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Semantic Segmentation for Multi-Source Remote Sensing Imagery based on

Convolutional Neural Networks

by Guo Zhiling

In this dissertation, we creatively investigated the feasibility of applying deep learn-

ing methods in di↵erent semantic segmentation tasks via multi-source remote sensing

imagery. The comprehensive researches including village mapping, urban building ex-

traction, super-resolution integrated method, change detection, slum mapping, map

segmentation, etc., are conducted. The proposed methods mentioned above are devel-

oped by our open source computer vision package named as GeoVision, which contains

subpackage GeoSeg and GeoSR, to facilitate the development of the deep learning based

segmentation and super-resolution models, respectively. In village mapping, we present

the Ensemble Convolutional Neural Network (ECNN), an elaborate CNN frame formu-

lated based on ensembling state-of-the-art CNN models, to identify village buildings from

open high-resolution remote sensing (HRRS) images. First, to optimize and mine the

capability of CNN for village mapping and to ensure compatibility with our classification

targets, a few state-of-the-art models were carefully optimized and enhanced based on a

series of rigorous analyses and evaluations. Second, rather than directly implementing

building identification by using these models, we exploited most of their advantages by

ensembling their feature extractor parts into a stronger model called ECNN based on the

multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-

level classification frame to implement object identification. The experimental results

obtained from the test area in Savannakhet province, Laos, prove that the proposed

ECNN model significantly outperforms existing methods, improving overall accuracy

from 96.64% to 99.26%, and kappa from 0.57 to 0.86. As for urban building seman-

tic segmentation part, we investigate the feasibility of applying FCN-based method in

conducting map semantic segmentation. Here, high resolution aerial imagery of Tokyo,

which provide su�cient information about land features, as a representative sample to

perform data source. To mitigate the impact of color di↵erence on segmentation per-

formance, the color transform methods are utilized in image preprocessing as well. In
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terms of DCNNs model, a specific deep learning architecture named concatenate feature

pyramid networks (CFPN), which is a variant of FCN, is proposed based on feature con-

catenation and feature pyramid methods. Given the variety of the buildings as well as

the limited training dataset, CFPN model is deliberately designed in lightweight struc-

ture with relatively few parameters, which could be trained easily. Meanwhile, with the

help of feature concatenation and feature pyramid, CFPN is capable of extracting ade-

quate robust feature from complex texture to perform building segmentation with high

accuracy, and outperform other baselines by 3.55% to 7.89%. Since multi-source remote

sensing imagery has become widely accessible owing to the development of data acquisi-

tion systems, we address the challenging task of the semantic segmentation of buildings

via multi-source remote sensing imagery with di↵erent spatial resolutions. Unlike pre-

vious works that mainly focused on optimizing the segmentation model, which did not

enable the severe problems caused by the unaligned resolution between the training and

testing data to be fundamentally solved, we propose to integrate SR techniques with

the existing framework to enhance the segmentation performance. The feasibility of the

proposed method was evaluated by utilizing representative multi-source study materi-

als: high-resolution (HR) aerial and low-resolution (LR) panchromatic satellite imagery

as the training and testing data, respectively. Instead of directly conducting building

segmentation from the LR imagery by using the model trained using the HR imagery,

the deep learning-based super-resolution (SR) model was first adopted to super-resolved

LR imagery into SR space, which could mitigate the influence of the di↵erence in reso-

lution between the training and testing data. The experimental results obtained from

the test area in Tokyo, Japan, demonstrate that the proposed SR-integrated method

significantly outperforms that without SR, improving the Jaccard index and kappa by

approximately 19.01% and 19.10%, respectively. The results confirmed that the pro-

posed method is a viable tool for building semantic segmentation, especially when the

resolution is unaligned. After that, we expand the proposed methods mentioned above

to more challenging applications including change detection, slum mapping, and map

semantic segmentation. As for change detection, color normalization, super-resolution,

and image registration methods are adopted to balance the training and testing datasets,

after that, by adopting proposed CFPN model and image di↵erence, the identification of

land change can be achieved. In terms of slum mapping, here CFPN is adopted to per-

form multi-class semantic segmentation, the impact of resolution on slum segmentation

is discussed as well. Furthermore, the important GIS-related task: map semantic seg-

mentation, which aims at digitising historical maps is also applied by our deep learning

model. The experimental results reveal that our proposed method can serve as a viable

tool for semantic segmentation tasks via multi-source remote sensing imagery with high

accuracy and e�ciency.
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Chapter 1

Introduction

1.1 Research Background

To achieve Sustainable Development Goals (SDG), the investigation of human settle-

ments is essential, and the maps used to illustrate important land features and their

distribution are indispensable and required in a wide range of fields. Important applica-

tions include village mapping, change detection, slum mapping, disaster response, and

homeland security [1].

Given that accurate building maps are often unavailable or are outdated in undeveloped

village areas, building identification in such areas has become a significant research field

in remote sensing [1]. Figure 1.1 shows the rural environment maps of the same area

in Foxdale Britain by Google maps and OSM respectively, we can find out the building

information in Google maps compared with OSM is quite insu�cient, witch would bring

the inconvenience. This is even the case in developed country, and there’s no doubt

that in developing countries the condition would be more severe. Insu�cient building

information in village leads to inconvenience and has several negative consequences [2].

First, in the event of a catastrophe, building maps are indispensable [3]. For instance,

during catastrophic events such as the aftermath of the 2011 Tohoku earthquake and

tsunami [4], land conditions change rapidly with secondary disasters such as landslides,

tsunamis, and continual aftershocks [5]. To save victims and provide disaster relief in a

convenient way, it is important to swiftly update the locations of residential buildings

and information about other land features. Furthermore, in village planning, which aims

to benefit village inhabitants, public facilities need to be developed based on information

about the distribution of residential buildings [6]. In contrast to densely packed urban

buildings, village buildings have distinct characteristics, for instance, they are sparsely

scattered, change arbitrarily owing to the lack of regulation, and do not have distinct

1
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architectural features. Moreover, village buildings are usually mixed with complex and

diverse land features such as agricultural lands, mountains, and rivers [7]. Such com-

plexity of spatial and structural patterns makes village building identification a fairly

challenging problem, and the usage of building maps ensures that the tools used for

building identification provide rapid, accurate, e�cient, and time-sequenced results.

a) b)

Figure 1.1: Map of Foxdale, Isle of Man on Google Maps(a) and OSM(b) respectively
(2016.07).

In urban areas, although the maps are often provided, in many cases, the accurate out-

line of important land features such as buildings and landmarks for land use analysis

are still unavailable. Additionally, due to the frequent changing of important land fea-

tures, especially for rapidly developing cities, it is essential to be able to immediately

update such changes for the purposes of urban planning and navigation[8]. Figure 1.2

shows an example of rapid urban change in Kashiwa, Japan. Because of the variety

of background, building textures, densely packed features, and imaging conditions, the

automatic extraction of building remains is a long-standing important and challenging

task [9].

As for large-scale mapping, the slum semantic segmentation and localization is an im-

portant task for improving the sanitary condition, humanitarian, and living standard,

as well as reducing crime and poverty in developing countries [10]. Since the characteris-

tics of slum regions are very complicated, such as extremely high density, diverse shanty

structures, non-uniform patterns and styles, the investigation is still mainly based on

census and community survey, which hinders the sustainable development to a consid-

erable extent.

Rather than the fieldwork and ground investigation, the semantic segmentation of land

features depending on the multi-source remote sensing imagery would be more conve-

nient and e�cient. With the help of remote sensing imagery [11–13], earth-observation



Chapter 1. Introduction 3

KASHIWANOHA

 2015  2010

 Buildings  Vacant
 Compare

 Prediction

Figure 1.2: Buildings change example in urban areas.

activities on regional to global scales can be implemented owing to advantages such as

wide spatial coverage and high temporal resolution [14, 15]. By analyzing the tone, tex-

ture, and geometric features from the remote sensing image, experts can recognize land

features with high confidence [16, 17]. Consequently, we believe that remote sensing

imagery can provide as good data sources for land feature semantic segmentation.

In terms of the semantic segmentation technique, many methods have been studied. Note

that the traditional visual interpretation of remote sensing images is a very complex and

time-consuming process. Although with very high accuracy, it is not suitable to large-

scale automation projects. The Figure 1.3, which implemented by a medical group [18]

in Nagasaki University, shows the building semantic segmentation result based on visual

interpretation in Kenya. The manual visual interpretation work was taken several weeks

and the related massive implementation seems impossible.

a) b) c) d)

Figure 1.3: Identification of buildings in rural Environment based on Google Earth
via visual interpretation.
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In order to provide automatic and high accuracy segmentation result, with the help of

image processing and feature extraction techniques, various machine learning algorithms

[19] such as graph theory-based [20], clustering-based [21], Random Forest (RF) [22],

Adaptive Boosting (AdaBoost) [23, 24], Neural Networks (NN) [25] and Super Vector

Machine (SVM) [26, 27] in remote sensing have been implemented. For instance, Zhang

et al. [28] combine the K-means method with AdaBoost to classify buildings, and the

overall accuracy is about 90%. Zongur et al. [29] utilize satellite images to detect

an airport runway using AdaBoost with a circular-Mellin feature. Using an improved

Normalized Di↵erence Build-up Index (NDBI) and remote sensing images, Li et al. [30]

dynamically extract urban land. Cetin et al. [31] use textural features such as the

mean and standard deviation of image intensity and gradient for building detection. For

the identification of forested landslides, Dou et al. [32] utilize a case-based reasoning

approach and Li et al. [33] adopt two machine learning algorithms: RF and SVM.

When dealing with classifying complex mountainous forests via remote sensing images,

Attarchi et al. [34] verify the performances of three machine learning methods: SVM,

NN, and RF. For mapping urban areas of DMSP/OLS nighttime light and MODIS data,

Jing et al. [35] also utilize SVM.

As shown above, most existing segmentation methods applied for land feature extraction

can only generate low- or middle-level image features with limited representation ability,

which essentially prevents them from achieving good performance in various scenes.

Lately, in image segmentation field, the preponderance of deep learning methods such

as convolutional neural networks (CNN) [36] and full convolutional networks (FCN) [37]

has been proved owing to its advantages such as e�ciently generating high-dimensional

abstract feature and high accuracy performance. To facilitate the development of land

feature extraction, we believe the comprehensive investigation of semantic segmentation

for multi-source remote sensing imagery based on CNN is essential.

1.2 Related Works

Lately, the rapid development of deep convolutional neural networks (DCNN) [38] has

led to the construction of several models that have achieved great success with the task

of land feature semantic segmentation in terms of both accuracy and computational ef-

ficiency. The pioneering work on the topic can be traced to 2015, when Paisitkriangkrai

et al. [39] proposed e↵ective semantic pixel labeling using CNN and conditional ran-

dom fields (CRF) [40] to perform building segmentation with competitive classification

accuracy. Subsequently, in 2016, inspired by fully convolutional networks (FCNs) [37],

Kamp↵meyer et al. [41] designed architecture that allows end-to-end learning of the
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pixel-to-pixel semantic segmentation for buildings, and small land features were proven

to be detected accurately as well. In 2017, Guo et al. [42] utilized ensemble convolu-

tional neural networks (ECNN) to identify village buildings by using Google’s satellite

map and Bing Maps with high accuracy. And the development of hourglass-shaped net-

works (HSNs) such as UNet [43] and SegNet [44] motivated Liu et al. [45] to propose

an enhanced HSN. Their model included an inception module, which replaced the typi-

cally used convolutional layers, and which results in a network with multi-scale receptive

areas with rich context. In contrast to studies that aimed to modify the structure of

CNN, Bischke et al. (2017) [46] and Wu et al. (2018) [8] chose to optimize the loss

function by applying multi-task loss and multi-constraint loss, respectively. The results

demonstrated that optimization of the loss function could significantly improve the per-

formance of classic FCNs in certain building segmentation tasks. In addition, to facilitate

the development of parsing the earth through satellite imagery, a challenge named Deep-

globe [47] was held during the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW) in 2018, and the following is a brief overview of some

representative studies. Zhao et al. [48] conducted extraction by using Mask R-CNN [49]

with building boundary regularization. Delassus et al. [50] proposed a fusion strategy

based on a deep combiner using segmentation of both the results of di↵erent CNNs and

the input data to segment. By using a new FCN variant named TernausNetV2, Iglovikov

et al. [51] could extract buildings even at the instance level. Focusing on small buildings,

Dickenson et al. [52] utilized CNN to output rotated rectangles for symbolized building

footprint extraction. Li et al. [53] used a building extraction method based on ensemble

learning to perform the segmentation. Furthermore, a resent study in 2019, Wu et al.

[54] utilized stacked fully convolutional networks and a feature alignment framework for

multi-label land-cover segmentation with high accuracy.

For other remote sensing imagery based pattern recognition tasks using the CNN method

[55], Chen et al. [56] address vehicle detection, Li et al. [57] focus on building pattern

classifiers, and Yue et al. [58] use both spectral and spatial features for hyperspectral

image classification. To predict geoinformative attributes from large-scale images, Lee et

al. [59] also choose CNN, and Sermanet et al. [60] utilize the CNN method to identify

house numbers. Other important works such as Marmanis et al. [61] use pretrained

CNN model and big dataset to classification land features while Ding et al. [62] add

data Augmentation into CNN for SAT based building recognition. In high-resolution

image processing, the innovated works conducted by Hu et al. [63], who use transfer

learning to enhance obtained model in order to identify land features from HRRS and

achieved an overall accuracy of approximately 98%, also Martin et al. [64] classify

buildings using multiple CNN layers, pretrained model and K-meaning.
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Despite their success in several land feature semantic segmentation tasks, the discussions

on extraction via multi-source remote sensing imagery of which the spatial resolution

di↵ers are quite inadequate. With the dramatically increasing availability of new large-

scale remote sensing data sources, the ever-expanding choices of datasets can be utilized

in semantic segmentation tasks [65–67], and the case that training and testing datasets

obtained from multiple sources with di↵erent resolution would be inevitable and ubiq-

uitous in many practical applications [68].

1.3 Research Objectives

Figure 1.4: The proposed research framework.

In this dissertation, as shown in Figure 1.4, we creatively investigated the feasibility

of applying deep learning methods in di↵erent semantic segmentation tasks via multi-

source remote sensing imagery. To the best of our knowledge, there is no existing

doctoral dissertation which provides such comprehensive research on village mapping,

urban building extraction, change detection, slum mapping, etc. This section we will

briefly introduce each task, respectively.
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1.3.1 Village Mapping via Patch-based CNNs

We present an elaborate formulated CNN model called Ensemble Convolutional Neural

Networks(ECNN). Di↵erent from related works, ECNN achieves multiscale feature learn-

ing by ensembling the feature extractor part of four optimized state-of-the-art models,

and we apply it to implement the patch-based pixel-level village building segmentation

task based on satellite imagery.

The main contributions of this part can be summarized as follows:

• We explored how to construct CNN architecture that can adapt to the village

building segmentation task based on insightful and in-depth analysis.

• We optimized state-of-the-art CNN models by using rigorous principles to explore

their potential for pixel-level building segmentation via HRRS images.

• We presented a novel CNN frame called ECNN based on multiscale feature learning

by emsembling parallel optimized state-of-the-art CNN models.

• We implemented the proposed method for village building identification and found

that it outperforms the existing state-of-the-art methods, achieving an overall

accuracy and kappa coe�cient of 99.26% and 0.86 respectively.

1.3.2 FCN-based Building Semantic Segmentation in Urban Areas

To investigate the feasibility of applying DCNNs in conducting map semantic segmen-

tation, in this part, we take high resolution aerial imagery of Tokyo, which provide

su�cient information about land features, as a representative sample to perform data

source. To mitigate the impact of color di↵erence on segmentation performance, the

color transform methods are utilized in image preprocessing as well. In terms of DCNNs

model, a specific deep learning architecture named concatenate feature pyramid net-

works (CFPN), which is a variant of FCN, is proposed based on feature concatenation

[69] and feature pyramid [70] methods. Given the variety of the buildings as well as the

limited training dataset, CFPN model is deliberately designed in lightweight structure

with relatively few parameters, which could be trained easily. Meanwhile, with the help

of feature concatenation and feature pyramid, CFPN is capable of extracting adequate

robust feature from complex texture to perform building segmentation with high accu-

racy. The experimental results reveal that the proposed model could outperform other

baselines and extract building polygon e�ciently.
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1.3.3 Super-Resolution Integrated Semantic Segmentation

(a) Training example (b) Testing example (c) Segmentation result

Figure 1.5: Example for building semantic segmentation based on identical training
and testing data source.

As show in Figure 1.5, building semantic segmentation based on identical training and

testing data source can obtain relatively high accuracy results. However, di↵erences be-

tween the resolution of the training and testing datasets would greatly influence building

semantic segmentation, an representative example can be found in Figure 1.6, in which

a segmentation model trained by 0.16m resolution aerial imagery is directly applied to

test satellite image with resolution 2m. By adopting super-resolution methods on low

resolution imagery (a qualitative example as shown in Figure 1.7), the results can be

enhanced.

In this part, contrary to previous work, we propose to integrate super-resolution (SR)

techniques into the existing segmentation framework to address the problem of build-

ing semantic segmentation in multi-source remote sensing imagery with di↵erent spatial

resolution. To validate the feasibility of the proposed method, two high-performance

DCNN-based models, namely e�cient sub-pixel convolutional neural network (ESPCN)

[71] and UNet, are adopted to perform SR and the semantic segmentation operation,

respectively. In addition, three-band RGB HR aerial imagery and single-band grayscale

LR panchromatic satellite imagery are selected as representative multi-source remote

sensing imagery to conduct training and testing, respectively. It is worth emphasiz-

ing that, to the best of our knowledge, there has not been any empirical study using

SR techniques for the building semantic segmentation from multi-source imagery with

di↵erent resolution.

The main contributions of this study are three fold:

• We discussed the challenge and limitation of recent deep learning based studies on

building semantic segmentation of building while under multi-source imagery with

di↵erent resolution circumstance.
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(a) (b) (c) 

(f) (e) (d) 

Figure 1.6: Example for the impact of resolution on segmentation results. (a) Original
satellite image with resolution 2m; (b) building identification results of (a); (c) upscale
resolution 2 times by super resolution to 1m; (d) upscale resolution 4 times by super
resolution to 0.5m; (e) upscale resolution 8 times by super resolution to 0.25m; (f)
upscale resolution 12 times by super resolution to 0.167m(similar with training dataset).

(a) LR image sample (b) SR image sample (2 x Up) 

Figure 1.7: Example for super-resolution applied on satellite imagery.



Chapter 1. Introduction 10

• We innovatively presented a novel SR integrated building semantic segmentation

framework to tackle the problem caused by the unaligned resolution between train-

ing and testing data, and investigated the feasibility of the proposed method based

on comprehensive experiments.

• The experimental results demonstrate the proposed method could achieve state-of-

the-art performance, and the IoU and Kappa is approximately 19.01% and 19.10%

higher than that of the method without SR, respectively. It indicates the e↵ects of

SR on segmentation performance in remote sensing imagery, which would benefit

the remote sensing community from literature review to future directions.

1.3.4 Expanding Applications

We expand the proposed methods mentioned above to more challenging applications

including change detection, slum mapping, and map semantic segmentation. As for

change detection, color normalization, super-resolution, and image registration meth-

ods are adopted to balance the training and testing datasets, after that, by adopting

proposed CFPN model and image di↵erence, the identification of land change can be

achieved. In terms of slum mapping, here CFPN is adopted to perform multi-class se-

mantic segmentation, the impact of resolution on slum segmentation is discussed as well.

Furthermore, the important GIS-related task: map semantic segmentation, which aims

at digitizing historical maps is also applied by our deep learning model.

1.3.5 Standard Package

We present an open source computer vision package named as GeoVision, which contains

subpackages GeoSeg and GeoSR, to facilitate the development of the deep learning based

segmentation and super-resolution models, respectively. As a unified, simple, and flexible

package, GeoVision contains pipeline-like integrated tools from data retrieval to final

result evaluation, which enables users to develop self-defined models conveniently; several

state-of-the-art models trained through the same high-quality dataset are provided as

the baseline in the package as well. Moreover, the proposed package could potentially

serve as a viable backend for other related packages such as image segmentation with

high e�ciency.
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1.4 Outline of the Dissertation

This chapter formulated the problem of semantic segmentation for multi-source remote

sensing imagery based on convolutional neural networks, and described its significance

and di�culties. It then continued with a related works in machine learning and deep

learning, outlined our approach to the problem, and summarized our main contributions.

The remaining chapters are organized as follows:

• Chapter 2: Introduces the method of adopting patch-based CNNs to segment

village areas in remote rural environment;

• Chapter 3: Shows the performance of FCN based building semantic segmentation

in urban areas;

• Chapter 4: Reveals the e↵ectiveness of applying super-resolution methods in se-

mantic segmentation tasks under resolution di↵erence circumstance;

• Chapter 5: Proposes further application in change detection and slum mapping;

• Chapter 6: Concludes our work and presents proposals for future works;

• Appendices: I: Introduces the framework and function of GeoVision; II: The GIS-

related application of map semantic segmentation; III: Our contribution and the

list of publications.



Chapter 2

Village Mapping via Patch-based

CNNs

With the rapid development of remote sensing satellite imaging techniques in recent

years, a considerable number of highly spatially resolved images are available [11–13].

Owing to the high price performance ratio, many remote sensing image classification

studies are performed using open high-resolution remote sensing (HRRS) data [72–74].

In this study, three-band HRRS images from Google Earth (GE) [75] and Bing Maps are

used as the data source and applied to village building mapping in a large rural region.

Recently, deep convolutional neural networks (CNN) have been successfully applied to

many pattern-recognition tasks [36]. Compared with most existing classification meth-

ods, which can only generate low- or middle-level image features with limited repre-

sentation ability, CNN does not require prior manual feature extraction [55, 76]. A

large volume of abstract features can be extracted automatically based on gradient de-

scent and back propagation algorithms, thus resulting in higher accuracy and e�ciency

[77, 78].

CNN-based pixel-level classification is one of the most important and popular topics in

the geoscience and remote sensing community, and it can be used to e�ciently identify

individual land features in greater detail, and significant progress to this end has been

achieved in recent years [79–81]. Related works have been introduced in our previous

work [82]. In this study, we focus on the use of CNN for pixel-level [83] classification

via HRRS images according to our previous work, according to which, pixel-level village

building identification is implemented based on a shallow CNN structure that can achieve

relatively high accuracy when using GE images compared to other machine learning

methods. Although the previous CNN structure proved to be very useful for exploring

12
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features and classification, the unstable performance in some study areas indicates that

it might be inadequate for exploiting the full potential capability of CNN.

Identification performance depends highly on the structure of the CNN model [84]. To

adapt CNN for village building identification with high accuracy, we can apply state-

of-the-art models such as AlexNet [85], VGGNet [86], GoogLeNet [87], SqueezeNet [88]

achieved in ImageNet [67] Large-Scale Visual Recognition Challenge (ILSVRC) [84]. The

high feasibility of applying the aforementioned models has been proven by many studies

in di↵erent fields [63, 89–92]. To make the most of these mentioned state-of-the-art

models and to ensure compatibility with our experiment, we optimized and enhanced

their architectures into four self-designed structures named AlexNet-like, VGGNet-like,

GoogLeNet-like and SqueezeNet-like via rigorous experiment while fully considering the

characteristics of the input HRRS images and identification targets. The identification

capability of an individual optimized CNN model is limited. To make the most of the

single feature extraction capability, a promising solution would be to create an ensemble

of several CNN models. In this study, we employ multiscale feature learning [93] to

achieve the goal.

Multiscale feature learning schemes such as recurrent neural networks (RNNs) [94] and

scene parsing using CNNs [95] have been showing tremendous capabilities in di↵erent

tasks. In multiscale feature learning, several paralleled CNN models of varying con-

textual input size are implemented to extract features, and thereafter, the output of

each CNN is ensembled and concatenated into a classifier. In practice, Martin et al.

[64] implemented multi-class land feature classification by using four stacked CNN mod-

els. To improve and smooth semantic image segmentation, Marmanis et al. [96] and

Farabet et al. [97] implemented multi-scale segmentation-based parallel CNN architec-

tures. Richard et al. [98] and Pedro et al. [99] achieved multiscale feature learning by

stacking multiple shallow networks with tied convolution weights on top of each other.

Ding et al. [100] combined deep CNN with multiscale feature for intelligent spindle bear-

ing fault diagnosis. In the case of medical image processing, Kiros et al. [101] utilized

stacked multiscale feature learning for massive feature extraction and Tom et al. [102] for

a deep 3D convolutional encoder. Many studies have used RGB-D images to implement

classification and segmentation, [103–106], rather than inputting a four-dimensional im-

age into a single CNN in a directed way; features of information in RGB and depth

bands are usually extracted based on well designed parallel CNNs respectively. Finally,

the obtained features are merged in a fully-connected layer for implementing di↵erent

tasks. The multiscale feature learning method can be used e↵ectively not only in the

computer vision field but also in other fields such as recommender systems [107], in

which di↵erent features of data types such as text, image, social relationship, and user
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information are extracted using parallel CNNs; the final recommendation is provided

based on classification of the ensembled features [108–110].

In this chapter, we present an elaborate formulated CNN model called Ensemble Convo-

lutional Neural Networks(ECNN). Di↵erent from related works, ECNN achieves multi-

scale feature learning by ensembling the feature extractor part of four optimized state-of-

the-art models, and we apply it to implement the pixel-level village building identification

task.

The main contributions of this study can be summarized as follows:

• We explored how to construct CNN architecture that can adapt to the village

building identification task based on insightful and in-depth analysis.

• We optimized state-of-the-art CNN models by using rigorous principles to explore

their potential for pixel-level building identification via HRRS images.

• We presented a novel CNN frame called ECNN based on multiscale feature learning

by emsembling parallel optimized state-of-the-art CNN models.

• We implemented the proposed method for village building identification and found

that it outperforms the existing state-of-the-art methods, achieving an overall

accuracy and kappa coe�cient of 99.26% and 0.86 respectively.

The remainder of this chapter is organized as follows. In Section 2.1, we describe the

study area and the experimental dataset. Details about the methods are presented in

Section 2.2. In Section 2.3, we present the experimental results and discuss the capability

of the proposed method in comparison to existing methods. Finally, we present our

conclusions and a few proposals for future work in Section 2.4.

2.1 Data

2.1.1 Study Area

To test the feasibility of the proposed method in di↵erent regions and by using di↵erent

data sources, we selected rural areas in developing countries such as Laos and Kenya.

One of the study areas is located in Kaysone, Savannakhet province in Laos. Its lon-

gitude and latitude range from E104�47022” to E104�49054” and from N16�34028” to

N16�36026”, respectively, and it measures approximately 12.08 km2. The study area

was a complex rural region with many di↵erent types of landscape, including abundant
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natural components such as mountains, rivers, and vegetation cover, as well as artifi-

cial areas such as villages, roads, and cultivated land, which are typical of rural areas.

The other study area was Kwale, a small town in the capital of Kwale County, Kenya.

It is located at around S4�10028” and E39�27037”, 30 km southwest of Mombasa and

15 km inland, and it measures approximately 30.20 km2. The area was mainly covered

by forest and other desolate landscapes, and the buildings were rather scattered. A few

samples from the study area are shown in Figure 2.1.

(a) (b)

Figure 2.1: Study area example (a), located in Savannakhet Province, Laos, shows
abundant land features; Study area example (b), located in Kwale Province, Kenya,

with relatively desolate land features. The resolution of all images is 1.2 m.

2.1.2 Data Source

The remote top-view RGB image of Kaysone and Kwale, both with a resolution of 1.2 m,

were captured from Google’s satellite map in February 2016 and Bing Maps in January

2016, respectively. As the training dataset for Laos, we deliberately selected a few typical

village/non-village areas from the data source. In village areas, the training dataset

mainly showed land features such as buildings, roads, rivers, and cultivated lands, while

in non-village areas, mountains, forests, and vegetation cover are the main features. The

ground truth map of the village buildings was manually drawn beforehand by using a

polygon-based interaction tool. This ground truth map contained accurate information

of the land categories and was chiefly used for sampling and result detection. Similar to

Laos, the training dataset in Kenya was also selected considering the characteristics and

the diversity of the landscape. The test dataset contained the entire testing area of Laos

and Kenya, and several di↵erent types of landscape were shown; the land features in

di↵erent countries and areas showed distinctive characteristics. As shown in Figure 2.1,

land features in Laos (Figure 2.1a) are more abundant than those in Kenya (Figure 2.1b).
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The diversity and complexity of the images also makes the identification task di�cult.

This, in turn, warrants that the classification model incorporate all these conditions.

2.2 Methods

Figure 2.2 shows details of the workflow employed in our experiment. First, as introduced

in Section 2.1.2, the training dataset in our experiment contains two parts: three-band

RGB HRRS images and the corresponding ground truth labels. Importantly, both the

complexity and characteristics of the identification target, and the diversity of land

features need to be considered when preparing the dataset [111]. Second, to optimize and

mine the capability of CNN for rural environmental building identification and ensure

compatibility with our classification targets, a few state-of-the-art CNN structures were

carefully optimized and enhanced based on a series of rigorous testing results. Then, we

generated the ECNN model from the ensembling based on the identification capability

of the CNN models. Third, depending on the back propagation and the gradient descent

algorithms, the proposed ECNN structure can learn from the training dataset patterns

that map the variables to the target and output a trained ECNN model that captures

these relationships and can identify buildings in rural environments. Thereafter, cross

validation [112] was implemented to verify the feasibility and performance of the CNN

models; here, to evaluate the accuracy and reliability of the result, we used the confusion

matrix [113], kappa coe�cient [114] and overall accuracy. Finally, the generated ECNN

model was applied to the prepared testing HRRS dataset to identify village buildings.

2.2.1 Convolutional Neural Networks

The CNN method is more robust and yields better performance than other machine

learning methods in image pattern recognition owing to its capability in mining deep

representative information from low-level inputs [86]. A single CNN model performs the

steps of convolution [115], non-linear activation [116], and pooling [117]. With multilayer

networks trained by gradient descent and back propagation algorithms, CNN can learn

complex and nonlinear mapping from a high- to low-dimensional feature space [118].

In this experiment, the input dataset x 2 Rh⇥w⇥c refers to multichannel HRRS images,

where each dimension represents the height, width, and number of channels. The output

classification result y 2 Rh
0⇥w

0⇥c
0
generated by y = H(x,⇥), where ⇥ denotes a set of

parameters called kernels.

In the convolution layer, the input x with bias ↵ 2 Rc
0

is computed by convolutional

kernels ⇥ 2 Reh⇥ ew⇥ec⇥c
0
. This computation can be formulated as follows:
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⇥ijdk0 ⇥ xi0+i,j0+j,d

!
(2.1)

where H(·) denotes a nonlinear function to generate the hypothesis; instead of saturated

activation methods, here, we use the rectified linear unit (ReLU):

yijk = max{0, xijk} (2.2)

To implement the subsampling operation, the max-pooling layer [119], which computes

the maximum response of each image channel in a eh ⇥ ew subwindow, is used, and it is

calculated as follows:

yi0j0k = max
1<i<eh,1<j< ew

xi0+i,j0+j,k (2.3)

Finally, the classification result can be generated using the softmax function [120]:

yijk =
exp(xi,j,k)P
c

d=1 exp(xijd)
(2.4)
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2.2.2 Model Optimization

In our previous study [82], the identification task was implemented using a simple CNN

structure, in which, the sample window size was 18 ⇥ 18, and two convolutional layers

followed by average pooling were implemented with 6 and 12 filters, respectively. Com-

pared with other machine learning methods, although the preceding CNN structure is

very feasible for the purposes of feature exploration and classification, it might not be

e↵ective for mining the complete capability of CNN. In this section, we aim to optimize

the CNN model to achieve better results.

ILSVRC is an annual competition held by ImageNet since 2010, in which research teams

submit programs that classify and detect objects and scenes. It is important to note

that in 2012, AlexNet reduced the error rate to 16% from the previous best of 25%,

and in the next couple of years, more accurate pattern recognition results were obtained

using popular models such as GoogLeNet, VGGNet, SqueezeNet and ResNet [121].

To make the most of these aforementioned state-of-the-art models, we optimized their

architectures by considering the characteristics of the input HRRS images and our

identification targets. Here, we propose self-designed structures called AlexNet-like,

GoogLeNet-like, VGGNet-like and SqueezeNet-like based on rigorous experiments and

theories; thereafter, we ensemble these CNN models into ECNN.

The principle of optimizing CNN architecture is highly based on analyzing the learning

curves of both the training and the cross validation results [122]. In addition to accuracy,

two other important indexes need to be pointed out: bias and variance [123].

In this experiment, both bias and variance lead to severe problems. High bias can cause

an algorithm to miss the relevant relationships between features and target outputs.

Here are some ways to solve this challenge:

• Optimize the accuracy of the input training data. This means the training HRRS

images and the corresponding labels of buildings and other land features must be

as accurate as possible.

• Decrease the regularization coe�cient � [124], because doing so can solve under-

fitting-related problems.

• Add number of features, such as implementation of higher-level CNN structures,

which could extract more features

When facing high variance, which leads to over-fitting [125], the problem can be solved

by:
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• Adding more training samples would be helpful. Data augmentation such as adding

more training HRRS images to the dataset considering the diversity.

• Increase the regularization coe�cient �, which can solve over-fitting problems.

• Decrease the number of features, by using a method such as Dropout [126].

Here, we optimize our model based on the preceding principles. We take the VGGNet-

like (introduced in Section 2.2.4) structure as an example to explore how to configure

the CNN architecture based on the characteristics of VGGNet. The final promising

structure is generated by gradually enhancing and optimizing a simple initial CNN.

Considering the experimental requirement, the three parameters to be evaluated in our

experiment are number of filters, depth of architecture, and input sample window size.

These parameters are connected in a way that determines the total number of units and

the weight values of the entire structure.

The initial architecture is based on the basic CNN model utilized in our previous work.

To enhance the architecture, the number of filters is configured by multiplying the

original number of filters by f = [3 9 25 100 200]. The number of added convolutional

layers is donated by y, and it ranges from 2 to 12 in steps of 2; the window size s is the

area surrounding the pixel to be classified and is set to be between 14 and 50 with an

interval of 2. We evaluated the e↵ects of each parameter in terms of accuracy, e�ciency,

and learning curve; then, we integrated all the optimal settings to obtain a promising

VGGNet-like architecture.

2.2.2.1 Influence of Filter

In general, the greater the number of filters, the greater the number of features that

can be extracted. Here, we gradually increase the number of features from the original

to f = [3, 9, 25, 100, 200] times in each convolutional layer. As shown in Table 2.1,

when the number of filters reaches 25 times, the best training and testing results can

be generated, and the model can achieve 98.98% and 0.83 in terms of testing accuracy

and kappa value, respectively. Moreover, from the learning curve (Figure 2.3), until 200

and 300 times, the model does not encounter the challenge of over-fitting, which means

that the number of features has not saturated yet. Upon adding more filters, the model

tends to converge faster. However, when considering both accuracy and e�ciency, the

number of filters that can obtain a good enough result would be suitable.

Although high accuracy could be achieved, the model continued to su↵er from unstable

convergence, and it was not stable even after adding 200 times the original number of

filters. The influence of depth of architecture will be explored in the next section.
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Table 2.1: Relationship between number of filters and accuracy.

Training Testing

Structure Para Acc (%) Kappa Epoch (s) Total (min) Acc (%) Kappa Total (s)

Ori 1669 95.31 0.86 1.41 7.06 97.29 0.60 1.59
⇥3 11917 98.94 0.97 1.57 7.85 98.15 0.72 1.93
⇥9 97957 99.19 0.98 2.29 11.46 98.22 0.73 3.31
⇥25 0.73M 99.73 0.99 7.09 35.44 98.98 0.83 10.16
⇥100 11.57M 99.69 0.99 83.09 415.46 98.79 0.80 88.00
⇥200 46.18M 97.54 0.92 299.06 1459.27 98.14 0.70 5.67

Figure 2.3: Influence of number of filters.

2.2.2.2 Influence of Depth

CNNs constitute a very important branch of deep learning. The preponderance of CNNs

is highly based on the depth of architecture. By mining deeper and more abstract

features and information from an identification target, usually, a very deep network can

achieve higher accuracy. In recent years, owing to the improvement in the computational

capability and hardware, it has become possible to construct and compute very deep

networks. Recent state-of-the art architectures such as VGGNet and ResNet make the

most of this principle.
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In this experiment, to explore the e↵ect of depth on the CNN model for identification of

buildings in rural environments, we increased the number of convolutional layers from

the original 2 to 14 in steps of 2. Both the training testing settings and the results are

shown in Table 2.2.

Table 2.2: Relationship between depth and accuracy.

Training Testing

Structure Para Acc (%) Kappa Epoch (s) Total (min) Acc (%) Kappa Total (s)

Ori 1669 93.02 0.79 1.49 74.29 94.58 0.42 1.73
+2 Conv 4891 96.30 0.89 2.06 103.16 96.84 0.58 2.60
+4 Conv 8133 96.21 0.88 2.73 136.93 98.06 0.68 3.55
+6 Conv 11,335 97.45 0.92 3.44 172.09 98.18 0.70 4.65
+8 Conv 14,557 97.54 0.92 4.16 208.19 98.14 0.70 5.67
+10 Conv 17,779 97.80 0.93 4.94 247.03 97.67 0.65 6.73
+12 Conv 21,001 78.97 0.00 6.18 308.87 97.53 0.00 7.81

At the outset, model accuracy increases as the network depth increases. However, when

the number of convolutional layers is higher than 12, the network becomes stocked

and even loses its identification capability. After rigorous analysis, we found that this

problem is caused by gradient vanishing [127]. As we know, CNN is based on gradient

descent and back propagation. When implementing the gradient descent algorithm, the

input signal will be activated by activation function in the saturated or diverged region.

Thereafter, with propagation processing, this phenomenon will be propagated in the

entire model and will cause the corresponding gradient to vanish and explode.

This challenge can be overcome in several ways. For instance, we can use unsaturated

activation such as Relu to relieve the problem to a certain degree. Moreover, the batch

normalization [128] method, in which feature scaling is performed after convolution can

be used; with this method, the result falls into the vanishing and exploding region can

be avoided. In this experiment, we selected the simplest solution of adding depth to

the most suitable degree, which can yield promising results while avoiding the gradient

vanishing problem. Considering e�ciency and accuracy, here, we added six convolutional

layers into the original structure; as a result, we obtained testing accuracy and kappa

value of 98.18% and 0.70 respectively.

2.2.2.3 Influence of Window Size

The size of the input sample is a very significant factor that influences identification

capability. Considering the image resolution and the characteristics of village buildings,

the ideal window size must be slightly bigger than that for ordinary buildings, while

information about a building’s surroundings must be included as well. The input window
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size of our original basic architecture is 18 ⇥ 18, which might be too small to extract

enough valuable features.

Herein, we change the window size from 14 to 50 with intervals equal to 2; the parameter

amount increases along with the increasing window size. For comparison, the experiment

is conducted using a basic and a complex CNN structure, which is constructed based

on the previous optimization principle. In particular, we focus on comparing the e↵ect

of window size on multiple relations, such as size 14 with 28, 16 and 32, etc., because a

double-sized window contains the same information as a small one.

From the testing result (Figure 2.4a), by implementing a simple structure, a double-

sized window could yield better results, because it contains more abundant information

that a small-sized window. However, if we implement a complex structure, although a

double-sized window contains more information, we cannot always obtain better results

(Figure 2.4b).

(a) (b)

Size Size

Figure 2.4: Window size in multiple relations. (a) with a simple structure; (b) with
a complex structure.

With the same CNN structure, bigger window size can obtain more features and param-

eters, but other methods such as adding filters and depth can also increase the amount

of features. If the feature extraction capability of the model is weak, the big-size sam-

ples would help it to obtain more information than small-size ones, which would lead

to good results. However, when we use a complex structure which can extract su�cient

features, bigger window size can no longer yield good results, and extremely big window

size might yield redundant and useless features, which lead to bad results. In this ex-

periment, we choose a window size that is 50% bigger than in the ordinary architecture,

with an adaptive number of kernels and depth. If the model su↵ers from over-fitting,

herein, we also implement Dropout to address the problem.

In conclusion, to take full advantage of state-of-the-art CNN models, we optimized and

enhanced them into new ones that match the village building identification task based on

rigorous principles and experiments. Furthermore, we also visualized the representation
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of each layer to evaluate the feasibility of the model; here, take features extracted by

VGGNet-like as an example. In later sections, we will introduce the self-designed models:

AlexNet-like, VGGNet-like, GoogLeNet-like, and SqueezeNet-like.

2.2.3 AlexNet-Like

AlexNet is a revolutionary CNN architecture [85]. The parallel and merged structure

of this architecture makes it suitable for extracting two sets of features while sharing

information between the two sets. Deep CNN can be formulated elaborately with very

high accuracy. Moreover, by running the model on GPUs implemented in CUDA, it

becomes feasible to train the CNN model on large-scale datasets.

There are a few tricks of AlexNet in terms of both structure and processing. First, image

preprocessing is conducted by only subsampling and feature scaling. Then, instead of

the saturated activation method, AlexNet implements Relu, which is very e�cient and

six times faster than tanh [129], and it can avoid gradient vanishing and exploding to a

certain degree. Third, given its parallel structure, AlexNet can be e�ciently trained on

multiple GPUs, and every GPU shares half kernels. To reduce over-fitting, AlexNet also

employs tricks such as data augmentation, Dropout, and overlapping pooling structure.

Finally, the stochastic gradient descent (SGD) method [130] is used with configurations

such as weight decay, and gradually reducing momentum and learning rate.

In this experiment, we rigorously optimized AlexNet into the AlexNet-like architecture

as shown in Figure 2.5. To this end, we reduced the input size to 30 ⇥ 30, and optimized

internal settings such as quantity of filter and kernel size based on the optimization prin-

ciple, which increased the model’s e�ciency by reducing the total number of parameters

from about 60 million to 67,665.

2.2.4 VGGNet-Like

VGGNet is short for Very Deep Convolutional Networks. As its name suggests, VG-

GNet addresses the important aspect of CNN architecture design. The depth of this

architecture makes it suitable for mining very deep and abstract features [86]. The ar-

chitecture steadily increases the depth of networks by adding convolutional layers, and

the quantity of filters gradually increases from the start to the end. Very small con-

volutional filters of size 3 ⇥ 3 are used in all layers, and the 1 ⇥ 1 filter can be seen

as a linear transformation of the input channels. Other layers such as Zeroppading,

Maxpooling, Flatten, Dense and Dropout also increase its identification capability. To

avoid over-fitting, we must eliminate redundant features by using Dropout.
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Figure 2.5: AlexNet-like architecture.

We propose the VGGNet-like architecture (Figure 2.6) in this experiment, which is

very e↵ective for identifying buildings in rural environments based on HRRS images.

VGGNet-like is optimized by decreasing the depth quantity and filter size while retaining

its original architecture. After optimization, the number of parameters decreases from

140 M to 70,453, which makes the model easy to train. The detailed settings are shown

in Table 2.3.
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Figure 2.6: Very Deep Convolutional Network (VGGNet)-like architecture.

To intuitively understand the CNN activations for village buildings, we visualize the

representations of each layer by reconstructing features from simple patterns to complex

ones with the technique proposed in [131] using VGGNet-like, shown in Figure 2.7.

Due to the limitation of resolution, the external characteristics of village buildings cannot

be shown clearly in some regions. However, the features extracted by convolutional layers

still characterize village buildings well and can be reconstructed to images similar to the

original image with more abstract information and blurriness as one progresses toward

deeper layers. The visualization results also indicate the feature extraction capability of

our self-designed models.
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Table 2.3: VGGNet-like architecture

Layer Output Shape Kernel Size Scale Para Connect to

Input (30, 30, 3) - - - -
Conv 1 (30, 30, 10) (5, 5) - 760 Input
Conv 2 (30, 30, 10) (5, 5) - 2510 Conv 1
Conv 3 (26, 26, 10) (5, 5) - 2510 Conv 2

Pooling 1 (13, 13, 10) - 2,2 0 Conv 3
Conv 4 (13, 13, 18) (4, 4) - 2898 Pooling 1
Conv 5 (13, 13, 18) (4, 4) - 5202 Conv 4
Conv 6 (10, 10, 18) (4, 4) - 5202 Conv 5

Pooling 2 (5, 5, 18) - 2, 2 0 Conv 6
Flatten (648) - - 0 Pooling 2
Output (1) - - 649 Flatten

Total Parameters: 19,731

Original Conv1 Conv2 Conv3 Pool1 Conv4 Conv5 Conv6 Pool2

Figure 2.7: Reconstruction of Convolutional Neural Network (CNN) activations from
di↵erent layers of VGGNet-like.

2.2.5 GoogLeNet-like

The main innovation of GoogleNet is its use of an architecture called Inception [87].

In general, Inception is a network in network structure, and the optimal local sparse

structure of a vision network is spatially repeated from the start to the end. Three

Inception structures used in di↵erent circumstances are introduced: typically, 1 ⇥ 1

convolution is used in Inception to compute reductions before the expensive 3 ⇥ 3 and

5 ⇥ 5 convolutions.

GoogleNet provides us with an inspiration of how to build a high-capability architecture.

Most of the identification capability progress relies not only on more powerful hardware,
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large datasets and bigger models, but also and mainly on new ideas, algorithms, and

improved network architectures.

By learning from GoogleNet, in this experiment, we built a GoogleNet-like structure as

shown in Figure 2.8. We established the Inception architecture, while optimizing the

number and sequence of layers and filters.
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Figure 2.8: GoogleNet-like architecture.

2.2.6 SqueezeNet-Like

Compared with other architectures, SqueezeNet has very few parameters while retaining

similarly high accuracy [88]. It can achieve AlexNet-level accuracy with 50 times fewer

parameters and <0.5 MB model size, in addition to identifying patterns by using very

few parameters while preserving accuracy.

There are some tricks associated with its structure. First is the structure called fire,

which appears like a fire blazing through a matchstick. Instead of the 3 ⇥ 3 convolu-

tional core used in GoogLeNet, SqueezeNet uses 1 ⇥ 1 filters in a few layers, because 1

⇥ 1 filters have one-ninth the number of parameters compared to 3 ⇥ 3 filters. The fire

module comprises a squeeze convolution layer (consisting of only 1 ⇥ 1 filters), and the

aforementioned layer is fed into an expanded layer comprising a mix of 1 ⇥ 1 and 3 ⇥
3 convolutional filters. Then, the number of parameters can be decreased by decreasing

the quantity of input channels. Third, downsampling is performed at a late stage in

the network so that convolutional layers can have larger activation maps, which leads to

higher classification accuracy. Finally, the output is directly generated by the pooling

layer instead of the fully-connected layer, which can decrease the number of filters dra-

matically. For instance, the final convolutional layer obtains features of size 13 ⇥ 13 ⇥
1000, and the pooling layer subsamples these features into size 1 ⇥ 1 ⇥ 1000, yielding

1000 possibilities in the process.

In this experiment, we designed a SqueezeNet-like architecture (Figure 2.9) starting

from a standalone convolutional layer; then, we employed four fire modules. Emulating
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Figure 2.9: SqueezeNet-like architecture.

the original SqueezeNet structure, we gradually increased the number of filters per fire

module from the start to end. Maxpooling (overlapping pooling) with stride was imple-

mented after Conv1 and Merge2, and the final average pooling layer divides the output

into two categories, namely, building and non-building.

2.2.7 Ensemble Convolutional Neural Networks

Very deep CNN structures with strong feature extraction capability are typically used for

larger images measuring at least 200 ⇥ 200 pixels [67]. In the case of pixel-level village

building identification, as analyzed in Section 2.2.2, small HRRS images are used to avoid

redundant noise and information, while very deep structures and a large number of filters

are not suitable owing to the problems of e�ciency, accuracy, and robustness. Although

the optimized state-of-the-art models can mine several features, a few important ones

are inevitably lost. The feature extraction capability of an individual model is limited,

and a promising solution is ensembling several CNN models into a stronger model by

using the multiscale feature learning method.

Here, we present ECNN, shown in Figure 2.10, an elaborate CNN frame formulated

based on the ensembling of optimized state-of-the-art CNN models, followed by three

layers of neural networks and softmax to implement classification. Instead of varying the

contextual input size, multiscale feature learning can be achieved by inputting HRRS
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images of the same size to all CNNs. This would also help preserve integrated building

information.
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Figure 2.10: Ensemble Convolutional Neural Networks.

By taking full advantage of the di↵erent optimized state-of-the-art models’ feature ex-

traction capabilities, the proposed ECNN structure can achieve better classification re-

sults. Moreover, it can solve the problem of remaining small input image size, while

avoiding the serious problems caused by very deep CNNs, such as gradient vanishing.

To the best of our knowledge, there is no existing related CNN structure to identify

village buildings by using HRRS images, and the feasibility of ECNN will be evaluated

in the following sections.

2.3 Result and Discussion

We defined the CNN model utilized in our previous study [82] as basic CNN structure,

and it cannot achieve a stable, high kappa value in many testing areas. Moreover,

the building identification capability of the corresponding model is relatively limited.

As shown in the previous section, based on the rigorous CNN model optimization and

construction principle, we formulated four types of self-designed structure by using state-

of-the-art networks and ensembled them into the ECNN model.

In this section, to compare and discuss the village building identification capability of

di↵erent models, we first employ the same dataset and study area used in [82]. There-

after, we use the models to implement village building identification in practice. We

discuss and evaluate the feasibility of the model in terms of kappa coe�cient, overall

accuracy, confusion matrix, standard deviation, and computation e�ciency.
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2.3.1 Comparison of Di↵erent Models

Here, we set the experimental parameters as follows: number of iterations = 300, window

size = 30 ⇥ 30, learning rate = 0.03, activation Relu, and Softmax. In terms of dataset,

50,655 and 12,664 images were selected as the training and cross validation samples

respectively. Because the land feature information of non-building areas is much more

abundant than building areas in villages, 13,319 are positive samples and 50,000 are

negative samples. For the sake of comparison, we selected the same testing area as in

our previous study in Laos. The number of filters and depth information were di↵erent

for each architecture. The employed parameter details and the training results are listed

in Table 2.4.

Table 2.4: Training result by di↵erent CNNs.

Parameter Training

Structure Original New Acc (%) Kappa Epoch (s)

ECNN - 506,288 99.78 0.99 31.21
AlexNet-like 60.97 M 51,249 99.77 0.99 5.42
VGGNet-like 143.67 M 70,453 99.78 0.99 13.81

GoogLeNet-like 7.00 M 37,589 99.71 0.99 6.62
SqueezeNet-like 1.25 M 39,941 99.73 0.99 7.23

Basic - 4349 96.48 0.90 98.22

The training results show that all proposed self-designed CNN models outperformed the

basic ones and achieved very high accuracy of over 99% with much higher e�ciency.

Thereafter, we implemented the trained models for testing, and the results in terms of

overall accuracy, kappa value, and confusion matrix are given in Table 2.5.

Testing Confusion Matrix

Structure Acc Kappa Total (s) TN FP FN TP

ECNN 99.15 0.85 56.22 522,162 4519 56 13,263
AlexNet-like 98.95 0.82 16.72 521,048 5633 37 13,282
VGGNet-like 98.95 0.82 25.77 52,1058 5623 50 13,269

GoogLeNet-like 98.91 0.81 12.19 520,837 5844 63 13,256
SqueezeNet-like 98.89 0.81 17.93 520,713 5968 45 13,274

Basic 96.64 0.57 180.70 509,295 17,366 799 12,540

Table 2.5: Testing result by di↵erent CNNs.

From the testing results, the self-designed models performed much better than the basic

structure, and the accuracy and kappa coe�cient increased by about 2.5% and 0.3,

respectively. The confusion matrix shows that TP and TN increased substantially, while
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FP and FN decreased, which means misclassification in the cases of building and non-

building areas was solved to a certain degree. In particular, ECNN, which can achieve

a kappa coe�cient of up to 0.85, outperformed other methods. The testing results

indicate the feasibility of the model optimization method and the strong capability of

the proposed ECNN method, which is based on ensembling the feature extraction parts

of the state-of-the-art models for village building identification.

2.3.2 Implementation of CCNs

In this section, we present the building identification results obtained in the study areas

in Laos and Kenya. These results were obtained using the optimized state-of-the-art

CNN models and ECNN. In addition, we discuss their feasibility in terms of accuracy,

stability, and e�ciency.

To evaluate and compare the robustness of di↵erent CNN models, here, we deliberately

selected several representative and typical small-segment areas, where land features and

buildings present di↵erent characteristics in terms of color, external structure, and tex-

ture. The concrete numerical results are presented in terms of kappa coe�cient, standard

deviation, and mean average overall accuracy, while the intuitive classification results

are presented in terms of di↵erent colors, where green refers to true positive, that is,

the actual buildings are classified correctly as buildings; blue indicates the non-building

areas that were incorrectly labeled as buildings; red indicates the buildings that were

marked incorrectly as non-buildings; and black indicates true negative, which denotes

the correctly classified non-building areas.

Because villages along river banks are representative of the landscape in many countries

[132], we selected a few related regions, as shown in the top row of Figure 2.11. Notably,

the regular outline of the bank in some regions is quite similar to buildings, which makes

identification very challenging in many cases. The testing result obtained using the

proposed di↵erent CNNs (Figure 2.11; second row to the final row) shows the models’

excellent identification capability in such regions, and the majority of buildings are

correctly identified, while other land features such as river bank are also well classified.

However, in Figure 2.11c,f,h, some regions with vegetation cover are misclassified as

buildings, and buildings near the boundary are marked as non-building areas by the

optimized state-of-the art models, while ECNN correctly classified these regions and

identified buildings with higher accuracy. In Figure 2.11b, there is a region where non-

building areas are misclassified by ECNN; after carefully analyzing the original image,

we believe that this was caused by imperfect ground truth.
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Figure 2.11: Identification results of eight small segments in bank regions.

As shown in Table 2.6, the proposed ECNN model outperformed the other models,

achieving an average kappa of 0.82 and overall accuracy of 98.34% in regions (a–h). In

terms of standard deviation, ECNN is slightly better than a few other models, but the

kappa can be relatively unstable when the density of buildings is high in a given region.

Structure a b c d e f g h Mean Std Acc Mean (%)

ECNN 0.86 0.76 0.83 0.91 0.76 0.78 0.86 0.84 0.82 0.05 98.34
AlexNet-like 0.72 0.74 0.80 0.79 0.73 0.73 0.82 0.69 0.75 0.04 98.06
VGGNet-like 0.74 0.73 0.82 0.76 0.73 0.77 0.81 0.53 0.74 0.08 98.00

GoogLeNet-like 0.80 0.76 0.83 0.80 0.76 0.76 0.84 0.77 0.79 0.03 98.30
SqueezeNet-like 0.69 0.68 0.65 0.63 0.68 0.70 0.82 0.61 0.68 0.06 97.49

Table 2.6: Testing results in bank regions with di↵erent CNNs.

The complex and mixed-type village regions that contain an abundance of terrestrial

features such as streams, pools, vacancies, vegetation, and crops were selected for con-

ducting the comparison. As shown in Figure 2.12, ECNN could identify buildings in all

cases, and it yielded the least false positive results compared to the other models.
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Figure 2.12: Identification results of eight small segments in mixed-type regions.

The detailed results are given in Table 2.7. ECNN not only achieved the highest average

kappa of 0.77 and overall accuracy of 98.13%, but also the best standard deviation of 0.02.

By contrast, the individual optimized state-of-the-art models yield unstable performance

with average kappa values ranging from 0.67 to 0.74. This indicates that the proposed

ECNN o↵ers higher robustness and better feasibility within complex testing regions

compared to individual CNN models.

Structure i j k l m n o p Mean Std Acc Mean(%)

ECNN 0.79 0.81 0.75 0.73 0.76 0.76 0.77 0.78 0.77 0.02 98.13
AlexNet-like 0.79 0.79 0.72 0.69 0.74 0.75 0.74 0.75 0.74 0.03 98.00
VGGNet-like 0.70 0.72 0.62 0.67 0.64 0.70 0.71 0.67 0.68 0.03 97.25

GoogLeNet-like 0.63 0.74 0.68 0.67 0.67 0.66 0.68 0.65 0.67 0.03 97.63
SqueezeNet-like 0.74 0.79 0.65 0.70 0.72 0.71 0.70 0.66 0.71 0.04 97.50

Table 2.7: Testing results in mixed-type regions with di↵erent CNNs.

As shown in Figure 2.13, finally, we selected typical areas containing plenty of human-

built land features such as roads, agricultural fields, and pounds. Owing to the similar

textures and external structures to the buildings, artificial land features are prone to

misclassification, leading to decreased accuracy of the results along with a large number

of false positives. According to the testing results in Figure 2.13 (second row to the

final row), although ECNN can achieve better performance than the other models, a
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few artificial land features such as roads and yards are inevitably identified as buildings.

It indicates that the ECNN model still needs to be enhanced by training it using a more

diverse training dataset.
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Figure 2.13: Identification results of eight small segments in artificial land regions.

The results in Table 2.8 infer that in regions with complex artificial land features,

ECNN can achieve a very high kappa of 0.80 and overall accuracy of 98.38%, while

the SqueezeNet-like model can achieve a kappa of only 0.72.

Structure q r s t u v w x mean std Acc mean

ECNN 0.84 0.78 0.87 0.84 0.81 0.76 0.78 0.79 0.80 0.04 98.38
AlexNet-like 0.82 0.70 0.81 0.75 0.75 0.75 0.73 0.72 0.75 0.04 98.25
VGGNet-like 0.81 0.78 0.75 0.78 0.72 0.75 0.76 0.77 0.77 0.03 98.32

GoogLeNet-like 0.81 0.74 0.77 0.78 0.73 0.73 0.77 0.75 0.76 0.03 98.04
SqueezeNet-like 0.77 0.65 0.81 0.72 0.69 0.68 0.70 0.70 0.72 0.05 98.30

Table 2.8: Testing results of di↵erent CNNs in artificial land regions.

It should be noted that a comparison of the models’ feasibility in all cases and other

regions that are not included in these study areas is very di�cult because they di↵er in

terms of resolution, data acquisition methods, reference datasets, and class definitions.

However, from the testing results, it can be concluded that the optimized state-of-the-art

models, especially ECNN, can achieve comparably e�cient village building identification
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results to the previous best result in the tested study areas. Moreover, the proposed

ECNN model has considerably better accuracy and robustness than the individual op-

timized CNN model structure in the village building identification task.

2.4 Conclusions

In this study, we proposed a novel CNN frame called ECNN for village building iden-

tification using HRRS images. First, we constructed four self-designed CNN structures

based on state-of-the-art CNN models and a rigorous optimization principle. Then,

to extract most of their identification capabilities, we ensembled the feature extractor

parts of each individual optimized model and concatenated them into ECNN based on

the multiscale feature learning method. Finally, the generated ECNN was applied to a

pixel-level village building identification task in developing countries.

The experimental results show the potential and the capability of the proposed ECNN

model and the optimized state-of-the-art models in village building identification. The

models achieved considerably higher accuracy than the previous best methods. In par-

ticular, the proposed ECNN model achieved considerably higher accuracy, and the kappa

value improved from the previous best of 0.57 to 0.86 and overall accuracy from 96.64%

to 99.26%. It outperformed the individual optimized CNN models as well, which indi-

cates the feasibility of our proposed method.

More detailed exploration of the method is required in the future. First, to test the

robustness of the method, regions of di↵erent resolution, as well as various data acqui-

sition methods and reference datasets, need to be tested. Second, multi-class village

landscape classification needs to be implemented using the proposed method. Finally,

in case there are any limitations in the training data source, transfer learning [133] and

the generative model [134] will be applied to enhance the proposed ECNN model.



Chapter 3

FCN-based Building Semantic

Segmentation in Urban Areas

Since the achievement of a wide variety of vital tasks such as urban monitoring, demo-

graphic modeling, and disaster surveillance strongly rely on the detection of important

land features, the semantic segmentation of buildings via remote sensing imagery has

become a significant research topic in recent years [135, 136]. To conduct the building

segmentation task, the methods such as graph theory-based [20] and clustering-based

[21] are usually inappropriate due to the complexity and variety of remote sensing im-

agery [137]. Furthermore, in terms of conventional classification-based segmentation

methods [138–140], which mainly rely on handcrafted features, the concentration on

merely a few of the particular and salient features, such as the structure, outline, and

color, means that the models inevitably lack strong capability to represent the abstract

characteristics of buildings [122]. Thus, the high-performance generalization of building

segmentation remains a formidable challenge.

In this study, we propose to adopt deep learning here refer to DCNNs [38] as a alternative

strategy to perform automatic building semantic segmentation. Recently, DCNNs are

rapidly developing with the help of the dramatically increased availability of large-scale

datasets [67] as well as the improvement of computing capability [141]. Instead of arti-

ficially designed feature engineering [142], DCNNs can automatically map the data into

compact intermediate features and representations which akin to principal components

with gradient descent [143] and backpropagation [77]. Di↵erent DCNNs architectures

have been proposed and successfully applied in various domains [144], more importantly,

DCNNs could outperform the state of the art in semantic segmentation tasks [145]. The

following is an overview of some representative studies on semantic segmentation ori-

ented DCNNs architectures and corresponding applications.

35
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FCNs method [37], proposed by Long et al. at 2015, is the pioneering study of deep

learning based semantic segmentation. FCNs innovatively adopts sequential convolu-

tional operations and learnable upsampling to perform pixel-to-pixel translation. Mean-

while, by applying element-wise addition to the feature map, the result can represent

more location and detail information which are destroyed by max-pooling layer. Three

variants: FCN32s, FCN16s, and FCN8s, are proposed according to shrinking and upsam-

pling level of di↵erent intermediate layers in FCNs. Subsequently, instead of adopting

element-wise addition to fusion the information of previous feature and upsampling fea-

ture, Ronneberger et al. proposed U-Net [43], which applies multiple skip connections

between upper and downer layers, and creatively concatenates each other in channel di-

mension. The method has been widely utilized in medical image segmentation precisely

with high robustness. After that, aiming at solving location information lost problem in

the max-pooling process, SegNet method [44] is proposed by Badrinarayanan et al. at

2015. Compared with FCNs, SegNet adopts unpooling which utilizes pooling-indices of

corresponding max-pooling operation to perform upsampling. Since deconvolution [146]

could reverse the e↵ects of convolution on recorded data with learnable parameters, Noh

et al. proposed hourglass-like DeconvNet [147] to enhance SegNet with deconvolution in

upsampling layers, with the help of deconvolution and pooling-indices, the location and

category details could be well presented to the end. Afterwards, Mon et al. proposed

a residual encoder-decoder network named RedNet [148] in 2016. The network utilizes

half padding without strides and gets rid of the max pooling directly to avoid losing lo-

cation information. Also, residual skip connection with element-wise addition is adopted

to help the network to go deeper with more feature representations. In 2017, feature

pyramid networks (FPN) [149] is presented by Lin et al. which creates a pyramid of fea-

ture and use them for segmentation. The features obtained in bottom-up and top-down

pathways are fused by residual convolutional blocks [121], and finally concatenate with

the help of interpolation. FPN can also be flexibly utilized in object detection field with

Region Proposal Network (RPN) [150]. The ResUNet [151] method proposed in 2018

adopts the basic structure of U-Net while replacing the convolutional block in VGG-like

[86] structures with Residual block, such operation facilitates the convergence and en-

hances the representation ability of the model, which lead to gain better segmentation

performance. More recent studies like Pyramid Scene Parsing Network(PSPNet) [152],

Similarity Group Proposal Network (SGPN) [153], DeepLab [154], PointNet++ [155],

FRRN [156], OCNet [157], etc. also show the tremendous capability in a wide variety of

semantic segmentation tasks like scene segmentation [158], panoptic segmentation [159],

semi-supervised segmentation [160], etc.

Compared with the segmentation targets in other studies, urban buildings are usually in

intense density with diversity, and the features in which such as texture, outline, color,
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etc. are quite unique. With regard to texture and outline, the di↵erence would lead the

existing deep learning models to face problems such as the failed convergence, overfitting,

and low accuracy. About color and noise, the high variability makes the model should

be in high robustness. Besides, due to the diversity of building category as well as the

di�culty of obtaining large-scale training dataset, developing a model which can be well

trained with very limited training dataset fast and precisely is crucial. In this study, a

specific deep learning architecture named concatenate feature pyramid networks (CFPN)

is proposed based on feature concatenation and [69] and feature pyramid [70] methods.

Given the variety of the urban buildings as well as the limited training dataset, CFPN

model is deliberately designed in lightweight structure with relatively few parameters,

which could be trained easily. Meanwhile, with the help of feature concatenation and

feature pyramid, CFPN is capable of extracting adequate robust feature from complex

imagery to perform segmentation with high accuracy. Additionally, since image color

performs an important role in training [161], we adopted Wallis filter [162] to conduct

color balance between training and testing datasets. The experimental results reveal that

the proposed model could outperform other baselines by 3.55% to 7.89% and extract

building polygon e�ciently.

3.1 Data

3.1.1 Study Area

As one of the world’s highest density urban areas, Tokyo contains intensely dense build-

ings with a huge diversity and complexity. In this study, we deliberately selected some

representative study areas in downtown Tokyo to demonstrate the feasibility of proposed

model in building semantic segmentation. The training areas cover about 17km2 and

is mainly located in Koto, Taito, and Sumida districts, which include a wide variety of

land use categories such as residential, commercial, and industrial areas. In addition,

an area of about 12km2 in Setagaya district and adjacent areas are selected to perform

testing.

3.1.2 Data Source

The remote top-view three-band RGB aerial satellite imagery acquired in March 2016

with a resolution of 0.160m were used as the training and testing datasets. In terms

of the annotated dataset, to best represent the building footprints, a polygon-based

method was used to conduct the annotation, in which, the polygon maximizes the shape

of a building from an orthophoto, and any adjoining buildings are marked as a single
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building. Owing to the limitations of interpretation based on human-based vision, a few

small errors are inevitable.

3.2 Methods

In this section, we present our methods for building semantic segmentation. The three

main procedures in the framework are: data processing, model training, and testing

with related evaluation. First, aerial imagery of the study area obtained from the source

undergoes data preprocessing to generate training data for semantic segmentation. Sub-

sequently, the obtained data is fed into the proposed CFPN model to train the segmen-

tation model. Here, 70% of the training data is used for training, and the remaining 30%

is used for cross-validation. To evaluate the quality of the segmentation model, we ap-

ply six commonly used evaluation metrics that include precision, recall, overall accuracy

[163], F1-score [164], the kappa coe�cient [165], and the Jaccard index or intersection

over union (IoU) [166]. It should be noted that segmentation models would be retained

in case the bad results are generated when conducting cross validation. After testing,

the quality of the semantic segmentation results is evaluated by the segmentation as-

sessment criteria mentioned above. To clearly reflect the capability of di↵erent models,

here, the evaluation metrics are calculated without any post-processing.

3.2.1 Preprocessing

Considering the impact of color di↵erence in model training and testing, balancing the

color of data source based on an identical template image can mitigate the variance

to a certain degree. As an image filter, Wallis filter [167] scans the image and makes

every pixel in the output image have a specified mean and standard deviation. In this

experiment we choose Wallis filter to be the color balance tool, and the target image

will be converted into a new color space based on the provided template. As shown in

the following equation:

g(x, y) = [f(x, y) �mc]
CVs

CVs + (1 � C)Vs

+ bms + (1 � b)mc (3.1)

Where g(x, y) refers to output result, f(x, y) indicates input, Vc and Vs refer to input

and template variance respectively, while ms and mc means template and output mean

values. When utilizing Wallis filter in our experiment, template HRRS image need to

be prepared, in order to calculate its variance and mean value.
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Some representative examples as shown in Figure 3.1, the left input images are converted

in a new color space which could be balanced with the template image.

Template 

* = 

Input Output (a) Input

(a) Template

(a) Output

Figure 3.1: Color balance for preprocessing via Wallis filter.

After that, the aerial imagery is sliced into patches sized 224 ⇥ 224 pixels by using a ran-

dom sliding window to generate data for model training and cross-validation purposes.

Simultaneously, corresponding ground truth patches with consistent size are generated

via the annotation dataset as well. In addition, to reduce the influence caused by data

availability, data augmentation techniques [168] like random rotation and flip are also

adopted to enrich the training data for both the segmentation.

3.2.2 Concatenate Feature Pyramid Networks

Image pyramid is capable of representing a certain image at vastly di↵erent scales with

scale-invariant characteristic [169]. Conducting feature extraction over the entire image

pyramid in both pyramid and position levels can generate featurized image pyramid,

which enables the model to detect objects under multiple scales simultaneously. Given

the advantages of multi-scale feature, there has been an increasing awareness of the

potential of applying it for detecting objects in di↵erent scales, especially for small

ones. However, generating multi-scale by adopting image pyramid is too compute and

memory intensive to train the model end-to-end.nAlternatively, the multi-scale feature

in pyramidal shape can also be generated from a single image by utilizing DCNNs

with subsampling layers. Due to the depth di↵erence, multi-scale feature maps owning
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di↵erent resolution have discrepancy in feature representation capability, and feature

map which closer to the image layer composed of low-level feature that are not e↵ective

for accurate semantic segmentation. In this study, inspired by FPN, we deliberately

designed a lightweight structure named as CFPN with relatively few parameters, with

the help of feature concatenation and feature pyramid, CFPN is capable of extracting

adequate robust feature from complex maps to perform segmentation with high accuracy.

The architecture is shown in Figure B.1.

C
C

C
C

C

C

Input

: channel concatenate
: convolutional layer
: max-pooling layer
: upsampling layer

Output 

P4 P3 P2

P1

Figure 3.2: Concatenate feature pyramid networks for building semantic segmentation

In this study, except for the architecture modification from FPN, we also enhanced the

original FPN in some important ways. To avoid dead neurons in the back-propagation

step as well as to benefit from initialization, we use leaky ReLU [170] instead of ReLU

after each convolution. Concretely, the convolution operation which performs element-

wise multiplication via kernels, can be formulated as follows:

z =

hfX

i=1

wfX

j=1

clX

d=1

⇥i,j,d,d0 ⇥ xi,j,d + bd0 (3.2)

where hf , wf represent the height and width of the kernel ⇥, cl is the number of channels

for input x in layer l, and b in shape 1 ⇥ 1 ⇥ 1 ⇥ d0 donates the bias.

Then, leaky ReLU � is utlized to generate the hypothesis from z:

�(z) =

(
z if z > 0

0.01z otherwise
(3.3)

Subsequently, batch normalization [128] is also added and extensively applied after each

non-linearity to accelerate the training and reduce internal covariate shift. The two
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parameters in batch normalization, scale � and shift �, can be learned by:

YB = �
XB � µBq

�2
B

+ ✏
+ � (3.4)

where XB and YB denote all input and output in mini-batch B. µB and �2
B

refer to

mean and variance of corresponding mini-batch.

Furthermore, to avoid over-fitting, we eliminate the redundant features by adopting

dropout [126], and the final binary classification of either building or non-building is

predicted by using the sigmoid function. Here, the cross entropy expressed by Equation

3.5 is used to penalize the inconsistency between prediction Ŷ and ground truth Y .

Further, H and W are the height and width of both the prediction and ground truth,

respectively.

L(Y, Ŷ ) = � 1

H ⇥W

HX

i=1

WX

j=1

⇣
Yi,j ⇥ log(Ŷi,j)

+ (1 � Yi,j) ⇥ log(1 � Ŷi,j)
⌘

(3.5)

3.2.3 Assessment Criteria

We assess the properties of the resulting segmentation Ŷ with regard to the ground truth

Y via six criteria: precision, recall, overall accuracy, F1-score, the kappa coe�cient, and

the Jaccard index. For the sake of simplicity, tp, fn, fp, and tn, represent the basic

terms in the confusion matrix: true positive, false negative, false positive, and true

negative, respectively.

Precision and recall are both measures of relevance. Here, Precision (Equation 3.6)

measures the proportion of relevant results in the list of all returned search results, and

refers to the percentage of correctly predicted buildings to the total number of predicted

buildings.

Precision =
tp

tp + fp
(3.6)

Contrary to this, recall (Equation 3.7) measures the proportion of the relevant results

returned by the segmentation model to the total number of relevant results that could

have been returned, and refers to the correctly predicted buildings as a percentage of

the exact total number of buildings.

Recall =
tp

tp + fn
(3.7)
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A trade-o↵ between precision and recall is important. Thus, the F1-score, which takes

both precision and recall into account and finds an optimal blend for them, is applied.

The formula is as follows:

F1 =
2 ⇤ Precision ⇤Recall

Precision + Recall
(3.8)

where the relative contribution of precision and recall to the F1 score are the same.

Overall accuracy, as shown in Equation 3.9, is also an essential metric in semantic

segmentation. It refers to the proportion of correctly predicted building and non-building

areas of the total number of areas to predict.

Overall Acc =
tp + tn

tp + tn + fp + fn
(3.9)

To measure the level of agreement between two objective annotators, kappa coe�cient

is also applied as follows:

Po = Overall Acc (3.10)

Pe =
(tp + fp) ⇥ (tp + fn) + (fn + tn) ⇥ (fp + tn)

(tp + tn + fp + fn)2
(3.11)

Kappa =
Po� Pe

1 � Pe
(3.12)

where Po is identical to the overall accuracy and refers to the observed agreement

ratio, and Pe is the probability of the expected agreement when both annotators assign

building areas randomly.

Moreover, as the most prevalent criterion for segmentation problems, the Jaccard index

in Equation 3.13 is used to measure the dissimilarity between the predicted and extracted

building areas.

Jaccard =
tp

tp + fp + fn
(3.13)

All six of the segmentation assessment criteria mentioned above reach their best value

at 1 and worst score at 0.

3.3 Results

To demonstrate the feasibility of the proposed building semantic segmentation frame-

work, we compare it with some state-of-the-art models including FPN, UNet, SegNet,

FCNs, etc. To evaluate the robustness of methods, entire testing area is splitted into
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four regions, where buildings and other important land features present in di↵erent

characteristics in terms of structure, density, size, etc.

(a) Aerial image (b) Ground-truth (c) CFPN (ours)

(d) FPN (e) SegNet (f) UNet

(g) DeconvNet (h) FCN8s (i) FCN16s

Figure 3.3: Quantitative results for test region 1.

This section presents the qualitative and quantitative results of the building semantic

segmentation of the four regions via proposed method and baselines. More specifically,

with respect to the qualitative results, the assessment criteria introduced in Section 3.2.3

are applied. The quantitative comparison results are shown in Figure 3.3, 3.4, 3.5, and

3.6. The di↵erent colors: green, red, blue, and white, are used to indicate the tp, fn,

fp, and tn pixels in the segmentation results, respectively. Moreover, the corresponding

quantitative results are shown in Table 3.1, 3.2, 3.3, 3.4, respectively.

Since Setagaya-district is mainly a residential area with representative land features like

parks, narrow roads, and residential buildings, while the training area in other districts

contains much more diverse features like dock, large commercial regions, sea, boats, etc.,

such discrepancy leads fp especially in high density residential areas, park, and railway.

Compared with baselines, both qualitative and quantitative results shown above reveal

that the proposed methods outperform others, especially in F1-score, IoU, and Kappa.
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Table 3.1: Quantitative results for test region 1.

Model Overall Acc. Precision Recall F1-score IoU Kappa
CFPN(ours) 0.867 0.794 0.843 0.818 0.692 0.714

FPN 0.858 0.790 0.815 0.802 0.669 0.691
SegNet 0.865 0.828 0.778 0.802 0.670 0.700
UNet 0.861 0.790 0.827 0.808 0.678 0.699

DeconvNet 0.853 0.764 0.842 0.801 0.668 0.685
FCN8s 0.841 0.758 0.808 0.782 0.642 0.657
FCN16s 0.835 0.744 0.81 0.776 0.634 0.645

(a) Aerial image (b) Ground-truth (c) CFPN (ours)

(d) FPN (e) SegNet (f) UNet

(g) DeconvNet (h) FCN8s (i) FCN16s

Figure 3.4: Quantitative results for test region 2.

Table 3.2: Quantitative results for test region 2.

Model Overall Acc. Precision Recall F1-score IoU Kappa
CFPN(ours) 0.875 0.811 0.826 0.818 0.693 0.724

FPN 0.869 0.809 0.804 0.807 0.676 0.708
SegNet 0.869 0.836 0.765 0.799 0.665 0.702
UNet 0.874 0.817 0.809 0.813 0.685 0.717

DeconvNet 0.868 0.792 0.828 0.81 0.68 0.709
FCN8s 0.851 0.77 0.801 0.785 0.647 0.672
FCN16s 0.851 0.767 0.807 0.786 0.648 0.672
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(a) Aerial image (b) Ground-truth (c) CFPN (ours)

(d) FPN (e) SegNet (f) UNet

(g) DeconvNet (h) FCN8s (i) FCN16s

Figure 3.5: Quantitative results for test region 3.

Table 3.3: Quantitative results for test region 3.

Model Overall Acc. Precision Recall F1-score IoU Kappa
CFPN(ours) 0.885 0.713 0.82 0.763 0.617 0.687

FPN 0.879 0.715 0.774 0.743 0.592 0.664
SegNet 0.886 0.745 0.753 0.749 0.599 0.676
UNet 0.878 0.704 0.797 0.747 0.597 0.668

DeconvNet 0.881 0.71 0.803 0.754 0.605 0.676
FCN8s 0.867 0.681 0.773 0.724 0.567 0.637
FCN16s 0.868 0.684 0.771 0.725 0.568 0.638

Table 3.4: Quantitative results for test region 4.

Model Overall Acc. Precision Recall F1-score IoU Kappa
CFPN(ours) 0.900 0.789 0.831 0.809 0.679 0.742

FPN 0.891 0.775 0.803 0.789 0.651 0.715
SegNet 0.897 0.818 0.764 0.79 0.653 0.721
UNet 0.897 0.788 0.813 0.8 0.667 0.731

DeconvNet 0.894 0.772 0.829 0.8 0.666 0.728
FCN8s 0.884 0.754 0.805 0.779 0.638 0.7
FCN16s 0.882 0.752 0.8 0.775 0.633 0.696
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(a) Aerial image (b) Ground-truth (c) CFPN (ours)

(d) FPN (e) SegNet (f) UNet

(g) DeconvNet (h) FCN8s (i) FCN16s

Figure 3.6: Quantitative results for test region 4.

Moreover, for better visualization, as shown in Figure 3.7, we randomly selected and

enlarged some subregions in details, and they reveal that the proposed method could

generate better segmentation with less fp and fn.

3.4 Discussion

3.4.1 Robustness

To demonstrate the competitive robustness of the proposed method, in this part, we

show the average segmentation performance obtained by adopting di↵erent methods

among four testing regions in Table 3.5 and Figure 3.8. Additionally, the feasibility

of image denoise and building outline extraction by applying our proposed method is

illustrated in Figure 3.9 as well.



Chapter 3. FCN-based Building Semantic Segmentation in Urban Areas 47

(a) Aerial image

(b) CFPN (ours)

(c) FPN

(d) SegNet

(e) UNet

(f) DeconvNet

(g) FCN8s

(h) FCN16s

Figure 3.7: Subregion comparison for di↵erent models.

Table 3.5: Average performance of di↵erent models among four testing regions.

Model CFPN(ours) FPN SegNet UNet DeconvNet FCN8s FCN16s
mF1-score 0.802 0.785 0.782 0.792 0.791 0.768 0.766

mIoU 0.670 0.647 0.642 0.657 0.655 0.624 0.621
mKappa 0.717 0.694 0.704 0.704 0.700 0.667 0.663
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In general, our CFPN method with outperforms the other methods, improving the mean

F1-score from 0.766 to 0.802, mean kappa from 0.621 to 0.670, and the mean Jaccard

index from 0.663 to 0.717.

Figure 3.8: Average performance of di↵erent models among four testing regions.

Figure 3.9 presents six groups of randomly selected visualization results generated by

CFPN. From top to bottom rows, there are original images, extracted edges by Canny,

building segmentation and outline extraction from CFPN model. In general, the ex-

tracted outlines through Canny detector contains pretty much noise (see 2nd Row). Our

CFPN can segment the major part of buildings from most of the selected RGB images

(see 3rd Row). Building outlines extracted from segmentation results show much fewer

false negatives (see 2nd Row vs. 4th Row).

3.4.2 The Impact of Image Color

To investigate the impact of image color on segmentation results, we trained two models

based on normalize dataset by Wallis filter and unnormalized dataset, respectively. The

quantitative results shown in Table 3.6 reveal that by balancing the color space among

training and testing dataset, the variance can be mitigated, which improves the model

performance to a certain degree. Since the spectrum di↵erence problem is not serious

in this experiment, the further investigation among more diverse dataset and spectrum

is essential.

Table 3.6: The impact of image color on segmentation results. The comparison
between model trained by normalized (Norm) and unnormalized (Unnorm) dataset.

Method mF1-score mIoU mKappa
Norm 0.802 0.670 0.717

Unnorm 0.792 0.660 0.711
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Image

Canny

Segmentation

Outline

a b c d e f

Figure 3.9: Building outline extraction and denoise. The 1st row: original aerial
images; the 2nd row: canny edge detection results of the original aerial images; the 3rd

row: segmentation and denoised results; the 4th row: extracted outline for buildings.
The green, red, blue, and white channels in the results represent true positive, false

positive, false negative, and true negative predictions, respectively.

3.5 Conclusions

In this chapter, we presented a novel framework for building semantic segmentation

from aerial imagery in Tokyo. The experimental results demonstrate the potential and

the capability of the proposed CFPN model for semantic segmentation, which could

outperform other baselines by 3.55% to 7.89% and extract building polygon e�ciently.

In addition, although the influence of color and spectrum di↵erence is less serious in

the same data source, it is important to carefully consider it especially on multi-source

remote sensing imagery, which we aim to study in future.



Chapter 4

Super-Resolution Integrated

Building Semantic Segmentation

Despite the success of FCN-based models in several building semantic segmentation

tasks, the discussions on building extraction via multi-source remote sensing imagery

of which the spatial resolution di↵ers are quite inadequate. With the dramatically

increasing availability of new large-scale remote sensing data sources, the ever-expanding

choices of datasets can be utilized in semantic segmentation tasks [65–67], and the

case that training and testing datasets obtained from multiple sources with di↵erent

resolution would be inevitable and ubiquitous in many practical applications [68].

In general, di↵erences between the resolution of the training and testing datasets would

greatly influence building semantic segmentation. Three factors are mainly responsible

for the problems in this regard. First, the resolution defines the ability of a single pixel

to cover the Earth’s surface, which would cause the same building to appear to have a

di↵erent size in multiple remote sensing images of di↵erent resolution. A recent study

[171] indicated that the factor of building size strongly impacts upon the capability of

the DCNN model, and a model trained by using a building of a specific size would find

it di�cult to detect buildings of a significantly di↵erent size. Second, the resolution

indicates the ability of the image to represent small objects. Thus, a small-sized land

feature would be deformed or ignored in a low-resolution (LR) image due to the lim-

ited resolution. Many studies regarding small object detection [172–174] demonstrated

the di�culty of solving this problem. Furthermore, as an important indicator, resolu-

tion measures the richness of information contained in remote-sensing imagery [175],

in which a di↵erent resolution represents a di↵erent frequency information distribution,

which greatly a↵ects the features of the building such as its color, outline, and texture

[176]. For the aforementioned reasons, a DCNN model trained at a specific resolution

50
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would find it fundamentally di�cult to correctly represent the features of the testing

dataset at another resolution, and this would result in a poor generalization of semantic

segmentation. Thus, overcoming the constraint of resolution di↵erences among multi-

source remote sensing imagery would facilitate the development of building semantic

segmentation to a considerable extent.

To deal with the severe problems caused by resolution di↵erence between multi-source

remote sensing imagery, the solution can be mainly classified into image transform based

[177], data augmentation based [178], and transfer learning based [179] methods. With

regard to image transform, the usual approach would be to downscale the high-resolution

(HR) imagery into LR space by using downsampling methods [180] or to upscale LR

imagery to HR space using a single filter such as bicubic interpolation [181]. The rel-

evant drawbacks are obvious since downsampling would lead to undesired side-e↵ects

such as the loss of spatial information whereas interpolation would generate insu�cient

large gradients along edges and high-frequency regions by simply weighted averaging

neighboring LR pixel values [182], small buildings would not be the same as larger ones

even if up-scaled. With regard to data augmentation, methods such as color transfor-

mation, a�ne transformation, rotation, and linear scaling could enrich the variety of the

training dataset, but could not supplement important features such as high-frequency

information e↵ectively at LR. And about transfer learning, although it owns the capa-

bility to rebuild the model based on utilizing the knowledge acquired from the previous

task, once the feature-space and information distribution changes caused by resolution,

the preparation for adequate amount of new training dataset is still unavoidable, which

limits the e�ciency and scalability in practical applications.

Given the di�culties faced by the methods mentioned above, super-resolution (SR) [183]

has emerged as a promising alternative strategy to solve the problem. Aimed at increas-

ing the image resolution while providing finer spatial details than those captured by the

original acquisition sensors, SR could balance the size and detail of land features be-

tween the training and testing datasets to a certain degree [184]. In addition, as a highly

ill-posed problem, SR operation is considered to be a one-to-many mapping from LR to

HR space, which can have multiple solutions. Recent studies on DCNN-based SR models

have shown tremendous capability in super-resolving an LR image into HR space, show-

ing that generating high-quality SR remote-sensing imagery is achievable. A detailed

review of additional DCNN-based SR models and their corresponding applications was

recently published [185].

In this study, contrary to previous work, we propose to integrate super-resolution (SR)

techniques into the existing segmentation framework to address the problem of build-

ing semantic segmentation in multi-source remote sensing imagery with di↵erent spatial
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resolution. To validate the feasibility of the proposed method, two high-performance

DCNN-based models, namely e�cient sub-pixel convolutional neural network (ESPCN)

[71] and UNet, are adopted to perform SR and the semantic segmentation operation,

respectively. In addition, three-band RGB HR aerial imagery and single-band grayscale

LR panchromatic satellite imagery are selected as representative multi-source remote

sensing imagery to conduct training and testing, respectively. It is worth emphasiz-

ing that, to the best of our knowledge, there has not been any empirical study using

SR techniques for the building semantic segmentation from multi-source imagery with

di↵erent resolution.

The main contributions of this study are three fold:

• We discussed the challenge and limitation of recent deep learning based studies on

building semantic segmentation of building while under multi-source imagery with

di↵erent resolution circumstance.

• We innovatively presented a novel SR integrated building semantic segmentation

framework to tackle the problem caused by the unaligned resolution between train-

ing and testing data, and investigated the feasibility of the proposed method based

on comprehensive experiments.

• The experimental results demonstrate the proposed method could achieve state-of-

the-art performance, and the IoU and Kappa is approximately 19.01% and 19.10%

higher than that of the method without SR, respectively. It indicates the e↵ects of

SR on segmentation performance in remote sensing imagery, which would benefit

the remote sensing community from literature review to future directions.

The remainder of this chapter is organized as follows. Section 4.1 introduces the area we

studied and the data source. Then, the workflow of the proposed method is explained

in Section 4.2, where details of the algorithms as well as the evaluation metrics are also

presented. After that, the experimental results and discussion appear in Section 4.3 and

4.4. Finally, the conclusions are drawn in Sections 4.5.

4.1 Data

4.1.1 Study Area

As one of the world’s highest density urban areas, Tokyo contains intensely dense build-

ings with a huge diversity and complexity. Such characteristics of urban landscape lead
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spatial resolution to play an important role in semantic segmentation task. In this study,

we deliberately selected some representative study areas in downtown Tokyo to demon-

strate the feasibility of SR in building semantic segmentation. Figure 4.1b shows the

detailed study area. We divided the entire area into training and testing areas indicated

in purple and green, respectively. The training area covered 33km2 and is mainly located

in the Setagaya, Koto, and Sumida districts, which include a wide variety of land use

categories such as residential, commercial, and industrial areas. In addition, an area of

3km2 in the Koto district with comprehensive land use was selected to perform testing.

0               3 km

N

(b) Study area(a) Training data examples (c) Testing data examples

Figure 4.1: Materials. (a) and (c) show examples of the training and testing data,
including high-resolution aerial imagery in which the corresponding buildings are an-
notated in purple and low-resolution satellite imagery with the relevant buildings an-
notated in green. (b) The study area divided into training and testing areas colored

purple and green, respectively.

4.1.2 Data Source

The aerial and panchromatic satellite imagery were used as the training and testing

datasets, respectively. The remote top-view three-band RGB aerial imagery in the

training area was acquired in March 2016 with a resolution of 0.160m, and the source

panchromatic imagery in the testing area was captured by the WorldView-2 sensor in

May 2016 with spatial and radiometric resolution of 0.500m and 16-bit, respectively.

In terms of the annotated dataset, a total of approximately 60,000 and 3,000 building

footprints are contained within the training and testing areas, respectively. To best

represent the building footprints, a polygon-based method via QGIS was used to con-

duct the annotation, in which, the polygon maximizes the shape of a building from

an orthophoto, and any adjoining buildings are marked as a single building. Owing to

the limitations of interpretation based on human-based vision, a few small errors are

inevitable especially for high-density areas in LR satellite imagery. Some examples of

training and testing imagery and their corresponding annotations are shown in Figure

4.1a in purple and in Figure 4.1c in green, respectively.
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4.2 Methods

In this section, we present our novel framework for an SR integrated building semantic

segmentation method. As shown in Figure 4.2, the three main procedures in the frame-

work are: data processing, model training, and testing with related evaluation. The

two processes that precede the testing stage can be considered as running in parallel

in terms of both segmentation and SR model generalization. First, aerial imagery of

the study area obtained from the same source undergoes parallel data preprocessing to

generate training data for semantic segmentation and SR integration. Subsequently, the

obtained data is fed into the proposed upper UNet and lower ESPCN to train the seg-

mentation and SR model, respectively. Here, in both models, 70% of the training data

is used for training, and the remaining 30% is used for cross-validation. To evaluate

the quality of the segmentation model, we apply six commonly used evaluation metrics

that include precision, recall, overall accuracy [163], F1-score [164], the kappa coe�cient

[165], and the Jaccard index or intersection over union (IoU) [166]. The SR model is

assessed by using the peak signal-to-noise ratio (PSNR) [186], which is usually taken

as an approximation to human perception of reconstruction quality. It should be noted

that both segmentation and SR models would be retained in case the bad results are

generated when conducting cross validation. After that, in the testing and evaluation

procedure, we first input the processed LR satellite data into the trained SR model to

generate related upscaled SR data; then, the trained segmentation model with proper

hyperparameters is adopted to enable the generated testing SR satellite data to be used

to make predictions. Finally, the quality of the semantic segmentation results is eval-

uated by the segmentation assessment criteria mentioned above. To clearly reflect the

capability of di↵erent models, here, the evaluation metrics are calculated without any

post-processing for both the semantic segmentation and SR processes.

This section details first the data preprocessing step, followed by the training strategies

of the SR and segmentation models. Lastly, the testing method and related assessment

criteria are proposed and explained.

4.2.1 Data Preprocessing

Data preprocessing is conducted in parallel to generate training data for both the seg-

mentation and SR models. With respect to the segmentation, the three-band RGB

HR aerial imagery is first converted into grayscale to align it with the single-band

panchromatic testing LR satellite imagery; then, after applying basic color normaliza-

tion methods such as adaptive histogram equalization [187], the aerial imagery is sliced

into patches sized 224 ⇥ 224 pixels by using a random sliding window to generate data
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Figure 4.2: Framework of our building semantic segmentation method.

for model training and cross-validation purposes. Simultaneously, corresponding ground

truth patches with consistent size are generated via the annotation dataset as well. In

terms of the SR process, considering humans are more sensitive to luminance changes

[188], we convert the aerial imagery from RGB into YCbCr color space, and only take

the luminance channel in the YCbCr color space into consideration. Similar to the pro-

cess of segmentation, the converted aerial imagery in the luminance channel is sliced

into small patches sized 224 ⇥ 224 pixels. In addition, to reduce the influence caused

by data availability, data augmentation techniques [168] are also adopted to enrich the

training data for both the segmentation and SR processes.

4.2.2 Segmentation Model

Several e↵ective segmentation models have been introduced in Section 4, to demonstrate

the feasibility of proposed framework, in this study, we propose to adopt UNet architec-

ture as a representative segmentation model to conduct building semantic segmentation.

UNet is one of a state-of-the-art models for image semantic segmentation, and has been

successfully applied to perform di↵erent tasks with high accuracy and e�ciency. The

network architecture can be divided into two parts: a contracting path and a symmetric

expansive path. The contracting path, which is regarded as a variant of VGG [86],

contains five consecutive blocks for feature extraction and downsampling. Each of these

blocks consists of two 3⇥3 unpadded convolutions followed by 2⇥2 max pooling, which

provides the abstracted form of the representation while enlarging the receptive field.

The expansive path, which can be considered as the reverse operation of the contraction
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path, comprises four blocks and each contains an upsampling of the feature map followed

by a 2⇥2 convolution. Importantly, before feeding the extracted feature map into the

next block, the feature map generated in the contraction path with the same shape

is integrated inside by concatenation. In addition, the number of feature channels are

doubled and divided in half after each downsampling and upsampling, respectively. The

non-saturated activator known as a rectified linear unit (ReLU) is adopted after each

convolutional operation to perform nonlinear mapping. This architecture makes UNet

suitable for mining very deep and abstract features.

Considering the characteristics of UNet, some advantages of adopting UNet architecture

as segmentation model to conduct building semantic segmentation can be listed as fol-

lows. First, the architecture of UNet performs pixel-to-pixel and end-to-end mapping

from input to output, which enables precise localization for the building segmentation

result. Second, UNet can generate results in HR space by recovering HR representations.

Instead of using pooling operators after successive convolutional layers, the architecture

adopts upsampling with a large number of feature channels to increase the output reso-

lution. In addition, the model has the capability to augment feature space by fusing the

context from imagery acquired at di↵erent resolutions. Because HR features extracted

from a contracting path and LR features upsampled by using an expansive path are

combined through the process of concatenation, the feature space can be augmented to

a certain degree.

4.2.3 SR Model

Aimed at recovering HR imagery from its LR information, SR is an important category

of techniques for image processing and o↵ers an excellent opportunity to facilitate the

development of di↵erent remote sensing applications including building semantic seg-

mentation. In recent years, deep learning based SR methods have been investigated

quite intensively and have achieved state-of-the-art performance among various bench-

marks of SR, some breakthrough studies such as SRCNN [189], VDSR [190], LapSRN

[191], SRGAN [192], etc. To explore the feasibility of integrating SR into the building

semantic segmentation task while simultaneously considering the characteristics of the

available data source, we propose to adopt a typical deep learning based single-image

super-resolution (SISR) method named ESPCN to increase the resolution of LR panchro-

matic satellite imagery to match that of the HR aerial imagery at some point. Ideally,

the reconstructed SR imagery could be augmented with high-frequency information on

condition that the spatial resolution is similar to that of the HR aerial imagery.
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Instead of upscaling the LR input imagery XLR into HR space before reconstruction,

ESPCN directly extracts feature maps from LR space with the help of successive hidden

convolutional layers. To generate SR imagery XSR from XLR with an upscaling factor

r, XLR with a shape of h⇥w⇥c would undergo L layers of convolution operations. The

first L� 1 layers can be described as:

f1(XLR,⇥1, b1) = g(⇥1 ⇥XLR ⇥ b1) (4.1)

f l(XLR,⇥1:l, b1:l) = g(⇥l ⇥ f l�1(XLR) ⇥ bl) (4.2)

where ⇥l and bl with l 2 (1, L � 1) represent the learnable hyperparameters weights

and biases, respectively. Function g is the activator ReLU used to perform nonlinear

mapping.

The final layer fL applies an e�cient sub-pixel convolution operation, which learns an

array of complex upscaling filters to upscale the LR feature maps into the HR output

XSR. The formula as follows:

XSR = fL(XLR,⇥L, bL) = PS(⇥L ⇥ fL�1(XLR) + bL) (4.3)

where PS is a periodic shu✏ing operator that reshapes the feature maps of layer L� 1

from shape h ⇥ w ⇥ c · r2 into a tensor of shape rh ⇥ rw ⇥ c. Weights ⇥L are in the

shape hf ⇥ wf ⇥ cL�1 ⇥ c · r2.

During training, the input LR imagery XLR can be synthesized e�ciently by sub-

sampling HR aerial imagery XHR from shape rh⇥ rw⇥ c to h⇥w⇥ c using a Gaussian

filter. After generating the result in each epoch, the loss function pixel-wise mean

squared error (MSE) (Equation 4.4) is used to measure the discrepancy between recon-

structed XSR and original XHR, both in shape rh⇥ rw⇥ c. In addition, early stopping

is adopted to end the training process once the model performance no longer improves

after 100 epochs on cross-validation data.

L(XHR, XSR) =
1

r2hw

rhX

i=1

rwX

j=1

(XHR

i,j � fL

i,j(X
LR))2 (4.4)

In terms of the spatial resolution of the multi-source remote sensing imagery used in this

study, the HR aerial imagery is approximately three times higher than LR panchromatic

imagery; therefore, three SR models are trained by ESPCN by assigning the values 1,

2, and 3 to the upscaling factor r, respectively.
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4.2.4 Assessment Criteria

The quality of the results obtained after semantic segmentation and the use of the SR

model is evaluated by applying criteria based on a confusion matrix and image quality

assessment (IQA), respectively.

The assessment criteria of the segmentation model are as with Chapter 3. Regarding the

quantitative performance of the SR model, the most widely used evaluation criterion,

PSNR, is adopted to measure the reconstruction quality of transformation. The PSNR,

which is an objective IQA method, is calculated based on the maximum possible pixel

value (denoted as MAX) and the pixel-level MSE between HR imagery XHR and super-

resolved SR imagery XSR. The corresponding formulas are as follows:

MSE =
1

H ⇥W

HX

i=1

WX

j=1

(XHR �XSR)2 (4.5)

PSNR = 10 ⇥ log10(
MAX2

MSE
) (4.6)

We normalize the maximum possible pixel value between multi-source imagery by con-

verting the value of 8-bit aerial imagery and 16-bit panchromatic imagery, and rescale

both of them from 0 to 1. Thus, instead of relying on human visual perception, the

quality of SR is computationally only related to the MSE.

4.3 Results

To demonstrate the feasibility of proposed SR integrated approach, we employ the same

modified UNet model trained by HR aerial imagery as the backbone to test imagery in

three main categories: LR, ESPCN based SR, and bicubic based interpolated imagery.

Considering the exact resolution of HR aerial and LR panchromatic imagery as well as

exploring the influence caused by their resolution di↵erence, we upscale the testing LR

panchromatic imagery with resolution 0.500m into 2, 3, 4 times by both ESPCN and

bicubic interpolation methods. Thus, SR- and bicubic-based interpolated panchromatic

imagery with resolution 0.250m, 0.167m, and 0.125m are generated. Moreover, to eval-

uate the robustness of methods, we deliberately divide the entire testing area into four

regions based on land use, where buildings and other important land features present in

di↵erent characteristics in terms of grayscale value, texture, structure, density, size, etc.

This section presents the qualitative and quantitative results of the building semantic

segmentation of the four regions via di↵erent methods. More specifically, with respect

to the qualitative results, the assessment criteria introduced in Section 4.2.4 are applied.



Chapter 4. Super-Resolution Integrated Building Semantic Segmentation 59

The quantitative results are shown in Figure 4.3, 4.5, 4.7, and 4.9. In these figures, (a)

and (e) are LR panchromatic imagery and the corresponding segmentation result, (b),

(c), and (d) are the segmentation results generated by the ESPCN-based methods with

upscale factors of 2, 3, and 4, respectively. Further, (f), (g), and (h) are the segmentation

results generated by the bicubic-based methods with upscale factors corresponding to

the ESPCN-based methods. The di↵erent colors: green, red, blue, and white, are used to

indicate the tp, fn, fp, and tn pixels in the segmentation results, respectively. Moreover,

for improved visualization, as shown in Figure 4.4, 4.6, 4.8, and 4.10, enlargements of

selected representative subregions in each region are displayed in a yellow window to

reveal the details, which reflect the e↵ect of applying di↵erent methods.

(a) (b) (c) (d) 

(h) (g) (f) (e) 

2 × upscaling LR 4 × upscaling 3 × upscaling 
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Figure 4.3: Qualitative results for test region 1.

Figure 4.3 shows the qualitative results for test region 1, which mainly contains com-

mercial and residential areas, in which the types of buildings are particularly diverse,

whereas the non-building areas include several open sided car parks and sports grounds.

The corresponding quantitative results generated by the di↵erent methods are provided

in Table 4.1, and indicate that the proposed ESPCN method with an upscale factor of

2 outperformed other models in terms of the recall, overall accuracy, F1-score, kappa,

and Jaccard index. With respect to precision, the results are worse than those of other

upscaled imagery but are still more accurate than those obtained for the original LR

imagery.

Notably, as shown in the first row of Figure 4.4, in some residential areas, the size of

building as well as the separation distance between adjacent buildings is quite small

in LR imagery, which considerably increases the challenge of segmentation, and makes

it di�cult to identify buildings at all. The use of ESPCN not only enlarges the size

of building and distance between adjacent buildings like bicubic interpolation does but
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Table 4.1: Quantitative results for test region 1.

Model Scale Resolution Precision Recall Overall Acc F1-score Kappa Jaccard
LR 1 0.500 0.693 0.621 0.803 0.655 0.518 0.487

ESPCN 2 0.250 0.728 0.772 0.844 0.749 0.637 0.599
BICUBIC 2 0.250 0.752 0.645 0.829 0.694 0.576 0.532
ESPCN 3 0.167 0.737 0.606 0.816 0.665 0.540 0.499

BICUBIC 3 0.167 0.749 0.527 0.804 0.619 0.492 0.448
ESPCN 4 0.125 0.735 0.462 0.788 0.568 0.436 0.396

BICUBIC 4 0.125 0.755 0.388 0.777 0.512 0.387 0.344

also enrich the texture information. The e↵ect can easily be seen in the enlarged views

and related segmentation results, where all buildings are well segmented by adopting

ESPCN with an upscale factor of 2, and, ESPCN outperforms the simple interpolation

methods for every respective upscale factor. Similar to the residential areas, as shown

in the third row of Figure 4.4, the external outlines of buildings in the commercial area

are particularly clear when using ESPCN, which produces more accurate segmentation

results.

LR 2 × ESPCN 3 × ESPCN2 × BICUBIC 3 × BICUBIC 4 × ESPCN 4 × BICUBIC

Figure 4.4: Qualitative results for representative subregions in test region 1.

Region 2 is a mainly residential area, and the related qualitative results are shown in

Figure 4.5. As with the results of region 1, because of the misalignment in resolution

between the training and testing data, the majority of small and detached houses in LR

imagery are misclassified as non-building areas. Apart from the prevalence of detached

houses, the residential buildings in region 2 also include medium-rise mansions and

apartments with a comparatively larger distance separating them, and the region also



Chapter 4. Super-Resolution Integrated Building Semantic Segmentation 61

(a) (b) (c) (d) 

(h) (g) (f) (e) 

2 × upscaling LR 4 × upscaling 3 × upscaling 
B

IC
U

B
IC

ESPC
N

Figure 4.5: Qualitative results for test region 2.

Table 4.2: Quantitative results for test region 2.

Model Scale Resolution Precision Recall Overall Acc F1-score Kappa Jaccard
LR 1 0.500 0.645 0.514 0.787 0.572 0.432 0.400

ESPCN 2 0.250 0.727 0.680 0.840 0.703 0.594 0.542
BICUBIC 2 0.250 0.748 0.577 0.828 0.651 0.540 0.483
ESPCN 3 0.167 0.749 0.560 0.826 0.641 0.529 0.472

BICUBIC 3 0.167 0.756 0.509 0.818 0.608 0.495 0.437
ESPCN 4 0.125 0.751 0.406 0.798 0.527 0.413 0.358

BICUBIC 4 0.125 0.765 0.373 0.794 0.501 0.390 0.335

contains several small parks. Both the qualitative and quantitative results shown in

Figure 4.5 and Table 4.2 demonstrate the e↵ect of ESPCN on the semantic segmentation

of residential buildings in the di↵erent categories.

Figure 4.6 shows some representative mansions and apartments as well as related seg-

mentation details. Except for a few tiny accessory buildings and protruding architectural

contours, buildings are correctly segmented with a low fp value by adopting ESPCN

with an upscale factor of 2. In contrast, the use of LR imagery leads to the misclassi-

fication of many roads and areas containing vegetation as buildings, whereas buildings

are incorrectly detected.

As shown in Figure 4.7a, region 3 mainly consists of quasi-industrial zones occupied

by light industrial and service facilities, with non-building land features such as a river

and large-scale transport system also included. Intuitively, the qualitative results seem

to suggest that ESCPN with an upscale factor of 2 outperformed LR and the other

methods with fewer fp and fn results, especially in areas bordering the railway line and

high-density building areas. Some representative results are presented in Figure 4.8.
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LR 2 × ESPCN 3 × ESPCN2 × BICUBIC 3 × BICUBIC 4 × ESPCN 4 × BICUBIC

Figure 4.6: Qualitative results for representative subregions in test region 2.
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Figure 4.7: Qualitative results for test region 3.
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LR 2 × ESPCN 3 × ESPCN2 × BICUBIC 3 × BICUBIC 4 × ESPCN 4 × BICUBIC

Figure 4.8: Qualitative results for representative subregions in test region 3.

Table 4.3: Quantitative results for test region 3.

Model Scale Resolution Precision Recall Overall Acc F1-score Kappa Jaccard
LR 1 0.500 0.689 0.699 0.827 0.694 0.573 0.531

ESPCN 2 0.250 0.715 0.749 0.846 0.732 0.624 0.577
BICUBIC 2 0.250 0.769 0.640 0.845 0.699 0.595 0.537
ESPCN 3 0.167 0.741 0.609 0.830 0.668 0.556 0.502

BICUBIC 3 0.167 0.747 0.541 0.819 0.627 0.512 0.457
ESPCN 4 0.125 0.712 0.447 0.794 0.550 0.425 0.379

BICUBIC 4 0.125 0.731 0.380 0.786 0.500 0.381 0.333

The quantitative results in Table 4.3 also infer that SR imagery obtained with an ap-

propriate upscale factor can achieve performance superior to that attainable with LR

imagery in regions with comprehensive land features.

Region 4 shown in Figure 4.9a is situated in the vicinity of the Tokyo Bay estuary. This

highly particular location consists of industrial areas with large factories and storage

buildings as well as docks spread over the entire region. Land features particular to this

location, such as containers, are widely distributed in the port, while barges are moored

in the harbor. The quantitative results shown in Figure 4.9b to h and indicate that

ESPCN with an upscale factor of 2 can segment large buildings with the lowest fn.

Qualitative results for test region 4.

The impact of the resolution on the segmentation of large buildings was analyzed in

greater detail by selecting a few representative large buildings with a simple roof texture
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Figure 4.9: Qualitative results for test region 4.

and that are surrounded by wide open areas for comparison purposes. As shown in

Figure 4.10, although the size of large buildings in LR imagery is comparable with that

of small buildings in the training HR imagery, the unclear contour of buildings in LR

imagery is prone to misclassification and produces results with a large fn value. Such

results reflect the importance of aligning the resolution between training and testing data

from the side, as well as the e↵ects of SR integrated method on semantic segmentation

in satellite imagery.

(a) (b) (c) (d) 

(h) (g) (f) (e) 
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Figure 4.10: Qualitative results for representative subregions in test region 4.

The detailed results provided in Table 4.4 confirm the aforementioned conclusion. Large

buildings in LR imagery can be detected by the model trained on HR imagery with

relatively high accuracy; however, in contrast with the ESPCN integrated method, which

contains high-frequency information, the performance remains poor.



Chapter 4. Super-Resolution Integrated Building Semantic Segmentation 65

Table 4.4: Quantitative results for test region 4.

Model Scale Resolution Precision Recall Overall Acc F1-score Kappa Jaccard
LR 1 0.500 0.711 0.655 0.862 0.682 0.594 0.517

ESPCN 2 0.250 0.766 0.711 0.886 0.738 0.665 0.584
BICUBIC 2 0.250 0.781 0.569 0.867 0.659 0.578 0.491
ESPCN 3 0.167 0.752 0.551 0.858 0.636 0.55 0.466

BICUBIC 3 0.167 0.766 0.500 0.853 0.605 0.520 0.434
ESPCN 4 0.125 0.748 0.422 0.838 0.540 0.450 0.370

BICUBIC 4 0.125 0.766 0.369 0.832 0.498 0.412 0.332

4.4 Discussion

Section 4.3 presented comprehensive qualitative and quantitative results of the segmen-

tation of buildings, which are located in various areas and which di↵er in terms of their

density, shape, texture, size, and usage. The discussion we provide in this section aims

to further demonstrate the feasibility of SR-integrated segmentation methods. First,

the average quantitative results for the four regions are used to indicate the robustness

of the proposed method. Then, we take reconstruction quality as a reference to show

the relationship between segmentation and SR. It should be noted that since the HR

satellite imagery is not available, we utilize the reconstruction quality generated in train-

ing procedure by HR aerial imagery to represent that of SR satellite imagery. Finally,

selected qualitative results of important land features other than buildings are shown.

Besides, poor results are briefly analyzed and discussed.

The average segmentation performance obtained by adopting di↵erent methods is shown

in Figure 4.11. In general, the ESPCN-integrated method with an upscale factor of 2

significantly outperforms the other methods including LR imagery, improving the overall

accuracy from 0.802 to 0.854, the F1-score from 0.651 to 0.730, kappa from 0.529 to 0.630,

and the Jaccard index from 0.484 to 0.576. These quantitative results indicate that the

model trained by HR imagery cannot detect small buildings with high accuracy and

that increasing the resolution of LR imagery could enlarge the building size by providing

more pixels, which would align the size of buildings in the training data to a certain

degree. This point of view would also be supported by the results generated via bicubic

interpolation with an upscale factor of 2. Apart from increasing the image resolution,

compared with simple interpolation, SR-based methods would also reconstruct finer

spatial details with higher PSNR, which would yield improved segmentation results for

the same upscale factor.

In principle, regarding the alignment of the resolution of HR with that of LR imagery,

upscaling the resolution of LR imagery with a factor of 3 to 0.167m by ESPCN would

match that of HR imagery to a great extent to generate the best segmentation results.
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Model Scale Resolution PSNR Precision Recall Overall Acc F1-score Kappa Jaccard

LR 1 0.500 - 0.684 0.622 0.820 0.651 0.529 0.484
ESPCN 2 0.250 33.353 0.734 0.728 0.854 0.730 0.630 0.576

BICUBIC 2 0.250 28.880 0.762 0.608 0.842 0.676 0.572 0.511
ESPCN 3 0.167 28.471 0.745 0.582 0.832 0.652 0.544 0.485

BICUBIC 3 0.167 27.934 0.754 0.519 0.823 0.615 0.505 0.444
ESPCN 4 0.125 26.487 0.736 0.434 0.804 0.546 0.431 0.376

BICUBIC 4 0.125 25.209 0.754 0.378 0.797 0.503 0.392 0.336

(a)

(b)

Figure 4.11: Average performance of SR reconstruction and segmentation for the four
test regions using di↵erent methods. (a) Bar diagram for performance comparison. The
x- and y-axis represent the assessment criteria and corresponding values, respectively.
(b) Table for performance comparison. For each assessment criterion, the highest values

are highlighted in bold.

However, because of the ill-posed problem, reconstructing high-quality SR imagery from

LR space with a large upscale factor would be highly challenging. According to the

IQA criteria shown in Figure 4.11b, an increase in the upscale factor from 2 to 4 causes

the PSNR of ESPCN-based SR imagery to drastically decline from 33.353 to 28.471 to

26.487. Although the resolution could match that of the training data, the reconstruction

quality also severely impacts the correct representation of high-frequency information.

Thus, low-quality SR imagery even with an appropriate resolution would worsen the

segmentation performance. Ultimately, maintaining a balance between resolution and

reconstruction quality is of great importance.

Figure 4.12 shows the semantic segmentation results of other representative land fea-

tures. The first row shows a parking lot on which cars of di↵erent categories are dis-

tributed. As shown in the enlarged yellow window, by adopting SR, the shape and

textural information of each car becomes much more refined. Because cars are common

land features in HR aerial imagery, abundant training data for cars would enable the

value of fp to be e↵ectively decreased. In contrast, as shown in the third and fourth

rows, the barges moored in the harbor are likely to be misclassified as buildings after the

resolution is upscaled. This problem is caused by insu�cient training samples for boats



Chapter 4. Super-Resolution Integrated Building Semantic Segmentation 67

in HR aerial imagery. In terms of railways, trains and tracks are presented by a simple

stripe-like feature, and increasing the resolution would enlarge the distance between ad-

jacent strips to improve the performance. Finally, as shown in the last two rows, some

polygon-like land features with simple textures such as playgrounds are prone to be

misclassified as buildings at a di↵erent resolution, indicating that the problem is caused

by the UNet model rather than the proposed SR integrated method.

LR 2 × ESPCN 3 × ESPCN2 × BICUBIC 3 × BICUBIC 4 × ESPCN 4 × BICUBIC
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Figure 4.12: Results for important land features.

Especially, Figure 4.13 shows a large region in which all methods misclassify non-building

areas; after carefully analyzing the original LR image, we believe that the problem is

caused by an imperfect ground truth. The large building, which could be well segmented
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by adopting ESPCN with an upscale factor of 2, further demonstrates the feasibility of

the proposed method.

LR 2 × ESPCN 3 × ESPCN2 × BICUBIC 3 × BICUBIC 4 × ESPCN 4 × BICUBIC

Figure 4.13: Bad results caused by annotation.

It should be noted that the investigation of the feasibility of the SR-integrated method

for processing multi-source remote sensing imagery is di�cult because these images

di↵er in terms of data acquisition methods, resolution, and color space. However, the

testing results confirm that the accuracy and robustness of the proposed SR-integrated

method is considerably higher than those of the other methods, and that it can achieve

comparably accurate building semantic segmentation results using the provided study

materials.

4.5 Conclusions

In this chapter, we presented a novel SR-integrated method for building semantic seg-

mentation of multi-source remote sensing imagery of di↵erent resolution. The exper-

imental results demonstrate the potential and the capability of the proposed method

to solve the problem caused by the resolution of the training data being unaligned

with that of the testing data. In particular, the proposed SR-integrated method could

achieve considerably higher accuracy and more precise segmentation results than the

other methods, which also indicates the feasibility of our proposed method. In addition,

it is important to carefully consider the color influence on multi-source remote sensing

imagery, investigate the method of balancing resolution and reconstruction quality to

enhance the segmentation to a maximum extent, optimize the robustness of both seg-

mentation and SR models, and explore the e↵ectiveness of proposed method in other

study areas with buildings in di↵erent types, which we aim to study in future.
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Practical Application

In this chapter, we expand the proposed methods introduced in Chapter 2, 3, 4 to more

challenging applications including change detection, slum mapping. As for change detec-

tion, color normalization, super-resolution, and image registration methods are adopted

to balance the training and testing datasets, after that, by adopting proposed CFPN

model and image di↵erence, the identification of land change can be achieved. In terms

of slum mapping, here CFPN is adopted to perform multi-class semantic segmentation,

the impact of resolution on slum segmentation is discussed as well.

5.1 Change Detection

Change detection is one of the most significant tasks in urban planning and urban mon-

itoring. Instead of the traditional time-consuming fieldwork and survey, the detection

from remote sensing imagery by deep learning methods [193] has merged as an e↵ective

measure. Given the di↵erent characteristics, here mainly refer to color space and reso-

lution among di↵erent data source, training a general model that can be transfered to

all testing conditions is di�cult.

In this preliminary study, we investigate the change detection based on muiti-source

remote sensing imagery with di↵erent resolution and color space. To balance resolu-

tion and color, super-resolution and color normalization methods, here refer to ESPCN

and histogram equalization, are integrated to previous deep learning framework. The

preprocessing of training and testing data as shown in Table 5.3.

The aerial RGB training data with resolution 0.16m, is preprocessed and trained in four

method as follows;

69
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Table 5.1: Training and testing dataset.

Data Name Band Color Normalize Resolution Year Source

Training

Unnorm 3C 3 RGB No

0.16m 2016 Aerial Image
Norm 3G 3 GRAY Yes

Unnorm 1G 1 GRAY No
Norm 1G 1 GRAY Yes

Testing
NonSR - GRAY No 0.50m

2016, 2017 Satellite Image
SR - GRAY Yes 0.16m

• Unnorm 3C: original three-band RGB color imagery without color normalization;

• Norm 3G: convert original three-band RGB imagery into one-band grayscale im-

agery with color normalization, then stack three same grayscale images into three-

band grayscale one;

• Unnorm 1G: convert original three-band RGB imagery into one-band grayscale

imagery without color normalization;

• Norm 1G: convert original three-band RGB imagery into one-band grayscale im-

agery with color normalization.

The one-band satellite testing data with resolution 0.50m, is preprocessed and tested in

two methods as follows:

• NonSR: without super-resolution; the normalization method and band number

match that with paired trianing dataset

• SR: without super-resolution into 0.16m; the normalization method and band num-

ber match that with paired trianing dataset

Figure 5.1 and Figure 5.2 show the building semantic segmentation results of 2016 and

2017 by applying di↵erent training and testing methods, respectively.

Although the ground-truth is unavailable, by visual interpretation, we find that the

segmentation results generated via method Norm 3G SR can achieve best results in

both 2016 and 2017. The selected results and comparison of 2016 and 2017 can be

found in Figure 5.3.

Given the misalignment of satellite imagery taken from di↵erent time is inevitable, we

usually observe 20-150 pixels shift in a processed pair depending on the scene geometry.

To address this issue, we employ projective transformation to wrap the 2017 image based

on scale invariant feature transform (SIFT) features [194] of corresponding paired 2016

image. After image registration, the morphological transformations is further adopted to

mitigate noise. Such post-processing can be found in 5.4, where gray means unchanged

areas; white is new building areas; black refers to new vacant areas.
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(a) Satellite image (b) Segmentation result by 
Unnorm_3C_NonSR

(c) Segmentation result by 
Unnorm_3C_SR

(d) Segmentation result by
Norm_3G_NonSR

(e) Segmentation result by 
Norm_3G_SR

(f) Segmentation result by 
Unnorm_1G_NonSR

(g) Segmentation result by
Unnorm_1G_SR

(h) Segmentation result by 
Norm_1G_NonSR

(i) Segmentation result by 
Norm_1G_SR

Figure 5.1: Semantic segmentation results comparison of 2016. Norm refers to the
pre-processing with color normalization; integer means the number of image band; C

refers to color image; G means grayscale image; SR is super-resolution integrated.

Figure 5.5 and 5.6 illustrate some new building and new vacant examples generated by

proposed method. It reveals that the proposed method can serve as a viable tool for

change detection high e�ciency. Moreover, the deep learning based end-to-end change

detection method can be investigated in case the ground-truth of changed areas is pro-

vided.
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(a) Satellite image (b) Segmentation result by 
Unnorm_3C_NonSR

(c) Segmentation result by 
Unnorm_3C_SR

(d) Segmentation result by
Norm_3G_NonSR

(e) Segmentation result by 
Norm_3G_SR

(f) Segmentation result by 
Unnorm_1G_NonSR

(g) Segmentation result by
Unnorm_1G_SR

(h) Segmentation result by 
Norm_1G_NonSR

(i) Segmentation result by 
Norm_1G_SR

Figure 5.2: Semantic segmentation results comparison of 2017. Norm refers to the
pre-processing with color normalization; integer means the number of image band; C

refers to color image; G means grayscale image; SR is super-resolution integrated.

5.2 Slum Mapping

The management of slum areas is an important task for improving the sanitary con-

dition, humanitarian, and living standard, as well as reducing crime and poverty in

developing countries. Since the characteristics of slum areas are very complicated, such

as extremely high density, disordered land use, diverse architecture and shanty struc-

tures, non-uniform patterns and styles, etc, the traditional methods which measure the
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(a) Segmentation result of 2016 (b) Segmentation result of 2017

Figure 5.3: Selected semantic segmentation results in 2016 and 2017 with the method
of Norm 3G SR.

(a) Misaligned result (b) Aligned result (c) Denoised results

Figure 5.4: Change detection with post-processing. Gray means unchanged areas;
white is new building areas; black refers to new vacant areas.

scale as well as localize the concrete region of slum areas based on census and community

survey inevitably hinder the development to a considerable extent.

In this study, we investigate the way of slum mapping based on remote sensing imagery

and deep learning frameworks. Thanks to the annotation data provided by Cheng et al.

[195], in which the physical environment of a city was categorized by a two-dimension

approach: diversity of buildings and street pattern (aggregate) in vertical and horizontal

axis, respectively. The related RGB remote sensing dataset is downloaded from google

maps.

Here, we take the annotated ground-truth in Guangzhou and related satellite imagery

with resolution of 5m to train the deep learning model, and the workflow is as with
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Figure 5.5: New-building examples.

Figure 5.6: New-vacant examples.

Figure 5.7: Slum mapping result example in Dhaka.
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Table 5.2: The quantitative slum mapping results of Dhaka.

Recall Precision Overall Acc Kappa IoU F1-score
0.878 0.879 0.878 0.624 0.814 0.874

Chapter 3. After that, the trained model is utilized to conduct semantic segmentation

in Dhaka, Bangladesh. The corresponding qualitative and quantitative results are shown

in 5.7 and 5.2, respectively. Since the exterior characteristics of slum di↵er in di↵erent

countries, red regions in 5.7 mainly refer to the high degree of informality.

The impact of resolution on building semantic segmentation has been discussed in Chap-

ter 4, to further investigate the e↵ectiveness of the resolution on other land features and

data source, we conduct an experiment by training models with resolution from 1m to

5m using slum dataset mentioned above. The qualitative and quantitative results from

Figure 5.8 and 5.3 reveal that the model with resolution in 3m outperform others. The

quality of annotation dataset and the demand for high-frequency feature may lead such

results; some researches [196, 197] which focus on investigating the impact of resolu-

tion on vegetation and land use semengtation also obtained alike results. The detailed

investigation study will be part of the future works.

(a) Input (b) Ground-truth (c) result of 
resolution in 1m

(d) result of 
resolution in 2m

(e) result of 
resolution in 3m

(f) result of 
resolution in 4m

(f) result of 
resolution in 5m

Figure 5.8: Slum mapping results in di↵erent resolution.

Table 5.3: The impact of resolution on slum mapping.

Resolution Recall Precision Overall Acc Kappa IoU F1-score
1m 0.499 0.648 0.499 0.245 0.347 0.471
2m 0.522 0.703 0.522 0.300 0.373 0.500
3m 0.556 0.724 0.556 0.348 0.410 0.554
4m 0.521 0.644 0.521 0.277 0.367 0.493
5m 0.526 0.684 0.526 0.296 0.371 0.497
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Conclusions and Future Works

6.1 Conclusions

In this dissertation, we creatively investigated the feasibility of applying deep learn-

ing methods in di↵erent semantic segmentation tasks via multi-source remote sensing

imagery. The comprehensive researches including village mapping, urban building seg-

mentation, slum mapping, super-resolution integrated method for model transfer, change

detection, etc., are conducted. In village mapping study, we explored how to construct

CNN architecture that can adapt to the village building identification task and presented

a novel CNN frame called ECNN based on multiscale feature learning by emsembling

parallel optimized state-of-the-art CNN models. The model outperformed others with

high accuracy. And in urban building semantic segmentation, we presented a FCN based

model named CFPN. The proposed model is further applied in tasks including slum map-

ping and change detection. The experimental results demonstrate the proposed model

outperforms the existing state-of-the-art methods, and can serve as a viable tool for

mapping tasks with high accuracy and e�ciency. After that, we discussed the challenge

and limitation of recent deep learning based studies on model transfer problems. We

innovatively presented a novel SR integrated building semantic segmentation framework

to tackle the problem caused by the unaligned resolution between training and testing

data, and investigated the feasibility of the proposed method based on comprehensive

experiments. Change detection is conducted by integrating deep learning based seman-

tic segmentation framework as well as resolution and color transfer. The experimental

results mainly show the feasibility of the proposed method in detecting urban changes.

Moreover, to facilitate the development of the deep learning based segmentation and

super-resolution models, we developed an open source computer vision package named
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as GeoVision, which contains subpackage GeoSeg and GeoSR to perform semantic seg-

mentation and super-resolution, respectively.

6.2 Future Works

Although this study indicates the proposed method could be e�ciently used in semantic

segmentation for multi-source remote sensing imagery, further and more detailed explo-

ration on the method is required in the future. First, to test the method’s stability, more

extended and sophisticated areas need to be tested. Second, to further evaluate the fea-

sibility of the proposed change detection method, ground-truth data will be prepared.

Third, given the rapid development of deep learning techniques, the proposed methods

can not keep the long-term state-of-the-art. With the help of GeoVision introduced in

Appendix A, the upgrade of our framework and model will be achieved. Fourth, to

enhance the robustness of model in di↵erent cases, more comprehensive investigation on

model transfer is still essential. Fifth, the limitation of training dataset hindered the

segmentation quality in a considerable extent, applying other deep learning techniques

like weak-supervised learning and meta learning is important. Finally, To achieve higher

quality segmentation in tasks like change detection and slum mapping, adopting remote

sensing imagery from more data sources including DSM and multispectral imagery will

be investigated.
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Figure 6.1: System for Automatic and Real-time Generalization of Catastrophe maps.

There are still many important applications which can be implemented in the future.

Japan is one of the countries most a↵ected by natural disasters; the catastrophes such as

earthquake, Tsunami and landslide usually cause enormous losses. As an indispensable

resource, maps used to illustrate land conditions and changes after catastrophe are quite

significant. In this research plan, a system for automatic and real-time generalization of

catastrophe maps is proposed. Rather than existing methodologies, which highly depend

on human beings, here, by considering the characteristics and importance of catastrophe
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maps, we propose a brand new map generalization system based on combining GIS and

machine learning methods, which would be capable to automatically provide accurate,

e�cient and time-sequenced catastrophe maps. As shown in Figure 6.1, By implementing

satellite imagery, machine learning methods and geographic sensors, the important land

features such as safe roads, broken buildings can be identified; meanwhile, the digitalized

map with accurate geographic coordinates can be generated as well. Base on the obtained

results, life and property would be saved. Furthermore, not only in catastrophe, this

system could also be used in many other map generalization conditions.

Moreover, we believe the combination of proposed method with Internet of Things (IoT)

can achieve more promising and interesting researches in the future.
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A GeoSeg

Automatic, robust, and accurate image segmentation is a long existing challenge in

computer vision. Over the past decades, many supervised or unsupervised methods are

proposed to handle this task [198, 199]. However, due to the limitations of both the

quality of dataset and processing algorithm, the precision level of these methods are

quite limited [42]. Recent years, thanks to the rapid development of deep convolutional

neural networks (DCNNs) as well as the dramatically increased availability of large-scale

datasets, the performances show significant improvement in many image segmentation

tasks [200, 201].

Di↵er to ordinary images, because of cost, technical requirement and sensitivity of na-

tional defense, it is rather di�cult to get very high-resolution (VHR) aerial imagery

in the field of remote sensing. And, the lack of large-scale, high-resolution dataset

limits the development of accurate building segmentation and outline extraction. Re-

cently, due to rapid evolution of imaging sensors, the availability and accessibility of

high-quality remote sensing datasets have increased dramatically [202, 203]. On the ba-

sis of these datasets, many well-optimized and innovative methods, including di↵erent

variants of fully convolutional networks(FCNs), have been developed for the purpose of

accurate building segmentation [204]. Generally, these methods achieve the state-of-the-

art accuracy or computational e�ciency under corresponding datasets. However, since

these methods are trained and evaluated through di↵erent datasets, it is hard to have

an in-depth comparison of performances of various models. Additionally, although the

datasets are open-access, the implemented models or algorithms are usually not revealed

in details by the authors.
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Facing this problem, we introduce Geoseg (https://github.com/huster-wgm/geoseg),

a computer vision package that is focus on implementing the state-of-the-art methods

for automatic and accurate building segmentation and outline extraction. The Geoseg

package implements more than 9 FCN-based models including FCNs [37], U-Net [43],

SegNet [44], FPN [149], ResUNet [205], MC-FCN [8], and BR-Net [9]. For in-depth

comparison, balanced and unbalanced evaluation metrics, such as precision, recall, over-

all accuracy, f1-score, Jaccard index or intersection over union (IoU) [206] and kappa

coe�cient [207], are implemented.

The main contributions of this study are summarized as follows:

• We build a computer vision package that implemented several state-of-the-art

methods (i.e., BR-Net) for building segmentation and outline extraction of very

high-resolution aerial imagery;

• We have carefully trained and evaluated di↵erent models using the same dataset

to produce a performance benchmark of various models.

• The package is optimized and opened to the public that other researchers or de-

velopers can easily adopt for their own researches.

The rest of the study is organized as follows: the related work is presented in Section ??.

The benchmark dataset and implementation details of the experiments are described in

Section 2. In Section 3, the results and discussion of di↵erent models are introduced.

Conclusions regarding our study are presented in Sections 4, respectively.

1 Related work

To assist deep learning researches or applications, there are several deep learning frame-

works. According to the compiling mechanism, these frameworks can be categorized

into two groups: static and dynamic framework. Static frameworks, such as Ca↵e 1 and

TensorFlow 2, construct and compiled completed model before training and updating

parameters. For dynamic frameworks, such as Chainer 3 and PyTorch 4, at every iter-

ation, only executed part of the model is compiled. Compared with static frameworks,

the dynamic frameworks are less e�cient but much flexible.

For di↵erent frameworks, there are ”Model Zoo” packages that implemented with various

pre-trained deep learning models. However, most of the implemented models are focused

1
http://ca↵e.berkeleyvision.org/

2
https://www.tensorflow.org/

3
https://chainer.org/

4
https://pytorch.org/

https://github.com/huster-wgm/geoseg
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on methods for image classification. Even for image segmentation packages such as

ChainerCV 5, the implemented methods are quite limited, and datasets are not relevant

to aerial imagery.

As far as we know, Geoseg is the first computer vision package that implemented with

abundant deep learning models for automatic building segmentation and outline extrac-

tion.

2 Experiments

2.1 Benchmark Dataset

Thanks to the trend of open source, more and more high-quality aerial imagery datasets

are available. Among them, a very high-resolution(VHR) aerial image dataset called

Aerial Imagery for Roof Segmentation(AIRS) (https://www.airs-dataset.com/) is

published most recently [208]. The spatial resolution of the dataset reaches 0.075 cm.

The original orthophotos and corresponding building outlines are provided by Land

Information of New Zealand (LINZ). For the purpose of accurate roof segmentation, the

vectorized building outlines are carefully adjusted to ensure that all building polygons

are strictly aligned with their corresponding roofs. The sililar dataset with the resolution

in 0.16m is provided as well.

To have a fair comparison of di↵erent methods, a study area of AIRS that covers 32 km2

in Christchurch is chosen [9]. The study area is evenly divided into two regions: training

and testing. For each area, there are 28,786 and 26,747 building objects, respectively.

Before experiments, both regions are processed by a sliding window of 224 ⇥ 224 pixels

to generate image slices (without overlap). After filter out image slices with low building

coverage rates from training region, the number of samples in training, validation, and

testing data are 27,912 11,952 and 71,688, respectively.

2.2 Implementation

Code Organization Geoseg is built on top of PyTorch with version == 0.3.0 (up-

dating to the latest version is scheduled). The whole package is organized as Figure A.1.

There are 5 sub-directories including dataset/, logs/, models/, result/ and utils/. The

dataset/ directory contains all samples for training, validating and testing. The logs/

directory records learning curves, training and validating performance during model

iterations. The models/ directory contains scripts implemented with various network

5
https://github.com/chainer/chainercv

https://www.airs-dataset.com/


Appendix I: GeoVision 82

architectures of the models. The visualization results are saved in result/ directory. The

utils/ directory implements scripts for handling dataset, running instruction, evaluation

metrics and visualization tools.

For scripts (e.g., FCNs.py, FPN.py, and UNet.py) at root directory of Geoseg, demo

codes for training, logging and evaluating specific models are presented.

For scripts starting with ”vis” (e.g., visSingle.py and visSingleComparison.py), demo

codes for result visualization of a single model or various models comparison are imple-

mented.

Models In Geoseg, we implemented over 9 FCN-based models according to the reports

from original papers. Since the original methods were implemented in various platform

and used for various sizes of input, Geoseg introduces few modifications on several models

for unification. The details of the implemented models are listed as follows:

1. FCNs. The classic FCNs method is proposed by Long et al. at 2015. This method

innovatively adopts sequential convolutional operations and bilinear upsampling to

performance pixel-to-pixel translation. According to fusion and upsampling level

of di↵erent intermediate layers, the FCNs methods have three variants: FCN32s,

FCN16s, and FCN8s.

2. U-Net. The U-Net method is proposed by Ronneberger et al. at 2015. This

method adopts multiple skip connections between upper and downer layers.

3. FPN. The FPN method is published on CVPR2017. Similar to U-Net, this method

adopts multiple skip connections. Besides, the FPN model generates multi-scale

predictions for final output.

4. SegNet. The SegNet method is proposed by Badrinarayanan et al. at 2017. As

compared with FCNs, SegNet adopts unpooling which utilizes pooling index of

corresponding max-pooling operation to perform upsampling.

5. ResUNet. The ResUNet method adopts the basic structure of U-Net and replaces

the convolutional block of VGG-16 [86] with Residual block [121]. This archi-

tecture enhances the representation ability of the model and gains better model

performance.

6. MC-FCN. The MC-FCN method is proposed by Wu et al. at 2018. The MC-FCN

adopts the U-Net as backend and introduces multi-constraints of corresponding

outputs.
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Figure A.1: The code organization of Geoseg package. The package implements
model constructing, training, logging, evaluating and result visualization modules.
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7. BR-Net. The BR-Net method is published by Remote Sensing at 2018. The

method utilizes a modified U-Net, which replaces traditional ReLU with LeakyReLU(with

↵ = 0.1), as shared backend. Besides, extra boundary loss is proposed to regulate

the model.

Because of the e↵ectiveness of batch normalization(BN) [128], advanced models, includ-

ing FPN, SegNet, ResUNet, MC-FCN, and BR-Net, heavily adopt BN layers after each

convolutional operations to increase training speed and prevent bias.

3 Results and Discussion

Three FCN variants (FCN8s, FCN18s, and FCN32s), SegNet, U-Net, FPN, ResUNet,

MC-FCN, and BR-Net model are adopted as baseline models for comparisons. These

models are trained and evaluated utilizing the same dataset and processing platform.

3.1 Qualitative Result

Figure A.2 presents six groups of randomly selected visualization results generated by

FPN. From top to bottom rows, there are original images, extracted edges by Canny,

building segmentation and outline extraction from FPN model. In general, the extracted

outlines through Canny detector contains pretty much noise (see 2nd Row). The FPN

can segment the major part of buildings from most of the selected RGB images (see

3rd Row). Building outlines extracted from segmentation results show much fewer false

negatives (see 2nd Row vs. 4th Row).

3.2 Quantitative Result

For model evaluations, two imbalanced metrics of precision and recall, and four general

metrics of overall accuracy, F1 score, Jaccard index, and kappa coe�cient are utilized

for quantitative evaluations. Figure A.3 presents comparative results between FCN8s,

FCN16s, FCN32s, U-Net, FPN, ResUNet, MC-FCN and BR-Net for the testing samples.

For the imbalanced metrics of precision and recall, the BR-Net method achieves the

highest value of precision (0.743) which indicates that the method performs well in

terms of suppressing false positives. And, the MC-FCN method gains the highest value

of recall (0.824) among nine implemented methods.

For the four general metrics, the BR-Net model achieves the highest values for overall

accuracy, F1 score, Jaccard index, and kappa coe�cient. Compared with the weakest
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Figure A.2: Randomly selected eight samples of visualization result. The green,
red, blue, and white channels in the results represent true positive, false positive, false

negative, and true negative predictions, respectively.

model (FCN32s), the best model (BR-Net) achieves improvement of approximately 7.2%

(0.949 vs. 0.885) on overall accuracy. For F1 score, the best model achieves improvement

of about 17.8% (0.766 vs. 0.650) over FCN32s. Compared to the FCN32s method, the

BR-Net method achieves improvements of 29.4% (0.686 vs. 0.530) and 25.8% (0.737 vs.

0.586) for Jaccard index and kappa coe�cient, respectively. Considering the fact that

all these models are proposed within three years, we can imagine the evolution speed

within the research field.

3.3 Computational e�ciency

The nine models are all implemented in PyTorch and tested on a 64-bit Ubuntu system

equipped with an NVIDIA GeForce GTX 1070 GPU 6. During iterations, the Adam

optimizer [209] with a learning rate of 2e-4 and betas of (0.9, 0.999) is utilized. To

ensure a fair comparison of the di↵erent methods, the batch size and iteration number

for training are fixed as 24 and 5,000, respectively.

The computational e�ciencies of the di↵erent methods during di↵erent stages are listed

in Figure A.4. During the training stage, the slowest models (FCN8s and FCN16s) pro-

cess approximately 29.2 FPS, while the fastest model (U-Net) reaches 91.3 FPS. Because

6https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070-ti/

https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1070-ti/
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Method Overall 
accuracy Precision Recall F1-score Jaccard

index Kappa

FCN32s 0.885 0.575 0.796 0.65 0.53 0.586

FCN16s 0.937 0.706 0.791 0.734 0.638 0.697

FCN8s 0.919 0.659 0.786 0.703 0.597 0.657

UNet 0.928 0.687 0.806 0.726 0.633 0.687

FPN 0.946 0.738 0.805 0.759 0.676 0.728

SegNet 0.928 0.682 0.807 0.725 0.629 0.684

ResUNet 0.945 0.730 0.820 0.760 0.678 0.730

MC-FCN 0.945 0.733 0.826 0.764 0.686 0.734

BR-Net 0.949 0.743 0.814 0.766 0.686 0.737

a.

b.

Figure A.3: Comparison of segmentation performances of implemented models across
the entire testing data. (a) Bar chart for performance comparison. The x- and y-axis
represent the implemented methods and corresponding performances, respectively. (b)
Table of performance comparisons of methods. For each evaluation metric, the highest

values are highlighted in bold.

of fewer computational operations, at the testing stage, the slowest model(FCN32) and

the fastest model (U-Net) reach 131.6 and 280.4 FPS, respectively.

Even with slight di↵erences in their architectures, three FCNs variants (FCN32s, FCN16s,

and FCN8s) show almost identical computational e�ciency at both training and testing

stages. Consider the huge di↵erences in their performances (see details in Figure A.3

b), it is better to avoid applying FCN32s model.

Compared with U-Net, more complex models such as FPN, ResUNet, MC-FCNthe and

BR-Net adopt extra computation layers that lead to a slightly slower processing speed

at both training and testing stages. The SegNet model, which is slower and weaker than

U-Net, is also not a good option for robust building segmentation and outline extraction.
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a.

b.

Stage FCN32s FCN16s FCN8s U-Net FPN SegNet ResUNet MC-FCN BR-Net

Training
(FPS) 29.4 29.2 29.2 91.3 70.1 53.6 61.0 81.8 78.6

Testing
(FPS) 131.6 131.4 131.2 280.4 247.0 169.4 195.3 252.0 249.8
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Figure A.4: Comparison of computational e�ciency of the nine implemented meth-
ods.(a) Bar chart for computational e�ciency comparison. The x- and y-axis represent
the implemented methods and corresponding processing speed of frames per second
(FPS), respectively. (b) Table of performance comparisons of methods. For each stage,

the highest values are highlighted in bold.

4 Conclusion

In this paper, we introduce a computer vision package termed Geoseg that focus on

accurate building segmentation and outline extraction. The Geoseg is built on top of

PyTorch, a dynamic deep learning framework. In Geoseg, we implement nine models

as well as utilities for handling dataset, logging, training, evaluating and visualization.

Through a large-scale aerial image dataset, we evaluate performances and computational

e�ciency of implemented models including FCN32s, FCN16s, FCN8s, U-Net, FPN, Seg-

Net, ResUNet, MC-FCN, and BR-Net. In comparison to the weakest model (FCN32s),

the best model (BR-Net) achieves increments of 17.8% (0.766 vs. 0.650), 29.4% (0.686

vs. 0.530), and 25.8% (0.737 vs. 0.586) in F1-score, Jaccard index, and kappa coe�-

cient, respectively. In future studies, we will further optimize our network architecture

to achieve better performance with less computational cost.
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B GeoSR

The single-frame super-resolution (SR) [210], which brings an excellent opportunity to

improve a wide range of important remote sensing applications, such as land segmenta-

tion, scene classification, and features detection, is one of the most challenging problems

in computer vision. Over the past decades. several methods in group of image recon-

struction (RE) based [183], image learning (LE) based [211], and hybrid (HY) based

[212] have been studied to solve the problem. However, due to the limitations of re-

construction and learning capability, the conventional methods could only show their

feasibility under the specific condition. Recently, with the great evolution of deep learn-

ing algorithms [38] and increased availability of large-scale datasets, the performance

ceiling of single-frame SR has been continuously rising, which enables SR to be a more

potential and promising technique in several cutting-edge fields.

  

Upscale 
Factor

Low 
Resolution

BICUBIC / PSNR Super Resolution / PSNR

2 27.081 30.486

4 23.723 25.370

8 20.277 22.737

Figure A.5: Super-resolution examples generated by GeoSR. The size of the original
low-resolution images are upscaled into 2, 4, and 8 times, respectively.

Although deep learning based SR methods could achieve state-of-the-art performance

in accuracy or computational e�ciency, the di↵erent source of datasets, deep learning
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platforms, and computational environments in training and evaluation procedures make

it hard to have an in-depth comparison of performances for various models.

Facing aforementioned problems, we present GeoSR7 (example as shown in figure A.5),

an open source computer vision package for deep learning based single-frame remote

sensing imagery super-resolution. The GeoSR package implements over 10 deep learning

based SR models as the baseline, such as SRCNN [189], ESPCN [71], VDSR [190], DRRN

[213], and SRGAN [192]. For in-depth comparison, benchmark datasets, logging tools,

evaluation metrics, and visualization tools are implemented as well.

The main contributions of this study can be highlighted as follows. First, to the best

of our knowledge, it is the first computer vision package for deep learning based single-

frame remote sensing imagery super-resolution. Second, it innovatively integrates well-

established data retrieval, model development, visualization, evaluation, and logging

tools as a pipeline. Third, several state-of-the-art models, which carefully trained and

evaluated using the same dataset, are available in the package to achieve a reliable bench-

mark. Moreover, with a scalable API, the package could be potentially utilized in other

remote sensing tasks, such as image segmentation, classification, and object detection.

Last but not least, to facilitate the development of SR community, the proposed package

is provided as an open source to the public, which enables researchers and developers to

adopt for their researches e�ciently.

1 Methodology

1.1 Workflow

GeoSR is built on top of deep learning library PyTorch8 with version == 0.4.1. Figure

A.6 shows the directory structure of the package. There are 7 sub-directories including

src/, dataset/, logs/, model zoo/, archs/, utils/, and result/. Some detailed information

of the sub-directory will be introduced in later parts. The scripts (e.g., “SRCNN.py”,

“ESPCN.py”, and “VDSR.py”) at the root directory of GeoSR are used for training,

logging, and evaluating specific models.

7
https://github.com/Chokurei/geosr

8
https://pytorch.org/
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GeoSR
├── src/
│   └── data sources 
├── dataset/
│   └── training, validation, and test datasets
├── logs/
│   └── learning curve, statistic, etc.
├── model_zoo/
│   └── trained models
├── archs/
│   └── srcnn, vdsr, drcn, espcn, fsrnn, etc.
├── utils/
│   ├── extractor.py
│   ├── loader.py
│   ├── preprocessor.py
│   ├── trainer.py
│   ├── tester.py
│   ├── metrics.py
│   ├── combiner.py
│   └── vision.py
├── result/
│   └── visualized results
│
├── SRCNN.py
├── FSRNN.py
├── ESPCN.py
├── DRCN.py
├── VDSR.py
├── RedNet.py
├── etc.
│  
...

Figure A.6: The directory structure and code organization of GeoSR package. The
package integrates model construction, training, logging, evaluation, and result visual-

ization modules.

1.2 Data

Source We provide high-quality data sources in remote sensing field like UC-Merced9,

WHU-RS1910, NWPU-RESISC4511 in src/ as the benchmark in GeoSR. The training

patches stored in dataset/ with specific size can be generated from data source in three

ways: random sliding, stride sliding, and random allocation, by the code in “extrac-

tor.py”.

Preprocessing In the SR reconstruction process, di↵erent algorithms are designed to

test with which color space could obtain better image reconstruction quality. In GeoSR,

we currently involve two color spaces: RGB and YCbCr. More coordinate systems are

scheduled in future works.

Regarding data augmentation, instead of utilizing given methods in “preprocessor.py”,

users can self-define suitable one for preprocessing with scalable API.

1.3 Models

9
http://weegee.vision.ucmerced.edu/datasets/landuse.html

10
http://www.xinhua-fluid.com/people/yangwen/WHU-RS19.html

11
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html



Appendix I: GeoVision 91

Model Zoo GeoSR currently contains over 10 trained deep learning based SR models

according to the reports from original papers. Since the original methods were imple-

mented in the various platform and used for various sizes of input, GeoSR implements

few modifications on several models for unification. Here we briefly introduce a few of

the representative models as follows:

1. SRCNN [189]. As a disruptive model, SRCNN is the first deep learning model to

perform sample-based SR. Although it only contains three parts: patch extrac-

tion and representation, Non-linear mapping, and reconstruction, the model could

outperform other conventional models.

2. FSRCNN [214]. Compared with SRCNN model, both accuracy and e�ciency are

improved in FSRCNN. Instead of applying bicubic interpolation as input data,

FSRCNN can directly extract feature from small size LR image. After that, the

obtained feature will get through procedures such as shrinking, mapping, expand-

ing, and deconvolution, and finally restore to SR image.

3. ESPCN [71]. The innovative structure invented by ESPCN is called sub-pixel.

The ESPCN model could always perform feature learning procedures in a small

size, and finally get SR result with the help of sub-pixel.

4. VDSR. Inspired by ResNet, VDSR applies very deep residual networks to achieve

SR. The model shows high robustness owing to its nonunified size input training

dataset.

5. DRCN [215] . The DRCN method is proposed by Kim, Jiwon et al. at 2016. The

global residual and recursive-supervision can make model avoid gradient vanishing

and exploding with high performance.

6. DRRN [213]. The core vision of DRRN contains low residual learning, global

residual learning, and multiple-weight learning. The structure enables DRRN to

obtain better performance with a deeper network.

7. LapSRN [191] . The authors of LapSRN point out the problems of previous deep

learning based SR models and use the loss in pyramid structure to achieve large

upscale factor SR.

8. SRDenseNet [216]. Since DenseNet has shown the tremendous capability in feature

extraction, SRDenseNet [216] is invented upon the structure of DenseNet.

9. SRGAN [192]. The SRGAN model is the first model which successfully integrates

GAN structure in SR model. Although the existing SR models could get high

PSNR, some important details are inevitably lost. Except for GAN structure,

SRGAN also focuses on optimize the loss function.
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Architectures The directory archs/ contains the PyTorch version source code of

di↵erent models introduced in 1.3 and some basic structures like residual block and

inception block. Users can optimize the existing structure to match own requirement

or build self-defined architectures conveniently. The trained model will be stored in

directory model zoo/.

1.4 Logging Tools

GeoSR logs the detailed information of model hyperparameter settings, model statistic

performance, and corresponding learning curves in logs/. With the help of logging

tools, SR can be easily applied by trained models according to the requirement of users.

Moreover, quantitative results and computational e�ciency will be saved in result/ as

well.

1.5 Evaluation Metrics and Visualizations Tools

To compare the performance of the obtained SR image with regard to the original

remote sensing image HR, several evaluation metrics have been used, such as signal-

to-noise ratio (PSNR), structure similarity (SSIM), normalized root mean square error

(NRMSE), spectral angle mapper (SAM), and erreur relative globale adimensionnelle

de synthèse (ERGAS).

Currently, GeoSR can automatically generate visualized comparison results of di↵erent

models or iterations for single or multi images. As shown in Figure A.5, comparison

results of di↵erent upscale factors can also be obtained. To easily understand the per-

formance details, a certain region can be selected and enlarged by users conveniently.

2 Results and Discussion

2.1 Qualitative Result

Figure A.7 presents six groups of randomly selected visualization results generated by

di↵erent SR models with an upscale factor of 2. From top to bottom rows, there are

high-resolution images, obtained SR images by bicubic interpolation, SRCNN, ESPCN,

and VDSR model, respectively. Detailed information of a specific area can be enlarged

as shown in red sub-region. In general, results of di↵erent methods can be easily vi-

sualized and compared by “vision.py” in GeoSR. Compared with results generated by

interpolation (see 2nd row), deep learning methods ( 3nd row to the final) can show fewer

distortion, aliasing, blur, and noise especially around the outline of land features.
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Figure A.7: SR comparison results of di↵erent images generated by di↵erent models.

2.2 Quantitative Result

Table A.1: Quantitative comparison of di↵erent models

Metrics BICUBIC SRCNN FSRCNN ESPCN VDSR

PSNR 27.232 33.034 24.642 30.666 59.742

SSIM 0.937 0.994 0.906 0.987 0.998

As introduced in section 1.5, we provided several metrics for quantitative model evalu-

ation. The related results can be intuitively illustrated via table and histogram respec-

tively by “vision.py”. Here we take two representative evaluators: PSNR and SSIM, as

an example to show the performance of di↵erent models. Table A.1 and figure A.8 are

SR results generated via airport remote sensing imagery with upscale factor of 2.
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Figure A.8: SR comparison results of di↵erent models.

2.3 Computational E�ciency

As an important performance indicator, computational e�ciency shows the properties

of a model which related to the amount of computational resource used by the algo-

rithm. With the help of logging tools, GeoSR logs the related information in training,

validation, and testing procedures. Table A.2 illustrates an example of computational

e�ciency comparison with di↵erent models by using GPU NVIDIA TITAN X12, and

the corresponding histogram result can be generated by “vision.py” as well.

Table A.2: Computational e�ciency comparison

Stage SRCNN FSRCNN ESPCN VDSR SRDenseNet

Training / fps 484.9 639.0 627.6 235.0 309.8

Testing / fps 452.9 539.8 641.1 216.7 295.5

3 Conclusion

In this study, we innovatively present an open source computer vision package for deep

learning based single-frame remote sensing imagery super-resolution. The package en-

ables researchers and developers to adopt for their researches with high e�ciency, which

could potentially facilitate the development of the SR in remote sensing field. In future

works, scalable API for integrating other important tasks such as land feature classifi-

cation, segmentation, and detection with SR technique will be improved.

12
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
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Appendix II: Semantic

Segmentation for Urban Planning

Maps

Map digitization is one of the most important tasks for research and practical application

in fields such as remote sensing, urban planning, and geographic information system

(GIS) [217, 218]. More specifically, with the help of map digitization, the digital version

of many old and historical maps have not been digitized can be generated, and applied

as significant resources for a wide variety of researches like urban sprawl, transportation

patterns, diminishing woodlots, shoreline erosion [219], etc. Evidently, the achievement

of automatic map digitization can definitely facilitate the sharing of map series online

with the public at large, and augments map use in teaching, application, and public

service mission to a considerable extent.

Aiming at partitioning imagery into semantically meaningful parts and classify each part

into one of the pre-determined classes, the semantic image segmentation techniques [220]

emerge as a viable tool for achieving automatic map digitization. However, due to the

characteristics of maps, which usually contain complex texture as well as diverse color

and noise, the traditional semantic segmentation methods such as graph theory-based

[20], clustering-based [137], and classification-based methods [138] are hard to represent

adequate and proper patterns for maps based on graphic and hand-crafted textural

features, and lead to poor generalization. Given the di�culties faced by the methods

mentioned above, the semantic segmentation of maps has been still mainly relying on

manual visual interpretation [221], which would be very time consuming and inevitably

causes many severe problems. Thus, it remains a challenge to achieve automatic semantic

segmentation for maps with high accuracy and e�ciency.

95
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In this study, we take urban planning maps, which provide su�cient information about

land use, as a representative sample map to perform data source. In terms of DCNNs

model, CFPN proposed in Chapter 3 is adopted. The main contributions of this study

can be summarized as follows:

• We innovatively investigated the feasibility of automatic semantic segmentation of

urban planning maps via deep learning methods.

• We introduced a new dataset. As far as we know, it is the first one for urban

planning map semantic segmentation with ground truth.

• The experimental results demonstrate the proposed CFPN outperforms the exist-

ing state-of-the-art methods, achieving a mIoU and mf1score of 0.872 and 0.928,

respectively.

The remainder of this section is organized as follows. In Section A, we describe the

study area and the experimental dataset. Details about the methods are presented in

Section B. In Section C, we present the experimental results and discuss the capability

of the proposed method in comparison to existing methods.

A Materials

1 Study Area

To demonstrate the feasibility of map segmentation via deep learning, we deliberately

selected the urban planning maps of some representative study areas in downtown Tokyo

to conduct the experiment. Figure B.1 illustrates the detailed study areas information

of this study. As shown in Figure B.1a, three districts in Tokyo are separated into

training and testing area colored in red-orange and yellow, respectively. Considering

the characteristics of data, we choose Shibuya district (Figure B.1b) as the main area

for both training and testing whereas taking Shinjuku and Taito district as additional

testing area (Figure B.1c) to evaluate the robustness of model. According to the urban

planning map, there are ten land use categories in Shibuya district, such as residential

land, commercial land, quasi-residential land, etc. Besides, two other categories: blank

space and marginal areas which belong to adjacent districts, are included as background.

In contrast with training area, including blank space and marginal areas, the testing area

of Shinjuku and Taito district consists of eleven and nine categories, respectively.
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1 0 1 2 3 4km

N

(a) Tokyo 23 wards

(c) Testing Area(b) Training Area

Shinjuku

Shibuya Taito

Training Area
Testing Area 

Figure B.1: Study areas. (a) Tokyo 23 wards, study area is split into two categories:
training and testing, colored in red-orange and yellow, respectively. (b) Urban planning
map of Shibuya district which represents the training area. (c) Urban planning map of

Shinjuku and Taito district which refer to the testing area.

2 Data Source

To our knowledge, there is no existing published dataset for the purpose of semantic seg-

mentation for urban planning maps. To conduct map semantic segmentation, obtaining

the map imagery, especially the corresponding paired ground truth is challenging. In

this study, we propose a dataset contains three images of di↵erent size (on average 5000

⇥ 4000 pixels), with all fully annotated ground truth. The original paper version urban

planning maps of Shibuya, Shinjuku, and Taito district were released by the government

of Japan in March 2018, November 2016, and April 2014, respectively. The imagery of

urban planning maps is obtained by scanning paper version ones directly. It should be

noted that the scanned imagery not only contains the original features in the map, such

as text, symbol, and watermark, but also includes a variety of the noise information

caused by scanning procedure, which warrants the segmentation model adapts all these

conditions robustly. Each map imagery is paired with a ground truth image beforehand

for land use annotation. To best present each land category, polygon-based segmenta-

tion masks are created manually by utilizing QGIS [222]. The ground truth for each

district is basically an RGB image with di↵erent classes, which could align each land

use category in map imagery precisely while indicating the boundary between adjacent
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land use. To assure that all land use categories have enough representation, any in-

stance of a category larger than an approximately 20⇥20 pixels is annotated. Here, we

intentionally did not annotate explanatory notes, enlarged view, and some redundant

background because they are not essential for segmentation task. Due to the density of

annotations as well as the variety of land cover categories, some small human error is

inevitable.

B Methods

In this study, the patches in the upper two-thirds of the Shibuya district map imagery

and the corresponding ground truth are utilized to perform training and validation. Con-

cretely, a sliding window method with a stride of 224 pixels is applied to slice the imagery

mentioned above into small patches sized 224 ⇥ 224 pixels. After that, several spatial

augmentations such as random rotation and scale transformation are adopted to increase

the diversity of data. Here, the total number of patches in training and validation is

augmented to 1200 pieces, which are shu✏ed and divided into training and validation

data with ratio of 70% and 30%, respectively. After training, the hyperparameters in

proposed multi-class segmentation model: CFPN would be determined. Attempting to

quantify the quality of the model, we apply the trained model with proper hyperparame-

ters to conduct semantic segmentation on the remaining one-third of the Shibuya district

map imagery as well as on Shinjuku and Taito district. The segmentation results are

evaluated via six evaluation metrics generated from multi-class confusion matrix [223],

including intersection over union (IoU) [224] for each class, mean intersection over union

(mIoU), mean precision (mPrecision), mean recall (mRecall), mean F1-score (mF1-score)

[164], and overall accuracy (OA). To clearly reflect the segmentation capability of the

model and better assess the experimental results, no post-processing is adopted for com-

puting evaluation metrics. The section details first the feature pyramid methodology,

followed by the proposed CFPN structure, lastly, evaluation metrics are proposed.

Attempt to quantify the quality of the multi-class model, we apply the trained model

with proper hyperparameters to make semantic segmentation on the testing data and

evaluate via six evaluation metrics generated from multi-class confusion matrix [223],

including mean precision, mean recall, overall accuracy, mean F1-score [164], mean in-

tersection over union (mIoU) or mean Jaccard index [224], and standard deviation of

IoU. Here, we trained multiple models (one hundred) instead of a single model via each

algorithm to explore the confidence and variance. Thus, all of the presented scores are
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the average score generated from successfully converged models, and four more eval-

uation metrics: max-IoU, min-IoU, standard deviation of mIoU, and success rate of

convergence, are applied to assess the robustness.

C Results

In this section, we show the training quantitative results (Table B.1), testing quanti-

tative results (Table B.2, Table B.3, Table B.4), and testing qualitative results (Table

B.3, Table B.5) in di↵erent districts. Additionally, qualitative results for representative

subregions in corresponding districts (Figure B.2, Figure B.4, Figure B.6) will be illus-

trated as well. Both quantitative and qualitative results from all districts demonstrate

the comparative performance of our proposed model and framework.

Table B.1: Training result.

Class No. Class Name CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

1 Blank 0.996 0.985 0.996 0.992 0.989 0.989 0.988
2 Cml. 0.988 0.982 0.988 0.973 0.939 0.945 0.928
3 Cat. 1 Resi. 0.975 0.966 0.974 0.936 0.875 0.851 0.857
4 Cat. 2 M&H. Excl. Resi. 0.986 0.983 0.986 0.967 0.942 0.931 0.922
5 Cat. 1 L. Excl. Resi. 0.985 0.979 0.982 0.965 0.926 0.921 0.900
6 Quasi-industrial 0.968 0.955 0.964 0.885 0.881 0.876 0.849
7 Vicinity 0.984 0.950 0.983 0.964 0.944 0.942 0.930
8 Quasi-residential 0.966 0.964 0.958 0.857 0.796 0.834 0.741
9 Cat. 2 L. Excl. Resi. 0.987 0.982 0.983 0.951 0.940 0.940 0.922
10 Cat. 1 M&H. Excl. Resi. 0.979 0.971 0.973 0.915 0.890 0.848 0.880
11 Cat. 2 Resi. 0.967 0.953 0.961 0.891 0.840 0.825 0.810
12 Nbhd. Cml. 0.951 0.930 0.943 0.850 0.756 0.662 0.707

mIoU - 0.978 0.967 0.974 0.929 0.893 0.880 0.870
mPrecision - 0.987 0.984 0.986 0.962 0.949 0.934 0.921
mRecall - 0.990 0.982 0.988 0.963 0.937 0.936 0.936

mF1-score - 0.989 0.983 0.987 0.963 0.942 0.934 0.928
OA - 0.994 0.987 0.993 0.983 0.970 0.966 0.964

Table B.2: Testing result for Shibuya.

Class No. Class Name CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

1 Blank 0.993 0.984 0.991 0.987 0.982 0.984 0.984
2 Cml. 0.984 0.980 0.984 0.970 0.914 0.933 0.897
3 Cat. 1 Resi. 0.965 0.955 0.960 0.920 0.815 0.762 0.804
4 Cat. 2 M&H. Excl. Resi. 0.979 0.976 0.976 0.955 0.895 0.868 0.871
5 Cat. 1 L. Excl. Resi. 0.980 0.975 0.977 0.960 0.880 0.896 0.866
6 Quasi-industrial 0.966 0.955 0.953 0.887 0.762 0.840 0.733
7 Vicinity 0.975 0.950 0.967 0.951 0.923 0.926 0.897
8 Quasi-residential 0.946 0.945 0.927 0.732 0.502 0.666 0.554
9 Cat. 2 L. Excl. Resi. 0.984 0.977 0.978 0.944 0.848 0.892 0.844
10 Cat. 1 M&H. Excl. Resi. 0.973 0.966 0.966 0.919 0.813 0.720 0.821
11 Cat. 2 Resi. 0.953 0.936 0.941 0.871 0.716 0.687 0.680
12 Nbhd. Cml. 0.940 0.920 0.926 0.846 0.684 0.616 0.558

mIoU - 0.970 0.960 0.962 0.912 0.811 0.816 0.792
mPrecision - 0.983 0.981 0.980 0.954 0.891 0.886 0.864
mRecall - 0.987 0.978 0.981 0.951 0.890 0.903 0.895

mF1-score - 0.985 0.979 0.981 0.952 0.890 0.894 0.878
OA - 0.991 0.985 0.989 0.979 0.955 0.952 0.947
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Map Ground-truth CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

(d)

(a)

(b)

(c)

Figure B.2: Qualitative results for representative subregions in urban planning map
of Shibuya district.

(a) Map (b) Ground-truth (c) CFPN (ours)

(d) FPN (e) Residual-UNet (f) UNet

(g) FCN-8 (h) FCN-16 (i) FCN-32

Figure B.3: Segmentation results obtained by di↵erent methods for urban planning
map of Shinjuku district.
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Table B.3: Testing result for Shinjuku.

Class No. Class Name CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

1 Blank 0.899 0.895 0.902 0.897 0.906 0.896 0.901
2 Cml. 0.934 0.934 0.942 0.932 0.823 0.869 0.695
3 Cat. 1 Resi. 0.829 0.835 0.802 0.815 0.586 0.454 0.452
4 Cat. 2 M&H. Excl. Resi. 0.650 0.513 0.474 0.338 0.139 0.134 0.084
5 Cat. 1 L. Excl. Resi. 0.923 0.949 0.909 0.815 0.273 0.714 0.486
6 Quasi-industrial 0.797 0.837 0.799 0.554 0.088 0.094 0.210
7 Vicinity 0.609 0.591 0.592 0.592 0.567 0.552 0.469
8 Special-industrial 0.734 0.798 0.735 0.592 0.221 0.103 0.011
9 Cat. 1 M&H. Excl. Resi. 0.912 0.871 0.865 0.889 0.283 0.291 0.828
10 Cat. 2 Resi. 0.742 0.699 0.737 0.608 0.512 0.343 0.329
11 Nbhd. Cml. 0.731 0.656 0.558 0.643 0.307 0.150 0.191

mIoU - 0.796 0.780 0.756 0.698 0.428 0.418 0.423
mPrecision - 0.889 0.890 0.854 0.831 0.621 0.567 0.564
mRecall - 0.885 0.865 0.859 0.808 0.578 0.560 0.549

mF1-score - 0.883 0.869 0.852 0.808 0.554 0.532 0.539
OA - 0.916 0.909 0.907 0.900 0.804 0.791 0.811

Map Ground-truth CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

(d)

(a)

(b)

(c)

Figure B.4: Qualitative results for representative subregions in urban planning map
of Shinjuku district.

Table B.4: Testing result Taito.

Class No. Class Name CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

1 Blank 0.923 0.909 0.873 0.930 0.878 0.911 0.899
2 Cml. 0.983 0.980 0.981 0.975 0.949 0.962 0.932
3 Cat. 1 Resi. 0.900 0.862 0.891 0.841 0.705 0.530 0.507
4 Quasi-industrial 0.649 0.604 0.575 0.212 0.020 0.182 0.000
5 Vicinity 0.685 0.605 0.468 0.688 0.462 0.590 0.458
6 Cat. 2 M&H. Excl. Resi. 0.905 0.909 0.799 0.795 0.236 0.169 0.000
7 Cat. 1 M&H. Excl. Resi. 0.954 0.888 0.942 0.915 0.788 0.490 0.887
8 Cat. 2 Resi. 0.755 0.585 0.662 0.709 0.027 0.000 0.121
9 Nbhd. Cml. 0.901 0.831 0.862 0.796 0.395 0.442 0.062

mIoU - 0.851 0.797 0.784 0.763 0.496 0.475 0.429
std-IoU - 0.115 0.146 0.166 0.215 0.334 0.307 0.378

mPrecision - 0.948 0.908 0.895 0.860 0.605 0.639 0.543
mRecall - 0.893 0.879 0.867 0.837 0.589 0.575 0.488

mF1-score - 0.915 0.879 0.868 0.843 0.588 0.581 0.499
OA - 0.948 0.934 0.914 0.944 0.884 0.898 0.875
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(a) Map (b) Ground-truth (c) CFPN (ours)

(d) FPN (e) Residual-UNet (f) UNet

(g) FCN-8 (h) FCN-16 (i) FCN-32

Figure B.5: Segmentation results obtained by di↵erent methods for urban planning
map of Taito district.

Map Ground-truth CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

(d)

(a)

(b)

(c)

Figure B.6: Qualitative results for representative subregions in urban planning map
of Taito district.
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D Discussion

In this section we show the average performance (Figure B.7, Table B.5) and robostness

(Figure B.8, Table B.6) comparison of di↵erent models. To demonstrate the e�ciency of

our proposed method, the computational e�ciency and memory comparision are shown

in Table B.7 and Table ??, respectively. Furthermore, the feasibility of map denoise and

outline extraction by applying our proposed method is illustrated in Figure B.9.

0
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

mIoU std-IoU mPrecision mRecall mF1-score OA

CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

Figure B.7: Average performance comparison for di↵erent models.

Table B.5: Average result for testing amount three districts.

Model mIoU std-IoU mPrecission mRecall mF1-score OA

CFPN (ours) 0.872 0.080 0.940 0.922 0.928 0.952
FPN 0.846 0.101 0.926 0.907 0.909 0.943

Residual-UNet 0.834 0.112 0.910 0.902 0.900 0.937
UNet 0.791 0.153 0.882 0.865 0.868 0.941
FCN-8 0.578 0.239 0.706 0.686 0.677 0.881
FCN-16 0.570 0.237 0.697 0.679 0.669 0.880
FCN-32 0.548 0.263 0.657 0.644 0.639 0.878

the models are further evaluated by standard deviation of IoU as shown in Table B.6.

Table B.6: Performance discussion via standard deviation of IoU.

Stage Region CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

Training Shibuya 0.012 0.016 0.015 0.046 0.065 0.083 0.079

Testing
Shibuya 0.016 0.019 0.021 0.068 0.125 0.116 0.13
Shinjuku 0.108 0.138 0.148 0.176 0.259 0.289 0.281

Taito 0.115 0.146 0.166 0.215 0.334 0.307 0.378
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(a) Training (b) Testing Shibuya

(d) Testing Taito(c) Testing Shinjuku 

Figure B.8: Performance discussion. The box and whisker chart shows distribution
of results into quartiles, here highlighting the mean and outliers. The boxes have lines
extending vertically, which indicate variability outside the upper and lower quartiles,

any point outside those lines is considered an outlier.

Table B.7: Computational E�ciency of the model.

Stage CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

Training (FPS) 7.718 6.860 6.505 8.314 15.677 12.877 7.542
Testing (FPS) 7.039 7.091 6.635 8.212 14.507 12.258 7.617

Table B.8: Memory comparison of di↵erent models.

Size CFPN (ours) FPN Residual-UNet UNet FCN-8 FCN-16 FCN-32

Parameters (M) 2.759 5.803 7.996 2.745 98.302 98.301 98.299
Memory (MB) 11.113 23.334 32.087 11.020 393.238 393.233 393.223

(a) Shibuya (b) Shinjuku (c) Taito

Figure B.9: Map denoising and outline extraction. First row: the original scanned
map; second row: canny edge detection results of the original scanned map; third row:

denoised map; fourth line: extracted outline for di↵erent region.
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