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Abstract

With the development of deep learning techniques since the late 2000s, neural net-
works have become an extremely useful machine learning method in a wide range of applica-
tions. Deep learning techniques have been applied to a quite wide range of fields,including
image processing (recognition, generation, style transfer etc.), audio processing, natural
language processing such as translation and question answering, games such as Go and
Poker, robotics, and other prediction tasks that arise in various fields (e.g. protein struc-
ture prediction). In many of them, higher performance than conventional methods has been
achieved by deep learning techniques.

However, there are many theoretical aspects of neural networks that remain un-
clear: performance guarantees, interpretability of inferences, optimal structure and hyper-
parameters, expressivity, generalization performance behavior, etc. In this dissertation, we
focus on the fact that it is not clear under what conditions the learning of neural networks
succeeds. There are two main reasons for this. For one thing, learning neural networks
was considered more difficult in the 1990s than it is now. In particular, the "plateau phe-
nomenon," in which the loss stops decreasing for a long time in the middle of learning,was
a problem at the time. The plateau phenomenon was the subject of a great deal of the-
oretical research at that time, and it was pointed out that it was due to the symmetry
inherent in the structure of neural nets. Although this plateau phenomenon is theoretically
thought to occur inevitably in neural network learning, it has rarely been seen in recent
real-world applications of neural networks. Another is that, even now, we still need to
setup hyperparameters by trial and error in order to be most successful in learning neural
networks. With the development of technologies for deep learning, a variety of methods
have proposed: wide range of network structures, types of layer and activation, parame-
ter initialization, optimization algorithm and its parameters, data preprocessing, types of
loss function, etc. This means that we have to choose methods among them which are
appropriate for target tasks. Although it has become more important than ever to choose
these hyperparameters appropriately for successful learning, most of them currently rely
on trial-and-error-based methods such as random search and grid search. To sum up these
points, the mechanisms behind the success of deep learning have not been fully explored.

Motivated by the above situation, we analyze the dynamics of learning and infer-
ence in neural networks macroscopically using statistical mechanical methods and mean
field methods, and examine the conditions for success or failure of neural network learning
from various perspectives.
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Chapter 1

Introduction

1.1 Machine learning, neural network and deep learning

Machine learning is a technology which enables us to let computers learn to do some
tasks by data. A lot of methods for machine learning have been developed, including linear
regression, logistic regression, support vector machines, decision tree, random forest, and
neural networks. Especially, neural networks have been quite highlighted since Hinton et al.
took the first step towards deep learning in 2006[5]. After their works, various techniques for
training deep neural networks as well as diverse model architectures have been developed.
In 2010s, unprecedented high performance have been achieved by deep neural networks
in wide range of practical tasks (especially in the field of computer vision). Moreover, it
has been shown that deep neural networks perform quite well in tasks for generating data
and reinforcement learning tasks. Even in recent years, deep neural networks have yielded
many breakthroughs in a number of domains, including natural language processing, sound
processing, physics, chemistry, etc.

1.2 Challenges in deep learning

However, there are many theoretical aspects of neural networks that remain unclear:
performance guarantees, interpretability of inferences, optimal structure and hyperparam-
eters, expressivity, generalization performance behavior, etc. Sometimes deep learning re-
lated techniques are referred as ‘alchemy’ or ‘black magic’, because they somehow work
well but we cannot understand how they do so.

Among these black-box aspects of neural networks and deep learning, in this dis-
sertation, we focus on the problems of trainability; it is not clear under what conditions
the learning of neural networks succeeds or fails. There are two main reasons for this. For
one thing, learning neural networks was considered more difficult in the 1990s than it is
now. In particular, the "plateau phenomenon," in which the loss stops decreasing for a long
time in the middle of learning, was a problem at the time (see Figure 1.2 for examples of
plateau phenomena). The plateau phenomenon was the subject of a great deal of theoreti-
cal research at that time, and it was pointed out that it was due to the symmetry inherent
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in the structure of neural networks[6]. Although this plateau phenomenon is theoretically
thought to occur inevitably in neural network learning, it has rarely been seen in recent
real-world applications of neural networks. Another is that, even now, we still need to
setup hyperparameters by trial and error in order to be most successful in learning neural
networks. With the development of technologies for deep learning, a variety of methods
have proposed: wide range of network structures, types of layer and activation, parameter
initialization, optimization algorithm and its parameters, data preprocessing, types of loss
function, etc. This means that we have to choose methods among them which are appro-
priate for target tasks. Although it has become more important than ever to choose these
hyperparameters appropriately for successful learning, most of them currently rely on trial-
and-error-based methods such as random search, grid search and evolutionary methods.

Figure 1.1: Examples of plateau phenomena, observed while learning Mackey-Glass time
series regression task and extend XOR classification task. Both figures are reprinted from
[1].

1.3 Importance of theoretical understanding of neural net-

works

In order to overcome this situation, it is important to deepen the theoretical under-
standing of deep learning. In other words, it would be good for us to be able to understand
in what cases learning succeeds or fails without actually performing the learning. With such
a theoretical understanding of learning of neural networks, we would be able to present a
theory-based guideline for the design of learning, that is the selection of hyperparameters,
including network structures, optimization algorithms and data preprocessing. With this
motivation, we have been trying to understand the learning of neural networks theoreti-
cally.

1.4 Macroscopic methods

A neural network typically has a very large number of parameters. The input
signals are propagated through a lot of layers which consist of linear transformations and
nonlinear activations. Although they make the network extremely expressive in a efficient
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way, they also make analyses of their dynamics of propagating quite tough. In addition,
desirable input-output relationship can be obtained by changing their parameters according
to the gradient descent method. This learning dynamics is also quite high-dimensional and
nonlinear.

For analyzing them, we will use two macroscopic methods: the statistical mechan-
ical method and the mean-field method. Here we briefly introduce them.

1.4.1 Macroscopic method for learning dynamics

While we want to analyze the dynamics of these parameters in training theoreti-
cally, it is generally difficult to deal directly with very high-dimensional nonlinear dynamical
systems. One way to cope with it is to consider linear neural networks instead of nonlin-
ear neural networks. The learning dynamics of linear neural networks are easy to handle
theoretically, as analytical solutions can be obtained under certain assumptions[7]. One
drawback, however, is that the rich learning behavior unique to nonlinear neural networks
(including the plateau phenomenon described above) is not observed in linear neural net-
works and cannot be analyzed. Another method is the statistical mechanical method used
in this paper. This method was proposed in 1995 by Biehl et al.[8] and Saad et al.[9] to
obtain the dynamics of a small number of macroscopic variables by appropriately reducing
the dynamics of a large number of microscopic variables. Using this method, the learning
dynamics of nonlinear neural networks can be reduced to a dynamics of a few macroscopic
variables, or order parameters, under the assumption that the input dimensionality is very
large. This method will be introduced in Chapter 2, and used in Chapter 2–4.

1.4.2 Macroscopic method for propagating dynamics

The input-output relationship of deep neural networks themselves are also an im-
portant subject of research. Deep neural networks have exponential expressivity with re-
spect to the number of layers[10], which means that a network can represent almost any
function depending on the values of the parameters. On the other hand, it is limited to
a region in the entire parameter space where the neural network can express the func-
tions required to solve a realistic task. This is important because we cannot explore the
entire parameter space in one training with gradient methods; only a narrow region can
be reached with the gradient method from the initial value. This means that choosing an
initial value located in the region described above is important for successful learning.

More specifically, for a network to express realistic functions, its input-output rela-
tionship should not have sensitivity against small noise, and it should not lose information
contained in input signals. Thus it is essential to inspect how input signals are propagated
through deep neural networks, and how it is affected by network parameters. The mean-
field method has been developed for this; it deals with signal propagation through random
neural networks with infinite width[11, 2]. We will introduce and use it in Chapter 5.
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1.4.3 Advantage of macroscopic methods over other theoretical methods

There are many theoretical studies of deep learning that take approaches other than
these macroscopic methods. Importantly, the macroscopic approaches we will use have a
common feature; they attempt to examine the average behavior. This is in contrast to,
for example, approaches that utilize inequalities to derive bounds and give guarantees of
convergence or generalization. Trying to take even the worst case into account sometimes
produces only very loose (far from what is actually happening) evaluations. On the other
hand, these macroscopic approaches to average behavior seem rather reasonable as models
of what is happening in reality, although they usually do not give strict guarantees.

1.5 Outline of this dissertation

This dissertation consists of Chapter 1, which is an introduction, Chapters 2-5,
which is the main thesis, and Chapter 6, which is the conclusion. Here we describe the
outline of each chapter. See also Figure 1.5 which depicts the overview.

In Chapter 1, we already discussed why the theoretical study of neural networks is
important, and briefly described macroscopic analysis methods we will use in the following
chapters, the statistical mechanical method and the mean-field method.

In Chapter 2, we analyze the learning dynamics of a nonlinear neural network with
Weight Normalization, using a statistical mechanical formulation[12]. The regularization
method called Weight Normalization was proposed in 2016[13] and was empirically known
to speed up the learning. However, the mechanism of speeding up was unknown. Then
we analyze and derive the learning dynamics of a single-layer nonlinear neural network
using statistical mechanical formulation. By solving the derived dynamics numerically, we
show that Weight Normalization exhibits faster learning regardless of the learning rate,
and discuss with what mechanism it is achieved.

In Chapter 3, we focus on the "plateau phenomenon" that prevents successful
learning in nonlinear neural networks, and show that this phenomenon can be alleviated
depending on the dimensionality of the output of neural networks[14]. The "plateau phe-
nomenon", in which the loss stagnates without decreasing for a long period of time during
the training of neural networks, has been known and studied vigorously since the late
1990s. It has been pointed out that the symmetry inherent in the neural network model is
the root cause of the plateau phenomenon, which brings a singularity in the metric of the
parameter space, which in turn yields a Milnor-like attractor[15, 6]. However, it is empiri-
cally quite rare to see a plateau phenomenon in recent deep learning applications, and there
is a discrepancy between theory and practice. Although this discrepancy must be caused
because the assumptions made in the theoretical analysis are somehow not consistent with
the realistic situation, it is unclear what are critical and we should clarify them. In the
chapter, we focus on the number of units in the output layer. Existing studies that have
analyzed the learning dynamics of nonlinear neural networks using statistical mechanical
methods have all assumed a single output unit, and have not considered the case with
multiple output units, which is more realistic. Then we analyze and derive the learning
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dynamics of a two-layer nonlinear neural network with multiple output units, using the
statistical mechanical method, and point out that the number of output units makes an
important difference in the plateau phenomenon. Specifically, we show that the plateau
phenomenon, which causes a failure of learning, is reduced when there are multiple output
units compared to the case with a single output unit.

In Chapter 4, we analyze how the learning dynamics of nonlinear neural networks
depend on the statistics of the learning data[16]. Existing studies that have analyzed the
learning dynamics of nonlinear neural networks using statistical mechanical formulation,
including those described in Chapters 2 and 3, have not considered the statistics of the
learning data, especially that of the input signals. Specifically, analyses in existing studies
have assumed that the input signal is generated by i.i.d. standard normal distribution.
However, the learning behavior can change depending on the statistics of the learning
data, and it is not realistic to assume that the input signal is generated by unit Gaus-
sian; according to the manifold hypothesis, the real-world data is expected to concentrate
in the vicinity of a low-dimensional manifold embedded in a high-dimensional space[17].
Therefore, in this chapter, we extend the statistical mechanical framework to the more
general cases in terms of statistics of the input data, in order to investigate the effect of
the statistics of the learning data on the learning dynamics. We then reveal how the learn-
ing dynamics and plateau phenomena depend on the statistics of the data. Specifically, we
show that the plateau phenomenon becomes less prominent when the covariance matrix of
the distribution of input signals has smaller or more dispersed eigenvalues.

In Chapter 5, in contrast to Chapters 2-4 for analyzing learning dynamics with
statistical mechanical methods, we work on the dynamics of signal propagation through
deep neural networks. For successful learning of deep neural networks, signals and corre-
lations between them need to propagate over many layers without decay or divergence. In
recent years, there have been attempts to analyze the dynamics of such signal propaga-
tion using the mean-field method. In the mean-field method, we consider a neural network
with random weights and infinite width, and approximate the activities of its layers with
multivariate Gaussian distributions. These allow us to obtain deterministic equations of
evolution of only the macroscopic statistics of the signals, and by further discussing the
speed of convergence of their dynamics, we can compute so-called "depth scale" for success-
ful signal propagation[2]. It has been reported that the macroscopic dynamics and depth
scales of propagation are analytically determined by mean-field methods for some simple
networks and that they are in good agreement with the actual trainability[2, 3, 4]. However,
practical neural networks typically have a more complex structure and their depth-scales
cannot always be determined analytically. In this chapter, we establish a method for nu-
merically evaluating depth scales for arbitrarily complex networks and show that it is
actually possible to predict trainability from depth scales for neural networks with various
architectures.

Finally, in Chapter 6, we discuss the potential impact of the series of studies de-
scribed in this paper on industry and research, as well as the challenges and directions of
future research.
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Figure 1.2: Overview of this dissertation.
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Chapter 2

Statistical Mechanical Analysis of

Online Learning with Weight

Normalization in Single Layer

Perceptron
⇤

2.1 Introduction

In recent years, large neural networks are commonly used for various tasks in the
name of Deep Learning.[18] The success of deep learning is highly indebted to improve-
ments of algorithms for speeding up learning: they include various modifications to gradient
descent,[19, 20, 21, 22, 23] and several normalization methods.[24, 13, 25] In particular,
the weight normalization (WN) proposed by Salimans & Kingma (2016),[13] which re-
parametrizes the weight vector as explained below, is spotlighted in terms of easiness of
implementation and introduction to various conventional network structures. In most neu-
ral networks, each neuron’s output can be represented as y = g(W · x+ b), where x is an
input vector and the activation function g is nonlinear in general. The standard steepest

descent method updates its weight vector W as �W = �⌘ @"

@W
, where " is a loss function

and ⌘ > 0 is a learning rate. In contrast, in WN, W is decomposed as W = r
V

|V | , and

then steepest descent optimization proceeds in accordance with the gradient of r and V

instead of W , that is, �r = �⌘@"
@r

and �V = �⌘ @"

@V
. This newly proposed optimization

method is known to speed up the convergence of the loss function in conventional net-
work structures and machine learning tasks such as image recognition and reinforcement
learning. However, it remains unclear why this method works well.

Biehl & Schwarze (1995)[8] and Saad & Solla (1995)[9] established useful techniques
on the basis of statistical mechanics, with which we can derive the dynamical equations
of order parameters that represent the macroscopic state of the weight vector. Using the

⇤This work has been published as [12].
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techniques, they found analytically and discussed the dynamics of on-line learning in a
single layer perceptron and a (two-layered) soft committee machine that learns the input-
output relationship of a “teacher network” that has the same structure as a learning one,
although their analysis was limited to the conventional steepest descent methods with
ordinary parameterization of weight vectors.

In this study, we apply their technique to WN and analyze quantitatively the
dynamical evolution of on-line learning in single layer perceptrons. We perform linear
stability analysis on a global minimum of the loss function and determine the converging
speed of order parameters towards the global minimum. In WN, it shows that an effective
learning rate appears that is automatically tuned, and that there exists an optimal initial
value of an order parameter for fast converging.

2.2 Model

2.2.1 Student-teacher network formulation

In this study, we focus only on single layer perceptron. That is, we consider a neural
network that receives input data x 2 RN , calculates output s = g(J · x) (we assume the
activation function g : R ! R is non-constant and weakly monotonous) , and learns J

by teacher data. We treat an ideal situation, in which the teacher data t is determined as
t = g(B ·x); in other words, the learning network (the “student network”) learns the input-
output relationship of the “teacher network”, which has the same structure as the student
one and the original fixed weight B (Figure 2.1(a)). We use the squared loss function

" =
1

2
(t � s)2. (The choice of a loss function is not critical; see Appendix B for general

case.)

2.2.2 Statistical mechanical formulation

Stochastic gradient descent

For the statistical mechanical formulation of on-line learning, we introduce further
idealization. We assume that the dimension of input data N is very large, and each element
of input data x is generated in accordance with i.i.d. normal distribution, N (xi|0, 1/N).
(Note that |x| ⇡ 1.)⇤ We suppose |B| =

p
N and define l(↵) and R(↵) by |J | =

p
N l(↵)

and B · J = N l(↵)R(↵), where ↵ represents time.[8, 9] l(↵) and R(↵) are the order
parameters; the former one is the measure for the length (norm) of the weight vector of the
student network, and the latter one is the direction cosine between the weight vectors of
student and teacher (Figure 2.1(b)). The initial values of l and R (l0 and R0, respectively)
depend on how J is initialized; the value of R0 converges towards 0 with N !1, as long
as we choose J from a spherically symmetric distribution.

In the next section, we derive the dynamical equations that govern the order pa-
rameters l and R, which capture the macroscopic state of the system, from the dynamics

⇤This assumption can be relaxed. See the appendix at the end of this dissertation.
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of microscopic variables (the weight vector) of the system.

...

x1

x2

xN

s = g(J · x)

Student network

...

x1

x2

xN

t = g(B · x)

Teacher network

l(↵)

1
B

J

✓

R(↵) = cos ✓

(a) (b)

Figure 2.1: (a) Student network and teacher network. (b) Geometrical interpretation of
order parameters l(↵) and R(↵).

Weight normalization

In WN, weight vector J is decomposed into radial length r and direction vector
V as J = r

V

|V | , and the gradients of r and V are then used to perform gradient descent

optimization. Since we put |J | =
p
N l(↵) in the previous section, r equals to

p
N l(↵),

then we call l(↵) “radial length”, as well as r. We define z(↵) to represent the norm of
V , as |V | =

p
N z(↵). This additional order parameter z(↵) shows up because of the

redundancy in radial parameterization J = r
V

|V | , where the norm of V is not normalized.

In WN, three order parameters l(↵), R(↵), and z(↵) appear in the following macroscopic
dynamical equations.

2.3 Theory

In this section, we derive the dynamical equations of the parameters described
above.

2.3.1 Dynamical equations of order parameters in SGD

We follow the argument by Biehl & Schwarze (1995)[8] and Saad & Solla (1995)[9]
in this subsection. The update rule of on-line learning based on vanilla SGD is written as

�J = �⌘ d"

dJ
= ⌘g0(J · x)(t� s)x, (2.1)
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which gives the update rule of order parameters l and R:

N�l2 = |J(↵+ 1)|2 � |J(↵)|2 = |J(↵) + ⌘g0(J(↵) · x)(t� s)x|2 � |J(↵)|2

= 2⌘g0(J(↵) · x)(t� s)J(↵) · x+ ⌘2g0(J(↵) · x)2(t� s)2|x|2

= 2⌘g0(lu)(t� s)lu+ ⌘2g0(lu)2(t� s)2|x|2,
N�(lR) = B · J(↵+ 1)�B · J(↵) = B ·�J

= ⌘g0(J(↵) · x)(t� s)B · x
= ⌘g0(lu)(t� s)v,

(2.2)

where we define u and v as J · x = lu and B · x = v. Since the right hand sides of these
equations are O(N0), the difference terms �l2 and �(lR) are O(N�1), and therefore we
can replace these difference equations with differential ones with N !1:

N
d

d↵
l2 = 2⌘A1 + 2⌘2A2,

N
d

d↵
lR = ⌘A3

(2.3)

where A1(l, R) = hg0(lu)(g(v)� g(lu))lui,

A2(l, R) =
1

2
hg0(lu)2(g(v)� g(lu))2i,

A3(l, R) = hg0(lu)(g(v)� g(lu))vi.

(2.4)

Here the brackets h·i represent the expectation when x follows N (xi|0, 1/N), that is, when

(u, v) follows N (0,

 
1 R

R 1

!
). These differential equations are what we wanted. Note

that the generalization error "g is represented as

"g =
1

2
h(t� s)2i = 1

2
h(g(v)� g(lu))2i. (2.5)

All expectation terms appearing in (4.4), (3.5) have forms I3(y1, y2, y3) := hg0(y1)y2g(y3)i
or I4(y1, y2, y3) := hg0(y1)2g(y2)g(y3)i, where y1, y2, y3 is either lu, v, or 0. The I3 and I4
can be analytically determined for some activation function g; when (y1, y2, y3) follows
a multivariate normal distribution N ((y1, y2, y3)|0, C) where C is covariance matrix, the
identity function g(x) = x gives

I3 = hy2y3i = C23,

I4 = hy2y3i = C23.
(2.6)

The error function g(x) = erf(x/
p
2) implies

I3 =
2

⇡
· 1p

(1 + C11)(1 + C33)� C2
13

C23(1 + C11)� C12C13

1 + C11
,

I4 =
4

⇡2
· 1p

1 + 2C11
arcsin

(1 + 2C11)C23 � 2C12C13p
(1 + 2C11)(1 + C22)� 2C2

12

p
(1 + 2C11)(1 + C33)� 2C2

13
(2.7)
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as shown in Saad & Solla (1995).[9] In the case of g(x) = ReLU(x) (:= max{0, x}), which is
commonly used as the activation function in recent neural networks, we found the following
formula (see Appendix A for derivation):

I3 = C23

✓
1

4
+

1

2⇡
arcsin

C13p
C11C33

◆
+

1

2⇡
· C12

C11

q
C11C33 � C2

13,

I4 = C23


1

8
+

1

4⇡

✓
arcsin

C12p
C11C22

+ arcsin
C13p
C11C33

+ arcsin
C23p
C22C33

◆�

+
1

4⇡

✓
C13

C11

q
C11C22 � C2

12 +
C12

C11

q
C11C33 � C2

13 +
q
C22C33 � C2

23

◆
.

(2.8)

2.3.2 Dynamical equations of order parameters in WN

In the case of WN, the update rule of direction vector V and radial parameter r is

�r = �⌘d"
dr

= ⌘g0(J · x)(t� s)
J · x
r

,

�V = �⌘ d"

dV
= ⌘g0(J · x)(t� s)

✓
r

|V |x�
J · x
|V |2 V

◆
,

(2.9)

which provides the update rule of order parameters l, R, and z:

N�l =
p
N�r = ⌘g0(J · x)(t� s)

J · x
l

= ⌘g0(lu)(t� s)u,

N�(Rz) = �(B · V ) = ⌘g0(J · x)(t� s)

✓
r

|V |x�
J · x
|V |2 V

◆
·B

= ⌘g0(lu)(t� s)

✓
lv

z
� lRu

z

◆
,

N�(z2) = |V (↵+ 1)|2 � |V (↵)|2 = 2V (↵) ·�V + |�V |2 = |�V |2

= ⌘2g0(J · x)2(t� s)2


r2

|V |2 |x|
2 � 2

rJ · x
|V |3 V · x+

(J · x)2

|V |2

�

= ⌘2g0(lu)2(t� s)2
✓
l2

z2
|x|2 � l2u2

Nz2

◆

(2.10)

(we set J · x = lu and B · x = v again). These difference terms are O(N�1); thus, we can
replace these equations with differential equations with N !1:

N
d

d↵
l2 = 2⌘A1,

N
d

d↵
Rz = ⌘(

l

z
A3 �

R

z
A1),

N
d

d↵
z2 = ⌘2

2l2

z2
A2.

(2.11)

The definition of terms Ai are the same as (4.4). Again, all expectation terms have forms
like I3 or I4, which can be determined for some g. Note that z is monotonously increasing
since A2 � 0.

25



2.3. Theory Chapter 2. Learning Dynamics with Weight Normalization

2.3.3 Linear stability analysis

In our system of student and teacher single layer perceptrons, the generalization
error "g equals to 0 if and only if J = B; in other words, J = B is the unique global
minimum. Values of order parameters at this global minimum are (l, R) = (1, 1). For
the system (4.9) for SGD, (l, R) = (1, 1) is a steady state, and for the system (2.11) for
WN, (l, R, z) = (1, 1, z) are steady states for all z. We perform stability analysis at these
steady points corresponding to the global minimum to evaluate quantitatively the speed
of converging towards global optimality.

For the system (4.9) for SGD, the stability matrix at (l, R) = (1, 1), and its eigen-
values and eigenvectors are given as

PSGD =

0

B@
⌘
@A1

@l
⌘
@A1

@R
+ ⌘2

@A2

@R

0 ⌘
⇣@A3

@R
� @A1

@R

⌘
� ⌘2

@A2

@R

1

CA ,

�1 = ⌘
@A1

@l
, e1 =

 
1

0

!
,

�2 = ⌘
⇣@A3

@R
� @A1

@R

⌘
� ⌘2

@A2

@R
=

@A2

@R
⌘(⌘c � ⌘),

e2 =

0

B@

@A1

@R
+ ⌘

@A2

@R

�@A1

@l
+

�2

⌘

1

CA

where ⌘c :=
@(A3 �A1)

@R
/
@A2

@R

where the derivatives of Ai are evaluated at (l, R) = (1, 1). For the system (2.11) for
WN, the stability matrix at (l, R, z) = (1, 1, z1), and its eigenvalues and eigenvectors are
calculated as

PWN =

0

BBBBB@
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⌘
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where the derivatives of Ai are evaluated at (l, R, z) = (1, 1, z1). Since A2 =
1

2
h[g0(lu)(g(v)�

g(lu))]2i � 0 and A3�A1 = hg0(lu)(g(v)� g(lu))(v� lu)i � 0 (note that g is monotonous)

equal to 0 at global minimum (1, 1), it holds that
@A2

@R
,
@(A3 �A1)

@R
 0. Thus, for SGD

system, the necessary and sufficient condition for the stability of the global minimum is

⌘ < ⌘c =
@(A3 �A1)

@R
/
@A2

@R
. The value of ⌘c depends on activation function g; for example,

⌘c = 2 for g(x) = x and g(x) = ReLU(x), and ⌘c =
p
5/3⇡ for g(x) = erf(x/

p
2). In

contrast, the stability condition of the global minimum for WN system is ⌘/z21 < ⌘c.

We can evaluate the speeds of order parameters l and R converging towards the
global optimum when it is linearly stable, using eigenvalues and eigenvectors of the stability
matrix calculated above. For SGD and WN cases, the R-component of the first eigenvector
e1 equals to 0, therefore R converges towards the global optimum 1 at the speed of ��1.
(We call a variable behaving like O(e�↵) as “converging at the speed of �.”) In contrast,
l converges towards 1 at the speed of min{��1,��2}. The converging speeds of l and R

while performing SGD and WN are summarized in Table 1.

Table 2.1: Converging speeds towards global minimum of order parameters l and R. All
derivatives of Ai are evaluated at global minimum.

SGD WN

Direction cosine R �@A2

@R
⌘(⌘c � ⌘) �@A2

@R

⌘

z21

✓
⌘c �

⌘

z21

◆

Radial length l min

⇢
�@A1

@l
⌘, �@A2

@R
⌘(⌘c � ⌘)

�
min

⇢
�@A1

@l
⌘, �@A2

@R

⌘

z21

✓
⌘c �

⌘

z21

◆�

Comparing WN and SGD, the converging speed of R, the direction cosine, is dif-
ferent; its effective learning rate is ⌘ in SGD and ⌘/z21 in WN. Since the initial value of
z is usually small (Salimans & Kingma (2016)[13] recommend 0.05), the value of ⌘/z2 is
initially large and then decreases during learning because z is monotonously increasing. In
SGD, since ��2 / ⌘(⌘c � ⌘), a learning rate larger than ⌘c prevents convergence, while
too small a learning rate takes a long time to converge. The optimal learning rate which
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maximizes ��2 is ⌘ =
⌘c
2

, although the value of ⌘c is generally unknown. Contrary to this,

while performing WN the effective learning rate ⌘/z2 automatically decreases to near the
optimal learning rate

⌘c
2

. This mechanism seems to realize ⌘-independent fast converging.

Meanwhile, the converging speed of l, radial length, in WN cannot be larger than

�@A1

@l
⌘ — that in SGD. Hence, if the initial value of the radial length is near optimal

(l = 1), WN seems to greatly outperform SGD; otherwise, it is probable that WN yields
the same converging speed as SGD does. If the initial value of l is too far from optimal, WN
might be slower than SGD because ⌘/z2 may become too small and turn into a bottleneck
in converging.

In the next section, we confirm the correspondence between numerical solutions of
differential equations (4.9) and (2.11) about order parameters and simulation results about
the original microscopic system, then examine the hypotheses described in this section.

2.4 Experimental results

2.4.1 Consistency between simulation and numerical solution

We performed numerical simulations of original microscopic systems (N = 10000)
for SGD and WN. We set the weight vector of teacher B, the initial weight vector of student
J(0), and the initial direction vector V (0) by sampling their elements in accordance with
N (Bi|0, 1), N (Ji|0, l20), and N (Vi|0, z20), then normalizing them so that they suffice |B| =p
N , |J(0)| =

p
N l0, and |V (0)| =

p
N z0. We plotted the time course of order parameters

l, R, and z and compared them with numerical solutions of differential equations (4.9) and
(2.11) about order parameters (Figure 2.2). We confirmed their good agreement.

2.4.2 Dependence of converging speed on learning rate and initial radial

length

Next, we computed numerical solutions of differential equations (4.9) and (2.11),
investigated how the convergence speed of the generalization error towards 0 depends on
⌘ and l0, and compared the results in the cases of SGD and WN. (Figure 2.3 for g(x) = x,
and Figure 2.4 for g(x) = erf(x/

p
2); in the case of g(x) = ReLU(x), we got almost the

same results as Figure 2.3) (See Figure 2.5 for dependence on (⌘, l0).)

Dependence on learning rate

When the learning rate ⌘ is too large (⌘ > ⌘c), SGD does not allow the weight
vector to converge towards the global minimum, while WN realizes the ⌘-independent
converging speed as the same as that in a case of ⌘ ⇡ ⌘c.

When the weight vector converges to the global optimum, the “effective learning
rate” ⌘/z2 of direction cosine R decreases to near ⌘c/2 for a wide range of parameter
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Figure 2.2: Time course of order parameters and generalization error in (a) SGD and (b)
WN. blue: l, green: R, red: "g, cyan (in (b)): z. Solid lines represent numerical solutions of
differential equations (4.9) and (2.11). Markers represent simulation results (N = 10000).
Initial value of l is l0 = 1.0. In (b), initial value of z is z0 = 0.05. For all cases ⌘ = 0.1 and
g(x) = x.

values (yellow regions of Figure 2.5(d)). This demonstrates that the “automatic tuning of
the learning rate” indeed serves for the ⌘-independent converging speed.

Dependence on initial radial length

Only when the initial value of the radial length is near optimal, a wide range of
values of ⌘ (10�2 < ⌘ < 10 in Figure 2.3(a) and Figure 2.4(a)) yields the same converging
speed. Learning with p times smaller ⌘ takes 1/p times longer in the case of SGD, while in
the case of WN such elongation does not occur (within the range of ⌘ mentioned above).

In contrast, when the initial value of the radial length is significantly larger than
the global minimum, there are cases in which WN takes more time than SGD to converge
(l0 > 10 in Figure 2.3(c) and yellow region in Figure 2.5(c)). Figure 2.5(d) indicates that,
in such cases, the effective learning rate ⌘/z2 of the direction cosine parameter R reaches
a value below ⌘ that regulates l’s converging speed, showing that an effective learning
rate decreased too much turns into a bottleneck in converging. On the contrary, smaller
initial values of the radial length than optimum do not cause such a delay. Therefore, when
performing WN we should carefully choose the initial value of the radial length; it seems
that one near the optimum is best, and we should at least avoid one much larger than the
optimum.
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Figure 2.3: (a)(b) Dependence of elapsed time until generalization error "g falls below 0.01,
on (a)(b) learning rate ⌘ and (c) initial radial length l0. In (a) and (b), l0 is fixed to 1

(global minimum) and 0.1, respectively. In (c), ⌘ is fixed to 0.01. Red symbols: SGD. Blue
symbols: WN. Activation function is g(x) = x.
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Figure 2.4: (a)(b) Dependence of elapsed time until generalization error "g falls below 0.01,
on (a)(b) learning rate ⌘ and (c) initial radial length l0. In (a) and (b), l0 is fixed to 1

(global minimum) and 0.1, respectively. In (c), ⌘ is fixed to 0.01. Red symbols: SGD. Blue
symbols: WN. Activation function is g(x) = erf(x/

p
2).

30



Chapter 2. Learning Dynamics with Weight Normalization 2.5. Conclusion

2.5 Conclusion

Using the statistical mechanical method for online learning established by Biehl &
Schwarze (1995)[8] and Saad & Solla (1995)[9], we analyzed the weight normalization pro-
posed by Salimans & Kingma (2016)[13] in the simplest situation: that of single layer per-
ceptrons. We revealed quantitatively that the “automatic tuning” of the effective learning
rate of the direction cosine plays a critical role in fast convergence. Our theoretical argu-
ment does not depend on any specific form of the activation function. Thus, the mechanism
of WN we discussed is not dependent on activation and seems to be a proper characteristic
of WN.

In this study, we considered single layer perceptrons, although two-or-more-layered
networks are often used for practical applications. Unlike a single layer perceptron, a mul-
tilayer perceptron has singular points and plateaus in its loss surface, which prevent con-
verging towards its global minimum.[26] The fact that WN exhibits faster convergence
even in multilayer networks[13] suggests that WN performs well even under the existence
of singular points and plateaus. The statistical mechanical approach was used for a mul-
tilayer network by Biehl & Schwarze (1995)[8] and Saad & Solla (1995)[9] who addressed
a two-layered soft committee machine and Riegler & Biehl (1995)[26] who analyzed the
learning of two-layered perceptrons. Their methods seem to be applicable to the analysis
of learning in two-or-more-layered perceptrons with WN.

The advantage of the statistical mechanical method is that we can briefly inspect
the behavior of essential quantities like radial length and direction cosine. This statistical
mechanical method is also used for theoretical analysis of natural gradients[27] and analysis
of learning in networks with ReLU activation[28]. It might be useful for analysis of other
recent optimization algorithms[19, 20, 21, 22, 24, 25]. Further success of this approach is
expected.

2.A Calculation of expectation terms in the case of ReLU

activation

We calculate expectation terms I3(y1, y2, y3) := hg0(y1)y2g(y3)i and I4(y1, y2, y3) :=

hg0(y1)2g(y2)g(y3)i, where (y1, y2, y3) follows multivariate normal distribution N ((y1, y2, y3)|0, C)

and g(x) = ReLU(x) (:= max{0, x}).

For I3,

I3 = hg0(y1)y2g(y3)i =
Z

y1,y3>0
y2y3N (y|0, C)dy

=
1

(2⇡)3/2
p
|C|

Z

y1,y3>0
y2y3 exp(�

1

2
yTC�1y)dy

= � 1

(2⇡)3/2
p
|C|

@

@C�1
23

Z

y1,y3>0
exp(�1

2
yTC�1y)dy

= � 1p
|C|

@

@C�1
23

⇣p
|C|P3(C)

⌘
. (2.12)
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Here the term P3(C) :=

Z

y1,y3>0
N (y|0, C)dy is a “quadrant probability” of multivariate

distribution with zero mean and is calculated with the formula:[29]

P3(C) =
1

4
+

1

2⇡
arcsin

C13p
C11C33

. (2.13)

With

� 1p
|C|

@

@C�1
23

p
|C| = � 1p

|C|
@

@C�1
23

✓p
|C|
Z

R3
N (y|0, C)dy

◆

=

Z

R3
y2y3N (y|0, C)dy = C23,

equation (2.12) implies

I3 = C23P3(C)� @P3(C)

@C�1
23

,

and by substituting (2.13) for P3(C), we obtain the first row of equation (4.7).

In the same way, for I4 we get

I4 = C23P4(C)� @P4(C)

@C�1
23

where

P4(C) :=

Z

y1,y2,y3>0
N (y|0, C)dy,

and by using the formula[29]

P4(C) =
1

8
+

1

4⇡

✓
arcsin

C12p
C11C22

+ arcsin
C13p
C11C33

+ arcsin
C23p
C22C33

◆
,

we can derive the second row of equation (4.7).

2.B Case of arbitrary loss functions

In the main text, we assumed the squared loss function " =
1

2
(t � s)2. However,

there are many other loss functions which are commonly used, such as the softmax cross
entropy loss in classification tasks. In this section, we discuss the case of arbitrary loss
function "(s, t), where s is the student’s output, and t is the teacher’s output.

The differential equations (3) and (11), which describe the dynamics of order pa-
rameters, still hold if we replace the definition of terms Ai with

A1(l, R) = �
*
g0(lu)lu

@"

@s

����
(s,t)=(g(lu),g(v))

+
,

A2(l, R) =
1

2

*
g0(lu)2

"
@"

@s

����
(s,t)=(g(lu),g(v))

#2+
,

A3(l, R) = �
*
g0(lu)v

@"

@s

����
(s,t)=(g(lu),g(v))

+
.
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Figure 2.5: (a)(b) Elapsed time until generalization error "g falls below 0.01, shown as
function of learning rate ⌘ and initial radial length l0. (a) SGD, (b) WN. (c) Ratio of (a)
and (b) (WN/SGD). (d) Value of effective learning rate ⌘/z2 when "g reaches < 0.01 in
WN. Activation function is g(x) = x in all cases. Three dashed lines correspond to Figure
2.3 (a), (b), and (c).

Whether these new expectation terms can be determined analytically depends on both the
form of the activation function g(x) and loss function "(s, t).

In the subsection “Linear stability analysis”, we required A2 � 0, A3 � A1 � 0,
and A2 = A3 � A1 = 0 at the global minimum (l, R) = (1, 1). These properties are still
true, provided that the activation function g is monotonous and the loss function "(s, t)

with respect to s is single-peaked at the minimum s = t, for arbitrary t. In particular, the
softmax cross entropy loss

"(s, t) = H(Ber(t),Ber(s)) = �t log s� (1� t) log(1� s)

where Ber: Bernouli distribution, H: cross entropy

with the sigmoidal activation g(x) = 1/(1+ e�x) satisfies the conditions above. Hence, our
discussion suggests that WN with softmax cross entropy loss also works well.

Therefore, our theoretical argument can be extended to a wide range of loss func-
tions, and WN seems to be advantageous in more general situation.
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Chapter 3

Statistical Mechanical Analysis of

Learning Dynamics of Two-Layer

Perceptron with Multiple Output

Units
⇤

3.1 Introduction

Since deep learning was proposed in the late 2000s, neural networks have received
great attention. That is because they enabled us to solve real-world tasks in various fields,
including image recognition, speech recognition and machine translation tasks, with perfor-
mance far exceeding conventional methods. However, there are some problems with neural
networks left behind. One of them is the “plateau phenomenon,” the main topic of this
study, which we describe in detail below.

The perceptron is representative one of machine learning methods. Although it
was firstly proposed in 1958 [30], there was no efficient learning algorithm at that time,
and it was once got obsolete. In 1985, with discovery of the backpropagation method[31],
which is a fundamental learning algorithm of neural networks, neural networks began
to draw attention once again. However, another problem occurred; that is the “plateau
phenomenon,” wherein the learning slows down partway through. In the learning process
of neural networks, weight parameters of the neural network are updated iteratively so
that the loss (gap between the network’s output and desired output) decreases. However,
typically the loss does not decrease simply, but its decreasing speed slows down significantly
partway through learning, and then it speeds up again after a long period of time (see the
black line in Figure 3.2(a) and Figure 3.6 in the appendix for example). This is what we call
plateau phenomenon. The phenomenon is observed ubiquitously in learning of hierarchical
models, including neural networks, radial basis function networks and mixture of expert
models[32, 9, 33, 34, 35, 1, 36, 27]. However, in recent years, although many researchers and
engineers train hierarchical neural networks, the plateau phenomenon is rarely observed in

⇤This work has been published as [14].
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practical applications of deep learning. Why is that?

With regard to theoretical studies of learning dynamics, that of linear neural net-
works has been studied analytically[7, 37, 38]. However, the plateau phenomenon is specific
to nonlinear neural network, which has nonlinear activation function. Although studying
the learning dynamics of nonlinear neural networks is challenging, the underlying mech-
anism of the plateau phenomenon has been widely studied. It is known empirically that
neural networks get trapped into a plateau because they have symmetrical weights such
that their input-output relationship is invariant under swapping two units of a hidden layer.
The learning dynamics of neural networks have been studied in various settings. Some past
studies, using statistical mechanical formalization, derived the learning dynamics of a two-
layer soft committee machine[9] and a two-layer perceptron[32]; these researches showed
that the weight symmetry results in saddle points that cause plateauing. Furthermore, it
has been recognized that such plateau phenomenon stems from singular structure in the
parameter space (see [36, 6, 39, 40], or [41] for a review). In the parameter space, a Rie-
mannian metric is naturally induced by Fisher information matrix, which represents how
two models identified by slightly different parameters differ as statistical models[42]. This
metric is not necessarily regular, but there are regions in the parameter space in which
the metric degenerates, called singular regions[6]. More specifically, when we consider a
two-layer neural network, if it has two identical weight vectors projected from the input
layer to two different hidden units, its input-output relationship can be realized by an-
other model which has one lesser hidden units than the original model. If this downsized
model gives local minima of the loss in the downsized parameter space, the original model
parameter is in the singular region (see also the section “Singular regions and plateaus”
for detailed explanations). The gradient of the loss is zero everywhere within the singular
region. Although an isolated saddle point has the same property, the singular region and
a saddle point is different to an isolated saddle point in two ways; the singular region
has one-or-more dimension, and it is Milnor-like attractor[15], that is, it has a region of
attraction which has nonzero measure (see Figure 5 in [6] for a schematic diagram of the
singular region). However, all of these researches assume one-dimensional output; in other
words, networks that have multiple output units are overlooked, and they may avoid the
plateau phenomena, which is a usual situation in modern deep learning and seems to be
rational.

For these reasons, we analyze the learning dynamics of a two-layer nonlinear per-
ceptron that has multiple output units, with statistical mechanical formulation. First,
we introduce the student-teacher learning setting for ease of analysis [9, 8]. Second, we
introduce several order parameters, which can capture macroscopic characteristics of net-
work weights, and derive their evolution equations from that of microscopic variables (i.e.
network weights). We solve derived equations numerically to get macroscopic learning dy-
namics, with which we can discuss plateau phenomenon quantitatively. Under a simple
setting, we show that singular-region-driven plateaus diminish or vanish with multidimen-
sional output. We find that the less degenerative (i.e. like one-dimensional output) the
model is, the less the model approaches the singular region, and then the more plateau
shortens. Further, we show theoretically that singular-region-driven plateaus seldom occur
in the learning process if the student and teacher models are initialized orthogonally.
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Note that the claim that having multiple output units might alleviate plateau
phenomenon is hypothesized by intuitive insight in our previous work [43], but in the
current work we examine the hypothesis by experiments and theoretical analyses and show
that multiple output units can indeed prevent from approaching the singular region and
vanish plateaus.

3.2 Model

We considered a neural network with an input layer (size N), a hidden layer (size
K), and an output layer (size O). The network receives input data ⇠ 2 RN and calculates

output s =
KX

i=1

wig(J i · ⇠) 2 RO, where g is the activation function. The parameters

J and w are optimized during learning depending on the difference between the output
s and the teacher data t. We considered an ideal situation in which the teacher data t

is determined as t =
MX

n=1

vng(Bn · ⇠) 2 RO; in other words, the learning network (the

“student network”) learns the input-output relationship of the “teacher network”, which is
also a two-layer network and has N -M -O units and original fixed weights B and v (Figure

4.3(a)). We assumed the squared loss function " =
1

2
ks � tk2, which is most commonly

used for regression.

For the statistical mechanical formulation of online learning, we introduced fur-
ther idealization. We assumed that the dimension of input data N is very large and that
each element of input data ⇠ is generated in accordance with i.i.d. normal distribution,
N (⇠i|0, 1).⇤ We put xi := J i · ⇠ and yn := Bn · ⇠ and define Qij := J i · J j = hxixji,
Rin := J i ·Bn = hxiyni, Tnm := Bn ·Bm = hynymi and Dij := wi ·wj , Ein := wi · vn,
Fnm := vn · vm.

The parameters Qij , Rin, Tnm, Dij , Ein, and Fnm defined above capture the state
of the system macroscopically; they are therefore called as “order parameters.” The first
three represent the state of the first layers of the two networks (student and teacher), and
the latter three represent their second layers’ state (Figure 4.3(b)). Roughly speaking, Q
represents the norm of the student’s first layer and T represents that of the teacher’s first
layer. R is related to similarity between the student and teacher’s first layer. D,E, F is
the second layers’ counterpart of Q,R, T . Among these six order parameter matrices, the
values of Qij , Rin, Dij , and Ein change during learning; their dynamics are what to be
determined, from the dynamics of microscopic variables, i.e. connection weights.

3.3 Dynamics of order parameters

In this paper, we adopt the stochastic gradient descent (SGD) learning algorithm,
which underlies all conventional algorithms of neural networks used in practice. That is,

⇤This assumption can be relaxed. See the appendix at the end of this dissertation.
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Figure 3.1: (a) Student and teacher networks. (b) Geometrical interpretation of order
parameters Qij , Rin, Tnm, Dij , Ein, and Fnm.

every time an input sample is given, the output and sample loss is computed, the dif-
ferentiation of the sample loss with respect to model parameters is computed, and finally,
model parameters are moved against the gradient of the loss. The update rule of connection
weights with SGD is written as

�J i = �
⌘

N

d"

dJ i

=
⌘

N
[(t� s) ·wi]g

0(xi)⇠

=
⌘

N

2

4

0

@
MX

n=1

vng(yn)�
KX

j=1

wjg(xj)

1

A ·wi

3

5 g0(xi)⇠,

�wi = �
⌘

N

d"

dwi

=
⌘

N
g(xi)(t� s)

=
⌘

N
g(xi)

0

@
MX

n=1

vng(yn)�
KX

j=1

wjg(xj)

1

A ,

(3.1)

in which we set the learning rate as ⌘/N , in order to obtain N -independent macroscopic
system. The first equation of (4.1) gives the update rule of order parameters Qij and Rin
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in the form of difference equations:

�Qij = (J i +�J i) · (J j +�J j)� J i · J j

= J i ·�J j + J j ·�J i +�J i ·�J j

=
⌘

N

2

4
MX

p=1

Eipg
0(xi)xjg(yp)�

KX

p=1

Dipg
0(xi)xjg(xp)

+
MX

p=1

Ejpg
0(xj)xig(yp)�

KX

p=1

Djpg
0(xj)xig(xp)

3

5

+
⌘2

N2
k⇠k2

"
K,KX

p,q

DipDjqg
0(xi)g

0(xj)g(xp)g(xq)

+
M,MX

p,q

EipEjqg
0(xi)g

0(xj)g(yp)g(yq)

�
K,MX

p,q

DipEjqg
0(xi)g

0(xj)g(xp)g(yq)�
M,KX

p,q

EipDjqg
0(xi)g

0(xj)g(yp)g(xq)

#
,

�Rin = (J i +�J i) ·Bn � J i ·Bn

= �J i ·Bn

=
⌘

N

2

4
MX

p=1

Eipg
0(xi)yng(yp)�

KX

p=1

Dipg
0(xi)yng(xp)

3

5 .

(3.2)
Since k⇠k2 ⇡ N and the right hand sizes of these equations are O(N�1), we can replace
these difference equations with differential ones with N ! 1, by taking the expectation
over all input vectors ⇠:

dQij

d↵̃
= ⌘

2

4
MX

p=1

EipI3(xi, xj , yp)�
KX

p=1

DipI3(xi, xj , xp)

+
MX

p=1

EjpI3(xj , xi, yp)�
KX

p=1

DjpI3(xj , xi, xp)

3

5

+ ⌘2
"
K,KX

p,q

DipDjqI4(xi, xj , xp, xq) +
M,MX

p,q

EipEjqI4(xi, xj , yp, yq)

�
K,MX

p,q

DipEjqI4(xi, xj , xp, yq)�
M,KX

p,q

EipDjqI4(xi, xj , yp, xq)

#
,

dRin

d↵̃
= ⌘

2

4
MX

p=1

EipI3(xi, yn, yp)�
KX

p=1

DipI3(xi, yn, xp)

3

5

(3.3)

where I3(z1, z2, z3) := hg0(z1)z2g(z3)i,
I4(z1, z2, z3, z4) := hg0(z1)g0(z2)g(z3)g(z4)i.

(3.4)

In these equations, ↵̃ := ↵/N represents time (normalized number of steps), and
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the brackets h·i represent the expectation when the input ⇠ follows N (⇠i|0, 1), that is, when

(x1, . . . , xK , y1, . . . , yM ) follows N (0,

 
Q R

RT T

!
). Likewise, the difference equations of

the second layers’ order parameters Dij and Ein are obtained by the second equation of
(4.1) as

�Dij = (wi +�wi) · (wj +�wj)�wi ·wj

= wi ·�wj +wj ·�wi +�wi ·�wj

=
⌘

N

2

4
MX

p=1

Eipg(xj)g(yp)�
KX

p=1

Dipg(xj)g(xp)

+
MX

p=1

Ejpg(xi)g(yp)�
KX

p=1

Djpg(xi)g(xp)

3

5

+
⌘2

N2

"
K,KX

p,q

Dpqg(xi)g(xj)g(xp)g(xq) +
M,MX

p,q

Fpqg(xi)g(xj)g(yp)g(yq)

�2
K,MX

p,q

Epqg(xi)g(xj)g(xp)g(yq)

#
,

�Ein = (wi +�wi) · vn �wi · vn

= �wi · vn

=
⌘

N

2

4
MX

p=1

Fpng(xi)g(yp)�
KX

p=1

Epng(xi)g(xp)

3

5 .

(3.5)

Again, the right hand sides are O(N�1), therefore these difference equations can be rewrit-
ten to differential versions with N ! 1, by taking the expectation over all input vectors
⇠:

dDij

d↵̃
= ⌘

2

4
MX

p=1

EipI2(xj , yp)�
KX

p=1

DipI2(xj , xp)

+
MX

p=1

EjpI2(xi, yp)�
KX

p=1

DjpI2(xi, xp)

3

5 ,

dEin

d↵̃
= ⌘

2

4
MX

p=1

FpnI2(xi, yp)�
KX

p=1

EpnI2(xi, xp)

3

5

(3.6)

where I2(z1, z2) := hg(z1)g(z2)i. (3.7)

These differential equations govern the macroscopic dynamics. Note that the generalization
loss "g, the expectation of loss value "(⇠) =

1

2
ks�tk2 over all input vectors ⇠, is represented

as
"g = h1

2
ks� tk2i

=
1

2

"
M,MX

p,q

FpqI2(yp, yq) +
K,KX

p,q

DpqI2(xp, xq)� 2
K,MX

p,q

EpqI2(xp, yq)

#
.

(3.8)
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Expectation terms I2, I3 and I4 can be analytically determined for some activation func-
tions g, including sigmoid-like g(x) = erf(x/

p
2)[9], and g(x) = ReLU(x) =: max{0, x}

which is commonly used in deep learning[18, 12].

3.4 Singular regions and plateaus

In this section we review the concept of singular regions as the cause of the plateau
phenomenon[6].

In general, the input-output relationship (i.e. mapping) of a neural network is
determined by the parameter values (i.e. connection weights) of the network. However,
this correspondence is not one-to-one; in other words, there could be multiple settings
of parameter values that result in one specific model (i.e. input-output mapping). For
example, consider two-layer networks that have two hidden units (i.e. K = 2) and one
output unit (i.e. O = 1) as

s = w1g(J1 · ⇠) + w2g(J2 · ⇠) (3.9)

where the parameter is (J1,J2, w1, w2). Then, all of the parameter settings in the param-
eter regions

R1(J
⇤, w⇤) := {J1 = J2 = J⇤ and w1 + w2 = w⇤ | (J1,J2, w1, w2)},

R2(J
⇤, w⇤) := {(J1 = J⇤ and w1 = w⇤ and w2 = 0)

or (J2 = J⇤ and w1 = 0 and w2 = w⇤) | (J1,J2, w1, w2)}
(3.10)

correspond to the same model (i.e. input-output mapping):

s = w⇤g(J⇤ · ⇠). (3.11)

These parameter regions Ri are called the singular region.

The model (3.11) can be regarded as a K = 1 model, parameterized by J⇤ and w⇤.
Now suppose that

@"g
@w⇤ = 0 and

@"g
@J⇤ = 0; (3.12)

note that this occurs when the K = 1 model (3.11) gives a local minima of the generaliza-
tion loss "g in the K = 1 parameter space. Then, one can show that the gradient of the gen-
eralization loss is also zero throughout the singular regions R1 and R2 in the original K = 2

parameter space; that is, @"g/@wi = 0 and @"g/@J i = 0 if (J1,J2, w1, w2) 2 R1[R2, pro-
vided that (3.12) holds. Moreover, the singular region R1 has the following properties[44]:

• The region R1 is partially stable. When the parameter value is in the stable part of
R1, it undergoes a long period of random walk, by fluctuations due to the random
sampling of ⇠. Once the parameter value reached the unstable part of the region, it
starts moving away from the region.

• The region R1 is a Milnor-like attractor[15] in the sense that it has a positive measure
of basin of attraction. This means that randomly chosen initial parameter value will
get trapped in the region with nonzero probability.
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3.5. Numerical results Chapter 3. Learning Dynamics with Multiple Output Units

From these points, the singular region is completely different from a saddle point. When
trapped in the singular region, the learning process inevitably slows down. That is why the
singular region is considered to be the cause of plateaus.

However, the concept of problematic plateaus described above may not be true
when a network has multiple outputs (O > 1); the loss gradient does not necessarily vanish
at the singular region, and the network might not be attracted to the singular region[43].
Thus, we analyzed the learning dynamics of networks that have multiple output units and
examined whether or not the networks were trapped in the singular region and plateaus
during learning.

3.5 Numerical results

We discuss the dynamics of learning in a two-layer perceptron by numerically
solving the differential equations of the order parameters (4.9) and (4.5). For simplicity,
we focus on the case with K = M = 2 units in the hidden layers and O = 2 units in the
output layers. In the numerical experiments described below, we initialize the weights of
the first layers of the student and teacher networks with (J i)j , (Bi)j ⇠ N (0, 1/N) (i.i.d.).
This initialization makes the initial values of the first layers’ order parameters

Q =

 
1 0

0 1

!
, R =

 
0 0

0 0

!
, T =

 
1 0

0 1

!
(3.13)

on average. When N is finite, each component of the matrix Q, R and T has O(N�1) noise;
it vanishes as N ! 1. It is critical how we initialize the weights of the second layers of
the student and teacher networks, vi and wi. For example, consider the case

w1 = w1c, w2 = w2c; v1 = v1c, v2 = v2c (3.14)

where c is an arbitrary two-dimensional constant vector whose norm is 1. In this setting, the
outputs of the teacher and student networks, s, t 2 R2, are confined in the one-dimensional
subspace along c. This makes the learning process equivalent to one with one output unit.
In fact, when (3.14) holds,

t =

"
MX

n=1

vng(Bn · ⇠)
#
c = tc, s =

"
KX

i=1

wig(J i · ⇠)
#
c = sc (3.15)

where we defined scalar t and s as
MX

n=1

vng(Bn · ⇠) and
KX

i=1

wig(J i · ⇠) respectively. And

from the update rule (4.1),

�J i =
⌘

N
[(t� s) ·wi]g

0(xi)⇠ =
⌘

N
wi(t� s)g0(xi)⇠,

�wi =
⌘

N
g(xi)(t� s) =

⌘

N
g(xi)(t� s)c

that is, �wi =
⌘

N
g(xi)(t� s)

(3.16)

which is simply the update rule when both networks have only one output unit.
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Thus, how the student network with two-dimensional output learns the teacher
network with two-dimensional output largely depends on the initial condition of the weight
matrices of their second layers. To see this, we consider an initial condition parameterized
by ✓:

w1 = c, w2 = c✓; v1 = c, v2 = c✓ (3.17)

where c is again an arbitrary two-dimensional constant vector whose norm is 1, and c✓
is a constant vector which is obtained by rotating c by ✓. We refer to the parameter
✓ as non-degeneracy because it regulates the degeneracy of the weight matrices of the
second layers of both networks. We can test various situations by changing ✓ continuously;
✓ = 0 makes both matrices degenerate, and ✓ = ⇡/2 makes both matrices orthogonal.
The former situation, ✓ = 0, is equivalent to the one-dimensional output situation, as
previously described. The initial condition of the second layers’ order parameters Dij , Ein,
Fnm, corresponding to (3.17), is given by

D = E = F =

 
1 cos ✓

cos ✓ 1

!
. (3.18)

Putting these initial conditions together, we examined the learning dynamics in two ways:
by simulating the original microscopic system with finite N , i.e. conducting stochastic gra-
dient descent in accordance with the update rule (4.1) , and by solving the differential equa-
tions (4.9) and (4.5) of the order parameters numerically under initial conditions that match
the initial weights used when simulating the original microscopic system. The black lines in
Figure 3.2 show the time courses of the generalization loss "g in several typical situations:
(a) ✓ = 0, (b) ✓ = ⇡/8, (c) ✓ = ⇡/4, and (d) ✓ = ⇡/2. To evaluate quantitatively how near
the student network is to the singular region R1 and R2 , we calculated two measures: the
overlap of vectors J1 and J2, i.e. m(1)

12 := |J1 · J2|/kJ1kkJ2k = |Q12|/
p
Q11Q22, and the

minimum norm of vectors w1 and w2, i.e. l(2)min := min{kw1k, kw2k} = min{
p
D11,

p
D22}.

Note that m(1)
12 measures proximity to the region R1, and l(2)min indicates the distance to the

region R2. Figure 3.2 also shows the time evolutions of these measures with blue and red
lines, respectively. Results of microscopic simulations are also shown by dots. In every plot
in Figure 3.2, the solid lines and dots agree well, meaning that the macroscopic system
of order parameters appropriately captures the microscopic system of connection weights.
In Figure 3.2(a), the generalization loss "g stops during the first ⇠ 1800 steps, along with
high values of m(1)

12 , meaning that falling into the singular region R1 derived from network’s
symmetry. In Figure 3.2(b), the plateau shortens. An increase in m(1)

12 is still observed, al-
though its peak is lower than Figure 3.2(a). In Figure 3.2(c) and (d), there is no apparent
plateau. In particular, the overlap m(1)

12 is always 0 in Figure 3.2(d), signifying that the
student network does not approach the singular region R1 at all during learning. Note also
that no approach to the singular region R2, indicated by high values of l(2)min, is observed in
any plot in Figure 3.2 at any time. Figure 3.3 shows the times the plateau begins and ends,
depending on ✓, calculated by the numerical solutions of the order parameters. Here we de-
fine plateaus as “where the logarithm of generalization loss decreases at a rate slower than
a half of the typical rate,” where the typical rate is measured as the rate when "g < 10�10

is achieved. We found that the plateau is observed if and only if roughly |✓| < 0.1⇡ holds.
Note that our quantitative definition of plateaus above contains some arbitrariness, but it
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3.6. Orthogonal cases Chapter 3. Learning Dynamics with Multiple Output Units

(a) (b)

(c) (d)

Figure 3.2: Dependence of time course of generalization loss "g (black solid line) on
non-degeneracy parameter ✓. Time course of student’s first layer’s overlap m(1)

12 :=

|Q12|/
p

Q11Q22 (blue dashed line) and minimum norm of student’s second norm l(2)min :=

min{
p
D11,

p
D22} (red dot-dashed line) also shown. These lines indicate how student

network is close to singular regions R1 and R2, respectively. (a) ✓ = 0, (b) ✓ = ⇡/8, (c)
✓ = ⇡/4, (d) ✓ = ⇡/2. Simulation results of microscopic systems shown by dots (diamonds,
circles, and triangles for "g, m

(1)
12 and l(2)min respectively). Generalization loss of simulation

results approximated by averaged sample loss (") over 100 contiguous steps. Simulation
parameters: N = 1000, ⌘ = 0.1 (⌘/N = 0.0001). Activation function: g(x) = erf(x/

p
2).

does not affect the main point; the plateau phenomenon get alleviated as |✓| increases, as
is evident from Figure 3.2.

3.6 Cases for orthogonal second layers

Up to this point, we considered cases in which the second layers of two networks
have identical weights, as (3.17). However, this is not practical because it means that the
student knows about the teacher in advance. Thus, we consider a slightly different situation:

w1 = c, w2 = c⇡/2; v1 = c�, v2 = c�+⇡/2, (3.19)

wherein the student matrix and teacher matrix are not identical but are both orthogonal.
The initial conditions of the order parameters Dij , Ein, Fnm, corresponding to (3.19), are
given by

D =

 
1 0

0 1

!
, E =

 
cos� � sin�

sin� cos�

!
, F =

 
1 0

0 1

!
. (3.20)
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Figure 3.3: Dependence of when plateau starts and ends and when generalization loss
converges on non-degeneracy parameter ✓. Blue solid line: start of plateau, green dashed
line: end of plateau, red dot-dashed line: achieving "g < 10�10. See main text for definition
of plateau in this figure. Parameters: ⌘ = 0.02. Activation: g(x) = erf(x/

p
2).

Under these initial conditions, we found that the orthogonality w1 ? w2 remains true
during learning at any time, as formally stated in the Proposition below. In other words,
we prove that the student network stays opposite the singular region R1.

Proposition. Assume K = M = 2 and O � 2, and consider the situation in which
N ! 1. Assume that the activation g is an odd function and that the right sides of the
differential equations are Lipschitz continuous in the vicinity of the solution trajectory
(Q,R,D,E) during learning. If both the teacher and student network have a pair of or-
thogonal column vectors in its second layer’s weight matrix, that is, v1 ? v2 and w1 ? w2

hold at the initial state, then the orthogonality w1 ? w2 holds at any time during learning.
⌅

We give the proof of the Proposition in the Appendix.

The numerical solution of the differential equations of the order parameters, under
the initial conditions described above, is shown in Figure 3.4. These solutions tell us that
there is no approach to the singular regions R1 and R2 and that no plateau is seen, except
for the case of � = ⇡/4 (Figure 3.4(d)); this plateau is not due to the singular regions but
rather to being stuck at a saddle point where the weight vectors of the second layer of the
student network are perturbed by the stochastic gradient and can easily escape.

3.7 Simulation results for more practical cases

By using order parameters we analyzed theoretically the case with two hidden units.
However, networks with greater number of hidden units are usually used in practice.Also,
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(a) (b)

(c) (d)

Figure 3.4: Dependence of time course of generalization loss "g (black solid line) on rotation
parameter �. m(1)

12 (blue dashed line) and l(2)min (red dot-dashed line) also shown; see caption
of Figure 3.2 for detailed explanation. (a) � = 0, (b) � = ⇡/8, (c) � = 3⇡/16, (d) � = ⇡/4.
Simulation results of microscopic systems shown by dots (diamonds, circles, and triangles
for "g, m

(1)
12 and l(2)min respectively). Generalization loss of simulation results approximated

by averaged sample loss (") over 100 contiguous steps. Simulation parameters: N = 1000,
⌘ = 0.1 (⌘/N = 0.0001). Activation: g(x) = erf(x/

p
2).

the setting above assumes infinite number of samples which is not available in reality.
Furthermore, various optimization techniques developed in recent years such as mini-batch,
dropout and gradient descent with adaptive learning rate are widely used. In these practical
cases the learning dynamics might not be tractable. We examined such cases by numerical
simulations of microscopic systems.

In our experiment, a student network and a teacher network both of which have
100 input units and 10 hidden units are used. First we generated 4000 training samples
and 1000 test samples by using the teacher network which weights are randomly chosen.
We then trained the student network which weights are randomly initialized using training
samples only, and computed the training loss and the test loss after every epoch.

In Figure 3.5, the dynamics of the learning in the experiment is shown. (Although
this dynamics depends on the initial weights, the qualitative shapes of the plateaus do
not depends much; see the appendix.) The output dimension is 1 in Figure 3.5(a) and (c),
and 10 in Figure 3.5(b) and (d). These results apparently indicates that the plateau is
alleviated by multiple output units.

We also examined the cases with Adam optimizer, bias terms and dropout regu-
larization. All these results are consistent with the idea that multiple outputs mitigate the

46



Chapter 3. Learning Dynamics with Multiple Output Units 3.8. Conclusion

(a) (b)

(c) (d)

Figure 3.5: Simulation results of time course of training loss (black line) and test loss (gray
line), depending on number of output units and choice of optimizers. Time course of stu-
dent’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line) also shown.

This maximum overlap indicates how student network is close to singular region. (a)(b)
stochastic gradient descent (learning rate: 0.01), (c)(d) Adam optimizer. (a)(c) networks
with 1 output unit, (b)(d) networks with 10 output units. Mini-batch size: 1000. Activation
function: g(x) = tanh(x).

plateaus due to the singular regions (see the appendix).

3.8 Conclusion

We analyzed the learning dynamics of two-layer networks that have multiple out-
put units by means of statistical mechanical formulation. By defining order parameters,
deriving the differential equations they follow, and solving said equations, we clarified ex-
perimentally and theoretically that multiple-output networks are less likely to be trapped
in plateaus because of singularity than single-output networks are.

Through this paper, we suggest reconsidering the established idea that singular
structures cause plateaus and they interrupt learning. However, more general cases, such
as cases with deeper neural networks, have yet to be researched.

47



3.A. Proof of orthogonality Chapter 3. Learning Dynamics with Multiple Output Units
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3.A Proof of continued orthogonality during learning

This section gives the proof of the Proposition in the main text:

Proposition. Assume K = M = 2 and O � 2, and consider the situation in which
N ! 1. Assume that the activation g is an odd function and that the right sides of the
differential equations are Lipschitz continuous in the vicinity of the solution trajectory
(Q,R,D,E) during learning. If both the teacher and student network have a pair of or-
thogonal column vectors in its second layer’s weight matrix, that is, v1 ? v2 and w1 ? w2

hold at the initial state, then the orthogonality w1 ? w2 holds at any time during learning.
⌅
Proof. We prove the following claim: suppose K = M = 2 and O � 2, and the activation
g is an odd function, then the differential equations (4.9) and (4.5) imply that

if Q / I, R+RT / I, D / I, E + ET / I, T / I, F / I (⇤)
then Q̇ / I, Ṙ+ ṘT / I, Ḋ / I, Ė + ĖT / I,

(3.21)

where I denotes the 2⇥ 2 identity matrix, and X / I means that there exists c 2 R such
that X = cI.

Proving this claim (3.21) is sufficient for the proof of the proposition. Suppose that
⇥̂(↵) = (Q̂(↵), R̂(↵), D̂(↵), Ê(↵)) is one solution of the differential equation. What we
have to show is that the solution always lies in the subspace

S := {(Q,R,D,E) | Q / I, R+RT / I, D / I and E + ET / I}. (3.22)

If we denote by P ⇥̂ the vector from ⇥̂ to the foot of its perpendicular to S (note that this
mapping is linear), what we have to show is

f(↵) := P ⇥̂(↵) = 0 (3.23)

for all time ↵. We have
f(0) = 0 (3.24)

by substituting the initial condition (3.13) and (3.20), and we have

f(↵) = 0 =) P
d

d↵
⇥̂(↵) = 0 (from claim (3.21))

=) df

d↵
(↵) = P

d

d↵
⇥̂(↵) = 0

(3.25)

for given time ↵. These imply that f(↵) ⌘ 0 is one solution of the differential equation
for f . Lipschitz continuity ensures that the uniqueness of the solution of the differential
equation, therefore we have f(↵) ⌘ 0 for all ↵.

To prove the claim (3.21), we first show the following lemma.
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Lemma 1. If the condition (*) in the claim (3.21) holds, the following relations hold:

I2(ai1 , bi2) = (�1)�(i1=1)�(i2=1)I2(aj1 , bj2),

I3(ai1 , bi2 , ci3) = (�1)�(i2=1)�(i3=1)I3(aj1 , bj2 , cj3),

I4(ai1 , bi2 , ci3 , di4) = (�1)�(i3=1)�(i4=1)I4(aj1 , bj2 , cj3 , dj4),

(3.26)

where each of a, b, c and d is either x or y, and {ie, je} = {1, 2} for e = 1, 2, 3, 4.

Proof of Lemma 1. If the condition (*) holds, the covariance matrix of (x1, x2, y1, y2)
is given by

⌃ =

0

BBB@

Q11 0 R11 R12

0 Q11 �R12 R11

R11 �R12 T11 0

R12 R11 0 T11

1

CCCA
. (3.27)

This matrix ⌃ has the following property:

N (z1, z2, z3, z4 | 0,⌃) = N (�z2, z1,�z4, z3 | 0,⌃). (3.28)

Therefore, for arbitrary functions f ,

hf(x1, x2, y1, y2)i =
Z

f(x1, x2, y1, y2)N (x1, x2, y1, y2 | 0,⌃) dx1dx2dy1dy2

=

Z
f(�x2, x1,�y2, y1)N (�x2, x1,�y2, y1 | 0,⌃) dx1dx2dy1dy2

=

Z
f(�x2, x1,�y2, y1)N (x1, x2, y1, y2 | 0,⌃) dx1dx2dy1dy2

= hf(�x2, x1,�y2, y1)i,

(3.29)

and since g is an odd function,

I2(ai1 , bi2) = hg(ai1)g(bi2)i

= hg((�1)�(i1=1)aj1)g((�1)�(i2=1)bj2)i

= (�1)�(i1=1)�(i2=1)hg(aj1)g(bj2)i

= (�1)�(i1=1)�(i2=1)I2(aj1 , bj2),

I3(ai1 , bi2 , ci3) = hg0(ai1)bi2g(ci3)i

= hg0((�1)�(i1=1)ai1)(�1)�(i2=1)bi2g((�1)�(i3=1)ci3)i

= (�1)�(i2=1)�(i3=1)hg0(aj1)g(bj2)i

= (�1)�(i2=1)�(i3=1)I3(aj1 , bj2 , cj3),

I4(ai1 , bi2 , ci3 , di4) = hg0(ai1)g0(bi2)g(ci3)g(di4)i

= hg0((�1)�(i1=1)aj1)g
0((�1)�(i2=1)bj2)

· g((�1)�(i3=1)cj3)g((�1)�(i4=1)dj4)i

= (�1)�(i3=1)�(i4=1)hg0(aj1)g0(bj2)g(cj3)g(dj4)i

= (�1)�(i3=1)�(i4=1)I4(aj1 , bj2 , cj3 , dj4),

(3.30)

which is the statement of the lemma. ⌅
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Lemma 2. I4(z1, z2, z3, z4) = I4(z2, z1, z3, z4) = I4(z1, z2, z4, z3).

Proof of Lemma 2. The proof is clear from the definition of I4. ⌅
Proof of Proposition. Since the matrices Q, T , D, and F are symmetric, what we
have to show is

Q̇11 = Q̇22, Q̇12 = 0,

Ṙ11 = Ṙ22, Ṙ12 + Ṙ21 = 0,

Ḋ11 = Ḋ22, Ḋ12 = 0,

Ė11 = Ė22, Ė12 + Ė21 = 0.

(3.31)

First, for Q̇, we have

NQ̇11 = 2⌘ [E11I3(x1, x1, y1) + E12I3(x1, x1, y2)�D11I3(x1, x1, x1)]

+ ⌘2
⇥
D2

11I4(x1, x1, x1, x1) + E2
11I4(x1, x1, y1, y1)

+E11E12[I4(x1, x1, y1, y2) + I4(x2, x2, y2, y1)] + E2
12I4(x1, x1, y2, y2)

�D11E11[I4(x1, x1, x1, y1) + I4(x1, x1, y1, x1)]

�D11E12[I4(x1, x1, x1, y2) + I4(x1, x1, y2, x1)]] ,

NQ̇22 = 2⌘ [E11I3(x2, x2, y2)� E12I3(x2, x2, y1)�D11I3(x2, x2, x2)]

+ ⌘2
⇥
D2

11I4(x2, x2, x2, x2) + E2
11I4(x2, x2, y2, y2)

�E11E12[I4(x2, x2, y2, y1) + I4(x1, x1, y1, y2)] + E2
12I4(x2, x2, y1, y1)

�D11E11[I4(x2, x2, x2, y2) + I4(x2, x2, y2, x2)]

+D11E12[I4(x2, x2, x2, y1) + I4(x2, x2, y1, x2)]] ,

NQ̇12 = ⌘ [E11[I3(x1, x2, y1) + I3(x2, x1, y2)] + E12[I3(x1, x2, y2)� I3(x2, x1, y1)]

�D11[I3(x1, x2, x1) + I3(x2, x1, x2)]]

+ ⌘2
⇥
D2

11I4(x1, x2, x1, x2) + E2
11I4(x1, x2, y1, y2)

+E11E12[�I4(x1, x2, y1, y1) + I4(x1, x2, y2, y2)]� E2
12I4(x1, x2, y2, y1)

�D11E11[I4(x1, x2, x1, y2) + I4(x1, x2, y1, x2)]

�D11E12[�I4(x1, x2, x1, y1) + I4(x1, x2, y2, x2)]]

(3.32)

from the equation (4.9) and the assumption of the proposition. Applying the lemmas to
each I-term, we can confirm Q̇11 = Q̇22 and Q̇12 = 0.

With respect to R, we find

NṘ11 = ⌘ [E11I3(x1, y1, y1) + E12I3(x1, y1, y2)�D11I3(x1, y1, x1)] ,

NṘ22 = ⌘ [E11I3(x2, y2, y2)� E12I3(x2, y2, y1)�D11I3(x2, y2, x2)] ,

NṘ12 = ⌘ [E11I3(x1, y2, y1) + E12I3(x1, y2, y2)�D11I3(x1, y2, x1)] ,

NṘ21 = ⌘ [E11I3(x2, y1, y2)� E12I3(x2, y1, y1)�D11I3(x2, y1, x2)] ,

(3.33)

and by applying the lemmas to the I-terms, Ṙ11 = Ṙ22 and Ṙ12 + Ṙ21 = 0 are implied.
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In the same way, we have

NḊ11 = 2⌘ [E11I2(x1, y1) + E12I2(x1, y2)�D11I2(x1, x1)] ,

NḊ22 = 2⌘ [E11I2(x2, y2)� E12I2(x2, y1)�D11I2(x2, x2)] ,

NḊ12 = ⌘[E11[I2(x2, y1) + I2(x1, y2)] + E12[I2(x2, y2)� I2(x1, y1)]

�D11[I2(x2, x1) + I2(x1, x2)]],

(3.34)

and
NĖ11 = ⌘ [F11I2(x1, y1)� E11I2(x1, x1) + E12I2(x1, x2)] ,

NĖ22 = ⌘ [F11I2(x2, y2)� E11I2(x2, x2)� E12I2(x2, x1)] ,

NĖ12 = ⌘ [F11I2(x1, y2)� E11I2(x1, x2)� E12I2(x1, x1)] ,

NĖ21 = ⌘ [F11I2(x2, y1)� E11I2(x2, x1) + E12I2(x2, x2)] ,

(3.35)

and by using the lemmas we can confirm Ḋ11 = Ḋ22, Ḋ12 = 0, Ė11 = Ė22, and Ė12+ Ė21 =

0, the statements of the proposition. ⌅

3.B Experimental results under more practical settings

We examined learning dynamics under more practical situations than our two-
hidden-unit model, including greater number of hidden units, use of bias terms, mini-
batch learning, adaptive learning coefficient and regularization techniques, as we showed
the typical results in the Figure 3.5 in the main text. In this section, we describe detailed
results of our experiment.

3.B.1 Ten hidden units

In the Figure 3.5(a)(b) in the main text, we compared 100-10-1 case (i.e. case with
100 input units, 10 hidden units and 1 output unit) and 100-10-10 case. Here we describe the
result in detail. Each of ten subfigures in Figure 3.6 below represents a learning dynamics
obtained under the same setting as Figure 3.5(a) in the main text, except for initial weights.
Similarly, each of ten subfigures in Figure 3.7 below represents that obtained under Figure
3.5(b) settings.

In Figure 3.6, plateaus and approaching the singular region are observed regardless
of the initial weights, and no convergence to the global minimum is achieved during 600000
epochs in all trials (here we define convergence by achieving the loss < 10�6). In contrast,
in Figure 3.7 there is no plateau observed in large fraction of trials, and all trials succeed
in converging to the global minimum within 30000 epochs.

3.B.2 Adam optimizer

We examined whether adaptive learning rate mitigates the plateaus in Figure
3.5(c)(d) in the main text. Figure 3.8 and Figure 3.9 below shows ten results obtained
under the Figure 3.5(c) and Figure 3.5(d) situations, respectively. These figures indicate
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that adaptive gradient descent methods does not change our conclusion; larger number of
output mitigates plateaus and speeds up learning.

3.B.3 Bias terms

We also investigated the effect of the bias terms. That is, we modified the network

model to s =
KX

i=1

wig(J i · ⇠+ bi)+ c 2 RO. The results in Figure 3.10 indicates again that

increasing output units mitigates plateaus under the presence of bias terms.

3.B.4 Dropout regularization

Furthermore we inspected the effect of the dropout regularization. When using
dropout or other regularization techniques such as L2 penalty term, the student network
with any weight values cannot achieve zero training error, and the global minima in the
training error landscape is not trivial. This makes difficult to compare the converging speed
of learning. In Figure 3.12, every trial ends up with close-to-1 maximum overlaps, implying
that the global minima are in the singular region unlike no-dropout case, or all cases are
trapped in very long plateaus (longer than 600000 epochs). In Figure 3.13, the approach
to the singular region are mitigated.
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Figure 3.6: Simulation results of time course of training error (black line) and test
error (gray line). Time course of student’s first layer’s maximum overlap m(1)

max :=

max
i<j

|Qij |/
p
QiiQjj (blue line) also shown. Experimental setting is same as Figure 3.5(a)

in the main text; that is, network size is 100 - 10 - 1.

Figure 3.7: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line).

Experimental setting is same as Figure 3.5(b); that is, network size is 100 - 10 - 10.
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Figure 3.8: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line).

Experimental setting is same as Figure 3.5(c), i.e. with Adam optimizer and one output
unit.

Figure 3.9: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line).

Experimental setting is same as Figure 3.5(d), i.e. with Adam optimizer and ten output
unit.
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Figure 3.10: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line),

with use of bias terms. Network size: 100 - 10 - 1.

Figure 3.11: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line),

with use of bias terms. Network size: 100 - 10 - 10.
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Figure 3.12: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line),

with use of dropout. Dropout ratio: 1/10. Network size: 100 - 10 - 1.

Figure 3.13: Simulation results of time course of training error (black line), test error (gray
line), and student’s first layer’s maximum overlap m(1)

max := max
i<j

|Qij |/
p
QiiQjj (blue line),

with use of dropout. Dropout ratio: 1/10. Network size: 100 - 10 - 10.
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Chapter 4

Data-Dependence of Plateau

Phenomenon in Learning with

Neural Network — Statistical

Mechanical Analysis
⇤

4.1 Introduction

4.1.1 Plateau Phenomenon

Deep learning, and neural network as its essential component, has come to be ap-
plied to various fields. However, these still remain unclear in various points theoretically.
The plateau phenomenon is one of them. In the learning process of neural networks, their
weight parameters are updated iteratively so that the loss decreases. However, in some set-
tings the loss does not decrease simply, but its decreasing speed slows down significantly
partway through learning, and then it speeds up again after a long period of time. This is
called as “plateau phenomenon”. Since 1990s, this phenomena have been reported to occur
in various practical learning situations (see Figure 4.1 (a) and [1, 6]) . As a fundamental
cause of this phenomenon, it has been pointed out by a number of researchers that the
intrinsic symmetry of neural network models brings singularity to the metric in the pa-
rameter space which then gives rise to special attractors whose regions of attraction have
nonzero measure, called as Milnor attractor (defined by [15]; see also Figure 5 in [6] for a
schematic diagram of the attractor).

4.1.2 Who moved the plateau phenomenon?

However, the plateau phenomenon seldom occurs in recent practical use of neural
networks (see Figure 4.1 (b) for example).

⇤This work has been presented as [16].
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In this research, we rethink the plateau phenomenon, and discuss which situa-
tions are likely to cause the phenomenon. First we introduce the student-teacher model
of two-layered networks as an ideal system. Next, we reduce the learning dynamics of the
student-teacher model to a small-dimensional order parameter system by using statisti-
cal mechanical formulation, under the assumption that the input dimension is sufficiently
large. Through analyzing the order parameter system, we can discuss how the macroscopic
learning dynamics depends on the statistics of input data. Our main contribution is the
following:

• Under the statistical mechanical formulation of learning in the two-layered percep-
tron, we showed that macroscopic equations can be derived even when the statistical
properties of the input are generalized. In other words, we extended the result of [9]
and [32].

• By analyzing the macroscopic system we derived, we showed that the dynamics of
learning depends only on the eigenvalue distribution of the covariance matrix of the
input data.

• We clarified the relationship between the input data statistics and plateau phe-
nomenon. In particular, it is shown that the data whose covariance matrix has small
and dispersed eigenvalues tend to make the phenomenon inconspicuous, by numeri-
cally analyzing the macroscopic system.

4.1.3 Related works

The statistical mechanical approach used in this research is firstly developed by
[9]. The method reduces high-dimensional learning dynamics of nonlinear neural networks
to low-dimensional system of order parameters. They derived the macroscopic behavior of
learning dynamics in two-layered soft-committee machine and by analyzing it they point
out the existence of plateau phenomenon. Nowadays the statistical mechanical method is
applied to analyze recent techniques ([45], [12], [46] and [47]), and generalization perfor-
mance in over-parameterized setting ([48]) and environment with conceptual drift ([49]).
However, it is unknown that how the property of input dataset itself can affect the learn-
ing dynamics, including plateaus. Although previous works assume the standard normal
distribution for input data, it is not realistic from the viewpoint of the manifold hypoth-
esis, according to which practical data presented in high dimensional ambient spaces are
expected to concentrate in the vicinity of a manifold whose dimension is much lower than
that of the ambient space[17].

Plateau phenomenon and singularity in loss landscape as its main cause have been
studied by [6], [50], [51] and [52]. On the other hand, recent several works suggest that
plateau and singularity can be mitigated in some settings. [53] shows that skip connections
eliminate the singularity. Another work by [14] points out that output dimensionality affects
the plateau phenomenon, in that multiple output units alleviate the plateau phenomenon.
However, the number of output elements does not fully determine the presence or absence
of plateaus, nor does the use of skip connections. The statistical property of data just can
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affect the learning dynamics dramatically; for example, see Figure 4.2 for learning curves
with using different datasets and same network architecture. We focus on what kind of
statistical property of the data brings plateau phenomenon.

Figure 4.1: (a) Training loss curves when two-layer perceptron with 4-4-3 units and ReLU
activation learns IRIS dataset. (b) Training loss curve when two-layer perceptron with
784-20-10 units and ReLU activation learns MNIST dataset. For both (a) and (b), results
of 100 trials with random initialization are overlaid. Minibatch size of 10 and vanilla SGD
(learning rate: 0.01) are used.

Figure 4.2: Loss curves yielded by student-teacher learning with two-layer perceptron which
has 2 hidden units, 1 output unit and sigmoid activation, and with (a) IRIS dataset, (b)
MNIST dataset, (c) a dataset in R60000⇥784 drawn from standard normal distribution, as
input distribution p(⇠). In every subfigure, results for 20 trials with random initialization
are overlaid. Vanilla SGD (learning rate: (a)(b) 0.005, (c) 0.001) and minibatch size of 1
are used for all three settings.

4.2 Formulation

4.2.1 Student-Teacher Model

We consider a two-layer perceptron which has N input units, K hidden units and
1 output unit. We denote the input to the network by ⇠ 2 RN . Then the output can be
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written as s =
KX

i=1

wig(J i · ⇠) 2 R, where g is an activation function.

We consider the situation that the network learns data generated by another net-
work, called “teacher network”, which has fixed weights. Specifically, we consider two-layer

perceptron that outputs t =
MX

n=1

vng(Bn · ⇠) 2 R for input ⇠ as the teacher network. The

generated data (⇠, t) is then fed to the student network stated above and learned by it
in the on-line manner (see Figure 4.3). We assume that the input ⇠ is drawn from some
distribution p(⇠) every time independently. We adopt vanilla stochastic gradient descent

(SGD) algorithm for learning. We assume the squared loss function " =
1

2
(s � t)2, which

is most commonly used for regression.

4.2.2 Statistical Mechanical Formulation

In order to capture the learning dynamics of nonlinear neural networks described
in the previous subsection macroscopically, we introduce the statistical mechanical formu-
lation in this subsection.

Let xi := J i · ⇠ (1  i  K) and yn := Bn · ⇠ (1  n M). Then

(x1, . . . , xK , y1, . . . , yM ) ⇠ N
�
0, [J1, . . . ,JK ,B1, . . . ,BM ]T⌃[J1, . . . ,JK ,B1, . . . ,BM ]

�

holds with N !1 by generalized central limit theorem, provided that the input distribu-
tion p(⇠) has zero mean and finite covariance matrix ⌃.⇤

Next, let us introduce order parameters as following: Qij := JT

i ⌃J j = hxixji,
Rin := JT

i ⌃Bn = hxiyni, Tnm := BT

n⌃Bm = hynymi and Dij := wiwj , Ein := wivn,
Fnm := vnvm. Then

(x1, . . . , xK , y1, . . . , yM ) ⇠ N (0,

 
Q R

RT T

!
).

The parameters Qij , Rin, Tnm, Dij , Ein, and Fnm introduced above capture the
state of the system macroscopically; therefore they are called as “order parameters.” The
first three represent the state of the first layers of the two networks (student and teacher),
and the latter three represent their second layers’ state. Q describes the statistics of the
student’s first layer and T represents that of the teacher’s first layer. R is related to similar-
ity between the student and teacher’s first layer. D,E, F is the second layers’ counterpart
of Q,R, T . The values of Qij , Rin, Dij , and Ein change during learning; their dynamics
are what to be determined, from the dynamics of microscopic variables, i.e. connection
weights. In contrast, Tnm and Fnm are constant during learning.

⇤Actually we need more conditions for the input distribution. See the appendix at the end of this
dissertation.
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Figure 4.3: Overview of student-teacher model formulation.

Higher-order order parameters

The important difference between our situation and that of [9] is the covariance
matrix ⌃ of the input ⇠ is not necessarily equal to identity. This makes the matter compli-
cated, since higher-order terms ⌃e (e = 1, 2, . . .) appear inevitably in the learning dynamics
of order parameters. In order to deal with these, here we define some higher-order version
of order parameters.

Let us define higher-order order parameters Q(e)
ij

, R(e)
in

and T (e)
nm for e = 0, 1, 2, . . .,

as Q(e)
ij

:= JT

i ⌃
eJ j , R(e)

in
:= JT

i ⌃
eBn, and T (e)

nm := BT

n⌃
eBm. Note that they are

identical to Qij , Rin and Tnm in the case of e = 1. Also we define higher-order version of
xi and yn, namely x(e)

i
and y(e)n , as x(e)

i
:= ⇠T⌃eJ i, y

(e)
n := ⇠T⌃eBn. Note that x(0)

i
= xi

and y(0)n = yn.

4.3 Derivation of dynamics of order parameters

At each iteration of on-line learning, weights of the student network J i and wi are
updated with

�J i = �
⌘

N

d"

dJ i

=
⌘

N
[(t� s) ·wi]g

0(xi)⇠ =
⌘

N

2

4

0

@
MX

n=1

vng(yn)�
KX

j=1

wjg(xj)

1

A ·wi

3

5 g0(xi)⇠,

�wi = �
⌘

N

d"

dwi

=
⌘

N
g(xi)(t� s) =

⌘

N
g(xi)

0

@
MX

n=1

vng(yn)�
KX

j=1

wjg(xj)

1

A ,

(4.1)
in which we set the learning rate as ⌘/N , so that our macroscopic system is N -independent.

Then, the order parameters Q(e)
ij

and R(e)
in

(e = 0, 1, 2, . . .) are updated with
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�Q(e)
ij

= (J i +�J i)
T⌃e(J j +�J j)� JT

i ⌃
eJ j = JT

i ⌃
e�J j + JT

j ⌃
e�J i +�JT

i ⌃
e�J j

=
⌘

N

2

4
MX

p=1

Eipg
0(xi)x

(e)
j

g(yp)�
KX

p=1

Dipg
0(xi)x

(e)
j

g(xp)

+
MX

p=1

Ejpg
0(xj)x

(e)
i

g(yp)�
KX

p=1

Djpg
0(xj)x

(e)
i

g(xp)

3

5

+
⌘2

N2
⇠T⌃e⇠

"
K,KX

p,q

DipDjqg
0(xi)g

0(xj)g(xp)g(xq) +
M,MX

p,q

EipEjqg
0(xi)g

0(xj)g(yp)g(yq)

�
K,MX

p,q

DipEjqg
0(xi)g

0(xj)g(xp)g(yq) �
M,KX

p,q

EipDjqg
0(xi)g

0(xj)g(yp)g(xq)

#
,

�R(e)
in

= (J i +�J i)
T⌃eBn � JT

i ⌃
eBn = �JT

i ⌃
eBn

=
⌘

N

2

4
MX

p=1

Eipg
0(xi)y

(e)
n g(yp)�

KX

p=1

Dipg
0(xi)y

(e)
n g(xp)

3

5 .

(4.2)

Since

⇠T⌃e⇠ ⇡ Nµe+1 where µd :=
1

N

NX

i=1

�d

i , �1, . . . ,�N : eigenvalues of ⌃

and the right hand sides of the difference equations are O(N�1), we can replace these
difference equations with differential ones with N !1, by taking the expectation over all
input vectors ⇠:

dQ(e)
ij

d↵̃
= ⌘

2

4
MX

p=1

EipI3(xi, x
(e)
j

, yp)�
KX

p=1

DipI3(xi, x
(e)
j

, xp)

+
MX

p=1

EjpI3(xj , x
(e)
i

, yp)�
KX

p=1

DjpI3(xj , x
(e)
i

, xp)

3

5

+ ⌘2µe+1

"
K,KX

p,q

DipDjqI4(xi, xj , xp, xq) +
M,MX

p,q

EipEjqI4(xi, xj , yp, yq)

�
K,MX

p,q

DipEjqI4(xi, xj , xp, yq) �
M,KX

p,q

EipDjqI4(xi, xj , yp, xq)

#
,

dR(e)
in

d↵̃
= ⌘

2

4
MX

p=1

EipI3(xi, y
(e)
n , yp)�

KX

p=1

DipI3(xi, y
(e)
n , xp)

3

5

(4.3)

where I3(z1, z2, z3) := hg0(z1)z2g(z3)i and I4(z1, z2, z3, z4) := hg0(z1)g0(z2)g(z3)g(z4)i.
(4.4)

In these equations, ↵̃ := ↵/N represents time (normalized number of steps), and the
brackets h·i represent the expectation when the input ⇠ follows the input distribution p(⇠).
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The differential equations for D and E are obtained in a similar way:

dDij

d↵̃
= ⌘

2

4
MX

p=1

EipI2(xj , yp)�
KX

p=1

DipI2(xj , xp) +
MX

p=1

EjpI2(xi, yp)�
KX

p=1

DjpI2(xi, xp)

3

5 ,

dEin

d↵̃
= ⌘

2

4
MX

p=1

FpnI2(xi, yp)�
KX

p=1

EpnI2(xi, xp)

3

5

(4.5)
where I2(z1, z2) := hg(z1)g(z2)i. (4.6)

These differential equations (4.3) and (4.5) govern the macroscopic dynamics of learning.

In addition, the generalization loss "g, the expectation of loss value "(⇠) =
1

2
ks� tk2 over

all input vectors ⇠, is represented as

"g = h1
2
ks� tk2i = 1

2

"
M,MX

p,q

FpqI2(yp, yq) +
K,KX

p,q

DpqI2(xp, xq) �2
K,MX

p,q

EpqI2(xp, yq)

#
.

(4.7)

4.3.1 Expectation terms

Above we have determined the dynamics of order parameters as (4.3), (4.5) and
(4.7). However they have expectation terms I2(z1, z2), I3(z1, z

(e)
2 , z3) and I4(z1, z2, z3, z4),

where zs are either xi or yn. By studying what distribution z follows, we can show that
these expectation terms are dependent only on 1-st and (e+1)-th order parameters, namely,
Q(1), R(1), T (1) and Q(e+1), R(e+1), T (e+1); for example,

I3(xi, x
(e)
j

, yp) =

Z
dz1dz2dz3 g0(z1)z2g(z3) N (z|0,

0

B@
Q(1)

ii
Q(e+1)

ij
R(1)

ip

Q(e+1)
ij

⇤ R(e+1)
jp

R(1)
ip

R(e+1)
jp

T (1)
pp

1

CA)

holds, where ⇤ does not influence the value of this expression (see the appendix 4.A for
more detailed discussion). Thus, we see the ‘speed’ of e-th order parameters (i.e. (4.3)
and (4.5)) only depends on 1-st and (e + 1)-th order parameters, and the generalization
error "g (equation (4.7)) only depends on 1-st order parameters. Therefore, with denoting
(Q(e), R(e), T (e)) by ⌦(e) and (D,E, F ) by �, we can write

d

d↵̃
⌦(e) = f (e)(⌦(1),⌦(e+1),�),

d

d↵̃
� = g(⌦(1),�), and "g = h(⌦(1),�)

with appropriate functions f (e), g and h. Additionally, a polynomial of ⌃

P (⌃) :=
dY

i=1

(⌃� �0
iIN ) =

dX

e=0

ce⌃
e where �0

1, . . . ,�
0
d are distinct eigenvalues of ⌃

equals to 0, thus we get

⌦(d) = �
d�1X

e=0

ce⌦
(e). (4.8)
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Using this relation, we can reduce ⌦(d) to expressions which contain only ⌦(0), . . . ,⌦(d�1),
therefore we can get a closed differential equation system with ⌦(0), . . . ,⌦(d�1) and �.

In summary, our macroscopic system is closed with the following order parameters:

Order variables : Q(0)
ij

, Q(1)
ij

, . . . , Q(d�1)
ij

, R(0)
in

, R(1)
in

, . . . , R(d�1)
in

, Dij , Ein

Order constants : T (0)
nm, T (1)

nm, . . . , T (d�1)
nm , Fnm. (d: number of distinct eigenvalues of ⌃)

The order variables are governed by (4.3) and (4.5). For the lengthy full expressions of our
macroscopic system for specific cases, see the appendix 4.B.

4.3.2 Dependency on input data covariance ⌃

The differential equation system we derived depends on ⌃, through two ways;
the coefficient µe+1 of O(⌘2)-term, and how (d)-th order parameters are expanded with
lower order parameters (as (4.8)). Specifically, the system only depends on the eigenvalue
distribution of ⌃.

4.3.3 Evaluation of expectation terms for specific activation functions

Expectation terms I2, I3 and I4 can be analytically determined for some activation
functions g, including sigmoid-like g(x) = erf(x/

p
2) (see [9]) and g(x) = ReLU(x) (see

[12]).

4.4 Analysis of numerical solutions of macroscopic differen-

tial equations

In this section, we analyze numerically the order parameter system, derived in the
previous section†. We assume that the second layers’ weights of the student and the teacher,
namely wi and vn, are fixed to 1 (i.e. we consider the learning of soft-committee machine),
and that K and M are equal to 2, for simplicity. Here we think of sigmoid-like activation
g(x) = erf(x/

p
2).

4.4.1 Consistency between macroscopic system and microscopic system

First of all, we confirmed the consistency between the macroscopic system we
derived and the original microscopic system. That is, we computed the dynamics of the
generalization loss "g in two ways: (i) by updating weights of the network with SGD (4.1)
iteratively, and (ii) by solving numerically the differential equations (4.5) which govern the
order parameters, and we confirmed that they accord with each other very well (Figure 4.4).
Note that we set the initial values of order parameters in (ii) as values corresponding to
initial weights used in (i). For dependence of the learning trajectory on the initial condition,
see the appendix 4.C.

†Codes are available at https://github.com/yos1up/data-dependence-of-plateau. We executed all
computations on a standard PC.
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Figure 4.4: Example dynamics of generalization error "g computed with (a) microscopic
and (b) macroscopic system. Network size: N -2-1. Learning rate: ⌘ = 0.1. Eigenvalues
of ⌃: �1 = 0.4 with multiplicity 0.5N , �2 = 1.2 with multiplicity 0.3N , and �3 = 1.6

with multiplicity 0.2N . Black lines: dynamics of "g. Blue lines: Q11, Q12, Q22. Green lines:
R11, R12, R21, R22.

4.4.2 Case of scalar input covariance ⌃ = �IN

As the simplest case, here we consider the case that the convariance matrix ⌃ is
proportional to unit matrix. In this case, ⌃ has only one eigenvalue � = µ1 of multiplicity
N , then our order parameter system contains only parameters whose order is 0 (e = 0). For
various values of µ1, we solved numerically the differential equations of order parameters
(4.5) and plotted the time evolution of generalization loss "g (Figure 4.5(a)). From these
plots, we quantified the lengths and heights of the plateaus as following: we regarded
the system is plateauing if the decreasing speed of log-loss is smaller than half of its
terminal converging speed, and we defined the height of the plateau as the median of loss
values during plateauing. Quantified lengths and heights are plotted in Figure 4.5(b)(c).
It indicates that the plateau length and height heavily depend on µ1, the input scale.
Specifically, as µ1 decreases, the plateau rapidly becomes longer and lower. Though smaller
input data lead to longer plateaus, it also becomes lower and then inconspicuous. This
tendency is consistent with Figure 4.2(a)(b), since IRIS dataset has large µ1 (⇡ 15.9) and
MNIST has small µ1 (⇡ 0.112). Considering this, the claim that the plateau phenomenon
does not occur in learning of MNIST is controversy; this suggests the possibility that we
are observing quite long and low plateaus.

Note that Figure 4.5(b) shows that the speed of growing of plateau length is larger
than O(1/µ1). This is contrast to the case of linear networks which have no activation; in
that case, as µ1 decreases the speed of learning gets exactly 1/µ1-times larger. In other
words, this phenomenon is peculiar to nonlinear networks.

4.4.3 Case of different input covariance ⌃ with fixed µ1

In the previous subsection we inspected the dependence of the learning dynamics
on the first moment µ1 of the eigenvalues of the covariance matrix ⌃. In this subsection,
we explored the dependence of the dynamics on the higher moments of eigenvalues, under
fixed first moment µ1.
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(a) (b)

(c)

Figure 4.5: (a) Dynamics of generalization error "g when input variance ⌃ has only one
eigenvalue � = µ1 of multiplicity N . Plots with various values of µ1 are shown. (b) Plateau
length and (b) plateau height, quantified from (a).

In this subsection, we consider the case in which the input covariance matrix ⌃ has
two distinct nonzero eigenvalues, �1 = µ1���/2 and �2 = µ1+��/2, of the same multi-
plicity N/2 (Figure 4.6). With changing the control parameter ��, we can get eigenvalue
distributions with various values of second moment µ2 = h�2

i i.

��

�1 + ��
2�1 � ��

2
�

Figure 4.6: Eigenvalue distribution with fixed µ1 parameterized by��, which yields various
µ2.

Figure 4.7(a) shows learning curves with various µ2 while fixing µ1 to 1. From these
curves, we quantified the lengths and heights of the plateaus, and plotted them in Figure
4.7(b)(c). These indicate that the length of the plateau shortens as µ2 becomes large. That
is, the more the distribution of nonzero eigenvalues gets broaden, the more the plateau
gets alleviated.

4.5 Conclusion

Under the statistical mechanical formulation of learning in the two-layered per-
ceptron, we showed that macroscopic equations can be derived even when the statistical
properties of the input are generalized. We showed that the dynamics of learning depends
only on the eigenvalue distribution of the covariance matrix of the input data. By nu-
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(a) (b)

(c)

Figure 4.7: (a) Dynamics of generalization error "g when input variance ⌃ has two eigen-
values �1,2 = µ1 ± ��/2 of multiplicity N/2. Plots with various values of µ2 are shown.
(b) Plateau length and (c) plateau height, quantified from (a).

merically analyzing the macroscopic system, it is shown that the statistics of input data
dramatically affect the plateau phenomenon.

Through this work, we explored the gap between theory and reality; though the
plateau phenomenon is theoretically predicted to occur by the general symmetrical struc-
ture of neural networks, it is seldom observed in practice. However, more extensive re-
searches are needed to fully understand the theory underlying the plateau phenomenon in
practical cases.
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4.A Properties of expectation term I2, I3 and I4

The differential equations of learning dynamics (3) and (5) in the main text have
expectation terms, I2(z1, z2), I3(z1, z2, z3) and I4(z1, z2, z3, z4). Since their zs are either
x(e)
i

= ⇠T⌃eJ i or y(e)n = ⇠T⌃eBn, any tuple (z1, z2, . . .) follows multivatiate normal distri-
bution N (z|0, hz · zT i) when N !1 by generalized central limit theorem, provided that
the input ⇠ has zero mean and finite covariance. Thus the expectation terms only depend on
the covariance matrix hz·zT i, and their elements can be calculated as hx(e)

i
x(f)
j
i = Q(e+f+1)

ij
,
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hx(e)
i

y(f)n i = R(e+f+1)
in

and hy(e)n y(f)m i = T (e+f+1)
nm . For example,

I2(xi, yp) =

Z
dz1dz2 g(z1)g(z2) N (z|0,

 
Q(1)

ii
R(1)

ip

T (1)
pp

!
),

I3(xi, x
(e)
j

, yp) =

Z
dz1dz2dz3 g0(z1)z2g(z3) N (z|0,

0

B@
Q(1)

ii
Q(e+1)

ij
R(1)

ip

Q(2e+1)
jj

R(e+1)
jp

T (1)
pp

1

CA),

I4(xi, xj , yp, yq) =

Z
dz1dz2dz3dz4 g(z1)g(z2)g(z3)g(z4) N (z|0,

0

BBB@

Q(1)
ii

Q(1)
ij

R(1)
ip

R(1)
iq

Q(1)
jj

R(1)
jp

R(1)
jq

T (1)
pp T (1)

pq

T (1)
qq

1

CCCA
).

Note that all the covariance matrix is symmetric. Their left-bottom sides are not shown
for notational simplicity. Substituting these for Is shown in equations (3) and (5) in the
main text, we see that the ‘speed’ of e-th order parameters can be dependent only on 1-st,
(e+ 1)-th, and (2e+ 1)-th order parameters.

Here we prove the following proposition, in order to show that the ‘speed’ of e-th
order parameters are not dependent on (2e+ 1)-th order parameters.

Proposition. The expectation term I3(z1, z2, z3) :=

Z
dz1dz2dz3 g

0(z1)z2g(z3)N (z|0, C)

does not depend on C22.

Proof. Since C is positive-semidefinite, we can write C = V V T for some squared matrix
V . Thus, when ⇠ ⇠ N (0, IN ), A⇠ ⇠ N (0, C) holds. Therefore, we can regard that zi(i =

1, 2, 3) is generated by zi = vT

i ⇠ where vi is i-th row vector of V and ⇠ follows the standard
normal distribution.

We can write v2 = c1v1+c3v3+v? for some coefficient c1, c3 2 R and some vector
v? perpendicular to v1 and v3. Then I3 is written as

I3(z1, z2, z3) = hg0(z1)z2g(z3)i = c1hg0(z1)z1g(z3)i+ c3hg0(z1)z3g(z3)i+ hg0(z1)v?T ⇠g(z3)i.

Since ⇠ ⇠ N (0, IN ) and v? ? v1,v3 hold, (z1, z3) and v?T ⇠ is independent. Therefore the
third term in the right hand side of the equation above is

hg0(z1)v?T ⇠g(z3)i = hg0(z1)g(z3)ihv?T ⇠i = 0.

In addition, we can determine c1 and c3 by solving

C12 = vT

2 v1 = (c1v
T

1 + c3v
T

3 + v?T )v1 = c1C11 + c3C13 and
C23 = vT

2 v3 = (c1v
T

1 + c3v
T

3 + v?T )v3 = c1C13 + c3C33.

Together with these, we get

I3(z1, z2, z3) =
(C12C33 � C13C23) I3(z1, z1, z3) + (C11C23 � C12C13) I3(z1, z3, z3)

C11C33 � C2
13

,

which shows that I3 is independent to C22. ⌅
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4.B Full expression of order parameter system

Here we describe the whole system of the order parameters, with specific eigenvalue
distribution of ⌃.

4.B.1 Case with ⌃ = �IN

In this case, the order parameters are

Order variables : Q(0)
ij

, R(0)
in

, Dij , Ein

Order constants : T (0)
nm, Fnm.

Note that Q(1)
ij

is identical to Q(0)
ij

. This is same for R and T . The order parameter system
is described as following, with omitting (0)-s for notational simplicity:

dQij

d↵̃
= ⌘

2

64
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(4.9)
and

dDij
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= ⌘

2

4
MX

p=1

EipI2

 
Qjj Rjp

Tpp

!
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(4.10)
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,

where I2(C) =
2

⇡
arcsin

C12p
1 + C11

p
1 + C22

,

I3(C) =
2

⇡
· 1p

(1 + C11)(1 + C33)� C2
13

C23(1 + C11)� C12C13

1 + C11
,

I4(C) =
4

⇡2
· 1p

1 + 2C11
arcsin

(1 + 2C11)C23 � 2C12C13p
(1 + 2C11)(1 + C22)� 2C2

12

p
(1 + 2C11)(1 + C33)� 2C2

13
(4.11)

for g(x) = erf(x/
p
2) activation, as [9] showed.

4.B.2 Case with ⌃ which has two distinct eigenvalues, �1 of multiplicity

r1N and �2 of multiplicity r2N

In this case, the order parameters are

Order variables : Q(0)
ij

, Q(1)
ij

, R(0)
in

, R(1)
in

, Dij , Ein

Order constants : T (0)
nm, T (1)

nm, Fnm.
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Since ⌃2 � (�1 + �2)⌃+ �1�2IN = 0, the relation Q(2)
ij

= (�1 + �2)Q
(1)
ij
� �1�2Q

(0)
ij

holds.
This is same for R and T . Then the order parameter system is described as following:
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4.C Dependence of learning trajectory on initial conditions

on macroscopic parameters

(a) (b)

Qij
Rin
�g

Qij
Rin
�g

Figure 4.8: Dynamics of generalization error "g and order parameters Qij and Rin computed
with macroscopic system, and its variability by random weight initialization. Network size:
N -2-1. Learning rate: ⌘ = 0.1. Eigenvalues of ⌃: �1 = 0.3 with multiplicity 0.5N , �2 = 1.7

with multiplicity 0.5N . Black lines: dynamics of "g. Blue lines: Q11, Q12, Q22. Green lines:
R11, R12, R21, R22. (a) N = 105, (b) N = 107. In both figures, solid curves and shades
represent mean and standard deviation of 100 trials, respectively (note that mean and
standard deviation of loss are computed in logarithmic scale).

In the statistical mechanical formulation, by considering N as large, the dynamics
of the system is reduced to macroscopic differential equations with small (N -independent)
dimensions. The macroscopic system we derived is deterministic in the sense that random-
ness brought by stochastic gradient descent is vanished. However, note that the trajectory
of the macroscopic state can vary in accordance with its initial condition. Figure 4.8 shows
this variability with shades.

How does the initial condition affect the learning trajectory? Consider a typi-
cal initialization that the microscopic parameters J1, J2, B1 and B2 are initialized as
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(J i)k, (Bn)k
i.i.d.⇠ N (0, 1/N). Then the mean and variance of corresponding initial macro-

scopic parameters Q, R and T are

E[Q(e)
ii

] = µe, V[Q(e)
ii

] =
3µ2e

N
, E[Q(e)

ij
] = 0, V[Q(e)

ij
] =

µ2e

N
,

E[R(e)
in

] = 0, V[R(e)
in

] =
µ2e

N
,

E[T (e)
nn ] = µe, V[T (e)

nn ] =
3µ2e

N
, E[T (e)

nm] = 0, V[T (e)
nm] =

µ2e

N

With N !1, these probabilistic parameters converge to (Q(e), R(e), T (e)) = (µeIK , 0, µeIM ).
However, the solution trajectory starting from just (µeIK , 0, µeIM ) cannot break the weight
symmetry at all. To argue practical learning trajectory, we have to consider the initial value
slightly off from that point. How close the initial condition is to that point affects how long
it takes to break the weight symmetry, that is, the plateau length. This is why Figure 4.8
(b) with N = 107 exhibits plateau slightly longer than that of Figure 4.8 (a) with N = 105.
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Chapter 5

Dynamics of Signal Propagation in

Deep Neural Network — Mean-field

Approach

5.1 Introduction

Since the late 2000s, the various techniques related to training deep neural networks
with heavy datasets have been developed successfully. Nowadays, quite wide range of tasks
are solved by deep neural networks in end-to-end fashion, thanks to these methods.

However, we lack the knowledge for their mechanisms. Our understanding for why
the deep learning is so successful is still not enough. Especially, we have many hyperparam-
eters; size, number and types of layers, weight initialization, methods of gradient descent,
and data preprocessing etc. We lack knowledge of how they determine the learning to be
successful or unsuccessful. This is why we resort to optimize hyperparameters greedily. In
what condition can we train very deep neural networks well?

One of necessary condition for successful training is that information can be propa-
gated through the neural network which typically has many layers, without being degraded.

Recently Schoenholz et al.[2] developed a mean-field approach for analyzing sig-
nal propagation in random neural networks. This approach deals with feed-forward neural
networks which have random valued weights and infinite layer width, and introduces mean-
field approximation. With such setting, the macroscopic evolution of statistics of signals
becomes deterministic. They derived the macroscopic dynamics of signal statistics theo-
retically, in case with fully-connected networks (FCN). Then they discussed their depth
scales, which is the time constant of degradation of the signal statistics. Moreover, they
found experimentally that the depth scale strongly coincides with trainability; if the num-
ber of layers of a network is large/small relative to its depth scale, it is hard/easy to train.
Their result is shown in Figure 5.1(a).

Since then, several works have shown that the coincidence described above holds
with several neural networks aside from FCN, such as convolutional neural networks (CNN)
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and recurrent neural networks (RNN) [3, 4]; they derived the depth scale analytically and
confirmed its consistency with actual trainability experimentally. Their results are shown in
Figure 5.1(b)(c). These three works demonstrate the validity of mean-field theory of depth
scale for predicting trainability without actual training. However, no one knows whether
the theory is valid for more realistic situation, in that most of practical neural networks are
typically more complex. It is not realistic to derive the depth scale theoretically for every
latest neural network architecture. Our main contributions are summarized as below:

• We establish a numerical method for estimating depth scales for forward propagation,
which is available regardless of network architecture.

• We examine the applicability of the notion of depth scale of neural networks for
predicting their trainability, and find that it works very well in a wide range of
neural networks which have finite depth scales.

Aside from above, we also inspect a situation where weights of a neural network are ini-
tialized by a long-tailed distribution. Although this situation does not seem to be realistic,
this yields an interesting consequence.

5.2 Related works

5.2.1 Edge of chaos and depth scale

Before the deep learning has appeared, there was a study of propagation dynamics
in recurrent neural networks [11]. They investigated the dynamics of signal propagation,
found the phase transition between ordered and chaotic, and pointed out that it can process
complex computations provided that it is at the ‘edge of chaos’.

These days, the propagation dynamics is investigated in the context of deep learn-
ing, especially in relation to trainability. Theoretical derivation of the depth scale and its
consistency with trainability have been reported in case with FCN with/without dropout
[2], CNN [3], RNN/LSTM [4, 54], binary neural network [55], quantized neural network
[56], residual network [57], graph neural network [58], and batch normalization [59].

5.2.2 Random neural networks

The mathematics of random neural networks has been studied by Amari since the
1970s [60]. His researches at that time were motivated primarily by neuroscience, rather
than by neural networks as a method of machine learning.

In the context of deep learning, random neural networks were first focused on
by Poole et al [10]. They pointed out that the curvature of a deep neural network can
increase exponentially with respect to the number of layers. Subsequently, the discussion of
depth scales as described above has developed. In addition, several important quantities for
understanding loss landscapes, such as Jacobian, Hessian, and Fisher information matrix,
have been analyzed using the mean-field theory [61, 62, 63, 64, 65].
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Random networks have also attracted attention for their relation to Gaussian pro-
cesses. A randomly initialized deep neural network with infinite layer width was found to
be equivalent to a Gaussian process [66, 67]. Furthermore, the theory of neural tangent
kernel revealed that layer-width infinite neural networks during and after training by a
gradient method can also be regarded as Gaussian processes [68, 69].

5.3 Theoretical setup

5.3.1 Depth scale

In this subsection, we review the concept of the depth scale defined in [2].

Here we consider neural networks which consist of repeating L unit architectures.
We denote them by 1, 2, . . . , L. Each i-th unit architecture has its own parameters ✓i, which
determines the actual mapping of i-th unit architecture, namely f✓i . The mapping of the
whole network is described as

RN
f✓1�! RN

f✓2�! · · ·
f✓L�! RN .

We consider the situation that an input vector x 2 RN propagates through a unit ar-
chitecture: f✓l(x

(l�1)) = x(l). We introduce a macroscopic quantities q := kxk2/N . For
various types of simple unit architectures (with Gaussian random initialization), it has
been shown that the relationship between q(l�1) and q(l) becomes deterministic in the
large limit of N ; that is, if the squared norm of x(l�1) is q(l�1), the squared norm of x(l)

converges to q(l) in distribution when N ! 1. We also consider the propagation of two
vectors x,y 2 RN . Then we introduce overlap, the second macroscopic quantity, namely
c := xTy/(kxkkykN). Similar to above, it has been found that the relationship between
(q(l�1), c(l�1)) and (q(l), c(l)) becomes deterministic under N ! 1 situation with various
simple unit architectures; that is, if the overlap between x(l�1) and y(l�1) is c(l�1), the
overlap between x(l) and y(l) converges to c(l) in distribution when N !1.

Here we review the case with FCN, by following [2]. In FCN case, each unit archi-
tecture is just a fully-connected layer, and its mapping is represented as

f✓ : z 7!W�(z) + b,

where ✓ = (W, b), W 2 RN⇥N , b 2 RN are parameters, and � : RN ! RN is any element-
wise activation function. We consider the situation that two signals x(l�1) and y(l�1) are
mapped to x(l) and y(l) by f✓. Assume that W and b are random variables; we assume
that each element of W follows N (0,�2

w/N), and each element of b follows N (0,�2
b ). What

we are interested in is the joint distribution of x(l)
k

and y(l)
j

(1  k, j  N), namely
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p(x(l)1 , . . . , x(l)
N
, y(l)1 , . . . , y(l)

N
). By simple calculations we obtain

E[x(l)
i
] = E[

NX

j=1

Wij�(x
(l�1)
j

) + bi] =
NX

j=1
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i
x(l)
j
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NX

k=1
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(l�1)
k

) + bi)(
NX
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Wjh�(x
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) + bj)]

=
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NX
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k
)�(x(l�1)

h
) + �ij�

2
b

= �ij [�
2
w/N

NX

k=1

�(x(l�1)
k

)2 + �2
b ],

E[x(l)
i
y(l)
j
] = E[(

NX

k=1

Wik�(x
(l�1)
k

) + bi)(
NX

h=1

Wjh�(y
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) + bj)]

=
NX

k=1

NX
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) +
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h=1
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(l�1)
h

) + E[bibj ]

=
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)�(y(l�1)

h
) + �ij�
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= �ij [�
2
w/N

NX

k=1
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k
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k
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b ].

The main point of the mean-field approximation is replacing the distribution
p(x(l)1 , . . . , x(l)

N
, y(l)1 , . . . , y(l)

N
) by a Gaussian whose first two moments match that of original

one. Using this approximation and letting N !1, we obtain

E[x(l)
i
x(l)
j
] = �ij

✓
�2
w

Z
�(z)2N (z | 0, q(l�1))dz + �2

b

◆
,

E[x(l)
i
y(l)
j
] = �ij

 
�2
w

Z
�(z1)�(z2)N ([z1, z2] | 0,

 
q(l�1) r(l�1)

r(l�1) q(l�1)

!
)dz + �2

b

!
,

if we assume

E[x(l�1)
i

x(l�1)
j

] = E[y(l�1)
i

y(l�1)
j

] = �ijq
(l�1) and E[x(l�1)

i
y(l�1)
j

] = �ijr
(l�1)

(q(l�1), r(l�1) 2 R: independent of i and j).
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Note that this assumption includes no correlation between most pairs of variables, which
implies their independence since we are regarding the distribution as Gaussian.

We can summarize these results as recurrence relations of q and r:

q(l) = �2
w

Z
�(z)2N (z | 0, q(l�1))dz + �2

b ,

r(l) = �2
w

Z
�(z1)�(z2)N ([z1, z2] | 0,

 
q(l�1) r(l�1)

r(l�1) q(l�1)

!
)dz1dz2 + �2

b .

Then we can compute the depth scale (of correlation), defined by convergence speed of
c := r/q to its stable point c⇤. We write the recurrence relations as

q(l) = gq(q
(l�1), c(l�1)) and c(l) = gc(q

(l�1), c(l�1)),

and assume that there exist q⇤ := lim
l!1

q(l) and c⇤ := lim
l!1

c(l). Then, at the large l, the
dynamics of c can be approximated as

c(l) � c⇤ / exp[� l

�
] (5.1)

where � = � log


@

@c
gc(q

⇤, c)

����
c=c⇤

�
. (5.2)

This � is the depth scale (of correlation), what we want to compute.

In terms of the ordered and chaotic phases, c⇤ = 1 means ordered phase and c⇤ < 1

means chaotic phase. In the ordered phase, any two different signals get close together
infinitesimally during propagation. This means that any information represented as the
difference of two signals is lost by propagation. On the contrary, in the chaotic phase, any
two signals with arbitrary small difference are pulled apart. The propagation is sensitive
to any nonzero noises, in that they are enlarged during propagation. Both behaviours are
undesirable for neural networks to learn reasonable functions.

With respect to various types of networks, a number of works (a) formulated equa-
tions for propagating (i.e. law of evolution of microscopic parameters which is probabilistic),
(b) derived the recurrence equations for macroscopic parameters which are deterministic,
then (c) computed the depth scale of the network as negative logarithm of time constant
of convergence of macroscopic parameters, and finally (d) confirmed the consistency with
actual trainability.

On the contrary, we compute the evolution of macroscopic parameters numerically
instead of deriving it theoretically, by sampling the probabilistic evolution of microscopic
parameters. Then we estimate the depth scale from evolution of macroscopic parameters
we obtained. Our algorithm consists of three steps:

1. Calculate the equilibrium point (q⇤, c⇤) numerically, by sampling evolution of (q, c).
This is accomplished by randomly generating a pair of vectors which has squared
norm q and overlap c, propagating them through a unit architecture whose weight is
randomly sampled, calculate new q and c from the output (with taking average), and
repeating this procedure enough times. Note that q diverges in some cases; we are
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able to deal with such cases numerically, by replacing infinity by a very large finite
value. We also note that sampled dynamics of c contains some noises. To determine
c⇤ with high precision, we need to lessen this noise by using larger N and increasing
number of samples.

2. Sample dynamics of c near (q⇤, c⇤), and approximate gc(q⇤, c) in (5.2) by curve fitting.
Here what we want to know is the shape of the function c 7! gc(q

⇤, c) at c ⇡ c⇤. To
do so, we collect a lot of samples (c, gc(q

⇤, c)), and fit them by some parametric
function. Note that the function should be differentiable, since we need to evaluate
its derivative at c = c⇤ in next step.

3. Compute the depth scale � with the equation 5.2.

In this algorithm, we have to take some large but finite N . We set N as 1000 in the
experiment with simple network architectures, and 784 in the experiment with random
network architectures. For other hyperparameters and other implementation details of the
algorithm, see the appendix 5.A. See the next section for experimental details aside from
the estimation algorithm.

5.4 Experiment

In the previous section, we established the method for estimating the depth scale of
given neural networks numerically. Now we are to examine the precision of the estimation
and apply it to predicting trainability. ⇤

5.4.1 With simple network architectures

First, we confirmed how well our method estimates the depth scale, by using simple
networks whose depth scales can be derived theoretically in previous works; fully-connected
network (FCN), convolutional neural network (CNN), and recurrent neural network (RNN)
[2, 3, 4]. With each of these networks, we compared the depth scale obtained by our
numerical method to theoretical values reported by them. Figure 5.1 shows the result of
comparison; (d) for FCN, (e) for CNN, and (f) for RNN. All of them demonstrate the
consistency with theoretical counterparts (a)–(c).

5.4.2 With various random network architectures

Next, we examined the applicability of the statement: the depth scale can predict
the trainability of neural networks. With the simple network described above, this state-
ment has been found to be true. Our interest is that what range of neural networks this
statement is valid for.

We generated the unit neural architecture randomly with the following procedure:
⇤We performed all computations for estimating depth scales with no GPU. We performed all experiments

for evaluating trainability with a single GPU (Tesla K80).
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6�c

(a) (b) (c)

(d) (e) (f)

Figure 5.1: (a)–(c) Results reprinted from previous works describing that theoretical depth
scale (white lines; multiplied by 6) and actual trainability (red heatmaps) matches well, for
(a) FCN, (b) CNN, and (c) RNN [2, 3, 4]. (d)–(f) Estimated depth scale by our numerical
methods (multiplied by 6, like (a)–(c)), for (d) FCN, (e) CNN, and (f) RNN. These are
consistent with theoretical depth scale described in (a)–(c). In each subfigure, horizontal
axis represents hyperparameter �2

w or �w, and vertical axis represents number of layers.
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• Generate a random directed acyclic graph (DAG) which has nodes 1, 2, . . . , V and E

edges. Make sure that there is only one source node 1 (i.e. node with 0 indegree) and
sink node V (i.e. node with 0 outdegree). See the appendix 5.A for the algorithm for
generating such DAGs. We denote the set of edges of the DAG by E .

• This DAG corresponds to a unit architecture, and each node in the DAG repre-
sents a layer. We set randomly the type of the layer function f (v) : RM

(v) ! RN

among {fully-connected, layer-normalization, dropout}, the type of element-wise ac-
tivation �(v) : RN ! RN among {ReLU, tanh} and the way of aggregation g(v) :

Rd
(v)

N ! RM
(v)

of each node v among {concatenation,mean-pooling,max-pooling},
where d(v) := ]{u | (u ! v) 2 E}. Note that M (v) equals to N or d(v)N , depending
on the type of the layer. The detailed way of randomly choosing them is described
in the appendix 5.A.

• With given input x 2 RN , we compute the output of the unit architecture y 2 RN , by
computing hidden activations h(v) of all nodes with following recurrence equations:

y = h(V ),

h(v) =

8
<

:
�(v)

⇣
f (v)

⇣
g(v)

⇣
(h(u))(u!v)2E

⌘
| w(v)

⌘⌘
(if v > 1)

�(v)
⇣
f (v)

⇣
x | w(v)

⌘⌘
(if v = 1)

2 RN .

Note that each layer function f (v) has its learnable parameter w(v).

Figure 5.2 shows 15 randomly generated unit architectures, with V = 5 and E = 7, which
we used in the experiment.

5.4.3 Initialization with long-tailed weight distribution

In the mean-field theory of signal propagation in neural networks, we normally
assume that the weight values are sampled from distributions which have finite mean and
finite variance. This is because such distributions are used at initialization in practice. How-
ever, it is suggested that the statistics of weight matrices in neural networks dynamically
change during training, in that their spectral densities become long-tailed[70], and therefore
the ordinary mean-field theory could be no more valid for trained neural networks. More-
over, Teramae et al. [71] supports that the spontaneous asynchronous activity in recurrent
spiking neural networks persist robustly when its weight follows long-tailed distribution,
which suggests the usefulness of having long-tailed weights for retaining meaningful activity
for long time.

We hypothesize that the long-tailed property of weight distribution can enhance
the information propagation in feed-forward neural networks. To quantify the information
propagation, we estimate the depth scale numerically. (We also try to derive the depth
scale theoretically in the case of long-tailed weights. See the appendix 5.B.)

We also examined whether networks initialized with long-tailed distribution have
better actual trainability, by training a real task. We let them learn the MNIST classifi-
cation task for 1 epoch and evaluated their training accuracy. We used FCNs which have
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1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Figure 5.2: Randomly generated unit neural architectures with V = 5 and |E| = 7. Blue, yel-
low and pink nodes represent fully-connected layer, dropout layer and layer-normalization
layer, respectively. Blue and pink small filled circles mean ReLU and tanh activation, re-
spectively. Ways of aggregation are described by broken ellipses; blue for mean-pooling,
red for max-pooling, and black for concatenating.

hidden layers with size 784 and tanh-like erf(x/
p
2) activation, and optimized them with

vanilla stochastic gradient decent (SGD).

5.5 Result

5.5.1 With various network architectures

With various unit network architectures generated randomly, we examined whether
the depth scale appropriately predicts its trainability. Actually, we trained a neural network
which consists of L given random network architectures (and one additional fully-connected
output layer) and whose weights are initialized by scale �2

w, to learn the MNIST classifi-
cation task, for various values of L and �2

w. Since our interest is trainability, we measured
the training accuracy, following previous works shown in Figure 5.1(a)–(c). Our hypothesis
is that any network which consists of repeated unit architectures and whose weights are
initialized with scale �2

w has high trainability, provided that its number of repetition L of
the unit architectures is relatively smaller than its depth scale (which is determined by the
unit architecture and initialization scale �2

w).

Figure 5.3 shows results for 15 distinct unit architectures depicted in Figure 5.2.
White lines show estimated depth scales multiplied by 6 (as well as Figure 5.1), and red
heatmaps show the trainability measured by training accuracy. They coincide very well in
most of 15 cases. We observe that there are some discrepancy between them in the case
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11 and 12; when �2
w is larger than ⇠ 100.3, actual trainability shown by heatmaps degrade

with larger �2
w, although numerical depth scales depicted by white lines do not get worse.
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Figure 5.3: Estimated depth scales and actual trainability, in case with 15 distinct unit
architectures. Horizontal axes represent weight scale hyperparameter �2

w, and vertical axes
represent number of unit architectures. �2

b is fixed to 0.05. White lines show estimated
depth scale multiplied by 6 (as well as Figure 5.1), and red heatmaps show the trainability
measured by training accuracy of MNIST task. We interpolated results at gray points to
draw heatmaps. Depth scales and heatmaps coincide very well in most of 15 cases. Number
of epochs: 1. Mini-batch size: 100. Optimization: vanilla SGD with learning rate 10�3 or
10�4 (we adopted better one in each training).
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5.5.2 Initialization with long-tailed weight distribution

Then we examined that how long-tailed weight distribution affects the propagation
characteristics and trainablity.

Figure 5.4 shows that numerically estimated depth scale of FCN initialized with
different weight distributions; Gaussian, Student’s t with ⌫ = 2, Cauchy, and Student’s t
with ⌫ = 0.5, where ⌫ is degrees of freedom. Note that Gaussian distribution and Cauchy
distribution are equivalent to Student’s t with ⌫ = 1 and ⌫ = 1 respectively, and that
smaller ⌫ yields more long-tailed Student’s t-distribution. The figure shows that the more
long-tailed the distribution used in initialization is, the wider the range of �w with large
depth scale. This means that large depth scale can be achieved robustly against the choice
of �w when we use long-tailed weight distribution.

(a) (b)

(c) (d)

(e)

Figure 5.4: Numerically estimated depth scale of FCN initialized with different weight dis-
tributions; Gaussian distribution (blue), Student’s t-distribution with ⌫ = 2 (red), Cauchy
distribution (green) and Student’s t-distribution with ⌫ = 0.5 (cyan), where ⌫ represents
degrees of freedom. Note that Gaussian distribution and Cauchy distribution are equiva-
lent to Student’s t-distribution with ⌫ = 1 and ⌫ = 1, respectively. (e) Plots of (a)–(d)
are overlaid. Horizontal axes are rescaled so that peaks of all plots go to 1.

Next, we examined whether networks initialized with long-tailed distribution have
better trainability, by training a real task. Figure 5.5 shows that the accuracy of neural
networks. In short, the figure shows that, the more long-tailed distribution we adopt for
initialization, the worse the performance.

5.6 Discussion

5.6.1 Depth scale and trainability

We confirmed that depth scale can predict actual trainability well, with respect to
a wide range of randomly generated neural network architectures.

However, some cases have to be handled with caution. In the case 11 and 12 in
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Figure 5.5: Trainability of FCNs, initialized with different weight distributions; (left col-
umn) Gaussian distribution, (middle column) Student’s t-distribution with ⌫ = 7, (right
column) Student’s t-distribution with ⌫ = 1.0. Results with different values of learning rate
⌘ of SGD are shown; ⌘ = 0.0005, 0.001, 0.002, 0.005, 0.01 from top row to bottom row. In
each subfigure, horizontal axis represents �2

w and vertical axis represents number of layers.
In each heatmap, region with < 0.2 accuracy is shown by white.
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Figure 5.3, we observed some gaps between depth scale curves and actual trainability. A
common feature of these two unit structures only is that they contain a simple FCN with
ReLU activation as sub-architecture (see architectures 11 and 12 in Figure 5.2). In fact,
the discrepancy is also observed in case with just a ReLU FCN. That is, when �2

w becomes
large, the depth scale remains quite large but the trainability drops. In this ReLU FCN
case the depth scale can be analytically determined, and indeed it also remains quite large
in the chaotic (large �2

w) region. Then, the question is why the depth scale (numerically
and analytically computed) and actual trainability differ.

Other necessary conditions for successful training

The point is that large depth scale is necessary but not sufficient for successful
learning. For example, in the situation we described above, we noticed that the norm q

diverges to infinity as signals propagate though layers in such large �2
w situation. Apparently

this prevents successful learning, so we should consider the condition that the signal norm q

converges to a finite value as another necessary condition for successful training. Other than
this, it seems to be essential that depth scale of backpropagation (not forward propagation)
is also large.

Sufficient conditions for successful training

Although we were able to confirm the usefulness of depth scale for predicting
trainability in various neural networks, it is remained untouched that providing theoretical
guarantee which ensures the predictability. To ensure the relationship between the depth
scale and the trainability more firmly, we have to analyze theoretically not only the prop-
agation dynamics of initialized random networks but also that of trained networks. To
do so, it is possible that the recently developed theory with neural tangent kernel (NTK)
would be helpful [68, 69]. In this theory, we can treat learning dynamics of neural networks
theoretically, by assuming that parameters’ change during learning is sufficiently small and
we can regard the effect of parameter change to network function as linear. We think that
this direction would be important in future works.

5.6.2 Initialization with long-tailed distribution

We found that in the case with long-tailed weight distribution the numerically
estimated depth scale becomes more robust but the actual trainability becomes worse. Here
we discuss how we can understand these results and what should be inspected further.

The first thing to be considered is the possibility that numerical estimates of depth
scales are broken. In the experiment using random unit architectures, the numerically
estimated depth scales agreed well with the actual trainability, so it seems that both the
accuracy of the depth scale estimation and the predictability of trainability from the depth
scales are fine, but in the present case, we cannot say so. The failure of the predictions of
trainability could be due to that the layer width N or the number of samples drawn are
too small. In this case, increasing them will help convergence to the accurate depth scale.
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Other possibility is that even we set them as any large values the numerical algorithm fails
to estimate depth scale. This possibility might be eliminated if we can theoretically give a
guarantee of the estimation error of the algorithm.

And another thing to be considered is that, as discussed above, even if the numerical
estimation of the depth scale is perfect, a large depth scale is not a sufficient condition for
successful training. It is important to find other necessary conditions as well as sufficient
conditions. Again, depth scale of backpropagation (not forward propagation) seems to be
one candidate.

5.7 Conclusion

In this work, we first established the numerical method for estimating depth scale
for forward propagation, which is available regardless of network architecture. Then we
examined the applicability of the notion of depth scale of neural networks for predicting
their trainability, and found that it works very well in a certain range of neural networks
with complex architectures. Our work would benefit any deep learning practitioners, in that
it suggests how to find optimal initialization strategy of their networks; they can choose
their initialization scheme which maximizes depth scales, by numerically estimating them
using our framework.

However, we found that it does not work well in the case with initialization with
long-tailed weight distributions. Although such initialization is not commonly used so far,
it suggests future researches for this framework.
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5.A Algorithm details

5.A.1 Algorithm for generating random DAGs

In the experiment with random network architectures, we need to generate a DAG
which has the following properties:

• The DAG has V nodes and E edges.

• We call its V nodes by node 1, 2, . . . , V . Then, only the node 1 is a source node
(whose indegree is 0) and only the node V is a sink node (whose outdegree is 0).

We generated such DAGs by Algorithm 1. In this algorithm, basically we repeat adding
an edge in random order, until E edges are added. However, we skip adding an edge if the
second property will become unachievable after doing so. We determine this by checking
minimum number of further edges needed to suffice demands for all nodes; all intermediate
nodes must have nonzero indegree and outdegree. We describe this checking algorithm
in minimum_number_of_edges_needed function in Algorithm 1. To minimize additional
edges, we should append edges which effectively resolve these demands. Let i < j and
assume that node i needs any outdegree and node j needs any indegree but neither are
achieved yet. In this case, if we append an edge from i to j, we can resolve two demands at
the same time. In the algorithm, we count the number of edges needed when we greedily
do that way whenever we can.

5.A.2 Algorithm for choosing layer properties

In the experiment with random network architectures, we need to choose (a) types
of layers, (b) activation functions, and (c) way of aggregation of inputs, randomly. We
did the following. For (a), we chose them among fully-connected, layer-normalization and
dropout, with probability 2/3, 1/6 and 1/6, respectively. For (b), we chose them among
ReLU and tanh with probability 1/2, for fully-connected layers. We did not add any ac-
tivation function for layers other than fully-connected. For (c), we selected them among
concatenation, mean-pooling and max-pooling with probability 1/3 for fully-connected lay-
ers; for not-fully-connected layers, we selected them among mean-pooling and max-pooling
with probability 1/2. Additionally, if we got a unit neural architecture which did not con-
tain any fully-connected layers, we discarded it and re-selected randomly, because such
unit architecture has few learnable parameters and therefore it is not realistic.
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Algorithm 1 Generating random DAG which has one source node and one sink node
Require: V : number of nodes, 1  V

Require: E: number of edges, V � 1  E  V (V � 1)/2

Ensure: G is a DAG which meets the condition.
1: candidate_edges {(i, j) | 1  i < j  V }
2: cnt 0

3: G (graph with V nodes and no edge)
4: for (i, j) 2 candidate_edges in random order do
5: if MINIMUM_NUMBER_OF_EDGES_NEEDED(G, (i, j)) > E then
6: continue
7: end if
8: append an edge from i to j, to graph G

9: if (number of edges in G) = E then
10: break
11: end if
12: end for
13: return G

14:

15: function minimum_number_of_edges_needed(G, (i, j))
16: // If we append an edge i! j to G,
17: // how many additional edges are needed for G to be valid?
18: seq  (empty list)
19: for k = 1, 2, . . . , V do
20: if 1 < k 6= j and node k of G has 0 indegree then
21: append �1 to seq

22: end if
23: if i 6= k < V and node k of G has 0 outdegree then
24: append +1 to seq

25: end if
26: end for
27: count 0, capacity  0

28: for s in seq do
29: if s = +1 then
30: count count+ 1

31: capacity  capacity + 1

32: else
33: if capacity > 0 then
34: capacity  capacity � 1

35: else
36: count count+ 1

37: end if
38: end if
39: end for
40: return count

41: end function
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5.A.3 Hyperparameters and implementation details of algorithm for es-

timating depth scale

Algorithm

The algorithm 2 describes how we estimated depth scales numerically.

Hyperparameters

The algorithm 2 has several hyperparameters. In the experiment with random unit
architectures, we chose them as following. For computing equilibrium of (q, c):

• Number of samples of weights of unit architecture n: 10.

• Number of iteration h: 300.

• Number of samples of new (q0, c0) in each iteration s: 1.

And for sampling evolution of c under q = q̂⇤:

• How to choose c1, . . . , cu near ĉ⇤ (by get_neighbour): we chose u = 100 points, by
set c1 = max{�1, ĉ⇤ � 0.1}, cu = min{+1, ĉ⇤ + 0.1} and let c1, . . . , cu to be equally
spaced.

• Number of samples of weights of unit architecture m: 10.

• Number of samples of new (q0, c0) in each iteration v: 100.

Additionally, we used cubic polynomial for fitting the recurrence curve c 7! gc(q
⇤, c) at

c ⇡ c⇤.

5.B Theoretical discussion

5.B.1 Theoretical discussion for depth scale of networks whose weights

have long-tailed distribution

The mean-field theory of signal propagation in neural networks, developed by [2],
is based on a simple proposition.

Let W be a random matrix whose each element follows a distribution with
zero mean and �2

W /N variance, and let b be a random vector whose each
element follows a distribution with zero mean and �2

b variance. We define f by

92



Chapter 5. Dynamics of Signal Propagation 5.B. Theoretical discussion

Algorithm 2 Estimating depth scale
Require: p(f): distribution of unit architecture function f

Ensure: depth_scale is an estimated value of the depth scale of the network which consists
of sequentially repeated unit architectures (with untied weights)

1: // Compute equilibrium of (q, c)
2: Sample f1, . . . , fn from p(f)

3: (q, c) (1,�0.05)
4: for i = 1, 2, . . . , h do
5: q_list (empty list)
6: c_list (empty list)
7: for i = 1, 2, . . . , n do
8: for j = 1, 2, . . . , s do
9: (q0, c0) sample_evolution(fi, q̂

⇤, c)

10: append q0 to q_list and c0 to c_list

11: end for
12: end for
13: q  (mean of q_list), c (mean of c_list)
14: end for
15: (q̂⇤, ĉ⇤) (q, c)

16:

17: // Sample evolution of c under q = q̂⇤

18: c1, . . . , cu  get_neighbour(ĉ⇤)

19: gc_list (empty list)
20: Sample f1, . . . , fm from p(f)

21: for i = 1, 2, . . . ,m do
22: for j = 1, 2, . . . , u do
23: for k = 1, 2, . . . , v do
24: (q0, c0) sample_evolution(fi, q̂

⇤, cj)

25: append (c, c0) to gc_list

26: end for
27: end for
28: end for
29: ĝ  fit_polynomial(gc_list)

30: depth_scale �1/ log(ĝ0(ĉ⇤))
31: return depth_scale

32:

33: function sample_evolution(f, q, c)
34: randomly generate x1,x2 2 RN s.t. kx1k2/N = kx2k2/N = q and x1 · x2/N = qc

35: y1  f(x1), y2  f(x2)

36: q0  ky1kky2k/N , c0  y1 · y2/(ky1kky2k)
37: return (q0, c0)

38: end function
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f(x) := '(Wx+ b). Then

f(x) · f(y) ⇡ NEW,b['(
NX

j=1

Wijxj + bi)'(
NX

j=1

Wijyj + bi)]

= NI2

 
�2
W /Nkxk2 + �2

b �2
W /Nx · y + �2

b

�2
W /Nkyk2 + �2

b

!

where I2(⌃) =

Z
dz '(z1)'(z2)N (z|0,⌃).

For this statement to be valid, the most essential thing is the following:

Let x,y 2 RN be constant vectors, and let w 2 RN be a random vector whose
each element follows a distribution with zero mean and �2/N variance. Then
when N !1 we get

(wTx, wTy) ⇠ N
 
0,

�2

N

 
kxk2 x · y
x · y kyk2

!!

by generalized central limit theorem.

What we are interested is the case that the distribution followed by each element
of the random vector w is long-tailed so that its variance is undefined. In such case, we
obtain the following proposition.

Let x,y 2 RN be constant vectors, and let w 2 RN be a random vector whose
each element follows Cauchy(0, �), that is, Cauchy distribution with zero mean
and � scale parameter. Then, regardless of N ,

wTx ⇠ Cauchy(0, kxk1�), wTy ⇠ Cauchy(0, kyk1�)

holds. Although the joint probability distribution of (u, v) := (wTx, wTy) is
unknown, its characteristic function is given by

 (t) :=

Z
dudv p(u, v) exp[i(t1u+ t2v)] = exp[��kt1x+ t2yk1].

Note that this characteristic function is different from that of two-dimensional Cauchy
distribution exp[�k⌃1/2tk2].
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Chapter 6

Conclusion

In this dissertation, the learning dynamics and the inference (propagation) dynam-
ics of neural networks are analyzed using two macroscopic analysis methods, namely, the
statistical mechanical method and the mean-field method. Now we review our works more
specifically.

In Chapter 2, we applied the statistical mechanical method to a latest technique
for deep learning, weight normalization (WN), and reduced the learning dynamics of a
single layer perceptron to a simple three-variable system. Then we compared the systems
of order parameters when the standard method and WN are used, and found that the
effective learning rate was automatically adjusted in WN. We also showed that while WN
is robust to the setting of the learning rate it is sensitive to the weight initialization.

In Chapter 3, we applied the statistical mechanical method to the learning of two-
layer perceptron when the number of output elements is general, and derived the dynamics
of order parameters. By solving it numerically, we pointed out that the plateau phenomenon
does not necessarily occur when there are multiple output elements.

In Chapter 4, we extended the statistical mechanical analysis, in order to investigate
the effect of the statistics of training data on the learning dynamics, to a situation where the
covariance matrix of the input data distribution is generalized. As a result, the relationship
between the eigenvalue distribution of the covariance matrix and the macroscopic dynamics
became clear, and it was demonstrated that the plateau phenomenon became less noticeable
especially when the eigenvalue distribution had a small scale and a large variance.

In Chapter 5, in contrast to the previous chapters, we conducted research focusing
on the signal propagation dynamics in deep neural networks. In previous studies, derivation
of the depth scale of signal propagation in random networks using the mean-field method
has been performed analytically only for simple networks. We established a numerical
method for evaluating the depth scale of arbitrary networks. Furthermore, for networks of
various architectures, it was confirmed that the depth scale evaluated by this method and
the actual trainability matched well, that is, the method was effective in predicting the
trainability.

In this chapter, we review the positions of the above-mentioned studies and discuss

95



6.1. Position of our research Chapter 6. Conclusion

how these studies may influence future theoretical research and industries.

6.1 Position of our research

Neural networks and deep learning, a form of machine learning, have been rapidly
used in industry in recent years and have outperformed other machine learning methods.
There have been various factors for it. The abundance of available computing resources
and data might be one of the reasons. However, it seems most important that a variety of
new learning techniques have been developed to enable efficient learning of large networks
with many layers. Deep learning is realized not only by just learning a network of many
layers literally, but also by being supported by these techniques.

However, in spite of these invention of many learning techniques, deep learning
has not become sufficiently clear. Rather, a more confusing situation has arisen than with
conventional methods; "How long does it take to learn?", "Is this optimization algorithm
more advantageous than that one?", "What is the optimal number of layers and the number
of elements in each layer?", "Which method is most suitable for initializing the weights?",
etc. In many cases, we can’t find out unless we actually do it. In fact, it has been practiced
to adjust the enormous number of hyperparameters required for designing and learning
neural networks based only on human experience and intuition. In recent years, there have
been some methods for automating the search for such hyperparameters (for example,
Bayesian optimization, evolutionary computation, and neural architecture search including
AutoML). Even with such methods, trial-and-errors remain needed inside them, and the
computational cost is still demanded.

In order to improve this situation, it is necessary to understand what is happening
in the neural network theoretically. This was the motivation throughout our study. In par-
ticular, we have paid attention to macroscopic methods such as the statistical mechanical
method and the mean-field methods. This is because we believe that these methods are
optimal for modeling what is happening in reality.

6.2 Impacts

6.2.1 Impact on industry

As mentioned in the previous section, the use of neural networks is rapidly expand-
ing in the industrial world. A variety of useful deep learning frameworks (libraries) have
been developed, including easy-to-understand tutorials and source codes for learning basic
models. Even developers unfamiliar with neural networks and deep learning can easily try
something anyway. However, they do not have the know-how to adapt the model to the
task appropriately or improve the algorithm or its hyperparameters based on the learning
result. When searching on the web, knowledge written by various people based on their
experience will be hit, but the situation (tasks and data) faced by them and by the devel-
opers might differ, so their information may be useless. In such situations, typically they
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resort to search the optimal hyperparameters by force. It is very time-consuming and com-
putationally expensive, so that some might give up on optimization from the beginning.
We again note that AutoML-like methods are also demanding too much. Then, how will
the situation be resolved if the theoretical understanding of the neural network advances?

It is common that some of the hyperparameter settings make learning very suc-
cessful, and others do not. We want to know the success or failure of learning without
actually learning them. We believe that theories of neural networks will make this possi-
ble. In other words, from the theory, we would be able to tell what are recommended or not
recommended when designing and learning neural networks. Developers can design a neu-
ral network and its training according to their theoretical knowledge without performing
the conventional hyperparameter search.

The above is true for all the theoretical methods for neural networks. However, we
are particularly interested in macroscopic methods we have used in this dissertation. What
we really want is to model the phenomenon which happens in reality. The macroscopic
approaches match this demand, because they examine the average behavior, not the worst-
case behavior.

6.2.2 Impact on theoretical research

We believe that studies of these directions would be useful in particular and they
would be one of the important future direction of theoretical research for neural networks.

Statistical mechanical approach

It is inherently very difficult to grasp learning dynamics of neural networks theo-
retically, because the input-output relationship of a neural network itself is quite nonlinear,
it is parameterized with a huge number of variables, and they change dynamically during
learning; the situation is extremely complicated. Therefore, in order to theoretically treat
learning of neural networks, it is necessary to consider some simplification. For example,
we might consider the case with linear neural networks, or we might build a model which
captures the dynamics only in the vicinity of special situations (for example, in the vicinity
of singular regions or global solutions). By simplifying the situation, the analysis would
become easy, but on the other hand, the properties of the original phenomena that we orig-
inally wanted to see are somewhat impaired. In such a situation, the statistical mechanical
method would be helpful; it is a prominent method to reduce to a low-dimensional system
without impairing the rich behavior of the quite nonlinear phenomenon.

The applicable range of the method is wide. For example, as we analyzed weight
normalization in Chapter 2, this method can be applied to other optimization algorithms.
For example, by using statistical mechanical methods, learning dynamics with the natural
gradient descent method⇤ and the Layer Normalization are analyzed[27, 46]. This method

⇤The natural gradient descent method[72] is an optimization algorithm that has a theoretical basis in
information geometry. Although it speeds up learning greatly in terms of the number of steps, it has a
heavy computational cost per step, as it calculates the inverse of the Fisher information matrix (which
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provides a framework for comparing and examining innumerably various algorithms, mod-
els, and their combinations that have been proposed in recent years.

Finally, we mention a very recent development of our approach. In Chapter 4,
we extended existing statistical mechanical methods to analyze the impact of input data
statistics on the learning dynamics of nonlinear neural networks. Following this work, a
formulation was presented by Goldt et al. that relaxed the assumptions about the statistics
of the input data into a more realistic form[73]. They established a formulation based on the
manifold hypothesis that realistic data are distributed around a low-dimensional manifold
embedded in high-dimensional space, and derived the dynamics of order parameters and
generalization loss during learning. This formulation is important for bringing the teacher-
student statistical mechanical formulation closer to reality, and further development is
expected in the future.

Mean-field approach

The mean-field method discussed in Chapter 5 is a powerful method for analyzing
signal propagation in deep neural networks. This method assumes random neural networks
and is therefore only applicable a priori to those initialized randomly before the learning
starts. However, we believe that the method is likely to be applicable in practice to neural
networks during or after learning. The reason for this is twofold. First, We have some
observations that it is possible to take into account the correlations between rows of the
weight matrices of trained neural networks. Another reason is that the weights of neural
network with infinite width vary only slightly from their initial values during training,
as shown in the recent theory of neural tangent kernel (NTK)[68, 69]. If the method can
be applied to trained neural networks, we believe that it has the potential to solve the
necessary and sufficient conditions for successful learning.

6.2.3 Effects on understanding the biological neuronal system

All the theoretical studies of neural networks, including the study of learning and
inference dynamics described in this dissertation, are considered to have potential applica-
tions in the field of neuroscience. Of course, the majority of research has been conducted
without being aware of neuroscience. However, it offers a very good opportunity for looking
at neuroscience in a multi-faceted way. Personally, I have thought that it is essential to
fully understand artificial neural networks first as a preparation step for understanding
neuroscience.

6.3 Conclusion

Anyway, neural networks and deep learning are extremely interesting phenomena
from the engineering, mathematical, and even biological perspectives, and I cannot take
my eyes off them for a moment, both as a researcher and an engineer.

takes O(N3) time if done naively, or O(N2) if done sequentially) in each step.
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Appendix A

On input statistics of teacher-student

setup

Here we discuss conditions allowed for input statistics in teacher-student formula-
tion used in Chapters 2-4.

A.1 Case with unit covariance

In Chapters 2 and 3, we set up the input distribution p(⇠) as N (0, 1/N IN ) and
N (0, IN ), respectively. We then introduced the variables xi := ⇠TJ i and yn := ⇠TBn,
where J i is i-th weight vector in the student’s first layer and Jn is n-th weight vector
in the teacher’s first layer. The main point we used there is that (x1, . . . , xK , y1, . . . , yM )

follows a multivariate Gaussian distribution when N ! 1. Actually it holds when the
input distribution p(⇠) is a multivariate Gaussian as we assumed there (even if N is finite).
However, it is not only the case we can deal with. As Saad et al. set up [9], we can
consider the case in which each ⇠i follows an identical distribution p(⇠) (not necessarily a
Gaussian) which has zero mean and finite covariance independently. In that case, ⇥ :=

(x1, . . . , xK , y1, . . . , yM ) follows a multivariate Gaussian distribution, if certain conditions
are satisfied. What is the conditions?

Considering characteristic function, ⇥ follows a multivariate Gaussian if and only
if its any projection

a1x1 + · · ·+ aKxK + b1y1 + · · ·+ bMyM

= (a1J11 + · · ·+ aKJK1 + b1B11 + · · ·+ bMBM1)⇠1

+ · · ·+ (a1J1N + · · ·+ aKJKN + b1B1N + · · ·+ bMBMN )⇠N

= c1⇠1 + · · ·+ cN⇠N

follows a Gaussian. Here we need weighted sum version of the central limit theorem. By
Lindeberg’s central limit theorem [74], the following condition is sufficient for the sum

to converge to Gaussian (in distribution): for any i = 1, 2, . . . , N , lim
N!1

NX

j=1

c2j/c
2
i = 1
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holds. Informally, this means that the distribution of Jij and Bin is not skewed so that a
particular coefficient ci does not have O(N0) influence when N !1. For example, we let
J1 = (1, 0, 0, . . . , 0). In this case, x1 = ⇠TJ1 = ⇠1 follows p(⇠) which is not necessarily a
Gaussian.

A.2 Case with non-unit covariance

On the contrary, in Chapter 4, we dealt with different setting: we considered the
case that p(⇠) has zero mean and finite covariance matrix ⌃. We defined x(e)

i
:= ⇠T⌃(e)J i

and y(e)n := ⇠T⌃(e)Bn. Again, the main point we used there is that all elements in any
finite subset of {x(e)

i
| 1  i  K, 0  e} [ {y(e)n | 1  n  M, 0  e} (as a tuple)

follow a multivariate Gaussian distribution when N !1. Similar to previous section, the
problem is reduced to whether c1⇠1+ · · ·+cN⇠N follows a Gaussian. In what cases does this
hold true? One trivial case is that ⇠1, . . . , ⇠N are independent random variables. In that
case, Lindeberg’s central limit theorem can be applied. Additionally, if there is a linear
transformation A⇣ = ⇠ and ⇣1, . . . , ⇣N are independent random variables, Lindeberg’s
central limit theorem can be also applied. One surprising case is the hidden manifold
model proposed by Goldt et al. [73], which models the input as ⇠ = f(A⇣), where f is an
element-wise function, ⇣ follows N (0, ID), and A 2 RN⇥D is a fixed random matrix.
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