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Chapter 1

Introduction

The application of IT technology to the financial field called Fintech is pro-
gressing, and many companies that have not traditionally been in the fi-
nancial industry have launched services such as electronic cash issuance and
QR code settlement. Also, in such a trend, users’ needs for technology and
platform for performing settlement and contract conclusion securely and in-
expensively are increasing. Blockchain or Distributed Ledger Technology,
a generalized concept, has recently attracted a great deal of attention as a
technology for realizing these services. Blockchain is a core technology used
in the Bitcoin system proposed by Satoshi Nakamoto [69]. It enables dig-
ital cash, which is called bitcoin, transferring in the P2P network without
Trusted Third Parties (TTPs) such as banks. As a result, by reducing the
transaction fees paid to the intermediary, the payment system is operated
at low fees.

The distributed ledger technology typified by Bitcoin roughly includes
a transaction generation unit that generates a transaction, including remit-
tance or contract information, and a consensus unit that confirms the valid-
ity of the transaction and records it in the distributed ledger [85]. When a
user generates a transaction, a secret key, which is secret information known
only to the user, is used to attach a digital signature based on the public key
cryptosystem. Furthermore, the consensus unit verifies the attached digital
signature, confirms the consistency with other transactions, and then stores
with a data structure that is difficult to falsification [69, 61, 81].

Thus, in the blockchain, the user’s secret key and digital cash or other
assets are closely linked, and management of the secret key is a crucial
security issue. For example, if the user loses the secret key, then he/she
cannot generate a transaction at all, and the asset is substantially lost [63].
In fact, in the case of Bitcoin, it has been reported [75] that the secret key
for bitcoin, which is 17−23% of the all issued amount, has already been lost,
making it immovable assets. Also, if a malicious attacker steals a secret key,
improper remittance by impersonation occurs [1, 76]. As another problem,
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in the blockchain, since the ledger data is shared by multiple nodes on the
P2P network, there is a privacy problem in which sensitive information such
as “who sent money to whom” is leaked. In this thesis, We propose the
technologies to solve the security and privacy problems of the above and
aim at the realization of a blockchain infrastructure that allows users to
enjoy services with peace of mind.

Accurately, we describe a solution using the zero-knowledge proof for the
privacy problem in which ledger data is shared by multiple nodes, and pro-
pose new zero-knowledge proof schemes. More precisely, the user’s privacy
can be preserved by encrypting sensitive data in a transaction. However,
since it is encrypted, another problem occurs that the consensus unit cannot
verify the validity of the transaction. Cryptographically, this problem can
be solved with zero-knowledge proof technologies. Zero-knowledge proof
is a general term for the technology that allows the validator can check
that concealed data satisfies certain propositions. By using this technique,
the user can prove the validity of the transaction to the consensus unit
while keeping the sensitive information secret. In Chapter 2, we propose
quantum computer resistant zk-SNARK type zero-knowledge proof schemes
that support arithmetic circuits for the use case in consortium/permissioned
blockchains such as Hyperledger Fabric [3] or Quorum [7]. In 2018, Gen-
naro et al. [52] proposed a designed-verifier type zk-SNARK based on SSPs
(Square Span Programs) with quantum computer attack resistance. How-
ever, this scheme only supports propositions expressed by Boolean circuits.
Therefore, the construction of zk-SNARK, which has quantum computer re-
sistance and supports arithmetic circuits, has been an open problem. Also,
many existing zk-SNARK type zero-knowledge proofs are not suitable for
use in public/decentralized blockchains such as Bitcoin because they require
system parameter setup by a TTP or a central institution. In Chapter 3,
we describe a general method of constructing a zero-knowledge proof that
does not require setup by TTPs from vector commitment schemes. Our
method can be applied to the typical vector commitment schemes: Peder-
sen commitment [72] based on the discrete logarithm problem and the Ajtai
commitment [13] based on the lattice problem. As a result, trust-less and
efficient zero-knowledge proofs based on the discrete logarithm problem and
the lattice problem can be constructed. These were also open problems in
this area. Also, in Chapter 4, we propose a solution to the problem of asset
loss due to the loss/leakage of the secret key described above using a digital
signature scheme based on biometric information. In this digital signature
scheme, the secret key of the user is generated each time from the biometric
information at the time of the signature generation, so there is no need to
store the secret key. As a result, the risk of loss/leakage is greatly reduced.
Finally, in Chapter 5, we describe a protocol that uses the channel function
of Hyperledger Fabric [3] to execute netting settlement while keeping the
ledger information secret.
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1.1 Our Contributions
We summarize our contributions as follows:

• We propose novel zero-knowledge proof schemes to solve the privacy
problem of ledger data, especially zk-SNARKs for arithmetic circuits
with quantum computer resistance.

• We propose a general method that can configure zero-knowledge proofs
without a TTP from vector commitment schemes.

• We propose a solution to the problem of secret key loss for blockchain
users using biometrics authentication technology.

• We propose a secure multi-party protocol for executing netting settle-
ment on the permissioned/consortium blockchains.

1.2 Organization of Thesis
This thesis is organized as follows. In Chapter 2, we propose novel zk-
SNARKs for arithmetic circuits with quantum computer resistance. Fur-
thermore, in Chapter 3, we propose a general method that can configure
zero-knowledge proofs without a TTP from vector commitment schemes.
In Chapter 4, we propose a solution to the problem of secret key loss for
blockchain users using biometrics authentication technology. Finally, in
Chapter 5, we propose a secure multi-party protocol for executing netting
settlement on Hyperledger Fabric [3].

3



Chapter 2

Post-Quantum zk-SNARKs
from QAPs

2.1 Summary
In recent years, zero-knowledge proof and zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARK) are drawing significant at-
tention as privacy-enhancing technologies in various domains, especially
cryptocurrency and blockchain industries and verifiable computations. A
zero-knowledge proof is a (non) interactive proof protocol that proves that
the prover has correct knowledge without revealing the knowledge to the
verifier. In several cryptocurrency systems (e.g., Zcash [11], Ethereum [2],
Quorum [7], Pinocchio coin [40]), zero-knowledge proofs are used for conceal-
ing the transaction amounts and anonymizing both senders and receivers.

In these systems, the zk-SNARK protocol from Pinocchio [71], which
was originally proposed for verifiable computations and the libsnark library
[4, 23], was used. These systems assume the difficulty of the discrete log-
arithm problem of elliptic curves as the base of security. Therefore, these
systems are not resistant to quantum attacks. Some zero-knowledge proof
schemes, such as lattice-based schemes by Genaro et al. [52], Baum et al. [16],
Libert et al. [64], Peikert and Shiehian [73], Nitulescu [70], provide resistance
against quantum attacks. In addition, for reducing the proof data, we must
use a succinct and non-interactive proof system because there are multi-
ple proof verifiers when considering the use for permissionless/permissioned
blockchain systems. Therefore, a zero-knowledge proof scheme of the zk-
SNARK [25] type is desirable.

Recently, Gennaro et al. proposed a post-quantum designated verifier
type zk-SNARK that is based on the learning with errors (LWE) encryption
and square span programs (SSPs). However, their scheme is a zk-SNARK
that targeted Boolean circuits. Therefore, in Gennaro et al. [52], the con-
struction of a designated verifier type zk-SNARK method for quadratic arith-
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Table 2.1: Efficiency comparison: The circuit size = 216 and CRS while
using PRNG for its generation. Our experimental environment comprises
an Intel Core i7-9700K CPU @ 3.60 GHz with a single thread. The term
|CRS| column represents the size of CRS: Common Reference String. The
memory column represents the memory requirements for Setup and Prover
algorithms.

Circuit PQ Proof size |CRS| Setup Prover Verifier Memory Assumption
Proposal 1 QAP ✓ 1083 KB 30.5 MB 98.4 s 90.0 s 2.2 ms 33.4 GB PKE, PDH
Proposal 2 QAP ✓ 405 KB 15.4 MB 49.7 s 50.7 s 0.8 ms 16.8 GB Linear-only
Nitulescu [70] SAP ✓ 270 KB 23.8 MB 76.9 s 100.9 s 0.6 ms 26.0 GB Linear-only
GMNO [52] SSP ✓ 640 KB 8.63 MB 98.8 s 142.9 s 1.5 ms 9.4 GB PKE, PDH
PHGR [71] QAP - 288 B 6.50 MB 2.8 s 0.6 s 4.1 ms 9.0 MB PKE, PDH

metic program (QAP)-characterized arithmetic circuits is described as an
open problem. Recently, Nitulescu [70] proposed a post-quantum desig-
nated verifier zk-SNARK for arithmetic circuits by using square arithmetic
programs (SAPs). Notably, SAP is another expression method for arith-
metic circuits and can be considered as a special case of QAP (see [56, 57]).

In this paper, we give other answers to this problem to propose two post-
quantum designated verifier zk-SNARK schemes for QAP-characterized
arithmetic circuits. Furthermore, we implement our proposed schemes and
all the known LWE-based zk-SNARK schemes and evaluate their perfor-
mances.
Related works: Lattice-based (zk-) SNARKs.
In recent years, several designated verifier type SNARK schemes have been
proposed on the basis of assumptions of the lattice-based cryptography
(Boneh et al. [28, 29], Gennaro et al. [52], Nitulescu [70]). The schemes by
Boneh et al. [28, 29] were based on linear probabilistically checkable proofs
and used the assumption of the linear-only encryption for security proof;
i.e., an attacker can generate only the ciphertexts of the affine combinations
of given LWE ciphertexts. The authors described a general transformation
procedure to zero-knowledge proofs; however, it is not clear whether it is
applicable in the lattice-based setting. However, the scheme by Gennaro
et al. [52] is a zk-SNARK that is based on SSP and LWE cryptosystems
and can be proved to be secure by employing weaker and more standard
assumptions that do not use the linear-only encryption assumption. In ad-
dition, their scheme is characterized by its zero-knowledge property. How-
ever, their scheme targeted Boolean circuits only, and it is difficult to apply
immediately to the existing blockchain systems because the libsnark library
[4], which is the standard zero-knowledge proof library in the blockchain
area, targeted QAP-characterized arithmetic circuits. To use the scheme by
Gennaro et al. [52] in a blockchain system, one must convert the existing
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arithmetic circuit to a Boolean circuit, then transform it to a rank-1 con-
straint system, and further generate an SSP for the given R1CS. Recently,
Nitulescu [70] proposed an LWE-based zk-SNARK for SAP-characterized
arithmetic circuits. The zero-knowledge proof of her scheme comprised only
two LWE ciphertexts, and it is somewhat similar to our second proposed
scheme. Conversely, our second scheme is a generalization of her scheme
because QAP is a generalization of SAP. Furthermore, these schemes re-
quire the linear-only encryption, which is a stronger assumption than those
of our first scheme.
Our contributions.
In this paper, we propose two designated verifier type zk-SNARKs that are
based on the LWE encryption and QAPs. Therefore, these schemes seem
to be secure against quantum attacks. Furthermore, we implemented our
proposed schemes, the scheme by Gennaro et al. [52], and the scheme by
Nitulescu [70] and reported the experimental results of these schemes. We
summarize our contributions as follows.
Proposal 1. Pinocchio-like LWE-based zk-SNARK using QAPs.
We construct the designated verifier type zk-SNARK for arithmetic circuits
characterized by QAPs, by assuming the q-PKE and q-PDH assumptions
for the LWE cryptosystem. Notably, the first proposed scheme does not
require the linear-only encryption assumption [28, 29, 70], which is a stronger
assumption than the q-PKE and q-PDH assumptions 1. This scheme uses the
data format by Pinocchio [71, 23] to the maximum possible extent; therefore,
it is compatible with the existing permissioned blockchain systems and is
easy to implement in the libsnark [4, 23] or other systems using the Pinocchio
protocol. Another advantage of this scheme is that it is appropriate for the
multi-thread CPU architecture. In addition, our experimental results show
that this scheme offers almost the same performance as that of the second
scheme in a multi-thread CPU environment (see Section 2.9).
Proposal 2. More efficient LWE-based zk-SNARK using QAPs.
In the above-mentioned first proposed scheme, the size of the zero-knowledge
proof is equal to that of eight LWE ciphertexts. The size of the scheme by
Gennaro et al. [52] is as equal to that of five LWE ciphertexts. We refer to
the zk-SNARK configuration technique by Groth [56] and assume the linear-
only encryption used in Boneh et al. [28, 29]. We construct a zk-SNARK
using a QAP that has three LWE ciphertexts as the zero-knowledge proof.
In addition, our experimental results show that the Setup and Prover (proof
generation) algorithms of this scheme are the fastest among the other post-
quantum zk-SNARKs (see Table 2.1). The setup and the proof generation
algorithms are the bottlenecks of the zk-SNARK system; especially, the

1We can prove the security of this scheme by using the q-PKE and q-PDH assumptions,
which are weaker and concrete assumptions than the linear-only assumption. However, the
data size of the zero-knowledge proof is greater than those of the other schemes because
we cannot take the advantage of the linear-only assumption.

6



proof-generation algorithm is more important in practical use. Therefore,
this scheme seems to be the most efficient one. Our experimental results
show that the processing time of this scheme is approximately three times
faster than that of the scheme by Gennaro et al. 2 or two times faster than
the one proposed by Nitulescu (see Table 2.1). The scheme by Nitulescu,
which is based on the SAP expression requires twice as many multiplication
circuits as those required by QAP expression. Consequently, this scheme is
slower than our QAP-based one.
Secure and appropriate operations for permissioned BC.
We propose a system architecture for operating the proposed schemes on
permissioned blockchain such as Quorum [7], Hyperledger [3]. Furthermore,
we propose a simple multi-party protocol that securely generates and shares
the public parameters CRS. This protocol is secure on the assumption that
at least one node is honest and can make the centralized setup decentral-
ized and prevent attacks like those described in M. Campanelli et al. [34].
Moreover, since our multi-party protocols are based on LWE encryption,
quantum attack resistance is achieved.
Implementation and optimization.
We implemented our proposed schemes in the libsnark library [4, 23] and
optimized them for performing QAP operations; e.g., we optimized the pro-
cessing of the sparse-matrix expressions in QAP, Montgomery reduction,
and loop operation for the LWE encryption). In addition, we implemented
the schemes by Gennaro et al. [52], Nitulescu [70], and Pinocchio [71, 23],
respectively (see Table 2.1). The experimental results show that the pro-
cessing performances of the first proposed scheme is almost the same as
those of the existing schemes by Gennaro et al. or Nitulescu, and that the
second proposed scheme is two or three times faster than their schemes. No-
tably, the scheme by Gennaro et al. targets Boolean circuits, thus we cannot
directly compare their efficiencies.

Because our proposed schemes are of one or two orders of magnitude
slower than the original scheme by Pinocchio [71, 23], which is a pre-quantum
scheme, both our schemes must be further optimized for use with real sys-
tems (see Section 2.9 for the multi-thread optimization).
Technical challenges.
Our first proposed scheme employs the noise-smudging technique by Boneh
et al. [27]. Therefore, our constructions are conceptually similar to those
of Gennaro et al. [52]. However, their construction, as well as the security
proof, is specified for Boolean circuits, and, therefore, it is difficult to be
applied to the case of arithmetic circuits. Therefore, we give another type
of security proof with the same security assumptions, i.e., the q-PKE and

2The scheme by Gennaro et al. [52] targets Boolean circuits, and our schemes target
arithmetic circuits. Therefore, we cannot directly compare their efficiencies in terms of
circuit sizes. However, compared with Boolean circuits, QAPs are often more efficient in
expressing computations from real code.
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q-PDH assumptions, to overcome the obstacles due to arithmetic circuits.
The second proposed scheme is based on the linear-only assumption as

in the scheme by Nitulescu [70]; therefore, the construction and the security
proof of the second proposed scheme are similar to those of the scheme by
Nitulescu [70]. Because QAP is a generalization of SAP, our construction
and security proof can be regarded as a generalization of the scheme by
Nitulescu [70]. If we take appropriate parameters in our arguments, we can
construct the zk-SNARK scheme by Nitulescu.
Limitation of application.
Our proposed schemes and all known post-quantum zk-SNARKs are how-
ever, designated verifier type zero-knowledge proof protocols and require
some secret information in the verification algorithm. Therefore, these
schemes cannot be immediately applied to public-type blockchain systems.
Currently, we can apply these schemes to permissioned-type blockchains or
verifiable computation, which enable a computer to offload the computation
of some functions, to other untrusted web-servers while maintaining verifi-
able results. Therefore, the permissioned blockchain and verifiable compu-
tation might be appropriate applications of our designated verifier schemes.
The construction of LWE based post-quantum zk-SNARKs for a public ver-
ifier type remains an open problem.

2.2 Preliminaries
Notation. In this paper, we denote the set of real numbers by R, set
of integers by Z, set of natural numbers by N, and set of integers modulo
q by Zq. We also denote {0, 1, ..., N} ⊂ Z by [0, N ]. Let λ ∈ N be the
computational security parameter and κ ∈ N the statistical parameter. A
function f(x) on R is negligible in λ if f(λ) = o(λ−c) for every fixed con-
stant c ∈ R>0, and we denote it by negl(λ). In addition, the probability is
overwhelming in λ if it is equal to 1− negl(λ).

In the security proofs of this study, we assume that all the adversaries
are probabilistic Turing machines that run in time poly(λ) (PPT), and we
denote an adversary by A. We also denote when A interacts with an oracle
O by AO. For two PPT machines, A and χA, by (A||χA)(x) we denote the
execution of A followed by that of χA on the same input x.

2.2.1 Quadratic Arithmetic Programs
Here, we define QAPs according to Gennaro et al. [51] and Parno et al. [71].
Let Zp be the finite field of order p.

Definition 1. (QAPs)
A QAP Q = (A,B, C, t(x)) over Zp is a tuple that comprises 3(m+1) poly-
nomials A = {ai(x)}mi=0, B = {bi(x)}mi=0, C = {ci(x)}mi=0, and a target poly-
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nomial t(x) such that deg(t(x)) ≥ max(deg(ai(x)), deg(bi(x)),deg(ci(x)))
for all i ∈ [0,m]. Let C be an arithmetic circuit over Zp with n inputs and
n′ outputs. Notably, Q verifies C if and only if for each inputs/outputs pair
(d1, ..., dn+n′) ∈ Zn+n′

p of C, there exist (dn+n′+1, ..., dm) ∈ Zm−n−n′
p such

that p(x) satisfies the following:

p(x) :=
(
a0(x)+

m∑
i=1

diai(x)
)
·
(
b0(x)+

m∑
i=1

dibi(x)
)
−
(
c0(x)+

m∑
i=1

dici(x)
)
,

then p(x) is divisible by the target polynomial t(x). Conversely,
(d1, ..., dn+n′) ∈ Zn+n′

p is an inputs/outputs pair of C if and only if there
exist (dn+n′+1, ..., dm) ∈ Zm−n−n′

p and h(x) such that p(x) = t(x)h(x). We
refer to the number m as the size of Q = (A,B, C, t(x)) and deg t(x) as its
degree.

Theorem 1. (Gennaro et al. [51], Ben-Sasson et al. [23])
Let C be a fan-in-2 type arithmetic circuit over Zp with d multiplication
gates. Accordingly, there exists a probabilistic and polynomial-time algo-
rithm to generate a degree d QAP Q = (A,B, C, t(x)) such that Q verifies
C.

We denote this algorithm by QAP(C) → Q = (A,B, C, t(x)), where C
denotes an input arithmetic circuit.

2.2.2 Square Arithmetic Programs
In this section, we define Square Arithmetic Programs (SAPs) according
to Groth [56] and Groth and Maller [57]. Groth and Maller showed that
replacing each of the constraints in QAPs with 2 other constraints, it is
possible to design a Square Arithmetic Program (SAP), which is a QAP
in which the two sets of polynomials involved in the quadratic term are
identical. Using this technique, we can reduce the number of proof elements
(at the cost of the circuit with twice as many multiplication gates).

Definition 2. (Square Arithmetic Program: SAP)
A Square Arithmetic Program (SAP) S = (A, C, t(x)) over Zp is a couple
consisting of 2(m + 1) polynomials A = {ai(x)}mi=0, C = {ci(x)}mi=0 and a
target polynomial t(x) such that deg(t(x)) ≥ max(deg(ai(x)),deg(ci(x))) for
all i ∈ [0,m]. Let C be an arithmetic circuit over Zp that has n inputs and
n′ outputs. We say that S verifies C if and only if for each inputs/outputs
pair of C (d1, ..., dn+n′) ∈ Zn+n′

p there exist (dn+n′+1, ..., dm) ∈ Zm−n−n′
p

such that let p(x) define the bellow:

p(x) :=
(
a0(x) +

m∑
i=1

di · ai(x)
)2
−
(
c0(x) +

m∑
i=1

di · ci(x)
)
,
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then p(x) is divisible by the target polynomial t(x). In other words,
(d1, ..., dn+n′) ∈ Zn+n′

p is an inputs/outputs pair of C if and only if there
exist (dn+n′+1, ..., dm) ∈ Zm−n−n′

p and h(x) such that p(x) = t(x)h(x).
We call the number m as the size of S = (A, C, t(x)) and deg t(x) as its
degree.

Theorem 2. (Groth [56], Groth and Maller [57])
Let C be an fan-in-2 type arithmetic circuit over Zp that has d multiplication
gates. Then there exist a degree 2d SAP S = (A, C, t(x)) such that S verifies
C.

SAP generation algorithm (Groth [56], Groth and Maller [57])
There exists a probabilistic and polynomial-time algorithm for generating
SAP. Actually, an SAP instance can be easily generated from a QAP instance
of C. We denote this algorithm by SAP.

SAP(C)→ S = (A, C, t(x)),

where C is an input arithmetic circuit.

2.2.3 zk-SNARKs
Here, we define a designated-verifier zk-SNARK. Let R be an NP-relation,
and (u,w) ∈ R. In this paper, we refer to an element u as statement (or
public part) and w as the witness (or secret part) of R. In addition, we
denote the NP-relation defined using an arithmetic circuit C by RC and its
language by LC . The statement u corresponds to the public wire’s value of
C, and the witness corresponds to the value of the secret wire.

Definition 3. (Designated verifier non-interactive proof system)
LetR be an NP-relation. A designated verifier non-interactive proof system
for R is a tuple of three polynomial-time algorithms, namely, Π=(G,P,V),
as follows:

• (CRS, V RS) ← G(1λ,R) takes security parameter λ and the NP-
relation R, and then outputs a common reference string (or public
parameter) CRS and a trapdoor for verification V RS.

• π ← P(CRS, u,w) takes CRS and statement u, witness w pair for R,
and outputs the proof of knowledge π.

• bool ← V(V RS, u, π) takes V RS, statement u, and proof of knowl-
edge π, and then outputs true if the proof π was accepted, otherwise
outputs false. In this study, we assume that the verification algorithm
V is a deterministic polynomial-time one.
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Remark. In the above-mentioned definition, the word designated-verifier
comes from the verification algorithm V that requires the secret information
V RS. If the verification algorithm V does not require any secret informa-
tion, i.e. only requires CRS, we refer to it as a public verifier non-interactive
proof system.

Definition 4. (Completeness)
A designated verifier non-interactive proof system Π=(G,P,V) has com-
pleteness if the prover has a valid pair (u,w) for R. Accordingly,

Pr[ V(V RS, u, π) = true | π ← P(CRS, u,w)] = 1− negl(λ).

Roughly speaking, the completeness means that the prover who has the
correctly knowledge can pass the verification procedure.

Definition 5. (Knowledge Soundness)
A designated verifier non-interactive proof system Π=(G,P,V) has
knowledge-soundness if for any PPT adversary A and its PPT extractor
ExtA, the following is satisfied:

Advksnd
Π,R,A,ExtA := Pr[(u,w) /∈ L ∧V(V RS, u, π)] = negl(λ),

where (A||ExtA)(CRS)→ (u,w, π).

Roughly speaking, the knowledge-soundness means that any PPT prover
who does not have a correctly knowledge for R can not pass the verification
procedure. In other words, if there exists a prover who can pass the verifi-
cation procedure then it can extract witness w for some statement u. We
also note that in the designated verifier non-interactive proof system, the
adversary A can not access to V RS.

Notably, in the designated verifier non-interactive proof system, the ad-
versary A cannot access V RS.

Definition 6. (Statistical Zero-knowledge)
A designated verifier non-interactive proof system Π=(G,P,V) has statis-
tical zero-knowledge if there exist PPT simulators S1 and S2 such that for
any PPT distinguisher D, the following two probabilistic distributions are
statistically difficult to distinguish:

Pr[D(π) = 1|G(1λ,R)→ (CRS, V RS),D(CRS)→ (u,w),P(CRS, u,w)→ π] ≈

Pr[D(π) = 1|S1(1λ,R)→ (CRS, V RS, trap),D(CRS)→ (u,w),S2(CRS, u, trap)→ π].

Roughly speaking, the zero-knowledge means that using trapdoor for Π,
the simulator who does not have the witness w can generate a valid proof π
for u. In other words, we cannot get any information about witness w from
proof π.
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Definition 7. (Succinctness)
A designated verifier non-interactive proof system Π=(G,P,V) is succinct
if the proof size of π is O(λ) and the processing time of the verification
algorithm V is Oλ(|u|).

Definition 8. (Designated zk-SNARK)
If a designated verifier non-interactive proof system has completeness,
knowledge-soundness, zero-knowledge, and succinctness properties, then we
refer to it as the designated verifier zk-SNARK.

2.2.4 LWE encryption
Security of LWE

Let n, q ∈ Z be integers, and χ be a discrete probability distribution over Zq.
An LWE oracle On

s for a fixed secret vector s ∈ Zn
q outputs (a, ⟨a, s⟩+ e) ∈

Zn
q × Zq, where a ∈$ Zn

q and e← χ.
In addition, let OR be the random sampling algorithm on Zn

q × Zq.

Definition 9. (Decisional LWE assumption)
The decisional LWE assumption holds for parameters (n, q, χ) if for any

PPT adversary A, one has the following:

AdvLWE
n,q,χ :=

∣∣∣Pr[AOn
s (1λ) = 1]− Pr[AOR(1λ) = 1]

∣∣∣ = negl(λ).

Discrete Gaussian distribution
For any σ ∈ R>0 and

Sσ :=
k=∞∑
k=−∞

e−πk2/2σ2
,

we define the discrete Gaussian distribution χσ over Z with mean 0 and
parameter σ as follows:

Pr[X = x] :=
e−πx2/2σ2

Sσ
, x ∈ Z.

Regev [74] showed that solving the decisional LWE problem is as difficult as
solving some lattice problems in the worst case.

Theorem 3. (Hardness of the decisional LWE [74])
Let χσ be the discrete Gaussian distribution with a parameter σ ∈ (2

√
n, q),

and q < 2poly(n). The decisional LWE problem for parameters (n, q, χσ)
is at least as difficult to solve as solving GapSVPÕ(nq/σ) (see [74] for the
definition of the gap SVP problem).

In this paper, we assume the decisional LWE assumption for parameters
(n, q, χσ).
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LWE symmetric-key encryption scheme

We define an LWE-based symmetric-key encryption scheme according to [31,
44]. Let Γ := (q, n, p, σ) be a system parameter for the LWE encryption, and
we assume that q is an odd number and that p|q. We take a representative
of Zq as {−(q−1)

2 , ..., q−1
2 }.

Definition 10. (LWE symmetric-key encryption scheme)
The LWE symmetric-key encryption scheme is a tuple that comprises PPT
algorithms, namely, (KeyGen,Enc, andDec), as follows:

• s ← KeyGen(1λ) takes a security parameter λ, and outputs the
symmetric-key s ∈ Zn

q .

• ct ← Enc(s,m) takes the symmetric-key s and message m, and out-
puts a ciphertext ct = (a, b) = (a, ⟨a, s⟩+ e+ q

pm), where a $←− Zn
q is a

random vector and e← χσ an error term.

• m′ ← Dec(s, ct) takes the symmetric-key s and ciphertext ct = (a, b),
and outputs m′ = ⌊pq (b−⟨a, s⟩)⌉ mod p, where ⌊ · ⌉ denotes the integer
rounding function.

In this scheme, if the absolute value of the error term of ciphertext ct satisfies
|e| < q/2p, then the ciphertext is correctly decoded, i.e., m = m′.

Somewhat affine homomorphic property

The above-described LWE symmetric-key encryption scheme has the some-
what additive homomorphic property. Conversely, let m1,m2 ∈ Zp be two
messages, and

Enc(s,m1) = (a1, ⟨a1, s⟩+e1+
q

p
m1)), Enc(s,m2) = (a2, ⟨a2, s⟩+e2+

q

p
m2))

be their ciphertexts, respectively. If the sum of the error terms satisfies
|e1 + e2| < q/2p, then

(a1 + a2, b1 + b2) = (a1 + a2, ⟨a1 + a2, s⟩+ e1 + e2 +
q

p
(m1 +m2))

is a valid ciphertext of m1+m2. In this paper, we denote the aforementioned
ciphertext by Enc(s,m1+m2) or Enc(m1+m2). Generally, let [ci] ∈ Zn

p be
a coefficient vector and Enc(s,mi) = (ai, bi) (i = 1, 2, ..., l) the ciphertexts.
If the error term satisfies |

∑l
i=1 ciei| < q/2p, then

Enc(s,
∑

cimi) = (
l∑

i=1

ciai,
l∑

i=1

cibi)
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is a valid ciphertext of
∑l

i=1 cimi ∈ Zp.
As described above, because the error term becomes large in the affine

operations, the error term of the initial encoding must be sufficiently small
with respect to q/2p in consideration of the later affine operations. We
provide a detailed estimation of error terms in Section 2.7. We provide,
here, an upper bound of the size of the error term after performing the affine
homomorphic operation (see Banaszczyk [15] lemma 2.4 for the proof).

Lemma 1. (Error-term evaluation for affine operation)
For any σ, T > 0, and c = (c1, c2, . . . , cn) ∈ Zn:

Pr
[
e← χn

σ | ⟨e, c⟩ ≥ Tσ||c||
]
< 2exp(−πT 2).

We refer to the aforementioned parameter, T , as tail cut parameter. This
Lemma shows that error term e← χσ is included in [−Tσ, Tσ] overwhelming
in T (take n=1). If we take the tail cut parameter T = 8, the right-hand
side of the inequality is less than exp(−200). Hence, in this paper, we regard
this value as negligible and assume that e ∈ [−8σ, 8σ].

Convert to Public-key scheme

The above symmetric-key cryptosystem can be used as a public-key cryp-
tosystem by publishing a set of ciphertexts {Enc(s, 0)}. Conversely, let

pk = {Enc(s, 0)}tj=1 = {(a, ⟨a, s⟩+ ej)}tj=1

be a public key and m ∈ Zp a plaintext. We take a random subset T ⊂ [1, t]
and calculate the following:

Enc(s,m) :=
(
0, q
p
m
)
+

∑
j∈T

Enc(s, 0)j .

Noise Smudging

In Section 2.3, we proposed our designated verifier zk-SNARKs, in which the
verifier holds the secret-key s of the LWE encryption scheme and decrypts
the LWE ciphertext during verification. As seen above, in this LWE encryp-
tion scheme, the verifier knows not only the plaintext m but also the error
term e. Therefore, some information regarding the coefficients of the affine
homomorphic operation may be disclosed to the verifier. Consequently, it is
not zero-knowledge proof. To solve this problem, we use the noise-smudging
technique by Boneh et al. [27]. This is a technique to hide the value of the
original error term by adding a larger error term.
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Lemma 2. (Noise Smudging [27])
For any A,Z > 0, and a fixed value e1 ∈ [−A,A], e2

$←− [−Z,Z]. The
statistical distance between distributions e1 + e2 and e2 is equal to A/Z.
Particularly, if A is negligible in Z, both the distributions are statistically
difficult to distinguish.

Using this technique, we can hide the original error term e1 from the
verifier by adding a large error term (0, e2) to the original ciphertext
(a, ⟨a, s⟩ + e1 + mq/p). We provide a detailed estimation of e1, e2 in Sec-
tion 2.7. Throughout this study, we assume that the prover executes the
discussed noise-smudging process upon the generation of LWE ciphertexts,
meaning that the decryption procedure does not reveal information regard-
ing the coefficients of the affine homomorphic operation.

2.3 Designated zk-SNARKs using QAPs
Here, we propose two designated verifier zk-SNARKs using QAPs. The first
proposed scheme is based on the Pinocchio-like construction, which is easy
to implement using the libsnark library [4, 23] or Pinocchio-based systems.
Furthermore, this scheme does not require the linear-only assumption, and
we can prove its security using standard q-PKE and q-PDH assumptions.
The second scheme is based on the construction by Groth [56], wherein the
zero-knowledge proof is three LWE ciphertexts. In addition, we experimen-
tally show that its setup and proof-generation algorithms are the fastest
among the all known post-quantum zk-SNARKs, e.g., Gennaro et al. [52]
and Nitulescu [70].

2.3.1 Proposal 1. Pinocchio-like LWE-based zk-SNARK
Throughout this section, we fix an LWE encryption system parameter
Γ := (q, n, p, σ) and assume that p is a prime number. Furthermore, we
assume the decisional LWE assumption (see Section 2.2.4 Definition 9) for
the parameters in Γ. For ensuring simplicity, we denote by Enc(m) an
LWE ciphertext, which is generated by public-key (see Section 2.2.4 convert
to public-key scheme) for a plaintext m ∈ Zp. In addition, we take a re-
duction parameter R > 0 for our security proof (knowledge soundness) and
publish it as a system parameter together with Γ. In the verification process,
false is outputted if the error term of the LWE ciphertext is greater than
R. Furthermore, in the rest of this paper, we assume that the generator
of LWE ciphertexts uses the noise-smudging technique to hide the original
error term. Let C be a fan-in-2 arithmetic circuit that has d multiplication
gates, and let RC be the NP-relation defined by C.

Let QAP(C)→ Q = (A,B, C, t(x)) be the degree d QAP that verifies C,
and A = {ai(x)}mi=0, B = {bi(x)}mi=0, C = {ci(x)}mi=0, where m denotes the
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number of gates in C. We also denote the index set of public input/output
wire of C by Ipublic ⊂ [0,m] and that of the other wire by Imid ⊂ [0,m].
Notably, Ipublic (resp. Imid) correspond to the state (resp. witness) part of
C.

As shown in the following, we construct a designated verifier type non-
interactive proof system Π=(G,P,V) for circuit C.
- Construction of G.
The verifier generates α, βa, βb, βc, s

$←− Zp, t(s) ̸= 0, and the following
secret/public key pair of the LWE encryption scheme sk = s ∈ Zn

p , pk =
{Enc(0)}j . In addition, the verifier generates the following LWE ciphertexts
CRS:

CRS :=
(

Enc(s), ...,Enc(sd), Enc(αs), ...,Enc(αsd),

{Enc(βa · ai(x))}i, {Enc(βb · bi(x))}i, {Enc(βc · ci(x))}i, pk = {Enc(0)}j ,

Enc(t(s)), Enc(α · t(s)), Enc(βa · t(s)), Enc(βb · t(s)), Enc(βc · t(s))
)
.

The verifier defines V RS as follows: V RS :=
(
CRS, sk, α, βa, βb, βc, s

)
.

Finally, the verifier outputs (CRS, V RS)← G(1λ,RC).
After generating (CRS, V RS), the verifier sends CRS to the prover.

- Construction of P.
The prover, who has a correct state/witness pair (u,w) ∈ RC and CRS,
calculates all the value of wires (d1, ..., dm) ∈ Zm

p . The prover takes random
values γa, γb, γc

$←− Zp and calculates

p(x) =
(
γat(x)+

m∑
i=0

diai(x)
)(
γbt(x)+

m∑
i=0

dibi(x)
)
−
(
γct(x)+

m∑
i=0

dici(x)
)
,

and h(x) = p(x)
t(x) ∈ Zp[x], by using Q = (A,B, C, t(x)).

After calculating h(x), the prover calculates H := Enc(h(s)) by using
{Enc(s), ...,Enc(sd)} and its somewhat affine homomorphic property. In
addition, the prover calculates

Amid(x) := γat(x) +
∑

i∈Imid

diai(x), B(x) := γbt(x) + b0(x) +

m∑
i=1

dibi(x),

C(x) := γct(x) + c0(x) +
m∑
i=1

dici(x),

and its LWE ciphertexts

A := Enc(Amid(s)), Â := Enc(αAmid(s)), B := Enc(B(s)), B̂ := Enc(αB(s)),

C := Enc(C(s)), Ĉ := Enc(αC(s)), D := Enc(βaAmid(s)+βbB(s)+βcC(s)),
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by using CRS and affine homomorphic evaluations. Finally, the prover
outputs a proof value π as:

π := (A,B,C,D, Â, B̂, Ĉ,H)← P(CRS, u,w).

- Construction of V.
The designated verifier, who has V RS, receives a proof π from the prover
and decrypts π by using the decryption function Dec(s,−): Dec(s, π) =(
a, b, c, d, â, b̂, ĉ, h

)
. We denote by {ei} the set of all the error terms from

this decryption process. The verifier calculates

a′ := a+
∑

i∈Ipublic

di · ai(s), d′ = d+ βa ×
( ∑

i∈Ipublic

di · ai(s)
)
,

and checks the following four conditions:

(Linear combinations) α · a = â, α · b = b̂, α · c = ĉ (2.1)
(Same coefficients) d′ = βa · a′ + βb · b+ βc · c (2.2)

(Divisibility) a′ · b− c = h · t(s) (2.3)
(Error term) |ei| ≤ R for all i. (2.4)

If proof π satisfies the aforementioned four conditions, then true is out-
putted, otherwise false is outputted.
Remark: Noise smudging. Using the noise-smudging technique, the
prover can hide the original error term from the decryption process of the
verifier, meaning that the above-mentioned LWE decryption procedure does
not reveal the information regarding the coefficients of the affine homomor-
phic operations.

Theorem 4.
Let d be the degree of QAP(C). We assume the d-PKE, 2d-PDH, and
3d+3-PDH assumptions (see Section 2.4 for their definitions). The proposed
scheme 1 is a designated verifier zk-SNARK with soundness error 1/p. Con-
versely, this scheme holds completeness, knowledge soundness, (statistical)
zero-knowledge, and succinctness.

We provide a proof of this theorem in Section 2.5.

2.3.2 Proposal 2. More efficient LWE-based zk-SNARK us-
ing QAPs

We propose another designated verifier zk-SNARK using QAPs. The zero-
knowledge proof in this scheme comprises three LWE ciphertexts, and this
scheme is a generalization of the scheme by Nitulescu [70] (taking ai(x) =
bi(x) and α = β in the below construction and security proof). We use the
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same notations as used in Proposal 1. Let Q = (A,B, C, t(x)) be a QAP for
C.
- Construction of G.
The verifier generates random numbers as:

α, β, δ, s
$←− Zp, (t(s) ̸= 0), sk = s $←− Zn

q ,

and defines (CRS, V RS) in the following data set:

CRS :=
(

Enc(α),Enc(β),Enc(δ), {Enc(si)}di=0, pk = {Enc(0)}j

{
Enc

(βai(s) + αbi(s) + ci(s)

δ

)}
i∈Imid

, {Enc
(sit(s)

δ

)
}di=0

)
,

and V RS := (CRS,α, β, δ, s, sk).
Finally, the verifier outputs (CRS, V RS)← G(1λ,RC) and sends CRS to
the prover.
- Construction of P.
The prover, who has a correct state/witness pair (u,w) ∈ RC , calculates
(d1, ..., dm) ∈ Zm

p for the value of each wire. The prover also calculates h(x)
such that( m∑

k=0

di · ai(x)
)
·
( m∑

k=0

di · bi(x)
)
=

( m∑
k=0

di · ci(x)
)
+ h(x)t(x).

In addition, the prover takes random numbers γa, γb
$←− Zp and calculates

A(s) := α+
m∑
i=0

diai(s) + γaδ, B(s) := β +
m∑
i=0

dibi(s) + γbδ,

C(s) :=

∑
i∈Imid

di(βai(s) + αbi(s) + ci(s))

δ
+ γaA(s) + γbB(s)− γaγbδ.

Using CRS, the prover can generate LWE ciphertexts (A,B,C) such
that

A := Enc(A(s)), B := Enc(B(s)), C := Enc(C(s)).

Finally, the prover outputs π := (A,B,C)← P(CRS, u,w).
- Construction of V.
The designated verifier, who has V RS =

(
CRS, α, β, δ, s, sk

)
, obtains

π = (A,B,C) from the prover. The verifier decrypts π by using Dec(sk,−)
and obtains Dec(s, π) =

(
a, b, c

)
. After obtaining (a, b, c), the verifier checks

the following equations:

a · b = α · β +
∑

i∈Ipublic

di
(
βai(s) + αbi(s) + ci

)
+ c · δ, (2.5)
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If the aforementioned equation holds, V outputs true, otherwise outputs
false.

Our experimental results show that this the Setup/Proof-generation al-
gorithms of this scheme are the fastest among those of the other schemes.
However, the security proof of this scheme requires the linear-only encryp-
tion assumption (see Section 2.4 or [28, 29]). This assumption is stronger
than the security assumptions in Proposal 1.

Theorem 5.
The second proposed designated verifier non-interactive proof system Π =
(G,P,V) is a zk-SNARK under the linear-only encryption assumption with
soundness error (4d+ 2)/p.

We provide a proof of this theorem in Section 2.5.

2.3.3 The shortest LWE-based zk-SNARK using SAP
We propose a designated verifier zk-SNARK using SAP. This scheme is a
special case of proposed scheme 2, in which we are taking ai(x) = bi(x) for
all i. The zero-knowledge proof of this scheme consists of only two LWE
ciphertexts. Furthermore, the construction of this scheme is very similar to
the scheme proposed by Nitulescu [70], and the rest of this paper, we call
this scheme as Nitulescu’s scheme. We also use the same notations in the
proposal 1 and 2.
Let S = (A, C, t(x)), A = {ai(x)}, C = {ci(x)} be a square arithmetic
program for C.
- Construction of G.
The verifier generates random numbers as: α, β, δ, s

$←− Zp, (t(s) ̸= 0),
sk = s $←− Zn

q , and define (CRS, V RS) as the following data set:

CRS :=
(

Enc(α),Enc(β),Enc(δ), {Enc(si)}di=0,

{
Enc

(βai(s) + αai(s) + ci(s)

δ

)}
i∈Imid

, {Enc
(sit(s)

δ

)
}di=0, pk = {Enc(0)}j

)
,

and V RS := (CRS,α, β, δ, s, sk). Finally, the verifier outputs
(CRS, V RS)← G(1λ,RC) and send CRS to the prover.
- Construction of P.
The prover, who has a correct state/witness pair (u,w) ∈ RC , calculates
(d1, ..., dm) ∈ Zm

p for each wire’s value. The prover also calculates h(x) such
that ( m∑

k=0

di · ai(x)
)2

=
( m∑

k=0

di · ci(x)
)
+ h(x)t(x).
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In addition, The prover takes random numbers γa
$←− Zp and defines

A(s) := α+
m∑
i=0

diai(s) + γaδ,

C(s) :=

∑
i∈Imid

di(βai(s) + αai(s) + ci(s))

δ
+ 2γaA(s)− γ2aδ.

Using CRS, the prover can generate LWE ciphertexts (A,C) such that

A := Enc(A(s)), C := Enc(C(s)).

Finally, the prover outputs π := (A,C)← P(CRS, u,w).
- Construction of V.
The designated verifier, who has V RS =

(
CRS, α, β, δ, s, sk

)
, obtains

π = (A,C) from the prover. The verifier decrypts π using Dec(sk,−) and
gets Dec(s, π) =

(
a, c

)
. After getting (a, c, {ea, ec}), the verifier checks the

following equations:

a2 = α · β +
∑

i∈Ipublic

di
(
βai(s) + αai(s) + ci

)
+ c · δ, (2.6)

|ea|, |ec| ≤ R. (2.7)
If the above equations hold, then V outputs true, the otherwise outputs
false.

Theorem 6. The above designated verifier non-interactive proof system
Π = (G,P,V) is zk-SNARK under the Linear-Only Vector Encryption as-
sumption (see Section 2.4 for the definition).

This theorem is a special case of Proposal 2.

2.4 Security Assumptions
We describe the security assumptions, i.e., q-PKE, q-PDH, and linear-only
encryption assumptions, used in the security proof. These are also defined
in [51, 39, 55, 26, 28, 29].

2.4.1 q-PKE and q-PDH assumption
q-PKE Game
(sk, pk)← KeyGen(1λ).
α, s

$←− Zp.
σ ←

(
pk,Enc(1), . . . ,Enc(sq),Enc(α), . . . , Enc(αsq)

)
.

(Enc(c),Enc(c′); a0, . . . , aq)← (A || ExtA)(σ, aux).
return [α ∗ c = c′] ∧ [c ̸=

∑q
i=0 ais

i].
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An encryption scheme Enc satisfies the q-power knowledge of exponent
(q-PKE) assumption if for any PPT attacker A and its extractor ExtA, the
following holds:

AdvA,ExtA(λ) := Pr
[
q−PKE Game = 1

]
= negl(λ).

q-PDH Game
(sk, pk)← KeyGen(1λ).
s

$←− Zp.
σ ←

(
pk,Enc(1), . . . ,Enc(sq−1), Enc(sq+1), . . . ,Enc(s2q)

)
.

c← A(σ).
return [Dec(sk, c) = sq].

An encryption scheme Enc satisfies the q-power Diffie–Hellman (q-PDH)
assumption if for any PPT attacker A, the following holds

AdvA(λ) := Pr
[
q−PDH Game = 1

]
= negl(λ).

2.4.2 Linear-Only Encryption Assumption.
Here, we define the linear-only encryption assumption (see [26, 28, 29] for
more information). Let Π = (KeyGen,Enc,Dec) be a symmetric-key en-
cryption scheme with affine homomorphic property, such as the LWE en-
cryption scheme in Section 2.2.4. In addition, let λ is a security parameter
and aux the all auxiliary input data. Let C be a challenger and A a PPT
attacker, then there exists an efficient extractor ExtA.

Linear-Only Encryption Game
sk ← KeyGen(1λ).
(ct1, ct2, . . . , ctn)← C(sk, aux) : generates ciphertexts s.t.
cti = Enc(sk,mi).
ct′ ← A({cti}, aux).
(a1, a2, . . . , an, b)← ExtA({cti}, aux).
return [Dec(sk, ct′) ̸=

∑n
i=1 aimi + b].

A symmetric-key encryption scheme Π = (KeyGen,Enc,Dec) satisfies
the linear-only encryption assumption if for any PPT attacker A and its ex-
tractor ExtA, the probability that the above game returns true is negligible.

2.5 Security proofs
2.5.1 Security proof for Proposal 1
Theorem 7.
Let d be the degree of QAP(C). We use the d-PKE, 2d-PDH, and 3d+ 3-
PDH assumptions (see Section 2.4 for their definitions). Proposal 1 is
a designated verifier zk-SNARK with soundness error 1/p. Conversely,
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this scheme holds completeness, knowledge soundness, (statistical) zero-
knowledge, and succinctness.

Proof of Succinctness and Completeness.

The completeness is trivial from the construction. In addition, proof π
comprises eight LWE ciphertexts. Therefore, the size of |π| is O(λ), and the
computational complexity of the verification process is Oλ(|u|)) on the basis
of the construction 2.

Proof of Zero-Knowledge.

We construct PPT simulators Sim1,Sim2 in the following manner.
Sim1 generates (CRS, V RS) by using Π.G, and after generating

V RS =
(
CRS, sk, α, βa, βb, βc, s

)
,

Sim1 gives some parameters to Sim2 as trap := (α, βa, βb, βc, s).
In addition, Sim2 can generate proof π by using trap as follows:
Sim2 generates δa, δb, δc ∈$ Zp, and

A := Enc(δa), Â := Enc(αδa),
B := Enc(δb), B̂ := Enc(αδb),
C := Enc(δc), Ĉ := Enc(αδc),
D := Enc(βa · δa + βb · δb + βc · δc).

In addition, Sim2 calculates

ã := δa +
∑

i∈Ipublic

di · ai(s),

h :=
ã · δb − δc
t(s)

, H := Enc(h),

and outputs π as:

π := (A,B,C,D, Â, B̂, Ĉ,H)← Sim2(CRS, u, trap).

We can assume that all the error terms of LWE ciphertexts are bounded by
the reduction parameter R.
Because of the construction, it is easy to verify that

Dec(s, π) =
(
a, b, c, d, â, b̂, ĉ, h

)
,

holds for the four conditions in the verification algorithm V. In addition,
these probability distributions are statistically difficult to distinguish from
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the output of Π.P(CRS, u,w) with correct witness w. Notably, using the
noise-smudging technique, the error terms in the decryption process do not
reveal information regarding the affine homomorphic operation. Therefore,
the outputs for the real and simulated proofs from any distinguisher D are
the same value overwhelming in λ. 2

Proof of Knowledge Soundness.

Let Π = (G,P, andV) be our proposed non-interactive proof system for
circuit C and NP-relation RC defined by C. If there exists a PPT attacker
and extractor (Asnd, ExtAsnd

) for the knowledge soundness that has a non-
negligible advantage, then we show that using (Asnd, ExtAsnd

), there is a
PPT attacker APDH , for 2d-PDH or (3d + 3)-PDH problems, who has a
non-negligible advantage. Let

Q = (A,B, C, t(x)),

A = {ai(x)},B = {bi(x)}, C = {ci(x)}

be a QAP for C. Notably, APDH generates common reference strings / ver-
ifiable reference strings (CRS, V RS) (the details of the method to generate
(CRS, V RS) are given in this proof). In addition, APDH inputs CRS to
(Asnd, ExtAsnd

), and obtains (u,w, π) from (Asnd, ExtAsnd
).

Meanwhile, because Asnd has a non-negligible advantage, one has

(u,w) /∈ LC ∧Π.P(V RS, u, π) = true

with a non-negligible probability.
We denote π = (A,B,C,D, Â, B̂, Ĉ,H) and Dec(s, π) = (a, b, c, d, â, b̂, ĉ, h).
Because the equation of linear combinations, we can get this equation

α · a = â.

Therefore, using the d-PKE assumption for

Enc(s), ...,Enc(sd), Enc(αs), ...,Enc(αsd),

there exist a PPT attacker and extractor (APKE , ExtAPKE
) such that if (ϕ0,

ϕ1, . . . , ϕd) is the output of ExtAPKE
, then the following equations hold:

Enc
( d∑
i=0

ϕis
i
)
= A, Enc

( d∑
i=0

αϕis
i
)
= Â.
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We can apply the same arguments for (b, b̂), (c, ĉ) and obtain (ψ0, ψ1, . . . , ψd),
(ω0, ω1, . . . , ωd) from ExtAPKE

such that

Enc
( d∑
i=0

ψis
i
)
= B, Enc

( d∑
i=0

αψis
i
)
= B̂

Enc
( d∑
i=0

ωis
i
)
= C, Enc

( d∑
i=0

αωis
i
)
= Ĉ

In addition, we define

ϕmid(x) :=
d∑

i=0

ϕix
i, ψ(x) :=

d∑
i=0

ψix
i, ω(x) :=

d∑
i=0

ωix
i,

ϕ(x) := ϕmid(x) +
∑

k∈Ipublic

dkak(x),

the following claim holds.
Claim
There exist γa, γb, γc ∈ Zp, and {dk}k∈Imid

such that

ϕ(x) = γat(x) +
∑

k∈Imid

dkak(x) +
∑

k∈Ipublic

dkak(x),

ψ(x) = γbt(x) +
∑

k∈Imid

dkbk(x) +
∑

k∈Ipublic

dkbk(x),

ω(x) = γct(x) +
∑

k∈Imid

dkck(x) +
∑

k∈Ipublic

dkck(x).

Because we show this claim at the end of this proof, we assume it here.
The adversary (Asnd, ExtAsnd

) does not have a correct witness. If we define
w := {dk}k∈Imid

, then (u,w) /∈ RC .
Because of the definition of QAP, t(x) does not divide p(x) := ϕ(x)ψ(x) −
ω(x). We define H(x) := p(x)/t(x), as according to the equation of divis-
ibility, H(s) = h. Let (x − r) be a polynomial that divides t(x) but not
p(x), and let T (x) := t(x)/(x− r) ∈ Zp[x]. Because t(x) and p(x) have de-
grees at most d and 2d, respectively, Asnd can use “the extended Euclidean
algorithm for polynomials” to find polynomials A(x) and B(x) of degrees
2d − 1 and d − 1, respectively, such that A(x)t(x) + B(x)p(x) = T (x).
Dividing the aforementioned equation by t(x) on both the sides, we have
A(x) +B(x)H(x) = 1/(x− r). Therefore, we define

∆(x) := A(x)(x− r) + hB(x)(x− r)− 1 ̸= 0,
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and deg(∆(x)) = 2d, and ∆(s) = 0.
Let L ̸= 0 be the leading term of polynomial ∆(x), then we have the follow-
ing:

∆(x) = Lxδ + (lower term)

=⇒ sδ = −L−1(lower term)(s),

⇐⇒ s2d = −L−1s2d−δ(lower term)(s).

Therefore,

Enc(s2d) = Enc
(
− L−1s2d−δ(lower term)(s)

)
.

The aforementioned equation asserts that LWE ciphertext Enc(s2d) can be
expressed as an affine combination of lower degree terms Enc(si), (i < 2d).
This is a contradiction to the 2d-PDH assumption.

Proof of the Claim.
We define the following:

ϕ̃(x) := ϕ(x)−
∑

k∈Ipublic

dkak(x),

ψ̃(x) := ψ(x)−
∑

k∈Ipublic

dkbk(x),

ω̃(x) := ω(x)−
∑

k∈Ipublic

dkck(x),

then max(degϕ̃(x),degψ̃(x),degω̃(x)) ≤ d. It is sufficient to prove the claim
we show the degree shift polynomial F (x) as:

F (x) := θaϕ̃(x) + θbx
d+1ψ̃(x) + x2d+2ω̃(x), deg(F ) ≤ 3d+ 2

is included in the vector space on Zp as follows:

V := SpanZp

〈
t(x), xd+1t(x), x2d+2t(x),

ζi(x) = (θaai(x) + θbx
d+1bi(x) + θcx

2d+2ci(x))i∈Imid

〉
.

However, if F (x) is not included in the vector space, since Gennaro et al.
[51] Lemma 10, there exists a degree 3d+ 3 polynomial U(x) such that the
x3d+3’s coefficient of U(x)×F (x) is not 0 with an overwhelming probability
(that is equal to 1−1/p, where 1/p is the soundness error of this scheme). We
briefly describe the proof of this lemma here. We take a random polynomial
U(x) such that all the x(3d+3)’s coefficients of

U(x)t(x), U(x)xd+1t(x), U(x)x2d+2t(x), U(x)ζi(x)
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are equal to 0. Thereby meaning that the reverse coefficients vector of U(x)
is included in the orthogonal complement space of V . Using F (x) /∈ V ,
we can take such U(x). In addition, the x3d+3’s coefficient of U(x) × F (x)
is the inner product value of the reverse coefficients vector of U(x) and
coefficients vector of F (x). Both the vectors are not included in V , and the
inner product value is a random element of Zp. Therefore, this is not 0 with
the probability of 1− 1/|Zp|. This is a proof sketch of the above-mentioned
lemma.
We can write

U(s)× F (s) = U(s)θaϕ̃(s) + U(s)θbs
d+1ψ̃(s) + U(s)θcs

2d+2ω̃(s)

= U(s)θa
(
ϕ(s)−

∑
public

dka(s)
)
+ U(s)θbs

d+1
(
ψ(s)−

∑
public

dkb(s)
)

+U(s)θcs
2d+2

(
ω(s)−

∑
public

dkc(s)
)
.

In advance, when APDH generates (CRS, V RS), we take θa, θb, andθc that
satisfy the following:

U(s)θa = βa, U(s)θbs
d+1 = βb, U(s)θcs

2d+2 = βc.

Then, according to the same coefficient equation in the verification proce-
dure, one has the following:

U(s)× F (s) = d′ − βa
∑
public

dka(s)− βb
∑
public

dkb(s)− βc
∑
public

dkc(s)

= d′ −
∑
public

dk(βaa(s))−
∑
public

dk(βbb(s))−
∑
public

dk(βcc(s)) ∈ Zp. (2.8)

The ciphertext of this value can be generated using π, which is the output
of adversary Asnd, and CRS by using the affine homomorphic property.
However,

U(s)× F (s) = (higher terms) + a · s3d+3

+(lower terms), a ∈ Zp. (2.9)

Therefore, we can generate ciphertext Enc(s3d+3) using {Enc(si)}i ̸=3d+3, π,
and CRS. This is a contradiction to the (3d+ 3)-PDH assumption. 2

Remark: Reduction parameter. According to the proof of the above-
mentioned theorem, in the construction of attacker APDH , we need further
affine homomorphic operations for π, which is the output of soundness at-
tacker Asnd. Therefore, if the error terms of the LWE ciphertexts of zero-
knowledge proof π are considerably noisy, we cannot execute other oper-
ations. Therefore, we take a reduction parameter R, which is detailed in
Section 2.7.
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2.5.2 Security Proof for Proposal 2
The zero-knowledge proof size in this scheme is smaller than that of Pro-
posal 1, and our experimental results show that the Setup/Proof-generation
algorithms of this scheme are the fastest among those of the other schemes.
However, the security proof of this scheme requires the linear-only encryp-
tion assumption (see Section 2.4 or [28, 29]). This assumption is stronger
than the security assumptions in Proposal 1.

Theorem 8.
The second proposed designated verifier non-interactive proof system Π =
(G,P,V) is a zk-SNARK under the linear-only encryption assumption with
soundness error (4d+ 2)/p.

Proof of Completeness and Succinctness.

The completeness and succinctness are trivial from the construction. 2

Proof of Zero-knowledge.

We construct PPT simulators, namely, Sim1 and Sim2, in the following
manner.
Sim1 generates CRS and V RS in the construction G, and it takes a trap-
door for Sim2 as trap := (α, β, δ, s), similar to that in the proof of the
previous theorem. Sim2 outputs π = (A,B,C) for given CRS and state
u the following method. Sim2 generates random values a, b ∈$ Zp, and it
calculates

C(s) :=
ab− αβ −

∑
i∈Ipublic di(βai(s) + αbi(s) + ci(s))

δ
.

Using CRS, Sim2 can generate LWE ciphertexts π = (A,B,C) with noise
smudging such that

A := Enc(a), B := Enc(b), C = Enc(C(s)).

It is easy to verify that π = (A,B,C) satisfies the equation (see 2.5) in the
verification procedure and that these distributions are statistically difficult
to distinguish from the output of Π.P(CRS, u,w) with correct witness w.
2

Proof of Knowledge Soundness.

We show that if there exists a PPT knowledge soundness adversary Asnd
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and its extractor ExtAsnd
who has a non-negligible advantage, then we can

extract a witness. Let a set of LWE ciphertexts π = (A,B,C) be an output
from Asnd that satisfies the equation (see Section 3.2 (2.5)). Using the
linear-only encryption assumption, we have

A(α, β, δ, s) = Aαα+Aββ +Aδδ +A(s)

+
∑

i∈Imid

Ai
βai(s) + αbi(s) + ci(s)

δ
+Ah(s)

t(s)

δ
,

where Aα, Aβ, Aδ, Ai ∈ Zp, and A(s), Ah(s) are the polynomials of degree
d, and we can ignore the coefficients of Enc(0). Similarly, we can write
B(α, β, δ, s) and C(α, β, δ, s).
Schwartz–Zippel lemma says that the equation (2.5) holds when viewing A,
B, and C as formal polynomials indeterminates α, β, δ, s with probability
(1− 4d+2

p ).

Lemma 3. (Schwartz-Zippel)
Let p be a prime, and let f ∈ Zp[x1, ..., xn] be a multivariate polynomial of
total degree d that is not identically zero. Then,

Pr[(α1, . . . , αn)← Zn
p | f(α1, . . . , αn) = 0] ≤ d/p.

See Boneh et al. [29] for the proof of this lemma. Furthermore, we
assume that soundness error 4d+2

p is negligible (this value is negligible in
practical use cases and real-world parameters; see Section 2.7).

By comparing coefficient α2 of the equation (2.5), AαBα = 0. Therefore,
Aα = 0 or Bα = 0. Without loss of generality, we can take Bα = 0.
Furthermore, by comparing coefficient αβ, we have 1 = AαBβ + AβBα =
AαBβ. This means AB = ABβ × AαB; therefore, we can also assume that
Aα = Bβ = 1. By comparing the coefficient of β2, we have AβBβ = Aβ = 0.
Next, comparing the coefficient of 1/δ2, we have(

Ah(s)t(s) +
∑

i∈Imid

Ai(βai(s) + αbi(s) + ci(s))
)
×

(
Bh(s)t(s) +

∑
i∈Imid

Bi(βai(s) + αbi(s) + ci(s))
)
= 0.

Without loss of generality, we also assume(
Ah(s)t(s) +

∑
i∈Imid

Ai(βai(s) + αbi(s) + ci(s))
)
= 0.

Next, we have Bh(s)t(s) +
∑

i∈Imid
Bi(βai(s) + αbi(s) + ci(s)) = 0 because

α×
Bh(s)t(s) +

∑
i∈Imid

Bi(βai(s) + αbi(s) + ci(s))

δ
= 0.
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Therefore, we have

A(α, β, δ, s) = α+Aδδ +A(s), B(α, β, δ, s) = β +Bδδ +B(s).

Since the verification equation (2.5), that involve α (resp. β) give us

αB(s) =
∑

i∈Ipublic

diαbi(s) +
∑

i∈Imid

Ciαbi(s),

βA(s) =
∑

i∈Ipublic

diβai(s) +
∑

i∈Imid

Ciβai(s).

If we define Ci = di for i ∈ Imid, then we have

A(s) =

m∑
i=0

diai(s), B(s) =

m∑
i=0

dibi(s).

Finally, we check at the coefficients of si,( m∑
i=0

diai(s)
)
×
( m∑

i=0

dibi(s)
)
=

m∑
i=0

dici(s) + Ch(s)t(s).

From the aforementioned equation, it is evident that Ci = di for i ∈ Imid are
the correct witnesses of statement {di} for i ∈ Ipubic. This is a contradiction
of the assumption that Asnd does not have a correct witness. 2

2.6 zk-SNARKs on permissioned blockchains
In this section, we describe the system configuration when applying the
proposed schemes from the previous section to permissioned blockchains for
example, Quorum [7] and Hyperledger Fabric [3]. Furthermore, we propose
a simple multi-party protocol that securely generates CRS. In this protocol,
we assume that at least one management node is honest. The blockchain
user can convince that the CRS is correctly generated by random numbers.
Therefore, it is possible to prevent attacks where malicious management
nodes install trapdoors when CRS is generated such as Campanelli et al.
[34].

2.6.1 Designated verifier zk-SNARK on permissioned
blockchain

In blockchain systems, zero-knowledge proofs are generally used when a user
sends a transaction that contains private information. More specifically, the
user encrypts the data payload to be concealed in the transaction, gener-
ates an encrypted transaction, and sends it to the blockchain system. At
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Figure 2.1: Designated verifier zk-SNARK on permissioned blockchain

that time, a zero-knowledge proof is also attached to the transaction to
prove that the encrypted part follows the rules of the protocol. For exam-
ple, in Zcash protocol [11] or Monero protocol [5], the user encrypts the
remittance amount to conceal it from others. In these protocols (using the
Unspent Transaction Output (UTXO) transaction model), the sum of the
input amount and the sum of the output amount match, and the transfer
amount must be a non-negative integer value. The transaction sender must
prove it to the miner nodes and attach a zero-knowledge proof for it to the
encrypted transaction. In other words, in the context of zero-knowledge
proofs, the prover is a blockchain user that generates an encrypted trans-
action, and the verifier is a node that approves the transaction. In the
permissionless blockchain system such as Bitcoin [69], the transaction ap-
proval is performed by unspecified nodes in the network. Therefore, V RS
can not include secret information. Since V RS that have to be shared be-
tween these nodes, when using the designated-verifier type zero-knowledge
proof. Therefore, it is unrealistic. On the other hand, in permissioned
blockchains, since a specific management nodes Node1, Node2, . . . , Noden
perform transaction approval, the secure generation and sharing of V RS
is possible. In the next subsection, we propose a secure method for our
LWE-based designated verifier zk-SNARKs.

In this section, we propose a simple method for generating and
sharing CRS and VRS of proposed schemes among management nodes
Node1, . . . , Noden in the permissioned blockchain. First, it is assumed that
there is a private blockchain whose participants are only Node1, . . . , Noden,
for generating CRS and V RS. This blockchain is used as a bulletin board
that is difficult to forge for sharing information among the management
nodes. Hereinafter, in this section, transmission and reception of information
among the management nodes are performed using this private blockchain
(bulletin board). As a first step, we show a secure and random generation al-
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gorithm for an element s ∈ Zq among management nodes Node1, . . . , Noden.
This is a simple three-phase commitment protocol, and it is a well-known
sharing protocol using a bulletin board and a commitment scheme (for ex-
ample, ElGamal cryptographic version see Hans Delfs and K. Helmut [41]
chap. 4.4.6). We simply changed their commitment scheme to LWE encryp-
tion to achieve the quantum attack resistance. After executing Algorithm
1, all management nodes can share a random element s ∈ Zq. It is easy

Input: a modulus q ∈ Z, and system parameters of LWE encryption
scheme.
Output: a random number s ∈ Zq. , and all nodes Nodei share it.
1: Generate ki ∈ Zn

p as an LWE symmetric key.
2: Generate a random number si ∈ Zq, and an LWE ciphertext
ci = Enc(ki, si).
3: Write ci to the private blockchain as the commitment value.
4: After all {ci} have been written, write the secret key ki to the
blockchain.
5: Decrypt all {ci}, and calculates s :=

∑
si.

6: Write s to the private blockchain.
7: If the all written values s are the same one, then accept to s.
8: else Go to Step1.

Algorithm 1: Simple Secure Multi-party Sampling from Zq

to verify that Algorithm 1 outputs a random element s ∈ Zq, if at least one
node is honest. However, when a management node aborts in the middle
of the algorithm, then this procedure stops. Thus each management node
is a single point of failure only during the generation of (CRS, V RS). Note
that if q is a prime number then Zq is the finite field of order q. Therefore,
we can randomly sample the elements of the finite field. We denote this
sampling algorithm by RandZq() → s ∈ Zq. This algorithm is used as a
subroutine to generate a (CRS, V RS) pair.

Next, we propose a multi-party sampling algorithm for the error term of
LWE ciphertexts in CRS according to the discrete Gaussian distribution (see
Section 2.2.4). If at least one node is honest, then we can show this algorithm
is correctly distributed according to the discrete Gaussian distribution. This
algorithm is based on the rejection sampling method proposed by Gentry et
al. [53] and Ducas and Nguyen [45]. Let FPm be the set of floating point
numbers with m-bit mantissa. In other words, an element a ∈ FPm consists
of three pairs a = (s, e, v), s ∈ {1,−1} is the sign, e ∈ Zt is exponent,
v ∈ Z2m−1 is the mantissa, and a = s × 2e−m × v ∈ R. If we set the
parameter of the algorithm RandZq() as q = 2, t, and 2m − 1, then we can
construct a multi-party sampling algorithm for FPm. We denote this multi-
party algorithm by RandFPm() → a ∈ FPm. Furthermore, if we take
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s = 1 and e = 0, then we can construct a sampling algorithm for floating
point number from the interval [0, 1). We denote this multi-party algorithm
by NRandFPm()→ a ∈ [0, 1).

Input: a standard deviation σ ∈ FPm, and a tail cut parameter
τ ∈ FPm.
Output: x ∈ Z, with distribution statistically close to χσ on Z.
1: Calculating h := −π/σ2 ∈ FPm.
2: Sampling x← Z2τσ = [−τσ, τσ]: using RnadZ2τσ() among
Node1 ∼ Noden.
3: Calculating p := exp(h · x2)
4: Sampling r ← [0, 1) using NRnadFPm() among Node1 ∼ Noden.
5: If r < p then return x.
6: else Go to Step2.

Algorithm 2: Rejection Sampling for Discrete Gaussian on Z

The Algorithm 2 outputs statistical close to the discrete Gaussian dis-
tribution χσ (see [53, 45]), and we take the tail cut parameter T = 8 and
τσ ∈ Z for τ ≥ T . At this time, as shown in Section 2.2.4, Pr

[
|x| > τσ| x←

χσ

]
< e−200. We assume this probability is a negligible value; as a result,

the all outputs of χσ are included in the interval [−τσ, τσ] overwhelming τ .
We denote this sampling algorithm by GSamp(σ) → e ∈ Z. Using Algo-
rithm 2, we can construct a securely and randomly sampling algorithm for
(CRS, V RS) among the management nodes Node1, Node2, . . . , Noden.

Input: Q = (A,B, C, t(x)), {Plain Text}, and LWE parameters
Γ = (q, n, p, σ).
Output: (CRS, V RS) for Q.
1: Generate V RS = (α, βa, βb, βc, s, sk)← RandZq()

5 ×RandZq()
n

2: While {Plain Text} ̸= ϕ Do
3: m ∈ {Plain Text}
4: generate e← GSamp(σ) and a← RandZn

q

5: ct := (a, ⟨a, sk⟩+ e+ q
pm)

6: CRS := CRS ∪ {ct} and {Plain Text} := {Plain Text} \ {m}.
7: End while return (CRS, V RS).

Algorithm 3: Multi-party Sampling of CRS and VRS

Let C be a public arithmetic circuit and Q = (A,B, C, t(x)) (resp.
S = (A, C, t(x))) be a its QAP (resp. SAP) expression. We denote the
plaintext set of ciphertexts in CRS by {Plain Text}. By using Algorithm
3, all management nodes can securely share the same (CRS, V RS) for our
proposed scheme 1, 2, and 3 and publish V RS to the blockchain users.
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2.7 Concrete parameters
Here, we estimate various parameters of our proposed schemes. For the ease
of comparison with other works, each parameter was referenced to the values
used in other papers as much as possible.

First, our zero-knowledge proof of Proposal 1 comprises eight (resp. Pro-
posal 2 comprises three) LWE ciphertexts, if λ is a security parameter, then
|π| = 8× |ct| (resp. |π| = 3× |ct|), where |ct| denotes the length of the LWE
ciphertext with security parameter λ.

Next, we evaluate the size of LWE ciphertexts for practical use-cases.
First, we take the size of the plaintext space as p = 232−5, and the statistical
parameter κ = 32 as in [52, 44, 38].

Subsequently, we evaluate parameters q and σ in the LWE encryption
scheme on the basis of the error-term evaluation. As mentioned in the
previous sections, we must consider the following two conditions.

• The prover generates LWE ciphertexts as proof π from CRS via affine
homomorphic operations and noise smudging, following which all the
error terms are bounded by reduction parameter R.

• There exists a margin for the affine operations in the knowledge-
soundness proof after generating proof π.

We must take the parameters that all error terms that occur in these two
operations are bounded by q

2p . Furthermore, we only evaluate the error
terms for proposed scheme 1 because it has higher error growth than that
of proposed scheme 2. If we take appropriate parameters (q, σ) for proposed
scheme 1, the error terms that occurred in scheme 2 are bounded by q

2p .
We assume that tail cut parameter T = 8. Because Lemma 1, all the

error terms in π = (A,B,C,D, Â, B̂, Ĉ,H) (before performing the noise-
smudging process) are bounded by

σ × 8p
√
3m+ 5.

In addition, we execute the noise-smudging process by using statistical pa-
rameter κ = 32, and then we set A/Z = 2−32 using Lemma 2. Therefore,
the reduction parameter R is

|error terms of π| < 232 × σ × 8p
√
3m+ 5 = R

(
≤ q

2p

)
.

Furthermore, we also execute the affine homomorphic operations to prove
the knowledge soundness (see Section 2.5) of these LWE ciphertexts, whose
errors are bounded by R. The highest complexity affine homomorphic oper-
ation is given by equations (2.8) and (2.9) that constitute the (3d+3)-PDH
attacker. The size of the error term in the right-hand side of equation (2.8)
is R + σ × 8p

√
3m from Lemma 1. Furthermore, when equation (2.9) is
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solved for s3d+3, the polynomial U(x)F (x), whose degree is 6d + 5, grows
error terms. Therefore, again using Lemma 1, the conditional for the error
term is

p ·
(
R+ (σ × 8p

√
3m) + (σ × 8p

√
6d+ 5)

)
= 8p2σ(232

√
3m+ 5 +

√
3m+

√
6d+ 5) ≤ q

2p
.

This is a relation between moduli (p, q) when statistical parameter κ = 32.
For example, if we apply m = 222, d = 215, and p = 232, the size and degree
are sufficient for many practical use-cases such as Zcash (see [11, 20, 71]).
We can obtain the following:

σ × 2144 ≤ q.

This is the condition for (σ, q). Next, we evaluate the bit length of our CRS.
The CRS in the proposed scheme 1 (resp. 2) comprises 2(d+1)+ 3m+5 =
3m+2d+7 (resp. m+2d+5) LWE ciphertexts and pk. Therefore, we have

|CRS| = (3m+ 2d+ 7)× (n+ 1)× logq + |pk|,

(resp. (m+ 2d+ 5)× (n+ 1)× logq + |pk|).

If we take parameters m = 222andd = 215, then

≈ 223.58 × (n+ 1)× logq + |pk|, (resp. 222 × (n+ 1)× logq + |pk|).

Furthermore, assuming the random oracle model and using PRNG,

|CRS| = λ+ (223.58 + #pk)× logq, (resp. λ+ (222 + #pk)× logq),

and proof size |π| = 8×(n+1)logq (resp. 3×(n+1)logq). We list our exper-
imental results in Table 2.1 using the security parameters recommended in
[52]. This security parameter is known as a secure parameter against LWE
encryption attacks, such as lattice reduction attacks [65] and Gröbner basis
attack [14].

2.8 Evaluation
2.8.1 Summary of implementation
We implemented our proposed schemes and the one by Nitulescu [70], which
are zk-SNARKs for arithmetic circuits, by using the libsnark library [4] and
library GMP [9]. Subsequently, we evaluated their performances. We also
implemented the schemes by Gennaro et al. [52] and Pinocchio [71, 23] (see
Table 2.1) but do not provide the detailed comparison here because the
scheme by Gennaro et al. targets Boolean circuits and that of Pinocchio is
a pre-quantum scheme. Therefore, we cannot directly compare them.
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Figure 2.2: Experimental results: setup, proof-generation, and verification
algorithms by using PRNG for CRS generation.

In addition, we chose the prime p = 232 − 5, modulus q = 2736, and
dimension of lattice n = 1470, as in Gennaro et al. [52].

We employed a PRNG for generating |CRS|. An LWE ciphertext (a, b) ∈
Zn
q ×Zq has the bit length of (n+1)×logq. If we apply a practical parameter

of LWE, the size of CRS is significantly large. In practical use cases, we
generate a λ-bit random number r, and replace all the a in CRS by the
output of a← PRNG(r). Using this technique, we can significantly reduce
the size of CRS and prove that the LWE encryption is secure when using
the random oracle model [49]. Furthermore, we used AES-256 in the counter
mode as a PRNG for taking advantage of AES-NI instructions.

We performed the benchmarks of our protocols on a single thread of an
Intel Core i7-9700K CPU @ 3.60 GHz. Our experimental results are depicted
in Fig. 2.2. We implemented circuits with sizes 27, 211, 213, 215, and 216. As
depicted in Fig. 2.2, the processing times of our setup and proof-generation
algorithms increase linearly, and those of the verification algorithms are al-
most small constants. In addition, our results show that Proposal 2 is the
most efficient scheme because its setup and proof-generation algorithms,
which are the bottleneck of zk-SNARKs, are the fastest among all the other
schemes. For example, when the circuit size is 216, 49.7 s are taken to gen-
erate a CRS and 50.7 s to generate a proof (see Table 2.3 in Section 2.9.2
for more details). These processing times are two or three times faster than
those of the scheme by Gennaro et al. [52] and approximately one or two
orders of magnitude slower than those of the scheme by Pinocchio [4, 71, 23]
(see Table 2.1). Therefore, we must further optimize our proposals to use
them in real systems. For example, Proposal 2 takes approximately 500
s and 300 GB memory to generate a proof for the HMAC-SHA-256 cir-
cuit. We provide additional experimental data and optimization techniques
in Section 2.9. For example, Proposal 1 is appropriate for a multi-thread
CPU. Accordingly, we implemented it in an 8-thread CPU environment.
Consequently, this scheme is eight times faster than the original one, and
its performance is almost the same as that of Proposal 2 (see Fig. 2.4).
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2.8.2 Discussion
In this paper, we have described the construction of zero-knowledge proof
with quantum computer resistance. In many current blockchain systems, not
only zero-knowledge proofs but also digital signature schemes are based on
the discrete logarithm problem. Therefore, the question arises as to whether
it is meaningful to make the quantum computer resistant only to the zero-
knowledge proof method. In the blockchain system, security by a digital
signature and privacy protection of ledger information should be considered
separately. The ledger information remains even after the blockchain system
is no longer used, thus giving quantum computer resistance has a specific
meaning.

2.9 Additional experimental data and optimiza-
tion

Here, we report the additional experimental data and some optimization
techniques.
Methodology of our experiment: We implemented our proposed
schemes and the one by Nitulescu by using the libsnark library [4]. More
precisely, we implemented the zero-knowledge proof for the Bubble sort al-
gorithm of N items using it. We set the number of items as N = 3, 7, 14, 28,
and 39 and each circuit size as |C| = 132, 924, 4004, 16632, and 32604. Our
experimental environment comprises an Intel Core i7-9700K CPU @ 3.60
GHz with a single thread.

2.9.1 Optimization techniques
We developed the following simple but effective optimization techniques for
our implementation:

1. Loop-optimization for the LWE encryption on the libsnark
In the setup algorithm, we generated many LWE ciphertexts for CRS
and, therefore, used pseudo random numbers from AES-NI instruc-
tions. Using our LWE encryption scheme for the libsnark library,
we converted the pseudo random numbers to LWE ciphertexts. This
conversion included multiple loop operations, and we refactored this
procedure and reduced many multiplications between large integers.

2. The 0-fragmentation technique for a sparse expression A
QAP/SAP expression is often very sparse. For instance, Ben-Sasson
et al. [23] reported that the percentage of zero polynomials in a QAP
instance Q = (A,B, andC) is typically approximately 48%, 85%, 29%,
respectively. Therefore, we set the 0-flag for each polynomial and
skipped the procedure in the proof-generation algorithm. Because of
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this technique, we could reduce many additions and multiplications of
large integers.

The above-mentioned technique 1 reduced the setup time by approxi-
mately 40% compared with the original one, and technique 2 also reduced
the proof-generation time by approximately 30% compared with the original
one.

Experimental results of proposed schemes without PRNG

We implemented all the schemes in the libsnark library [4], and we did not
use a pseudo random number generator for generating |CRS|. Therefore,
these implementations required considerable memory; for example, Proposal
1 required 33 GB memory for the circuit size of 32,604 (see the right-hand
side of Fig. 2.3 for more details). However, we think this memory size
is somewhat impractical. Of course, these proof-generation algorithms of
this scheme are faster than those of other schemes, as there is no PRNG
procedure involved in this scheme. In addition, our experimental results
show that the setup time, proof-generation time, and size of |CRS| linearly
increased according to the circuit size, with the other parameters being
(almost) constants.

Figure 2.3: Experimental results of the proposed algorithms without PRNG.

Experimental results of the multi-thread optimization

We improved the setup and proof-generation algorithms by using a multi-
thread CPU. Generally, the setup and proof-generation algorithms are the
bottlenecks in zk-SNARK. We can compute these procedures in parallel.
For example, the proof-generation algorithm in proposed scheme 1 gener-
ates 8 LWE ciphertexts, and it can be calculated in parallel using 8 threads.
Therefore, we can radically reduce the setup and proof-generation times.
However, this method depends on the CPU environment, and, therefore, we
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report it as reference results. As depicted in Figure 2.4 (see Table 2.4 in
Section 2.9.2 for more details), the setup and proof-generation algorithms
are improved using the multi-thread architecture. The processing time of
Proposal 1 is almost the same as that of Proposal 2; they look the almost
same line in Fig. 2.4 because Proposal 1 is more appropriate for the multi-
thread architecture than other schemes. Precisely, the zero-knowledge proof
of Proposal 1 comprises 8 LWE ciphertexts, and we can compute it in par-
allel. Therefore, we allocated one thread to each ciphertext. However, the
proof of Proposal 2 (resp. the scheme by Nitulescu) comprises 3 (resp. 2)
LWE ciphertexts, and the effect of the multi-thread operation is limited. We
detail the experimental results in Section 2.9.2.

Figure 2.4: Experimental results of the proposed algorithm with PRNG and
multi-thread optimization.

2.9.2 More detailed data
For completeness, we report the additional experimental data in the next
page. We implemented our proposed schemes and the one by Nitulescu
[70] in the libsnark library [4], by using the library GMP [9] and evaluated
their performances. In Table 2.3, we show the experimental results of these
schemes with PRNG for CRS generation. Considering the trade-off between
time and memory, we consider this architecture the best practice. In Table
2.4, we show the experimental results of these schemes with PRNG and
multi-thread optimization. The processing performance of the first scheme
is the almost same as that of the second scheme. Notably, these schemes
require a multi-thread CPU environment.
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Table 2.2: Experimental results of proposed schemes without PRNG.
Circ. size Setup Proof gen. Verification |CRS| |V RS| |π|

Proposal 1

132 7.7 s 0.2 s 2.4 msec 144,9 MB 135.7 KB 1,082.7 KB
924 51.34 s 1.6 s 2.5 msec 970.7 MB 136.1 KB 1,082.7 KB

4,004 228.4 s 6.0 s 2.5 msec 4,118.6 MB 136.6 KB 1,082.7 KB
16,632 923.7 s 23.1 s 2.5 msec 17,024.5 MB 137.7 KB 1,082.7 KB
32,604 1,810.8 s 45.1 s 2.5 msec 33,357.4 MB 139.6 KB 1,082.7 KB

Proposal 2

132 4.9 s 0.1 s 1.0 msec 72.1 MB 135.5 KB 406.0 KB
924 32.9 s 0.8 s 1.0 msec 493.0 MB 135.8 KB 406.0 KB

4,004 144.1 s 3.4 s 1.0 msec 2,077.8 MB 136.2 KB 406.0 KB
16,632 597.4 s 12.6 s 1.0 msec 8,594.9 MB 137.1 KB 406.0 KB
32,604 1,143.5 s 25.2 s 1.1 msec 16,791.3 MB 137.8 KB 406.0 KB

Proposal 3

132 7.7 s 0.2 s 0.7 msec 111.1 MB 135.5 KB 270.7 KB
924 51.9 s 1.5 s 0.7 msec 766.7 MB 135.7 KB 270.7 KB

4,004 216.2 s 6.2 s 0.8 msec 3,214.3 MB 136.2 KB 270.7 KB
16,632 901.9 s 25.2 s 0.7 msec 13,293.0 MB 137.1 KB 270.7 KB
32,604 1,767.6 s 49.4 s 0.7 msec 26,043.2 MB 138.5 KB 270.7 KB

Table 2.3: Experimental results of the proposed schemes with PRNG for
CRS generation.

Circ. size Setup Proof gen. Verification |CRS| |V RS| |π|

Proposal 1

132 0.4 s 0.5 s 2.4 ms 0.1 MB 135.7 KB 1,082.7 KB
924 2.9 s 3.3 s 2.5 ms 0.9 MB 136.1 KB 1,082.7 KB

4,004 12.2 s 12.5 s 2.5 ms 3.8 MB 136.6 KB 1,082.7 KB
16,632 50.5 s 48.3 s 2.5 ms 15.6 MB 137.7 KB 1,082.7 KB
32,604 98.4 s 90.0 s 2.5 ms 30.5 MB 139.6 KB 1,082.7 KB

Proposal 2

132 0.2 s 0.2 s 1.0 ms 0.07 MB 135.5 KB 406.0 KB
924 1.5 s 1.8 s 1.0 ms 0.5 MB 135.8 KB 406.0 KB

4,004 6.2 s 6.6 s 1.0 ms 1.9 MB 136.2 KB 406.0 KB
16,632 25.8 s 27.3 s 1.0 ms 7.9 MB 137.1 KB 406.0 KB
32,604 49.7 s 50.7 s 1.1 ms 15.4 MB 137.8 KB 406.0 KB

Nitulescu [70]

132 0.3 s 0.5 s 0.7 ms 0.1 MB 135.5 KB 270.7 KB
924 2.3 s 3.1 s 0.7 ms 0.7 MB 135.7 KB 270.7 KB

4,004 9.5 s 12.7 s 0.8 ms 2.9 MB 136.2 KB 270.7 KB
16,632 39.5 s 53.2 s 0.7 ms 12.2 MB 137.1 KB 270.7 KB
32,604 76.9 s 100.9 s 0.7 ms 23.8 MB 138.5 KB 270.7 KB
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Table 2.4: Experimental results of the proposed schemes with PRNG and
multi-thread optimization.

Circ. size Setup Proof gen. Verification |CRS| |V RS| |π|

Proposal 1

132 0.2 s 0.2 s 2.4 ms 0.1 MB 135.7 KB 1,082.7 KB
924 0.5 s 0.7 s 2.5 ms 0.9 MB 136.1 KB 1,082.7 KB

4,004 1.8 s 2.7 s 2.5 ms 3.8 MB 136.6 KB 1,082.7 KB
16,632 7.2 s 10.9 s 2.5 ms 15.6 MB 137.7 KB 1,082.7 KB
32,604 13.8 s 21.1 s 2.5 ms 30.5 MB 139.6 KB 1,082.7 KB

Proposal 2

132 0.1 s 0.1 s 1.0 ms 0.07 MB 135.5 KB 406.0 KB
924 0.4 s 0.7 s 1.0 ms 0.5 MB 135.8 KB 406.0 KB

4,004 1.7 s 2.7 s 1.0 ms 1.9 MB 136.2 KB 406.0 KB
16,632 7.1 s 11.0 s 1.0 ms 7.9 MB 137.1 KB 406.0 KB
32,604 13.5 s 20.8 s 1.1 ms 15.4 MB 137.8 KB 406.0 KB

Nitulescu [70]

132 0.2 s 0.2 s 0.7 ms 0.1 MB 135.5 KB 270.7 KB
924 0.9 s 1.5 s 0.7 ms 0.7 MB 135.7 KB 270.7 KB

4,004 3.4 s 5.3 s 0.8 ms 2.9 MB 136.2 KB 270.7 KB
16,632 13.7 s 21.6 s 0.7 ms 12.2 MB 137.1 KB 270.7 KB
32,604 26.9 s 41.7 s 0.7 ms 23.8 MB 138.5 KB 270.7 KB
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Chapter 3

Generic Construction of
Polynomial Commitment
Scheme and its Application
for ZKPs without Trusted
Setup

3.1 Summary
In recent years, zero-knowledge proof (ZKP) protocols [17, 54, 62] have drawn
significant attention as privacy-enhancing technologies in various domains,
especially the cryptocurrency and blockchain industries. In response to this
situation, various zero-knowledge proof schemes based on various crypto-
graphic security assumptions have been proposed [51, 71, 21, 56, 32, 83,
66, 33, 84, 60, 48, 47]. In fact, there are many constructions that achieve
different trade-offs between proof size, proof time, and verification time,
but also under different trust models as well as cryptographic assumptions.
Although the pairing based zk-SNARKs [51, 71, 21, 56] are the most com-
monly adopted ZKP protocols in practice, which have been deployed in real
systems such as the ZCash [20, 11] cryptocurrency, they require a trusted
setup to generate the system parameters called structured reference string
(SRS), and the security is broken when the secret information is leaked to
an attacker.

To address this problem, many ZKP protocols based on different prim-
itives have been proposed to remove the trusted setup [32, 37, 19, 22, 33,
79, 84, 60]. A proof system is called transparent if it does not require any
trusted setup. Bünz et al. [32] and Wahby et al. [83] constructed a trans-
parent ZKP based on the discrete logarithm assumption. Recently, Bünz
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et al. [33] also constructed a transparent ZKP based on ideal class groups
with the adaptive root assumption, and Zhang et al. [84] and Kattis et al.
[60] independently proposed transparent schemes based on the Fast Reed
Solomon codewords [18, 24].

On the other hand, another research thread [21, 23, 66, 48, 36] has pro-
duced proof systems that remove trust from the circuit preprocessing phase
called universal setup. The word universal means that SRS supports any
circuit up to a given size bound. Because the circuit preprocessing algo-
rithm, called the indexing, is public and deterministic, anyone can check
the validity of the instance. However, these schemes require a trusted setup
to generate SRS.

In this paper, we present a generic construction method of transparent
polynomial commitment schemes, which have a small proof size, from vec-
tor commitment schemes. Our method can apply to Pedersen (resp. Ajtai)
commitments, which is based on the discrete logarithm problem (resp. the
lattice problem called the Short Integer Solution: SIS). Some works men-
tioned above showed that if we can construct a transparent polynomial com-
mitment scheme, then universal and transparent ZKPs can be constructed
based on it. Consequently, we obtain universal and transparent ZKPs from
the discrete logarithm and lattice assumption.

3.1.1 Our contributions
Following the recent works [66, 36, 48, 33], universal ZKPs can be built from
polynomial commitment schemes, and whenever the underlying polynomial
commitment scheme is transparent, ZKP is also transparent. The main
technical contributions of our work are proposing a generic construction of
transparent polynomial commitment schemes from transparent vector com-
mitments and applying it to Pedersen and Ajtai commitments. Our concrete
contributions are:

Polynomial commitments from vector commitments

We propose a generic construction method of polynomial commitment
scheme from vector commitment. More precisely, our theorem is as follow:
Main theorem. (informal) If a transparent vector commitment scheme
satisfies additive, key-concatenative, and key-convolution property, further-
more, we assume it has an extractable zk-SNARK protocol that proves the
committed vector is the 0-vector; then, we can construct a transparent poly-
nomial commitment scheme based on it.

New universal ZKPs without trusted setup

We can apply our method to Pedersen and Ajtai vector commitment
schemes, and thus, we obtain universal and transparent ZKPs. In this paper,

42



we show examples of applying our schemes to Marlin protocol [36].
Our proposed schemes are based on the standard cryptographic assump-

tions: the discrete logarithm or lattice assumptions. To the best of our
knowledge, the second proposed scheme is the first lattice-based universal
and transparent ZKP protocol. Furthermore, both of our proposals achieve
the smallest proof size O(logC) and prover time O(C) among known trans-
parent and universal ZKP protocols for a circuit with C gates (see Table
3.1). On the other hand, our schemes require O(C) verification time that is
bigger than the others, which gives an interesting trade-off.

Although the verification time is linear, our verification algorithm is
suitable for the batch verification of multiple proofs. In fact, the batch-
verification time for verifying 100 proofs is about twice as long as one proof.
Therefore, the time of verifying is significantly reduced in practice. This
property is essential for use in blockchain and cryptocurrencies, such as
ZCash [11], because the verifier verifies many zero-knowledge proofs within
transactions.

Implementation and R1CS adapter for the libsnark

We implemented our two polynomial commitment schemes based on the
Pedersen and Ajtai commitments. Our experiments show that the Pedersen
(resp. Ajtai) based scheme takes 115.4 (resp. 311.7) seconds to generate
a proof for degree d = 220 (resp. 215) polynomials and 13.3 (resp. 65.5)
seconds to verify it. Also, the proof size is 1.4 KB (resp. 26.4 MB). Further-
more, the time of batch-verifying 100 proofs is 27.9 (resp. 137.6) seconds;
therefore, each proof takes 279 msec (resp. 1376 msec).

Also, we implemented a universal and transparent Marlin type protocol
[36] using our polynomial commitment schemes in C++. We generated a
zero-knowledge proof of SHA-256 circuit by this scheme. Then, the proof
size is 26.3 KB, and this size is less than half of Hyrax’s proof for SHA-256;
it is about 60 KB (see Section 8, [83]). Thus, to the best of our knowledge,
our proposal is a universal and transparent ZKP with the shortest proof
size.

Furthermore, we have developed an adapter to use the libsnark li-
brary [4], which is a standard zero-knowledge library in the zk-SNARK or
blockchain area. This adapter converts the libsnark’s R1CS and gadgets to
our ZKPs. We believe this software will be useful to ZKP-developers and
plan to release an open source our system as soon.

3.1.2 Related works
Transparent polynomial commitment scheme.
Wahby et al. [83] constructed a transparent polynomial commitment scheme
and ZKP, called Hyrax, for multi-linear polynomial using the matrix com-
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Table 3.1: Transparent ZKPs from polynomial commitments. C is the size
of the circuit with depth D, and n is witness size.

Proof size Prover Verifier PQ Primitive/Assumptions
Proposal 1 O(logC) O(C) O(C) - Discrete Log
Proposal 2 O(logC) O(C) O(C) ✓ Lattice/SIS
Hyrax [83] O(

√
n+D logC) O(C logC) O(

√
n+D logC) - Discrete Log

Super Sonic [33] O(logC) O(C logC) O(logC) - Class gp/Adaptive Root
Virgo [84] O(log2 n+D logC) O(C + n logn) O(log2 n+D logC) ✓ Reed Solomon Code

mitment scheme proposed by Bootle et al. [30] and efficient inner product
argument technique by Bünz et al. [32]. The proof and commitment size
of this scheme is about O(

√
d) for degree d polynomials. More precisely,

The proof size and verifier time of Hyrax [83] are O(
√
n+D logC), and the

prover time is O(C logC), where C is the size of the circuit with depth D and
n is witness size. This scheme is based on the standard discrete logarithm
assumption. Recently, Bünz et al. [33] have constructed a transparent com-
mitment scheme over ideal class groups of imaginary quadratic fields under
the Adaptive Root Assumption. This method is efficient because the proof
size and verification time are both O(logC). However, their security as-
sumptions are not standard, so further discussion is needed. More recently,
Zhang et al. [84] and Kattis et al. [60] independently proposed transparent
commitment schemes based on the Reed Solomon codewords [18, 24]. The
proof size and verification time are O(log2 n+D logC), and the prover time
is O(C + n logn).

3.1.3 Our techniques
We describe the intuitive construction of our polynomial commitment
scheme for the case of Pedersen commitments. Let f(X) = a1 + a2X · · · +
anX

n−1 be a polynomial over Fp, and a = (a1, . . . , an)
T be the coefficient

vector. At first, the prover commits Com(f ; r) := hr(
∏n

i=1 g
ai
i ) to the veri-

fier, and the verifier sends a random point q ∈ Fp. Next, the prover replies
f(q) = ⟨a,q⟩, where q = (1, q, . . . , qn−1)T , and wants to prove that f(q) is
the evaluated value of Com(f) at q. If the prover sends π = (a, r), then
the verifier can check it easy, but the proof size is O(n), and all coefficients
information is revealed. Therefore, the prover sends other two commitments
C1, C2 and the verifier replies a random element s ∈ Fp. Using C1, C2, and s,
they update Com(f ; r) to Com(f ′; r′), where deg f ′ = (deg f)/2. Also, the
prover updates a to a′, where a′ has the half dimension n/2 and corresponds
to f ′. The prover and verifier recursively execute this procedure log f times,
Com(f ; r) becomes 1-dimensional commitment Com(f̃ ; r̃) = hr̃g̃ã (this re-
cursive technique is inspired by similar protocols from [30, 32, 83]). The
prover eventually sends ã and a zero-knowledge proof of the discrete log-
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arithm r̃ as a proof for the original statement. Note that our polynomial
commitment scheme reveals f(q) = ⟨a,q⟩ and ã (the ordinary polynomial
commitment scheme such as [59] reveals only f(q)). Therefore, we must hide
this information in the zero-knowledge protocol layer (see Section 3.5.1).

3.2 Preliminary
Notation. Notation. In this paper, we denote the set of real numbers
by R, the set of integers by Z, the set of natural numbers by N, the set of
integers modulo q by Zq, and the set of finite field of order p by Fp. We also
denote {0, 1, ..., N} ⊂ Z by [0, N ]. Let λ ∈ N be the computational security
parameter. A function g(x) on R is negligible in λ if g(λ) = o(λ−c) for every
fixed constant c ∈ R>0, and we denote it by negl(λ). In the security proofs
of this paper, we assume that all the adversaries are probabilistic Turing
machines that run in time poly(λ) (PPT), and we denote an adversary by
A. Furthermore, we will drop the security parameter λ from the notation
when it is contextually clear. In the interactive proof systems in this paper,
we assume all verifiers are honest. In other words, all verifiers follow the
protocol honestly.

3.2.1 Zero-knowledge proof: ZKP
Here, we define a zero-knowledge proof protocol. Let R be an NP-relation,
and (u,w) ∈ R. In this paper, we refer to an element u as statement (or
public part) and w as the witness (or secret part) of R. In addition, we
denote the NP-relation defined using an arithmetic circuit C by RC and its
language by LC . The statement u corresponds to the public wire’s value of
C, and the witness corresponds to the value of the secret wire.
Definition. (Public verifier non-interactive proof system)
Let R be an NP-relation. A public verifier non-interactive proof system for
R is a tuple of three polynomial-time algorithms, namely, Π=(G,P,V), as
follows:

• (pp) ← G(1λ,R) takes security parameter λ and the NP-relation R,
and then outputs a public parameter pp.

• π ← P(pp, u, w) takes pp and statement u, witness w pair for R, and
outputs the proof of knowledge π.

• bool ← V(pp, u, π) takes pp, statement u, and proof of knowledge π,
and then outputs true if the proof π was accepted, otherwise outputs
false. In this paper, we assume that the verification algorithm V is a
deterministic polynomial-time one.
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Definition. (Completeness)
A public verifier non-interactive proof system Π=(G,P,V) has completeness
if the prover has a valid pair (u,w) for R. Accordingly, pp← G(1λ,R),

Pr[ V(pp, u, π) = true | π ← P(p, u, w)] = 1

Definition. (Extractable Knowledge Soundness)
A designated verifier non-interactive proof system Π=(G,P,V) has ex-
tractable knowledge-soundness if for any PPT adversary A there exits a
PPT extractor EA such that

Advksnd
A,ExtA := Pr[(u,w) /∈ L ∧V(pp, u, π) = 1] = negl(λ),

where A(pp)→ (u, π) and ExtA(pp, u, π)→ w.
Definition. (Statistical Zero-knowledge)
A public verifier non-interactive proof system Π=(G,P,V) has statistical
zero-knowledge if there exist PPT simulators S1 and S2 such that for any
PPT distinguisher D, the following two probabilistic distributions are sta-
tistically difficult to distinguish:

Pr
[
D(π) = 1|G(1λ,R)→ (CRS, V RS),

D(CRS)→ (u,w),P(CRS, u,w)→ π
]
≈

Pr
[
D(π) = 1|S1(1λ,R)→ (CRS, V RS, trap),

D(CRS)→ (u,w),S2(CRS, u, trap)→ π
]
.

Definition. (Succinctness)
A public verifier non-interactive proof system Π=(G,P,V) is succinct if the
proof size of π is O(λ) and the processing time of the verification algorithm
V is O(|u|), where |u| is the size of statement.
Definition. (Succinct non-interactive zero-knowledge proof: zk-SNARK)
If a public verifier non-interactive proof system has completeness, ex-
tractable knowledge-soundness, and succinctness, then we refer to it as the
public verifier succinct non-interactive zero-knowledge proof or zk-SNARK.

3.2.2 Polynomial commitments scheme
In this section, we define the polynomial commitment scheme by Kate et
al. [59] and Chiesa et al. [36]. In addition, we now extend the syntax to
polynomial commitment schemes. The following definition generalizes that
of Kate et al. [59] and Chiesa et al. [36] to evaluate the inner product with
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the coefficient vector a = (a1, . . . , an) of f(X) = a1 + a2X + · · · + anX
n−1

can be evaluated.
More precisely, in the polynomial commitment scheme, the prover first

commits the polynomial f(X) = a1 + a2X + · · · + anX
n−1 and receives a

random point q ∈ Fp from the verifier. After that, the prover sends the
evaluation value f(q) at the point q and the proof π indicating that to the
verifier. At this time, if the vector q is defined as q := (1, q, ..., qn−1), it
can be expressed as f(q) = ⟨a,q⟩ in the form of the inner product. Con-
sequently, in our definition, the evaluation value is expressed in the form
of the inner product with the coefficient vector. In fact, in the polyno-
mial commitment scheme constructed in the next section, the prover sends
two inner product values ⟨a,q⟩ and ⟨a,v⟩ to prove the evaluation value
f(q) at the point q, where v is a random vector generated by Fiat-Shamir
heuristic [46, 35].

Definition 11. (Polynomial commitment scheme)
Let Fp be a finite field of order p. A polynomial commitment scheme over
Fp is a tuple of polynomial time algorithms

PC = (Setup, Trim,Commit,Open, V erify)

with the following syntax.

• Setup(1λ) → pp. On input a security parameter λ, Setup outputs a
public parameter pp.

• Trim(pp,d,M) → ck. Given oracle access to public parameters pp,
and on input a security parameter λ, polynomial degree bounds d =
{di}ni=1, and a maximum degree M ∈ N (di ≤ M), Trim outputs a
commitment key ck.

• Commit(ck, f,d; r) → c. On input ck, univariate polynomials f =
{fi(X)}ni=1 over Fp, and degree bounds d = {di}ni=1 with deg(fi) ≤
di ≤ M , Commit outputs commitments c = {ci}ni=1 to the polyno-
mials f = {fi(X)}ni=1. The randomness r = {ri}ni=1 are used if the
commitments c = {ci}ni=1 are hiding.

• Open(ck, f,d, Q, r) → π. On input ck, univariate polynomials f =
{fi(X)}ni=1, degree bounds d = {di}ni=1, and a query set {Qi}ni=1 ⊂
Fdi
p , Open outputs a proof π. The randomness r is equal the one

previously used in Commit algorithm.

• V erify(pp, ck, c,d, Q,v, π)→ {True,False}. On input the public pa-
rameter pp, the commitment key ck, a commitment c = {ci}ni=1, the
degree bounds d = {di}ni=1, query sets {Qi}ni=1 = {q(i)

1 , . . . ,q(i)
m(i)},
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alleged evaluations vi = (v
(i)
1 , . . . , v

(i)
m(i)), and a proof π, V erify out-

puts True if and only if the proof π attests that, for every q(i)
j ∈ Qi,

the polynomials fi(X) committed in ci has degree at most di and
v
(i)
j = ⟨ai,q(i)

j ⟩ for all i, j, where ai is the coefficient vector of fi(X).

A polynomial commitment scheme PC must satisfy the completeness,
extractability, and hiding properties defined below.

Definition 12. (Completeness)
For every maximum degree M ∈ N, polynomial degree bounds d, and PPT
adversary A,

Pr



Setup(1λ)→ pp
A(ck)→ (f,d, Q, r)
Trim(pp,d,M)→ ck

V erify(pp, ck, c,d, Q,v, π) = True deg(fi(X)) ≤ di ≤M
Commit(ck, f,d; r)→ c

⟨ai, Qi⟩ → vi

Open(ck, f,d, Q, r)→ π


= 1,

where ⟨ai, Qi⟩ = {⟨ai,q(i)⟩}q(i)∈Qi
. Roughly speaking, the completeness

means that everyone who has the correct knowledge for the polynomials f
and randomness r can pass the verification procedure.

Definition 13. (Extractability)
For every maximum degree M ∈ N, polynomial degree bounds d, and PPT
adversary A, and its sub-attacker A′ there exits a PPT extractor EA such
that for every public-coin challenger C and its query sampler Q the proba-
bility below is negligibly close to 1 as a function of λ:

Pr



Setup(1λ)→ pp
C(pp)→ state

V erify(pp, ck, c,d, Q,v, π) = True Trim(pp,d,M)→ ck
⇓ A(pp, state)→ c

deg(fi) ≤ di ≤M Q(ck, state)→ Q
Commit(ck, f,d; r)→ c A′(c,d, Q, state)→ (v, π)

EA(ck, c,d, Q,v, π)→ (f, r)


.

Roughly speaking, if there exists an attacker who can pass the verification
procedure, then it can extract a valid polynomial set for the commitment c.

Definition 14. (Computational hiding)
There exists a polynomial time simulator with a trapdoor S =
(Setup, Commit,Open) such that for every maximum degree M and a PPT
adversary A = (A1,A2,A3), the probabilities that b = 1 the two experi-
ments in Table 3.2 are identical.
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Table 3.2: Hiding game
Real(1λ,M,A)
1: pp← Setup(λ).
2: (f,d)← A1(pp).
3: ck ← Trim(pp,d,M).
4: Sample randomness r, and c← Commit(ck, f,d; r).
5: (Q, state)← A2(pp.c).
6: π ← Open(ck, f,d, Q; r).
7: b← A3(state, π).
Ideal(1λ,M,A)
1: (pp, trap)← S.Setup(λ,M).
2: (f,d)← A1(pp).
3: ck ← Trim(pp,d,M).
4: Sample simulated randomness r, and c← S.Commit(trap,d; r).
5: (Q, state)← A2(pp.c).
6: π ← S.Open(trap, (⟨ai, Qi⟩)i,d, Q; r).
7: b← A3(state, π).

Roughly speaking, the hiding property means that using trapdoor, the
simulator who does not have the polynomials f can generate a valid proof
π. In other words, A PPT attacker cannot get any information about poly-
nomials f from the proof π except the inner product values {⟨ai, Qi⟩}ni=1.

3.2.3 Fiat-Shamir heuristic
All verifiers in this paper are public-coin verifier, as all the honest verifier’s
messages are random elements from Z∗

p. The Fiat-Shamir transform [46, 35]
compiles public-coin interactive proofs that have an honest verifier into non-
interactive proofs. This transformation is secure under the random oracle
model. In practice, all random challenges are replaced by hashes of the
transcript up to that point. For example, the prover generates a commitment
Com, and the next random challenge is s := Hash(Com, pp), where pp is the
public parameters. When the verifier generates multiple random challenge,
in the interactive proof protocol, we call the Fiat-Shamir converted random
number sequence Fiat-Shamir sequence.

3.2.4 Discrete log relation
Here, we define the Discrete log relation assumption.
Definition. (Discrete log relation)
Let p be a prime and G be a discrete group of order p. For all PPT adver-
saries A and for all n ≥ 2 the following probability is negligible as a function
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of λ:

Pr


G← Setup(1λ).

a ̸= 0 ∧ g1, g2, . . . , gn
$←− G.∏n

i=1 g
ai
i = 1 a = (a1, . . . , an) ∈ Zn

p ← A(G, g1, . . . , gn).

 ≈ 0.

Note that if n = 2, this is the ordinary discrete log assumption because
ga11 g

a2
2 = 1⇔ g

a1/a2
1 = g2, where a1/a2 ∈ Zp.

3.2.5 Short integer solution
We define the short integer solution assumption according to [12, 13].
Definition. (Short Integer Solution: SIS)
Let q ∈ Z be an integer and B(q) be a bound parameter. For all PPT
adversaries A the following probability is negligible as a function of λ:

Pr

 x ̸= 0 ∧
Ax = 0 ∧ Setup(1λ, B(q))→ A ∈ Zn×m

q .

||x||2 ≤ B(q) A(A)→ x ∈ Zm.

 ≈ 0.

3.2.6 A General Forking Lemma
We refer to the forking lemma of [30, 32] that is used in the proof of theorem
10. Suppose that we have a (2µ + 1)-move public-coin argument with µ
challenge, x1, . . . , xµ. Let ni ≥ 1, i = 1, . . . , µ. Consider

∏µ
i=1 ni accepting

transcripts with challenges in the following tree format. The tree has depth
µ and

∏µ
i=1 ni leaves. The root of the tree is labeled with the statement.

Each node of depth i < µ has exactly ni children, each labeled with a distinct
value of the ith challenge xi.

Theorem 9. (General forking lemma)
Let P,V be a (2µ+ 1)-move public-coin interactive protocol. Let χ be be a
witness extraction algorithm that succeeds with probability 1−µ(λ) for some
negligible function µ(λ) in extracting a witness from an (n1, . . . , nµ)-tree of
accepting transcripts in probabilistic polynomial time. Assume that

∏µ
i=1 ni

is bounded above by a polynomial in the security parameter λ. Then P,V
has witness-extend emulation.

In our situation (in the proof of theorem 10), all ni = 4 and µ = l(=
log(deg f(x))), thus,

µ∏
i=1

ni = 22l = (deg f(x))2.

This is bounded by a polynomial in the security parameter λ.
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3.3 Vector commitment schemes
In this section, we define our vector commitment scheme and some prop-
erties that must be satisfied. Our examples, Pedersen and Ajtai vector
commitments, satisfy these properties.

3.3.1 Vector commitment scheme
Definition 15. (Vector commitment scheme)
Let Fp be a finite field order p. A vector commitment scheme over Fp is a
tuple of polynomial time algorithms

VC = (V C.Setup, V C.KeyGen, V C.Commit)

with the following syntax.

• V C.Setup(1λ)→ pp. On input a security parameter λ, Setup outputs
a public parameter pp.

• V C.KeyGen(pp, n, t) → k. On input the public parameter pp, a di-
mension of vectors n, and a dimension of randomness vector part t,
KeyGen outputs a commitment key k for the n-dimensional vectors
and the t-dimensional randomness vectors. In this paper, we assume
the commitment key space is an abelian group and denote the scalar
multiplication α ∈ Z of k by αk.

• V C.Commit(pp, k,a; r) → Comk(a; r). On input the public parame-
ter pp, the commitment key k, a vector a ∈ Fn

p , and a random vector
r ∈ Ft

p, Commit outputs a commitment value Comk(a; r). The ran-
domness r ∈ Ft

p is used if the commitment Com is hiding.

Definition 16. (Computational hiding for vector commitments)
We say that a vector commitment scheme VC is computational hiding if for
all PPT adversaries A and random-coin challengers C, the probability below
is negligibly close to 1

2 as a function of λ:

Pr



V C.Setup(1λ)→ pp.
V C.KeyGen(pp, n, t)→ k.

b = b′ A(pp, k)→ (a0,a1).

C generates b ∈$ {0, 1}, r ∈$ Ft
p

and c = Comk(ab; r).
A(c)→ b′.

 ≈
1

2
.

Roughly speaking, the hiding property means that a commitment does not
reveal the committed value.
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Definition 17. (Computational binding for vector commitments)
We say that a vector commitment scheme VC is computational binding if
for all PPT adversaries A the probability below is negligibly close to 0 as a
function of λ:

Pr


V C.Setup(1λ)→ pp.

a0 ̸= a1 ∧ V C.KeyGen(pp, n, t)→ k.
c0 = c1 A(pp, k)→ (a0,a1; r0, r1).

c0 = Comk(a0; r0), c1 = Comk(a1; r1).

 ≈ 0.

Roughly speaking, the biding property means that a commitment can only
be opened to one value.

Furthermore, we assume that the vector commitment scheme has the
following three operations and zero-knowledge property: (somewhat) ad-
ditive homomorphic, (somewhat) key-concatenative, key-convolution, and
zk-SNARK for the 0 vector.

Definition 18. (Additive homomorphic)
Let a1, a2 ∈ Fp be two vectors, and there exists + operation over the
commitment value space such that

Comk(a1; r1) + Comk(a2; r2) = Comk(a1 + a2; r1 + r2).

Also, in the case where the above operation + holds only a finite number of
times, it is called somewhat additive homomorphic.

Furthermore, this operation is assumed to be compatible with scalar
multiplication in the commit key-space. In other words, let α ∈ Z be an
integer, the following equation holds:

Comαk(a; r) = Comk(αa;αr).

Definition 19. (Key-concatenative and Key-convolution)
Let k, k′ be two commitment keys with the same public parameter pp, and
there exist || operations on the commitment value space and the commitment
keys k, k′ such that

Comk(a; r)||Comk′(b; r′) = Comk||k′Com(a||b; r + r′),

where a||b ∈ F2n
p is the concatenate of two vectors. Also, in the case where

the above operation || holds only a finite number of times, it is called some-
what key-concatenative.

Furthermore, when two commitment keys k, k′ have the same pp and
randomness part for r, there exists ∗ convolution operation between k and
k′ such that

Comk(a; r)||Comk′(a; r′) = Comk∗k′(a; r + r′),

for the same committed vector a.
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Definition 20. (zk-SNARK for the 0 vector)
If there exists a succinct non-interactive zero-knowledge proof: zk-SNARK
algorithm for the 0 vector with the extractability, then we say VC has the
zk-SNARK for the 0 vector property. More precisely, there exists a PPT al-
gorithm ZKP 0

ext(pp, k, Comk(0; r), r)→ π0. On input the public parameter
pp, the commitment key k, a commitment of the 0 vector Comk(0; r), and
its randomness r, ZKP 0

ext outputs a succinct non-interactive zeroknowledge
proof π0 such that π0 convinces the verifier that the committed vector of
Comk(0; r) is 0 = (0, 0, . . . , 0) ∈ Fn

p vector. Furthermore, we assume this
zero-knowledge proof system satisfies the extractability. In other words,
a PPT attacker A who can generate a valid proof (Comk(0; r), π0), then
there exists an extractor EA who can extract a randomness r′ such that
Comk(0; r) = Comk(0; r′). Note that we relaxed the definition of the ex-
tractability from the ordinary one. In the case of Pedersen commitments,
we can extract the same randomness r; however, Ajtai commitments, we can
only extract a vector r′ such that Comk(0; r) = Comk(0; r′) and ||r′|| ≤ 2B,
where B is the original error bound (see [16]). In the case of this weak
extractability, our soundness proof holds so that we employ this definition.

Here, we present two examples of vector commitments that satisfy the
properties mentioned above.

3.3.2 Example 1: Pedersen vector commitment
Let G be a discrete group order p with the discrete log relation assumption
(see definition 3.2.4).

• V C.Setup(1λ)→ pp. Setup outputs a public parameter which includes
a seed of PRNG on G for the key generation algorithm.

• V C.KeyGen(pp, n, t) → g = (g1, g2, . . . , gn) ∈ Gn,h = (h1 . . . , ht) ∈
Gt. KeyGen generates random elements g ∈ Gn and h ∈ Gt as a
commitment key k = (g;h). We call h randomness part.

• V C.Commit(pp, k,a; r) → Comk(a; r) =
(∏n

i=1 g
ai
i

)(∏t
i=1 h

ri
i

)
,

where a = (a1, . . . , an), r = (r1, . . . , rt). We simply denote it by gahr.

Note that this commitment scheme does not require a trusted setup be-
cause the commitment key k = (g;h) is the output of a PRNG (or random
oracle on G). This commitment scheme has the hiding and binding proper-
ties (see [72, 42] for more details).

Let a1 = (a
(1)
1 , a

(1)
2 , . . . , a

(1)
n )T ,a2 = (a

(2)
1 , a

(2)
2 , . . . , a

(2)
n )T be two vectors,

we define

Comk(a1; r1) + Comk(a2; r2) :=
( n∏

i=1

g
a
(1)
i

i

)
hr1

( n∏
i=1

g
a
(2)
i

i

)
hr2
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( n∏
i=1

g
a
(1)
i +a

(2)
i

i

)
hr1+r2 = Comk(a1 + a1; r1 + r2).

Therefore, this scheme has the additive homomorphic property. Also, let
k = (g1, . . . , gn;h), k′ = (g′1, . . . , g

′
n;h) be two commitment keys that have

the same randomness part h. We define

k||k′ := (g1, . . . , gn, g
′
1, . . . , g

′
n;h), and,

Comk(a; r)||Comk′(b; r′) :=
( n∏

i=1

gaii

)
hr

( n∏
i=1

(g′i)
bi
)
(h)r′

=
( n∏

i=1

gaii

)( n∏
i=1

(g′i)
bi
)

hr+r′ = Comk||k′(a||b; r + r’).

Therefore, this scheme has the key-concatenative property. Furthermore,
we define

k ∗ k′ :=
(
(g1g

′
1), (g2g

′
2), . . . , (gng

′
n);h

)
, then,

Comk(a; r)||Comk′(a; r′) =
( n∏

i=1

gaii

)( n∏
i=1

(g′i)
ai
)

hr+r′

=
( n∏

i=1

(gig
′
i)
ai
)

hr+r′ = Comk∗k′(a; r + r′).

Therefore, this scheme also has the key-convolution property. Let
Comk(0; r) = g0hr = hr be a commitment of the 0 vector. Since the bind-
ing property, it is a zk-SNARK for the 0 vector that the ordinary Schnorr’s
non-interactive zero-knowledge proof for discrete log such that “I know the
discrete logarithm r” (we refer to [77, 78, 80, 42, 83] for the construction).
Furthermore, the proof size of this protocol consists of (t+ 1) Fp elements.

3.3.3 Example2: Ajtai commitment
Let q be an integer and A be a a fixed, randomly-chosen matrix in Zm×n

q .
Ajtai’s seminal works [12, 13] showed that it is as hard to find a vector s ∈ Zn

with some small bounded norm ||s|| ≤ B such that As = 0. This problem is
called the Short Integer Solution (SIS) problem (see Section 3.2.5) and its
hardness increases as m or q increase and the bound B decreases, however,
the hardness of SIS is essentially unaffected by n as soon as n is large enough.
The Ajtai commitment scheme is defined as follows. We assume p << q.

• V C.Setup(1λ)→ pp. Setup outputs a public parameter which includes
a seed of PRNG for the key generation algorithm.
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• V C.KeyGen(pp, n, t) → k = (A1,A2). KeyGen outputs uniformly-
random matrices A1 ∈ Zm×n

q and A2 ∈ Zm×t
q as commitment key.

For the security, in the rest of this paper, we set the randomness part
t = 2m logp q.

• V C.Commit(pp, k,a; r) → Comk(a; r) := A1a + A2r ∈ Zm
q , where

a ∈ Fn
p and r ∈ Ft

p have small norms.

Note that the Ajtai commitment scheme does not require a trusted setup
because the commitment key is the output of a PRNG (or random ora-
cle). This commitment scheme has the computational hiding and binding
properties (see [13, 16]). We define

Comk(a1; r1) + Comk(a2; r2) := A1(a1 + a2) + A2(r1 + r2),

then this commitment scheme has the somewhat additive homomorphic
property, while a1 + a2 and r1 + r2 are also small vectors. Also, let
k = (A1,A2), k

′ = (A′
1,A2) be two commitment keys that have the same

randomness part A2. We define the concatenate operation as the ordinary
matrix concatenation:

k||k′ := ([A1|A′
1],A2),

where A1 and A′
1 have the same matrix size. Since

Comk(a; r)||Comk′(b; r′) :=
(

A1a + A2r
)
+
(

A′
1b + A2r′

)
= [A1|A′

1]

[
a
b

]
+ A2(r + r′) = Comk||k′(a||b; r + r′) ∈ Zm

q ,

this commitment scheme has somewhat key-concatenate property, while[
a
b

]
and r + r′ are also small vectors. Furthermore, we define k ∗ k′ :=(

A1 + A′
1,A2

)
, then

Comk(a; r)||Comk′(a; r′) =
(

A1a + A2r
)
+
(

A′
1a + A2r′

)
= (A1 + A2)a + A2(r + r′) = Comk∗k′(a; r + r′).

Therefore, this commitment scheme also has the key-convolution property.
We discuss more concrete parameter settings for this somewhat additive and
key-concatenative properties in Section 3.6.

Furthermore, let Comk(0; r) = A2r be a commitment of the 0 vector.
We refer to [16] for constructing a succinct non-interactive zero-knowledge
proof for r with the extractability, and the binding property shows that it
is a zk-SNARK for 0 vector. Their extractor outputs another r’ such that
Comk(0; r) = Comk(0; r’) ∧ ||r’|| ≤ 2B. Even in this case, our soundness
proof works, but it requires taking a large bound B in advance. In fact, we
must take (deg f)B as the bound.
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3.4 Polynomial commitments from vector commit-
ments

In this section, we show a general method to construct a polynomial com-
mitment scheme with O(log(deg f)) proof size from a vector commitment.
At first, we construct a basic protocol that has O(deg f) proof size. This
protocol reveals all information about f(X) and we modify it to reduce the
proof size and the leakage information using a convolution trick that inspired
by similar protocols from [30, 32, 83].

As already shown in [36], a single-bound, single-query, and single-
polynomial commitment scheme can be used as a black box to con-
struct a multi-degree bound, multi-query, and multi-polynomial commit-
ment scheme. Therefore, we construct here a single bound, query, and
polynomial commitment scheme.

In this section, we assume a vector commitment scheme VC =
(V C.Setup, V C.KeyGen, V C.Commit) satisfies additive homomorphic,
key-concatenative, key-convolution, and zk-SNARK for the 0 vector prop-
erties, and we denote the proof generation algorithm of the zk-SNARK by
ZKP 0

ext.

3.4.1 (In-secure and in-efficient) Basic protocol
The evaluation value of f(X) at the point q can be expressed as the inner
product form

f(q) = a1 + a2q + a3q
2 · · ·+ anq

n−1 = ⟨a,q⟩

with the vector q := (1, q, q2, . . . , qn−1)T and coefficient vector a =
(a1, a2, . . . , an)

T of the polynomial f(X). By expressed this form, an ef-
ficient inner product argument can be applied.

• Setup.
Execute the Setup algorithm of the vector commitment scheme
V C.Setup(1λ)→ pp and output pp as the result of Setup(1λ).

• Trim.
Execute the key generation algorithm of the vector commitment
scheme V C.KeyGen(pp,M, t) → k, and output k as the result of
Trim.

• Commit.
The prover calculates V C.Commit(pp, k,a; r) → Comk(a; r) for the
coefficient vector a = (a1, a2, . . . , an) of f(X) ∈ Fp[x], and outputs
Comk(a; r) as the result of

Commit(k, f(X),M ; r)→ Comk(a; r).
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The prover sends c = Comk(a; r) to the verifier.

• Open.
The prover sets Open(k, f(X),M, {q}, r) → π := (a, r, ⟨a,q⟩) and
sends it to the verifier.

• Verify.
The verifier obtains π = (a, r, u) from the prover and checks

V C.Commit(pp, k,a; r) = c,

and u = ⟨a,q⟩. The verifier outputs True if all verifications are suc-
cessful, and outputs False otherwise.

Discussion: Proof size and information leakage
The above protocol has a O(n) proof size because the proof π = (a, ⟨a,q⟩, u)
includes an n-dimensional vector a = (a1, a2, . . . , an) ∈ Fn

p . In addition, the
hiding property is not satisfied because all information about the coefficient
vector a of the polynomial f(X) is leaked. We are going to reduce the proof
size and the coefficient information as follows.

3.4.2 Convolution-trick
Here, we present a convolution-trick that is inspired by [30, 32, 83]. We
assume n = 2n′, (n′ ∈ N), and denote

a = (a1, a2, . . . , an′ , an′+1, . . . , an)
T = (aL,aR)T ,

q = (1, q, q2, . . . , qn
′−1, qn

′
, . . . , qn−1)T = (qL,qR)T ,

where aL,aR,qL,qR ∈ Fn′
p . Note that a = aL||aR,q = qL||qR. Also, let

k = kL||kR be a commitment key, and k̃ be another commitment key for
1-dimensional vectors; we call this k̃-part the inner product part. More
precisely, we define V C.KeyGen(pp, 1, 0)→ k̃ so that k̃-part does not have
the randomness. Thus, in the rest of this paper, we omit the randomness
part of k̃. We define

C := Comk(a; r)
∣∣∣∣Comk̃(⟨a,q⟩),

C1 := Comk(aR||aL; r1)
∣∣∣∣Comk̃(⟨a

L,qR⟩+ ⟨aR,qL⟩),

C2 := Comk((0||aR); r2)
∣∣∣∣Comk̃(⟨a

R,qR⟩).

Furthermore, the verifier generates a random element s ∈ Fp. At this time,
the following lemma holds.
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Lemma 4.
We define

a′ := aL + s× aR, q′ := qL + s× qR, k′ := kL ∗ (s× kR),

then the following equation holds:

C + s× C1 + (s2 − 1)× C2 = Comk′(a′; r′)
∣∣∣∣Comk̃(⟨a

′,q′⟩),

where r′ = r + sr1 + (s2 − 1)r2.

Proof. The left-hand side of the equation is equal to

Comk

(
a + (saR||saL) + (s2 − 1)0||aR; r′

)
||Comk̃

(
⟨a,q⟩+ s⟨aL,qR⟩+ s⟨aR,qL⟩+ (s2 − 1)⟨aR,qR⟩

)
. (3.1)

Since a = aL||aR, and

⟨a,q⟩ = ⟨aL,qL⟩+ ⟨aR,qR⟩,

we have
(3.1) = Comk

(
(aL + saR)||s(aL + saR); r′

)
||Comk̃

(
⟨aL,qL⟩+ s⟨aL,qR⟩+ s⟨aR,qL⟩+ s2⟨aR,qR⟩

)
.

= Comk

(
a′||sa′; r′

)
||Comk̃

(
⟨a′,q′⟩

)
. (3.2)

Since the definition of the key-convolution operation,

Comk(a′||sa′; r′) = ComkL(a′; r′)||ComskR(a′;0) = Comk′(a′; r′),

therefore, we have

(3.2) = Comk′(a′; r′)||Comk̃(⟨a
′,q′⟩).

From this lemma, we define

C ′ := Comk′(a′; r′)
∣∣∣∣Comk̃(⟨a

′,q′⟩),

then the two vector a′,q′ have the half dimension n′ of a,q.
Consequently, the prover can reduce the dimension of the vector a

by sending (C1, C2) to the verifier, and changes the proof π to π′ :=
(a′, r′, ⟨a′,q′⟩, C1, C2).
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3.4.3 Reducing the proof size and coefficient information

We can reduce the proof size to logn order by recursively using the convo-
lution technique. We assume n = 2l for simplicity and define

a(1) := a, q(1) := q, r(1) := r, k(1) := k,

C(1) := Comk(a(1); r(1))
∣∣∣∣Comk̃(⟨a(1),q(1)⟩).

The prover takes new random vectors r1(1), r2(1) and calculates

C1(1) := Comk(a(1)R||a(1)L; r1(1))∣∣∣∣Comk̃(⟨a(1)
L,q(1)R⟩+ ⟨a(1)R,q(1)L⟩),

C2(1) := Comk(0||a(1)R; r2(1))
∣∣∣∣Comk̃(⟨a(1)

R,q(1)R⟩).
Furthermore, the prover recursively calculates

a(i+ 1) := a(i)L + si × a(i)R, q(i+ 1) := q(i)L + si × q(i)R, (3.3)

k(i+ 1) := k(i)L ∗ si × k(i)R,

and
C1(i) := Comk(a(i)R||a(i)L; r1(i))∣∣∣∣Comk̃(⟨a(i)

L,q(i)R⟩+ ⟨a(i)R,q(i)L⟩), (3.4)

C2(i) := Comk((0||a(i)R); r2(i))
∣∣∣∣Comk̃(⟨a(i)

R,q(i)R⟩), (3.5)
using the Fiat-Shamir sequence (s1, . . . , sl). Eventually, the prover finds
1-dimensional vector a(l + 1) ∈ Fp and

π0 ← ZKP 0
ext(pp, k(l + 1), Comk(l+1)(0; r(l + 1))

∣∣∣∣Comk̃(0), r(l + 1)).

The prover outputs

π := (a(l + 1), ⟨a,q⟩, {C1(i)}li=1, {C2(i)}li=1, π
0).

Thus, π consists of two Fp elements, 2 logn commitments, and the zero-
knowledge proof π0, so that its data size is O(logn). We implicitly assume
the data size of Com is constant (only depend on the security parameter λ).

We summarize the final version of our protocol.

• Setup.
Execute the setup algorithm of the vector commitment scheme
V C.Setup(1λ)→ pp, and output pp as the result of Setup(1λ).

• Trim.
Execute the key generation algorithm of the vector commitment
scheme V C.KeyGen(pp, n, t)→ k and V C.KeyGen(pp, 1, 0)→ k̃, and
output (k, k̃) as the result of Trim.
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• Commit.
The prover calculates V C.Commit(pp, k,a; r) → Comk(a; r) for the
coefficient vector a = (a1, a2, . . . , an) of f(X) ∈ Fp[x], and outputs

Commit(k, f(X),M ; r)→ Comk(a; r).

• Open. The prover defines

a(1) := a, q(1) := q, r(1) := r, k(1) := k,

and calculates a(l + 1), {C1(i)}li=1, {C2(i)}li=1 using the Fiat-Shamir
sequence (s1, . . . , sl) and the equations (3.3), (3.4), (3.5). Furthermore,
the prover generates

π0 ← ZKP 0
ext

(
pp, k(l + 1), Comk(l+1)(0; r(l + 1))

∣∣∣∣Comk̃(0), r(l + 1)
)
,

and eventually outputs

π = (a(l + 1), ⟨a,q⟩, {C1(i)}li=1, {C2(i)}li=1, π
0).

• Verify
The verifier obtains Comk(a; r) and

π = (a(l + 1), u, {C1(i)}li=1, {C2(i)}li=1, π
0),

from the prover, and calculates

C(1) := Comk(a; r)
∣∣∣∣Comk̃(u;0),

and
C(i+ 1) := C(i) + si × C1(i) + (s2i − 1)× C2(i),

for i = 1, . . . , l. Also, the verifier calculates q(l + 1) ∈ Fp and

D := C(l + 1)− Comk(l+1)(a(l + 1);0)||Comk̃(⟨a(l + 1),q(l + 1)⟩),

using (s1, . . . , sl). Note that if the proof π is honestly generated, D is
equal to Comk(l)(0; r(l+1))

∣∣∣∣Comk̃(0). The verifier can check it using
π0, and outputs True if this verification is successful, and outputs
False otherwise.

Discussion: Proof size and information leakage
In the protocol mentioned above, the data size of poof π is reduced to (2-Fp

elements) +(2 logn× |Com|) + |π0|.
Further, the information regarding the coefficients of the polynomial

f(X) = a1 + a2X + · · ·+ anX
n−1 leaked from π is a(l+ 1) and ⟨a,q⟩. Fur-

thermore, we can write a(l+1) by inner product form with the Fiat-Shamir
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sequence (s1, . . . , sl). Let b(i)j be the j-th bit in the binary representation
of i = [b(i)l · · · b(i)2b(i)1]2. we define

vi :=
l∏

j=1

s
b(i)j
j , (3.6)

and v = (v1, . . . ,vn). Then, it is easy verify that a(l + 1) = ⟨a,v⟩. There-
fore, the information leakage of the coefficients of the polynomial f(X)
can be expressed in the form of the inner products {⟨a,v⟩, ⟨a,q⟩}. Note
that the original polynomial commitment schemes such as [59, 36] reveal
⟨a,q⟩ = f(q) to the verifier, and that is one dimensional information about
the coefficients of f(X). On the other hand, our polynomial commitment
scheme reveals two dimensional information {⟨a,v⟩, ⟨a,q⟩}. This informa-
tion can be kept secret in the same way as in Section 5.3.2 [36] to modify
f(X) in the zero-knowledge protocol layer (see Section 3.5 for more details).

Theorem 10.
The aforementioned polynomial commitment scheme satisfies the complete-
ness, extractability, and computational hiding with the honest verifier
model.

Proof of completeness. The completeness is directly proved from the
construction.
Proof of extractability. We show that there exists a PPT ex-
tractor EA(ck, c,d, Q,v, π) → (f(X), r) such that deg f ≤ n − 1 and
Commit(ck, f, n, r) = c for an attacker and sub-attacker pair (A,A′) who
can pass the verification procedure. We use an inductive argument for the
recursive steps and extract

(a(l + 1), r(l + 1)), (a(l), r(l)), . . . , (a(1), r(1))

such that
C(i) = Comk(i)(a(i); r(i))

∣∣∣∣Comk̃(⟨a(i),q(i)⟩).

In the first step, the proof

π = (a(l + 1), ⟨a,q⟩, {C1(i)}li=1, {C2(i)}li=1, π
0)

includes a(l+1). Furthermore, the (relaxed) extractability of ZKP 0
ext, there

exists an extractor E who can extract a randomness r(l+1) such that C(l+
1) = Comk(l+1)(a(l + 1); r(l + 1))

∣∣∣∣Comk̃(∼) from

(π0, Comk(l+1)(0; r(1 + 1))
∣∣∣∣Comk̃(∼)).

Next, we show that for each recursive step, we can extract a witness
pair of (a(m − 1), r(m − 1)) from that of (a(m), r(m)). The extractor EA
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runs the prover A′ to get the witnesses of C(m− 1), C1(m− 1) and C2(m−
1). Then, by using forking lemma (see Section 3.2.6) four times giving
random four challenges s1, s2, s3, s4 ∈ Fp. The extractor gets four pairs
(a(m)(i), r(m)(i)), i = 1, 2, 3, 4 such that(

C(m) =
)
C(m− 1) + siC1(m− 1) + (s2i − 1)C2(m− 1)

= Comk(m)(a(m)(i); r(m)(i))
∣∣∣∣Comk̃(⟨a(m)(i),q(m)(i)⟩). (3.7)

We use the first three challenges s1, s2, s3, to compute α1, α2, α3 ∈ Fp such
that

3∑
i=1

αi = 1,
3∑

i=1

αisi = 0,
3∑

i=1

αis
2
i = 0.

Then taking a linear combination of the first three equations (3.7), with
α1, α2, α3 as the coefficients, we can get

C(m− 1)− C2(m− 1) = Comk(m)

(∑
αia(m)(i);

∑
αir(m)(i)

)
∣∣∣∣Comk̃

(∑
αi⟨a(m)(i),q(m)(i)⟩

)
. (3.8)

Since k(m) = k(m− 1)L ∗ sik(m− 1)R, using the key convolution equation,
we have the equation

(3.8) = Comk(m−1)

(∑
αia(m)(i)

∣∣∣∣∑αisia(m)(i);R
)

∣∣∣∣Comk̃

(∑
αi⟨a(m)(i),q(m)(i)⟩

)
, (3.9)

where R =
∑
αir(m)(i). We define

b := bL||bR =
∑

αia(m)(i)
∣∣∣∣∑αisia(m)(i).

We take β1, β2, β3, γ1, γ2, γ3 ∈ Fp such that

3∑
i=1

βi = 0,
3∑

i=1

βisi = 1,
3∑

i=1

βis
2
i = 0,

3∑
i=1

γi = 0,

3∑
i=1

γisi = 0,

3∑
i=1

γis
2
i = 1,

and repeat the same process with these coefficients, we can also compute

C1(m− 1) = Comk(m−1)

(∑
βia(m)(i)

∣∣∣∣∑βisia(m)(i);R1

)
∣∣∣∣Comk̃

(∑
βi⟨a(m)(i),q(m)(i)⟩

)
, (3.10)

62



and

C2(m− 1) = Comk(m−1)

(∑
γia(m)(i)

∣∣∣∣∑ γisia(m)(i);R2

)
∣∣∣∣Comk̃

(∑
γi⟨a(m)(i),q(m)(i)⟩

)
. (3.11)

We also define

b1 := bL
1 ||bR

1 =
∑

βia(m)(i)
∣∣∣∣∑βisia(m)(i),

b2 := bL
2 ||bR

2 =
∑

γia(m)(i)
∣∣∣∣∑ γisia(m)(i).

Consequently, we can rewrite the left hand side of the equation (3.7) as:

Comk(m−1)

(
b + sib1 + s2i b2;R

′
)∣∣∣∣∣∣Comk̃(∼)

= Comk(m)(a(m)(i); r(m)(i))
∣∣∣∣Comk̃(∼)

= Comk(m−1)L∗sik(m−1)R(a(m)(i); r(m)(i))
∣∣∣∣Comk̃(∼)

= Comk(m−1)(a(m)(i)||sia(m)(i); r(m)(i)))
∣∣∣∣Comk̃(∼), (3.12)

for each i = 1, 2, 3, 4. Since the binding property for the commitment key
k(m− 1), the equation (3.12) shows

si
(
bL + sibL

1 + s2i bL
2

)
= bR + sibR

1 + s2i bR
2

⇐⇒ s3i bL
2 + s2i (bL

1 − bR
2 ) + si(bL − bR

1 )− bR = 0,

for all i. The vector coefficient polynomial

bL
2X

3 + (bL
1 − bR

2 )X
2 + (bL − bR

1 )X − bR = 0

has four different roots s1, s2, s3, s4 ∈ Fp, so that it is equal to the 0 poly-
nomial. Thus, we have

bL
2 = bR = 0, bL

1 = bR
2 , bL = bR

1 ,

and take a(m− 1) = a(m− 1)L||a(m− 1)R := bL||bR
2 . We also have desired

results:

C(m− 1) = Comk(m−1)(a(m− 1)L||a(m− 1)R;R+R2)
∣∣∣∣Comk̃(∼),

C1(m− 1) = Comk(m−1)(a(m− 1)R||a(m− 1)L;R1)
∣∣∣∣Comk̃(∼),

and
C2(m− 1) = Comk(m−1)(0||a(m− 1)R;R2)

∣∣∣∣Comk̃(∼).
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Furthermore, it is easy verify that the inner product part of C(m − 1) is
equal to ∑

αi⟨a(m)(i),q(m)(i)⟩+
∑

γi⟨a(m)(i),q(m)(i)⟩

=
∑

αi⟨a(m)(i),q(m− 1)L⟩+
∑

αisi⟨a(m)(i),q(m− 1)R⟩

+
∑

γi⟨a(m)(i),q(m− 1)L⟩+
∑

γisi⟨a(m)(i),q(m− 1)R⟩

= ⟨a(m− 1)L,q(m− 1)L⟩+ ⟨a(m− 1)R,q(m− 1)R⟩+ 0 + 0
= ⟨a(m− 1),q(m− 1)⟩

because q(m)(i) = q(m− 1)L + si × q(m− 1)R.
Thus, the extractor EA recursively extracts witness pairs

(a(l + 1), r(l + 1)), (a(l), r(l)), . . . , (a(1), r(1)),

and, eventually, outputs a witness (a(1), r(1)) of the original commitment
(f(X), r(1)) such that f(X) = a(1)1 + a(1)2X2 · · · + a(1)nXn−1. Further-
more, deg f = n− 1 ≤M . Note that this procedure consists of a quad-tree
with forking lemma (see Section 3.2.6). We can see that the extractor EA
uses 4logn = n2 steps in total and thus runs polynomial in n.
Proof of hiding. We construct a PPT simulator, namely, Sim for
this commitment scheme. Since the extractable zero-knowledge property
ZKP 0

ext, there exists a PPT simulator Sim′ with a trapdoor trap′ such that
for any PPT adversaries A can not distinguish simulator’s outputs or the
real-world outputs. We take the sequence (s1, . . . , sl) as the trapdoor trap
for Sim.

Let (Comk(a; r), ⟨a,q⟩,a(l + 1)) be a commitment and its evaluations.
Sim uses trap and (Sim′, trap′) in the following manner. Sim generates
random commitment values

{C̃1(i)}li=1, {C̃2(i)}li=1,

which are distributed identically to the real prover’s outputs from the hiding
property. Next, Sim calculates

C̃(1) := Comk(a; r)||Comk̃(⟨a(l + 1),q(l + 1)⟩),

˜C(i+ 1) := C̃(i) + siC̃1(i) + (s2i − 1)C̃2(i),

using (s1, . . . , sl) for i = 1, . . . , l, and

D := ˜C(l + 1)− Comk(l)(a(l + 1);0)||Comk̃(⟨a(l + 1),q(l + 1)⟩).

Furthermore, Sim gives the commitment value D and trap′ to Sim′ and
obtains π0. Eventually, Sim outputs

(⟨a,q⟩, a(l + 1), {C̃1(i)}li=1, {C̃2(i)}li=1, π
0).
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This is a valid proof for the commitment scheme and A can’t distinguish
it from the zero-knowledge property of ZKP 0

ext and hiding property of
V C.Commit.

3.5 Application for transparent ZKPs
In this section, we describe the construction of universal and transparent
ZKPs as an application of our polynomial commitment schemes. We applied
our commitment schemes to Marlin protocol [36]. In this section, we assume
that the reader is somewhat familiar with Marlin protocol (see Section 3.5.2
for the description of the protocol).

3.5.1 Overview of Marlin protocol
Marlin protocol is roughly divided into offline and online phases. In the
offline phase, a TTP generates system parameters that are used for ZKP
of R1CS, and in the online phase, the prover and verifier actually perform
ZKP protocol. In addition, the offline phase is further divided into a setup
phase that creates a universal SRS and an indexing phase that creates the
parameters (commitment and polynomial system) for the R1CS instance.
In the original Marlin protocol, the setup algorithm is executed by a trusted
third party because it requires secret information.

Let (I, x, w) = ((Fp,H,K,A,B,C), x, w) be an R1CS indexed relation
for given R1CS. In other words, H,K ⊂ Fp and A,B,C are |H|×|H| matri-
ces over Fp with |K| ≥ max{||A||, ||B||, ||C||}, where ||M || is the number of
non-zero entries of M . The R1CS equation holds if and only if Az◦Bz = Cz

for z := (x,w) ∈ F|H|
p . The symbol ◦ means the entry wise multiplication

of two vectors. We call the vector x the statement and w the witness of the
R1CS equation. Furthermore, we denote zA := Az, zB := Bz, zC := Cz
and take polynomials

zA(X), zB(X), zC(X) ∈ Fp[X]≤|H|+1, w(X) ∈ Fp[X]≤|w|+1

that agree with zA := Az, zB := Bz, zC := Cz and w on H. The prover is
left to convince the verifier that the following two condition holds (see [36]
for more details).

1. Entry-wise product: zA(h)zB(h)− zC(h) = 0, ∀h ∈ H.

2. Linear relation: zM (h) =
∑

i∈H M [h, i]z(i), ∀h ∈ H, ∀M ∈ {A,B,C}.

Roughly speaking, the first equation shows the R1CS equation holds, and
the second equation shows zA(X), zB(X), zC(X) are correctly generated.
Tweak: Achieving zero-knowledge property
To prove the two equations above, the prover generates 10 polynomial com-
mitments that are related to zA(X), zB(X), zC(X), and w(X). Furthermore,
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the prover executes polynomial commitment protocol with the verifier. We
apply our commitment schemes to this point. We denote this polynomial
set {fj(X)}10j=1.

Also, our polynomial commitment scheme reveals 2-dimensional infor-
mation about the coefficients of the committed polynomials so that we must
take zA(X), zB(X), zC(X), and w(X) such that the value of up to two loca-
tions in each zA(X), zB(X), zC(X), and w(X) reveal no information about
the witness w (see Section 5.3.2 of the Marlin paper [36] for more details).
Similarly, the leakage locations for other polynomials (s(X), g1(X), h1(X))
in {fj(X)}10j=1 are doubled, so the same processing is needed.

From Theorem 8.1 in [36], our proposed protocols below are universal
ZKPs because the underlying polynomial commitment scheme satisfies the
extractability and the hiding properties.

3.5.2 Marlin protocol
The outline of each phase of Marlin is shown below.
Setup. The setup algorithm, on input a security parameter λ ∈ N and the
maximum size N ∈ N of R1CS, uses N to compute the degree bound D ∈
N, samples public parameters pp ← PC.Setup(1λ, D) for the commitment
scheme PC, and outputs a structure reference strings SRS := pp.
Index. The indexing algorithm, on input SRS and the index I =
(Fp,H,K,A,B,C), deterministically calculates the commitment/verify key-
pair (ck, rk) ← PC.TrimSRS(D), a polynomial set {pi(X)}, uses {pi(X)}
to compute a knowledge proof, and commitments {cj} ← PC.Commitck
for “empty randomness”. The set of commitments {cj} corresponds to
the statement part x of R1CS. The index algorithm eventually outputs
ipk := (ck, I, {pi(X)}, {cj}) for the prover and ivk := (rk, {cj}) for the
verifier.
Online phase. The prover P receives (ipk, x, w) and the verifier V receives
(ivk, x).

1. The prover P calculates random polynomials zA(X), zB(X), zC(X) ∈
Fp[X]≤|H|+1, w(X) ∈ Fp[X]≤|w|+1, and finds h0(X) ∈ Fp[X] such that
zA(X)zB(X) − zC(X) = h0(X)VH(X). Furthermore, the prover P
samples a random mask polynomial s(X) ∈ F≤2|H|

p and calculates its
sum σ1 :=

∑
κH s(κ). In practice, we can take s(X) = Xs̃(X) and

thus σ1 = 0. The rest of this protocol, we assume σ1 = 0.

2. The prover P calculates commitments

Comck(zA(X)), Comck(zB(X)), Comck(zC(X)),

Comck(w(X)), Comck(h0(X)), Comck(s(X)),

and sends them to the verifier V.
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3. The verifier V samples random elements α, ηA, ηB, ηC ← Fp and sends
them to the prover P.

4. The prover P calculates the first sumcheck polynomial F1(X) using
α, ηA, ηB, ηC and finds g1(X), h1(X) such that

F1(X) = h1(X)VH(X) +Xg1(X).

5. The prover P calculates commitments

Comck(h1(X)), Comck(g1(X)),

and sends them to the verifier V.

6. The verifier V samples a random element β1 ← Fp and sends it to the
prover P.

7. The prover P calculates the second sumcheck polynomial F2(X) using
β1 and its sum σ2 :=

∑
κH F2(κ). Furthermore, the prover P finds

g2(X), h2(X) such that

F2(X) = h2(X)VH(X) +Xg2(X) + σ2/|H|.

Eventually, the prover P calculates

Comck(h2(X)), Comck(g2(X)),

and sends them and σ2 to the verifier V.

8. The verifier V samples a random element β2 ← Fp and sends it to the
prover P.

9. The prover P calculates the third sumcheck polynomials a3(X), b3(X)
using β1, β2 and its sum σ3 :=

∑
κK a3(κ)/b3(κ). Furthermore, the

prover P finds g3(X), h3(X) such that

h3(X)VK(X) = a3(X)− b3(X)(Xg3(X) + σ3/|K|).

Eventually, the prover P calculates

Comck(h3(X)), Comck(g3(X)),

and sends them and σ3 to the verifier V.

10. The verifier V samples a random element β3 ← Fp and sends it to the
prover P.
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11. The prover P calculates h3(β3), g3(β3) and zero-knowledge proof π(3)
that proves h3(β3), g3(β3) are evaluated values of the committed poly-
nomials Comck(h3(X)), Comck(g3(X)) at β3. In addition, the prover
P also calculates h2(β2), g2(β2) and its zero-knowledge proof π(2) and

w(β1), s(β1), h1(β1), g1(β1), zA(β1), zB(β1), zC(β1), h0(β1),

and its zero-knowledge proof π(1). The equation of the entry-wise
product is independent of the step (4)− (10); thus we can check it at
the same point β1. Eventually, the prover P sends all evaluated values

w(β1), s(β1), zA(β1), zB(β1), zC(β1), h0(β1){hi(βi)}, {gi(βi)},

and proofs (π(1), π(2), π(3)) to the verifier V.

12. The verifier V verifies (π(1), π(2), π(3)) are valid proofs and the follow-
ing 4 equations hold:

zA(β1) ∗ zB(β1)− zC(β1) = h0(β1) ∗ VH(β1),

s(β1) + F1(β1)− σ2z(β1) = h1(β1)VH(β1) + β1g1(β1),

r(α, β2)σ3 = h2(β2)VH(β2) + β2g2(β2) + σ2/|H|,

h3(β3) ∗ VK(β3) = a3(β3)− b3(β3)(β3g3(β3) + σ3/|K|).

If all validations are successful, the verifier V outputs True, otherwise
False.

3.5.3 Proposal 1. Universal and transparent ZKP from dis-
crete logarithm

In this section, we show a construction of a universal and transparent ZKP
based on the Marlin protocol under the discrete log assumption. We use
the same notations in the previous section. Let G be a discrete group order
p ∈ Z with the discrete log assumption.

Proposal 1

Setup. The setup algorithm, on input a security parameter λ ∈ N and
the maximum size N ∈ N of R1CS, uses N to compute the degree bound
(D − 1) ∈ N, where D = 2l, samples public parameters

PC.Setup(1λ, D)→
(
G, (g1, g2, . . . gD;h1, h2)

)
of the Pedersen vector commitment scheme, and outputs a structure refer-
ence strings SRS :=

(
G, (g1, g2, . . . gD;h1, h2)

)
.
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Index. On input SRS and the index I = (Fp,H,K,A,B,C), calcu-
lates the commitment key ck ← PC.TrimSRS(1λ,d, D), a polynomial set
{pi(X)}, and commitments {cj} ← PC.Commitck for “empty randomness”.
The set of commitments {cj} corresponds to the statement part x of R1CS
and {pi(X)} is used for generating a proof. The index algorithm out-
puts prover-key pk := (ck, I, {pi(X)}, {cj}) for the prover and verifier-key
vk := (ck, {cj}) for the verifier.
Online phase. We apply all commitment values that appear in the online
phase as Pedersen commitments. More precisely, let f(X) = a1 + a2X +
· · · aDXD−1 ∈ {fj(X)}10j=1 be a polynomial in the online phase. We define

Comck(f(X); r, 0) :=
( D∏

i=1

gaii

)
hr1h

0
2.

Furthermore, a zero-knowledge proof π that proves f(q) = u is constructed
as follows:

• The prover P commits Comck(f(X); r, 0).

• The verifier V samples a random element q ← Fp and sends it to the
prover P.

• The prover P sends u = f(q) (= ⟨a,q⟩) to the verifier V.

• The verifier V calculates

C(1) := Comck(f(X); r, 0) ∗ hu2 =
( D∏

i=1

gaii

)
hr1h

u
2 ,

• The prover P calculates (C1(1), C2(1)) using the equations (3.4), (3.5),
and sends it to the verifier V.

• The verifier samples a random element s1 ← Fp and sends it to the
prover P, and updates C(1) to C(2) := C(1)+s1C1(1)+(s21−1)C2(1).

• The prover P calculates (C1(2), C2(2)) using the equations (3.3), (3.4),
(3.5), and sends it to the verifier V.

...

• The verifier samples a random element sl ← Fp and sends it to the
prover P, and updates C(l) to C(l+1) := C(l)+slC1(l)+(s2l −1)C2(l).

• The prover P calculates a(l + 1), and sends it to the verifier V. At
this time, the convoluted commitment value is

C(l + 1) = g(l + 1)a(l+1) ∗ hr(l+1)
1 ∗ ha(l+1)∗q(l+1)

2 , (3.13)
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and the verifier V can find C(l + 1), g(l + 1),a(l + 1), and q(l + 1).
Thus, the prover P generates a

π0 ← ZKP 0
ext(pp, k(l + 1), Comk(l+1)(0; r(l + 1)), r(l + 1)),

and sends it to the verifier V.

• The verifier V calculates

(h
r(l+1)
1 =) C(l + 1) · g(l + 1)−a(l+1)h

−a(l+1)∗q(l+1)
2 ,

and verifies it using π0. Eventually, the validation is successful, the
verifier V outputs True, otherwise False.

Batch verification for proposal 1

The batch process, which verifies multiple proofs simultaneously, is an im-
portant optimization. In many applications such as blockchain or cryptocur-
rencies, the verifier verifies many zero-knowledge proofs added to transac-
tions from users, so that it is necessary to be able to perform these processes
at once.

The most heavy processing in the verification procedure is the computing
for the convoluted commitment key g(l + 1)−a(l+1). In fact, in our experi-
ments, this processing occupied about 99% of the total, and this procedure
consists of deg f times scalar-multiplications on G. Using the vector v ∈ FD

p

in the equation (3.6), we can write

g(l + 1)−a(l+1) =
( D∏

i=1

gvi
i

)−a(l+1)
=

D∏
i=1

g
−a(l+1)vi

i .

Consequently, if there are T proofs π(1), . . . , π(T ), the verifier, in advance,
calculates

ϕi := −
T∑

j=1

a(l + 1)(j)v(j)
i , i = 1, . . . , D,

where π(j) = (⟨a(j),q(j)⟩, {C1(i)}i, {C2(i)}i,a(l + 1)(j), (π0)(j)), and v(j) is
the vector generated by the j-th Fiat-Shamir sequence (s

(j)
1 , . . . , s

(j)
l ) with

the equation (3.6). Therefore, we have

I :=
T∏

j=1

(g(l + 1)(j))−a(l+1)(j) =
D∏
i=1

gϕi
i (3.14)

The verifier can calculate the right-hand side of the equation (3.14) with
deg f times scalar-multiplications on G, and this number is independent of
the number of proofs T .
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The batch verification processing is described below.
Batch verification. Let User1, . . . , UserT be T provers who have the
same setup parameters and Userj generates a proof π(j). Also, we denote
Userj ’s hr(l+1)

1 in the equation (3.13) by hr(l+1)(j)

1 . The prover Userj sends
(π(j), h

r(l+1)(j)

1 ) to the verifier as a new proof. Note that the prover newly
sends hr(l+1)(j)

1 , but this value can be calculated by the verifier. Thus the
leakage of the coefficient information is the same as in the previous protocol.

The verifier calculates C(l + 1)(j),q(l + 1)(j) for all j = 1, . . . , T , and

J :=
( T∏

j=1

h
r(l+1)(j)

1

)( T∏
j=1

C(l + 1)(j)
)−1

h
∑

j a(l+1)(j)q(l+1)(j)

2 .

From the equations (3.13), (3.14), if all proofs are correctly generated, then
I = J . The verifier also checks the zero-knowledge proof (π0)(j) using
h
r(l+1)(j)

1 for each j. Eventually, the validations are successful, the verifier
V outputs True, otherwise False.

3.5.4 Proposal 2. Universal and transparent ZKP from lat-
tice

In this section, we also show the construction of universal and transparent
ZKP under the SIS assumption (see Section 3.2.5). Let p ∈ Z be a prime
number and q ∈ Z be a modulus p << q.
Setup. The setup algorithm, on input a security parameter λ ∈ N and
the maximum size N ∈ N of R1CS, uses N to compute the degree bound
(D − 1) ∈ N, where D = 2l, samples public parameters

PC.Setup(1λ, D)→
(
A1,A2

)
for the Ajtai vector commitment scheme PC, and outputs a structure ref-
erence strings SRS :=

(
A1,A2

)
, where A1 ∈ Zm×D

q ,A2 ∈ Z(m+1)×2m logp q
q .

Index. The indexing algorithm is the same as the proposal 1.
Online phase. We apply all commitment values that appear in the on-
line phase as Ajtai commitments. More precisely, let f(X) = a1 + a2X +
· · · aDXD−1 ∈ {fj(X)}10j=1 be a polynomial in the online phase. We define

Comck(f(X); r) :=
[

A1a
0

]
+ A2r ∈ Zm+1

q .

Furthermore, a zero-knowledge proof π that proves f(q) = u is constructed
as follows:

• The prover P commits Comck(f(X); r).
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• The verifier V samples a random element q ← Fp and sends it to the
prover P.

• The prover P sends u = f(q) (= ⟨a,q⟩) to the verifier V.

• The verifier V calculates

C :=

[
A1a
0

]
+ A2r + (0, . . . , 0, u)T ∈ Zm+1

q ,

• The prover P calculates (C1(1), C2(1)) using the equations (3.4), (3.5),
and sends it to The verifier V.

• The verifier V samples a random element s1 ← Fp and sends it to the
prover P.

...

• The prover P calculates a(l + 1), and sends it to the verifier V. At
this time, the convoluted commitment value is

C(l+1) =

[
A1(l + 1)a(l + 1)

0

]
+A2r(l+1)+

[
0

a(l + 1)q(l + 1)

]
,

and the verifier V can find C(l + 1),A1(l + 1),a(l + 1), and q(l + 1).
Thus, the prover P generates a zk-SNARK π0 that proves I know
r(l + 1) such that

A2r(l + 1) = C(l + 1)−
[

A1(l + 1)a(l + 1)

a(l + 1)q(l + 1)

]
,

and sends it to the verifier V.

• The verifier V verifies the above equation using π0. Eventually, the
validation is successful, the verifier V outputs True, otherwise False.

Batch verification for proposal 2

Here, we present the batch verification process for our proposal 2 in Section
3.5.4. We use the same notations in Section 3.5.4.

The most heavy processing in the verification procedure is the computing
for the convoluted commitment key −A1(l + 1)a(l + 1). In fact, in our
experiments, this processing occupied more than 98% of the total. Using
the vector v ∈ FD

p in the equation (3.6), we can write

−A1(l + 1)a(l + 1) = −a(l + 1)
D∑
i=1

viΦi = −
D∑
i=1

a(l + 1)viΦi,
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where A1 = [Φ1|| · · · ||ΦD].
Consequently, if there are T proofs π(1), . . . , π(T ), the verifier, in advance,

calculates

ϕi := −
T∑

j=1

a(l + 1)(j)v(j)
i , i = 1, . . . , D,

where π(j) = (⟨a(j),q(j)⟩, {C1(i)}i, {C2(i)}i,a(l + 1)(j), (π0)(j)), and v(j) is
the vector generated by the j-th Fiat-Shamir sequence (s

(j)
1 , . . . , s

(j)
l ) with

the equation (3.6). Therefore, we have

I :=
T∑

j=1

−a(l + 1)(j)A1(l + 1)(j) =
D∑
i=1

ϕiΦi (3.15)

The verifier can calculate the right-hand side of the equation (3.15) and it
is independent of the number of proofs T .

The batch verification processing is described below.
Batch verification. Let User1, . . . , UserT be T provers who have the same
setup parameters and Userj generates a proof π(j). The prover Userj sends
(π(j),A2r(l + 1)(j)) to the verifier as a new proof. Note that the prover
newly sends A2r(l + 1)(j), but this value can be calculated by the verifier.
Thus the leakage of the coefficient information is the same as in the previous
protocol.

The verifier calculates C(l+1)(j),q(l+1)(j) for all j = 1, . . . , T , I using
the equation (3.15), and

J :=
( T∑

j=1

A2r(l+1)(j)
)
−
( T∑

j=1

C(l+1)(j)
)
+

[
0∑

j a(l + 1)(j)q(l + 1)(j)

]
.

If all proofs were correctly generated, then I = J . The verifier also checks
the zero-knowledge proof (π0)(j) using A2r(l + 1)(j) for each j. Eventually,
the validations are successful, the verifier V outputs True, otherwise False.

3.6 Performance
3.6.1 Theoretical performance
We now evaluate the computational and proof complexity of our proposed
schemes 1, 2. Throughout this section, let D be the degree of the polynomial
f(X) over Fp, and we use the same notations in the previous section.

Table 3.3 shows the theoretical performance of our proposed scheme 1, 2.
Here, SM and Ad denote the scalar-multiplication and addition on G; also,
FO denotes the addition or multiplication on Fp or Zq, and Inn(m) denotes
the inner product of m-dimensional vectors on Zq. If we roughly estimate
the prover (resp. verifier) complexity in proposal 1 is 5DSM (resp. DSM),
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Table 3.3: Theoretical performance
Proposal 1 Complexity
Prover (5D + 4 logD)SM + (5D + 4 logD)Ad + 4DFO
Verifier (D + 2 logD)SM + 2(logD)Ad + 2(logD)FO
Proof size (1 + 2 logD)G + 4Fp

Proposal 2 Complexity
Prover 5mInn(D) + 4m(logD)Inn(m logp q) + 2mDFO
Verifier mInn(D) + 2m(D + logD)FO
Proof size (1 + 2 logD)Fm

q + 4Fq

where D is the degree of the polynomial. In fact, in our experiments, these
parts occupied 99 ∼ 98% of the total processing times. These times corre-
spond to the computation for Com(f) and {C1(i), C2(i)} (resp. g(l + 1)).
Also, the proof size is about 2 logD G-elements. Similarly, the prover (resp.
verifier) complexity in proposal 2 is about 5mInn(D) (resp. mInn(D)) and
the proof size is about 2 logD Fm

q -vectors. Thus, in proposal 1, 2, the prover
and verifier times linearly growth with the degree of the committed polyno-
mial f(X); also, the proof sizes logarithmically growth.

3.6.2 Evaluation of our polynomial commitment schemes
We implemented our proposed protocols 1, 2 by using the NTL library [6]
and the libsnark library [4], and performed the benchmarks of our protocols
on a single thread of an Intel Core i7-9700K CPU @ 3.60 GHz with 64 GB
memory.

Parameters

In the proposal 1, we chose BN128 elliptic curve, called the snark curve, as
the discrete group. This discrete group has an order 254-bit prime number
with 100-bit security.

In the proposal 2, we chose the plain text space p = 232 − 5 pseudo
Mersenne prime, modulus q = 21024−1, and the commitment vector dimen-

Table 3.4: Experimental results of our Marlin without trusted setup
Variables Constraints Setup Index Prover Verifier Proof size

SHA-256 25561 73568 84.5 s 19.5 s 338.7 s 35.2 s 26.3 KB
Toy 310 620 1.0 s 0.1 s 2.1 s 0.2 s 15.5 KB
Small 32820 65640 111.7 s 9.9 s 204.7 s 20.2 s 24.9 KB
Medium 262195 524390 874.4 s 76.3 s 1615.5 s 175.0 s 28.9 KB
Large 1048630 2097260 3472.8 s 309.3 s 5510.0 s 599.2 s 31.6 KB
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Figure 3.1: Experimental results of polynomial commitment schemes

sion m = 7030. Also, at this time, if the random vector r is taken from
F2m logp q
p , the norm of committed vector increases by 64 bits in one convo-

lution operation, so that we can evaluate 15 times convolutions and degree
215 polynomials. It was computed in [68] that if the number of columns is
very large, then one should solve SIS for a sub-matrix where the number of
columns is T ≤

√
r log q/ log δ for a constant δ related to lattice reduction.

In our experiment, we take δ = 1.11. With this situation, we expect to find
a vector of length

min{q, 2
√

m log q log δ} ≈ 2995 = B,

using BKZ reduction algorithms [50]. In this situation, all norms of our
committed vector are bounded by B/8. Therefore, this parameter seems
to be secure against BKZ reduction attacks with δ = 1.1 in the dimension
7030.

1The constant δ is related to the block-size of BKZ reduction algorithm [50]. This
algorithm is the currently best algorithm to solve SIS problem. Presently, the optimal
lattice reduction set δ ≈ 1.005 in dimension 500. However, it is unclear what value this
constant takes in the case of our higher dimension, such as 7030.
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Results

Our experimental results are depicted in Fig. 3.1. We evaluated random
polynomials degree 28, 29, . . . , 220, (resp. 28, . . . , 215) with proposed scheme
1 (resp. 2). As depicted in Fig. 3.1, the processing times of the prover and
verifier increase almost linearly, and the proof size increases logarithmically.
Our results show that the proof size of the proposal 1 is only 1.4 KB for one
million (= 220) degree polynomials. Also, we evaluated batch-verifying time
of proposal 1 for this degree 220 polynomials; the time of batch-verifying 100
proofs was 27.9 seconds, and thus, each proof takes 279 msec. In addition, we
also evaluated batch-verifying time of proposal 2 for degree 215 polynomials,
the time of batch-verifying 100 proofs was 78.6 seconds, and thus, each proof
takes 786 msec.

3.6.3 Marlin without trusted setup
We implemented our polynomial commitment schemes to Marlin protocol
[36] in C++. Here, we report the evaluation results of the discrete logarithm
based scheme (see Section 3.6.4 for results of the lattice based scheme).

Furthermore, we have developed an adapter to use the libsnark library
[4], which is a standard zero-knowledge proof library in the zk-SNARK or
blockchain area. This adapter converts the libsnark’s R1CS and gadgets to
our Marlin type transparent ZKPs so that we can reuse various libsnark’s
R1CS and gadgets in our universal and transparent ZKPs.

Results

We implemented various circuits using the libsnark library. An R1CS for
Marlin protocol has two parameters: the number of variables and con-
straints. Table 3.4 shows the setup, index, prover, and verifier times depend
on the number of constraints (see Section 3.6.4 for more details). Also, the
size of proof increase logarithmically. In Marlin protocol, the size of the
proof is relatively large because it requires committing 10 polynomials, and
their maximum degree is 6×(the number of constraints). In the SHA-256
circuit, it takes 84.5 seconds to setup a universal circuit that can evaluate up
to 217 constraints and 19.5 seconds to index it into the SHA-256 instance.
Furthermore, the prover and verifier times are 338.7 and 35.2 seconds, and
the size of proof is 26.3 KB.

3.6.4 Additional experimental data
Here, we report the additional experimental data.
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Methodology of our experiment

We implemented our proposed schemes: the discrete log and lattice based
universal and transparent ZKPs using our adapter in Section 3.6.3 between
the libsnark library [4] and Marlin protocol [36]. More precisely, we imple-
mented the zero-knowledge proof for the Bubble sort algorithm of N items
(each item is a 32-bit integer) using the libsnark library’s gadgets. We set
the number of items as N = 3, 7, . . . , 4k + 3, . . . , 151 for the discrete log
based one, and N = 3, 4, 5, 6 for the lattice based one. Unfortunately, the
lattice (Ajtai commitments) based scheme requires a huge memory, so that
N = 6 was the limit in our environment (that requires about 30 GB mem-
ory space). Therefore, it is described here as a reference value. We set that
all parameters of our experiments here are as the same as in Section 3.6.
Also, our experimental environment comprises an Intel Core i7-9700K CPU
@ 3.60 GHz with a single thread.

Experimental results

We implemented and evaluated our schemes along with our methodology
above.

At first, we choose the maximum numbers of variables and constraints
for generating the universal SRS for Marlin system. Also, the constraints
number and max{||A||, ||B||, ||C||} are roughly the same value, where Az ◦
Bz = Cz is a given R1CS instance. Furthermore, the number of variables
and the dimension of the vector z are roughly the same value.

Next, we decide the maximum degree of the polynomial for our polyno-
mial commitment scheme. This degree is roughly 6×(the maximum number
of constraints). For example, if the maximum number of constraints is
100, 000, then we must setup a polynomial commitment scheme that can
evaluate up to 600, 000 degree polynomials.

Figure 3.2 shows the performance evaluation of the discrete log based
scheme. As depicted in Fig. 3.2, the Setup and Index times are completely
dependent on the number of constraints (the yellow line). In our implemen-
tation, we take all number of parameter of valuables and constraints as pow-
ers of 2 for fast implementation. Therefore, our graphs become stair types.
Also, the prover and verifier times depend on the number of constraints
+ the number of variables. Furthermore, the proof size logarithmically in-
creases with these parameters. The zero-knowledge proof of Marin consists
of 10 polynomial commitments and 3 evaluation points so that the proof size
is about 10 times larger than a single polynomial commitment scheme. Ta-
ble 3.5 shows the performance evaluation of the lattice based scheme. This
scheme also shows the same behavior as in the case of the discrete log based,
but the proof size is about 20, 000 times larger, and requires huge memory
space. In table 3.5 examples, that require about 30 GB memory. Thus, it
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is necessary to devise a memory reduction techniques in practical use.

Table 3.5: Universal and transparent ZKP from lattice
Variables Constraints Setup (s) Index (s) Prover (s) Verifier (s) Proof (MB)

132 342 216.6 1.7 112.3 25.5 391.4
264 684 434.0 3.3 225.1 48.6 425.1
440 1140 863.9 6.6 375.2 79.8 458.8
660 1710 871.9 6.6 446.7 94.4 458.8
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Chapter 4

Secret Key Management
Technology from Biometrics
Fuzzy Signature

4.1 Summary
In recent years, cryptocurrencies such as Bitcoin [69] and Ethereum [2], and
blockchain, which is a core technology thereof, have received considerable
attention as new financial systems. One of the features of these blockchain-
based cryptocurrencies is that they do not require a centralized authority
such as a bank and can perform settlement processing with low fees. For
example, in the Bitcoin system, the transaction minors collect transaction
information in the P2P network, and after checking the validity of them,
these transactions are put together in a block and written on the blockchain.
At this time, the miner performs the approval process called Proof-of-Work
(PoW), which is to calculate a hash value equal to or smaller than a spe-
cific threshold. PoW requires machine power for performing a large amount
of hash calculation and thus has problems in transaction throughput and
system scalability. For this reason, the use of permissioned / consortium
type blockchains where only designated nodes to participate in the approval
process is being considered in enterprises such as the financial area (See Hy-
perledger Fabric [3], Enterprise Ethereum Quorum [7] consensus algorithm).
The validity of a transaction on the blockchain is guaranteed by a user at-
taching a digital signature based on a public-key cryptosystem, and a miner
verifies it. For this reason, if the user loses or leaks the secret key for digi-
tal signature by losing the secret key management device or attacking by a
malware, problems such as loss of assets on the blockchain and unauthorized
use from impersonation occur. In this paper, we summarize the issues of se-
cret key management in blockchain systems and propose a solution to these
problems using biometrics-based digital signature technology, which gener-
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ates a digital signature from use’s biometric information. In our proposed
system, a secret key to be used for digital signature is generated from the
user’s biometric information each time and immediately deleted from the
memory after using it. Therefore, our blockchain system has the advantage
that there is no need for storage for storing secret keys throughout the sys-
tem. As a result, the user does not have a risk of losing the key management
devices and can prevent attacks from malware that steals the secret key. We
also show the results of implementing the proposed system on Hyperledger
Fabric [3], verifying its effectiveness, and evaluating its performance.

4.2 Preliminary
4.2.1 Overview of blockchain systems
Blockchain is a general term for databases called distributed ledgers that are
maintained by nodes on a P2P network. For example, Bitcoin blockchain
[69] has ordered records called blocks in a chain-like data structure and is de-
signed based on cryptographic technologies such as public-key cryptography,
digital signatures, and hash functions. Blockchain technology is developed
into various forms based on Bitcoin. The configuration of a blockchain net-
work can be classified into a public type and a permissioned type as follows.

• Public blockchain:
It is a blockchain in which an unspecified number of nodes freely par-
ticipate. Bitcoin and Ethereum are classified as public types. Anyone
can participate in the distributed ledger and transaction approval pro-
cess. In addition, since there is a need to approve transactions among
an unspecified number of untrusted participants, use a consensus algo-
rithm such as Proof of Work (PoW) to prevent tampering by malicious
participants (for details, see Bitcoin [69]).

• Permissioned blockchain:
Only designated nodes are participating in the transaction approval
process (ledger data may be disclosed outside the network). Hyper-
ledger Fabric [3] and Enterprise Ethereum Quorum [7] are classified
as this types.

In both types of blockchain systems, the management of secret-key is
crucial because the digital signature using the secret-key is used for user
authentication and generation of a transaction.

4.2.2 Biometrics-based fuzzy signature
Biometrics based fuzzy signature [82][67] is a digital signature technology
based on biological information. This signature scheme corrects ”fluctua-
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tions” in biological information obtained from fingerprint sensors or biolog-
ical sensors and extracts the unique user’s secret keys. Of course, when the
fluctuations are large, when coming from another person, a different key is
output. This process is called a fuzzy extractor [43]. Also, the extracted se-
cret key can be used to generate a digital signature based on a conventional
public-key cryptosystem. A feature of this signature method is that a secret
key is generated from a user’s biometric information each time so that there
is no need to store the secret key on a server or key management device.
As a result, the user does not have a risk of losing the key management
devices and can prevent attacks from malware that steals the secret key.
In the conventional biometric authentication system, the biometric infor-
mation and the secret key are stored in the key management server/device,
and the secret key can be used if the image match rate with the biometric in-
formation obtained from the sensor is higher than the threshold. Therefore,
note that a server/device that manages the secret key is required, and their
storage is the attack point. We implemented a fuzzy extractor-type digital
signature scheme based on the scheme in [82][67]. The user registration and
signature generation processing are as follows.

• User registration:
At the time of registration, the user inputs biometric information to
the sensor and extracts a feature value from the biometric informa-
tion. Next, the one-way conversion is performed using the PKI secret
key and the feature value as input to generate a template data, which
including a public key and system parameters. Finally, the user tem-
plate data is stored in the authentication device. This user’s template
data is public information, and even if this information is leaked to an
attacker, it is difficult to reconstruct the user’s secret key or biometric
information.

• Generating a digital signature:
When generating a digital signature, the user inputs biometric in-
formation to the authentication sensor device and extracts a feature
value. Next, the PKI secret key is reconstructed from the template and
the feature value. The correct secret key is reconstructed only when
the feature value at the time of registration and the feature value at
the time of authentication are sufficiently close. After generating the
secret-key, the user generates the digital signature for the transaction
and removes the secret key from the memory, immediately. The gen-
erated signature can be verified with the ordinary PKI public key.

4.2.3 Security issues of secret-key management
In this section, we summarize related works and the conventional secret key
management issues in the blockchain. The validity of a transaction on the
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Figure 4.1: Key management system on the server-side

blockchain is ensured by a user attaching a digital signature and verifying
the integrity by the miners. For this reason, if the user loses or leaks the
secret key, there is a risk of loss of assets on the blockchain and damage to
illegal transactions due to spoofing. Secret key management methods in the
blockchain system are broadly divided into personal management type and
server management type. There is a risk of loss of the management device in
the personal management type. On the other hand, in server management
type, there is a risk that the user’s ID/password for logging in to the server
is stolen or leak it due to hacking, such as unauthorized intrusion into the
server. Hereinafter, typical key management methods will be described.

• User’s local storage (personal type):
It is a method in which the secret key file is stored in the user’s local
storage. Since the user does not need to memorize the password, carry
the device, and input information at all, the convenience and usability
are high, but there is a high risk that the user terminal is infected with
malware, and the secret key is leaked.

• Offline Secure Storage (personal type):
There is a risk of loss or theft because the secret key is managed using
a terminal such as a USB device that is not connected to the network
or a two-dimensional code printed on paper. The use of secure devices,
such as the Offline Hardware Security Module, is also conceivable, but
the risk of loss or theft still exists.

• Hot/Cold Hosted Wallet (server type):
This method is commonly used in cryptocurrency exchanges. Hot
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Hosted Wallet (hereinafter referred to as Hot Wallet) is a method of
storing a secret key in a server on a network. There is a risk that the
secret key is leaked due to server hacking, malware infection, etc. Cold
Hosted Wallet (hereinafter referred to as Cold Wallet) is a method of
managing secret keys on a server separated from the network, and the
risk of leakage is lower than that of Hot Wallet, but the convenience
and usability is low. Both wallets pose a risk of spoofing when the
user’s login password is leaked. It is also assumed that the server
administrator is a Trusted Third Party (TTP). This violates the phi-
losophy of decentralization in blockchains.

For example, in the Hyperledger Fabric [3], a user’s secret key is centrally
managed by a Fabric SDK server (in the rest of this paper, referred to as a
key server) (Hot / Cold Wallet type). As a result, there is a high possibility
that this key server will be subject to hacking and spoofing attacks. There-
fore, sufficient security measures must be taken (see Figure 4.1). In addition,
in the cryptocurrency exchanges, the secret key is managed by the central
server, but in recent years, a large number of cryptocurrencies have been
stolen from multiple exchanges. Therefore, the security of this secret key
management has become a social issue. Also, in a system in which security
depends on TTP’s server operation, it is difficult to completely prevent ma-
licious server administrators from cheating, and a system in which security
does not depend on server operations is desirable. As described above, the
management of the secret key is a major issue in the blockchain industry,
and there is no definitive measure at present. The essential problem of key
management is that there is a storage for storing the secret key. In the next
section, we propose a blockchain system that does not need to store a secret
key somewhere by using the biometric-based fuzzy signature.

4.3 Proposal
In this section, we propose a novel key management technique using the
biometrics-based fuzzy signature described in section 2.

4.3.1 What is the problem?
We describe the problems of the existing scheme in more detail. In the
existing method described in the previous section, passwords and dedicated
devices/servers are used to securely manage secret keys. However, since
secret key data is managed by the device or server, so there are the risks of
loss and malicious server administrator’s attack. We think the fundamental
problem of the secret key management is to store and manage the secret
key data in the storage of the device or the server. We believe that it is
desirable to remove the storage that stores the secret key from the system.
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Figure 4.2: Image of our proposal

Furthermore, it is desirable a system in which the secret key exists in the
memory only at the moment of generating the digital signature, and delete
it from the memory after the signature is generated (see Fig. 4.2). In our
proposed scheme, a user generates a secret key from biometric information
each time a digital signature is generated. After the digital signature is
generated, the secret key is deleted from the memory, thereby eliminating
the storage for managing the secret key from the entire system, thereby
enabling more secure operation.

4.3.2 Proposed scheme
In our proposed method, the secret key to be used for PKI based digital
signature is generated each time from the biometric information of the user
using the fuzzy signature method. Also, since the secret key is deleted from
the memory after being used for signature generation, there is no need for
storage for storing the secret key throughout the blockchain system. By
utilizing this feature, it is possible to solve the problems of the secret key
management described in the previous section. For example, if the secret
key is managed by a personal wallet client application, replace the digital
signature generation function with the digital signature generation function
of the fuzzy signature, and the application calls it in each time. On the other
hand, if the secret key is managed by the Hot/Cold Wallet on the server-side
such as Hyperledger Fabric [3] or cryptocurrency exchanges, it is necessary to
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modify a part of the server-side signature generation function. Specifically, it
is necessary to remove the secret key management component of the server-
side and implement an original API that gives a digital signature for the
transaction at the client-side. Fig. 4.3 shows an image of the biometrics-
based fuzzy signature compatible function implemented in the key server
of Hyperledger Fabric or cryptocurrency exchanges. Our proposed protocol
using the biometrics-based fuzzy signature consists of the following steps.

1. Transaction request

2. Transaction data

Digital Signature

3. Digital 

Signature

4. Transaction with 

digital signature

Key Gen

Function

Original  API

Key management

server
Blockchain

P2P network

User

Figure 4.3: Our original API for biometrics-based signature

1. A user sends a transaction generation request to the key management
server. Note that, in our proposed scheme, the key management server
no longer manages the user’s secret keys.

2. The server generates the payload data of transaction that doesn’t in-
clude the digital signature and returns it to the user.

3. The user extracts the secret key from biometric information using a
biometric authentication sensor and the fuzzy signature’s secret key
generation engine. After that, the user generates the digital signature
for the received transaction data. Finally, the user sends the digital
signature value to the key management.

4. The key management server attaches the received digital signature to
the transaction and sends it to the blockchain P2P network as a signed
transaction.

In the above processing, the user immediately deletes the secret key from
the memory of the biometric authentication device after executing step 3.
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Next time, when generating a digital signature, the biometric information
is input to the biometric authentication sensor again to generate the same
secret key. Note that thanks to the fuzzy extractor, the same secret key is
output to the user every time, and a different key is obtained to another
user. It is important to generate/delete a secret key each time, and to
perform operations that do not require a device that stores the secret key.
As described above, even when the secret key is managed on the server-side,
by partially modifying the system, the secret key management component
can be removed, and the secret key management problem can be solved. In
addition, by doing so, the risk that the malicious administrator illegally uses
the secret key can be eliminated.

Table 4.1: Pros and Cons list of secret-key management

Device Malware Malicious Automatic
Loss Attack Administrator Transaction

User’s local storage N/A N/A Secure Support
Offline secure storage N/A Secure Secure N/A
Hot/Cold wallet Secure N/A N/A Support
Our proposal Secure Secure Secure N/A

Table 4.1 summarizes the pros and cons list among the existing key man-
agement scheme and the proposed scheme. The proposed scheme eliminates
the key management storage using the biometrics-based fuzzy signature and
reduces the risk of device loss, and leakage due to malware infection or ma-
licious hacker’s attack. In addition, since a key management server is not
required, it is possible to prevent an attack by a malicious server adminis-
trator, and it is suitable for decentralized philosophy. On the other hand,
there is a problem in that it is not possible to deal with automatic transac-
tions using smart contracts because the biometric information of the user is
always required when generating a digital signature.

4.4 Experimental evaluation on practicality
We implemented our proposed scheme in Hyperledger Fabric [3] and eval-
uated the size of files and processing time. We also used a finger vein au-
thentication sensor as a biometric sensor, and develop the fuzzy signature
algorithm for finger-vein authentication in [82][67]. Moreover, we use the
ECDSA 256 bit [58] as a digital signature algorithm in this evaluation. The
ECDSA 256 bit is utilized in the open-source blockchain platform, the Hy-
perledger Fabric. We also implemented the original API for the key man-
agement server described in the previous section.

87



Table 4.2: Implementation results of signature schemes

Results (Default) PKI Our proposal
File size Public key certificate 1 K byte 10 K byte
(byte) /Template for signature

Signature in transaction 71 byte 71 byte
Processing time Generation of - 499 msec

public template
(msec) Signature generation 78 msec 1306 msec

Signature verification 70 msec 70 msec

Table 4.2 shows our experimental results. First, we evaluate the file
size of a public key certificate, a public template for a finger vein based
fuzzy signature, and a signature in a blockchain transaction. The public
template for finger vein based fuzzy signature includes the ordinary public
key certificate and some auxiliary information for fuzzy signature, and file
size is equal to 10 K byte. This file size is larger than the ordinary public key
certificate (1Kbyte). However, the 10 K byte is small enough for practical
use. The file sizes of the signature are the same in all methods, and they
are 71 bytes.

Second, we evaluate the processing time for each signature scheme. The
CPU and memory where we perform the evaluation are Intel Celeron N3050
1.6 GHz and 4 GB, respectively. We evaluated in an environment with
somewhat small resources, considering the use case in IoT devices or smart-
phones. A public template generation is executed one time in initial user
registration. Thus the processing time 499 msec is fast enough. In our pro-
posed scheme, the processing time of signature generation is 1306 msec, and
this is slower than the PKI. However, the processing time is fast enough for
practical use. Furthermore, the verification time of the signature is exactly
the same. Although the signature generation algorithm requires some time,
the proposed scheme is practical. Fig. 4.4 is a prototype of our proposed
system, which is a finger vein based fuzzy signature type.
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Figure 4.4: Implementation of biometrics-based fuzzy signature on Hyper-
ledger Fabric

4.5 Conclusion and Future works
In this chapter, we describe the problems in managing the user’s secret key
in the blockchain on the user side and the server-side and proposed a novel
key management technology using the biometrics-based fuzzy signature as
our solution. In our proposed scheme, the user generates a secret key from
biometric information using the fuzzy signature each time. Therefore, the
secret key management component is virtually unnecessary. As a result, the
risk of loss or leakage of the secret key can be reduced, and a more secure
blockchain system can be realized. In addition, as a result of implementation
evaluation, it was shown that the overhead is reasonable even in use cases,
such as electronic payments in stores. On the other hand, it does not support
automatic transactions such as M2M settlement or smart contracts because
it requires biometric information. We want to address these issues in the
future.
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Chapter 5

Decentralized Netting
Protocol over Permissioned
Blockchain

5.1 Summary
In recent years, cryptocurrency including Bitcoin [69], Ethereum [2], and its
core technology blockchain are attracting great attention as new financial
settlement systems. The feature of these (public) blockchain based cryp-
tocurrencies is that they do not require a centralized node such as a bank
system, and can settle payment with a low fee. For example, Bitcoin min-
ers collect transaction information on a P2P network and have confirmed
their validity. After confirming validity, transactions are grouped into a
block, and miners solve a cryptographic puzzle for called Proof-of-Work
(PoW). Finally the authorized block is stored in the distribution ledger
called the blockchain. Meanwhile, transaction consensus methods such as
PoW adopted in public blockchains such as Bitcoin require machine power
to perform a large amount of hash calculation, so there are problems in
transaction throughput and system scalability. For this reason, private /
permissioned-type blockchains that only specific nodes participate in trans-
action approval processing and solve these problems are now being consid-
ered for use in enterprises such as the financial field (see for example, private
/ permissioned-type blockchain Hyperledger Fabric [3], Enterprise Ethereum
Quorum [7] consensus algorithm). In this paper, based on the Hyperledger
Fabric v1.0 architecture or more general permissioned-type blockchain that
equipped with the channel function, we propose a method to execute set-
tlement with netting after remittances are made among multiple entities on
the permissioned blockchain. As a feature of the proposed method, in view
of decentralization and privacy of the permissioned type blockchain, it is a
scheme point that conceals the amount of remittance and the calculation
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butt of netting while excluding the central clearing node.

5.2 Contribution and related works
5.2.1 Our contribution
In this paper, we propose a secure netting protocol over permissioned type
blockchain such as Hyperledger Fabric [3]. The word netting settlement is
settlement means that pays only calculation results obtained by offsetting
the amount of money on the books for a plurality of transactions. The
meaning of targeted secure settlement in this paper is that the remittance
amount and the name of sender and receiver entity are kept secret except
for the sender and the receiver entity of the remittance transaction, and
furthermore, in netting settlement, the calculated butt of each entity after
offsetting is kept concealed by another entity. In addition, the meaning of
de-centralized means that the entity participating in the settlement protocol
executes processing to P2P and does not require a specific central server or
other third parties.

5.2.2 Related works
Project Ubin [10] proposes three netting settlement methods using
blockchains, such as proposed in this paper, and uses representative permis-
sioned type blockchain OSSs Hyperledger Fabric [3], Enterprise Ethereum
Quorum [7], and Corda [8] and evaluate it. The feature of their three netting
settlement schemes proposed in this project is that it has the Gridlock reso-
lution function. The Gridlock resolution means that there are a plurality of
remittance instructions awaiting settlement due to insufficient balance, and
furthermore, for a so-called ”stunting” state, which is waiting for payment
from the other party, partial remission orders it is a process to eliminate
the ”stunting” state by successfully combining (see the reference [10] for de-
tails). The netting settlement method proposed in this paper does not have
the function of the Gridlock resolution. On the other hand, in the three pro-
posal methods of [10], detailed analysis on security has not been performed,
and in some methods, the value of the netting butt or its range leaks to
other entities there. Also, correspondence when a malicious entity performs
processing outside the protocol is out of scope (that is, a honest-but-curious
model is assumed).
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5.3 Preliminary
5.3.1 Outline of Hyperledger Fabric v1.0
The Hyperledger project is a project founded by the Linux Foundation for
the purpose of developing a permissioned type blockchain OSS infrastructure
that can be used in the enterprise. The project was established in Febru-
ary 2016, and more than 80 companies, including financial institutions and
user companies and IT vendors, are participating in the project. In this
paper, we describe a decentralized secure netting protocol using the chan-
nel function of Hyperledger Fabric v1.0 [3] developed and proposed by the
Hyperledger project. This scheme can also be realized with a permissioned
type blockchain having the channel function. In Hyperledger Fabric v 1.0,
there is an access control function called channel that creates a group with
only a specific node and shares ledger data, not all nodes participating in
the blockchain network. This function is useful when we want to disclose the
contents of transaction information only to stakeholders. Information such
as which peer (node) belongs to the channel is shared by all peers in the
network. The figure above shows that peer 1 belongs to ”red” and ”blue”
channels, peer 2 belongs to ”red” and ”black” channels, peer n belongs to
”red” ”blue” and ”black” channel. As shown in the figure each transaction
has a color of the channel, and transactions colored black are not sent to
peer 1.

Consensus

Service

Peer 1

Peer 2

Peer n

Figure 5.1: Channel structure of Hyperledger Fabric v1.0

5.3.2 Netting settlement
The netting settlement is, for example, a settlement of accounts after cancel-
ing interactive payment instructions occurring in a certain period between
bank A and bank B.

The above figure is an example of netting settlement. The 50 payment
orders from A bank to B bank and the 40 payment orders from B bank to A
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A Bank B Bank

①A→B:50

②B→A:40

③A→B:10 (=50-40)
Central bank 

settlement system

Netting

Figure 5.2: Bilateral netting

bank are offset on the book, and in fact, to the settlement system of central
bank etc, A bank to B bank send only 10 payment instructions to the A
bank. By reducing the fee for remittance by two payment orders into one as
described above, it is effective to reduce the load on the system by further re-
ducing the payment order to be input to the settlement system. The netting
between two parties as shown in the above figure is called two-way netting
or bilateral netting, and the netting settlement processing between three or
more entities as shown below is called multilateral netting processing.

A Bank

B BankC Bank

A→B:20

B→C:25

C→A:10

A Bank

B BankC Bank

B→A:10

C→B:5

A→C:50

Netting

Netting system

50

10

60

Figure 5.3: Multilateral netting

In this example, six payment orders (left side in the figure) occurred
between A, B, and C banks are consolidated into three payment orders (on
the right side of the figure) using a central netting system.

5.4 Proposal
In this section, we describe a decentralized settlement protocol using the
channel function of Hyperledger Fabric. In this paper, the process of exe-
cuting the netting settlement concerning remittance between four banks is
exemplified, but the same argument applies to the more general case.
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5.5 Conclusion and Future works
5.5.1 Channel structure
Let’s suppose that the participating banks are four banks, A bank, B bank,
C bank, and D bank, and each bank has one peer (node) in the Hyperledger
Fabric system. Also prepare dedicated channels for peers between each two
banks. For example, payment order transactions from bank A to bank B are
stored only in the ledger within the channel between A and B. Hereinafter,
the channel between A and B is called a bilateral channel between A-B.
Since there are 4 participating banks, a total of 6 bilateral channels exist in
this system.

Bank A

Bank B Bank C

Bank D Channel for Bank A and Bank B

Channel for Bank B and Bank C

Channel for Bank C and Bank D

Channel for Bank A and Bank D

Channel for Bank A and Bank C

Channel for Bank B and Bank D

Bank A

Bank B Bank C

Bank D

Channel for all banks

Figure 5.4: Our channel structure

Also, create one multilateral channel for sharing information among all
banks.

5.5.2 Insecure netting protocol
Under the channel structure in the previous section, we describe a protocol
that performs settlement in a distributed manner in a decentralized envi-
ronment. This protocol is not secure, as netting calculation butt leak to
other banks. In the next section, we describe the netting protocol which
kept the netting calculation butt. The following table shows all remittance
order transactions that occurred at a certain period.

As shown in the table, 8 transactions occurred at a time and the cal-
culation of netting butt of 8 transactions is A bank +40, B bank −80, C
bank +60, D bank +60. Transaction No. 1 is an order of payment 50 from
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Table 5.1: Transaction table

Tx No. A bank B bank C bank D bank
1 -50 50
2 -40 40
3 -50 50
4 60 -60
5 -10 10
6 40 -40
7 -60 60
8 -30 30

NET 40 -80 60 -20

bank A to bank B. Since this transaction is transmitted only to the bilateral
channel between A-B, so C and D bank do not know existence, as a result
netting calculation butt A +40 knows only A bank. Similarly, other banks
also know only the calculation butt of the netting result by themselves. Un-
der this situation netting settlement is executed according to the following
steps.
Insecure decentralized netting protocol

• Step 0:
Any bank sends netting start transactions to the multilateral channel,
and all participating banks agree. In doing so (by generating random
numbers, etc.), the order of netting is determined, and the order is
shared. Here, it is assumed that the order of A bank → B bank → C
bank → D bank.

• Step 1:
The A bank generates A → B: −40 (that is, a transaction paid by B
bank to A bank 40) in order to offset its calculation butt +40 with
0 and sends it to the bilateral channel between A and B. As a result
(because A bank got 40 from B bank), A bank’s calculated butt be-
comes 0. On the other hand, since B bank paid 40, its calculated butt
is from −80 to −40.

• Step 2:
Likewise, the B bank generates B → C: 40 (that is, a transaction paid
by the B bank to the C bank 40) in order to offset its calculation
bottom −40 with 0, and sends it to the bilateral channel between the
B-C. As a result (because B paid 40 to the C bank), the calculation
butt of B bank will be 0. Meanwhile, C bank got 40, so the calculation
butt will be 60 to 20.
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• Step 3:
Finally, the C bank generates C → D: −20 (that is, a transaction
paying 20 from the D bank to the C bank) to offset its calculation
butt +20 with 0, and sends it to the bilateral channel between C-D.
As a result (because C got 20 from D bank), C bank’s calculated butt
becomes 0. Also, because D bank paid 20, the calculation butt will be
from −20 to 0, and all netting process ends.

A Bank B Bank

C BankD Bank

+40 -80⇒-40

+60⇒20-20

step3
C→D:-20
(=D→C:+20)

step2
B→C:40
(=C→B:-40)

step1
A→B:-40
(=B→A:+40)

Figure 5.5: Insecure netting protocol

The above figure shows transactions generated in the netting protocols
Step 1 to 3. In Step 1, A bank has sent a payment order of −40 to B
bank in order to offset its own netting, but here it is leaking that bank A’s
deposit is +40 to B bank side . In addition, in Step 3, a payment order of
−20 is sent from the C bank to the D bank, but this is also leaked to the
C bank side that the D bank’s calculation butt is −20. As a result, there
is a problem that the start and end points of the netting route calculation
butts are leaked out. The next section, how to solve this problem will be
described.

5.5.3 Secure netting protocol
In this section, we show a solution for the problem of previous section’s
netting protocol. A bank adds a random number to the calculated butt,
thereby solving the problem that the calculated butt leaks. The structure
of the channel and the transaction that occurred are the same as in the
previous section.
Secure decentralized netting protocol
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• Step 0:
Any bank sends netting start transactions to the multilateral channel,
and all participating banks agree. In doing so (by generating random
numbers, etc.), the order of netting is determined, and all lines are
shared. Here, it is assumed that the order of A bank → B bank → C
bank → D bank.

• Step 1:
The A bank generates a random number R and generates a transaction
to pay A → B: −40−R in order to offset +40+R to 0 in addition to
its own calculation butt sends it to the bilateral channel between A-B.
As a result, the calculation butt of A bank is −R. On the other hand,
since B bank paid 40 + R, the calculated butt of B would be −80 to
−40 +R.

• Step 2:
Likewise, B bank generates a transaction to pay B → C: 40 − R in
order to cancel its calculation butt −40 + R to 0, and sends it to the
bilateral channel between B and C. As a result, the calculation butt
of bank B is zero. On the other hand, the calculation butt of C bank
is 60 to 20 +R.

• Step 3:
Likewise, C bank generates a transaction to pay C → D: −20 − R in
order to offset its calculation butt +20 + R to 0, and sends it to the
bilateral channel between C and D. As a result, the calculation bottom
of C bank is 0. In addition, the calculation bottom of D bank is R.

• Step 4:
Finally, the D bank generates a transaction to pay D → A: −R in
order to offset its calculated butt R to 0, and sends it to the bilateral
channel between A and D. As a result, the calculation butt of the D
bank becomes 0, the calculation bottom of the A bank also becomes
0 and all netting process ends.

The bellow figure shows transactions generated in the netting protocols
Step 1 to 4. Random number R is added to each transaction generated by
the settlement protocol proposed in the previous section, and the A and D’
s butts are concealed.

5.6 Conclusion and future works
In this paper, we propose decentralized netting protocols using the channel
function of Hyperledger Fabric which is a permissioned type block chain
OSS. In the proposed protocol, by using the channel function, the sender and
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Figure 5.6: Secure netting protocol

receiver of the transaction information, the amount of money is concealed,
and the multi-party type netting protocol using the random number is also
used to conceal the netting calculation butt. In addition, the proposed
method can execute netting settlement on P2P without a specific central
organization such as a central server. Future works are as follows.

• Gridlock resolution:
The proposed method does not have the gridlock resolution function,
gridlock resolution function is necessary to reduce the overhead of
settlement system and to save liquidity.

• Range of random number R:
The proposed method uses random numbers, but obviously, the larger
the range of random numbers is, the more secure it becomes. On the
other hand, if the random number is large, there is a problem that the
remittance amount increases. It is necessary to appropriately set the
range of random number according to the use case.

• Countermeasure against malicious nodes:
In this paper, in view point of the permissioned type blockchain, ma-
licious nodes are supposed to be models that do not exist. We should
consider the validity of this model and the correspondence to the case
where malicious nodes exist.
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Domestic Conference Paper:

• Ken Naganuma, Takayuki Suzuki, Masayuki Yoshino, Hisayoshi Sato,
and Kenta Takahashi. Decentralized netting protocol over Hyper-
ledger Fabric. 2018, Symposium on Cryptography and Information
Security (SCIS 2018), Niigata, Japan, January 23-26, 2018.

• Ken Naganuma, Takayuki Suzuki, Kenta Takahashi, Yosuke Kaga,
Nishio Yamada, Noboru Kunihiro, and Masayuki Yoshino. Key man-
agement technology for blockchain using PBI. 2019 Symposium on
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Cryptography and Information Security (SCIS 2019), Shiga, Japan,
January 22-25, 2019.

• Ken Naganuma, Atsuo Inoue, Mineaki Okaszaki, Masayuki Yoshino,
Anirban Basu, and Noboru Kunihiro. Post-quantum zk-SNARKs for
Arithmetic Circuits. 2020 Symposium on Cryptography and Informa-
tion Security (SCIS 2020), Kochi, Japan, January 28-31, 2020.
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