability of 99.25% against the test data included in the MNIST dataset.
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Figure 3.C.1: (a) The result of classifying the final state T = 80 of the inference for image ‘6’. (b) The
time evolution of the distance from a concept of ‘6’. The condition excluding trials in
which the activity pattern switched to different numbers is expressed in red, and the
condition containing all the trials is expressed in gray.

The result of classifying the final state of inference using the aforementioned discrimina-
tive neural network is shown in Figure 3.C.1a. The x-axis represents a trial of each inference
with various initial images, and the y-axis represents the number label. The heat map indi-
cates the classification probability for each number label. An image of ‘6’ was used as the
initial value of the inference. The discriminator classified the final state of 193 of 300 trials
as ‘6’.

We considered the effect of other labels as the cause of the neural activity patterns ap-
proachingmismatched clusters. Using the label ‘6’, we firstmeasured the distances between
each neural activity pattern and the concept of ‘6’. We divided all the neural activity pat-
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terns into two conditions. We classified the trial in which the final state of the trajectory
was inside the cluster of ‘6’, as a condition “only 6”, and all trials as a condition “all”. Then,
we averaged the distances in each condition and compared their means. The average trajec-
tories are compared in Figure 3.C.1b. The red shows the average of the trial with the final
state identified as ‘6’, and gray shows the average of all trials.

As shown in Figure 3.C.1b, the neural activity patterns in both conditions approached
the cluster center before moving to the corresponding patterns. This result suggests that
the presence of other labels does not cause the neural activity patterns to move away from
the cluster center.





4
PROBAB I L I ST I C D I STR I BUT ION ON HYPERBOL IC S PACE FOR
H I ERARCH ICAL STRUCTURE

Hyperbolic space is a geometry that is known to be well-suited for representation learning
of data with an underlying hierarchical structure. In this paper, we present a novel hyper-
bolic distribution called hyperbolic wrapped distribution, a wrapped normal distribution on
hyperbolic space whose density can be evaluated analytically and differentiated with re-
spect to the parameters. Our distribution enables the gradient-based learning of the prob-
abilistic models on hyperbolic space that could never have been considered before. Also,
we can sample from this hyperbolic probability distribution without resorting to auxiliary
means like rejection sampling. As applications of our distribution, we develop a hyperbolic-
analog of variational autoencoder and amethod of probabilistic word embedding on hyper-
bolic space. We demonstrate the efficacy of our distribution on various datasets including
MNIST, Atari 2600 Breakout, and WordNet.

4.1 in troduct ion

Recently, hyperbolic geometry is drawing attention as a powerful geometry to assist deep
networks in capturing fundamental structural properties of data such as a hierarchy. Hy-
perbolic attention network (Gülçehre et al., 2019) improved the generalization performance
of neural networks on various tasks including machine translation by imposing the hyper-
bolic geometry on several parts of neural networks. Poincaré embeddings (Nickel andKiela,
2017) succeeded in learning a parsimonious representation of symbolic data by embedding
the dataset into Poincaré balls.

In the task of data embedding, the choice of the target space determines the properties
of the dataset that can be learned from the embedding. For the dataset with a hierarchical
structure, in particular, the number of relevant features can grow exponentially with the
depth of the hierarchy. Euclidean space is often inadequate for capturing the structural
information (Figure 4.1.1). If the choice of the target space of the embedding is limited to
Euclidean space, one might have to prepare extremely high dimensional space as the target
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(a) A tree representation of the train-
ing dataset
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(b) Vanilla VAE (β = 1.0) (c) Hyperbolic VAE

Figure 4.1.1: The visual results of Hyperbolic VAE applied to an artificial dataset generated by ap-
plying random perturbations to a binary tree. The visualization is being done on the
Poincaré ball. The red points are the embeddings of the original tree, and the blue
points are the embeddings of noisy observations generated from the tree. The pink ×
represents the origin of the hyperbolic space. The VAE was trained without the prior
knowledge of the tree structure. Please see Section 4.6.1 for experimental details
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space to guarantee small distortion. However, the same embedding can be done remarkably
well if the destination is hyperbolic space (Sala et al., 2018; Sarkar, 2012).

Now, the next natural question is; “how can we extend these works to probabilistic infer-
ence problems on hyperbolic space?”When we know in advance that there is a hierarchical
structure in the dataset, a prior distribution on hyperbolic space might serve as a good
informative prior. We might also want to make Bayesian inference on a dataset with hierar-
chical structure by training a variational autoencoder (VAE) (Kingma and Welling, 2013;
Rezende, Mohamed, andWierstra, 2014) with latent variables defined on hyperbolic space.
We might also want to conduct probabilistic word embedding into hyperbolic space while
taking into account the uncertainty that arises from the underlying hierarchical relationship
among words. Finally, it would be best if we can compare different probabilistic models on
hyperbolic space based on popular statistical measures like divergence that requires the
explicit form of the probability density function.

The endeavorswementioned in the previous paragraph all require probability distributions
on hyperbolic space that admit a parametrization of the density function that can be computed
analytically and differentiated with respect to the parameter. Also, we want to be able
to sample from the distribution efficiently; that is, we do not want to resort to auxiliary
methods like rejection sampling.

In this study, we present a novel hyperbolic distribution called hyperbolic wrapped distri-
bution, a wrapped normal distribution on hyperbolic space that resolves all these problems.
We construct this distribution by defining Gaussian distribution on the tangent space at the
origin of the hyperbolic space and projecting the distribution onto hyperbolic space after
transporting the tangent space to a desired location in the space. This operation can be for-
malized by a combination of the parallel transport and the exponential map for the Lorentz
model of hyperbolic space.

We can use our hyperbolic wrapped distribution to construct a probabilistic model on
hyperbolic space that can be trained with gradient-based learning. For example, our distri-
bution can be used as a prior of a VAE (Figure 4.1.1 and Figure 4.6.3). It is also possible to
extend the existing probabilistic embeddingmethod to hyperbolic space using our distribu-
tion, such as probabilistic word embedding. We will demonstrate the utility of our method
through the experiments of probabilistic hyperbolic models on benchmark datasets includ-
ing MNIST, Atari 2600 Breakout, and WordNet.

4.2 background

4.2.1 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry with a constant negative Gaussian cur-
vature, and it can be visualized as the forward sheet of the two-sheeted hyperboloid. Many
applications of hyperbolic space to machine learning to date have adopted the Poincaré
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Figure 4.2.1: (a) One-dimensional Lorentz model ℍ1 (red) and its tangent space Tμℍ1 (blue). (b)
Parallel transport carries v ∈ Tμ0

(green) to u ∈ Tμ (blue) while preserving ‖ ⋅ ‖ℒ . (c)
Exponential map projects the u ∈ Tμ (blue) to z ∈ ℍn (red). The distance between μ
and expμ(u) which is measured on the surface of ℍn coincides with ‖u‖ℒ .

disk model as the subject of study (Ganea, Bécigneul, and Hofmann, 2018a,b; Nickel and
Kiela, 2017; Sala et al., 2018). In this study, however, we will use the Lorentz model that, as
claimed in Nickel and Kiela (2018), comes with a simpler closed form of the geodesics and
does not suffer from the numerical instabilities in approximating the distance. We will also
exploit the fact that both exponential map and parallel transportation have a clean closed
form in the Lorentz model.

Lorentz model ℍn (Figure 4.2.1a) can be represented as a set of points z ∈ ℝn+1 with
z0 > 0 such that its Lorentzian product (negative Minkowski bilinear form)

⟨z, z′⟩ℒ = −z0z′
0 +

n
∑
i=1

ziz′
i , (4.1)

with itself is −1. That is,

ℍn = {z ∈ ℝn+1 ∶ ⟨z, z⟩ℒ = −1, z0 > 0}. (4.2)

Lorentzian inner product also functions as the metric tensor on hyperbolic space. We will
refer to the one-hot vector μ0 = [1, 0, 0, ...0] ∈ ℍn ⊂ ℝn+1 as the origin of the hyperbolic
space. Also, the distance between two points z, z′ on ℍn is given by

dℓ(z, z′) = arccosh (−⟨z, z′⟩ℒ), (4.3)

which is also the length of the geodesic that connects z and z′.

4.2.2 Parallel Transport and Exponential Map

The rough explanation of our strategy for the construction of hyperbolic wrapped distri-
bution 𝒢(μ, Σ) with μ ∈ ℍn and a positive positive definite matrix Σ is as follows. We (1)
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sample a vector from 𝒩(0, Σ), (2) transport the vector from μ0 to μ along the geodesic, and
(3) project the vector onto the surface. To formalize this sequence of operations, we need
to define the tangent space on hyperbolic space as well as the way to transport the tangent
space and the way to project a vector in the tangent space to the surface. The transportation
of the tangent vector requires parallel transport, and the projection of the tangent vector to
the surface requires the definition of exponential map.

tangent s pace of hyperbol i c s pace Let us use Tμℍn to denote the tangent space
of ℍn at μ (Figure 4.2.1a). Representing Tμℍn as a set of vectors in the same ambient space
ℝn+1 into which ℍn is embedded, Tμℍn can be characterized as the set of points satisfying
the orthogonality relation with respect to the Lorentzian product:

Tμℍn ∶= {u ∶ ⟨u,μ⟩ℒ = 0}. (4.4)

Tμℍn set can be literally thought of as the tangent space of the forward hyperboloid sheet
at μ. Note that Tμ0

ℍn consists of v ∈ ℝn+1 with v0 = 0, and ‖v‖ℒ ∶= √⟨v,v⟩ℒ = ‖v‖2.

parall e l transport and inver s e parall e l transport Next, for an arbitrary
pair of point μ, ν ∈ ℍn, the parallel transport from ν to μ is defined as a map PTν→μ from
Tνℍn to Tμℍn that carries a vector in Tνℍn along the geodesic from ν to μ in a parallel
manner without changing its metric tensor. In other words, if PT is the parallel transport
on hyperbolic space, then ⟨PTν→μ(v),PTν→μ(v′)⟩ℒ = ⟨v,v′⟩ℒ .

The parallel transportation on the Lorentz model along the geodesic from ν to μ is given
by

PTν→μ(v) = v −
⟨exp−1

ν (μ),v⟩ℒ
dℓ(ν,μ)2 (exp−1

ν (μ) + exp−1
μ (ν))

= v + ⟨μ − αν,v⟩ℒ
α + 1 (ν + μ), (4.5)

where α = −⟨ν,μ⟩ℒ . We derived the above equations by using the inverse of the exponential
map exp−1(⋅) described below. Next, likewise, for the exponential map, we need to be able
to compute the inverse of the parallel transform. Solving Equation 4.5 for v, we get

v = u − ⟨μ − αν,v⟩ℒ
α + 1 (ν + μ). (4.6)

Now, observing that

⟨ν − αμ,u⟩ℒ =⟨ν,v⟩ℒ + ⟨μ − αν,v⟩ℒ
α + 1 (⟨ν, ν⟩ℒ + ⟨μ, ν⟩ℒ)

= − ⟨μ,v⟩ℒ = −⟨μ − αν,v⟩ℒ , (4.7)
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we can write the inverse parallel transport as

v = PT−1
ν→μ(u) = u + ⟨ν − αμ,u⟩ℒ

α + 1 (ν + μ). (4.8)

The inverse of parallel transport from ν to μ coincides with the parallel transport from μ
to ν. The inverse parallel transport PT−1

ν→μ simply carries the vector in Tμℍn back to Tνℍn

along the geodesic. That is,
v = PT−1

ν→μ(u) = PTμ→ν(u). (4.9)

ex ponent ia l map and inver s e ex ponent ia l map Finally, we will describe a
function that maps a vector in a tangent space to its surface.

According to the basic theory of differential geometry, every u ∈ Tμℍn determines a
unique maximal geodesic γμ ∶ [0, 1] → ℍn with γμ(0) = μ and γ̇μ(0) = u. Exponential
map expμ ∶ Tμℍn → ℍn is a map defined by expμ(u) = γμ(1), and we can use this map to
project a vectorv inTμℍn ontoℍn in away that the distance fromμ to destination of themap
coincides with ‖v‖ℒ , the metric norm of v. For hyperbolic space, this map (Figure 4.2.1c) is
given by

z = expμ(u) = cosh (‖u‖ℒ)μ + sinh (‖u‖ℒ) u
‖u‖ℒ

. (4.10)

As we can confirm with straightforward computation, this exponential map is norm pre-
serving in the sense that dℓ(μ, expμ(u)) = arccosh(−⟨μ, expμ(u)⟩ℒ) = ‖u‖ℒ . Now, in order
to evaluate the density of a point on hyperbolic space, we need to be able to map the point
back to the tangent space, on which the distribution is initially defined. We, therefore, need
to be able to compute the inverse of the exponential map, which is also called logarithm
map, as well.

Solving Equation 4.10 for u, we obtain

u = ‖u‖ℒ
sinh(‖u‖ℒ)(z − cosh(‖u‖ℒ)μ). (4.11)

We still need to obtain the evaluatable expression for ‖u‖ℒ . Using the characterization of the
tangent space (Equation 4.4), we see that

⟨μ,u⟩ℒ = ‖u‖ℒ
sinh(‖u‖ℒ)(⟨μ, z⟩ℒ − cosh(‖u‖ℒ)⟨μ,μ⟩ℒ) = 0,

⟺ cosh(‖u‖ℒ)= − ⟨μ, z⟩ℒ ,
⟺ ‖u‖ℒ = arccosh(−⟨μ, z⟩ℒ). (4.12)

Now, defining α = −⟨μ, z⟩ℒ , we can obtain the inverse exponential function as

u = exp−1
μ (z) = arccosh(α)

√α2 − 1
(z − αμ). (4.13)

.
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Algorithm 4.3.1 Sampling on hyperbolic space
1: Input: parameter μ ∈ ℍn, Σ
2: Output: z ∈ ℍn

3: Require: μ0 = (1, 0, ⋯ , 0)⊤ ∈ ℍn

4: Sample ṽ ∼ 𝒩(0, Σ) ∈ ℝn

5: v = [0, ṽ] ∈ Tμ0
ℍn

6: Move v to u = PTμ0→μ(v) ∈ Tμℍn by Equation 4.5
7: Map u to z = expμ(u) ∈ ℍn by Equation 4.10

4.3 hyperbol i c wrapp ed d i st r i but ion

4.3.1 Construction

Finally, we are ready to provide the construction of our hyperbolic wrapped distribution
𝒢(μ, Σ) on hyperbolic space with μ ∈ ℍn and positive definite Σ (Figure 4.3.1).

In the language of the differential geometry, our strategy can be re-described as follows:

1. Sample a vector ṽ from the Gaussian distribution 𝒩(0, Σ) defined over ℝn.

2. Interpret ṽ as an element of Tμ0
ℍn ⊂ ℝn+1 by rewriting ṽ as v = [0, ṽ].

3. Parallel transport the vector v to u ∈ Tμℍn ⊂ ℝn+1 along the geodesic from μ0 to μ.

4. Map u to ℍn by expμ.

Algorithm 4.3.1 is an algorithmic description of the sampling procedure based on our
construction.

4.3.2 Probability Density Function

Note that both PTμ0→μ and expμ are differentiable functions that can be evaluated analyt-
ically. Thus, by the construction of 𝒢(μ, Σ), we can compute the probability density of
𝒢(μ, Σ) at z ∈ ℍn using a composition of differentiable functions, PTμ0→μ and expμ. Let
projμ ∶= expμ ∘PTμ0→μ.

In general, if X is a random variable endowed with the probability density function p(x),
the log likelihood of Y = f(X) at y can be expressed as

log p(y) = log p(x) − log det( 𝜕f
𝜕x) (4.14)
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Algorithm 4.3.2 Calculate log-pdf
1: Input: sample z ∈ ℍn, parameter μ ∈ ℍn, Σ
2: Output: log p(z)
3: Require: μ0 = (1, 0, ⋯ , 0)⊤ ∈ ℍn

4: Map z to u = exp−1
μ (z) ∈ Tμℍn by Equation 4.13

5: Move u to v = PT−1
μ0→μ(u) ∈ Tμ0

ℍn by Equation 4.8
6: Calculate log p(z) by Equation 4.15

where f is a invertible and continuous map. Thus, all we need in order to evaluate the prob-
ability density of 𝒢(μ, Σ) at z = projμ(v) is the way to evaluate det(𝜕projμ(v)/𝜕v):

log p(z) = log p(v) − log det⎛⎜
⎝

𝜕projμ(v)
𝜕v

⎞⎟
⎠

. (4.15)

Algorithm 4.3.2 is an algorithmic description for the computation of the pdf.
For the implementation of Algorithm 4.3.1 and Algorithm 4.3.2, we would need to be

able to evaluate not only expμ(u), PTμ0→μ(v) and their inverses, but also need to evaluate
the determinant. We provide an analytic solution to each one of them below.

log -de t erm inant For the evaluation of Equation 4.15, we need to compute the log
determinant of the projection function that maps a vector in the tangent space Tμ0

(ℍn) at
origin to the tangent space Tμ(ℍn) at an arbitrary point μ in the hyperbolic space.

Appealing to the chain-rule and the property of determinant, we can decompose the
expression into two components:

det⎛⎜
⎝

𝜕projμ(v)
𝜕v

⎞⎟
⎠

= det⎛⎜
⎝

𝜕 expμ(u)
𝜕u

⎞⎟
⎠

⋅ det⎛⎜
⎝

𝜕PTμ0→μ(v)
𝜕v

⎞⎟
⎠

. (4.16)

We evaluate each piece one by one. First, let us recall that 𝜕 expμ(u)/𝜕u is a map that sends
an element in Tu(Tμ(ℍn)) = Tμ(ℍn) to an element in Tv(ℍn), where v = expμ(u). We
have a freedom in choosing a basis to evaluate the determinant of this expression. For con-
venience, let us choose an orthonormal basis of Tμ(ℍn) that contains ū = u/‖u‖ℒ :

{ū,u′
1,u′

2, ....u′
n−1}. (4.17)

The desired determinant can be computed by tracking howmuch each element of this basis
grows in magnitude under the transformation.
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The derivative in the direction of each basis element can be computed as follows:

d expμ(ū) = 𝜕
𝜕ϵ ∣

ϵ=0
expμ(u + ϵū)

= 𝜕
𝜕ϵ ∣

ϵ=0
[cosh(r + ϵ)μ + sinh(r + ϵ) u + ϵū

‖u + ϵū‖ℒ
]

= sinh(r)μ + cosh(r)ū, (4.18)

d expμ(u′
k) = 𝜕

𝜕ϵ ∣
ϵ=0

expμ(u + ϵu′
k)

= 𝜕
𝜕ϵ ∣

ϵ=0
[cosh(r)μ + sinh(r)u + ϵu′

r ]

=sinh r
r u′. (4.19)

In the second line of the computation of the directional derivative with respect to u′
k, we

used the fact that ∥u + ϵu′
k∥ℒ = √⟨u,u⟩ℒ + ϵ⟨u,u′

k⟩ℒ + ϵ2⟨u′
k,u′

k⟩ℒ = ‖u‖ℒ + 𝒪(ϵ2) and that
O(ϵ2) in the above expression will disappear in the ϵ → 0 limit of the finite difference.
All together, the derivatives computed with respect to our choice of the basis elements are
given by

(sinh(r)μ + cosh(r)ū, sinh r
r u′

1, sinh r
r u′

2, ⋯ , sinh r
r u′

n−1). (4.20)

The desired determinant is the product of the Lorentzian norms of the vectors of the set
above. Because all elements of Tμ(ℋn) ⊂ ℝn are orthogonal with respect to the Lorentzian
inner product and because ∥sinh(r)μ + cosh(r)ū∥ℒ = 1 and ∥sinh(r)/r ⋅ u′∥ℒ = sinh(r)/r,
we get

det⎛⎜
⎝

𝜕 expμ(u)
𝜕u

⎞⎟
⎠

= (sinh r
r )

n−1
. (4.21)

Next, let us compute the determinant of the parallel transport. Let v ∈ Tμ0
ℍn, and let u =

PTμ0→μ(v) ∈ Tμℍn. The derivative of thismap is amap fromTv(Tμ0
(ℍn)) toTu(ℍn). Let us

choose an orthonormal basis ξk (In Lorentzian sense). Likewise above, we can compute the
desired determinant by tracking how much each element of this basis grows in magnitude
under the transformation. Denoting α = −⟨μ0,μ⟩ℒ , we get

dPTμ0→μ(ξ) = 𝜕
𝜕ϵ ∣

ϵ=0
PTμ0→μ(v + ϵξ)

= 𝜕
𝜕ϵ ∣

ϵ=0
[(v + ϵξ) +

⟨μ − αμ0,v + ϵξ⟩ℒ
α + 1 (μ0 + μ)]

=ξ +
⟨μ − αμ0, ξ⟩ℒ

α + 1 (μ0 + μ) = PTμ0→μ(ξ), (4.22)
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and see that each basis element ξk is mapped by dPTμ0→μ to

(PTμ0→μ(ξ1),PTμ0→μ(ξ2) ⋯ , PTμ0→μ(ξn)). (4.23)

Because parallel transport is a norm preserving map, ∥PTμ0→μ(ξ)∥
ℒ

= 1. That is,

det⎛⎜
⎝

𝜕PTμ0→μ(v)
𝜕v

⎞⎟
⎠

= 1. (4.24)

All together, we get

det⎛⎜
⎝

𝜕projμ(v)
𝜕v

⎞⎟
⎠

= (sinh r
r )

n−1
. (4.25)

The whole evaluation of the log determinant can be computed in 𝒪(n). Figure 4.3.1 shows
example densities on ℍ2.

Since themetric at the tangent space coincideswith the Euclideanmetric, we can produce
various types of distributions on hyperbolic space by applying our construction strategy to
other distributions defined on Euclidean space, such as Laplace and Cauchy distribution.

4.4 app l i cat ions of hyperbol i c wrapp ed d i st r i but ion

4.4.1 Hyperbolic Variational Autoencoder

As an application of hyperbolic wrapped distribution 𝒢(μ, Σ), we will introduce hyperbolic
variational autoencoder (Hyperbolic VAE), a variant of the variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014) in which the latent
variables are defined on hyperbolic space. Given dataset 𝒟 = {x(i)}Ni=1, the method of varia-
tional autoencoder aims to train a decodermodel pθ(x|z) that can create from pθ(z) a dataset
that resembles 𝒟 . The decoder model is trained together with the encoder model qϕ(z|x)
by maximizing the sum of evidence lower bound (ELBO) that is defined for each x(i);

log pθ(x(i)) ≥ ℒ(θ,ϕ; x(i)) = 𝔼qϕ(z|x(i))[log pθ(x(i)|z)] − DKL(qϕ(z|x(i))||pθ(z)), (4.26)

where qϕ(z|x(i)) is the variational posterior distribution. In classic VAE, the choice of the
prior pθ is the standard normal, and the posterior distribution is also variationally approxi-
mated by a Gaussian. Hyperbolic VAE is a simple modification of the classic VAE in which
pθ = 𝒢(μ0, I) and qϕ = 𝒢(μ, Σ). The model of μ and Σ is often referred to as encoder. This
parametric formulation of qϕ is called reparametrization trick, and it enables the evaluation
of the gradient of the objective functionwith respect to the network parameters. To compare
our method against, we used β-VAE (Higgins et al., 2017), a variant of VAE that applies a
scalar weight β to the KL term in the objective function.
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(a)

(b)

Figure 4.3.1: The heatmaps of log-likelihood of the hyperbolic wrapped distribution with various μ
and Σ. We designate the origin of hyperbolic space by the × mark. See Section 4.A for
further details.

In Hyperbolic VAE, we assure that output μ of the encoder is in ℍn by applying expμ0
to

the final layer of the encoder. That is, if h is the output, we can simply use

μ = expμ0
(h) = (cosh(∥h∥2), sinh(∥h∥2) h

∥h∥2
)

⊤
. (4.27)

As stated in the previous sections, our distribution 𝒢(μ, Σ) allows us to evaluate the ELBO
exactly and to take the gradient of the objective function. In a way, our distribution of the
variational posterior is an hyperbolic-analog of the reparametrization trick.

4.4.2 Word Embedding

We can use our hyperbolic wrapped distribution 𝒢 for probabilistic word embedding. The
work of Vilnis andMcCallum (2015) attempted to extract the linguistic and contextual prop-
erties of words in a dictionary by embedding every word and every context to a Gaussian
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distribution defined on Euclidean space. We may extend their work by changing the desti-
nation of the map to the family of 𝒢 . Let us write a ∼ b to convey that there is a link between
words a and b, and let us use qs to designate the distribution to be assigned to the word s.
The objective function used in Vilnis and McCallum (2015) is given by

ℒ(θ) = 𝔼(s∼t,s≁t′)[max (0,m + E(s, t) − E(s, t′))], (4.28)

whereE(s, t) represents themeasure of similarity between s and t evaluatedwithDKL(qs‖qt).
In the original work, qs and qt were chosen to be aGaussian distribution.We can incorporate
hyperbolic geometry into this idea by choosing qs = 𝒢(μ(s), Σ(s)).

4.5 r e lat ed works

The construction of hyperbolic distribution based on projection is not entirely new on its
own. For example, CCM-AAE (Grattarola, Livi, and Alippi, 2018) uses a prior distribution
on hyperbolic space centered at origin by projecting a distribution constructed on the tan-
gent space. Wrapped normal distribution (on sphere) also is a creation of similar philoso-
phy. Still yet, as mentioned in the introduction, most studies to date that use hyperbolic
space consider only deterministic mappings (Ganea, Bécigneul, and Hofmann, 2018a,b;
Gülçehre et al., 2019; Nickel and Kiela, 2017, 2018).

Ovinnikov (2019) and Mathieu et al. (2019) proposed an extension of Gaussian distribu-
tion on Poincaré ball model and its application to VAEs. Ovinnikov (2019) usedWasserstein
Maximum Mean Discrepancy (Gretton et al., 2012), and Mathieu et al. (2019) used Monte
Carlo approximation of ELBO for training their models. By construction, however, their
method can only create isotropic distribution on Riemannian manifold and they also have
to use rejection sampling in their method. Meanwhile, our method can wrap 𝒩(μ, Σ) onto
ℍn for arbitrary choice of Σ, and we do not have to use rejection sampling. Our distribution
𝒢(μ, Σ) can be defined for any μ in ℍn and any positive definite matrix Σ ∈ ℝn×n

+ .
For word embedding, several deterministic methods have been proposed to date, includ-

ing the celebrated Word2Vec (Mikolov et al., 2013). The aforementioned Nickel and Kiela
(2017) uses deterministic hyperbolic embedding to exploit the hierarchical relationships
among words. The probabilistic word embedding was first proposed by Vilnis and McCal-
lum (2015). As stated in the method section, their method maps each word to a Gaussian
distribution on Euclidean space. Their work suggests the importance of investigating the
uncertainty of word embedding. In the field of representation learning of word vectors, our
work is the first in using hyperbolic probability distribution for word embedding.

On the other hand, the idea to use a noninformative, non-Gaussian prior in VAE is not
new. For example, Davidson et al. (2018) proposes the use of von Mises-Fisher prior, and
Jang, Gu, and Poole (2017) and Rolfe (2017) use discrete distributions as their prior. With
the method of Normalizing flow (Rezende and Mohamed, 2015), one can construct even
more complex priors as well (Kingma et al., 2016). The appropriate choice of the prior shall
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Model Correlation Correlation w/ noise

Va
ni
lla

β = 0.1 0.665±.006 0.470±.018

β = 1.0 0.644±.007 0.550±.012

β = 2.0 0.644±.011 0.537±.012

β = 3.0 0.638±.004 0.501±.044

β = 4.0 0.217±.143 0.002±.042

Hyperbolic 0.768 ±.003 0.590 ±.018

Table 4.6.1: Results of tree embedding experiments for theHyperbolic VAE andVanilla VAEs trained
with different weight constants for the KL term. We calculated the mean and the ±1 SD
with five different experiments.

depend on the type of dataset. As we will show in the experiment section, our distribution
is well suited to the dataset with underlying tree structures. Another choice of the VAE
prior that specializes in such dataset has been proposed by Vikram, Hoffman, and Johnson
(2018). For the sampling, they use time-marginalized coalescent, a model that samples a
random tree structure by a stochastic process. Theoretically, their method can be used in
combinationwith our approach by replacing their Gaussian randomwalkwith a hyperbolic
random walk.

4.6 ex p er iment s

4.6.1 Synthetic Binary Tree

We trained Hyperbolic VAE for an artificial dataset constructed from a binary tree of depth
d = 8. To construct the dataset, we first obtained a binary representation for each node
in the tree so that the Hamming distance between any pair of nodes is the same as the
distance on the graph representation of the tree (Figure 4.1.1a). Let us call the set of binaries
obtained this way by A0. We then generated a set of binaries, A, by randomly flipping each
coordinate value of A0 with probability ϵ = 0.1. The binary set A was then embedded
into ℝd by mapping a1a2...ad to [a1, a2, ..., ad]. We used an Multi Layer Parceptron (MLP) of
depth 3 and 100 hidden variables at each layer for both encoder and decoder. For activation
function we used tanh.

Table 4.6.1 summarizes the quantitative comparison of Vanilla VAE against our Hyper-
bolic VAE. For each pair of points in the tree, we computed their Hamming distance as
well as their distance in the latent space of VAE. That is, we used hyperbolic distance for
Hyperbolic VAE, and used Euclidean distance for Vanilla VAE. We used the strength of cor-
relation between the Hamming distances and the distances in the latent space as a measure
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of performance. Hyperbolic VAE was performing better both on the original tree and on
the artificial dataset generated from the tree. Vanilla VAE performed the best with β = 2.0,
and collapsed with β = 3.0. The difference between Vanilla VAE and Hyperbolic VAE can
be observed with much more clarity using the 2-dimensional visualization of the gener-
ated dataset on Poincaré Ball (See Figure 4.1.1 and Section 4.B.1). The red points are the
embeddings of A0, and the blue points are the embeddings of all other points in A. The
pink × mark designates the origin of hyperbolic space. For the visualization, we used the
canonical diffeomorphism between the Lorenz model and the Poincaré ball model.

4.6.2 MNIST

Vannila VAE Hyperbolic VAE

n ELBO LL ELBO LL

2 -145.53 ±.65 -140.45 ±.47 -143.23 ±0.63 -138.61 ±0.45

5 -111.32 ±.38 -105.78 ±.51 -111.09 ±0.39 -105.38 ±0.61

10 -92.49 ±.52 -86.25 ±.52 -93.10 ±0.26 -86.40 ±0.28

20 -85.17 ±.40 -77.89 ±.36 -88.28 ±0.34 -79.23 ±0.20

Table 4.6.2: Quantitative comparison of Hyperbolic VAE against Vanilla VAE on the MNIST dataset
in terms of ELBO and log-likelihood (LL) for several values of latent space dimension
n. LL was computed using 500 samples of latent variables. We calculated the mean and
the ±1 SD with five different experiments.

We applied Hyperbolic VAE to a binarized version of MNIST. We used an MLP of depth
3 and 500 hidden units at each layer for both the encoder and the decoder. Table 4.6.2 shows
the quantitative results of the experiments. Log-likelihood was approximated with an em-
pirical integration of the Bayesian predictor with respect to the latent variables (Burda,
Grosse, and Salakhutdinov, 2016). Our method outperformed Vanilla VAE with small la-
tent dimension. Figure 4.6.1a are the samples of the Hyperbolic VAE that was trained with
5-dimensional latent variables, and Figure 4.6.1b are the Poincaré Ball representations of the
interpolations produced on ℍ2 by theHyperbolic VAE thatwas trainedwith 2-dimensional
latent variables.

4.6.3 Atari 2600 Breakout

In reinforcement learning, the number of possible state-action trajectories grows exponen-
tially with the time horizon. We may say that these trajectories often have a tree-like hierar-
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(a) (b)

Figure 4.6.1: (a) Samples generated from the Hyperbolic VAE trained on MNIST with latent dimen-
sion n = 5. (b): Interpolation of the MNIST dataset produced by the Hyperbolic VAE
with latent dimension n = 2, represented on the Poincaré ball.

Figure 4.6.2: Examples of the observed screens in Atari 2600 Breakout.

chical structure that starts from the initial states. We applied our Hyperbolic VAE to a set of
trajectories that were explored by a trained policy during multiple episodes of Breakout in
Atari 2600. To collect the trajectories, we used a pretrained Deep Q-Network (Mnih et al.,
2015), and used epsilon-greegy with ϵ = 0.1. We amassed a set of trajectories whose total
length is 100,000, of which we used 80,000 as the training set, 10,000 as the validation set,
and 10,000 as the test set. Each frame in the dataset was gray-scaled and resized to 80 × 80.
The images in the Figure 4.6.2 are samples from the dataset. We used a DCGAN-based ar-
chitecture (Radford, Metz, and Chintala, 2015) with latent space dimension n = 20. Please
see Section 4.C for more details.

The Figure 4.6.3 is a visualization of our results. The top three rows are the samples from
Vanilla VAE, and the bottom three rows are the samples from Hyperbolic VAE. Each row
consists of samples generated from latent variables of the form aṽ/‖ṽ‖2 with positive scalar
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Figure 4.6.3: Samples from Vanilla and Hyperbolic VAEs trained on Atari 2600 Breakout screens.
Each row was generated by sweeping the norm of ṽ from 1.0 to 10.0 in a log-scale.

a in range [1, 10]. Samples in each row are listed in increasing order of a. For Vanilla VAE,
we used 𝒩(0, I) as the prior. For Hyperbolic VAE, we used 𝒢(μ0, I) as the prior. We can see
that the number of blocks decreases gradually and consistently in each row for Hyperbolic
VAE. Please see Section 4.B.2 for more details and more visualizations.

In Breakout, the number of blocks is always finite, and blocks are located only in a specific
region. Let’s refer to this specific region as R. In order to evaluate each model-output based
on the number of blocks, we binarized each pixel in each output based on a prescribed
luminance threshold and measured the proportion of the pixels with pixel value 1 in the
region R. For each generated image, we used this proportion as the measure of the number
blocks contained in the image.

Figure 4.6.4 shows the estimated proportions of remaining blocks for Vanilla and Hyper-
bolic VAEs with different norm of ṽ. For Vanilla VAE, samples generated from ṽ with its
norm as large as ‖ṽ‖2 = 200 contained considerable amount of blocks. On the other hand,
the number of blocks contained in a sample generated by Hyperbolic VAE decreased more
consistently with the norm of ‖ṽ‖2. This fact suggests that the cumulative reward up to a
given state can be approximated well by the norm of Hyperbolic VAE’s latent representa-
tion. To validate this, we computed latent representation for each state in the test set and
measured its correlation with the cumulative reward. The correlation was 0.846 for the Hy-
perbolic VAE. For the Vanilla VAE, the correlation was 0.712. We emphasize that no infor-
mation regarding the reward was used during the training of both Vanilla and Hyperbolic
VAEs.

4.6.4 Word Embeddings

Lastly,we applied hyperbolicwrappeddistribution toword embeddingproblem.We trained
probabilistic word embeddingmodels withWordNet nouns dataset (Miller, 1998) and eval-
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Vanilla
Vanilla, |v|2 = 200

Figure 4.6.4: Estimated proportions of remaining blocks for Vanilla and Hyperbolic VAEs trained
on Atari 2600 Breakout screens as they vary with the norm of latent variables sampled
from a prior.

uated the reconstruction performance of them (Table 4.6.3). We followed the procedure of
Poincaré embedding (Nickel and Kiela, 2017) and initialized all embeddings in the neigh-
borhood of the origin. In particular, we initialized each weight in the first linear part of the
embedding by 𝒩(0, 0.01). We treated the first 50 epochs as a burn-in phase and reduced
the learning rate by a factor of 40 after the burn-in phase.

In Table 4.6.3, ‘Euclid’ refers to the word embedding with Gaussian distribution on Eu-
clidean space (Vilnis andMcCallum, 2015), and ‘Hyperbolic’ refers to our proposedmethod
based on hyperbolic wrapped distribution. Our hyperbolic model performed better than
Vilnis’ Euclidean counterpart when the latent space is low dimensional. We used diagonal
variance for both models above.

We also performed the same experiment with unit variance(Table 4.6.4). When the di-
mensions of the latent variable are small, the performance of themodel on hyperbolic space
did not deteriorate much by changing the variance from diagonal to unit. However, the
same change dramatically worsened the performance of the model on Euclidean space.



60 probab i l i s t i c d i st r i but ion on hyperbol i c s pace for h i e rarch ical structure

Euclid Hyperbolic Nickel and Kiela (2017)

n MAP Rank MAP Rank MAP Rank

5 0.296 ±.006 25.09 ±.80 0.506 ±.017 20.55 ±1.34 0.823 4.9
10 0.778 ±.007 4.70 ±.05 0.795 ±.007 5.07 ±.12 0.851 4.02
20 0.894 ±.002 2.23 ±.03 0.897 ±.005 2.54 ±.20 0.855 3.84
50 0.942 ±.003 1.51 ±.04 0.975 ±.001 1.19 ±.01 0.86 3.98
100 0.953 ±.002 1.34 ±.02 0.978 ±.002 1.15 ±.01 0.857 3.9

Table 4.6.3: Experimental results of the reconstruction performance on the transitive closure of the
WordNet noun hierarchy for several latent space dimension n. We calculated the mean
and the ±1 SD with three different experiments.

Euclid Hyperbolic

n MAP Rank MAP Rank

5 0.217 ±.008 55.28 ±3.54 0.529 ±.010 22.38 ±.70

10 0.698 ±.030 6.54 ±.65 0.771 ±.006 5.89 ±.29

20 0.832 ±.016 3.08 ±.16 0.862 ±.002 2.80 ±.13

50 0.910 ±.006 1.78 ±.071 0.903 ±.003 1.94 ±.03

100 0.882 ±.008 4.75 ±2.01 0.884 ±.003 2.57 ±.09

Table 4.6.4: Experimental results of theword embeddingmodels with unit variance on theWordNet
noun dataset. We calculated the mean and the ±1 SD with three different experiments.
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4.7 conclus ion

In this paper, we proposed a novel parametrizaiton for the density of hyperbolic wrapped
distribution that can both be differentiated and evaluated analytically. Our experimental
results on hyperbolicword embedding and hyperbolic VAE suggest that there ismuchmore
room left for the application of hyperbolic space. Our parametrization enables gradient-
based training of probabilistic models defined on hyperbolic space and opens the door to
the investigation of complex models on hyperbolic space that could not have been explored
before.





CHAPTER APPEND IX

4.a v i sual example s o f hyperbol i c wrapp ed d i st r i but ion

Figure 4.A.1 shows examples of hyperbolic wrapped distribution 𝒢(μ, Σ) with various μ
and Σ. We plotted the log-density of these distributions by heatmaps. We designate the μ
by the × mark. The right side of these figures expresses their log-density on the Poincaré
ball model, and the left side expresses the same one on the corresponding tangent space.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.A.1: Visual examples of hyperbolic wrapped distribution on ℍ2. Log-density is illustrated
on ℬ2 by translating each point from ℍ2 for clarity. We designate the origin of hyper-
bolic space by the × mark.
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4.b add i t i onal numer i cal evaluat ions

4.b.1 Synthetic Binary Tree

(a) A tree representation of the
training dataset

!!!!!!"

!!!!!"" !!!!"!"

!!!"!"" !!"!!"" !"!!"!" "!!!"!"

!!"!"!"

"!!""!!
"!!!""!

(b) Vanilla (β = 0.1) (c) Vanilla (β = 1.0)

(d) Vanilla (β = 2.0) (e) Vanilla (β = 3.0) (f) Hyperbolic

Figure 4.B.1: The visual results of Vanilla and Hyperbolic VAEs applied to an artificial dataset gen-
erated by applying a random perturbation to a binary tree. The visualization is being
done in the Poincaré ball. Red points are the embeddings of the original tree, and the
blue points are the embeddings of all other points in the dataset. Pink × represents the
origin of hyperbolic space. Note that the hierarchical relations in the original tree was
not used during the training phase.

We qualitatively compared the learned latent space of Vanilla and Hyperbolic VAEs.
Figure 4.B.1 shows the embedding vectors of the synthetic binary tree dataset on the two-
dimensional latent space.We evaluated the latent space of Vanilla VAEwith β = 0.1, 1.0, 2.0,
and 3.0, and Hyperbolic VAE. Note that the hierarchical relations in the original tree were
not used during the training phase. Red points are the embeddings of the noiseless observa-
tions. Aswementioned in Section 4.6.1, we evaluated the correlation coefficient between the
Hamming distance on the data space and the hyperbolic (Euclidean for Vanilla VAEs) dis-
tance on the latent space. Consistently with this metric, the latent space of the Hyperbolic
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VAE captured the hierarchical structure inherent in the dataset well. In the comparison
between Vanilla VAEs, the latent space captured the hierarchical structure according to in-
crease the β. However, the posterior distribution of the Vanilla VAE with β = 3.0 collapsed
and lost the structure. Also, the blue points are the embeddings of noisy observation, and
pink × represents the origin of the latent space. In latent space of Vanilla VAEs, there was
bias in which embeddings of noisy observations were biased to the center side.

4.b.2 Atari 2600 Breakout

To evaluate the performance of Hyperbolic VAE for hierarchically organized dataset accord-
ing to time development, we applied our Hyperbolic VAE to a set of trajectories that were
explored by an agent with a trained policy during multiple episodes of Breakout in Atari
2600. We used a pretrained Deep Q-Network to collect trajectories, and Figure 4.B.2 shows
examples of observed screens.

Figure 4.B.2: Examples of observed screens in Atari 2600 Breakout.

We showed three trajectories of samples from the prior distribution with the scaled norm
for both models in Section 4.6.3. We also visualize more samples in Figure 4.B.3 and Fig-
ure 4.B.4. For both models, we generated samples with ‖ṽ‖2 = 0, 1, 2, 3, 5, and 10.

Vanilla VAE tended to generate oversaturated images when the norm ‖ṽ‖ was small. Al-
though the model generated several images which include a small number of blocks as the
norm increases, it also generated images with a constant amount of blocks even ‖ṽ‖ = 10.
On the other hand, the number of blocks contained in the generated image of Hyperbolic
VAE gradually decreased according to the norm.
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(a) ‖ṽ‖2 = 0 (b) ‖ṽ‖2 = 1 (c) ‖ṽ‖2 = 2

(d) ‖ṽ‖2 = 3 (e) ‖ṽ‖2 = 5 (f) ‖ṽ‖2 = 10

Figure 4.B.3: Images generated by Vanilla VAE with constant norm ‖ṽ‖2 = a.

(a) ‖ṽ‖2 = 0 (b) ‖ṽ‖2 = 1 (c) ‖ṽ‖2 = 2

(d) ‖ṽ‖2 = 3 (e) ‖ṽ‖2 = 5 (f) ‖ṽ‖2 = 10

Figure 4.B.4: Images generated by Hyperbolic VAE with constant norm ‖ṽ‖2 = a.
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4.c ne twork arch i t ec ture

Table 4.C.1 shows the network architecture thatwe used in Breakout experiments.We evalu-
ated Vanilla and Hyperbolic VAEs with a DCGAN-based architecture (Radford, Metz, and
Chintala, 2015) with the kernel size of the convolution and deconvolution layers as 3. We
used leaky ReLU nonlinearities for the encoder and ReLU nonlinearities for the decoder.
We set the latent space dimension as 20. We gradually increased β from 0.1 to 4.0 linearly
during the first 30 epochs. To ensure the initial embedding vector close to the origin, we
initialized γ for the batch normalization layer (Ioffe and Szegedy, 2015) of the encoder as
0.1. We modeled the probability distribution of the data space p(x|z) as Gaussian, so the
decoder output a vector twice as large as the original image.

Encoder

Layer Size

Input 80 × 80 × 1
Convolution 80 × 80 × 16
BatchNormalization
Convolution 40 × 40 × 32
BatchNormalization
Convolution 40 × 40 × 32
BatchNormalization
Convolution 20 × 20 × 64
BatchNormalization
Convolution 20 × 20 × 64
BatchNormalization
Convolution 10 × 10 × 64
Linear 2n

Decoder

Layer Size

Linear 10 × 10 × 64
BatchNormalization
Deconvolution 20 × 20 × 32
BatchNormalization
Convolution 20 × 20 × 32
BatchNormalization
Deconvolution 40 × 40 × 16
BatchNormalization
Convolution 40 × 40 × 16
Deconvolution 80 × 80 × 2
Convolution 80 × 80 × 2

Table 4.C.1: Network architecture for Atari 2600 Breakout dataset.



5
S E L F - SUPERV I S ED META- L EARN ING FOR LOCAL STRUCTURE

Extracting the hidden structure of the external environment is an essential component of in-
telligent agents and human learning. Especially, disentanglement, the decomposition of the
small number of factors that control high-dimensional observations, has attracted notable
attention. The disentangled representations are known to be unachievable in general with-
out any inductive biases on the dataset, although an explicit form of the bias was less con-
sidered. In this study, we introduce the additional assumption on the dataset that the mag-
nitude of fluctuation can categorize the disentanglement factors into at least two groups:
global and local factors. We propose the local variational autoencoder (VAE), which gener-
alizes the VAE to have the different model parameters for each local subset and train these
local parameters by the gradient-based meta-learning. Our empirical results showed that
the local VAE succeeded in learning the locally disentangled representations against the
dataset with local structure, including the 3D Shapes dataset, and generated high-quality
images.

5.1 in troduct ion

Extracting the hidden structure of the external environment is essential for achieving intel-
ligent agents and for modeling human learning (Achille et al., 2018; Higgins et al., 2017;
Kemp and Tenenbaum, 2008; Lake, Salakhutdinov, and Tenenbaum, 2015; Saxe, McClel-
land, and Ganguli, 2019). Human beings and animals can effectively learn internal repre-
sentations from a few experiences. Owing to the development of deep generative models
(Goodfellow et al., 2014; Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra,
2014; Rezende and Mohamed, 2015), we can now handle high-dimensional datasets for
many individual problems.

Since most datasets tend to be governed by the consistent rules of the physical world
(Achille et al., 2018), it is reasonable to expect that a dataset can be modeled by a small
number of control parameters even when high-dimensional observations are involved. For
instance, human-made objects of the same shape or size often have multiple color options,
and human faces can be decomposed into a variety of factors such as age, gender, and facial

69
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(a) Dataset with local disentanglement

Local structure
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(b) Local VAE
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(c) Distance distribution of 3D Shapes dataset
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Figure 5.1.1: (a-b): Schematic diagrams of a dataset and the proposedmodel with the assumption of
local disentanglement. (c): Empirical distribution of the pairwise ℓ2 distance evaluated
on the 3D Shapes dataset. Please see Section 5.5 for further details.

expressions. A representation that independently extracts such control factors is referred
to as a disentangled representation (Higgins et al., 2017, 2018); accordingly, such represen-
tations have attracted notable attention in the extraction of structures using variational au-
toencoders (VAEs) (Kingma and Welling, 2013; Rezende, Mohamed, and Wierstra, 2014).
β-VAE is a typical model that aims to achieve disentangled representation (Higgins et al.,

2017). This model forces the latent space of VAE to become dimensionally independent by
strongly regularizing the posterior distribution of the latent variable to be isotropic Gaus-
sian. To date, many similar approaches that extend the objective function assuming only
the independence of disentanglement factors have been studied (Burgess et al., 2017; Chen
et al., 2018; Kim and Mnih, 2018; Kumar, Sattigeri, and Balakrishnan, 2018). However, Lo-
catello et al. (2019) showed that disentanglement is fundamentally impossible without in-
ductive biases both on models and datasets. Therefore, we consider explicitly introducing
inductive biases to a dataset.
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In this study, we introduce the locality of disentanglement factors as an inductive bias to
a dataset. The disentanglement factors that we are interested in often have a typical scale.
Some factors cause datasets to fluctuate significantly, while others have small fluctuations
in the data space. For example, for a human-made object, a change in color is larger than a
change in other appearances including object size, type, and azimuth (Figure 5.1.1c). Fur-
thermore, in the case of human facial images, although people of every different age, gen-
der, etc., have common facial expressions (Ekman and Keltner, 1997), the actual facial ex-
pressions of emotions (for example, laughing or crying) can drastically vary from person to
person. In other words, the local factor named facial expression can depend on the global
factor named individual differences. Figure 5.1.1a shows a schematic representation of a
dataset where the local factor depends on the global factor. Since such assumptions are
considered to be universal regardless of the domain of the dataset, the locality is a promis-
ing candidate for solving disentanglement.

When we need to model such a context-based modulation, meta-learning is an effective
approach. Meta-learning algorithms quickly learn the rules for each task for a dataset con-
sisting of multiple tasks (Andrychowicz et al., 2016; Bengio et al., 1992; Finn, Abbeel, and
Levine, 2017; Ravi and Larochelle, 2017; Schmidhuber, 1987). In this study, by considering
each local structure as a task for meta-learning, we extract the transferable knowledge be-
tween each local structure. We propose a meta-embedding model, the parameters of which
capture the common local structure and quickly adapt to each subspace by utilizing the
structural similarity.

Here, we generalize the typical deep generativemodel known as the VAE therebymaking
it applicable to a dataset with local structure. We extend the graphical model of the VAE to
contain different model parameters for each local subset of the dataset (Figure 5.1.1b), and
perform the knowledge transfer by using the gradient-based meta-learning (Finn, Abbeel,
and Levine, 2017; Grant et al., 2018). By treating the neighborhood of each data point as a
task to adopt meta-learning, our proposed local VAE is able to quickly learn similar struc-
tures between neighbors. We show that the local VAE can naturally express the locally dis-
entangled representation, which is defined as the context-dependent decomposition with
respect to a group action. This definition is a natural extension of the definition proposed
by Higgins et al. (2018). We can interpret the original disentanglement as the special case
where the structure of each local subset is exactly identical throughout the entire dataset,
so our proposed model has broader applicability. We also evaluate the performance of our
proposed model with the 3D Shapes dataset (Burgess and Kim, 2018) and a concatenated
dataset consisting of Cars3D (Reed et al., 2014) and SmallNORB (LeCun, Huang, and Bot-
tou, 2004). Numerical experiments show that the locality enables the proposed model to
achieve a disentangled representation for each subspace without any label information.
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5.2 background

5.2.1 Variational Autoencoder

First, we introduce the VAE (Kingma and Welling, 2013; Rezende, Mohamed, and Wier-
stra, 2014), which is a deep generative model that has been studied extensively in recent
years. The objective function of the VAE is defined as the variational lower bound of the
log-likelihood (referred to as the evidence lower bound, ELBO). Given the dataset 𝒟 =
{x(i)}Ni=1, the ELBO is defined as follows for each x(i):

log pθ(x(i)) ≥𝔼qϕ(z|x(i))[log pθ(x(i)|z)] − DKL(qϕ(z|x(i))∥pθ(z))

= − ℒ(θ,ϕ; x(i)), (5.1)

where pθ(x(i)|z) is the conditional likelihood referred to as the decoder, and qϕ(z|x(i)) is the
variational posterior distribution referred to as the encoder. The distribution of the prior pθ
is typically the standard normal, and the posterior distribution is also variationally approx-
imated by a Gaussian. This parametric formulation of qϕ is called the reparameterization
trick, which enables the evaluation of the gradient of the objective function with respect to
the network parameters. Overall, we can train the decoder and encoder networks by mini-
mizing the negative ELBO using the gradient descent method.

5.2.2 Model-Agnostic Meta-Learning

Next, to incorporate context-dependentmodulation into theVAE,weutilizemodel-agnostic
meta-learning (MAML) (Finn, Abbeel, and Levine, 2017), which is a gradient-based meta-
learning algorithm. The goal of MAML is to find task-independent knowledge from a num-
ber of previous related tasks. Once the meta-learner learns this task-independent knowl-
edge, the model can quickly adapt to a new task using only a few data points and training
iterations. To connect this algorithm to the probabilistic inference, we introduce a the maxi-
mum likelihood formulation (Grant et al., 2018) instead of the original formulation. In the
maximum likelihood setting, each data point is assumed to be sampled from a task-specific
distribution x(1)

t , … , x(Nt)
t ∼ p𝒯t

(xt). The objective function of MAML in this setting is

ℒ(θ) = 1
T

T
∑
t=1

[ 1
Nt

Nt

∑
i=1

− log p(x(i)
t ∣ θ − α∇θ

1
Nt

Nt

∑
j=1

− log p(x(j)
t |θ)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
θ′
t

)], (5.2)

where θ′
t represents the task-specific parameter after a single batch update by gradient de-

scent from θ. The meta-learner can acquire the parameter θ and can quickly adapt to new
tasks with a small amount of data by optimizing Equation 5.2 using the gradient descent
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method. We note that θ can be interpreted as the parameter of the prior distribution for the
task-specific parameter θt. By replacing the expectationwith repsect to the original posterior
distribution by the maximum likelihood estimate ∫ f(θt)p(θt|θ)dθt ≃ f(θ′

t), the abovemen-
tioned objective function (Equation 5.2) recovers.

5.3 local var iat ional autoencoder

In this section,wewill present the local VAE, a variant of theVAE suitable for representation
learning of a dataset with the assumption of local disentanglement.

Here, we extend the objective function of the VAE (Equation 5.1) to have different pa-
rameters for each local subset. First, we assume T local subsets and the data points for each
t-th local subset is sampled in an iid manner: x(i)

t
iid∼ p𝒯t

(xt). Suppose that we have a dataset
𝒟 = {x(i)

t }i=1…Nt,t=1…T. Here, we model the data-generating distribution for t-th local sub-
set by the parameter θt and the latent variable zt. Based on the assumption that each local
subset shares transferable knowledge, we introduce the meta-parameter θ as a prior distri-
bution of this local parameter. The overall graphical model of the local VAE is as shown in
Figure 5.3.1. The model performs the probabilistic inference through the conditional distri-
bution from the meta-parameters.

x(i)
t

z(i)
tϕt θtϕ θ

Nt T

Figure 5.3.1: The graphical model of a Local VAE.

We consider the following lower bound of the log-likelihood by using Jensen’s inequality:

log pθ(x(i)
t ) = log∫ p(x(i)

t |zt, θt)p(zt|θt)pθ(θt)dztdθt

= log∫
⎧{
⎨{⎩

∫
q(zt|x(i)

t ,ϕt)
q(zt|x(i)

t ,ϕt)
qϕ(ϕt)dϕt

⎫}
⎬}⎭
p(x(i)

t |zt, θt)p(zt|θt)pθ(θt)dztdθt

≥ ∫ pθ(θt)qϕ(ϕt)q(zt|x
(i)
t ,ϕt) log

p(x(i)
t |zt, θt)p(zt|θt)
q(zt|x(i)

t ,ϕt)
dztdθtdϕt

=𝔼pθ(θt)qϕ(ϕt)[𝔼q(zt|x(i)
t ,ϕt)

[ log p(x(i)
t |zt, θt)] − DKL(q(zt|x(i)

t ,ϕt)‖p(zt|θt))],
(5.3)
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where pθ(θt) and qϕ(ϕt) are the conditional distributions of the local parameters. We note
that the integral variables of the expectation and the Kullback-Leibler divergence in Equa-
tion 5.3 are zt, θt and ϕt.

As mentioned above, the integral variables of Equation 5.3 include θt and ϕt. This means
that Equation 5.3 needs to take an integral of the model parameters to evaluate the objec-
tive function, while that of the vanilla VAE requires only the Monte Carlo expectation of z.
Such an integral is unreasonable in deep generative models, whose model parameters are
often high-dimensional. To overcome this problem, we assume the probability distribution
of θt (ϕt) given θ (ϕ) as Gaussian of constant variance and replace the integral with the
maximum likelihood estimator. We use the one-step gradient descent method to compute
this estimator, as we described in Section 5.2.2. Let ℒ(θ,ϕ; x(i)

t ) be the negative of the ex-
pression obtained by Equation 5.3. By replacing the integral of θt andϕt with themaximum
likelihood estimator θ′

t and ϕ′
t, we obtain

ℒ(θ,ϕ; x(i)
t ) ≃ − 𝔼qϕ′

t
(zt|x(i)

t )[log pθ′
t
(x(i)

t |zt)] + DKL(qϕ′
t
(zt|x(i)

t )‖pθ′
t
(zt))

=ℒg(θ
′
t,ϕ′

t; x
(i)
t ). (5.4)

We note that the integral variable of Equation 5.4 is now only zt. The maximum likelihood
estimator of the local parameters can be obtained by the following update rule:

θ′
t =θ − α∇θ

1
K

K
∑
j=1

ℒ(θ,ϕ; x(j)
t ), (5.5)

ϕ′
t =ϕ − α∇ϕ

1
K

K
∑
j=1

ℒ(θ,ϕ; x(j)
t ), (5.6)

where K is the batch-size for the samples from the t-th local subset. ℒ(θ,ϕ; x) is the ELBO
of the vanilla VAE defined in Equation 5.1. Algorithm 5.3.1 shows the overall algorithm.

From the perspective of the graphical model, our proposed algorithm corresponds to the
assumption that the dataset approximately lies on multiple subsets and that each subset is
generated from different parameters. Alternatively, from a meta-learning viewpoint, our
objective function is consistent with the case of training VAEs by MAML when task infor-
mation is given as a neighbor graph.We can also give the relationship of ourmodel with the
local learning approach that is represented by the locally linear embedding (LLE) (Roweis
and Saul, 2000) (please see Section 5.6.1).

5.4 locally d i s entangled repr e s entat ion

In this section, we show that a computational graph of local VAEs can naturally express
locally disentangled representations. First, we define a locally disentangled representation
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Algorithm 5.3.1 Optimization of a local VAE
1: while until converge do
2: Sample T reference points as a mini-batch: ℬ = x1, … , xT
3: for xt in the mini-batch ℬ do
4: Sample K points from the same local subset of xt: x(1)

t , … , x(K)
t ∼ N(xt).

5: Evaluate the local objective ℒ(θ,ϕ; x) for the K-th neighborhood w.r.t. the meta-
parameters based on Equation 5.1.

6: Update the local parameters:
θt ← θ − α∇θ

1
K ∑i ℒ(θ,ϕ; x(i)

t ),
ϕt ← ϕ − α∇ϕ

1
K ∑i ℒ(θ,ϕ; x(i)

t ).
7: Evaluate the global objective ℒg(θt,ϕt; x

(i)
t ) w.r.t. the local parameters based on

Equation 5.4.
8: end for
9: Update the meta-parameters:

θ ← θ − η∇θ
1
TK ∑t ∑i ℒg(θt,ϕt; x

(i)
t ),

ϕ ← ϕ − η∇ϕ
1
TK ∑t ∑i ℒg(θt,ϕt; x

(i)
t ).

10: end while

as an extension of the definition proposed by Higgins et al. (2018), who defined the disen-
tanglement as the decomposition of (vector) spaces under a group action; we extend this
decomposition itself to depend partly on the context. Then, we show the relationship be-
tween this representation and the local VAE. A brief overview of the original definition by
Higgins et al. (2018) is shown in Section 5.A.

Here, we consider a group action ⋅ ∶ A×X → X. Suppose that groupA is decomposed into
a direct product A = A1 × ⋯ ×Ad. We refer to the actions of the full group A and subgroup
Ai as ⋅ and ⋅i, respectively. We define a locally disentangled group action as follows.

Definition 5.4.1. An action is locally disentangled if there is a decompositionX = X1 ×⋯×Xr×Xℓ

and we can take an isomorphism from Xℓ to Xr+1 × ⋯ × Xd depending on xr ∈ X1 × ⋯ × Xr such
that

(a1, ⋯, ad) ⋅ (x1, ⋯, xd) = (a1 ⋅1 x1, ⋯, ad ⋅d xd). (5.7)

When X is a vector space, we require the decomposition to be a direct sum, and the isomorphism to
be linear transformation, which corresponds to a change of basis.

This definition states that an element of Ai acts only on Xi and not on Xj, j ≠ i. The defini-
tion reduces to the original disentangled group action if this isomorphism is independent
of xr. We assume that each decomposed subspace Xi is one-dimensional in the following.

We then define a locally disentangled representation by using the above locally disentangled
group action. LetW be the set of world-states, and letX be the observation. We also assume



76 s e l f - sup erv i s ed meta- l earn ing for local structure

a generative process b ∶ W → X and an inference process g ∶ X → Z. We refer to the
composition of these processes as h = g ∘ b.

Definition 5.4.2. A representation Z is locally disentangled with respect to the decomposition A =
A1 × ⋯ × Ad if

1. There is an action ⋅ ∶ A × Z → Z,
2. The map h ∶ W → Z is equivariant between the actions onW and Z:

a ⋅ h(w) = h(a ⋅ w) ∀a ∈ A,w ∈ W. (5.8)

3. The action is locally disentangled with respect to Z.

Finally, we show that a computational graph of our proposed local VAE can naturally ex-
press a locally disentangled representation. We show only the main claim in the following;
please see Section 5.B for the detailed derivation.

The local VAE is a method for training VAE against a dataset, which we can split into
local subsets, by using the MAML algorithm. The MAML is a nested loop optimization
algorithm that is composed of an inner loop for each task and an outer loop. Here, we show
the interpretation of the MAML algorithm as a computational graph by treating the inner
loop as part of the inferencemodel. Suppose that the outputs of the encoder and decoder of
the local VAE for a specific task τ are zτ and x̂τ, respectively. We can expand these outputs
as linear combinations of the scalar coefficients and their corresponding bases:

zτ =
d

∑
i=1

gi(x)ei + α
|Φ|
∑
i=1

pi𝒟τ

𝜕
𝜕ϕi

g(x), (5.9)

̂xτ =
|X|
∑
i=1

fi ∘ g(x)ei + α
2{

|Φ|
∑
i=1

pi𝒟τ
∇zf(z) 𝜕

𝜕ϕi
g(x) +

|Θ|
∑
i=1

qi𝒟τ

𝜕
𝜕θi

f(z)}, (5.10)

where g and f are the encoder and decoder, respectively, 𝒟τ is the τ-th task dataset (local
subset), and ei is the i-th orthonormal basis. Both pi𝒟τ

and qi𝒟τ
are scalar coefficients that

depend only on the task dataset, not on the current input x. Note that we ignored the term
𝒪(α2) by regarding the inner learning rate α as being sufficiently small.

The first terms in Equation 5.9 and Equation 5.10 correspond to the map of Vanilla VAE,
while the rest of the terms are the modulation terms only for the local VAE. As shown in
these equations, the basis vectors for the local VAE depend on the current input x, whereas
the bases of the vanilla VAE are fixed. Owing to this property, the local VAE can naturally
find the decomposition of the bases that depend on the current context. Such a context-
dependent decomposition is exactly the definition of a locally disentangled representation
provided above. For the linearized encoder of the local VAE (Equation 5.9), under some
particular conditions, we can at least say the following:
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Theorem 5.4.1. (informal) The encoder of the local VAE can represent any locally disentangled
representation up to 𝒪(α2) error when we can take

𝒟τ(x) ⊆ {x′|x′ = b(w′), ∀w′ ∈ W andw′ℓ = wℓ}. (5.11)

We show the formal theorem and its derivation in Section 5.B. Note that this statement
concerns the condition required for the capability of the local VAE. The identifiability and
trainability of the solution are beyond the scope of this statement.

5.5 ne i ghborhood construct ion

As we mentioned before, the proposed method takes the local subsets of the entire dataset
as the tasks of the MAML algorithm. The most common method for constructing local sub-
sets is the k-nearest neighbor graph, which is built on the original data space. In general,
we can arbitrarily choose how to construct the neighborhood, but the methods affects the
embedding quality. Additionally, according to the constraints imposed by the abovemen-
tioned condition (Equation 5.11), it is desirable to be able to sample the subset withinwhich
the local factor is fixed for a locally disentangled representation. We evaluated two types of
neighborhoods in the following experiments: the k-nearest neighborhood in the data space and
synthetic neighborhood by sampling. Although the former is a typical neighborhood construc-
tion method, we propose the latter construction method for a specific dataset because of
the following observation.

Figure 5.1.1c shows the pairwise distances between two images in the 3D Shapes dataset
(Burgess and Kim, 2018). We picked two samples between which only the specific disen-
tanglement factor is different, and we empirically evaluated the ℓ2 distance between the
samples. The 3D Shapes dataset contains three factors related to color (dashed lines in the
figure) and to three other factors (solid lines). The magnitudes of fluctuation of the three
color factors are more significant than those of the other three factors, so we expected to
extract these color factors as global features. We also evaluated the pairwise distances be-
tween the k-th nearest neighbors with k = {1, 10, 20, 50, 100} (dashed vertical lines in the
lower part of the figure). We noted a small number of image pairs in which the distance is
comparable to the distance of the k-nearest neighbor, even for k = 1.

To anchor some disentanglement factors inside the local subsets as much as possible, we
propose using the synthetic neighborhood by sampling as the “zero”-nearest neighbor (solid
vertical line). In the synthetic neighborhood by sampling, we sampled K different examples
for each xt from the noise distribution, which we assumed represent the observations of the
data, and we used these examples as the neighborhood of xt.

We used the synthetic neighborhood in the experiment on the 3D Shapes dataset, andwe
employed the k-nearest neighborhood in the experiment on the CarsNORB dataset, which
we will describe later. We also compared the performance of these two methods. We used



78 s e l f - sup erv i s ed meta- l earn ing for local structure

Facebook AI Similarity Search (Faiss) (Johnson, Douze, and Jégou, 2017) for the similarity
search.

5.6 r e lat ed works

The property of disentanglement has attracted considerable attention in the extraction of
structures using VAEs (Burgess et al., 2017; Chen et al., 2018; Higgins et al., 2017; Kim
and Mnih, 2018; Kumar, Sattigeri, and Balakrishnan, 2018). Most proposed models try
to achieve a disentanglement representation by modifying the penalty term of the objec-
tive function or by modifying the network architectures. However, Locatello et al. (2019)
showed that disentanglement is fundamentally impossible without inductive biases both
in models and in datasets. On the other hand, our approach focuses on how to learn pa-
rameters suitable for (locally) disentangled representations so that we can utilize the afore-
mentioned techniques and our proposed method at the same time.

Theoretical developments have also been achieved for disentanglement. The original con-
cept of disentanglement was mathematically vague. Higgins et al. (2018) presented a for-
mal definition of disentanglement in the sense of a group action. Khemakhem, Kingma, and
Hyvärinen (2019) subsequently clarified that the solution of the VAE is identifiable when
the latent variables are conditioned on an additionally observed variable and conditionally
factorized with each other. Khemakhem, Kingma, and Hyvärinen (2019) clarified that the
solution of the VAE is identifiable when the latent variables are conditionally factorized
given an additional observed variable. Shu et al. (2020) investigated the theoretical limi-
tation of some types of weak supervision for disentanglement as used in Klys, Snell, and
Zemel (2018) and Bouchacourt, Tomioka, and Nowozin (2018). They divided the disentan-
glement into two properties: consistency and restrictiveness, and showed that a situation
where a learner hasmultiple sampleswith somefixed attributes is sufficient only for the con-
sistency of those attributes. While the way of supervision of our approach corresponds to
theirs (called match-pairing), the model and learning algorithm is different. They assumed
to capture all disentanglement factors by the latent variable and revealed only a sufficient
condition. The graphical model of our method differs from theirs and introduce locality
not only on the encoder but also on the decoder by MAML. MAML has a strong inductive
bias to keep each task-specific parameter close to the global parameter. As will be empir-
ically validated in Section 3.3, this inductive bias naturally evokes local disentanglement.
Moreover, while they need to access at least one disentanglement factor, our method does
not.

From the viewpoint of generating data by a deep generative model with some supervi-
sion, conditional generation is commonly practiced (Kingma et al., 2014; Mirza and Osin-
dero, 2014; Sohn, Lee, and Yan, 2015). Our method is similar to this approach in that the
density function is conditioned on the neighborhood of a specific data point. However,
while the conventional conditional generation approach generates data by using only one
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model parameter with the known class label as an additional latent code, our proposed
model contains different network parameters for each neighborhood. Therefore, the situa-
tion is similar to the case ofmatch-pairing that these approaches need to access at least class
label information.

In addition, substantial research has been conducted on the extension of generative mod-
els to make suchmodels applicable to structured datasets. Accordingly, various researchers
proposed to generalize the latent space of the VAE to a non-Euclidean space, such as a spher-
ical surface (Davidson et al., 2018), hyperbolic space (Mathieu et al., 2019; Nagano et al.,
2019; Ovinnikov, 2019), or discrete space (Jang, Gu, and Poole, 2017; Rolfe, 2017).

In this study, we employed the gradient-based MAML algorithm (Finn, Abbeel, and
Levine, 2017) and its probabilistic formulation (Grant et al., 2018) to find local parameters
from a few data points. Several studies (Hsu, Levine, and Finn, 2019; Metz et al., 2019) pro-
posed the integration of unsupervised learning and meta-learning from another perspec-
tive. Hsu, Levine, and Finn (2019) proposed an algorithm to generate MAML task infor-
mation by utilizing embedded similarity information created with unsupervised learning.
In contrast to this case of using unsupervised learning for meta-learning, we used meta-
learning to perform unsupervised learning. In addition, Metz et al. (2019) proposed a way
to seek the objective function for representation learning with meta-learning.

Furthermore, local learning approaches, including LLE (Roweis and Saul, 2000) and
Isomap (Tenenbaum, Silva, andLangford, 2000), are deeply related to ourwork.Wediscuss
the relationship between LLE and our work in detail in Section 5.6.1.

5.6.1 Relationship to Conventional Local Learning

Here, we discuss a possible interpretation of the local VAE as a variant of conventional local
learning approaches. Many studies have incorporated locality for dimensionality reduction
and representational learning (Kambhatla and Leen, 1997; Roweis and Saul, 2000; Tenen-
baum, Silva, and Langford, 2000). These studies aim to find mappings between the data
and the coordinate space under the assumption that the data space is composed of multi-
ple low-dimensional subspaces (Brand, 2003; Vincent and Bengio, 2003). We refer to this
approach as local learning.

Here, we introduce a locally linear embedding (LLE) (Roweis and Saul, 2000) as a typ-
ical local learning algorithm. LLE extracts low-dimensional neighborhood-preserving em-
beddings based on a precomputed neighbor graph. This method assumes that the dataset
consists of a combination of locally linear spaces and applies a linear projection to each
neighborhood. For the dataset 𝒟 = {x(i)}Ni=1, the objective function of LLE is defined as

ℒ(W) = ∑
i

∥x(i) − ∑
j
Wijx(j)∥

2
, (5.12)
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where parameterW is anN×Nmatrix. The elementWij ofW is nonzero only if x(j) belongs
to the set of neighbors of x(i), and ∑jWij = 0. The neighbor graph of x(i) is built by using the
k-nearest neighbor method. Since Equation 5.12 is known not to have local minima, we can
derive the solution of Equation 5.12 by a basicmatrix calculation. Once themodel parameter
W has been derived, we can obtain low-dimensional embeddings z(1), z(2), … , z(N) of each
data point by minimizing the loss ∑i ‖z(i) − ∑jWijz(j)‖2 with respect to z.

Here, we consider extending the embedding model of LLE from a linear projection to a
general nonlinear model. The embedding model of x(t) corresponds to ∑jWtjx(j) in Equa-
tion 5.12. In other words, if we denote the index of the neighborhood of x(t) by j1, … , jK,
the model parameters of the neighborhood are [Wtj1 ,Wtj2 , … ,WtjK]. In the following, we
generalize these parameters [Wtj1 ,Wtj2 , … ,WtjK] as parameter θt for the same local subset
of x(t). Then, the aforementioned objective function is given by the following:

ℒ(θ1, … , θN) = ∑
t

∥x(t) − gθt(N(x(t)))∥
2
, (5.13)

where we wrote the same local subset of x(t) as N(x(t)). Unlike Equation 5.12, there are no
restrictions on the number of parameters or the formulation, so the optimization of the
above equation is generally challenging. Notably, in the case of gθt(⋅) being a deep neural
network, a massive quantity of data and extended training time are required for each t-th
neighborhood N(x(t)).

Consider taking only x(t) itself instead of a set of neighborhoods N(x(t)) of x(t) as input
to function gθt(⋅) in Equation 5.13. If we denote the model parameters by θt and ϕt and use
an autoencoder for model g(⋅), Equation 5.13 corresponds to the objective function of the
local VAE with the Gaussian decoder.

From the perspective of optimization, following a naive way of incorporating the local
learning approaches into the training of deep generative models could be problematic, al-
though it will give us a new model that has both the capacity for high-dimensional inputs
and flexibility for locally changing environments at the same time. The reason is that the
conventional local learning approaches train a different embedding model for each neigh-
borhood from scratch; nevertheless, deep neural networks generally require a large quantity
of data, and training them takes a long time (LeCun, Bengio, and Hinton, 2015).

Here, we show that the approach of our local VAE is superior to naive local learning in
terms of computation time. We numerically evaluated the computation time of our local
VAE. Figure 5.6.1 shows the computation time for each iteration for various batch sizes. We
performed all experiments on a single GeForce GTX 1080Ti GPU. Each bar represents the
time per iteration for eachmodel, averaged over 1,000 trials. Since the batch size of the outer
loop of MAML corresponds to the number of tasks for each iteration, the total computation
time was predicted to increase linearly with the batch size. The empirical result is consis-
tent with this prediction. Because the local VAE requires extra computation involving the
gradient descent, the computation time of the local VAEwas slightly longer than that of the
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Figure 5.6.1: Comparison of computation times for various batch sizes.

vanilla VAE. However, this increase in cost remained at a constant level. On the other hand,
using a naive local learning approach will require the time of a vanilla VAE’s computation
multiplied by the number of divisions of the entire dataset because we need the embedding
model for every local subset. Since a local VAE transfers knowledge between local subsets,
we can omit the calculation.

5.7 numer i cal evaluat ions

5.7.1 3D Shapes Dataset

Here, we numerically evaluate the performance of the local VAE on the 3D Shapes dataset.
We followed all the experimental settings in Locatello et al. (2019) (except the batch size
and the number of tasks) to eliminate effects not related to the proposed method as much
as possible (please see Section 5.C for further details). Then we qualitatively assessed the
generated images and quantitatively evaluated the model performance by using the disen-
tanglementmetric (DCI score) proposed by Eastwood andWilliams (2018) and the Fréchet
inception distance (FID) (Heusel et al., 2017).

Qualitative Evaluations

Figure 5.7.1 shows the conditionally generated images of the trainedmodel. In the inference
phase, the model obtains the local parameters θt by applying the one-step gradient descent
method using the randomly selected training data and generates images from these local
parameters. We trained multiple models with different values of α, which is the hyperpa-
rameter of the local VAEs. Note that the original objective function of the vanilla VAE is
recovered in the case of α = 0 since the local parameters are strictly consistent with the
meta-parameters. According to the subjective assessment, the quality of the generated im-
ages is better when α is relatively large.
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(a) α = 0 (Vanilla) (b) α = 1 × 10−3 (c) α = 1

Figure 5.7.1: Qualitative comparison of the randomly-selected conditional prior samples.

=;-TKNVVN4L/

ƷƧpĂǿ�¼¬¸oŪċiv]d
ýŜ¨¶³h�hkŀƆǒǎq�×
ƍ�(
ǣ`hżź  ĨŴ��ÍŇ�

ÜĂǿ�¼¬¸xloĹǲ_�Ƅį
ǗŶp®� ¸  N)�q�Û`lfj
Mrt�¼l]dAL

ML
<L

8-
L�

=H
T

WS
L=

4V8.P[PV8HS�NL8L<H[PV8=
N/ N? Na N/beee

Figure 5.7.2: Reference training samples and the corresponding conditionally generated images of
the local VAE with α =1. The leftmost column shows the reference training samples.
Each row visualizes the generated images conditioned on the reference sample, and the
images shown in the same column share their latent code. The trained model extracted
color information as global features and other information as the local features.
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Next, we show that the local VAE separated the global and local features spontaneously
by using the meta-parameters. We illustrate the reference samples and the corresponding
generated images of the local VAE with α = 1 in Figure 5.7.2. The leftmost column shows
the reference training samples used for the conditional localized generation. Each row vi-
sualizes the generated images conditioned on the corresponding reference sample in the
leftmost column. We randomly picked ten latent codes z1, … , z10 from the prior distribu-
tion and then used these codes for each conditional generation. In other words, the images
shown in the same column share their latent code. According to the figure, the generated im-
ages conditioned on the corresponding reference sample have the same color information
as the reference. Additionally, we can see that the local VAE model did not overfit specific
data because the trained model generated clearly different images in the same row condi-
tioned on one training sample. Moreover, the shape, angle, and size of the object are the
same; only the color differs in each column. These results strongly suggest that the model
trained by the proposed method segregated color information as global features and other
information as local features and obtained an internal representation independent of the
global features. Note that the local VAE uses only neighborhood relationships and does
not use any label information. We discussed the magnitude of fluctuation of each disen-
tanglement factor in Section 5.5. The results shown in Figure 5.7.2 are consistent with the
tendency of these fluctuations.

Figure 5.7.3: Interpolation of the latent space of the local VAE. Each i-th row corresponds to the
reconstructed image with the latent code zi modified in the range of [−2, 2].

Figure 5.7.3 shows the learned latent space of the local VAE model. We swept each latent
dimension for the specific training sample in the range of [−2, 2]. The model extracted the
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angle, shape, and size of the object as locally disentangled factors. However, the color of the
reconstructed images was not changed during the interpolation since the model extracted
the color information as a global factor.

Quantitative Evaluations

Then, we quantitatively evaluated the latent representations of local VAEs by using DCI
scores (Eastwood and Williams, 2018). DCI scores quantify learned representations based
on three aspects: disentanglement, compactness, and informativeness. All of these metrics
can be computed from the importance of each dimension to the latent space in predicting a
factor of variation. DCI scores require the label information of the ground truth. Since the
local VAE clearly extracted the color information as the global feature, we calculated the
DCI scores under two conditions: the class labels including all six aspects (w/ color) and
the class labels excluding color information (w/o color). We report these values evaluated
on a single trial.

Table 5.7.1 shows the empirical evaluations of the abovementioned DCI scores. The DCI
scores with six labels (w/ color) of the local VAE were slightly better than those of the
vanilla VAE. The model with a small α, which is closer to the value of the vanilla VAE,
tended to achieve better scores for all DCI metrics in the local VAE comparison. This result
is attributed to the loss of color information from the internal representation as α increases.
On the other hand, the local VAEs significantly improved the DCI scores under the w/o
color condition. All the DCI metrics took their maximum value at α = 1. The performance
was slightly degraded at α = 1 × 101, and the loss diverged during training at α = 1 × 102.
This numerical evaluation suggests that α can control how much of the structure behind
the entire dataset is regarded as global variation and from where it is regarded as a local
variation. We also evaluated the performance of the β-VAE (Higgins et al., 2017) model as
a reference. β-VAE modifies the KL term (Equation 5.1) through multiplication with the
nozero coefficient β. Although the β-VAE models with β = 8 or β = 16 achieved higher
scores than the local VAEs under the w/ color condition, the local VAE with α = 1 signifi-
cantly outperformed all the β-VAE models under the w/o color condition.

We also evaluated the quality of the generated images with the FID (Heusel et al., 2017).
The FID is a metric that evaluates the similarity in the quality between real and generated
images. We used the 50,000 samples within the ground truth dataset and generated images
to calculate the FID. According to Table 5.7.1, the FID tended to be low at large α values and
took its minimum value at α = 1. This result is consistent with the DCI scores under the
w/o color condition.

Model Comparisons

We examined that the local VAE outperformed β-VAE in terms of the DCI score and the
FID. However, there are many state-of-the-art models and metrics for disentanglement.
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Table 5.7.1: Quantitative evaluations of the local VAE on the 3D Shapes dataset. Highlighted cells
indicate the model with the highest performance in the comparison of local VAEs. Bold
numbers indicate the absolute best results.

DCI w/ Color DCI w/o Color
FID

Disent. Compl. Inform. Disent. Compl. Inform.

Lo
ca

lV
A
E

α = 0 (Vanilla) 0.246 0.204 0.703 0.150 0.096 0.547 134.786
α = 1 × 10−3 0.491 0.407 0.814 0.390 0.305 0.686 107.636
α = 1 × 10−2 0.449 0.385 0.797 0.173 0.132 0.635 123.288
α = 1 × 10−1 0.457 0.432 0.626 0.945 0.796 0.996 49.364
α = 1 0.424 0.406 0.594 0.977 0.800 0.999 43.194
α = 1 × 101 0.393 0.370 0.587 0.871 0.733 0.998 59.555

β-
VA

E

β = 2 0.367 0.292 0.776 0.222 0.215 0.630 96.279
β = 4 0.588 0.499 0.906 0.384 0.337 0.817 96.612
β = 8 0.636 0.584 0.967 0.601 0.547 0.936 86.856
β = 16 0.649 0.580 0.941 0.690 0.473 0.883 86.237

Here, we show the quantitative comparison of different state-of-the-art models, metrics,
hyperparameters, and the neighborhood construction methods.

First we show the model comparison. In the following, we compared the Local VAE, β-
VAE, the Factor VAE (Kim and Mnih, 2018), the DIP-VAE-I and the DIP-VAE-II (Kumar,
Sattigeri, andBalakrishnan, 2018), and theAnnealedVAE (Burgess et al., 2017). Figure 5.7.4
shows the full comparisons of the FID for different models and hyperparameters. The FID
was remarkably reduced in the region where the α of local VAE was large. The optimal FID
of the local VAE was lower than every other models.
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Figure 5.7.4: Quantitative comparison of the FID. Lower values are better.
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Figure 5.7.5 shows the full comparisons of the DCI scores for different models and hy-
perparameters. Open bars correspond to the metrics for all six labels (w/ color) and solid
bars correspond to the metrics for three labels (w/o color). We showed the comparisons
to β-VAEs and other models with optimal hyperparameters in the main text. Similar to the
results shown in the main text, this figure shows the effectiveness of local VAE, especially
in the w/o color condition.

Then, we show the metrics comparison. Since Locatello et al. (2019) showed that differ-
ent disentanglement scores are correlated, we evaluated disentanglement ability by theDCI
scores in the main text. On the other hand, a number of state-of-the-art metrics have been
proposed for disentanglement representation.We evaluated the quality of learned represen-
tations of various models in the sense of local disentanglement. We evaluated these models
by the FID, the DCI scores, the SAP score (Kumar, Sattigeri, and Balakrishnan, 2018), the
mutual information gap (MIG) score (Chen et al., 2018), and the Modularity measures
(Ridgeway and Mozer, 2018). Figure 5.7.6 shows the comparisons about these metrics.

Similar to the case of the DCI scores, the performance of local VAE was improved in
w/o color condition compared to w/ color condition, except for the Modularity score. The
Modularity score uses discretized representations, so the value is higher even if the internal
representation is not aligned with respect to the true factor. Such a property is suggested to
be the cause that the various models including the local VAE did not show improvement.
Also the Modularity score has already achieved good performance in vanilla VAE, and it is
likely that it was difficult to improve it by modifying the method.

Except for the modularity score, the local VAE outperformed than the other models, es-
pecially in the w/o color condition. Almost all scores are correlated with each other and it
is consistent with the report in Locatello et al. (2019).
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Figure 5.7.5: Quantitative comparison of the DCI scores. Higher values are better. Open bars cor-
respond to the metrics for all six labels (w/ color) and solid bars correspond to the
metrics for three labels (w/o color).
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Figure 5.7.6: Quantitative comparison of various metrics. Higher values are better. Open bars cor-
respond to the metrics for all six labels (w/ color) and solid bars correspond to the
metrics for three labels (w/o color).
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Figure 5.7.7: Model comparisons to the “match-pairing” scheme (Shu et al., 2020). (a): FID. Lower
is better. (b): Various disentanglement metrics. Higher is better. Open bars correspond
to the metrics for all six labels (w/ color) and solid bars correspond to the metrics for
three labels (w/o color).

In Section 5.6, we argued the relationships and the difference to the representation learn-
ing presented by Shu et al. (2020). Shu et al. (2020) discussed the theoretical guarantees
and limitations of some types of weak supervision for the disentanglement. While the way
of supervision of our approach corresponds to one of their proposals (calledmatch-pairing),
the model and learning algorithm is different. Our method uses meta-learning and aims to
capture global disentanglement factors by the modulation of network parameters rather
than the latent variable. Here, we numerically evaluate the difference in the performance
of those two approaches.

Figure 5.7.7 shows the overall comparisons of the two approaches. We fixed the all hy-
perparameters and network architectures to the default values. Note that Shu et al. (2020)
proposed using a GAN-based generator (Goodfellow et al., 2014) rather than the VAE and
separately train the encoder for the generator. Therefore, our training algorithm based on
MAML and their algorithm are completely different. We see that the match-pairing scheme
achieved better performance against ours in terms of the FID (Figure 5.7.7a). This result is
reasonable because GAN-based generators are experimentally known to be able to generate
high-fidelity samples than VAE. On the other hand, for w/o color condition, our local VAE
outperformed the match-pairing scheme in terms of all metrics for the disentanglement ex-
cept theModularity score (Figure 5.7.7b). These results are consistent with the results men-
tioned above. As mentioned earlier, local VAEs attempt to capture global disentanglement
factors by performing meta-learning using network parameters rather than latent variables
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alone. These results suggest that the difference in such a setup has contributed to the per-
formance of the method as a strong inductive bias.

Choice of the Neighborhood Construction Method

Since the method used to calculate neighborhood was arbitrary, we also compared the syn-
thetic neighborhood with a widely used approach. We evaluated two types of methods:
synthetic neighborhood by sampling and k-nearest neighborhood on input space. We com-
pare the performance of the synthetic neighborhood to the ℓ2 distance on input space for
the same dataset.

Table 5.7.2 shows the comparison of the methods to compute neighborhood. We used
the 3D Shapes dataset and evaluated the performance with different values of α. Based on
the table, both the synthetic neighborhood and the k-nearest neighborhood outperformed
vanilla VAE, and they achieved comparable scores with each other. We note that the syn-
thetic neighborhood by sampling achieved slightly better performance than the ℓ2 distance
on input space in this experiment. This result suggests that distinguishing the global factors
is essential, as we discussed in Section 5.5. Choosing the appropriate distance will improve
the quality of the learned representations and generated images in practical use.

Table 5.7.2: Quantitative comparison of the neighborhood construction on the 3D Shapes dataset.

DCI w/ Color DCI w/o Color
FID

Disent. Compl. Inform. Disent. Compl. Inform.

α = 1 × 10−3 0.217 0.184 0.668 0.237 0.152 0.486 123.593
α = 1 × 10−2 0.200 0.166 0.660 0.175 0.113 0.480 115.726
α = 1 × 10−1 0.420 0.342 0.722 0.311 0.220 0.628 110.932
α = 1 0.397 0.342 0.582 0.676 0.520 0.813 49.187
α = 1 × 101 0.434 0.379 0.595 0.701 0.542 0.816 59.114

Sampling 0.424 0.406 0.594 0.977 0.800 0.999 43.194
Vanilla VAE 0.246 0.204 0.703 0.150 0.096 0.547 134.786

5.7.2 Concatenated Dataset of Cars3D and SmallNORB

Finally, we evaluated our proposed model on a dataset with explicit locality. In this section,
we concatenated two datasets: the Cars3D dataset (Reed et al., 2014) and the SmallNORB
dataset (LeCun, Huang, and Bottou, 2004). These datasets both comprise sets of images



5.7 numer i cal evaluat ions 91

of 3D objects. The Cars3D dataset has three disentanglement factors (elevation, azimuth,
and object type), while the SmallNORB dataset has four (elevation, azimuth, category, and
lighting condition). The elevation and azimuth are global control factors common to the
entire concatenated dataset, while the others are sub-dataset specific factors. Each image
has no information about which sub-dataset it originated. We refer to this dataset as the
CarsNORB dataset. Note that learning this entire dataset is more challenging than learning
each subdataset since these two subdatasets have different structures.

(a) (b)
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!1 !2 !3 !10・・・

Figure 5.7.8: (a): Reference samples and its k-nearest neighbors. (b): Reference training samples and
the corresponding conditionally generated images for the CarsNORB dataset. The left-
most column shows the reference training samples. Each row visualizes the generated
images conditioned on the reference sample, and the images shown in the same column
share their latent code.

Figure 5.7.8 shows the reference samples and the corresponding generated images of the
local VAE for the CarsNORB dataset. According to the Figure 5.7.8b, the generated images
shares the basic shape and lighting condition as the reference sample. Figure 5.7.8a shows
the typical training samples. We can see that the local VAE was learning using tasks con-
ditioned on the rough shape and lighting conditions. Based on the subjective assessment,
the result seen in Figure 5.7.8b achieved this learning objective. We note that the training
of the local VAE and its generated images highly depends on the definition of tasks (neigh-
borhoods).
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Table 5.7.3 shows the empirical evaluation on the CarsNORB dataset. The hyperparam-
eters follow the same settings as the experiment on the 3D Shapes dataset. We calculated
the DCI disentanglement, completeness and FID for each subdataset. According to the ta-
ble, the disentanglement and completeness of the vanilla VAE was remarkably low for the
Cars3D dataset. We believe this result comes from a difference in statistics: the Cars3D
dataset (N = 17, 568) has fewer samples than the SmallNORB dataset (N = 48, 600) and
has a more complicated structure, including colors. The DCI scores reached their maxima
at α = 1 × 10−2 on the SmallNORB dataset and at α = 1 on the Cars3D dataset. These results
indicate that the locality enables the proposed model to achieve a disentangled represen-
tation for each subspace without any label information. The FID also reached its minima
at α = 1 × 10−2 on the SmallNORB dataset and at α = 1 × 10−1 on the Cars3D dataset. The
optimal locality was suggested to be different for each subdataset because both the DCI
scores and FID took their best values at different α. Overall, the local VAE achieved better
performances than the vanilla VAE in terms of the disentanglement and generation quality.

Table 5.7.3: Quantitative evaluations on the CarsNORB dataset.

NORB Cars

Disent. Compl. FID Disent. Compl. FID

Lo
ca

lV
A
E α = 0 0.254 0.257 143.336 0.064 0.060 196.501

α = 1 × 10−2 0.315 0.329 136.003 0.119 0.117 197.093
α = 1 × 10−1 0.189 0.165 155.469 0.125 0.105 194.962
α = 1 0.254 0.257 164.927 0.254 0.144 202.778

β-
VA

E

β = 2 0.306 0.321 137.821 0.123 0.097 196.828
β = 4 0.305 0.334 141.702 0.204 0.150 202.577
β = 8 0.289 0.338 150.847 0.162 0.167 205.811
β = 16 0.271 0.334 170.169 0.179 0.167 217.428

5.7.3 CelebA Dataset

Last, we show the qualitative evaluation on the CelebFaces Attributes (CelebA) dataset
(Liu et al., 2015). The CelebA dataset is a large-scale face attributes dataset with more than
200K celebrity images, each with 40 attribute annotations. We used the k-neighbor method
as a neighborhood construction, and the network structure was identical to the previous
numerical experiments. However, since the number of attributes is larger than the afore-
mentioned dataset, we set the dimension of latent variables to 100 dimensions.
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Figure 5.7.9 shows the average of reference samples and the corresponding generated
images for the CelebA dataset. The leftmost column shows the average of k reference train-
ing samples. We see that the colors of skin and hair are preserved in the same row and
other shape-related information remains in the same column. It means that the local VAE
spontaneously extracted color information as the global feature. This result is qualitatively
consistent to the results of the 3D Shapes dataset and the CarsNORB dataset. It is expected
thatwe can obtainmore complex shape information as global feature by changing the neigh-
borhood construction method or by taking multiple steps of MAML optimization.

Figure 5.7.9: Average of reference training samples and the corresponding conditionally generated
images of the local VAE with α =1. The leftmost column shows the average of k refer-
ence training samples. Each row visualizes the generated images conditioned on the
reference sample, and the images shown in the same column share their latent code.
The trainedmodel extracted color information as global features and other information
as the local features.

5.8 conclus ion

In this study, we proposed the local VAE, a deep generativemodel suitable for datasets with
locally disentangled structures. Disentanglement is known to be fundamentally impossible
without inductive biases both in models and in datasets, although such a bias was less con-
sidered in previous studies. We considered the locality of disentanglement factors as the
explicit form of an inductive bias for the dataset. We usedmodel-agnostic meta-learning by
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considering each local subset as a task and proposed the local VAE accordingly. We eval-
uated our proposed model with the 3D Shapes dataset, a concatenated dataset of Cars3D
and SmallNORB, and the CelebA dataset. Our experimental results showed that the local
VAE spontaneously extracted color-related information as the global structure on the 3D
Shapes dataset. The learned representations of the local VAE were more disentangled than
that of comparable models in terms of the DCI scores for both datasets. Moreover, the local
VAE improved the quality of the generated images according to subjective evaluations and
FID scores.



CHAPTER APPEND IX

5.a de f in i t i on of d i s entanglement by us ing group act ion

In this section, we will briefly summarize the definition of disentangled representation pro-
posed by Higgins et al. (2018). The motivation for studying a disentangled representation
is to extract independent parameters that uniquely control the properties of the dataset in
each dimension of the latent space. However, disentanglement has been studied without
a consensus on what the disentangled representation means. In this context, Higgins et al.
(2018) presented a formal mathematical definition of disentanglement. Specifically, Hig-
gins et al. (2018) define the disentanglement in the sense of a group action on a set. We will
explain the definition of the disentanglement group action in Section 5.A.1. Then, we will
introduce the definition of the disentanglement representation in Section 5.A.2.

5.a.1 Disentanglement group action

Here, we consider a group action ⋅ ∶ A × X → X. Suppose that group A is decomposable
as a direct product A = A1 × A2. We refer to the actions of a group and a subgroup of the
group as ⋅ and ⋅i, respectively.

Definition 5.A.1. An action is disentangled if there is a decomposition X = X1 × X2 such that

(a1, a2) ⋅ (x1, x2) = (a1 ⋅1 x1, a2 ⋅2 x2). (5.1)

This definition states that an element of A1 acts only on X1 and not on X2. Additionally,
if X is a vector space, we are interested in the direct sum decomposition:

X = X1 ⊕ X2, (5.2)

which preserves the structure of the space. We also generalize the above definition to d
subspaces.

5.a.2 Disentanglement representation

Let W be the set of world-states and X be the observation. We also assume a generative
process b ∶ W → X, and an inference process g ∶ X → Z where the internal representation Z
is a vector space. We refer to the composition of these processes as h = g ∘ b. Here, we will
consider a group A acting on X, that is ⋅ ∶ A × W → W. The goal is to find a corresponding
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group action ⋅ ∶ G × Z → Z. The group A on Z should reflect the symmetry of world-states
W. In other worlds, A should satisfy following properties:

a ⋅ h(w) = h(a ⋅ w) ∀a ∈ A,w ∈ W. (5.3)

The above equation states that the action should commute with map h. This equation is as
same as the following commutative diagram:

A × W W

A × Z Z

⋅W

idA×h h
⋅Z

(5.4)

Note that there is no guarantee that we can construct an action ⋅ ∶ A × Z → Z satisfying
Equation 5.3. If h is bijective, there exists a unique group action that satisfies Equation 5.3 by
definition. If h is not surjective but injective, Equation 5.3 cannot determine a group action
on Z that is not the image of h(W). However, this is not particularly important because we
are interested in only Z of the image of h(W). Finally, if h is not injective, or there exists
w1 ≠ w2 such that h(w1) = h(w2), the representation in Z is degenerate. For example, if an
agent cannot observe some control parameters because of occlusion, the difference in these
parameters will be undistinguishable. However, we can solve this problem by using active
sensing in practical situations.

Suppose that there exists an action ⋅ ∶ G × Z → Z and an equivalent map h ∶ W → Z. We
define the disentanglement representation as follows:

Definition 5.A.2. An agent’s representation Z is disentangled with respect to decomposition A =
A1 × ⋯ × Ad if

1. There is an action ⋅ ∶ A × Z → Z.

2. The map h ∶ W → Z is equivariant between the actions onW and Z, and

3. There is a decomposition Z = Z1 ×⋯×Zd or Z = Z1 ⊕⋯⊕Zd such that each Zi is unaffected
by all actions Aj, j ≠ i and affected only by Ai.

5.b analyz ing local vae s f rom the v i ewpo int of ba s i s d ecompos i t i on

In this section, we first describe an interpretation of the computational graph of the local
VAE as a linear combination of fixed orthonormal and input-dependent bases. Then, we
show that an inference model of this type can express any locally disentangled representa-
tion under certain conditions.
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Suppose that the VAE’s encoder is g ∶ 𝒳 × Φ → 𝒵 and its decoder is f ∶ 𝒵 × Θ → 𝒳 . We
define objective function ℒ𝒟 ∶ Θ × Φ → ℝ as follows:

ℒ𝒟(θ,ϕ) = 1
|𝒟| ∑

x∈𝒟
ℓ(x; θ,ϕ), (5.5)

where 𝒟 represents the dataset and ℓ is the objective function for each data point. In a VAE,
ℓ corresponds to Equation 5.1 in Section 5.2.1.

We define the training procedure of a VAE with MAML as follows:

θτ =θ − α∇θℒ𝒟τ
(θ,ϕ), (5.6)

ϕτ =ϕ − α∇ϕℒ𝒟τ
(θ,ϕ), (5.7)

θ ←θ − η∇θ
1
|T| ∑

τ∈T
ℒ𝒟τ

(θτ,ϕτ), (5.8)

ϕ ←ϕ − η∇ϕ
1
|T| ∑

τ∈T
ℒ𝒟τ

(θτ,ϕτ). (5.9)

Note that τ ∈ T = {1, 2, 3, …} indexes the tasks and that 𝒟τ ⊆ 𝒟 is a set composed of
data points included in task τ. Variables α and η are learning rates of the inner loop and the
outer loop, respectively. MAML is an optimization algorithm consisting of an inner loop
(Equation 5.6 and Equation 5.7) and an outer loop (Equation 5.8 and Equation 5.9). In this
study, we present an another view of this algorithm as a computational graph.We interpret
the inner loop (Equation 5.6 and Equation 5.7) as part of the inference model rather than
an optimization.

Next, we discuss the dependency of encoder g on task τ. With the encoder’s parameter
denoted by ϕτ, the latent vectors are written as follows:

zτ =g(x;ϕτ)
=g(x;ϕ − α∇ϕℒ𝒟τ

(θ,ϕ)). (5.10)

Taking the Taylor series expansion of zτ for the first-order term of α yields

zτ ≃g(x;ϕ0) − α⟨∇ϕg(x;ϕ0), ∇ϕℒ𝒟τ
(θ0,ϕ0)⟩ + 𝒪(α2)

=g(x;ϕ0) − α∇ϕg(x;ϕ0) 1
|𝒟τ| ∑

x′∈𝒟τ

∇ϕg(x′;ϕ0)⊤∇z′ℓ⊤ + 𝒪(α2). (5.11)

Note that we denote the actual values of θ and ϕ by θ0 and ϕ0 to avoid the confusion with
variables to be differentiated. ∇z′ℓ is the gradient of ℓ with respect to the encoder’s output.
According to the equation, an encoded latent vector decomposes into the first term, which
is invariant to tasks, and the second term, which depends on the task.
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We also study the task dependency of decoder f. As done above, a map of data with
task-dependent parameters θτ,ϕτ can be decomposed as follows:

f(zτ; θτ) =f⎛⎜⎜
⎝
g(x;ϕ0) − α∇ϕg(x;ϕ0) 1

|𝒟τ| ∑
x′∈𝒟τ

∇ϕg(x′;ϕ0)⊤∇z′ℓ⊤; θ0 − α∇θℒ𝒟τ
(θ0,ϕ0)⎞⎟⎟

⎠

≃ f(g(x;ϕ0); θ0)⏟⏟⏟⏟⏟⏟⏟
invariant VAE

−α
2{ ⟨ 1

|𝒟τ| ∑
x′∈𝒟τ

∇z′ℓ∇ϕg(x′;ϕ0)∇ϕg(x;ϕ0)⊤, ∇zf(g(x;ϕ0); θ0)⟩
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

τ−dependent encoder

+ ⟨ 1
|𝒟τ| ∑

x′∈𝒟τ

∇x̂′ℓ∇θf(z′; θ0), ∇θf(g(x;ϕ0); θ0)⟩
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

τ−dependent decoder

} + 𝒪(α2), (5.12)

where ∇x̂′ℓ is the gradient of ℓ with respect to the decoder’s output. We refer to the task-
invariant term as an invariant VAE, to the task-dependent term related to the derivative
of the encoder parameter ϕ as the τ-dependent encoder, and to the task-dependent term
related to the decoder parameter θ as the τ-dependent decoder. This computational graph
corresponds to a vanilla VAE in the limit of α → 0.

Next, we explicitly write the output of the encoder and decoder as a linear combinations
of bases. Ignoring the second-order term 𝒪(α2) of Equation 5.11, we can rewrite the encoder
as follows:

zτ =g(x;ϕ0) − α∇ϕg(x;ϕ0) 1
|𝒟τ| ∑

x′∈𝒟τ

∇ϕg(x′;ϕ0)⊤∇z′ℓ⊤

=
d

∑
i=1

gi(x;ϕ0)ei + α
|Φ|
∑
i=1

pi𝒟τ

𝜕
𝜕ϕi

g(x;ϕ0), (5.13)

where p𝒟τ
= − 1

|𝒟τ| ∑x′∈𝒟τ
∇ϕg(x′;ϕ0)⊤∇z′ℓ⊤ only depends on 𝒟τ but on x. d is the dimen-

sion of the latent space and |Φ| is the number of encoder parameters. The first-order term
is explicitly expressed as a linear combination of orthonormal bases [e1, … , ed]. As in the
case of the encoder, the output of the decoder becomes

̂xτ =f(g(x;ϕ0); θ0) − α
2{ ⟨ 1

|𝒟τ| ∑
x′∈𝒟τ

∇z′ℓ∇ϕg(x′;ϕ0)∇ϕg(x;ϕ0)⊤, ∇zf(g(x;ϕ0); θ0)⟩

+ ⟨ 1
|𝒟τ| ∑

x′∈𝒟τ

∇x̂′ℓ∇θf(z′; θ0), ∇θf(g(x;ϕ0); θ0)⟩ }

=
|X|
∑
i=1

f(g(x;ϕ0); θ0)iei + α
2

⎧{
⎨{⎩

|Φ|
∑
i=1

pi𝒟τ
∇zf(z; θ0) 𝜕

𝜕ϕi
g(x;ϕ0) +

|Θ|
∑
i=1

qi𝒟τ

𝜕
𝜕θi

f(z; θ0)
⎫}
⎬}⎭

, (5.14)
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where q𝒟τ
= − 1

|𝒟τ| ∑x′∈𝒟τ
∇ ̂x′ℓ∇θf(z′; θ0).

As we can see, the first-order term of Equation 5.13 is a linear combination of coefficients
dependent on input x and a fixed basis. On the other hand, the coefficients of the second
term pi𝒟τ

do not depend on input x during the inference phase but exclusively depend on
task dataset 𝒟τ. The basis 𝜕g(x;ϕ0)/𝜕ϕi rather than the coefficient depends on the input.

Then, we show the capability of the local VAE’s encoder (Equation 5.9). The formal state-
ment of Theorem 5.4.1 in Section 5.4 is as follows:

Theorem 5.B.1. The encoder of the local VAE can express any locally disentangled representation
with an error of up to 𝒪(α2) if

1. There is an action ⋅ ∶ A × Z → Z that satisfies Definition 5.4.1 in Section 5.4,

2. The encoder g, its derivative with respect to the parameter 𝜕g(⋅;ϕ0)/𝜕ϕi, and the Jacobian of
the decoder 𝜕f(z)/𝜕z are arbitrary complex functions, and

3. We can take task-specific dataset such as

𝒟τ(x) ⊆ {x′|x′ = b(w′), ∀w′ ∈ W andw′ℓ = wℓ}. (5.15)

Although the first condition is included in the definition of disentangled representation,
we do not consider this condition because there is no guarantee that such a group action
exists in general cases. Hence, we assume the existence of a group action.

The definition proposed by Higgins does not necessarily require control parameters to
decompose into an orthonormal basis in the latent space. For instance, one can arbitrarily
take basis vectors as a direct sum decomposition of a vector space. Given some conditions,
we will show that a local VAE can express locally disentangled representations defined in
Theorem 5.4.1.

Proof. By definition, there exists a decompositionW = W1×⋯×Wr×Wℓ andwe can consider
an isomorphism fromWℓ toWr+1 × ⋯ ×Wd depending onwr ∈ W1 × ⋯ ×Wr. Additionally,
the first condition ensures the existence of ⋅ ∶ A×Z → Z satisfying Equation 5.7 in Section 5.4
such thatZ is locally decomposable. Sincewe assumeZ to be a vector space, the latent space
Z has a direct sum decomposition Z = Z1 ⊕ ⋯ ⊕Zr ×Zr+1 ⊕ ⋯ ⊕Zd for each zr, and the set
of the entire space is

Z = {z ∣ z =
r

∑
i=1

ziei +
d

∑
i=r+1

ziei(zr)}, (5.16)

where zi ∈ ℝ, and ei is a basis vector. Notation ei(zr) represents a basis vector that depends
on the first r dimensions of z. Whole basis vectors [e1, ⋯ , er, er+1(zr), ⋯ , ed(zr)] are linearly
independent.

According to the encoder of the local VAE (Equation 5.13), if 𝜕g(⋅;ϕ0)/𝜕ϕi ∶ 𝒳 → 𝒵
is complex enough (the second condition), it can express an arbitrary basis dependent on



100 s e l f - sup erv i s ed meta- l earn ing for local structure

input x and the underlyingwr.We can take up to d linearly independent bases. Additionally,
if ∇zf(⋅; θ0) ∶ 𝒵 → 𝒳 is complex enough, the term

pi𝒟τ
= − 1

|𝒟τ| ∑
x′∈𝒟τ

𝜕
𝜕ϕi

g(x′;ϕ0)⊤∇z′ℓ⊤ = − 1
|𝒟τ| ∑

x′∈𝒟τ

𝜕
𝜕ϕi

g(x′;ϕ0)⊤∇x′ℓ⊤∇z′ f(z′; θ0) (5.17)

can be an arbitrarily complex function with respect to task dataset 𝒟τ. By assuming that
we can take a task dataset satisfying the third condition of Theorem 5.4.1, we can choose
the ground truth of zi as pi𝒟τ(x). At last, we take gi(x;ϕ0) = 0 for all x, i ∈ {r + 1, … , d} and
pi𝒟τ

= 0 for all 𝒟τ, i ∈ {d − r + 1, … , |Φ|} to choose d linearly independent bases. Based on
this construction, the space that the encoder can express corresponds to Equation 5.16.

As we can see, the encoder/decoder of the local VAE can be interpreted as a linear combi-
nation of fixed and input-dependent bases, whereas a vanilla VAE only has fixed orthonor-
mal bases. As a result, a vanilla VAE and its variants (including β-VAE and most of the
disentanglement models) do not seem to be well suited for datasets with the local disentan-
glement assumption even if they can achieve a zero training loss. In the second condition
of the theorem, we assumed that the encoder/decoder and their derivatives to be arbitrary
complex functions. Such an assumption is reasonable for neural networks because they are
typically highly nonlinear and over-parameterized.

5.c ex p er imental cond i t ions and hyperparameter s

In this section, we show the experimental conditions and hyperparameters which are used
for all the numerical experiments in Section 5.7. Table 5.C.1 shows the encoder and the de-
coder architectures of the VAE. We used the multivariate isotropic Gaussian for the latent
variable. The outputs of the encoder correspond to μ and logσ of the variational poseterior
distribution q(z|x). Table 5.C.2 shows the hyperparameters for the model and the training
procedure. In addition to the parameters shown in the table, we used the gradient boosted
trees from Scikit-learn with the default setting for computing the DCI scores. We also used
the Inception-v3 network from Keras, which is pre-trained on the ImageNet dataset to com-
pute the FID.
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Table 5.C.1: Network architecture for the numerical experiments.

Encoder Decoder

Input: 64 × 64 × 3 Input: ℝ10

4 × 4 conv, 32 ReLU, stride 2 FC, 256 ReLU
4 × 4 conv, 32 ReLU, stride 2 FC, 4 × 4 × 64 ReLU
4 × 4 conv, 64 ReLU, stride 2 4 × 4 upconv, 64 ReLU, stride 2
4 × 4 conv, 64 ReLU, stride 2 4 × 4 upconv, 32 ReLU, stride 2
FC 256, F2 2 × 10 4 × 4 upconv, 32 ReLU, stride 2

4 × 4 upconv, 3, stride 2

Table 5.C.2: The hyperparameters which are used for the numerical experiments.

Parameter Value

Batch size (corresponds to the number of tasks) 25
Inner batch size (corresponds to K) 10
Latent space dimension 10
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1 × 10−8

Adam: learning rate 1 × 10−4

Decoder type Bernoulli
Training steps 300,000





6
CONCLUS ION AND FUTURE D I RECT ION

In this thesis, we studied the framework for capturing the structure between instances of a
dataset using VAE as a central technique.

In Chapter 3, we numerically analyzed the dynamics of the inference of the deep gener-
ative model for a dataset with a cluster structure. When we performed repeated inference
with the VAE trained on MNIST, the activity pattern in the latent space rapidly approaches
the center of the cluster of training data. We also found that the dynamics on the latent
space changed depending on the amount of noise added to the input. These results suggest
that the dynamics of repeated inference reflect the structure behind the dataset. The effect
of repeated inference, which has been reported so far, is thought to be due to this approach
to the cluster center. It is suggested that the abstraction of the output can be manipulated
by the number of times the inference is repeated, even in the same model.

In Chapter 4, we proposed a practical probability distribution for datasets with hierarchi-
cal structures and a representation learning method using it. By constructing a projection-
based probability distribution on hyperbolic space, we proposed a probability distribution
whose likelihoods can be expressed in a closed-form and can be easily sampled and dif-
ferentiated. To validate the proposed probability distributions, we performed numerical
experiments with word embedding tasks and training VAEs for natural image datasets.
We used the MNIST dataset and the Atari 2600 Breakout observation series as natural im-
ages and the WordNet dataset for word embedding. In particular, the observation series of
Breakout is thought to implicitly have a tree structure with a root node as the starting state.
In the latent space of hyperbolic VAEs trained in Breakout, the norm on hyperbolic space
correlated with the progression of the game in Breakout.

In Chapter 5, we proposed a method to train a deep generative model that is useful for
datasetswith local structures.We have focused on caseswherewe can explicitly give a struc-
ture in above two studies. In this chapter, we discussed a representation learning under the
broader assumption. For a disentanglement that aims to extract a small number of control
factors from high-dimensional observations, we defined a local disentanglement, assuming
different scales for each factor. We showed that representation learning is possible in meta-
learning aimed at fast adaptation to new tasks by considering the generation of neighboring
data points in the data space as a single task. We proposed a local VAE using a hierarchical
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Bayesian interpretation of MAML as a generative model with task-specific parameters for
each local neighborhood of the dataset. We showed that local VAE improves the quality
of both the generated images and latent representations in experiments with 3D Shapes,
Cars3D, and SmallNORB.

In this thesis, we studied the inference and learning of deep generativemodels for several
instance-wise structures using neural networks. The advantage of neural networks is that
any computational graph can be used if it is differentiable. Since we can treat the model
independently of the optimization method, we can straightforwardly model the problem.
All of our proposed inference and learning methods can be interpreted as computational
graphs. We can consider the repeated inference, which is the subject of analysis in Chap-
ter 3, as a deep network of modules in series that share weights. The discovery of cluster
structures with longer computational graphs is consistent with the finding that complex
features are extracted at higher layers of a deep neural network (Bengio et al., 2013; Lee
et al., 2009). Moreover, the probability distribution on hyperbolic space proposed in Chap-
ter 4 is indeed a differentiable computational graph, and the learning algorithm proposed
in Chapter 5 can be interpreted as a computational graph as described in Section 5.4. Re-
stricting task-specific parameters to a range that can be reached in a few steps from global
parameters is a strong inductive bias, resulting in a disentanglement. Such an approach to
modeling a dataset as a computational graph is widely applicable to other subjects than
those covered in this thesis.

Current deep learning techniques have outperformed humans in a variety of tasks under
massive datasets and large computational resources. On the other hand, in terms of adap-
tation to environmental changes and generalization from a few evidence, the algorithms
of deep learning have room for improvement. In addition to engineering applications, we
need to address these issues from a scientific perspective of revealing intelligence. In par-
ticular, we believe that the structure of data is vital because it is universal knowledge that
we use implicitly in our daily decision-making.

We have focused on cluster, hierarchical and local structures as typical structures behind
a dataset. However, the structure of the real world is not limited to such a simple case. In
particular, manymachine learning algorithms, including the methods proposed in this the-
sis, are assumed to have access to all data, or a uniform random sample from entire dataset.
On the other hand, in the real world, there is no guarantee that we can uniformly sample
data points against the background structure. It will be important to learn the structure in
such a situation where only non-stationary samples can be obtained for the background
structure. Recently, Arjovsky et al. (2019) proposed a framework to minimize the spuri-
ous correlation inherent in training data with a few assumptions. Moreover, Khemakhem,
Kingma, and Hyvärinen (2019) showed that the disentangled representation of VAE be-
comes identifiable for samples from non-stationary environments by using the label of the
environment. Both of these studies imply that when the environment is non-stationary, the
active use of that non-stationarity instead increases information. Therefore, investigating
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a policy for acquiring data for representational learning in an interactive environment is
also important. In an interactive environment, such as the one targeted by reinforcement
learning, the observations themselves change as a result of one’s actions. It would be use-
ful to consider policies that focus on learning the representation of the environment rather
than maximizing the reward. Recently, the generative model learning of interactive envi-
ronments (Ha and Schmidhuber, 2018) and the interpretation of reinforcement learning as
probabilistic inference (Levine, 2018) have been studied. Based on these studies, it will be
possible to study policies for representation learning in an interactive environment.

Another direction could be to incorporate the instance-wise structure as a layer architec-
ture of the network rather than a generativemodel. For example, batch normalization (Ioffe
and Szegedy, 2015), a regularizationmethodwidely used in deep learning, computes statis-
tics using other samples in the same batch. For datasets with graph structures, graph neural
networks (Wu et al., 2020) take the approach of giving each node a vector representation
and learning the interaction through the edges. Although these methods are proposed for
completely different purposes, they can be considered as models that incorporate some
kind of structure between instances. The improvement of computational graphs based on
the objective of reflecting the structure between instances assumed in the dataset could be
one way forward to consider suitable computational graphs.

We believe that one goal of intelligence research is to answer the question of how and
why humans can think. For HOW in this question, it is necessary to investigate the operat-
ing mechanism of a specific intelligent system. Model proposals and theoretical analysis,
which are widely conducted in machine learning research, tackle exactly this question. In
contrast, for WHY, we believe that it is essential to consider the external world intensively.
We cannot explain the reason why the information processing of organisms is in its present
form without the constraints of the external world to which the system is exposed. Based
on these motivations, we discussed the relationship between the structure of the external
world and information processing systems. Yet, the structures dealt with in this thesis re-
main simple and static. To obtain better insight into the relationship between information
processing systems and the outside world, we believe that we need more sophisticated as-
sumptions, such as an interaction between agent and environment. It will be essential to
study and consider the external world itself from the perspective of representation learning. We
expect that this thesis will be a part of such future intelligence research.
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