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Abstract

In high-performance computing, many performance problems are caused by the memory system. Be-

cause such performance bugs are hard to identify, analysis tools play an important role in performance

optimization. Today’s processors o�er feature-rich performance monitoring units (PMU). Information,

which is not available through software-based techniques can be obtained, and low overhead pro�ling

is possible. One of the features o�ered by the PMU is instruction sampling. It allows better attribu-

tion to code and data, and it provides more detailed information about memory accesses compared to

previous hardware-based pro�ling methods.

The instruction sampling information is already used by some performance analysis tools. They

present the data to the user for manual analysis. Some of the previous tools provide automatic discov-

ery of performance problems. They are specialized for one speci�c performance problem and cannot

detect other performance problems. In contrast, we combine the automatic detection of two di�erent

performance problems. We also identify the cause for those problems and add manual analysis fea-

tures. We show that it is a viable, low overhead approach to collect data from the whole application

�rst and then �nd di�erent potential performance problems from the recorded data.

One of the problems that we can automatically discover is DRAM contention. We introduce a new

approach based on latency measurement. This approach can bene�t from the precision of instruction

sampling to identify speci�c code locations and objects that are responsible for the DRAM contention.

It can also di�erentiate harmless high bandwidth consumption from contention, consider the e�ective-

ness of prefetching, and measure the severity of contention. The practical implementation of such a

diagnosis system on CPUs is di�cult. In modern CPUs, there is an abundance of performance coun-

ters and only super�cial documentation. Di�erent types of counters for bandwidth or latency, that

seemingly measure the same thing produce di�erent results. There is no in-depth understanding of

those performance counters, and naive usage may lead to incorrect measurements. We compare vari-

ous hardware latency and bandwidth measurement methods on CPUs by using micro-benchmarks. We

show results of Intel Haswell, Broadwell, and Skylake systems. With our experiments, we show how

and why performance counters for bandwidth and latency di�er. Only the counters inside of the mem-

ory controller correctly measure bandwidth. Latency measured by instruction sampling is suitable to

�nd DRAM contention, even though it consists of DRAM delays and in-core delays. Based on these ex-

perimental results, we establish our new detection method for bandwidth contention. We can identify

three di�erent causes for DRAM contention. First, NUMA imbalance that indicates ine�cient usage of

NUMA resources. Second, the memory channel imbalance indicates ine�cient usage of the available

memory channels. Third, a low row bu�er hit rate that can also slow down DRAM accesses.

Another common performance problem is false sharing. False sharing is hard to detect manually be-

cause its occurrence depends on the data layout and cache line size. Despite numerous previous e�orts,

detecting false sharing is still di�cult, and previous tools could not identify some cases of false sharing

as we show in this work. Our approach can di�erentiate false and true sharing. It can identify objects

and source code lines where the accesses to falsely shared objects are happening. Our approach uses

information from the hardware coherency protocol to �nd shared cache lines. In a second step, unin-

tentionally shared cache lines are identi�ed by analysis of access patterns of threads. A challenge is the

exact speci�cation of conditions, that samples must meet, for false sharing to occur. The speci�cation

must be tight enough to not cause false positives, but loose enough to require only a few samples for

detection.

We implemented these detection methods in an open-source tool called PerfMemPlus. The tool de-

sign is simple, provides support for many existing and upcoming processors, and the recorded data

can be easily used in future research. PerfMemPlus also has manual performance data exploration

features.



We show that PerfMemPlus can automatically report performance problems across a wide range of

systems and benchmarks. First, we use arti�cial benchmarks that generate a con�gurable load on the

memory system and benchmarks that deliberately cause false sharing and true sharing. Second, we

compare known and detected performance problems in the PARSEC and Phoenix benchmarks. Ad-

ditionally, we present case studies that show how PerfMemPlus can pinpoint memory performance

problems in the PARSEC benchmarks and machine learning applications. The average pro�ling over-

head of our tool is around 5%.
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Chapter 1

Introduction

1.1 Motivation

If an application shows unsatisfactory performance or bad parallel scaling, the often tedious process of

performance optimization starts. There can be a variety of di�erent performance problems, and perfor-

mance analysis tools are often used to diagnose them. Simple execution time pro�les, like gprof [32],

cannot identify if there is a performance problem and what kind of performance problem it is. Special-

ized parallelism pro�lers, like Delay Spotter [41] or Aftermath [21], can identify a lack of parallelism or

ine�cient scheduling. However, many potential performance problems are caused by the interaction

of hardware and software. Especially the memory system, with its complex architecture and shared

resources, is the bottleneck for many applications. A tool specialized for analyzing memory accesses

can be helpful to diagnose such problems. Especially if it provides automatic detection of performance

problems.

Modern processors have a performance monitoring unit (PMU) that can record information about the

interaction of software and hardware. Hardware-based measurement is agnostic of the application’s

implementation and can have low overhead [3, 91, 123]. It is also possible to get information about

the internal state of the processor that is not available through other methods. Among the features

of the PMU, instructions sampling [22] is a promising feature. Instruction sampling enables precise

identi�cation of code locations at the granularity of individual instructions. This is not possible us-

ing performance counters. The precision of instruction sampling is particularly helpful for �nding

problems in unfamiliar code. In addition, the accessed data address can be recorded, and information

about memory accesses, such as the latency or cache hit status is available [52, Chapter 18]. This is

particularly useful for �nding memory-related performance problems.

In the past, researchers have already explored how to �nd performance problems using the instruction

sampling data [30,31,55,61,69,72,73,83,84,103,104,120,128,131]. However, there are many more aspects

hidden in the instruction sampling data that are unexplored. Only for a few memory performance

problems, methods to �nd them using instruction sampling have been developed. There are approaches

for automated detection of performance problems and approaches for manual exploration of the data,

often supported by visualizations. They are all separate tools that rely on their speci�c performance

data. So far, no approach has been made to �nd di�erent types of memory performance problems using

only data captured with one pro�ling run and analyzed by one tool. Using several of the existing tools

to �nd di�erent kinds of memory-related performance problems makes their application impractical

for realistic use cases.

While there are many di�erent memory performance problems, the limited DRAM bandwidth of to-

day’s systems is a major contributor to unsatisfactory performance in HPC applications [64]. Especially
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parallel scaling to many cores is often limited by the DRAM bandwidth because the DRAM is shared by

all cores. However, the simple measurement of consumed bandwidth is not suitable to identify DRAM

contention. For example, if the DRAM bandwidth consumption of an application is at 95% of the max-

imum system bandwidth, it allows no conclusion whether this application is su�ering from DRAM

contention or not. Either the application is satis�ed with the available bandwidth, or the application

actually issues more requests than the DRAM can handle. In the latter case, the application experiences

a slowdown due to the limited DRAM bandwidth. Because the measured bandwidth is limited at the

system maximum, the measured DRAM bandwidth can not express the degree of DRAM bandwidth

contention.

Existing tools often analyze the application as a whole and do not point out the origin of a performance

problem. The precise location of the DRAM contention source is helpful to develop a performance

optimization. Especially when working on complex and unfamiliar applications. If single instructions

and accessed objects can be identi�ed, the comprehension of the problem becomes easier, and �nding

a solution for the DRAM contention is also made simpler. For example, if a speci�c object is identi�ed,

its allocation strategy can be modi�ed.

NUMA systems are widespread. By making use of multiple processors and their own DRAM, higher

total system bandwidth is available compared to single socket systems. But applications must be de-

signed to make use of the available resources. In some cases, applying interleaved allocation to speci�c

objects can improve performance. But it is challenging to understand the allocation behavior from the

source code and to predict whether interleaved allocation can bring a performance bene�t. Not only

the imbalance in resource usage is important. If there is a signi�cant imbalance in the memory us-

age but no DRAM contention, the NUMA speci�c optimization usually does not yield a performance

bene�t. This phenomenon occurred in some of our case studies in Section 7.9. Thus it is important to

consider the DRAM bandwidth contention together with NUMA imbalance.

Other than NUMA imbalance, DRAM internal performance problems can also cause bandwidth lim-

itations. Today’s systems use multiple channels to increase the bandwidth. But if only a fraction of

the channels are used, or if the channel usage is skewed, the full bandwidth of the system can not be

reached. Existing tools do not consider this source of performance degradation. DRAMs are equipped

with row bu�ers. Those bu�ers can serve as a cache, and like for any other cache, exploiting locality

is crucial for good performance of the memory system.

The measurement and especially the veri�cation of hardware performance counters for DRAM internal

problems is di�cult. Veri�cation requires a benchmark that can trigger DRAM internal performance

problems on purpose. To do this, the knowledge about the DRAM addressing that happens in the

memory controller is required. But for current Intel server-class processors, this information is not

publicly available.

False sharing is another problem that is well known and can have huge performance implications. Its

occurrence depends on the data layout speci�ed in the code, the hardware architecture, and run-time

components such as the memory allocator. Thus false sharing can be hard to �nd manually in the

source code. False sharing is easy to �x with padding or aligned allocations. But the objects, that are

a�ected by false sharing have to be known to apply this optimization. Instruction sampling provides

suitable features required to detect false sharing.

A challenge when using hardware performance monitoring lies in the abundance of possibilities and

the super�cial knowledge and documentation of the performance monitoring features. With perfor-

mance counters, hundreds of di�erent events can be monitored. With instruction sampling, the number

of captured samples can be in the range of millions. Each sample has more than 20 attributes. There is

little documentation from the hardware vendors. What counters really measure, what the instruction

sampling attributes really mean, and how they are implemented is unknown to the public. Experimen-

tal evaluation is required to �nd out what the reported values actually mean. Only then it is possible
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to make reliable measurements and to implement performance problem detection methods based on

those hardware features.

Every new processor generation brings new and updated hardware performance monitoring features.

For a useful performance analysis tool, it is necessary to support a wide range of hardware and to

provide support for upcoming hardware with minimal changes to the tool. Some previously developed

tools became unusable on current hardware and require large e�orts to keep them running on current

hardware [61,83,98]. The recorded instruction sampling data can be huge, and there are many aspects

to explore in this data. Existing tools do not enable researchers to easily explore and reuse instruction

sampling data for the development of new performance analysis methods [30,31,55,61,73,128]. A way

to easily sort, �lter, arrange, and display the instruction sampling data is required for researches to

explore all possibilities of performance analysis with instruction sampling.

1.2 Contributions

To address the above-mentioned issues, we make the following contributions:

• A method that automatically discovers false sharing and attributes it to source code lines and

objects using instruction sampling data. In addition, true sharing, inter-object false sharing, and

intra-object false sharing can be di�erentiated.

• A method to identify DRAM contention and imbalanced NUMA resource usage. It has the fol-

lowing advantages over existing methods:

– It di�erentiates harmless high bandwidth consumption from performance-limiting DRAM

bandwidth contention.

– It provides a metric that expresses the severity of contention.

– It automatically detects DRAM contention to avoid the manual analysis of performance

data.

– It works on the local memory of single-socket systems as well as in NUMA systems with

multiple processors and local and remote memory.

– It can identify sub-problems such as NUMA imbalance, channel imbalance and increased

row bu�er con�icts.

– It precisely attributes the DRAM contention to instructions and objects.

• A method for the measurement and visualization of DRAM memory channel imbalance and row

bu�er hit rate.

• A method for reverse engineering the DRAM addressing of Intel processors using performance

counters.

• A future-proof lightweight pro�ler and analysis tool that implements the above-mentioned de-

tection methods. It also enables users to explore all aspects of instruction sampling data and

provides visualizations. The pro�ling works with fully optimized code and only requires debug

information in the binary. No source code, hardware or OS modi�cation is necessary.

• An evaluation that shows how our methods can detect DRAM contention and false sharing in

arti�cial benchmarks and realistic applications. Case studies that demonstrate how our tool can

use instruction sampling data to locate di�erent kinds of performance problems.

To achieve the above-mentioned goals we rely on the following key ideas.
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Tool Implementation

We implement a tool called PerfMemPlus described in Chapter 5. It is based on Linux Perf, which we

extend with various di�erent components to provide features that are not available in the standard Perf

tool. We use Perf because of its wide and continuously updated hardware support and its availability

on Linux systems. It already provided most of the features that we need for performance analysis. We

add components for resolving dynamically allocated objects and con�gure it optimally for analysis of

memory performance problems. To enable easy exploration of the captured data, we store instruction

sampling data in a database that can be queried using SQL. Finally, we implemented our newly devel-

oped automatic detection methods and support for manual analysis of instruction sampling data in an

analysis tool.

Automatic Discovery of Memory Performance Problems

Our newly developed methods for automatic detection of performance problems are described in Chap-

ter 4. Our approach to detect main memory contention is based on the memory access latency. The

latency of a DRAM access in the uncontended state is a constant hardware characteristic. Loading data

from a memory can be done with a �xed latency. If bandwidth saturation occurs, the load request is

delayed, and the total latency to complete the load instruction increases. This relationship is known in

queuing theory. When the arrival rate (bandwidth requirement of the application) is higher than what

the system can process in a certain time (maximum hardware memory bandwidth), the time required

for queuing and processing (latency) of the requests will increase.

We use experiments with micro-benchmarks to �nd a way to measure a DRAM access latency that

can be used for our automatic DRAM contention detection method. We also explore di�erent options

to directly measure the consumed bandwidth of an application. Our conclusion shows that there is

only one way to correctly measure an application’s bandwidth and that other methods do not include

accesses caused by the hardware prefetchers. For latency measurement, we show that the instruction

sampling latency is not the pure DRAM access latency, because it includes delays that come from the

in-core processing of the instruction. Nevertheless, our experiments show that it is suitable for the

detection of bandwidth boundness and that it has better attribution to program locations compared to

bandwidth measurement and considers the e�ects of prefetching.

For �nding false sharing, we rely on data about cache coherency provided by the hardware. Instruc-

tion sampling provides data about the coherency status of accessed cache lines. The hit modi�ed �ag

(HITM) indicates that the cache line, in which the requested data resides, is shared with another core

and has been previously modi�ed. The idea to use the hit modi�ed �ag was proposed before [77]. But

no concrete algorithm to identify false sharing and to di�erentiate it from true sharing is given in this

earlier publication, and objects cannot be pointed out. We add such a di�erentiation and can give a

clear answer whether there is false sharing or not without any further manual interpretation. We can

also report the objects a�ected by false sharing.

Evaluation

The evaluation in Chapter 7 is based on two types of benchmarks. First, arti�cial micro-benchmarks,

that introduce a known amount of slowdown due to false sharing or DRAM contention. Second, the

PARSEC benchmarks to show that our approach also works for large applications. We rely on estab-

lished benchmarks and compare our results with the existing literature.
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Chapter 2

Background

This chapter introduces the basics of memory architectures, performance monitoring, and the speci�c

performance problems false sharing and DRAM contention.

2.1 Hardware and Memory Architecture

The CPU speed has been increasing much faster than memory speed [38, Figure 5.2]. That is why ev-

ery modern processor employs techniques to provide faster access to data. This section explains those

techniques and the potential performance problems they might cause. There are many possible imple-

mentations of a memory architecture. This description focuses on current Intel processors because we

only use those in our work.

2.1.1 Memory Hierarchy and Cache

Because the main memory is slow, faster cache memory is used [95, Chapter 5.1]. The caches provide

faster access to data but are limited in size. Figure 2.1 shows a typical hardware architecture. It has

three cache levels from level 1 (L1 Cache) to level 3 (L3 Cache). Overall the observed latency depends on

where the requested data is actually stored. For example, in an Intel Nehalem processor, a local cache

hit in L1 cache has a latency of 4 cycles, and an access to a remote DRAM has a latency of 310 cycles.

Respectively the read bandwidth is limited to 9.1 GB/s on a remote DRAM compared to 45.6 GB/s on a

local L1 cache [37]. Caches can accelerate data access based on two principles. First, temporal locality;

Data that was accessed is likely to be accessed again soon. Second, spacial locality; After data was

accessed nearby data will likely be accessed.

Cache Size

The size of an L1 cache is usually in the order of tens of Kilobytes. The L2 cache is below one Megabyte,

and L3 caches are smaller than 100 Megabytes [87]. Faster memory often uses SRAM technology, which

is much more expensive than DRAM. The size of the cache will be limited due to economic reasons. A

lookup in a larger cache takes longer than in a small cache. This also limits the cache size. Processed

data is often larger than the caches. Extra e�ort is necessary to organize data in such a way to make

the most e�cient use of the caches.

If a cache is full and additional data should be stored, the eviction of existing data is necessary. This

situation causes so-called capacity misses. The data which is evicted needs to be chosen. A typical
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Figure 2.1. A typical multi-processor system with three cache levels and NUMA memory arrangement.

Blue lines and numbers show the access latency from the core to memory. The latency was measured

by Hackenberg et al. [37].

choice is to evict the least recently used data. The data which has not been touched for the longest

time is evicted.

An illustrative example of the optimization for cache usage is matrix multiplication. Even if the entire

matrices are too large to �t into caches, it is possible to service most of the memory accesses from the

cache if the order of data access is chosen wisely. A naive implementation is shown in Figure 2.2. The

values in the resulting matrix c are calculated one after another without paying respect to the order of

the data required from the matrices a and b.

The cache hit ratio can be improved by calculating blocks of the resulting matrix c. This way the data

needed from a and b can be reused before it is evicted. After a block of c is done, the next block of c

is calculated. The block size must be set so that the one block of a, b and c �ts into the cache. This

strategy is implemented in the code in Figure 2.3. This code was specialized for a certain matrix size

and cache size with the constants de�ned in lines 2 to 4. In this speci�c example, one a processor with

an L1 cache size of 32 KB, the L1 hit rate was increased from less than 1% to over 99%.

1 mat<M,N> operator∗ (mat<M,K> a, mat<K,N> b) {

2 mat<M,N> c;

3 for (long i = 0; i < M; i++) {

4 for (long j = 0; j < N; j++) {

5 for (long k = 0; k < K; k++) {

6 c(i,j) += a(i,k) ∗ b(k,j);

7 }

8 }

9 }

10 return c;

11 }

Figure 2.2. A naive matrix multiplication code. Values throughout the whole range of the matrices are

accessed during a loop iteration.
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1 mat<1000,100> operator∗ (mat<1000,784> a, mat<784,100> b) {

2 static const long li = 50;

3 static const long lj = 50;

4 static const long lk = 49;

5 mat<1000,100> c;

6 for(long ii = 0; ii < M; ii+= li) {

7 for(long jj = 0; jj < 100; jj+= lj) {

8 for(long kk = 0; kk < 784; kk+= lk) {

9 for (long i = ii; i < ii+li; i++) {

10 for (long j = jj; j < jj+lj; j++) {

11 for (long k = kk; k < kk+lk; k++) {

12 c(i,j) += a(i,k) ∗ b(k,j);

13 }

14 }

15 }

16 }

17 }

18 }

19 return c;

20 }

Figure 2.3. An optimized matrix multiplication code with cache blocking. The constants li, lj and lk

de�ne sections of processed data.

Cache Lines

Caches are organized in cache lines [95, Chapter 5.2]. The CPUs that we use in this thesis have a

cache line size of 64 Bytes. It is the granularity in which the cache is managed. Even if small data

is requested, there is always one complete cache line loaded into the cache. Eviction and coherency

are also managed based on cache lines. The cache line organization can be bene�cial in case of good

spacial locality. Because data nearby the requested data can be loaded as part of the same cache line.

But if the additionally loaded data is not used, unneeded data was loaded, using up memory bandwidth

and polluting the cache. The data layout plays an important role in how well the cache lines can be

utilized. An example is shown in Figure 2.4. In the �rst loop, the element z of Point remains unused,

but it will take up space in the cache. In contrast, the optimized data layout in Figure 2.5 moves z into

a new struct. In the �rst loop, all �elds of the struct are used. Each cache line contains only useful

data.

1 struct Point { double x; double y; double z; };

2 Point array[N];

3 for (long i = 0; i < N; i++) {

4 D[i] = array[i].x + array[i].y;

5 }

6 ...

7 for (long i = 0; i < N; i++) {

8 H[i] += array[i].z

9 }

Figure 2.4. A data layout that leads to unused data being loaded into the cache.
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1 struct PointXY { double x; double y; };

2 struct PointZ { double z; };

3 PointXY array1[N];

4 PointZ array2[N];

5 for (long i = 0; i < N; i++) {

6 D[i] = array1[i].x + array1[i].y;

7 }

8 ...

9 for (long i = 0; i < N; i++) {

10 H[i] += array2[i].z

11 }

Figure 2.5. An optimized data layout. All data that is loaded into the cache will be used.

Cache Coherency

Lower cache levels, like L1 and L2, are usually private caches. Data is kept coherent in all private

caches by the hardware [38, Chapter 5.8]. Software developers do not need to consider the correctness

of data updates in the cache. But hardware coherency can lead to performance penalties. An update of

data in one cache must be re�ected on the other caches. It causes additional tra�c between caches, and

access to stale data will cause additional delays. For example, in the Intel Nehalem processor, a cache

accesses can take between 38 cycles and 83 cycles depending on the coherency state [37]. A typical

protocol for managing coherency is MESI [118], named after its four states modi�ed, exclusive, shared,

and invalid.

Set-Associative Cache

Caches are organized in sets [95, Chapter 5.3]. A set consists of blocks. Data can not be freely placed

into a cache. Instead, the set where the data is placed is determined by the address of the data. The

block to use within a set can be chosen freely by the cache controller. This set arrangement can lead to

situations where the cache as a whole is not full, but the designated set for the data is already full. A

cache miss that originates from this phenomenon is called a con�ict miss. The accessed data addresses

are important for the occurrence of con�ict misses. Repeated access multiples of 2x
can cause increased

con�ict misses. The value of x depends on the cache layout.

2.1.2 Virtual Memory

Virtual memory enables the safe sharing of memory among multiple processes. It also removes limi-

tations of small main memory from application developers and shifts responsibilities to the operating

system [95, Chapter 5.4]. Every address that is accessed must be translated from the virtual to the

physical address. To speed up this translation, there is a hardware cache called translation lookaside

bu�er (TLB). If an address is not present in the TLB, then an additional memory access needs to be done

to translate the address. This leads to additional delays in the original memory access. The memory

is segmented into pages. Random accesses over large address spaces and the usage of small page sizes

leads to increased TLB misses. The default page size on many systems is 4 KB. Although 2 MB and 1 GB

are also often available if they are activated. The TLB is split into multiple levels. An Intel Broadwell

system has 64 entries in the �rst level for data, 128 entries in the �rst level for code, and 1536 entries

in the uni�ed second level [126].
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2.1.3 Parallelization

Figure 2.6. The execution ports of a processor. Instructions can be executed in parallel as long as their

required slots are available and dependencies between instructions are satis�ed.

Out-of-order execution allows a processor to schedule other instructions while it is waiting for data [95,

Chapter 4.10]. This is a way to hide memory access latency. Instructions are scheduled to execution

ports. Each of the ports has a speci�c function. Parallelization is limited to instructions that need to

use di�erent ports. Dependencies between instructions also limit the parallelization options. Another

limitation of out-of-order execution is the limited number of instructions in the reorder-bu�er. At a

given time, the processor only knows about those instructions and can only schedule instructions for

execution that are in this bu�er. The mix of instructions and the dependencies between instructions

are important to get a performance gain from out-of-order execution.

The dependencies between the instructions in�uence how well the latency of memory accesses can be

hidden. The code in Figure 2.7 is a streaming loop. Sequential loads of a and b can be issued in parallel

because there are no dependencies. Thus the latency can be hidden, and it is a bandwidth bound

program. In contrast, the code in Figure 2.8 is a pointer chasing application. The next address to access

is only known after the current load is complete. Because of this dependency between instructions,

there is no bene�t from instruction-level parallelism. This application is latency bound.

1 for(long i = 0; i < n; i++) {

2 c[i] = b[i] + a[i];

3 }

Figure 2.7. A streaming loop. The sequential elements of a and b have no dependencies. Load instruc-

tion can be processed in parallel.

1 uint64_t∗ p = begin;

2 do {

3 p = (uint64_t∗)∗p;

4 while (p != begin);

Figure 2.8. A pointer chasing loop. The next address to access is only known after the load is complete.

The load instructions can not be parallelized. Adapted from [12].

A processor has multiple line �ll bu�ers. These bu�ers hold memory requests that missed the L1 cache.

The memory system can then process multiple outstanding misses in parallel. The processors used in

the experiments for this thesis all have a line �ll bu�er size of 10 entries. If all the line �ll bu�ers are

occupied, no further L1 misses can be handled, and the processor will be stalled.

A processor has multiple memory controllers (also called channels) that are responsible for the commu-

nication with DRAM. The total bandwidth of a processor can only be achieved if all of those channels
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are used. Each channel needs at least one physical DRAM module.

Processors consist of multiple cores, but certain resources exist only once. Resources in the uncore

part of a CPU are shared between all cores. Those resources include the L3 cache, memory controllers,

and link interfaces to other processors. Contention can easily occur in those shared resources because

multiple cores share them, and all cores together can produce more requests than the shared resource

can handle. However, in processors after and including the Haswell generation, the L3 cache is sliced.

This means that each core owns a fraction of the L3 cache, but all cores can access all L3 slices [87].

Because of this cache layout, bandwidth contention on the L3 cache is no longer a problem.

2.1.4 Store Instructions

Memory store instructions are usually not written directly into memory. Instead, the data is placed into

store bu�ers [95, Chapter 5.2]. From the store bu�ers, it is then written to the memory. The processor

core completely hands o� the responsibility to store the data to the memory system. The core is not

stalled because of a store. Exceptions are special memory fence instructions that guarantee that all

stores are completed. A core can also be stalled if the store bu�er is full. A full store bu�er is the

only situation where stores cause a stall in the processor. Thus store instructions are often ignored in

performance analysis. However, stores contribute to the memory bandwidth and must be taken into

account when looking at the memory bandwidth.

Non-Temporal stores, also called streaming stores are store operations issued by special instructions.

Usually, a store allocates the stored data in a cache. In contrast, non-temporal stores write directly into

the main memory and skip all caches. This is particularly useful if it is known that the stored data

will not be used in the future. It saves the cost of reading data from memory into the cache before

the store actually happens. This is called a write-allocate method of organizing stores. Compilers

can automatically generate non-temporal stores or they can be generated by using annotations in the

source code.

2.1.5 Prefetching

The prefetchers try to �nd patterns in the memory accesses [20]. Based on those patterns, they to

guess which data will be needed soon and load it into caches. There are separate prefetchers for each

cache level. The exact mechanisms of how the patterns are detected are not known. But concepts

like the adjacent cache line prefetcher and detection of sequential accesses are common. Because of

prefetchers, even a few memory accesses can cause a high load on the memory system because the

prefetchers issue many more requests. If the memory access pattern of an application is random, the

application can not bene�t from the hardware prefetchers.

2.1.6 Non Uniform Memory Access

Today multi-socket systems are common. In those systems, every processor has its own DRAM. All

DRAMs belong to the same shared address space, and data is kept coherent on all processors by the

hardware. But an access to a remote DRAM will result in higher latency than an access to a local DRAM.

Bandwidth to remote DRAMs is limited because of the used communication protocols between the pro-

cessors (e.g. Intel QPI). Because there are multiple di�erent sub-systems, each with their own processor

and DRAM, the total memory bandwidth multiplies with the number of processors. There is a chance

to achieve higher memory bandwidth, but the wrong allocation of data can have negative implications

on performance. The allocation is managed by the operating system with page size granularity. On

Linux, the default policy is �rst touch. A page is allocated on the memory of the processor that �rst
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touches a page. The �rst touch is not the request for memory allocation, but the �rst actual usage of

the data.

2.1.7 DRAM

This section explains the terminology and principles of DRAM systems and the optimizations that

modern processors use. Access to a single DRAM cell is slow. Therefore, many optimizations are in

hardware to parallelize and pipeline accesses to the DRAM cells. This explanation is based on a book

by Jacob et al. [54, Chapter 10].

DRAM Layout and Terminology

The DRAM system consists of hierarchical levelsModern DRAM is organized in a hierarchical arrange-

ment of channels, ranks, bank groups, and banks as shown in Figure 2.9.

Figure 2.9. High level DRAM system organization.

Channel There can be multiple channels in a DRAM system. The channels can be accessed in parallel

without restrictions. The total bandwidth is increased by distributing the requests to all available chan-

nels. Each channel needs separate hardware in the memory controller and separate DIMMs. Desktop

systems usually have 1 or 2 channels and servers up to 8 channels.

Rank A channel has at least one rank but can also consist of multiple ranks. Pipelined requests at the

rank level provide higher bandwidth. After sending the requested address to the �rst rank and waiting

for data, the next rank can already receive the next address. Shared address, command, and data busses

limited the available parallelism. Rank-to-rank switching penalties limit the performance.
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Bank A rank consists of multiple banks. Independent accesses to di�erent DRAM banks can occur

in parallel and requests to di�erent banks can be pipelined. Shared address, command, and data busses

limit the parallelism. A bank consists of rows and a row bu�er as shown in Figure 2.10.

Figure 2.10. A DRAM bank consists of rows and a row bu�er.

Bank Group Bank groups are an addition in the DDR4 standard [33]. More banks increase the paral-

lelism but also increase the prefetch length. A further increase of the prefetch length over DDR3 would

not match the cache line size of 64 bytes and result in a performance penalty. Thus bank groups were in-

troduced in DDR4. Bank groups allow higher parallelism without increasing the prefetch length.

Row A row is a group of storage cells that are activated in parallel. A row is often called DRAM

page.

Row Bu�er A row can only be accessed when it is in the row bu�er. The row bu�er is essentially a

cache that can hold a single element. If a row is not cached additional delays occur upon access. There

are three di�erent states upon a row access. First, if the requested row is cached it can be accessed

immediately. Second, if the row bu�er is empty, the requested row needs to be loaded into the bu�er

before the access is possible. Third, if the row bu�er is occupied with a row di�erent from the requested

row, the currently cached row needs to be written back �rst. Then the requested row can be loaded

into the bu�er.

Column A row consists of multiple columns A column of data is the smallest addressable unit of

memory.

Memory Controller

The memory controller takes requests from the CPU cores, accesses the DRAM, and returns the re-

quested data.

Request Scheduling A memory controller can re-schedule incoming data requests. For example, It

can prioritize accesses to rows that are already in the row bu�er before accessing data that resides in a

di�erent row. In this way, the row bu�er hit rage can be increased. For example, a request to an already

open bank may be scheduled ahead of another request to a di�erent row of the same open bank.

Row Bu�er Management There are two strategies for managing the row bu�er. They are known

as the open-page and close-page management policy. Open-page management keeps the active row

in the bu�er to increase the chance of a hit. Close-page management closes the row after access and

keeps the bu�er empty to avoid con�icts. Intel processors support both mapping schemes and one

must be de�ned at initialization by the BIOS. Depending on the management policy the bits used for

address mapping may change.
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Address Mapping The hardware manages the mapping of physical address to channel, DIMM, rank,

bank, and column. The mapping cannot be dynamically adjusted. It is usually set up in the start-up

phase of the processor. It depends on the amount of DIMMs, in which slots they are placed, the type

of DIMM, the type of processor, the number of nodes, and BIOS settings. Selected bits in the physical

address are mapped to address bits of the di�erent channels, ranks, and banks. When using single bits,

there is the problem of bank address aliasing. It occurs when arrays are accessed concurrently with

strided accesses to the same bank. Because of this problem, it is nowadays common to use bitwise XOR

of multiple bits to generate component addresses.

Write Caching Because write requests are typically non-critical in terms of latency, they can be

stored and given a lower priority compared to read requests. Also, back-to-back read and write requests

can only be handled with additional delays and are avoided by the memory controller.

2.2 Approaches for Performance Profiling

There are several di�erent approaches to get information about how the software is executed on the

hardware.

2.2.1 Simulation

Simulators that are used for performance analysis use a simulated version of the hardware together

with the real software. It is also possible to �rst record a trace of the software execution and then

feed the trace into a simulator. Because the hardware is simulated, it is possible to gather information

from any point in the hardware. This is not possible using real hardware. Detailed information about

the hardware’s inner workings can be obtained. For example, the di�erentiation of cache capacity

misses and cache con�ict misses often done using simulation. Another example is the generation of

communication matrices that characterize the data sharing between threads [8]. The disadvantage of

simulation is the high overhead. Because of this overhead, full system simulation is nowadays seldom

used for performance analysis. For example, MemSpy [78] uses simulation to diagnose cache misses

and their reasons. It can also �nd local and remote memory accesses. It has an overhead between 22 and

58 times. The approach by Weidendorfer et al. [124] for cache analysis has an overhead of 46 times.

In combination with other approaches, the simulation e�ort can be reduced. For example, only the

simulation of caches together with hardware metrics and instrumentation is used in Intel Advisor [44].

It reduces the overhead to about 7x [5].

2.2.2 Instrumentation

Instrumentation based performance analysis inserts probes into the software. This can be done manu-

ally, by the compiler or through binary instrumentation. A common tool to do binary instrumentation

is Pin [51]. For the analysis of memory accesses, it is possible to insert probes at every memory access.

Those probes can then record information about the memory access. A sampled instrumentation that

only records information about a few memory accesses is also possible. The collected data is used to

�nd memory performance problems. For example, Günther et al. [36] and Zhao et al. [134] show how

to detect false sharing using data gathered through instrumentation. The vampir tool-set [59] uses

instrumentation to gather information about the execution �ow of parallel programs.

The overhead of instrumentation is generally lower than that of simulation but is still higher than

hardware-assisted approaches. The overhead varies with the implementation and sampling rate of

the instrumentation. The simple call graph pro�ler gprof introduces about 100% overhead [59]. In
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older versions of Intel pro�ling tools, that still rely on instrumentation, an overhead of 4 times is

reported [115]. A false sharing detection tool based on instrumentation [134] produces a �ve times

slowdown of the pro�led application. A tool to create communication matrices of threads produces

an overhead between 39x and 148x when using relaxed tracing and up to 6157x when doing a full and

accurate pro�ling [18]. Other approaches that achieve a similar goal come with an average overhead

of 110x [80] or 225x [81].

2.2.3 Hardware Performance Monitoring

Hardware-assisted performance measurement makes use of dedicated hardware features inside of pro-

cessors to gather information. This hardware is called the performance monitoring unit (PMU). This

method has the advantage of low overhead [3, 91, 123], and information from the hardware can be

available, which is not accessible through pure software-based approaches. For example, the hardware

coherency status can be read. Gathering data through the hardware works with any kind of software.

Because of these advantages, we only rely on this hardware-assisted method in our work. We describe

it in detail in the next section.

2.3 Hardware Performance Monitoring Unit

Hardware performance monitoring units (PMUs) of Intel processors o�er di�erent ways to do perfor-

mance measurements.

2.3.1 Performance Counters

Performance counters are a well-established way to do performance measurements. They are available

in nearly all kinds of processors. Although the types of events that can be monitored di�er between

models.

Performance counters count the occurrence of speci�c events. In the PMU, there is a small number of

physical counters. There are separate counters in di�erent parts of the processor. For example, there

are counters in the core itself, but there are also counters in the memory controller. They can count

events related to the component where they are located. There are over 600 events on Intel Broadwell

processors that can be programmed to be counted on a speci�c physical counter.

To use a counter, the hardware is �rst programmed to count a speci�c event on a physical counter. The

counting is done in hardware. It does not produce any overhead once it is set up. The counter can then

be read in software. It can be done using an interrupt, that is set up to be triggered when the counter

reaches a certain value. It is also possible to read the counter at certain time intervals or certain points

of the software execution. For example, such points could be the entry and exit of functions. When the

counter is read, contextual information can be saved. Reading the counter incurs an overhead. Reading

it more often can create a more detailed pro�le, but it will also increase the overhead of pro�ling.

If more events than physical counters available should be monitored, events can be scheduled on coun-

ters during pro�ling. The software then needs to change the hardware con�guration during pro�ling.

This generates additional overhead. It also introduces inaccuracies because event counter values are

extrapolated for the periods when the event is not counted. It works best for applications that show a

uniform behavior during their execution.

Performance counters cannot be accurately attributed to speci�c code locations. Attribution is only

possible to the intervals where counters are read. Short intervals lead to higher overhead. Still, with

performance counters, it is not possible to get down to the level of individual instructions. There is
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another source of inaccuracy when using performance counters. Often the counter hardware does not

guarantee that counter values are increased at the exact moment when an event occurs. There is a skid

between the event occurrence and when the event is counted.

Depending on the location, a counter can either be attributed to a speci�c core or only to the whole

processor. The counters that are located in the uncore part of the processor count values for all cores of

the processor. Thus the counted value can not be attributed back to an individual core. Such counters

can also not be isolated to speci�c running applications. That is why the usage of such counters requires

extended privileges. It would be possible to use such a counter to gather information about other

running processes.

2.3.2 Instruction Sampling

Instruction sampling is a technique that is newer than performance counters. It was �rst introduced

in the Digital Alpha 21264 processor [4,16]. It gained wider attention when AMD introduced it [22] in

2012. AMD calls this technology instruction based sampling (IBS). Intel introduced the Load Latency

Performance Monitoring Facility and has continuously improved it. The current version is called pre-

cise event based sampling (PEBS) [52, Chapter 18] and is supported on all processors starting from

the Nehalem generation. An exception are the Intel Xeon Phi processors that do not o�er instruction

sampling. In the Intel Ice Lake generation, the support of instruction sampling will be extended [25].

IBM POWER5 and the following generations also support the concept through the marked events

feature [113]. While the general mechanism of instruction sampling is the same for all those imple-

mentations, our description of the features is speci�c for Intel processors of the Haswell, Broadwell,

and Skylake generations.

Instruction sampling works by marking an instruction and observing its execution as it goes through

the pipeline of the processor. Watched instructions are periodically selected. For load instructions,

detailed information can be obtained. For example, the load latency, the actual place where the data

was found (L1, L2, L3, remote or local DRAM), and the coherency protocol state at the time of access.

The overhead of the sampling method is low because there is dedicated hardware for observing the

instructions. The hardware needs to be set up once with an event that should be monitored and a

memory region to write the results. The data bu�er can be organized as a ring bu�er, only saving

the latest data. Or sampling can be stopped once the bu�er is full. Data from this bu�er region needs

to be saved. It can be done using an interrupt that is triggered once the bu�er is full. Or it can be

done periodically, or also at certain points in the software execution. Saving the bu�ered data is what

creates the overhead of instruction sampling. No context information is recorded by the software.

Instead, everything is recorded by the hardware and placed in the de�ned memory region. A lower

sampling period will lead to more samples being taken. The bu�er will �ll up more often. Depending on

the method to read the bu�er, this is how a lower sampling period can lead to higher overhead.

The advantage of instruction sampling is that it is precisely attributable to instructions and data. Each

sample that is taken contains the instruction pointer of the executed instruction. With debug informa-

tion in the binary, it can be resolved back to the exact source code line in the program. In addition, the

accessed data address is also given in the sample. Also, information like the thread id and CPU core

are recorded. Figure 2.11 is an example of what instruction sampling data looks like. It is an arti�-

cially created example. It shows the important attributes for memory performance analysis. In reality,

there are many more attributes available. The rows are individual samples, and the columns show the

attributes of each sample. In a realistic pro�le, thousands to millions of samples are taken.

Compared to performance counters, only a small number of events can be pro�led using instruction

sampling. Currently, those are events related to memory accesses and branch instructions. Thus,

for some types of speci�c information from the hardware, performance counters are still required.

A challenge of instruction sampling is that, as the name suggests, it is a sparse sampling approach.
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Figure 2.11. An example of arti�cial instruction sampling data. The rows are individual samples and

the column are the attributes of a sample.

Approaches known from instrumentation, where all memory accesses are known, cannot be simply

applied to sampling data.

Sampling Period and Sampling Rate

Because samples are taken, we need to clarify the meaning of sampling period and sampling rate. We

do not consider the time between samples but the number of samples taken out of all events. Samples

are taken periodically. The sampling period is the number of event occurrences between two samples.

For example, if the sampling period is 100, then out of 100 occurred events, one sample is taken. The

sampling rate is the inverse of the sampling period. In our example, the sampling rate would be
1

100 .

A lower sampling period (higher sampling rate) means more samples are captured, and more detailed

data is available. The sampling rate stays constant during pro�ling. Di�erent types of events can be

samples with di�erent periods.

2.3.3 Tracing

Processors can record a trace of executed instructions. Intel calls this feature Processor Trace (PT) [101].

It is also supported by other processors. For example arm CoreSight [6]. This feature is often used

for debugging. But it can also be applied for performance analysis. While instruction sampling and

performance counters are useful to get an overall picture of an application’s performance, tracing is

more suitable to examine short phases of software execution in great detail. For example, the processing

of individual frames in a video processing application. It is also often used to diagnose latency spikes

in real-time processing applications. It is less suitable to diagnose throughput performance problems

in HPC applications. Not every instruction is traced because the sequence of instructions ifs often

known from the assembly code. But branch instructions are vital to reconstruct the execution �ow.

Thus usually branch instructions, their branch prediction, and actual branch taken are recorded. Still,

there is a lot of data that needs to be captured. Usually, only a short sequence can be saved. The

overhead of hardware-assisted tracing is low, in the range of 2% to 5% [109]. In this thesis, we do not

consider tracing because our focus is on the analysis of memory accesses of whole applications.

2.3.4 Control So�ware

Typically a software layer is used between the hardware and the user who speci�es the type and events

of pro�ling. This software provides some abstractions form the hardware. It sets up the pro�ling,

collects the data, and presents it in a readable format. Performance counters are supported by many

di�erent tools, but not all of them also support instructing sampling. For example, such tools include

Linux Perf [65], PAPI [117], Intel Performance Counter Monitor [45], and Likwid [121].
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Throughout this thesis, we only use Perf. It supports performance counters and instruction sampling.

We use Perf because it is easy to install and run on Linux systems, no source code modi�cations are

necessary for pro�ling, and the data export feature allows us to implement our own data analysis meth-

ods. Perf itself consists of a kernel component and a user-space component. The kernel component is

also used by some of the other above-mentioned tools. This kernel component is accessible through

the perf_events syscall. We use the Perf user-space component to control the PMU.

2.4 Specific Memory Performance Problems

In this thesis, we introduce automatic detection of two speci�c performance problems: false sharing

and main memory bandwidth contention. In this section, we explain them in more detail. Why they

occur, what the performance implications are, and how to �x them.

2.4.1 False Sharing

False sharing is a problem that originates from the cache line granularity organization of caches and

the hardware coherency mechanisms. False sharing is the problem where data that is not intended to

be shared is kept in the same cache line. A cache line may contain multiple di�erent objects or multiple

single elements of an array. The update of one data element in the cache of a core will invalidate the

copy of the cache line in another core’s cache. Upon the next access, the other core will experience

a cache miss because the data in its cache is outdated. This happens even if the data that both cores

access has no logical connection. Invalidation happens just because the unrelated objects share the

same cache line. False sharing is always an unwanted phenomenon. It is not a correctness bug. It only

a�ects the performance. A write access is always involved when false sharing happens. A read-read

pattern does not cause false sharing.

An example of a memory access sequence that causes false sharing is shown in Table 2.1. Assume that

object 0 and object 1 are placed in the same cache line. At time 1 the cache line is loaded into the cache

of core 0. At time 2 the cache line is also loaded into the cache of core 1. The write access at time 3

invalidates the copy in the cache of core 1. When core 1 wants to read object 1 at time 4 the copy in the

cache is no longer valid even though object 1 itself has not been modi�ed. This is false sharing.

Table 2.1. A memory access sequence that causes false sharing.

Time Core 0 Core 1

1 Read Object 0

2 Read Object 1

3 Write Object 0

4 Read Object 1

The occurrence of false sharing depends on the cache line size, compiler data layout, memory alloca-

tors, and the source code. Because of all those in�uences, it can be hard to �nd by reading the source

code. There were several cases where false sharing was unnoticed until applications were analyzed

using specialized false sharing detection tools. Chabbi et al. have found several previously unknown

cases [13]. For example, software like Spin [112] and Libdes [85] su�er from previously unnoticed

false sharing. Liu et al. [66] were the �rst to report some cases of false sharing in PARSEC and Phoenix

benchmarks.

False sharing can be �xed by adding padding between objects so that independent objects are placed

in di�erent cache lines. Aligned allocation to cache line boundaries is also often necessary to ensure

correct placement so that the data with padding utilizes one cache line completely.
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True sharing

True sharing occurs when there is data in the same cache line that is intended to be shared. A modi-

�cation of this data will also cause an invalidation. True sharing might be unavoidable because com-

munication is necessary for some algorithms. However, this communication also comes with the cost

of invalidating and updating the data. Finding excessive true sharing might show optimization oppor-

tunities for communication avoidance. Avoiding true sharing usually involves changes in algorithms

and is usually more di�cult than �xing false sharing.

Table 2.2 shows an example of memory accesses that cause true sharing. The di�erence in this sequence

compared to the true sharing sequence is the access at time 1 and time 3. The object 1 is accessed by

core 0. Thus the object 1 is shared between the two cores. Once the write is issued at time 3, the cache

line becomes invalid on core 1.

Table 2.2. A memory access sequence that causes true sharing.

Time Core 0 Core 1

1 Read Object 1

2 Read Object 1

3 Write Object 1

4 Read Object 1

Performance Implications

The e�ect of false sharing on performance can be severe. In an arti�cial example, up to 12x performance

degradation on an 8 core system is reported [67]. Khan et al. report speedups for small but more

realistic applications [57]. In an image histogram calculation, a speedup of 21% is reported. In a linear

regression benchmark, the speedup reported is 10x. Even in big and complex applications, false sharing

in�uence can be signi�cant. Chabbi et al. [13] report speedups of up to 8.45 times in Libdes [85], which

is a discrete event simulator and up to 2 times in the Spin model checker [112]. Usually, a higher core

count makes false sharing more severe because more copies of data exist, are invalidated, and re-loaded

or distributed. This can be seen in the data published by Chabbi et al. [13]. Thus, false sharing remains

a signi�cant performance problem as manycore processors spread.

Overall false sharing is a performance problem that can have severe implementations but is easy to �x

with padding. However, to �x the problem it must be detected, and the location in the code where it

occurs must be known, which is di�cult to do without tool support.

2.4.2 Main Memory Bandwidth Contention

Memory bandwidth contention is the situation where the bandwidth of a memory is not high enough

to ful�ll all the requests of an application. In other words, the data that is needed for calculations is not

delivered fast enough. This leads to delays in the processing, and the core will not be fully utilized. In

today’s systems, the bandwidth between the L3 cache and the DRAM is the lowest memory bandwidth

in the system. Thus, we focus on the DRAM bandwidth contention.

The bandwidth required of an application running on a system depends on many factors. First of all, the

intrinsic data demand of an application. It can be expressed as the arithmetic intensity or �ops-to-byte

ratio. Applications like sparse matrix-vector multiplication, sparse matrix transposition, and sparse

triangular solver usually have an arithmetic intensity of less than 1 Flops/Byte. These applications

are usually memory bound. Generally, stencil algorithms and FFT have medium arithmetic intensity.
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But the details depend on the exact implementation. Algorithms like dense matrix multiplication are

usually computed bound and have a high arithmetic intensity [64].

But not just the application itself has an in�uence, also the hardware plays an important role. Larger

caches can reduce the amount of data that needs to be loaded from the main memory. Hardware

prefetchers can issue additional memory loads. How e�ective they can work depends on the access

pattern of an application. Parallel instruction execution and parallelism in the memory system increase

the likeliness for bandwidth contention. Finally, the o�ered DRAM bandwidth is also di�erent between

systems. The memory controllers of processors only support a certain DRAM bandwidth, and also the

speed of the DRAM is constrained. In NUMA systems an additional point has to be considered. Higher

bandwidth is available for access to the local memory compared to the remote memory. Thus the data

allocation is important for performance.

A di�culty in the detection of bandwidth contention is that high bandwidth consumption does not

necessarily indicate contention. The bandwidth consumption might be just at the limit of the hardware,

without the application su�ering from it. Another point is the prefetchers, which may issue many

memory loads in advance so that the memory bandwidth consumption is high, but the data all arrive

at the core before it is needed. All these factors make bandwidth contention a problem that is di�cult

to detect.

Performance Implications

Main memory contention limits the performance of applications, but improving the performance can

be a challenging task. Most optimization approaches focus on improving locality. This can be achieved

by changing the order of memory accesses or optimizing the data layout. Often signi�cant changes

in algorithms are necessary to achieve speedups. In NUMA systems, an improved data allocation can

help to speed up an application.

Performance gains reported in the literature range from as low as a few percent up to many times

speedup and improved scalability. Liu et al. [69] report 8% speedup in AMG2006 [62] that was achieved

with a better distribution of data across NUMA nodes. A similar optimization approach gave them a

speedup of 12% in LULESH, 28% in streamcluster [11] and 53% in Needleman-Wunsch [15]. In the

LULESH benchmark, Liu et al. [70] fuse two parallel loops to improve the performance by 12.9%. In

the Sweep3D benchmark, a change of the loop structure leads to an improved cache hit rate and to a

speedup of 2.5 times [76]. Another option is energy optimization. If a CPU core spends most of the time

waiting for data from the memory. It is possible to save energy by reducing the speed of the CPU. An

example is given by Molka et al. [88]. They reduced energy consumption by 4.6% without increasing

the execution time of the benchmark. They decreased the CPU speed in regions of the code that are

known to be memory bound.

Overall, DRAM contention is a problem that is limiting the performance of many applications. It is

a problem that is caused by the hardware in combination with the software. The detection of DRAM

contention is challenging because simple bandwidth measurement might be misleading. Fixing this

problem can be as easy as changing an allocation setting. But often bigger changes, to improve the

locality are required. The performance gains through software optimization can be signi�cant.

2.4.3 DRAM Internal

DRAM internal performance problems can lead to increased access latency and lower achievable band-

width. DRAM internal performance problems come from the interaction of di�erent commands. The

commands and their interaction are explained in detail by Jacob et al. [54]. Here we present a short

summary of command iterations with a negative impact on performance.
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Imbalanced Channel Usage Memory channels provide parallelism. If a channel is not used, or

if the load on the channels is not equally distributed, the achievable bandwidth will decrease. The

accessed addresses and the address to channel mapping determine which channel is accessed. Because

the channels are independent, a speedup proportional to the number of channels can be achieved with

optimal usage of the channels.

Imbalanced Bank Usage Banks also provide parallelism and multiple row bu�ers. If not all banks

are used, the amount of data cached in row bu�ers decreases, and the options for pipelining and par-

allelization decrease. Like for the channel imbalance, the accessed addresses and address mapping

in�uences the used banks.

Row Bu�er Miss The row bu�er can be considered a cache with a capacity of one row. If the

requested row is in the bu�er, the access can be served from the bu�er. If the accessed row is not in

the bu�er, and the bu�er is empty, the requested row must be loaded �rst. This incurs an additional

delay. If the row bu�er currently holds a row that is di�erent from the requested one, even more delay

will be added because the currently open row needs to be written to the DRAM array before loading

the requested row. Like in a traditional cache the order of accessed addresses is important for a good

cache hit rate. For row bu�ers, the limitation to one cached element makes this particularly important.

Concurrently accessing threads share the same DRAM, so that a high number of threads increases the

possibility of interference.
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Chapter 3

Related Work

In the past, tools that present performance data and allow manual exploration were introduced. In

addition, there are analysis tools that are designed for speci�c problems and come with automated

detection features. We focus on tools that rely on hardware-assisted measurements, especially those

that use instruction sampling. Some papers also explore the meaning of hardware performance data.

In addition, we introduce work on DRAM internal performance optimization and address mapping

reverse engineering.

3.1 Tools for Specific Performance Problems

Many of the existing tools are designed to help to �nd one speci�c performance problem. They are not

suitable to �nd other kinds of memory performance problems.

3.1.1 NUMA Related Performance Problems

With the appearance of NUMA systems, data allocation became an important factor for performance.

By default, the memory allocation is automatically handled by the operating system. Programmers

are often not aware of the allocation decisions. Running an application developed for a uni-processor

system on a NUMA system often does not bring the desired speedup. The tools introduced in this

section can help with those issues.

Memphis [83] is a tool for �nding and �xing NUMA related performance problems. The authors

also present a paper about the application of Memphis on a Cray system [84]. This is the �rst tool that

makes use of hardware instruction sampling on x86 processors for �nding NUMA related performance

problems. It uses a custom kernel module to interface the AMD instruction sampling hardware. The

tool also tracks dynamically allocated objects. In the post-processing of the data, it generates a data-

oriented, per-node pro�le. It reports the number of local DRAM and remote DRAM accesses for objects.

This makes it useful for identifying remote memory accesses.

Memprof [61] is another pro�ler for NUMA multicore systems. It gathers data from di�erent sources.

First, the object life cycle tracking. Allocation functions are overloaded using the library preload feature

and replace the existing allocation functions. Whenever memory is allocated, the call stack of the

allocation is captured and written to a text �le. There is one �le per thread. In a post-processing

step, the text �les are merged into one binary �le. This allocation tracker is simple and has one severe

limitation. The memory is never freed to avoid the reuse of addresses. This makes the lookup of address

to variable much easier, but it can cause problems for applications that make many allocations and frees.

Second, the life cycle of threads is tracked through kernel hooks for the creation and destruction of
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threads. Third, memory access instructions are sampled to track memory accesses. They use a custom

kernel module to control the hardware and record the data. It is limited to AMD processors. The

overhead of pro�ling is around 5%.

Using this recorded data, the thread event �ow and object event �ow is built. The thread event �ow

lists the memory accesses performed by each thread. The object event �ow shows which threads access

an object. For each of those access entries, the latency, access type (read/write), and call chain is saved.

All event �ows are chronologically sorted. Using these event �ows, indicators for performance prob-

lems can be found. For example, objects that are accessed from multiple threads running on di�erent

nodes.

The evaluation features that come with the tool are limited to text-based output. The percentage

of remote dram accesses can be displayed. A memory pro�le lists the objects, functions, and object

accesses, which cause the highest delays.

ScaAnalyzer [73] is the newest of a series of tools [69,71] published by Liu et al. They are successive

improvements and share many common features. Those tools are implemented as an extension of

HPCToolkit [1].

For gathering data, this tool relies on several libraries. As a low-level interface for controlling hardware

instruction sampling, it uses the perfmon2 library. This enables wide hardware support. As a fallback

(for example for ARM processors), this tool supports software IBS. It is instrumentation added by an

LLVM extension during compilation. Libnuma is used to query the NUMA domain of addresses. To

get the NUMA domain of a thread, a static thread to core mapping is enforced. Resolving variables

from addresses is done by using the symbol table for static variables, capturing stack frames for stack-

allocated data, and tracking allocations for dynamically allocated data.

The node for allocation is often decided based on the �rst-touch policy. Thus, the �rst access to a

variable can provide useful insight. The identi�cation of the �rst touch of a page is implemented using

a custom SIGSEGV handler. First, new pages are created protected. Because of this, the SIGSEGV

handler is called upon the �rst access to every page. Inside the handler, the call stack is recorded.

Afterward, the original permissions of the page are restored and the original access can be executed.

Successive accesses will not trigger the handler anymore. Using all those methods, the overhead of

this tool is usually below 10 percent.

Their �rst tool [69] uses metrics to quantify the scalability loss to �nd the most promising optimization

opportunities. The reported metrics help the user to identify remote memory accesses and the cache

level in which a problem occurs. HPCToolkit-NUMA [71] adds a method to detect an actual place in

the code where the allocation in a NUMA system is happening. Finally, ScaAnalyzer [73] introduces

scalability analysis by running a workload on one and many cores. From the di�erences between both

runs, scalability problems can be diagnosed. High latency and high scalability losses indicate a high

bene�t from optimization. High latency and low scalability losses indicate memory bottlenecks that are

not related to scalability. Low latency always indicates that there is no bene�t in optimization.

The memory architecture is separated into layers to simplify analysis. Private layer (L1 and L2), Shared

Layer (Shared L3 and DRAM), and NUMA Layer (remote socket DRAM). Performance problems are

attributed to one of the layers.

ScaAnalyzer and HPCToolkit-NUMA are GUI tools that allow browsing the source code, which is

augmented with metrics. For variables, it shows the call paths for allocation, accesses, and the �rst

touch of a selected variable. Showing the location of the �rst touch is a unique feature of this tool. It is

useful for analyzing remote accesses because the �rst touch determines where a page will be allocated.

Remote access problems are easy to discover, and performance problems can be attributed to speci�c

memory hierarchy layers.
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NUMA Visulizer is a tool by Weyers et al. [125], that provides a visualization, which is based on the

physical hardware. It is an enhanced version of previous work [53]. It can show the communication

between di�erent nodes in a NUMA system. It uses Likwid [121] as the backend for reading the hard-

ware performance counters. It uses counters from the memory controller and the QPI interface. It does

not use instruction sampling.

For each socket, there is a visualization similar to a table. The cell entries show the QPI link utilization

from one socket to another. The diagonal from the top left to the bottom right where the source and

destination socket are the same shows the memory bandwidth utilization of that socket. The graph in

each cell is a time-resolved display of the bandwidth. The maximum possible bandwidth is obtained by

running a micro-benchmark before the actual analysis. This maximum value is then used to color the

cells. Red cells indicate a bandwidth saturation problem. Attribution of high bandwidth to hardware

sockets is possible but not to code or objects. This tool can not decide whether there is bandwidth

contention or not.

DR-BW [128] is a tool that can detect remote memory bandwidth contention in NUMA Systems. It

is based on machine learning using features extracted from the performance monitoring unit. The

authors use DR-BW to �nd remote DRAM bandwidth contention on NUMA systems.

Data is recording is done with instructions sampling and the perf_events interface. This implemen-

tation supports Intel processors. The accessed data address, memory layer, latency, and originating

CPU are recorded. One out of every 2000 memory accesses of every thread with latency higher than

a threshold is sampled. The exact value of the threshold is not mentioned in the paper. The samples

are associated with channels. A channel is a path from a CPU to a memory. Through the CPU id

and the NUMA mapping, the source is known. From the accessed data address, the target memory

can be resolved. An allocation tracker records dynamic memory allocations to resolve addresses to

objects.

A decision-tree classi�er answers the question if there is bandwidth contention on remote memories.

It is trained with micro-benchmarks to extract useful features from the recorded PMU data. By varying

the data size of the benchmarks, cases with and without bandwidth contention can be produced. The

features include latency of memory accesses, number of remote DRAM, local DRAM and LFB accesses.

Out of these features, a decision tree is created through the training with micro-benchmarks. If band-

width contention was detected a root-cause diagnoser points out the data objects and the contribution

of each data object to the contention.

NumaMMA [120] is a tool to analyze the memory accesses in a NUMA system. It collects data with

instruction sampling (using the numap library [108, 119]) and provides visualizations to understand

the data access and sharing patterns. It also collects data on global variables and dynamically allocated

variables. The overhead is always below 12%. The results are displayed as an object pro�le. The

access pattern can be displayed graphically. This display contains the address, time, and thread of

access samples. From these visualizations, the authors conclude which allocation strategy �ts best for

speci�c objects in benchmarks.

Carrefour [27] is an operating system exetension that improves memory placement on NUMA sys-

tems. It is designed to avoid contention, not remote memory accesses. The authors report that remote

accesses instead of local memory accesses decrease the performance by 20%. However, up to a factor of

two of performance degradation was observed due to contention. Their OS extenstion uses the mem-

ory lantency to �nd problematic memory accesses. The latency is system speci�c. No exact method

to determine it is speci�ed. They use a metric called memory controller imbalance to decide if inter-

leaved allocation is worthwhile. This metric is the standard deviation of the load across all memory

controllers. The load is the number of requests per time unit. The metric is expressed as percent of the

mean.
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3.1.2 Data Structure and Array Layout

Through data layout optimizations the spatial locality can be improved. The following tools help to

spot such opportunities.

ArrayTool [72] is a tool to �nd opportunities for array regrouping. Array regrouping is a technique

to pack data from di�erent arrays into an array of structs. Data needed in one iteration of a loop can

be packed close together, sometimes even into the same cache line, to improve spatial locality.

Data is collected through instruction sampling and implemented for AMD Opteron processors. It also

has an allocation tracker to identify dynamic memory allocations. The overhead in three analyzed

benchmarks is between 14% and 22%.

First, the tool �nds arrays with high memory access latency. Then access patterns are analyzed, and

several constraints are checked. For example, only arrays with an overlapping lifetime can be grouped

together. Objects that ful�ll the constraints are then reported as opportunities for regrouping.

StructSlim [103] is a tool specially designed for �nding opportunities to split structures. It’s concept

is similar to ArrayTool [72]. But instead of grouping data from di�erent arrays into an array of structs,

it is designed to �nd opportunities to do the opposite and split an array of structs into di�erent arrays.

If there is an array of structs, the struct size is large, and only a few elements of the struct are accessed

in a loop, then this data layout can be bad for cache locality because a lot of unnecessary data (the

unused �elds of the struct) are loaded.

StructSlim collects data through instruction sampling and then does an o�ine analysis. The �rst step

is to identify structures to split. The metric for selection is the contribution of individual objects to

the total latency. In a second step, the previously selected candidates are analyzed for their memory

access patterns. The access pattern indicates if there are unused elements in a struct. The overhead of

this tool is between 2.05% and 18.3%.

LWPTool [131] is very similar to StructSlim [103] and Arraytool [72]. It combines the features of

both tools. It uses the same methods as introduced in the previous publications to provide guidance

on structure splitting and array regrouping.

3.1.3 Cache Miss Analysis

A cache miss can have di�erent reasons. It can be a cold miss, con�ict miss, or capacity miss. Depending

on the type of miss, the optimization strategy is di�erent. The following tools help to �nd excessive

cache misses and classify their reason.

DProf [97,98] is a specialized tool to locate cache performance bottlenecks. DProf can show an object

pro�le and classify cache misses. It can also indicate when an object is accessed from multiple cores. It

only supports object-based analysis and cannot provide information about functions and source code

lines.

DProf has four di�erent views. First, the data pro�le. It is a list of datatypes sorted by the total number

of cache misses. Second, the miss classi�cation view. It shows which type of miss (capacity miss of

con�ict miss) is the most common for each data type. Third, the working set view. It shows which data

types are the most active and how much are active at a given time. Last, the data �ow view. It shows

which functions access a given data type.

A modi�ed Linux kernel is required to run this analysis tool. To get information about memory ac-

cesses, they use AMD IBS. Additionally, they use debug registers, which can be con�gured to trigger

an interrupt once a speci�ed address range is accessed. In the interrupt handler, the instruction pointer

accessing the watched address is recorded. One object is tracked at a time on all CPUs. The tracked
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object is changed during the pro�le run to provide coverage of many but not all objects. Types and

o�sets are computed from addresses for statically allocated and dynamically allocated objects. Infor-

mation from statically allocated objects is taken from the debug information, which is embedded in

the binary. Allocations are tracked by modifying the Linux kernel allocator. Addresses are resolved at

runtime. Allocations from outside of the Linux kernel need to be manually annotated. The overhead

depends on the sampling rate and is between 2% and 14%. To detect con�ict misses, a cache simulation

is used, which incurs much higher overhead.

CCProf [104] is tool for lightweight detection of cache con�icts. It uses instruction sampling for data

collection. The overhead in the considered benchmarks is between 1.1x and 1.51x with an outlier that

has an overhead of 27x. This overhead is still much lower than that of previously used simulation-

based tools. The main contribution of this paper is to use sparse sampling data for cache con�ict miss

detection. Before, full access traces and simulation, which incurs high overhead was used.

The main idea of the con�ict miss detection is that imbalanced use of cache sets indicates con�ict

misses. The authors also de�ne the metric of re-con�ict distance that is the number of intermediate

cache misses between two cache misses on a set. If the re-con�ict distance is similar for each cache

set, the cache sets are equally used. If there are sets with very low re-con�ict distance, then those sets

su�er from con�ict misses.

3.1.4 False Sharing Detection

Some of the existing tools focus only on �nding false sharing, while others can do an automatic repair

of false sharing.

Detection and Automatic Mitigation

The following tools try to automatically �x false sharing if it is detected. The speedup of the automatic

repair is usually lower than that of manually adding padding.

Sheri� [66] changes threads in an application to processes. It creates a simulated shared memory

environment. By using per-thread page protection, memory accesses can be recorded. In the recorded

memory accesses, false sharing can be detected. The overhead of this method is about 20%. The tool

can also automatically mitigate false sharing by moving threads to processes.

Plastic [90] is an operating system extension for online detection and repair of false sharing. First,

the HITM event is counted to �nd potential cache contention. Through various following steps, false

sharing is con�rmed. Those steps go from low overhead and coarse-grained to high overhead and �ne-

grained. They are implemented in modi�ed page fault handlers and other virtual memory management

features of the operating system. For �xing false sharing, it modi�es the virtual to physical address

mapping to move falsely shared data from the same cache line to di�erent physical locations.

LASER [74] can �nd true sharing and false sharing during program execution. It has a low overhead of

2% on average. It relies on instruction sampling and the HITM �ag. PMU con�guration is implemented

in a custom kernel module. Recorded samples are aggregated to speci�c program counter values. For

each program counter value, the rate of HITM events per time is calculated. If the value is over a user-

speci�ed threshold, further analysis is done. A simple cache simulation model is set up, and instructions

coming from the identi�ed program counter locations are analyzed. From this access sequence, false

sharing and true sharing can be di�erentiated.

LASER also features an online false sharing repair mechanism. It uses binary instrumentation with

Pin to modify the store instruction handling of the previously identi�ed code locations. Stores are
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redirected into a software store bu�er, that writes to a thread-local memory, instead of the shared

memory. Otherwise, it works like a hardware store bu�er.

TMI stands for "Thread Memory Isolation" [17], which is a technique to mitigate the e�ects of false

sharing. For detection, it uses HTIM performance counter with a very low sampling period. The

instruction pointer of HITM accesses is known and the actual operation that is executed at this address

can be looked up by dissembling the binary. Fixing false sharing is done by moving threads to their

own processes. It works during program execution but has a high overhead.

Huron [57] can detect and �x false sharing. It uses two types of detection mechanisms. First, full

instrumentation with LLVM and access pattern analysis with high overhead. It is required to record all

load and store instructions and all memory allocations. They expect that it is applied during unit tests

or similar. Thus they argue that this is an o�ine method. Second, they combine it with a lightweight

analysis that runs during productive use of the application.

Their technique to �x false sharing is novel. Base on the data gathered through instrumentation, they

are able to use useful data as padding data. Previous �xing approaches use bu�er structures for writing

or moving data to separate pages but do not use the analysis data for �xing. This new method results

in higher speedups than any of the previous ones.

Only Detection

The following tools can detect if a program su�ers from false sharing. Some of them can also point out

the location and a�ected objects.

Amachine learning approach using PMU data is introduced by Jayasena et al. [55]. Di�erent coun-

ters from the PMU are put into a machine learning classi�er. The data includes, among others, the

HITM �ag. This classi�er has been trained with arti�cial benchmarks that contain, or not contain false

sharing. The training process is speci�c to a certain machine. This tool does not point out objects

a�ected by false sharing or source code locations that cause false sharing.

Predator [68] uses instrumentation performed by LLVM. It instruments all memory accesses to global

and heap variables. This approach produces an overhead of 6 times. Based on the recorded access

pattern, false sharing can be detected. It can also be di�erentiated from true sharing.

Cheetah [67] is working with PMU data to detect false sharing. The detection itself is based on

address access patterns and similar to the concept of Predator [68]. Their method assumes that only

one thread is running on each core and that there is no migration of threads to di�erent cores. It also

assumes in�nite cache sizes and that data is held in a cache until it accessed by other threads. It can

produce false positives if those conditions are violated. Because of hardware-assisted pro�ling it has

an overhead of about 7% and a maximum of 30%.

Perf C2C [77] is a part of the Linux Perf tools. It uses the HITM �ag in instruction sampling data

to �nd modi�ed cache lines. It can report readers and writers and their location in the source code.

Perf C2C only relies on the HITM �ag and can thus not di�erentiate true and false sharing. It is a

command-line tool that is available in the standard Perf tools.

Intel VTune documentation [47] demonstrates which data can be used to �nd false sharing. Their

approach is also based on the HITM �ag. They show how Intel VTune needs to be con�gured and how

the data in the tables can be interpreted. It is a manual approach and does not di�erentiate true and

false sharing.

Feather [13] is a tool to detect false sharing on-the-�y. It uses the PMU to sample read and write

accesses. Potential false sharing is identi�ed by the number of HITM events. Once a potential false

sharing candidate is found, debug registers are set up. The debug registers monitor addresses within
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a speci�c cache line. Once a write accesses to one of those monitored addresses occurs, false sharing

is con�rmed. Due to hardware limitations, only a part of the addresses can be monitored. The median

overhead is between 3% and 8% but can be up to 2.09x. To achieve this low overhead, a custom Linux

kernel is required.

3.2 Tools for Manual Exploration

Those tools usually cover a wider range of memory-related performance problems but come with no

or little automated detection.

Linux Perf is a general-purpose pro�ler not limited to memory performance. Perf is a command-line

tool and has the following features for analyzing memory accesses.

1 # Overhead Samples Memory access

2 44.09% 265814 LFB hit

3 19.05% 2596275 L1 hit

4 15.90% 44470 Remote RAM (1 hop) hit

5 10.14% 44119 Local RAM hit

6 8.92% 89702 L3 hit

7 0.98% 36806 L2 hit

8 0.56% 2646 Remote Cache (1 hop) hit

9 0.34% 1311 L3 miss

10 0.00% 243 Uncached hit

Figure 3.1. An example of the output of perf mem rep –sort=mem –stdio. It shows the memory access

distribution grouped by memories for the whole program.

Figure 3.1 shows an output of the perf mem command. It shows where in the memory hierarchy, from

L1 cache to DRAM, the requested data was found. The analysis was done for a whole program. With

this method, it is not possible to attribute the performance problem to a speci�c code location. Thus,

it can help the programmer get an idea of what is going on in the application, but it does not help

pinpoint the location of the problem.

Another output of perf mem is an address centric pro�le. The aggregated delay of each address is

displayed sorted from high to low. But only addresses of statically allocated objects can be resolved.

But in most realistic applications, data is often dynamically allocated. It is not useful without knowing

the dynamically addressed data and aggregating the addresses to variables.

There is no possibility of visualizing metrics using Perf. In addition to the text output shown in Fig-

ure 3.1, there is an interactive text interface (TUI). The evaluation of memory metrics is limited. Ac-

cessing the source code from this interface is supported, and there are basic �ltering functions to

restrict the printed data. The whole perf data must be re-read every time a new type of evaluation is

requested.

MemAxes [30,31] introduces new visualizations for data gathered through instruction sampling and

annotation of the code. It uses a latency pro�le to point out signi�cant functions and objects and a

clustering mechanism to �nd interesting subsets in the data. The authors demonstrate that their vi-

sualizations are suitable for identifying unbalanced hardware utilization. To spot problems, the user

needs to interpret the visualizations and draw conclusions regarding what type of performance prob-

lem is the limiting factor. It does not come with any automatic detection features. The data is collected

using instruction sampling through the perf_events interface. In two case studies, the overhead is

about 10%.
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Intel VTune Ampli�er XE is a general-purpose pro�ling tool, but it also has some specialized mem-

ory performance features [43]. Main memory bandwidth can be measured and attributed to the source

code. But this tool cannot decide whether there is bandwidth contention or not. Which level of band-

width usage is regarded as too high has to be set by the user. All features are accessible through a

single GUI application. The source code can be viewed inside of the application. DRAM and QPI

bandwidth can be visualized using a histogram. Based on this histogram, the code locations of high

bandwidth usage can then be selected from a table. It o�ers more visualizations like a time-resolved

display of the used bandwidth, and tables support many di�erent memory-related performance met-

rics. It is also possible to do a data-centric analysis to show the objects responsible for high bandwidth

utilization.

Data is obtained through a custom driver, which only supports Intel processors or by using a perf_events

based driver. Performance counters and instruction sampling are used. Dynamic memory allocations

and stack frames are tracked to resolve variables.

The Intel Performance Counter Monitor (PCM) [45] tools are a set of command-line tools for

performance analysis. Internally they use perf or they can program the PMU directly as a fallback.

Only performance counters are used by these tools. The following tools are available:

• pcm-core: Prints the IPC of every core in the system.

• pcm-tsx: Helps analyzing transactional memory. Shows completed and aborted transactions.

• pcm-numa: Reports the number of local and remote access for each core

• pcm-memory: Shows the read and write memory bandwidth used by each memory controller.

• pcm: Outputs IPC and cache miss rates for each CPU and shows QPI link utilization for the

whole system. The output of the QPI link utilization is shown in Figure 3.2.

1 QPI0 QPI1 | QPI0 QPI1

2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 SKT 0 195 G 195 G | 6% 6%

4 SKT 1 246 G 247 G | 7% 7%

5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 Total QPI outgoing data and non−data tra�c : 884 G

7

8 | READ | WRITE | CPU energy | DIMM energy

9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 SKT 0 341.67 150.87 9020.81 5709.44

11 SKT 1 583.24 182.84 9332.79 5646.76

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 ∗ 924.91 333.71 18353.60 11356.20

Figure 3.2. An example of the output of the pcm tool. It shows the used QPI bandwidth.

The output can also be written to csv �les for implementing own analysis scripts or visualizations. All

the tools can only provide statistics over the whole program execution. They can not locate where the

performance problems are coming from.

Aftermath [21] is a graphical tool for performance analysis of �ne-grained task-parallel applications.

It is not limited to memory performance but also has support for other hardware metrics like branch

mispredictions. It has been developed to be used together with the OpenStream [99]. It reads a trace

generated by OpenStream. Hardware metrics are recorded using PAPI [117], which relies on perfor-

mance counters.
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The main view is a Gantt chart timeline view of all cores in the system. It can be overlayed with hard-

ware metrics, thus providing time-resolved analysis and attribution to tasks and cores. For example,

the percentage of remote DRAM accesses can be shown. Using the execution time of tasks on cer-

tain cores can help identify NUMA problems. For example, consider a task where multiple instances

executing the same code are running on all cores. If all task instances running on the same socket

take more time than the task instances running on the other socket, it can indicate that the increased

execution time is due to the placement of the task on the socket. A user can specify derived metrics

that are calculated from existing metrics and then visualized in the tool. A connection to the source

code is possible on the granularity of tasks but not on the level of individual instructions. An external

editor can be started from the GUI for viewing source code. Certain tasks with an execution time in a

certain range or tasks that write to a speci�ed NUMA node can be selected.

3.3 Comprehension of Hardware Metrics

Some publications help to understand the performance data that is reported by CPUs.

The original Intel documentation [52] lists all available events. However, the descriptions are very

short. To fully understand what a speci�c event is actually counting, it is often required to have some

knowledge about the individual event counter and how it is implemented. The following studies take

a more detailed look at the hardware measurement methods.

Eranian [24] introduces the possibilities of PMUs for performance analysis in 2008. Before that, PMUs

were mainly used for veri�cation purposes. He introduces ways to measure bus utilization, cache hit

rates, NUMA access ratios, and latency measurement. It is based on older processors and is more of an

introduction than a detailed discussion of di�erent measurement methods.

The top-down approach by Yasin [129] is a method for structured performance analysis using PMU

data. During the explanation of the approach, one can obtain some information about the inner work-

ings of the counters and which counters can be useful for diagnosing speci�c problems. Such as the

di�erentiation of frontend bound and backend bound applications. It does not go into the details of

how to identify memory bandwidth limited applications. This work does not consider instruction sam-

pling.

A study by Molka et al. [88] includes experimental evaluation of di�erent counters. Their approach

is to use micro-benchmarks to stress certain parts of the memory hierarchy and �nd correlations with

performance counters. They report more detailed information than what is available through o�cial

documentation. The points discussed in this paper include the transfers between cache levels, and the

di�erentiation of memory and latency bound applications. To the best of our knowledge, this is the

most comprehensive prior work on this topic. It does not consider instruction sampling.

3.4 DRAM Address Mapping

Amanual rowhammber based approach is shown by Seaborn [107]. First, the author uses informa-

tion about the DIMM con�guration from the Serial Presence Detect (SPD) ROM stored on the DIMMs

themselves to build a hypothesis about the mapping. Then, the author uses a rowhammer tool that

causes bit �ips in the RAM. Such bit �ips can be caused in neighboring rows that are in the same bank.

This approach has the following disadvantages. First, the sample generation is not accurate. Bit �ips

are not guaranteed to occur and may also occur in rows that are not next to each other but further

apart. The author describes that this occurred in the experiment and it required manual detection

and removal of the outliers. Second, there is no algorithmic method for determining the addressing

function. The author manually analyzes the reported addresses of successful bit �ips to determine the
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addressing functions. While it works for this relatively old and simple PC-class processor, it is hardly

possible to do a manual analysis on a more modern processor which has more complicated hashing

and region based mappings.

A timing-based approach is introduced by Pessl et al. [96]. It is based on the principle that a row

bu�er hit results in a lower access latency than a row bu�er con�ict. They use pairs of addresses and

repeatedly access the pairs. If both addresses in a pair are in the same bank, alternating accesses will

lead to a relatively long delay due to row bu�er con�icts. First, these address pairs and timing results

are collected. In a second step, the linear xor functions are recovered from the data using a brute force

search. They present results for several systems including Sandy Bridge, Ivy Bridge, Haswell, and

Skylake, as well as Qualcomm and Samsung mobile processors. They have at most two channels and

two ranks. The main disadvantage of this approach is the inaccurate attribution of physical addresses

to components. It is based on measuring the timing of accesses, which can be easily disturbed. For

example, the processing of other instructions in the pipeline may introduce additional delay. The

memory controller is another source of inaccuracies because it can re-schedule DRAM access requests.

This changes the timing and can change row bu�er access behavior. Despite our best e�orts, we could

not reproduce the results on our machines. We suspect that such inaccuracies in the measurement lead

to the inconsistent results that we have observed.

A performance counter based approach for L3 caches is presented by Maurice et al. [79]. The L3

cache is typically split into slices. The slices are addressed in a similar way as the DRAM components.

Each slice has separate access counters, thus for each physical address, it can be determined which slice

was accessed. Their approach uses two addresses that di�er only by one bit. If the output (accessed

cache slice) is the same for both addresses, the bit does not play a role in the result. If the output is

di�erent, then this bit is included in the calculation of the cache slice index.

A con�guration reverse engineering approach is a method introduced by Hillenbrand [39]. The

address mapping is con�gurable, and there are hardware registers that store the con�guration. Reverse

engineering of those con�guration registers is done in this approach. The approach is to change the

DIMM con�guration of the servers, and then to monitor the changes in the con�guration register

space. The result is documentation of registers that goes beyond what is o�cially available by Intel.

This study covers Intel Haswell and Broadwell systems.

3.5 Channel, Bank and Row Bu�er Optimization

This section shows existing approaches to improve performance by reducing bank con�icts, channel

con�icts and row bu�er misses. All of the approaches require to know the hardware address mapping.

They change the OS, runtime system, or memory allocator. A common pattern is to bind threads to

resources such as channels or banks. The performance gains are moderate up to 14% speedup for

software-based approaches and up to 21% for hardware modi�cations.

Reducing Memory Interference in Multicore Systems via Application-Aware Memory Chan-
nel Partitioning is considering co-running applications [89]. The authors pro�le applications re-

garding their accessed DRAM rows, improve the request scheduling and map the applications to sep-

arate channels. On average their method achieves 11.1% higher throughput compared to application-

unaware scheduling. The hardware is simulated because the required performance counters and pos-

sibilities to in�uence the channel mapping, and request scheduling do not exist in real hardware. The

considered applications are from SPEC CPU2006.

Software-Hardware Cooperative DRAMBank Partitioning for Chip Multiprocessors is an ap-

proach for lowering the interference on the DRAM between applications [86]. This work also assumes

a system with multiple co-running applications. In their approach, the co-running applications are
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mapped to di�erent banks. The maximum reported speedup is 14%.

Reducing NoC and memory contention for manycores by Chandru et al. [14] is a study that uses

the Tilera processor. It has 4 memory channels and 8 banks on each channel. The default addressing

uses the bits 13, 14 and 15 to determine the bank and bits 34 and 35 determine the channel. There is no

XOR hashing. The memory controller schedules access requests so that open pages are prioritized and

the requesting core is not starved. The optimized addressing restricts each core to a speci�c channel

and bank. Cores always access the closest memory controller which reduces NoC contention. When

one core uses only one bank the best performance was achieved. The performance results show about

10% higher bandwidth in Stream add.

Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems is an OS based

page allocation scheme by Huang et al. [40]. This operating system changes the page allocation to

assign banks to cores. It removes interference from multiple cores and improves performance by 7%

on average. This research was done on simulated hardware.

ALoadBalancing Technique forMemoryChannels is introduced by Oh et al. [92]. They introduce

the skewness metric to express the imbalance between memory channels. It is de�ned as the ratio of

minimum value to the maximum value of the total number of requests. In their experiments, the skew-

ness reaches up to 1.3 in one benchmark. In all other benchmarks, the channel usage is well balanced.

Their optimization approach is a change in hardware that allows them to schedule requests to di�erent

channels at runtime. It brings at most 10% of speedup. This study covers HBM on GPGPUs.

Trading CacheHit Rate forMemory Performance by Ding et al. [19] is an approach for increasing

the row bu�er hit rate. Hit rates are increased by changing the data layout. The maximum performance

gain is about 14% in applications with irregular memory access pattern. Those are applications, where

the indexes to arrays are computed by functions and no known at compile time. The optimization is

implemented in the compiler and a runtime environment.

Micro-Pages [114] is an approach that aims for better utilization of the row bu�er. They describe

the phenomenon of reduced row bu�er hit rates with a higher number of threads. They also observed

that a large number of accesses, within heavily accessed OS pages, is too small, contiguous areas. The

co-location of chunks from di�erent OS pages in a row-bu�er improves the overall utilization of the

row bu�er contents. They explore the reduction in OS page size and software or hardware assisted

migration of data within DRAM to achieve the co-location. On average performance can be increased

by 9% and at most by 18%. This research was done using simulated hardware.

Memory Row Reuse Distance is a metric by Kandemir et al. [56]. More speci�cally, they introduce

to intra-core and inter-core row reuse distance. It is similar to the already known reuse distance which

is often used for analyzing cache behavior. The row reuse distance is measured in simulated hardware.

They also present an optimized o�-chip memory request scheduling that improves the performance

up to 21%. This optimization requires a hardware change in the memory controller.

3.6 Summary and Opportunities for Improvement

Some tools, like Memphis [83], Memprof [61] or DProf [97,98] implement their own low-level hardware

interface. They only support outdated AMD processors, and it requires e�ort to make them run on

current processor models.

All of the tools, that have automated detection features focus on one speci�c problem [61,69,71,71,72,

73, 83, 98, 103, 104, 120, 125, 128, 131]. They can not be used fo �nd other performance problems, that

they were not designed for. For real usage, when there are multiple potential performance problems

in an application, it can be a burden to use multiple di�erent tools to identify all performance prob-
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lems. Those tools also only capture data that is required for their single purpose. It makes it hard or

impossible to re-use the data for �nding other performance problems.

In contrast, the manual exploration tools do not have any automatic detection features [21, 30, 31,

43, 45]. They are versatile but require a deep understanding and manual e�ort to �nd performance

problems.

False sharing detection has evolved and improved. Older approaches like Predator [68] have the bur-

den of high overhead. Hardware-assisted measurements have reduced the overhead considerably [17,

17, 67, 74]. Detection results were improved. Older tools, like Sheri� [66] miss many cases of false

sharing. Some tools can theoretically report false positives [67]. Others are incompatible with certain

programming techniques, such as locks or atomics [17,66], as reported by Khan et al. [57]. Feather [13]

needs a custom Linux kernel to do low overhead pro�ling, and Predator [68] and Huron [57] only work

when compiled with LLVM.

The detection of accurate memory bandwidth contention is still an unsolved problem. High latency

memory accesses can be pointed out, but no decision about memory bandwidth contention is done [61,

69, 71, 73, 83, 120] The DR-BW [128] approach was only demonstrated for remote DRAM contention.

It is a machine learning approach and the exact mechanism of how it works and how the hardware

measurement indicates bandwidth contention is not known.

Overall there is a lack of comprehension of the available hardware metrics. There are many options

available for measurement, but few publications explore their meaning and applicability for perfor-

mance analysis [24, 88, 129]. They do not cover instruction sampling.

With our approach, it is only necessary to record data once and then apply automatic detection methods

for two separate problems on the same data. The two di�erent problems that can be detected are false

sharing and main memory bandwidth contention.

To the best of our knowledge, all of the optimizations for channel con�icts, bank con�icts, and increased

row bu�er hits are modi�cations of the OS, runtime system, compiler, or hardware [14, 19, 40, 56, 86,

89, 92, 114]. Optimization of an application itself is di�cult because of virtual to physical address

translation and the complex DRAM address mapping. Most of the studies are done using simulated

hardware because on real systems the address mapping is unknown. Only a small performance increase

of at most 18% was demonstrated for those kinds of optimizations. Studies demonstrate a common

pattern, that an increased number of threads or co-running applications increase interference and thus

reduce the hit rate in row bu�ers. In summary, the possible performance gain is low, but the required

changes are high.

It is required to know the address mapping to study the channel, rank, and row bu�er behavior in detail

and to implement optimizations. There are existing reverse engineering approaches for the DRAM

address mapping. However, they fail in practical application [39, 96]. A performance counter-based

approach for L3 cache slices [79] is an inspiration, but no solution of DRAM address mapping. Overall,

there is no solution available to get to know the DRAM address mapping of the Intel server systems

that we use.
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Chapter 4

Discovery of Memory Performance
Problems

Finding performance problems in code can be di�cult, even with the help of performance analysis

tools. A user usually has a hypothesis of what performance problems are in a code, and tries to ver-

ify this hypothesis with data from a performance analysis tool. This can be a di�cult task because

the interpretation of the data or visualizations that are provided by the tool is necessary. Automated

discovery that reports performance problems and their locations simpli�es the process. As discussed

in Chapter 3, all of the existing automatic approaches focus on one speci�c performance problem. It

makes the usage of such tools less practical for real applications.

We have a combined detection approach that can detect false sharing and main memory bandwidth

contention. For the memory bandwidth contention three possible causes can be identi�ed. First, an

imbalance in the usage of NUMA resources. Second, an imbalance in the use of memory channels.

Third, a low row bu�er hit rate. Figure 4.1 shows the detectable performance problems and their

relationship. The NUMA imbalance, channel imbalance, and row bu�er con�ict detection methods

can be applied in parallel. There is no dependency between those methods. We chose the order to

make it easier to follow the description in this thesis.
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Figure 4.1. Grey ellipses show detection methods. Red boxes indicate performance problems. Band-

width contention and false sharing are two distinct performance problems. Three causes for bandwidth

contention can be di�erentiated. Two types of false sharing can be di�erentiated. Other types of mem-

ory problems can be discovered using manual analysis methods.

4.1 Candidate Selection

The automatic detection of performance problems consists of two steps. First, it selects function and

object combinations as candidates. Second, these candidates are checked for signs of memory per-

formance problems using the algorithms introduced later in this chapter. A candidate is a pair of a

function accessing an object. Objects are identi�ed by a common allocation call stack. The reason be-

hind this grouping is that functions group the application code into di�erent parts. Another grouping

option would be to use loop nests instead of functions. But loop nests can not be directly identi�ed

in the instruction sampling data. Because memory accesses are of interest, accesses to objects are an-

other possibility to distinguish di�erent parts of an application. The combination of a speci�c function,

that access an object should have a constant behavior, which can be analyzed by our detection algo-

rithms. The creation of candidates is visualized in Figure 4.2. The left side (Figure 4.2a) shows the

list of functions, each with the objects accessed by the function. The right side (Figure 4.2b) shows

the list of candidates that will be checked for performance problems. All function and object pairs are

considered as candidates. Except for those functions that contribute less than 1% to the total execution

time. Excluded functions can at most bring a one percent speedup if their execution time was fully

eliminated, which is not possible in practice. Excluding those functions can speed up the automatic

detection process.
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(a) Function accessing objects.

Figure 4.2. An example of candidate creation from a list of functions that access objects.

4.2 False Sharing

False sharing is hard to detect manually because its occurrence depends on the data layout, cache line

size, compiler, and memory allocator. Despite numerous previous e�orts [13, 55, 66, 67, 68] detecting

false sharing is still di�cult and previous tools could not identify some cases of false sharing as we

show in Chapter 7. Some tools can theoretically report false positives [67]. Others are incompatible

with certain programming techniques, such as locks or atomics [17,66]. The previous tools are special-

ized tools for false sharing detection and cannot �nd any other performance problems. Our approach

can be applied to general instruction sampling data, which can also be used to detect other types of

performance problems.

Instruction sampling provides data about the coherency status of accessed cache lines. The hit modi�ed

�ag (HITM) indicates that the cache line, in which the requested data resides, is shared with another

core and has been previously modi�ed. The idea to use the hit modi�ed �ag was proposed before [77].

But no concrete algorithm to identify false sharing and di�erentiate it from true sharing is given in

this earlier publication, and objects cannot be pointed out. We add such di�erentiation and can give a

clear answer whether there is false sharing or not without any further manual interpretation. Because

of the precision of instruction sampling we can point out the objects that are a�ected by false sharing

and the source code lines where the memory accesses are happening.

4.2.1 Object Identification

Before we explain the method of false sharing identi�cation, we need to clarify how dynamically allo-

cated objects are identi�ed. Objects can be identi�ed by a common allocation call stack or as individual

allocations. For example, two threads that execute the same code that contains a memory allocation

would lead to two objects being created. When identifying objects by individual allocations, they are

two di�erent objects. When we identify them by the common call stack, both are combined into one

object. It is important to di�erentiate those two identi�cation methods. We use the terms common call

path and allocation to di�erentiate the two in the following description of false sharing identi�cation.

In the database queries, if we use the call stack based identi�cation, the call_path_id is speci�ed. If we

refer to the object allocation id, then the allocation_id is speci�ed.
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4.2.2 Confirmation of False Sharing

The HITM �ag itself does not indicate false sharing. It only indicates that accessed data is outdated

because it has been modi�ed by another core, and there is a modi�ed copy in another cache. For

example, true sharing does also trigger the HITM �ag to be set on memory access samples.

To make sure that there is indeed false sharing and to di�erentiate false sharing from true sharing,

several conditions are checked. The challenge in specifying the conditions is that they must be as

loose as possible, requiring only a minimal amount of samples. So that sparse sampling is enough to

detect false sharing. But the conditions must also be tight enough to ensure that only real false sharing

is detected and no false positives are raised.

The algorithm is applied to a candidate as described in Section 4.1. The input for the false sharing

detection is a function and an object allocation call path. For our false sharing detection, we look at pairs

of memory accesses. If any two di�erent memory accesses samples satisfy the following conditions,

then those two accesses have caused false sharing.

1. They access the same cache line and there are (other) accesses to that cache line that have the

HITM �ag set.

2. The accessed object has the call path id of the currently considered as a candidate.

3. The accesses come from the function that is currently considered as a candidate.

4. The thread ids are di�erent.

5. The accessed addresses are di�erent.

6. The timestamp di�erence is within 5 ms.

7. Both accesses are writes or one of them is a read and the other one a write.

The �rst condition �lters cache lines that have accesses with the HITM �ag set. This is the pre-

condition of any case of false sharing. It considerably lowers the number of accesses to check because

we only need to look at those cache lines where the hardware has detected modi�cations. The second

and third conditions limit the scope to the currently considered candidate. The third condition also

excludes data sharing across functions, that often happens in consumer-producer patterns. The fourth

option makes sure that accesses come from di�erent threads. One thread could case a HITM access if

it moves to another core. Such cases are excluded by this condition. We do not need to pin threads

to cores like other previous approaches [67] need to. The �fth condition separates true sharing from

false sharing. If the accessed addresses are the same, then there is true sharing. If they are di�erent,

then there is false sharing. The sixth condition is there to exclude false sharing that is not performance

relevant. The last condition makes sure that there is a read-write, write-read or write-write condition.

A read-read does not cause false sharing.

Additionally, we di�erentiate intra-object and inter-object false sharing. This is a feature that none

of the existing tools provide. Intra-object false sharing is false sharing that occurs within one object.

That means the culprit is the data layout. For example, in an array of structs. The object id must be the

same for both accesses. In contrast, inter-object false sharing occurs between objects allocated with

individual malloc calls. Thus the memory allocator (together with the speci�ed data layout) causes

false sharing. In this case, the object id must be di�erent.

Because we track the lifetime of objects, reuse of addresses can not incur false positives. Because

the analysis is done for each object individually, objects that are allocated at di�erent places in the

source code, but happen to share the same cache lines, are not covered by our approach. They are not

systematic false sharing.
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4.3 DRAM Contention

The number of cores in computers is increasing, but the memory bandwidth has not scaled accordingly.

Thus, the memory bandwidth is often limiting the performance of today’s systems. Finding memory

contention in source code is di�cult. Factors such as data locality, cache sizes, prefetching, and many

other software and hardware characteristics in�uence the required DRAM bandwidth. High bandwidth

consumption that can be measured using the PMU is not necessarily an indicator of DRAM contention.

Also, the attribution to source code locations and objects is hardly possible with those bandwidth

counters.

We introduce an approach to use instruction sampling, identify performance degrading bandwidth

usage, and attribute it to source code lines and objects. In cases of high bandwidth utilization, our

method can distinguish if an application is su�ering from bandwidth contention or if it is within the

limits of the system.

4.3.1 Latency as Indicator For Bandwidth

Instruction sampling data can be precisely attributed to code and data, but memory bandwidth can not

be measured with instruction sampling. Our idea is to use the latency of a DRAM load as an indicator

of bandwidth contention. Loading data from a memory can be done with a �xed latency. If other

issues, like bandwidth saturation, occur, the load request is delayed, and the total time to complete the

load instruction increases. Figure 4.3 shows the increase in latency when increasing the main memory

bandwidth. The data was generated with the Intel memory latency checker [122] on the systems which

are introduced in Section 4.3.2. It shows that the latency stays low with only a small increase until the

bandwidth gets close to the hardware limit. At this point, when the system reaches its throughput

limit, there is a sharp increase in latency. This relationship is well known in queuing theory. When the

arrival rate (bandwidth requirement of the application) is higher than what the system can process in

a certain time (maximum hardware memory bandwidth), the time required for queuing and processing

(latency) of the requests will increase. There are bu�ers in the hardware, that can store the in-progress

requests. This experiment was done using a software-based measurement of latency and bandwidth.

The transferred amount of data and number of memory accesses is calculated. Only the execution

time is measured. Based on those values, the bandwidth and the latency of a single access can be

calculated.

comet
spica

Figure 4.3. The latency change of DRAM accesses with an increased memory bandwidth. The latency

and bandwidth are measured in software. Spica and Comet are two di�erent hardware platforms de-

scribed in Section 4.3.2.
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Measurement on Intel CPUs

After having introduced the concept of latency based bandwidth contention detection, we need a way

to measure memory access latency on processors. Because we also want to compare our latency based

detection method with direct bandwidth measurement, a way to measure the memory bandwidth is

also required.

Current Intel processors have a powerful performance monitoring unit (PMU) [52, Chapter 18]. It has

support for instruction sampling and performance counters. With performance counters, hundreds

of di�erent events can be monitored. Among them are di�erent ways to measure the main memory

bandwidth and di�erent ways to measure the memory access latency. Naturally, the question arises

how those methods di�er from each other, and if one of them is superior compared to the others.

This question is not easy to answer because there is little documentation. What those counters really

measure and how they are implemented is unknown to the public. Experimental evaluation is required

to check if a certain counter reports the intended event accurately.

The latency based concept described above assumes that the latency is the pure DRAM access latency.

That means the measured latency is based only on accesses to the DRAM, not access to any other cache

levels. And that the latency is measured from the beginning of the request to the memory until the

completion of the request. Other parts of the instruction execution, for example, waiting time until an

execution port becomes available, would also in�uence the results. Thus, to apply the latency based

detection method, an exact understanding of what is measured by the hardware latency counters is

required.

We use experiments with micro-benchmarks to �nd out what is actually measured by di�erent PMU

based methods. We explain and examine the various trade-o�s that come with di�erent PMU measure-

ment methods. Our conclusion shows that there is only one way to correctly measure an application’s

bandwidth and that other methods do not include accesses caused by the hardware prefetchers. For

latency measurement, we show that the instruction sampling latency is not the pure DRAM access

latency, because it includes delays that come from the in-core processing of the instruction. Never-

theless, our experiments show that it is suitable for the detection of bandwidth boundness and that it

has better attribution to program locations compared to bandwidth measurement and can consider the

e�ects of prefetching. We show concrete results for Intel Skylake, Intel Broadwell and Intel Haswell

architectures but our method to verify the performance counters can be applied to any type of proces-

sor.

4.3.2 Experiment Setup

All of the experiments were executed on machines running Ubuntu 18.04, and the micro-benchmarks

were compiled with gcc 7.4. All measurements were done with Linux Perf version 4.17.8. Perf supports

multiplexing of events if there are not enough physical counters. We do not use this feature. In our

experiments, events are always pinned to a physical counter for the highest accuracy. For experiments

that involve instruction sampling, PerfMemPlus was used. All reported numbers are averages from 6

repeated executions. The migration of OpenMP threads has been disabled for all experiments.

Hardware

We conducted the experiments on the last three Intel architectures and machines with di�erent DRAM

speed. We used one Haswell, two Broadwell, and one Skylake machine. The two Broadwell systems

have a big di�erence in DRAM speed. The details of the machines are listed in Table 4.1. We used

numactl to limit the execution to one of the available nodes and its local memory.
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Table 4.1. The hardware used for the evaluation of bandwidth and latency measurement methods.

Name Architecture CPU DRAM Speed
Arcturus Broadwell E5-2699v4@2.2Ghz 2400Mhz

Comet Haswell E5-2699v3@2.3Ghz 1847Mhz

Rigel Skylake Xeon 8176@2.1Ghz 2666Mhz

Spica Broadwell E7-8890v4@2.2Ghz 1600Mhz

We want to run our experiments with and without using the hardware prefetchers, to study the in-

�uence of the hardware prefetchers. The prefetcher of Intel processors can be turned o� and on in

software. It can be done on a running system by writing values into machine speci�c registers [42].

We use the msr-tools to write to the relevant registers using the following commands:

• Disable prefetching: sudo wrmsr –all 0x1a4 15

• Enable prefetching: sudo wrmsr –all 0x1a4 0

• Read the current status: sudo rdmsr 0x1a4

Memory Read Benchmark

We use the memory read benchmark to issue read requests with varying bandwidth and then measure

the resulting latency. The memory read benchmark sequentially reads a large array from memory.

The hardware prefetchers can predict the access pattern and load data. After issuing four memory

read operations, a con�gurable number of NOPs is inserted. Those NOPs are used for regulating the

bandwidth and load on the memory system. The array called A consists of records, each with a size

of 64 Bytes. Only the �rst element in a record is accessed. This means that each cache line is only

accessed once. The array A is de�ned as volatile to force a read memory access. The code is shown

in Figure 4.4. When the hardware prefetchers are turned o�, this benchmark allows �ne regulation

of the memory bandwidth, as shown on the left side of Figure 4.5. Because there is a steep change

in bandwidth between 50 and 55 delay cycles, additional data points were added there. When the

hardware prefetchers are turned on, no such �ne control is possible. Changing the number of threads

still allows for a course regulation of memory bandwidth, as shown on the right side of Figure 4.5. We

only show the graphs for one system because other systems show similar results. The coe�cient of

variation of the bandwidth measurement is 0.30% on average and at most 3.97%.

1 #pragma omp parallel

2 for (long s = 0; s < 200; s++) {

3 for (long t = 0; t < 10000000; t++) {

4 for (int c = 0; c < 4; c++) {

5 A[c][t].next;

6 }

7 for(unsigned long i = 0; i < delayCount; i++) {

8 asm volatile("nop");

9 }

10 }

11 }

Figure 4.4. The code of the main loop of the memory read benchmark.
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Figure 4.5. The DRAM bandwidth of the memory read benchmark. Course-grain control of the band-

width is possible by changing the number of threads. Fine-grain control of the bandwidth is possible

by adjusting the number of delay cycles.

Stream Triad

We use Stream triad [82] because we can calculate the amount of transferred data. Then we compare

it with the measured amount of data transfer to verify the accuracy of bandwidth counters. All arrays

of the code in Figure 4.6 have the same size. The array a and b are read. The array c is written. The

current Intel architectures use the write allocate scheme, which means that the array c is also read into

the caches before it can be written to main memory. We do not use non-temporal stores. Thus, the

total read amount of data is three times the array size. It needs to be multiplied by 11, because the

benchmark is executed 10 times and for initialization, all arrays are written once. Additionally, the size

of the binary is added. We use an array size of 610.4 MB, which results in a total transferred size of

21.974 GB.

1 #pragma omp parallel

2 for(long i = 0; i < n; i++) {

3 c[i] = b[i] + s ∗ a[i]

4 }

Figure 4.6. The code of the main loop of Stream Triad.

4.3.3 Direct Bandwidth Measurement

Direct measurement of the memory bandwidth using the PMU is possible. All the methods that we in-

troduce in this section are based on performance counters. Thus attribution to source code and objects

is not as good as with the instruction sampling based approaches. Based on the documentation we

found the following performance counters that involve DRAM accesses or DRAM bandwidth:

1. mem_load_uops_l3_miss_retired.local_dram

mem_load_l3_miss_retired.local_dram

2. unc_h_requests.reads

3. uncore_imc_*/cas_count_read/

4. o�core_response.*

The �rst counter in the list counts the number of uops that load data from the local DRAM. It is not

suitable for measuring the DRAM bandwidth. First, a load uop can have di�erent data widths. There
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is no information about the data size of the load given. Second, loads that are classi�ed as LFB hit, but

the data actually comes from the DRAM are not included in this counter.

Counter number 2 and 3 are very similar. Both are in the uncore part of the CPU. They produce sim-

ilar results and share the same advantages and disadvantages. The di�erence between them is that

the unc_h_requests.reads counter is inside of the home agent and the uncore_imc_*/cas_count_read/

counter is in the memory controller. The o�core_response counters also look like a viable candi-

date. We focus our detailed evaluation on the memory controller counters and o�core response coun-

ters.

Figure 4.7. The location of di�erent bandwidth and latency counters within the CPU. Uncore counters

have more limitations compared to core-local counters.

Memory Controller Counters

The counter inside of the integrated memory controller (IMC) is called uncore_imc_*/cas_count_read.

It counts the number of cache lines transferred by the memory controller from the DRAM to the pro-

cessor. There are similar counters for written cachelines called uncore_imc_*/cas_count_write.

There are multiple memory controllers on one chip. In the event name, instead of the asterisk, the

number of the memory controller can be used. When using Perf, an asterisk instead of the number

will activate counting on all memory controllers, and the values of all memory controllers are added.

To get the number of bytes transferred this value has to be multiplied by 64. Recent versions of Perf

already do this for the user and print the data in MiByte.

Because the counters are located in the uncore part of the CPU (Refer to Figure 4.7), they can only

count in global mode. It is activated in Perf with the –all-cpus �ag. That means that they count

everything, including memory tra�c caused by other applications and the operating system. This

introduces additional sources of noise to the measurement. Because those counters measure the whole

system, which could allow gathering information about other running applications, extended privileges

are required. Either the perf_event_paranoid �ag must be set to -1 or root access is required. This may

hinder usage on shared systems. Because all cores of a processor share the same memory controllers,

they also count for one whole socket. This makes attribution to code and data even more di�cult

because the tra�c cannot be attributed to a speci�c core.

The –per-socket �ag can be used to gather statistics for every socket individually. For example, the

memory bandwidth usage of each socket can be used to diagnose unbalanced usage of the memory in

NUMA systems.

CHAPTER 4. DISCOVERY OF MEMORY PERFORMANCE PROBLEMS 53



O�core Response Counters

Another option to count the amount of transferred data are the o�core response counters. Those

counters are located at the edge between the core and the uncore part of the processor, as shown

in Figure 4.7. This means that they can be attributed to speci�c cores, but still have the attribution

problem that is common for all performance counters as explained in Section 2.3. Because the o�core

response counters are core local and can be restricted to the pro�led application, it is possible to use

them even on systems with restricted access. Only the bandwidth of the pro�led application will be

counted. It leads to lower noise in the measurements.

There are di�erent sub-events for the o�core_response events. It is possible to select either demand

accesses, prefetched accesses, or all accesses. Memory reads, writes, code reads, or all accesses can also

be con�gured. The response type can be con�gured. It can be local DRAM, remote DRAM, or various

cache coherence dependent options as well as an option to include all responses. Overall, those o�core

events allow a very �ne selection of speci�c events.

The event we used for the experiments on Haswell and Broadwell is o�core_response.all_reads.llc_

miss.local_dram. According to the documentation, it counts all read accesses (including code reads and

reads required for later writes) to the local dram no matter if they are demand or prefetch.

On Skylake the event we used is o�core_response.all_data_rd.l3_miss.any_snoop. The more speci�c

event, which according to the documentation "Counts all demand and prefetch data reads that miss

the L3 and the data is returned from local dram" called o�core_response.all_data_rd.l3_miss_

local_dram.snoop_miss_or_no_fwd never counts any events in our experiments.

Bandwidth Experiment Results

The experimental results show that the o�core_response counter does not include accesses due to

prefetching, even though the documentation says that demand and prefetched accesses are included.

On the Skylake system, even disabled hardware prefetchers do not result in correct measurements.

To verify whether the bandwidth measurement is accurate, we use the Stream Triad benchmark as

introduced in Section 4.3.2. Figure 4.8 shows the results. First, we can see that the results are similar

on Haswell and Broadwell systems.

Memory Controller Counters The IMC counters accurately measure the amount of transferred

data. The calculated data volume is a little lower because only the part of the main loop in Stream

Triad and the initialization add to the total amount of transferred data. The IMC counter counts every

memory transfer that happens while the benchmark is running. The IMC counter has higher noise

because it not only counts the applications data transfers but all data transfers that occur while the

program is running. This includes data transfers due to the operating system and other applications

running at the same time.

O�core Response Counters The o�core counter is limited to the program under test but still counts

other memory accesses that occur in the program and thus show a transferred data volume that is

slightly higher than the calculated one. The documentation says that prefetched accesses are included

[52, Chapter 18, Page 41] when using this counter. However, our experiments show that the data

transferred because of prefetching is not included. When prefetching is turned o�, the data is the same

as with the other counters and the calculated data amount. In contrast, when prefetching is turned on,

the o�core response counters do not report the correct data volume.
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Figure 4.8. The transferred data volume of the Stream Triad benchmark measured with o�core repsonse

counters and IMC counters compared to the calculated transferred data.

Exceptions on Skylake On the Skylake machine (Bottom left of Figure 4.8), even if prefetching

is turned o�, the o�core counter does not report the correct transferred data. But an e�ect of the

prefetcher setting can be seen when looking at other variants of the o�core counter. There are coun-

ters for prefetched data (o�core_response.pf_data_rd.l3_miss.any_snoop) and demand data (o�core_

response.demand_data_rd.l3_miss.any_snoop). When hardware prefetchers are turned o�, the o�core

response counter for the total amount reports the same value as the demand counter. The counter value

for prefetched data shows values close to zero. In contrast, when hardware prefetchers are turned on.

About two-thirds of the data volume is counted by the prefetcher counter and about one third by the

demand counter. The sum of those two counters for prefetched data and demand data is always the

sum of the counter that includes all accesses.

4.3.4 Latency Measurement

There are two options available for latency measurement. The �rst one is a metric based on perfor-

mance counters, and the second one is the latency reported by instruction sampling.

Instruction Sampling

The memory access latency is one of the attributes of a sample. This latency is the time from the start

of the execution of an instruction until it reaches the globally observable state [52, Chapter 18 p. 22].

Because the memory level, from which the data was loaded is an attribute of every sample, latency can

be calculated for each memory level individually. In these experiments, only those samples which hit

in the DRAM and that hit in the TLB are included. Latency of other cache level hits is not included.

We calculate the average latency from the �ltered samples. The instruction sampling latency has the

most precise attribution to code and data. Only data from the pro�led application is collected, and no

special privileges are required to use this pro�ling method. We use PerfMemPlus to do the pro�ling and

view the data because it is designed for instruction sampling and provides easy access to the captured

data.
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Performance Counters

Another way to measure the latency is to use a metric that is based on performance counters. All

required counters are part of the core and L1 cache. Same as the o�core response counters, they can

be attributed to speci�c cores and data recording can be limited to the pro�led application.

The counter cpu/l1d_pend_miss.pending counts the time spent for loading data into the L1 cache. It

sums up the time for parallel accesses. In other words, this counter is increased by the number of

currently outstanding L1 data cache misses in every cycle.

In addition the counters cpu/mem_load_uops_retired.l1_miss and cpu/mem_load_uops_retired.hit

_lfb are required. The �rst one counts the number of load instructions that miss the L1 cache. The

second one counts the number of load instructions that hit the line �ll bu�er (LFB).

Based on those counters we de�ne two metrics. The L1 miss latency expresses the average time it

takes to ful�ll a load request that missed the L1 cache. It does not include LFB hits. The load miss real

latency is the average time it takes to ful�ll a load request that missed the L1 cache or hit in LFB. The

load miss real latency is a metric that is already available in recent Perf versions.

For abbreviation of the long event names the following Greek letters will be used in the metric de�ni-

tion:

α = cpu/l1d_pend_miss.pending

βHaswell,Broadwell = cpu/mem_load_uops_retired.l1_miss

βSkylake = cpu/mem_load_retired.l1_miss

γHaswell,Broadwell = cpu/mem_load_uops_retired.hit_lfb

γSkylake = cpu/mem_load_retired.fb_hit

Based on those counters two latency metrics are de�ned as follows:

L1 miss latency =
α

β

load miss real latency =
α

β + γ

The latency is an average for the whole memory hierarchy. It includes the latency of accesses to L2

and L3 caches. In general, it can not be used to measure only the DRAM access latency. Because in our

experiments the micro-benchmark only accesses DRAM and no other cache levels, we can still use it

to measure the DRAM access latency.

Latency Experiment Results

The main insights from the experiments are: First, memory access latency is indeed a good indicator

of bandwidth contention. Second, the e�ectiveness of prefetching can be seen in the latency. Third,

the counter-based metrics only work when including LFB hits. Fourth, the instruction sampling la-

tency consists of in-core instruction processing delays and memory access latency. Despite that, the

instruction sampling latency is suitable for diagnosing bandwidth contention.

Hardware Prefetchers O� Figure 4.9 shows the measured values of the three di�erent latency

measurement methods with rising bandwidth. Common for all four systems is the rise in latency with

higher bandwidth. The absolute values of the load miss real latency and L1 miss latency are higher on

the Haswell system (Figure 4.9 top right graph), compared to the other systems.
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It is also visible that the instruction sampling latency reaches high values even for low bandwidth

situations. We will discuss the reason for that in Section 4.3.4. In contrast, the L1 miss latency and

load miss real latency only increase when there is an actual bandwidth limitation. The load miss real

latency and L1 miss latency have almost the same values. Because there is no prefetching and only one

element per cache line is accessed, there are no LFB hits in these experiments. Looking at the metric

de�nitions in 4.3.4, we can see that in this case, both metrics produce the same value.

In Figure 4.9 three di�erent latency metrics are shown. The coe�cient of variation of the measurements

of the instruction sampling latency is on average 6.48%, and at most 6.69%. For the L1 miss latency, it

is on average 4.15%, and at most 7.81%. For the load miss real latency, it is on average 4.40%, and at

most 7.59%
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Figure 4.9. The results of di�erent latency measurement methods with increasing DRAM bandwidth

when hardware prefetchers are disabled. A selection of threads was picked for this diagram to indicate

low and high bandwidth situations. The middle bandwidth section was left out to not obstruct the

view. Instruction sampling latency can rise even if the DRAM bandwidth limit is not close.

Hardware Prefetchers On When the hardware prefetchers are turned on, the number of delay

cycles plays an important role. Thus, we show separate diagrams for each type of latency. For each

type of latency, it is visible that the latency rises with higher bandwidth. Also, all types of latency

show a dependency of latency value and the number of delay cycles. This is a phenomenon that does

not appear when the hardware prefetchers are turned o�. For the sampling latency in Figure 4.10, we

can see that latency increase at low bandwidth situations does not appear.

The sampling latency (Figure 4.10) and the load miss real latency (Figure 4.11) show the same trend

regarding delay cycles and latency. Even if the bandwidth is almost the same, when the number of

delay cycles is low, the latency is higher. Because of the prefetcher, the main memory bandwidth is the

same no matter how many delay cycles are inserted. In cases with a low number of delay cycles, the

requests for data are issued quickly. The prefetcher does not have enough time to load the required

data. Thus, the requests have to wait a long time until the data �nally arrives. When there are many
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delay cycles, the prefetcher has enough time to load the required data. When the load request is �nally

issued, it will have to wait only a short time.

This is an advantage of the latency measurement compared to the bandwidth measurement. In both

situations, many or few delay cycles, the bandwidth is the same. However, the application with few

delay cycles has more severe performance problems because there is actual waiting time for the data.

In contrast, in the situation with many delay cycles, the prefetcher is simply doing its job, and there is

no severe performance problem.

When the prefetcher is turned on, there will be many hits in the LFB and only very few real L1 cache

misses. This ratio will change depending on the number of delay cycles. Many delay cycles will result

in many LFB hits and few L1 hits. This e�ect is visible in Figure 4.12. A high number of delay cycles

results in a high L1 miss latency because the denominator in the metric de�nition will decrease. We

conclude that the load miss real latency is better than the L1 miss latency to measure memory access

latency.

The coe�cient of variation of the measurements of the instruction sampling latency shown in Fig-

ure 4.10 is on average 53.51% and at most 62.34%. The measurement of the instruction sampling latency

is less stable when hardware prefetchers are turned on, compared to the measurements with disabled

hardware prefetchers. The coe�cient of variation of the measurements of the load miss real latency

shown in Figure 4.11 is on average 12.67% an at most 42.56% The maximum coe�cient of variation

of the measurements of the L1 miss latency shown in Figure 4.12 is on average 13.49% and at most

41.33%.
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Figure 4.10. When hardware prefetchers are enabled, higher DRAM bandwidth and fewer delay cycles

lead to higher instruction sampling latency. The number of threads controls the bandwidth.
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Figure 4.11. The load miss real latency rises with increasing DRAM bandwidth when hardware

prefetchers are enabled. Fewer delay cycles result in higher latency. The number of threads controls

the bandwidth.
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Figure 4.12. The L1 miss latency by DRAM bandwidth when hardware prefetchers are enabled. Fewer

delay cycles lead to lower latency. The number of threads controls the bandwidth.
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Instruction Sampling Latency Analysis We see in Figure 4.9 that the instruction sampling latency

can be high even though the DRAM bandwidth is far from the machine limit. This is a potential

disadvantage for the use of the instruction sampling latency for DRAM contention detection. The

instruction sampling latency is the time needed for the whole processing of the instruction. It is not

only the time it takes to load data. Thus, the instruction sampling latency will increase when there is

an in-core limitation. In contrast, the load miss real latency does not increase because it only starts

counting after an L1 miss already occurred.

To verify that we looked at counters that express in-core saturation of di�erent resources. Among

them is the counter l1d_pend_miss.fb_full. It counts the number of cycles where a demand request

was blocked because of unavailable �ll bu�er slots. Figure 4.13 shows that the number of cycles where

a request was blocked due to unavailable �ll bu�er slots is independent of the memory bandwidth. But

it depends on the number of delay cycles. When the hardware prefetchers are turned on (No Figure

included), there is the same correlation but the value of l1d_pend_miss.fb_full is never higher than

20.000 × 106
. The coe�cient of variation of the measurements of the L1D pend miss FB full counter

shown in Figure 4.12 is on average 5.94% and at most 11.69%.
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Figure 4.13. The number of cycles where �ll bu�er slots are unavailable does not depend on DRAM

bandwidth but depends on the number of delay cycles.

Variation of the Instruction Sampling Latency The latency of the DRAM access samples is spread

over a wide range. Figure 4.14 shows histograms of the instruction sampling latency. The selected

benchmark con�guration of the mem read benchmark is using eight threads, zero delay cycles, and

the hardware prefetchers are turned o�. The latency spreads over a wide range with single values of

over 3500. When using 20 delay cycles, the latency range becomes narrower, as shown in Figure 4.15.

The spread of the latency is similar on all systems. Because the latency can have high variations, it is

important to calculate the average based on a large number of samples. Individual samples can have a

latency far from the average. Relying on single samples may produce misleading results. A cause for

varying latency can be the re-scheduling of requests in the memory controller. To avoid row bu�er

con�icts, the memory controller may delay requests and prioritize other requests, leading to a di�erent
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latency of requests. Because some of the requests will be delayed and other requests will be speed up,

the average latency of a large number of samples will neutralize the e�ect of this re-scheduling in the

memory controller.
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Figure 4.14. Histograms of the instruction sampling latency recorded in one execution of the mem read

benchmark with eight threads, zero delay cycles, and hardware prefetchers turned o�.
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Figure 4.15. Histograms of the instruction sampling latency recorded in one execution of the mem read

benchmark with eight threads, 20 delay cycles, and hardware prefetchers turned o�.

Di�erentiation of In-Core and DRAM Limitations To di�erentiate in-core limitations and DRAM

limitations, we propose two solutions. First, use the l1d_pend_miss.fb_full counter like we did in our

experiments. When high latency is detected, it can be used to �nd out if the core itself is limited.

Second, count the number of cores that concurrently access the memory. If high latency is observed,

but only a few cores access the memory, then the limitation must be in-core because a large number

of cores is necessary to saturate the DRAM bandwidth. Because the information from which core an

access was triggered is also an attribute of a sample, this method is easy to implement based on in-

struction sampling data. The exact number of cores that is required to saturate the DRAM bandwidth

can be determined by a microbenchmark.

4.3.5 DRAM Contention Detection Method

Based on our �ndings about memory latency measurement, we use the following method to discover

DRAM contention within captured samples. We �ag a candidate as su�ering from DRAM contention

if the DRAM access latency is higher than the base latency of a DRAM access in uncontended state.

Based on our results in this section, we conclude that the instruction sampling latency is suitable for

this purpose. The detection method is applied to a candidate, that is a pair of a function accessing an

object as described in Section 4.1.

Measurement of the Uncontended DRAM Access Latency

The uncontended DRAM access latency is a system characteristic. For measuring the base latency of a

DRAM access, we use the ScanRad64IndexUnrollLoop benchmark of pmbw [12]. It is a pointer chasing

benchmark. Elements in an array are accessed in random order, and only after a load is completed, the

address of the next element is known. Only one access at a time is executed. The processor cannot

predict the access pattern. It is the worst case of a local DRAM accesses without contention e�ects.
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We execute this benchmark on a single core with an array size of 2 GB. The benchmark execution is

pro�led with instruction sampling. We take the latency from the pro�led data. This microbenchmark

causes TLB misses due to the large array size and random access to array elements. We include this

additional delay due to TLB misses in the threshold.

DRAM Contention Detection Conditions

For the practical implementation, not only the latency is important, but other conditions have to be

considered as well. The DRAM access latency of a pro�led application is calculated as the average

latency of all samples that meet the following conditions:

1. The originating function is the current candidate function

2. The accessed address is within the current candidate object

3. The memory access is not locked

4. The memory access hits the local DRAM (or remote DRAM)

5. The memory access hits the TLB

The �rst two conditions limit the selection to the current candidate. The third condition excludes

locked accesses. Those are typically used for atomic accesses and usually have high latency. But those

do not have any connection to DRAM contention. The fourth condition limits the selected samples to

the local DRAM (or remote DRAM for �nding remote DRAM contention) so that we only consider the

latency of DRAM accesses and not those of cache accesses. The last condition makes sure that we do

not include latency e�ects that come from TLB misses. The resulting latency is then compared to the

uncontended DRAM access latency for the speci�c system. If the latency is higher than the threshold,

the candidate is �agged with DRAM contention.

In addition to those conditions, we make sure that there is an adequate number of samples to draw

reliable conclusions. This is required because we often saw a high variance in the latency between

individual instructions. First, we require at least 25 samples that meet the above-mentioned conditions.

Second, we require a combined DRAM and LFB hit rate of at least 10% in the context of the considered

candidate. A better approach would be to statistically verify the reliability of the captured data. But for

simplicity, we simply use these two thresholds to make sure that there is a decent amount of samples

to draw conclusions from.

4.4 NUMA Imbalance

A common reason for the occurrence of DRAM contention is the imbalanced use of DRAM bandwidth

on NUMA systems. Applications that were not designed with NUMA systems in mind, often allocate all

memory on only one of the available nodes. Thus, leaving the processor to local DRAM bandwidth of

the other nodes unused and causing contention on one node’s DRAM. In this situation, the interleaved

allocation of the data is a quick solution that can result in a signi�cant performance increase. It would

be helpful to know in advance if the DRAM contention is caused by such an imbalanced use of the

NUMA resources.

We present a metric that expresses this NUMA imbalance and helps to decide if the interleaved alloca-

tion is bene�cial for performance. Each sample contains information if local or remote memory was

accessed. Together with the originating node of the request, which is known through the CPU id in

each sample, we can calculate the NUMA imbalance. The novel NUMA imbalance metric expresses

the degree of imbalance of the memory usage in a NUMA system. It is calculated as follows. For each
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node x, out of all nodes N , the ratio of local memory accesses is calculated �rst. Then the maximum

di�erence of the local ratios is calculated between all nodes of the system. The resulting ratio expresses

the NUMA imbalance within a range of 0 to 1. Where 0 means there is no imbalance, and 1 means there

is a high imbalance.

LocalRatiox =
NumLocal Accessx

NumLocal Accessx + NumRemoteAcessx

NumaImbalance = max
∀x∈N

(LocalRatiox ) − min
∀x∈N

(LocalRatiox )

Together with the relative latency, we can determine if there is a performance problem and give op-

timization advice. It is summarized in Table 4.2. If the relative latency is low, there is no bandwidth

related problem. No matter how big the imbalance is, only a minimal performance bene�t can be ex-

pected from interleaved allocation. If the relative latency is high, a low NUMA imbalance suggests that

the bandwidth limitation does not come from the bad use of NUMA resources. If the relative latency

and the NUMA imbalance are high, a better allocation is expected to bring a signi�cant performance

increase.

Table 4.2. The relative latency and NUMA imbalance guide the optimization process.

Relative
Latency

NUMA
Imbalance Performance Problem

Low Any Not bandwidth limited.

High Low Bandwidth limited but not NUMA related.

High High Bandwidth limited due to ine�cient NUMA usage.

Because this metric is based on instruction sampling, it can be calculated for speci�c function, objects

and source code lines. Thus, individual objects, that su�er from the imbalance can be pointed out and

di�erentiated from other objects in the same application that do not su�er from imbalance.

4.5 Channel Imbalance

A DRAM interface can have multiple channels that provide parallelism for memory accesses. If there

is an uneven usage of the bandwidth capacity of the channels, the performance will su�er. We present

a method to discover such situations of channel imbalance.

In Intel processors, every channel has its own counter for the amount of transferred data. More specif-

ically, it counts the number of transferred cache lines. This counter is referred to as uncore_imc_*/cas_

count_read and uncore_imc_*/cas_count_write. The asterisk stands for the channel number. We record

the counter value every 500 milliseconds and store the results in an SQLite database. With these num-

bers, we can create a timeline of the bandwidth usage on each channel. Benchmarks may experience

short bursts of high bandwidth, which would disappear in an average over the whole application. With

a timeline, they can be seen.

4.6 Row Bu�er Miss

Row bu�er misses can occur in DRAM devices and hurt performance. Intel refers to the row as page,

so we use the term page from now on. We introduce a method to measure the page state and to create

a timeline of it. According to Intel documentation [48], there are performance counters from which

page misses can be derived. There are three states for a row bu�er access that can be distinguished

using those counters:
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• Empty: No row is currently loaded in the bu�er. The requested row needs to be loaded before it

can be accesses. This state has medium access latency.

• Con�ict: A di�erent row then the requested one is currently in the bu�er. The current row must

be written back and the requested one must be loaded into the bu�er. This results in high access

latency.

• Hit: The requested row is in the bu�er. This results in the shortest access latency.

According to the documentation [48], the required raw performance events are:

• ACT_COUNT: Counts the number of DRAM activations.

• CAS_COUNT.RD: Counts the number of DRAM reads.

• CAS_COUNT.WR: Counts the number of DRAM writes.

• PRE_COUNT.PAGE_MISS: Counts the number of DRAM precharge events due to page miss.

Based on those raw event counters, the hit rate for each of the row bu�er states is calculated as fol-

lows:

• PCT_REQUESTS_PAGE_EMPTY = (ACT_COUNT - PRE_COUNT.PAGE_MISS) / (CAS_COUNT.RD

+ CAS_COUNT.WR)

• PCT_REQUESTS_PAGE_MISS = PRE_COUNT.PAGE_MISS / (CASE_COUNT.RD + CAS_COUNT.WR)

• PCT_REQUESTS_PAGE_HIT = 1 - PCT_REQUESTS_PAGE_EMPTY - PCT_REQUESTS_PAGE_MISS

We record the counter value every 500 milliseconds and store the data in an SQLite database. From

this database, we create a visualization with a timeline of the page hit, page empty, and page con�ict

state.
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Chapter 5

Tool Implementation and Features

Performance monitoring hardware changes between processor generations. Previous tools [61,83,98],

which implement a custom hardware interface, require code changes for new hardware. The data that

is collected through instruction sampling can be huge. To process the large data e�ciently, a scalable

storage format is required. Previously, the data was stored in binary formats [31, 73, 104, 120, 128],

which makes it hard to explore the data and di�cult to modify existing tools.

The following key ideas in our tool design address these issues. The central component in PerfMemPlus

is Linux Perf. Perf is available as part of the Linux kernel and can be run on a variety of Linux based

operating systems without modi�cations, and it comes with regular updates for new hardware. We

add a few other software components around Perf to make its use easier and tailored to the analysis of

memory accesses. Figure 5.1 shows the software components.

Figure 5.1. The components of PerfMemPlus.

Perf cannot resolve dynamically allocated objects, so we add an allocation tracker to provide this ca-

pability and merge the captured data based on timestamps. Perf stores the recorded sampling data in a

binary, Perf speci�c format. Through a scripting interface, we export the data into an SQLite database.

The advantage of SQLite is that it is an easily usable data format and separates the recording tool from

the analysis tool. Because the instruction sampling data on its own does not provide insights to soft-

ware developers, we supply a GUI viewer tool with PerfMemPlus. The viewer executes the automatic

detection of performance problems as described in Chapter 4 and displays the �ndings. The viewer also

supports the manual exploration of the data. It has a unique approach to guide the user through the

data step by step without overwhelming the user with too much information at a time. The following

sections describe the details of our tool design and the challenges we had to solve for implementing

this tool. It also explains the analysis features of the viewer. PerfMemPlus is open source and the code

is available at https://github.com/helchr/perfMemPlus.
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5.1 Profiling Tool

The pro�ling tool of PerfMemPlus records the pro�ling data and prepares it for analysis. It consists of

di�erent components. This section explains the individual components and their interaction.

5.1.1 Linux Perf

Because Linux Perf is developed by the Linux kernel development community, we expect that this

tool will be continuously maintained. We can update the underlying Perf without modi�cations to

PerfMemPlus as long as the interface remains stable. We do not use the perf_event_open syscall inter-

face. Instead, we use the command line interface provided by the Perf. This makes the implementation

simpler and better isolates the individual components. We do not modify Perf itself because we would

have to maintain a forked version of the original Perf. Instruction sampling has the advantage that it

can analyze an application without modi�cation of the source code of the application. Only debug in-

formation needs to be available in the binary, and fully optimized binaries are supported. Perf already

provides all those capabilities.

5.1.2 Run Script

The run script starts the pro�ling of the application under test and executes the data preparation af-

terward. To keep the usage easy there are only a few input parameters:

• Sampling period (-c): The rate at which memory read accesses are sampled. A lower value leads

to more samples being taken. It results in higher overhead.

• Minimum allocation size (-a): Memory allocations below the speci�ed size are ignored. It can

help to reduce the overhead in case there are many small allocations. The ignored allocations

are reported as one anonymous object together with stack and static data.

• Output �le (-o): The �le to save the resulting SQLite database.

The run script con�gures perf for instruction sampling and starts the pro�ling process. It uses the

options that we have found to work well in our experiments.

The following events are used:

1 cpu/mem−loads,ldlat=1,period=$samplingPeriod/P

2 cpu/mem−stores,period=$storeSamplingPeriod/P

3 cpu/cpu−cycles,period=$cycleSamplingPeriod/P

4 cpu/instructions,period=$cycleSamplingPeriod/P

The �rst event is memory load instructions that have a latency equal to or greater than 1 cycle. The

sampling period is selected by the user. For the remaining three events, the cycle sampling period is

used. It is the con�gured sampling period times 1000. It is higher because details about stores are not

required, and cycles and instructions occur at a much higher frequency than memory load instructions.

Thus, sampling instructions and cycles at the same rate as memory load instructions would cause a high

overhead. The remaining three events are memory stores, cycles, and instructions. The cycles are used

to calculate the contribution of each function to the total execution time. The instructions, together

with the cycles, can be used to calculate the instructions per cycles (IPC). The capital P in the event

de�nition activates the highest precision mode. In the case of those events, it activates the instruction

sampling. The run script calls the perf record command with the following parameters:

• –sample-cpu: Enables recording the CPU core number on which a sample was taken.
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• -d: Enables recording the data address.

• -W: Enables recording the latency of instructions.

• -e: Speci�es the events introduced above.

• -g: Enables capturing call stacks for each sample.

• -k: Speci�es the clock source. Details are described in Section 5.1.4.

• -o: Speci�es the output �le.

The run script also sets the minimum size of allocations to ignore as an environment variable to transfer

it to the allocation tracker. The allocation tracker can not take normal input parameters because it

loaded as a library at runtime. The allocation tracker reads the environment variable and applies it for

pro�ling.

5.1.3 Allocation Tracker

Together with Perf, we use an allocation tracker. The allocation tracker is based on the one used in the

Memprof [7] tool. The memory allocation functions like malloc and free are replaced with the ones

de�ned in the allocation tracker. Those new functions record a call stack, allocated address range, and a

timestamp before calling the original memory allocation functions. After the application has �nished,

the stored data is printed into text �les. Data allocated on the stack or statically allocated data can not

be resolved using this method. Accesses to this kind of data will show up grouped into one anonymous

object.

The original Memprof version does never free memory. This way addresses can not be reused. This

makes it easier to process the recorded data. But it alters the default behavior of the pro�led applica-

tions. In our implementation, we allow the deallocation of memory and handle re-used addresses.

The allocation tracker is using the LD_PRELOAD feature, which is available on Linux systems to re-

place the existing allocation functions. A shortcoming of this approach is that it can not be used if

another library is also replacing the memory allocation functions. For example, some MPI implemen-

tations replace the default memory allocators.

Overhead Reduction

We have done several modi�cations to the original memprof version of the allocation tracker. We

have added a feature that allows ignoring small allocations. In some situations, when applications

issue many small allocations, excluding those allocations reduces the overhead dramatically. Samples

are still collected, making it possible to still �nd performance problems. Just the attribution to those

speci�c objects is no longer possible.

Compared with the original Memprof version, the amount of printed text is reduced. There was re-

dundant information in the original format, which we removed. This helps to decrease the overhead

of tracking and to increase parsing speeds in the data merger.

Benchmarks are often executed as part of scripts, which may call Unix tools like cat, mkdir, dirname,

and so on. We check the name of the invoking process and if one of those tools is found, we exclude

them from the allocation tracking. This is another measure to reduce the overhead. We have encoun-

tered cases where several hundreds of MB of allocation tracker data was accumulated because of such

Unix tools.
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5.1.4 Perf Export and Data Merger

Perf stores the recorded sampling data in a binary, Perf speci�c format. Perf provides a scripting

interface. This interface allows accessing the Perf data. We use this interface and a python script to

export the data to SQLite. The script is based on an example already provided with Perf [65]. We

decode all bit�eld datatypes to support SQL queries. By using cTypes package, this can be achieved

with high performance. Using this database, the sampling data is much easier to process compared to

the Perf binary format.

A few changes in the original export script were necessary to improve the performance of the SQLite

export. Journaling and synchronous �le operations are turned o�. Samples, that come from perf are

�rst stored in a bu�er instead of inserting them directly into the database. Up to 5000 elements are

stored in the bu�er. When the bu�er is full, all previously cached samples are inserted into the database

in one transaction.

5.1.5 Correlation of Samples and Allocation Data

We use two independent tools to pro�le the execution of an application. Perf does the instruction

sampling, collecting data about the memory access, including the accessed address. The allocation

tracker records data about the dynamic memory allocations. After the pro�ling is �nished, we merge

the data captured by the two tools.

Dynamic memory allocations are only valid for a certain time period. Thus, to make a lookup from a

given accessed data address to an allocation call stack, the timestamp of the sample and the interval

in which the allocation was valid has to be considered. Both tools individually record a timestamp

for samples and allocations. In order to have comparable timestamps from both sources, both must

rely on the same clock source. Perf provides a parameter (-k) to specify the clock source. We use

the CLOCK_MONOTONIC clock source, which returns a timestamp counted in nanoseconds from the

startup of the system.

A point to look out for when using this counter is the synchronization of the hardware clock source

between multiple cores and sockets of the same system. The CLOCK_MONOTONIC is internally based

on the Time Stamp Counter (TSC), which is present in all modern x86 processors. The TSC is not

a�ected by power management, which may change the operating frequency of the processor. It is

also synchronized at startup with all cores across all sockets. Some older processors might not have

this feature, but this can be veri�ed by checking the presence of the constant_tsc and nonstop_tsc

�ags.

By correlating the process id and timestamp, we can then �nd the corresponding data objects for a

given address. This lookup is done entirely using SQL queries. SQLite already provides a method

for e�ciently selecting an address and timestamp within ranges. Thus our implementation is simpler

than existing approaches [61] that rely on balanced trees to implement the range search. This update

process involves many database queries and updates. High performance is achieved by the following

implementation details. Synchronous �le operations and journaling are turned o�. Inserts and updates

are bu�ered and inserted in one transaction when the bu�er is full. Indexes and temporary tables are

created to enable quicker lookup of often queried data.

5.1.6 Resolving Instruction Pointers

An important feature of a pro�ling tool is to resolve addresses to source code locations. For resolving

binary names and function names, we rely on Linux Perf. It uses the debug info in applications to
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resolve and demangle function names. The instruction pointer values are also exported. The alloca-

tion tracker only exports addresses. Thus, we still need to resolve the addresses from the allocation

tracker and the data from Perf in case we want to know source �les and source code lines. This trans-

lation is done using addr2line from GNU Binutils. To avoid the overhead of starting a new process

for every address resolution, a cache of processes is held. For each binary one active process is kept

open. Addresses are then sent to this process, and addr2line returns the function name, source �le, and

line number. The path to the pro�led binaries is taken from Perf. The path is also stored in the SQL

database.

5.1.7 A�ribution of Samples with Counter Values

We introduce a generic method to combine instruction samples with performance counters. It is useful

because it allows exploring the possibilities of performance counters together with instruction sam-

pling. This method works as follows.

In an exported perf database are entries for performance counters. An entry includes a timestamp, at

which the counter was read, and how many events have been counted since the last time the counter

was read. We de�ne a window of counter readings. For example, a window of 100 counter reads. For

each window, the counter values are summed up and then divided by the time span of the window.

At each recorded data point, Perf reports the increase of the counter for that speci�c interval. For

each window, the instruction samples that fall within the time window, are extended with the average

counter increase in this interval.

For core-local counters, Perf reports the results for each core and thread individually. Perf takes care to

count correctly on context switches or thread migrations. When attributing the samples with counters,

the core and thread information must match the counter readings. Care must be taken for other coun-

ters, which count globally for the whole socket. Then the values reported by perf still contain a thread

and core. However, this is the core and thread which has read the counter. The counter value itself still

applies for all cores of that socket and all threads running on this socket during this time.

HPC applications often use many threads and cores. Applying the above-mentioned method for each

possible thread and core combination would create a large overhead in data post-processing. Thus, we

only take into account thread and core combination which have enough counter readings to form at

least one interval. This check can be done with a simple and fast SQL query.

5.1.8 NUMA Configuration

Especially for NUMA related problems, it is useful to know the CPU core to CPU socket mapping. After

the pro�ling, during the processing of the captured data, the hardware layout is read using the numactl

–hardware command. The information is then added to the database. This information allows to do

queries for speci�c nodes such as the example in Figure 5.14 without looking up external information

about the NUMA con�guration.

5.2 Database Format

The SQLite database connects the pro�ling tool and the viewer. Because of the SQLite-based data

format, it is possible to keep the pro�ling tool and use another custom tool for visualization of the

data and vice versa. The relational data model and SQL are suitable for instruction sampling data.

Aggregations to speci�c functions or objects, sorting by certain attributes, and selecting ranges can

be done using SQL queries. Researchers can easily access the data and extract performance relevant
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information. Unlike binary formats, where parsing data structures, iterating through them, and man-

ually aggregating them to useful views is necessary. The implementation of the viewer component of

PerfMemPlus serves as an example. It is essentially a set of prede�ned SQL queries that have proven

to show useful views for performance analysis. SQLite as a data format gives scalability with little

implementation e�ort. Big trace �les can be stored on disk, and indexes enable quick lookups to �nd

the required data. Any other relational database would also satisfy these requirements. But we chose

the �le-based SQLite database because it does not require the installation of databases, and �le-based

operations are familiar to most users.

The database is mostly based on the format speci�ed by Perf. Because there is no documentation

about this format, we explain it here. We also describe our modi�cations to the data format. The

original SQLite format that comes with Perf is designed to hold samples related to memory accesses

and samples related to branch instructions. Thus some of the �elds in the database have names that

rather �t branch instructions, and some are even unused when exporting memory access samples from

Perf. We omit those unused �elds in this description. The metadata table contains the command line

of the program, which was pro�led, the sampling period, and the minimum allocation limit of the

allocation tracker.

Figure 5.2. The entity relationship diagram of the instruction sampling database.

As shown in Figure 5.2, the samples table is the central one. It contains all the recorded samples. Many

attributes are not stored in the samples table directly. Instead, the data is stored in tables connected by

foreign keys. The tables on the right side of Figure 5.2 that start with memory are a decoded version

of the data_src �eld in the samples table.

There are the following attributes for each sample:

• id: A unique id for each sample.

• evsel_id: The type of event that was recorded with this sample

• thread_id: Thread id. The OS pid and tid has to be taken from the linked table

• comm_id: The command name of the application from which this sample was taken.

• dso_id: The name and path of the executable.

• symbol_id: The function name and further information about the functions such as address range

and dso.
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• symbol_o�set: The o�set within the symbol where the instruction pointer was at the time the

sample was taken.

• ip: Instruction pointer.

• time: Timestamp where the sample was taken. In our con�guration, it is the time in nanoseconds

since the start of the system. Samples in the database are not guaranteed to be ordered by time.

• cpu: CPU on which the sample was collected.

• to_ip: Accessed data address. The name comes from the branch sample export and for branch

instructions, it shows the target of a taken branch.

• period: The number of events since the last sample was taken on the core and within the thread.

• weight: Latency of the instruction.

• data_src: A bit-�eld that encodes various information about the memory access. It is decoded in

the following attributes.

• memory_opcode: Type of memory access. For example, read or write access.

• memory_hit_mist: Cache hit or miss.

• memory_level: Memory hierarchy level where data was found. It needs to be combined with the

cache hit or miss �eld.

• memory_snoop: Memory snoop and coherency protocol status.

• memory_locked: Locked memory transaction information.

• memory_dltb_hit_miss: DTLB hit or miss.

• memory_dltb: DTLB hierarchy level where lookup was found. It needs to be combined with the

hit dltb hit or miss attribute.

• call_path_id: A link to the �rst entry in the call path.

• allocation_id: Allocated memory including address range, time interval and call stack of the

allocation.

5.3 Data Analysis and Viewer Tool

The viewer can open pro�ling results and display them. It supports automatic and manual performance

analysis in di�erent views.

5.3.1 Auto Analysis

The automatic analysis creates a list of candidates, applies the false sharing detection, applies the

DRAM contention detection, and �nally reports the results.

False Sharing Detection

The conditions that are checked to identify false sharing are described in Section 4.2. We implement this

condition check as a three-stage process. First, we generate a temporary table. This table is a �ltered

selection of all samples. Only the load and store samples are included. The attributes are limited to the
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ones needed for false sharing detection. All further queries are done against this temporary table. By

using the temporary table, we are can speed up the detection process.

Second, we �nd the cache lines that we need to consider. Those are all the cache lines, that have accesses

with the HITM �ag set. Those cache lines can be obtained with the SQL statement in Figure 5.3.

1 select distinct cl from samplesForFs −− a tempory table to speed up quries

2 where allocation_id in (select id from allocations where call_path_id = ?)

3 and memory_snoop =

4 (select id from memory_snoop where name = "Snoop Hit Modified")

5 and symbol_id = ?");

Figure 5.3. The SQL statement to get cache lines that have accesses with the HITM �ag set.

Third, we check if accesses to those cache lines meet the conditions. The query in Figure 5.4 returns

all memory accesses and the attributes that are required to check the conditions. All returned memory

access samples are checked against each other to see if the conditions are met by any pair of sam-

ples.

1 select t_ms, to_ip, thread_id, memory_opcode, allocation_id, ip from samplesForFs

2 where cl = ? and allocation_id in (select id from allocations where call_path_id = ?)

3 and symbol_id = ?

Figure 5.4. The SQL query to obtain access samples that access a speci�c cache line.

Main Memory Bandwidth Contention Detection

First, the average latency of memory accesses that satisfy the conditions speci�ed in Section 4.3.5

is obtained. If the latency is higher than the threshold, that is de�ned in a con�guration �le, the

considered candidate is �agged with DRAM contention. The DRAM access latency is obtained with

the query in Figure 5.5.

Second, the conditions for an adequate sample size are checked. The number of samples is determined

using the query in Figure 5.6. If there are not enough samples, another �ag will be set as a warning for

the user.

1 select avg(weight) from samples where symbol_id = ? and
2 allocation_id in (select id from allocations where call_path_id = ?) and
3 evsel_id = (select id from selected_events where name like "cpu/mem-loads%") and
4 memory_level = (select id from memory_levels where name = "Local DRAM") and
5 memory_dtlb_hit_miss = (select id from memory_dtlb_hit_miss where name = "Hit") and
6 memory_lock != (select id from memory_lock where name = "Locked")

Figure 5.5. The SQL query to get the average latency of accesses to the local DRAM.

Detection Results Report

The auto analysis view has a button in the upper right to start the analysis process. Once the results

have been obtained, they are displayed in the white area below.

Performance problems and their locations are displayed as a list of trees. The uppermost element in a

tree is the function name. The child of the function is a list of objects that are accessed by this function.
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1 select count(∗) from samples where symbol_id = ? and
2 allocation_id in (select id from allocations where call_path_id = ?) and
3 evsel_id = (select id from selected_events where name like "cpu/mem-loads%") and
4 memory_level = (select id from memory_levels where name = "Local DRAM") and
5 memory_lock != (select id from memory_lock where name = "Locked")

Figure 5.6. The SQL query to get the number of samples that access the local DRAM.

An object is listed with its ID and with the �le and source code line where it was allocated. Those two

tree levels identify the location of a performance problem. With this information, the user can easily

look up the location in the source code or go to the manual analysis features to look at more details of

those functions and objects. Finally, the last item in the tree is a list of performance problems. In the

example in Figure 5.7 we can see one function with two objects, each with one performance problem.

The performance problems are local DRAM limitations when the function accesses the �rst object with

ID 25 and false sharing when the same function accesses the object with ID 54.

Figure 5.7. The auto analysis view of PerfMemPlus. In this example, it shows a case of false sharing

and local DRAM bandwidth limitation.

5.3.2 Manual Analysis Features

Because automatic discovery is only supported for two speci�c performance problems, manual explo-

ration of sampling data is also supported. There are views of cache hit rates and latencies in di�erent

cache levels, as well as a visualization of access patterns and data sharing between threads. The main

idea for navigation through the data is to use functions, objects, and their connection. The data can be

explored from both sides. There are a function pro�le and an object pro�le in the main window. After

a function, object, or combination of both is selected, details of the selection can be shown in separate

windows.

Function Profile

A screenshot of the function pro�le is shown in Figure 5.8. The upper half shows the function pro�le.

It consists of the names of functions and metrics. In this manual exploration view, the user can �rst

identify the functions that contribute most to the execution time, like it is done with a traditional

pro�ler. Next, the user can rely on the memory metrics to identify if there memory-related performance

problems. Those memory metrics are the average memory access latency, the latency contribution in

percent, and the latency of the function in relation to the latency of the whole application (Latency

Factor). The average memory access latency is a good indicator of performance problems. Because

ine�cient use of the memory system (cache miss, remote memory access, TLB miss) will increase
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the latency. The latency contribution in percent and latency factor can identify the heaviest memory

accesses in an application.

The lower half shows the call stack for one of the selected functions, together with the latency contri-

bution coming from each function. It is a latency based pro�le, to know from where the slow memory

accesses are issued. This is particularly useful for cases where library functions are reported in the

function pro�le and the user wants to know from where in the programmer’s own code they are called.

On the bottom are buttons that execute an action for the selected function. They will open another

window with more details.

Figure 5.8. The function pro�le of PerfMemPlus. It shows traditional metrics like execution time

together with memory-related metrics. On the bottom is a call stack that shows latency contribution.

Object Profile

The object pro�le, that is shown in Figure 5.9, is another way to start a performance analysis of an un-

known program. It lists all of the dynamically allocated objects in the program. Static and stack objects

are put together into one anonymous object. The table on the top shows the objects arranged in rows.

The columns show the attributes and metrics of the objects. The size of the object that is determined

through the allocation call. The average latency of all read accesses to this object and how much the

accesses to this object contribute to the overall latency of the application is also shown. Finally the

latency factor. It shows the relation of the average latency of accesses to this object compared to the

average memory access latency of the whole program. For the currently selected object, the allocation

call stack is shown in the bottom half of the window. In includes the object �le, function name, and

exact location in the source code. Inlined functions can be resolved as well.

Accessed Objects

After one, or multiple functions have been selected, the objects that are accessed by those functions can

be shown. The view (Figure 5.10) is similar to the object pro�le. The di�erence is that the object pro�le

shows the objects in the context of the whole application, whereas this window shows it in the context

of the selected function. The objects are shown as a latency pro�le, to make it possible to select the

object accesses that contribute most to the latency. It allows getting an overview of unfamiliar code. A
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Figure 5.9. The object pro�le of PerfMemPlus. It lists the dynamically allocated objects of the appli-

cation along with their latency metrics. The call stack on the bottom shows where the objects are

allocated.

user can comprehend which functions access which objects. It is part of a two-stage selection process

of interesting functions and objects, to limit the focus on a particular function accessing a speci�c

object.

Figure 5.10. The accessed objects window. It shows an object pro�le of all objects that are accessed by

a previously selected function.

Time Address Diagram

The time address diagram can be used for recognizing memory access patterns and data sharing across

threads. It is shown in Figure 5.11 and Figure 5.12. The horizontal axis represents the execution time

of the application. The vertical axis is the address range that is accessed. Each point in the diagram

represents a memory access sample. Di�erent colors represent di�erent threads. At the top right

either all threads, that access the selected object or a single thread can be selected. Data sharing

between threads and memory access patterns are hard to see from the source code. This visualization
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Figure 5.11. The time address diagram of PerfMemPlus. This case shows ine�cient data sharing be-

tween threads.

Figure 5.12. The time-address diagram of PerfMemPlus. This case shows a large array that is split and

assigned to individual threads.

helps to understand the data accesses and spot optimization opportunities. The example in Figure 5.11

shows an application with intensive data sharing between threads. In contrast, Figure 5.12 shows the

same application with an optimized data access pattern. Each thread stays within the same address

range.

Because there can be a large number of points that need to be drawn, it is important that the drawing is

done fast. We rely on the QT drawing library. It supports drawing with OpenGL support if the drawn

items are simple, like dots and lines. Here we only need to draw dots. Drawing with OpenGL support

speeds up the drawing signi�cantly. Without OpenGL support, the drawing speed is often too slow.

Especially in cases with many samples, it can become unusable.

Cache and Memory Details

This window shows cache access details for previously selected functions and objects. A screenshot is

shown in Figure 5.13. On the top, there are the selected functions for which the cache access details

are shown in this window. There could also be objects or a combination of objects and functions in

this window.
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In the table below are the memory levels arranged in the rows. In the columns, from left to right

are the number of samples, the average latency, and the hit rate relative to all samples. A bar graph

is overplayed with the number to quickly see the hit rate in each cache level. On the bottom, the

percentage of remote accesses is shown. First, as the ratio between remote and local memory access.

Second, as the ratio of local L3 hits plus local DRAM hits against the number of remote L3 hits and

remote DRAM hits. With this view, it is possible to diagnose locality issues, remote memory access

issues and high latencies in speci�c cache levels.

Figure 5.13. The cache and memory window of PerfMemPlus. It shows the memory hit rates and

latencies for a speci�c function and object selection.

Imbalanced Memory Usage In NUMA Systems

The instruction sampling data contains information, that allows di�erentiating if data was loaded from

a remote DRAM or the local DRAM. We can use this information to �nd unbalanced use of the memo-

ries. This unbalanced use occurs if an object is allocated on one node but is later accessed from other

nodes. In this situation, the interleaved allocation of the object can often help to increase the perfor-

mance, because the memory bandwidth of both nodes can be utilized. The SQL query in Figure 5.14

shows how to obtain the required information. The result is a table that shows for each node how

many local and remote memory accesses were recorded.

1 select (select node from cpuNodeMapping where cpu = s.cpu) as node,

2 (select name from memory_levels where id = s.memory_level) as memory,

3 count(∗)
4 from samples s where
5 memory_level in (16, 32) −−16 is local dram, 32 is remote dram

6 and allocation_id = ?

7 and symbol_id = ?

8 group by node,memory_level

Figure 5.14. The SQL query to show the number of accesses from each node to its local DRAM and

remote memories.

For example, in a two-socket system, if there is an imbalance, one of the nodes will access mostly the

local DRAM, and the other node will mostly access the remote DRAM. In an evenly balanced situation,
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both nodes access the local DRAM and remote DRAM equally. We demonstrate the usage of this feature

in the case study of canneal in Section 7.9.1.

Objects That Share Cache Lines

For the con�rmation of inter-object false sharing, it can be useful to con�rm the allocation of several

objects in the same cache line. Because all dynamic memory allocations are tracked, such an allocation

can be con�rmed using the pro�ling data and the query in Figure 5.15.

1 select call_path_id from (

2 select ∗,address_start/64 as cla, address_end/64 as cle from allocations where call_path_id = ?) a

3 inner join (

4 select ∗,address_start/64 as cla, address_end/64 as cle from allocations where call_path_id = ?) b

5 where (a.cle = b.cla or a.cla = b.cle) −−Beginning and end are in the same cache line

6 and a.id != b.id −−Exclude the same object

7 and (a.time_start between b.time_start and b.time_end −−Object is alive at the same time,

8 or b.time_start between a.time_start and b.time_end) −−otherwise it could be a reused address

Figure 5.15. The SQL query to verify if objects are allocated in the same cache line.

The query simply checks if the end of one allocation is in the same cache line as the beginning of

another allocation. Additionally, it makes sure that those objects are alive in the same time period.

Otherwise, they could just be objects allocated at recycled nearby addresses. The allocation call path

of detected objects is returned to �nd them in the source code.
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Chapter 6

Reverse Engineering of Intel DRAM
Addressing Using Performance
Counters

The memory subsystem of a modern computer is complex. The memory is split into di�erent channels

to provide higher bandwidth. Organization of DRAM chips in bank groups and banks provide the

opportunity for pipelining requests. This has led to increased throughput of DRAM systems over the

years without a signi�cant performance increase in the single DRAM cell [33]. The memory controller

must interface with those di�erent DRAM components and address them individually. The memory

controller receives requests to load data at speci�c physical addresses. From the physical address, the

DRAM controller must determine the channel, rank, bank, row, and column in which the data is stored.

The de�nition of how addresses are translated is called DRAM address mapping.

If the DRAM address mapping is known, it enables a wide range of applications. In hardware archi-

tecture and system software research, approaches for better usage of memory channels and banks are

being explored. For example, application-aware memory channel partitioning [89], adapted page sizes

for better usage of row bu�ers [114], e�cient use of new hybrid memory technology [130], e�ects of

unreliable memory [2], or DRAM layout aware memory allocators [14, 93, 132]. For the evaluation of

such new concepts, simulated hardware is often used. If the address mapping is known, such a system

can be implemented and evaluated using real processors and applications. The few cases where eval-

uations are done using real hardware rely on speci�c processor models where the address mapping is

documented or require manual reverse engineering e�ort. For example, Chandru and Mueller [14] use a

Tilera processor, Pan et al. [93] use an AMD Opteron 6128 processor, and PALLOC [132] is implemented

on a Xeon W3530 and Freescale P4080. The above-mentioned concepts also showed performance gains

which we cannot utilize on other machines without knowing the address mapping.

Researchers in IT security are also interested in the DRAM address mapping to evaluate their concepts.

Covert communication channels across CPUs were demonstrated by Pessl et al. [96]. A variation of

Rowhammer [58] attacks was introduced by Gruss et al. [34]. And Song et al. show a method for hiding

rootkits [110].

The address translation is done in hardware, it is di�erent for every system, and it is mostly undocu-

mented except for a few speci�c processor models. For example, the documentation of the outdated

Intel Xeon 5500 contains a description of the address mapping [46]. However, for newer generations of

Intel processors, this information is not published. Up to a certain extent, the mapping is con�gurable

in hardware. At the startup of the system, the BIOS reads the DIMM con�guration and programs the

con�guration registers in the processor. After the initialization, the con�guration cannot be changed.

The mapping can also be in�uenced by the BIOS settings. For example, the activation of on-chip
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NUMA domains changes the addressing [29]. Thus the address mapping depends on many factors and

may be di�erent for every system. A general addressing function, for example for a speci�c processor

generation, does not exist.

We introduce an automatic and reliable method for reverse engineering the DRAM addressing on In-

tel processors. Our tool can automatically �nd the addressing functions of memory channels, ranks,

bank groups, and banks. It is available online at https://github.com/helchr/reMap. The main idea is

to directly and reliably measure the number of accesses to each component (e.g., bank), unlike exist-

ing approaches that leverage unreliable numbers such as access latency or the number of bit-�ips by

rowhammer. With a smart selection of probed addresses, we can determine the addressing functions

in a short time. Because we use boolean algebra to resolve the addressing functions, we can di�eren-

tiate measurement errors from insu�cient sampling. In the case of asymmetric DIMM population, we

gather additional information from con�guration registers. Our tool supports server-class processors

with a large amount of memory and also supports asymmetric DIMM population. We demonstrate

that we can reverse engineer the address mapping on an Intel Haswell, two Broadwell, and a Skylake

system. They are equipped with up to 2TB of RAM and include a system with asymmetric memory

channel population. Based on benchmarks that access certain components of the DRAM using the re-

verse engineered address mapping, we con�rm that our method can �nd the correct address mapping

on recent Intel server-class processors.

6.1 Methodology

Our reverse engineering approach has two steps. In the �rst step, pairs of the physical address and

accessed component are collected. This is done by picking an address from a pool and then �nding

the component that this address accesses. The component is identi�ed using performance counters.

After this process, there is a list of physical addresses and the component that the address accessed.

In the second step, address mapping functions are calculated from this list of samples. The steps are

summarized in Algorithm 1. The remainder of this section explains the individual steps.

Algorithm 1 Pseudocode of the reverse engineering method.

Allocate pool of memory

while not enough addresses do
Pick a virtual address from the pool

Get the physical address

for all components do
Set up measurement for component

Repeatedly access the address

if counter value > number of accesses then
Record pair of physical address and component

end if
end for

end while
Calculate mapping function from samples

6.1.1 Memory Allocation

The DRAM address mapping is based on the physical address. If we can control individual bits of

the physical address, we can use a structured address selection method, such as the one described in

Section 6.1.2. Only the bits that express o�set within a page frame directly translate to bits of the
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physical address. The bits for the frame number are not under our control. Thus we increase the

page size to 2MB, which leads to 21 bits of the physical address being under the direct control of our

tool.

6.1.2 Address Selection

Theoretically, it is possible to use random addresses from a large pool to gather samples. However it

would require the collection of many samples to get enough coverage to reconstruct the addressing

function. We want to �nd out for every bit of the physical address if it in�uences the accessed DRAM

component. Thus addresses that di�er in only one bit would allow us to directly judge the in�uence

of this one bit on the result. To generate such addresses we use the following mechanism. First, we

take a random address from the allocated memory pool. The next address is generated by changing the

least signi�cant bit. The following addresses are generated by reversing the last bit change and then

changing the next more signi�cant bit. In other words, a shifted bitmask with a single one is xored

with the initial address. Once we run into the next page frame or out of the boundaries of the address

pool, we choose a new random address and start again with modifying the least signi�cant bit.

The memory controller takes physical addresses as the input of the mapping function. Thus we need

to gather physical addresses samples. Through the /proc/self/pagemap interface, we can translate the

virtual addresses to physical addresses.

6.1.3 Performance Counters

For each physical address, we need to know which component is accessed. We use performance coun-

ters for each component to measure if they are accessed. Each channel has its own Performance Moni-

toring Unit (PMU) with its own counters. By selecting the right PMU we count the number of transfers

on this channel. For each rank, there is a separate performance event with a separate umask for each

bank or bank group. The event de�nitions can be found in the Intel uncore performance monitoring

guide [50]. Each measurement checks one speci�c channel, rank, and bank. We cycle through all pos-

sible components until we found one where the counter value is equal or higher than the number of

programmed DRAM accesses. The performance counters that we use require root access or the perf

event paranoid �ag to be set accordingly. The use of performance counters is a signi�cant di�erence

from a previous timing based approach [96]. The measurement is more reliable and practically elimi-

nates attribution errors. A disadvantage of this method is that only CPUs which have the appropriate

performance counters are supported.

6.1.4 Enforcing DRAM Accesses

For the measurement, it is required to repeatedly access a certain address, and every access must cause

a load from DRAM that we can count. Registers and caches exist to avoid such redundant loads from

DRAM. Thus we use the code in Figure 6.1 with cache line �ush and fence instructions that enforce a

load from DRAM with every access to the same address.

The performance counters we use count for the whole system, not just for our application. Thus co-

running applications or transfers by the OS cause noise. We need to set the NUM_ACCESSES variable

high enough so that those other accesses do not disturb our measurements. If the number of accesses

is too high, it causes unnecessary delays. In our experience, on a system that is not running other

applications than the default OS services, 2000 or more accesses allow accurate measurements. On a

system that executes other tasks in the background, a higher value may be required.
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1 volatile uint64_t ∗p = (volatile uint64_t ∗) addr;

2 for (unsigned int i = 0; i < NUM_ACCESS; i++)

3 {

4 _mm_cl�ush((void∗)p);

5 _mm_lfence();

6 ∗p;

7 _mm_lfence();

8 }

Figure 6.1. The C code that enforces memory loads from DRAM when repeatedly accessing the same

address.

6.1.5 Computing Addressing Functions

The list of samples that contain physical address and accessed component is not useful on its own. We

need to extract an addressing function from those samples. We introduce a novel method to resolve

the bits of the physical address that are used for addressing components. It reports exact results for

used, unused, and uncon�rmed bits, as well as other types of errors.

Constructing an Equation System

All previous work [39,79,96,107] indicates that the mapping either uses a single bit or a xor combina-

tion of multiple bits of the physical address to calculate the component index. Because of the limitation

to xor functions, this problem can be formulated as a boolean equation system consisting of two op-

erations (xor , and). The idea for the construction of the equation system is as follows. The input is a

list of samples as shown in Figure 6.2.

Figure 6.2. A list of physical addresses and the accessed component.

We split all the collected samples into a one-bit component address. E. g. If there are four memory

channels, two bits are needed to address those four channels. We duplicate the list of physical addresses

and build two lists of samples, one for the �rst bit of the channel address and one for the second bit of

the channel address. Each of the bits of the physical address could be used for the calculation of the

component address bit. Thus we add a switch (the boolean and operation) to every bit. This switch

can turn the usage of this bit on or o�. If there are multiple bits used, we know that they are combined

using the xor operation. Thus we add a xor between every bit. The resulting structure is visualized in

Figure 6.3.

The formalization of this concept as an equation system is shown in Equation 6.1.

x0,0 ∗ b0 ⊕ x0,1 ∗ b1 ⊕ · · · ⊕ x0,n ∗ bn = c0
x1,0 ∗ b0 ⊕ x1,1 ∗ b1 ⊕ · · · ⊕ x1,n ∗ bn = c1
...

xm,0 ∗ b0 ⊕ xm,1 ∗ b1 ⊕ · · · ⊕ xm,n ∗ bn = cm

(6.1)
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Figure 6.3. The list of samples converted into equations with bit switches.

In Equation 6.1 the ∗ symbol denotes the and operation and ⊕ symbol is the xor operation. There

are n unknown parameters b that express if a bit is used or not. And there are m physical address

samples taken with their individual address bits x. The c on the right-hand side represents the one-bit

component address.

Solving the Equation System

The equation system can be solved in the F2 space, where xor is an addition and and is a multiplica-

tion, with any equation system solver. We use Gaussian elimination. The usage of established linear

equation system mathematics brings the advantage of a clear di�erentiation of the results.

The equations system either has a solution, is partially solvable, or it has no valid solution. If it is

not solvable, there are contradicting equations. This can happen in case of wrong measurements or

if a more complex address mapping, such as one with multiple regions, is not correctly considered.

Theoretically, it could happen that wrong measurements lead to an equation system that is solvable

and produces wrong results. However, this would require a systematic error in the measurement.

For example, if a performance counter always reports accesses to a di�erent component than the one

speci�ed in the measurement setup. Such an error is unlikely to occur, and we never observed such a

case in our experiments.

If there is a solution or a partial solution, for every bit of the physical address there are three possible

states. A bit can be used for calculating the index, a bit can be unused, or it is unknown if a bit is used.

The unknown state happens if there is a partial solution with dependent equations, and there are no

samples that cover this speci�c bit.

This accurate reporting is an advantage over the brute force solver by Pessl et al. [96] because it can

identify wrong measurements and di�erentiate it from unknown bits caused by too few samples.

6.1.6 Region Based Mapping

In the case of asymmetric DIMM population or if the number of DIMMs in a channel is not a power

of two, the hardware uses more complex region based address mapping. For example, a two-bit wide

channel address, calculated using the xor combination of bits, targets four di�erent channels. A space

of three di�erent channels can not be expressed. Thus a region based mapping is used in hardware.

The regions are address ranges. For each region, a di�erent addressing function can be used. The

regions help to get a balanced distribution of requests over all of the three channels. The regions are

de�ned in registers in the memory controller and set up during system startup. Those registers are

mostly undocumented, but Hillenbrand [39] provides the locations and decoding for Intel Haswell and

Broadwell systems.

The address sample collection works the same, no matter if regions are used or not. For the calculation

of the addressing functions, additional steps are necessary. First, we read the region limit addresses
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from the registers. Then we group all captured addresses into their respective region. Finally, for each

of the regions, the addressing functions can be computed as described in Section 6.1.5.

As already reported previously [39], on some systems, Linux is not able to access the PCI extended

con�guration space. The channel region de�nitions are within an address range that is always acces-

sible. But for the ranks, the registers may not be accessible. We experienced this issue on an Intel

Haswell system that is equipped with 6 ranks per channel. A workaround is to use a modi�ed Linux

kernel [39]. On our two Broadwell systems, complete con�guration space was accessible.

Hillenbrand [39] only describes the registers of Broadwell and Haswell based systems. For Skylake and

its successors, the register layout changed and is poorly documented. We cannot read the registers to

�nd the regions for channels or banks. On those newer generation systems, our approach only works

for a balanced power of two DIMM population.

6.2 Results

We reverse engineered the address mapping on four di�erent systems and con�rm that the obtained

addressing functions are correct.

6.2.1 Hardware

Table 6.1 lists the basic facts of the server systems. In the following, the servers will be referenced by

their name, which is in the leftmost column of Table 7.1.

Table 6.1. The hardware we used for testing the reverse engineering method.

Name Architecture CPUs Board DRAM
Speed DIMMs Number

of Channels
Number
of Ranks

Arcturus Broadwell 2x E5-2699v4 Supermicro X10DGQ 2400Mhz Micron 36ASF4G72LZ-2G3B1 4 4

Comet Haswell 2x E5-2699v3 Dell 0CNCJW 1867Mhz SK Hynix HMA84GL7MMR4N-TF 3 and 4 6

Rigel Skylake 2x Xeon 8176 Supermicro X11DPG-QT 2667Mhz Samsung M386A8K40BM2 4 4

Spica Broadwell 4x E7-8890v4 Supermicro X10QBL-4 1600Mhz Samsung M386A8K40BM1 4 8

All of the systems are NUMA aware but do not use on-chip NUMA. This means that the OS sees

the di�erent processors with their own explicitly addressable memory but cannot see the di�erent

memory controllers within one processor. All of the systems are equipped with DDR4 RAM. DDR4

RAM always has four bank groups, each with four banks. Every system uses only a single type of

DIMM. For Arcturus, Rigel, and Spica, the con�guration is the same on all sockets. On Comet, the

memory setup di�ers for socket 0 and socket 1. On socket 0, only three out of four channels are active

due to a hardware defect. On socket 1, all of the four channels are active. Rigel is a Skylake system,

which supports up to six memory channels. Our system is equipped with DIMMs on four of the six

channels. The rightmost column ranks in Table 7.1 is the number of ranks per channel.

All of the experiments were executed on machines running Ubuntu 18.04, and the benchmarks were

compiled with gcc 7.4. We con�gured our tool to use a 20GB address space that is allocated using 2MB

pages. We execute 2000 accesses per test and capture a total of 400 address samples.

6.2.2 Addressing Functions

We use a 0 based numbering for address bits. I. e. the bit number 0 is the least signi�cant bit of an

address followed by bit 1 and so on. The bank addressing can either be interpreted as 16 di�erent banks,

which need 4 bits for addressing. Or it can be seen as four bank groups, each with four banks. Thus
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the bank group addressing bits are the same as two of the bank addressing bits. There are separate

performance counters for the 16 banks and the four bank groups. The reverse engineering is done

separately and we report the results for all 16 banks and the four bank groups individually.

Table 6.2 shows the addressing function of Arcturus. Channels and banks use xor hashing. The pat-

tern of the mapping is similar to what is reported by Pessl et al. [96]. However, the individual bits used

for addressing are di�erent. It highlights the need to study the mapping for every system individu-

ally.

Because Comet is equipped with 6 ranks per channel, a region based mapping is used for the ranks. The

rank con�guration registers are not accessible using a standard Linux kernel. Thus we cannot resolve

the rank addressing and subsequently cannot resolve the bank addressing. On socket 0, there is a region

based mapping due to the use of 3 channels. It is shown in Table 6.4. In the �rst address region, we did

not record any memory accesses. We suspect that it is a reserved hardware area that is not mapped to

the DRAM. The second region uses interleaving between the two controllers. Within the �rst memory

controller, the channels are interleaved. The second controller needs no further interleaving because

only one channel is available. The third region only uses the �rst controller and interleaves it’s two

channels. The used bits are di�erent from the second region. To the best of our knowledge, this is the

�rst time a region based mapping was successfully reverse engineered.

Spica and Rigel do not use xor hashing. Instead, only single bits are used as shown in Table 6.5 and

Table 6.6. With such a con�guration, a performance decreasing imbalanced use of channels, ranks, or

banks can easily occur if strided memory accesses happen to all fall into the same channel, rank, or

bank.

If we equip Rigel with enough DIMMs for all six channels, a region based mapping will be used. Be-

cause we do not know the con�guration registers for this architecture, reverse engineering is not

possible.

Table 6.2. DRAM address mapping of Arcturus.

Component Index Bit Physical Address Bits

Channel

0 8 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20 ⊕ 22 ⊕ 24 ⊕ 26
1 7 ⊕ 17

Rank

0 15
1 16

Bank

0 6 ⊕ 24
1 21 ⊕ 25
2 22 ⊕ 26
3 23 ⊕ 27

Bank Group

0 6 ⊕ 24
1 21 ⊕ 25

Table 6.3. DRAM address mapping of Comet socket 1.

Component Index Bit Physical Address Bits

Channel

0 8 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20 ⊕ 22 ⊕ 24 ⊕ 26
1 7 ⊕ 17

Table 6.4. DRAM channel address mapping of Comet socket 0

Address Region Component Physical Address Bits

0 to 1984M - -

1094M to 198592M

Controllers 7 ⊕ 17
Channels in Controller 0 8 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20 ⊕ 22 ⊕ 24 ⊕ 26

198592M to 296896M Channels in Controller 0 7 ⊕ 12 ⊕ 14 ⊕ 16 ⊕ 18 ⊕ 20
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Table 6.5. DRAM address mapping of Rigel.

Component Index Bit Physical Address Bits

Channel

0 8
1 9

Rank

0 15
1 16

Bank

0 6
1 21
2 22
3 23

Bank Group

0 6
1 21

Table 6.6. DRAM address mapping of Spica.

Component Index Bit Physical Address Bits

Channel

0 6
1 7

Rank

0 8
1 9
2 10

Bank

0 11
1 12
2 13
3 14

Bank Group

0 11
1 12

6.2.3 Speed of Reverse Engineering

In addition to the reliability of the measurements, timing based approaches also have the disadvantage

of long processing time. We compared the time required for reverse engineering of our approach and

the timing based approach of Pessl et al. [96], even though it did not report the correct result. We did

the experiment on Spica. It has a large DRAM size of 512GB per socket, and it has 512 addressable sets

(16 banks × 8 ranks × 4 channels). Our tool �nds the correct addressing for all sets in ten out of ten

tests in an average time of 1:04 minutes. In contrast, the timing based approach needs over 51 hours

for the complete reverse engineering process. We assume the optimal case when the mapping is found

in the �rst try, which often does not work due to inaccuracies in the timing measurement.

6.3 Usage of Addressing Functions

To con�rm that the recovered address mappings are correct, we implement micro benchmarks that

reproduce known performance e�ects of bank and channel usage.

Based on addressing functions shown in Section 6.2.2, we implement a benchmark that can access

speci�c memory components. The benchmark �rst allocates a large array. Then it calculates the array

indexes that are on the speci�ed channels, ranks, and banks. Finally, it accesses the calculated array

indexes in a parallel for loop. The number of data accesses stays constant, regardless of the con�gured

channels, ranks, banks, and threads.
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6.3.1 Channels

Figure 6.4a shows the measured bandwidth on the four di�erent channels of Spica. In this experiment,

the benchmark accesses only one memory channel. This can be clearly seen in the diagram. We

measure a bandwidth of about 10GB/s on one of the channels but almost no activity on the other

channels. Figure 6.4b shows the bandwidth on Comet with two out of four channels in use. Figure 6.5

shows the speedup over the sequential version when only one, two, three, or all four memory channels

are used. As expected, the speedup is limited by the number of available channels. This experiment

was executed on Spica. These experiments demonstrate that our determined addressing functions for

the channels are correct.
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Figure 6.4. Time resolved bandwidth graph.
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Figure 6.5. Parallel speedup on Spica when the usage of memory channels is restricted.

6.3.2 Banks

It is known that co-running applications or multi-threaded programs, where concurrent threads access

di�erent address regions, interfere with each other, and cause increased row bu�er con�icts [14,40,86].

We implemented a micro-benchmark that reproduces this phenomenon and an optimized version that

uses a �xed thread-to-bank assignment. The benchmark reads an array using 16 threads. We limit the

access on one channel and one rank so that there are 16 banks available to use. The original version

simply accesses the array indexes in ascending order using a loop that is parallelized with OpenMP.

Thus each thread accesses di�erent array locations. In the optimized version, we use the same parallel

for loop, but each thread accesses only a speci�c bank. E. g. thread 1 only accesses data stored on bank

1, while at the same time thread 2 only accesses bank 2. We measure the row bu�er access status (hit,

empty, con�ict) as described in the Intel documentation [48].
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Figure 6.6a shows the page hit, page empty, and page con�ict ratios measured over time of the original

version. We see that, in the original version, after the initialization phase, the page con�icts increase

and the page hits decrease. Over 40% of the row accesses result in a page con�ict. In contrast, in the

optimized version, we can eliminate most of the con�icts and get a high page hit ratio by mapping

each thread to a designated bank, as shown in Figure 6.6b.
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Figure 6.6. Row bu�er hit, empty, and con�ict ratio measured over time on Arcturus.
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Chapter 7

Evaluation

This evaluation covers many di�erent aspects. First, we evaluate the false sharing detection method.

Second, we present the results of the main memory bandwidth contention detection evaluation. It also

includes the evaluation of the NUMA imbalance, channel imbalance, and row bu�er hit rate. Then we

discuss the pro�ling overhead of our approach and the processing time of the pro�ling data. Finally,

we present case studies of PARSEC benchmarks and machine learning applications.

7.1 Experiment Environment

The hardware and OS con�guration is common for all of the experimental evaluations. All of the

experiments were executed on machines running Ubuntu 18.04 and the benchmarks were compiled

with gcc 7.4.

7.1.1 Hardware

We used four di�erent systems for the evaluation. The characteristics are listed in Table 7.1. In the

following experiments, the processors will be referenced by their name that is printed in the �rst

column of Table 7.1. Hyper-threading is enabled on all machines. The machine called Rigel has a

lower L3 cache size than the other systems. But this L3 cache is exclusive. Data that is stored in the L2

cache is not stored in the L3 cache. The L3 cache of the other systems in inclusive, which means that

data that is stored in the L2 cache is also stored in the L3 cache.

Table 7.1. The hardware used for the evaluation of DRAM contention detection, false sharing detection,

pro�ling overhead, and in the case studies.

Name Architecture CPUs Total Phys. Cores L3 Cache DRAM Speed
Arcturus Broadwell 2x E5-2699v4@2.2Ghz 44 55MB 2400Mhz

Comet Haswell 2x E5-2699v3@2.3Ghz 36 45MB 1847Mhz

Rigel Skylake 2x Xeon 8176@2.1Ghz 56 38.5MB 2666Mhz

Spica Broadwell 2x E7-8890v4@2.2Ghz 48 60MB 1600Mhz

Memory Setup of Spica

The mcmtr [49] register is set to 0x00007d0d which means that closed-page management policy is

used. Also xor mapping of bank addresses is disabled. All four nodes are equipped with the same
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amount and type of memory. Spica has four memory channels. The equipped DIMMs are Samsung

M386A8K40BM1-CPB [105,106]. This kind of DIMM has a total capacity (not including EEC checksum)

of 64GB. A DIMM has four ranks with a total of 36 DRAM chips. For each rank there are 9 DRAM Chips.

One is used for the ECC checksum and 8 are used for data. Each rank has a capacity of 16GB. Each chip

has a capacity of 2GB and a data bus width of 8 bit. There are 16 banks in each chip. The banks are

arranged in 4 bank groups each with 4 banks. There are 8 chips for each rank. There are 131072 (217
)

rows and 1024 columns. A row spreading across all eight chips has a size of 8192 bytes. A row in a

single chip has a size of 1024 bytes. There are 1024 columns in each row. Every column has a capacity

of 1 byte or 8 bits.

Memory Setup of Arcturus

The mcmtr register is set to 0x00314f0c. This means open-page policy and enabled xor bank mapping.

It uses Micron 36ASF4G72LZ-2G3B1 Dual-rank DIMMs with a capacity of 32GB. A DIMM has two

ranks with a total of 36 DRAM chips. For each rank there are 18 DRAM Chips. Two are used for the

ECC checksum and 16 are used for data. Each rank has a capacity of 16GB. Each chip has a capacity of

1GB and a data bus width of 4 bit. There are 16 chips for each rank. There are 16 banks in each chip.

The banks are arranged in 4 bank groups each with 4 banks. There are 131072 (217
) rows and 1024

columns. A row spreading across all eight chips has a size of 8192 bytes. A row in a single chip has a

size of 1024 bytes. There are 1024 columns in each row. Every column has a capacity of 4 bits.

Memory Setup of Comet

On Comet the mcmtr register is set to 0x00014f04. This means open-page management policy and

a replacement of ChnAdd[6] with SysAdd[6]. The CPU of Comet supports four channels. However,

socket 0 is only equipped with DIMMs that populate three channels. Socket 1 is equipped with enough

DIMMs for all four channels. We can only recover the channel address mapping for socket 1. Because

Comet has 6 ranks per channel we can not apply our reverse engineering approach only for the channel

mapping but not for the ranks and banks.

Memory Setup of Rigel

Because Rigel has 6 memory channels we can not apply our reverse engineering tool. We can not

include Rigel in experiments that need the address mapping.

7.1.2 Benchmarks

For each of the evaluated performance problem detection method we use speci�c micro-benchmarks.

In addition we also use a set of common benchmarks. Those represent more realistic use cases. We

apply every detection method to those common benchmarks. These common benchmarks are:

• Small kernels. These contain the Stream [82] benchmarks split into their four components; Add,

copy, scale, and triad. We use a data size of around 600MB per array. The operations in the

benchmark are repeated 30 times. The small kernels also contain a matrix multiplication bench-

mark using double precision �oating point numbers (DGEMM). This benchmark comes from

OpenBLAS [133]. Each matrix has 6000 rows and 6000 columns. We refere to this benchmark as

mMat.
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• The PARSEC [11] benchmarks. Those represent a wide spectrum of realistic applications. We use

the pthreads version of the benchmarks except for Freqmine which comes only with an OpenMp

version.

7.2 False Sharing Detection

With this evaluation, we want to verify if our approach can reliably detect false sharing, if it raises

false positives, and how the sampling period a�ects the detection results.

To achieve this, we need a set of benchmarks and the ground truth if those benchmarks su�er from

false sharing or not. We use two types of benchmarks. First, simple micro-benchmarks where the

occurrence of false sharing is obvious and visible in the source code. Second, realistic applications

that are too complex to manually check for the occurrence of false sharing. All the benchmarks have

been analyzed in previous studies. We know if benchmarks su�er from false sharing or not from the

previous publications. If our approach points out false sharing, we manually check for the occurrence

of false sharing to verify whether the reported instance is correct.

We execute all benchmarks multiple times with di�erent sample rates and record in how many cases

false sharing is correctly identi�ed. This way, we can examine the dependence of detection results on

the sampling rate. Each benchmark con�guration was executed 10 times.

7.2.1 Benchmarks

We used benchmarks from PARSEC [11], Phoenix [60] and arti�cial benchmarks [57]. The benchmarks

were selected because they have been analyzed in several previous studies, and we can compare our

detection accuracy to the previous approaches. They include micro-benchmarks and realistic applica-

tions.

Artificial Benchmarks

A part of the evaluation is done with arti�cial benchmarks that produce false sharing. They are small

micro-benchmarks that serve no other purpose then deliberately creating false sharing. For most of

the benchmarks, we rely on the source code that is published along with Huron [57]. All benchmarks

are designed to run with 4 threads.

Boost Spinlock is a spinlock implementation taken from the boost C++ library with a specially de-

signed program that triggers false sharing in this spinlock implementation. There is a pool of locks.

Each lock struct consists of several �elds with primitive data types. All lock structs of the pool are al-

located in a contiguous array. Thus, multiple structs share one cache line. There is a similar array with

pthread mutexes. The benchmark is implemented so that each thread accesses only one of the structs

and only one of the mutexes. This leads to false sharing in the spinlock. There is no false sharing

between mutexes because there is enough padding. There is no true sharing in the mutexes because

each thread only accesses its own mutex.

Lockless is an arti�cial benchmark that serves no purpose except to create false sharing. Multiple

threads update an array of integers. Each thread accesses an exclusive range of integers. Thus, there

is only false sharing and no true sharing.

Locked is the same as lockless but there are mutex lock and unlock operations around the write ac-

cess. There is an array of mutexes, with one mutex for each thread. There is no true sharing in the

mutexes.
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Ref Count is adapted from Java’s reference counting implementation. True sharing occurs in a stat-

ically allocated mutex and a statically allocated shared variable. Because they are statically allocated

PerfMemPlus can not detect true sharing. The main data structure consists of a small array of integers

with one integer for each thread. There is also a large 2d array that contains pointers. Each pointer

value is changed once. This step is protected by a mutex. In the second step, each thread repeatedly

updates its own value of the integer array. This step is not protected by the mutex.

True Sharing is an arti�cial micro-benchmark to generate true sharing. It is not provided by Khan et

al. [57]. It is our own implementation. There is an array of integers. Each thread updates each value

of the array making every individual integer a truly shared object. The code of our implementation is

shown in Figure 7.1.

1 struct myInt

2 {

3 int value;

4 };

5 auto∗ array = new myInt[16];

6 std::mutex m;

7 size_t repeat = 20∗1000∗1000;

8 #pragma omp parallel num_threads(4)

9 for (size_t r = 0; r < repeat; r++)

10 {

11 for (size_t i = 0; i < 16; i++)

12 {

13 m.lock();

14 array[i].value += 1;

15 m.unlock();

16 }

17 }

Figure 7.1. The code of the true sharing benchmark. Values in an array are modi�ed by multiple

threads.

Phoenix Benchmarks

Two of the benchmarks from Phoenix [60] are known to su�er from false sharing. They are small

benchmarks, but they serve a real purpose and are not just micro-benchmarks. We run them using 4

threads. The other benchmarks form Pheonix, that do not su�er from false sharing are not included in

our evaluation.

Histogram calculates a histogram of a picture. The whole picture is loaded into memory and split

into regions processed by each thread. If and how much false sharing occurs depends on the input of

the program. Because false sharing occurs only in one of the three color channels’ histogram. The test

is run with two di�erent inputs. The default input where false sharing seldom occurs and a specially

crafted input (HistogramFs) where a lot of false sharing occurs.

Linear Regression calculates a linear regression on a set of input points. It uses the same array of

structs pattern as the other benchmarks. The struct is 60 Bytes large. Within this struct, there are �ve

64 bit integers that are updated by each thread.
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PARSEC Benchmarks

The PARSEC benchmarks are larger applications and one of them has known false sharing. We execute

all benchmarks with the native input set and 4 threads. We use the pthreads version of the benchmarks.

Because freqmine does not have a pthreads version we use the OpenMP version. We measure the

execution time using the region of interest (ROI) as it is de�ned in PARSEC.

Some of the PARSEC benchmarks issue many memory allocations and de-allocations. This can cause

a long delay in the post-processing of the pro�ling data. Thus, we set a minimum allocation size. Only

larger allocations will be recorded. The limits are shown in Table 7.2. We applied a simple heuristic to

�nd the limit. We start with a 10 Bytes limit. If the resulting allocation data has a size larger than 200

MB, we increase the limit to 1 KB. If it is still larger than 200 MB, we increase the size to 100 KB. At

100 KB, all recorded allocation data was below 200 MB.

Table 7.2. The minimum allocation size setting for pro�ling some of the PARSEC benchmarks. All

other benchmarks are pro�led with a minimum allocation size of 10 Bytes.

Benchmark Minimum Allocation Size
Bodytrack 1 KB

Dedup 100 KB

Swaptions 100 KB

Vips 100 KB

The minimum allocation size does not in�uence the false sharing detection accuracy but in�uences

the overhead. The false sharing detection can still be executed even if an object is not tracked. All ad-

dresses, for which no object can be attributed, are attributed to a common anonymous object. The false

sharing detection is then executed using this anonymous object. Thus false sharing can be detected,

even if the object is anonymous. But in the results, the actual object can not be resolved. In case there

is false sharing, it will be reported in an anonymous object. If that is the case, it is recommended to

lower the minimum allocation size limit to �nd the true object that su�ers from false sharing.

Streamcluster is an application that solves the online clustering problem. More details about this

benchmark are available in [11]. It is parallelized using pthreads. Previous work states that the bench-

mark su�ers from false sharing [55, 67]. The object work_mem su�ers from false sharing. It is a

continuous array with an element size smaller than the cache line size. Each element in the array be-

longs to one thread and is exclusively accessed by one thread. There is padding implemented, but it is

assuming a cache line size of 32 bytes. But the real cache line size is 64 bytes so that two elements still

end up in the same cache line.

Other PARSEC benchmarks are not known to su�er from false sharing. Thus we do not further

introduce them in detail in this section. In previous studies, it has been found that Bodytrack su�ers

from true sharing [74] because there is a producer-consumer pattern [94]. It is important not to confuse

this pattern with false sharing. Other benchmarks also su�er from true sharing. For example, true

sharing occurs in mutexes in many benchmarks.

We encountered bugs in raytrace and x264 that originate in the memory management. After the region

of interest (ROI) of the benchmarks is completed the applications crash. This also terminates the alloca-

tion tracker and no objects can be resolved. This has the same e�ect as setting a high value for the min

allocation size. False sharing detection can still be executed, despite the bug in the programs.
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Performance Implications of False Sharing

Figure 7.2 shows the speedup that can be obtained when �xing false sharing in the benchmarks. In most

of the benchmarks, false sharing is a severe performance problem. But in freqmine and streamcluster,

there is only a small speedup of at most 6.5%. The signi�cance of false sharing has also been con�rmed

in previous studies [57, 68].
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Figure 7.2. The speedup when �xing false sharing in various benchmarks. The speedup of the PARSEC

benchmarks on the right side is much lower than that of the other benchmarks. The speedup scale on

the left is the relative speedup compared to the initial version. The speedup scale on the right shows

how many percent the execution time improved.

The coe�cient of variation is on average 3.18% and at most 3.91%, for the PARSEC benchmarks. It is on

average 56.18% and up to 59.17%, for the arti�cial false sharing benchmarks and Phoenix benchmarks.

Especially the original versions, that are a�ected by false sharing have high variations of the execution

time between iterations.

7.2.2 False Sharing Detection Accuracy

We conducted 13200 individual experiments. Table 7.3 lists the overall results of the false sharing

detection. False sharing has been detected in 66% of all cases. This result does not consider the sampling

period. With an appropriate sampling period, the detection results are much better, as shown in the

latter part of this section. No false positives were reported. All 9240 cases without false sharing were

correctly classi�ed. The cases of true sharing were also correctly classi�ed and did not raise false

positives.

Table 7.3. The overall detection accuracy of false sharing. This evaluation does not consider the sam-

pling period. There are no false positives.

Detection

False Sharing No False Sharing

Actual

False Sharing 1356 2604

No False Sharing 0 9240

The detailed results show that the detection accuracy worsens with higher sampling periods in all of

the experiments. Figure 7.3 shows the results combined for all systems and all benchmarks. Up to a

sampling rate of 8000, the detection rate stays stable on high levels of over 90%. At a sampling period

of 16,000 or higher, the detection rate rapidly decreases.

Out of all benchmarks, ref count (Figure 7.7) shows the worst detection accuracy. A manual analysis

of the captured samples reveals that in many cases there are no HITM accesses captured, even with

low sampling periods, such as one out of 500 samples. If the false sharing detection is executed on all

cache lines, not just on those with the HITM �ag set, then false sharing is detected. The benchmarks
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Figure 7.3. The overall accuracy of the false sharing detection depends on the sapling period.

histogram with false sharing input and linear regression show perfect detection results up to a sampling

period of 256000. It can be seen in Figure 7.9 and Figure 7.10 respectively. As expected, detection results

are worse with the original input as shown in Figure 7.8. In freqmine (Figure 7.11), inter-object false

sharing is reliably detected up to a sampling period of 64000. Freqmine is the only benchmark that

su�ers from inter-object false sharing. In all other benchmarks, the type of false sharing is intra-

object. In streamcluster (Figure 7.12), false sharing is found reliably up until a sampling period of 8000.

In the other PARSEC benchmarks, no case of false sharing was found. Overall, a sampling period of

8000 is enough to detect most cases of false sharing. The detection results di�er only slightly between

the four systems. It indicates that the method works the same on all tested architectures.
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Figure 7.4. The false sharing detection results in the boost spinlock benchmark.
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Figure 7.5. The false sharing detection results in the locked benchmark.
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Figure 7.6. The false sharing detection results in the lockless benchmark.
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Figure 7.7. The false sharing detection results in the ref count benchmark.
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Figure 7.8. The false sharing detection results in the histogram benchmark with the default input.
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Figure 7.9. The false sharing detection results in the histogram benchmark with the input that is de-

signed to cause false sharing.
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Figure 7.10. The false sharing detection results in the linear regression bechmark.
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Figure 7.11. The false sharing detection results in the freqmine benchmark.
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Figure 7.12. The false sharing detection results in the streamcluster benchmark.
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7.2.3 Comparison with Existing Methods

The benchmarks were analyzed by several di�erent tools in previously published papers. Based on

those publications, we compare our results with existing approaches. Table 7.4 summarizes the de-

tection results of our approach and previous approaches. PerfMemPlus detects all previously known

cases of false sharing. It also detects false sharing in freqmine. This case has not been found by any

of the other tools. However, it could be that due to a di�erent memory allocator, false sharing did not

occur in the previously published experiments. We could not verify this based on the results given in

the papers. One may also argue that false sharing in streamcluster and freqmine only results in a small

performance penalty, and thus it is tolerable if tools do not detect it. We, as well as most of the previous

papers, regard the false sharing in streamcluster as a valid case. In freqmine, the performance impact

of false sharing is slightly lower. Our approach did not raise false positives. But some of the previously

published tools did raise false positives. In summary, the detection results of Feather and Huron are

the best out of the previous tools. PerfMemPlus has the same detection accuracy but additionally �nds

false sharing in freqmine.

Table 7.4. The false sharing detection results of prior work and PerfMemPlus. TN = True Negative, TP

= True Positive, FN = False Negative, FP = False Positive. Wrong classi�cations are marked in red. An

empty cell indicates that the benchmark was not analyzed in the publication.

Benchmark Predator [68] Feather [13] Huron [57] ML [55] TMI [17] Sheri� [66] PerfMemPlus
Blackscholes TN TN TN TN TN TN TN

Bodytrack TN TN TN TN TN TN

Canneal TN TN TN TN TN FP TN

Dedup TN TN TN TN TN TN TN

Facesim TN TN TN TN TN TN

Ferret TN TN TN TN TN TN TN

Fluidanimate TN TN TN TN TN FP TN

Freqmine FN FN FN FN FN FN TP

Raytrace TN TN TN TN TN TN

Streamcluster TP TP FN TP FN TP TP

Swaptions TN TN TN TN TN TN

Vip TN TN TN TN TN TN

x264 TN TN TN TN TN TN

Boost spinlock TP TP FN TP

Histogram FN TP TP FN TP FN TP

HistogramFs TP TP TP

Linear regression TP TP TP TP TP TP TP

Locked TP TP FN TP

Lockless TP TP TP TP

Ref count TP TP TP TP

The di�erent approaches of false sharing detection have requirements for their usage. Huron [57]

and Predator [68] need an LLVM compiler. Sheri� [66] can not handle inline assembly or atomic

instructions [74]. Feather [13] requires a custom Linux kernel to reduce the overhead. It needs support

for instructions sampling and debug registers. The machine learning approach by Jayasena [55] cannot

point out objects and code locations with false sharing and requires hardware performance monitoring.

TMI and PerfMemPlus only require support for hardware instruction sampling.

7.3 DRAM Bandwidth Contention Detection

In this section, we evaluate the main memory bandwidth contention detection feature of PerfMemPlus.

The hardware is the same as the one used for the evaluation of the false sharing detection. It is described
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in Table 7.1. First, we evaluate the DRAM contention detection with micro-benchmarks, that allow �ne

control over the amount of contention and thus a detailed analysis. Second, we test our approach and

with benchmarks from PARSEC to verify if it also works with realistic applications.

7.3.1 Micro-Benchmarks

Because the arti�cial benchmarks have a known behavior and the amount of DRAM contention is

known, we can do a detailed evaluation of our DRAM contention detection approach. We show that

the DRAM latency is a superior metric compared to DRAM bandwidth. And that the detection of

DRAM contention based on a �xed hardware-speci�c threshold latency detects all cases of severe

contention.

Benchmarks

We evaluate the DRAM contention detection feature using arti�cial micro-benchmarks to check the

sensitivity of the detection. The idea is to use benchmarks, which are known to su�er from an ad-

justable degree of DRAM contention. We use benchmarks that Xu et al. [128] introduced and made

available online [127]. They consist of three individual benchmarks. All of them use three di�erent

vectors and execute operations on them in parallel. Xu et al. designed them to create di�erent memory

access patterns. Because of those di�erent memory access patterns, they are also suitable for us. The

three benchmarks are:

• countv: It counts how often a certain value appears in the vectors.

• sumv: It sums up the values in each individual vector.

• dotv: It calculates the dot product of two vectors and stores it in the third vector.

The benchmarks are parallelized with OpenMP parallel for loops. These operations are repeated many

times to increase the execution time and amount of memory accesses. There are two con�guration

options for those benchmarks. First, the number of threads. Second, the array size. We chose two

di�erent array sizes. First, an array size of 1,000,000 that results in a total data size of 23 MB. Second,

an array size of 10,000,000 that results in a total data size of 229 MB. The small size �ts into the L3 cache

of all the systems listed in Table 7.1. The large array size �ts into none of the L3 caches. By comparing

the performance of both versions, we know the performance in�uence of the DRAM accesses.

The second varied parameter is the number of threads. These benchmarks are embarrassingly parallel,

but memory-intensive applications. We expect near-linear scaling with the small array size but limited

scalability with the large array size due to the DRAM bandwidth limitation. Our experimental results,

which are shown in Figure 7.13, con�rm this.

Because we want to study the in�uence of local DRAM contention, we execute the benchmarks only

on one of the two available processors per system and enforce memory allocation on the local DRAM.

We study remote DRAM contention in separate experiments. All benchmarks were executed 10 times.

The provided performance results are the average of those 10 repetitions. For detection results, we

show in how many of the 10 cases DRAM contention was found. The coe�cient of variation of the

execution time is on average 8.05% and at most 13.89%.
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Figure 7.13. The speedup of the micro-benchmarks used for DRAM contention detection evaluation.

Benchmarks with a small data size show better parallel scaling than benchmarks with large data size.

Speedup Loss Metric

First, we need to establish a metric for the severity of DRAM contention in the benchmarks. This metric

is the speedup loss. It is de�ned as the speedup of the large array version divided by the speedup of

the small array version. It expresses how many times more speedup could be obtained if there would

be no DRAM limitation. For example, The speedup loss of sumv on Comet at 8 threads is 2. At this

con�guration, the large array version reaches a speedup over the sequential version of around 4. The

small array version reaches a speedup of 8 over the sequential version. Figure 7.14 shows the speedup

loss over the number of threads. There is a big range of losses between di�erent benchmarks and

systems. This allows us to evaluate the DRAM contention detection in a wide range of scenarios.

In general, the speedup loss increases with the number of threads and the speedup loss of the dotv

benchmark is the highest. On Comet, there is a large di�erence in the speedup loss of the benchmarks.

In contrast, on Arcturus and Spica, the speedup loss of all benchmarks di�ers only slightly. On Rigel,

countv and sumv show a similar speedup loss, but the speedup loss of countv is much greater.
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Figure 7.14. The speedup loss of the arti�cial benchmarks expresses the severity of DRAM contention.

It rises with the number of threads and di�ers between benchmarks and systems.

Summary of Contention Detection

Figure 7.15 shows a summary of DRAM contention detection in all benchmarks and on all machines.

On the horizontal axis are intervals of speedup loss. It starts with a speedup loss of less than 1.25. The

following intervals are groups of speedup loss with a range of 0.25. The vertical axis shows in how

many cases, out of all experiments that fall into the group, a DRAM contention was detected. It is a

summery over all systems and all benchmarks. From this �gure, we can see that cases with a small

speedup loss are only occasionally detected. When the speedup loss gets higher, a DRAM contention

is always detected. For example, if the speedup loss is at least 2, and the sampling period is 500 or 1000,

then in over 75% of the cases the DRAM contention is detected. At a speedup loss of 2.5 or higher, it is

detected in over 95% of the cases.
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Figure 7.15. The Percentage of DRAM contention detection for intervals of speedup loss. The values

on the horizontal axis denote the upper bound of the interval.

Influence of the Sampling Period

As shown in Figure 7.15, sampling periods from 500 to 2000 produce reliable results. There is a slight

decrease in detection results with a sampling period of 2000. Higher sampling periods, like 4000 shown

in Figure 7.15 do no longer result in reliable detection of DRAM contention. Figure 7.16 shows in more

detail how the DRAM contention detection depends on the sampling rate. The experiments for this

diagram were executed on Arcturus. The maximum number of threads was picked. At 22 threads, all

three benchmarks show a speedup loss between 2.5 and 3. We expect that for all benchmarks a DRAM

contention is detected. But this is only true up to a sampling period of 1000. At a sampling period

of 2000, already some cases in countv and sumv are missed. At a sampling period of 4000 or higher,

only in dotv DRAM contention is detected. At a sampling period of 16,000 or higher, also the detection

results of dotv deteriorate. Based on those �ndings, we chose a sampling period of 1000 for the next

evaluation.
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Figure 7.16. The detection accuracy of DRAM contention depends on the sampling period. A sampling

period of 500 or 1000 allows reliable detection in these benchmarks.

Detection Result Details for Systems and Benchmarks

In Figure 7.17 the detection results are plotted over the number of threads. With a higher number

of threads, the DRAM contention gets more severe, as shown in Figure 7.14. The detection results
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in Figure 7.17 should be compared to the performance loss plotted in Figure 7.14. When comparing

both diagrams, we can see that when the contention gets worse, it is more likely to be detected. But

there are di�erences between the systems and benchmarks. On Rigel, even though the speedup loss of

countv and sumv is almost the same, only in sumv DRAM contention is detected. In countv, it is never

detected. On Spica, the speedup loss of countv and sumv is also very similar. At 8 threads, contention

in sumv is detected with 100%, but for countv, it takes 14 threads to reach a detection of 100%. The cases

of missed DRAM contention detection always occur at low speedup losses. Severe DRAM contention

with a speedup loss of more than 3 times, is always detected.
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Figure 7.17. The higher the number of threads is, the more severe the DRAM contention is, and the

more likely it is to be detected. A 100% detection rate means that contention was detected in 10 out of

10 experiments

Relationship of Latency and Speedup Loss

The DRAM access latency, on which the DRAM contention detection is based, is shown in Figure 7.18.

With the number of threads, and thus the speedup loss, the latency rises. A correlation diagram of the

speedup loss and the latency is shown in Figure 7.19. The latency rises with the speedup loss. Ideally,

the contention detection metric should be proportional to the speedup loss, and the same for every

benchmark. There is a small di�erence between the di�erent benchmarks. On Rigel, the latency graph

of dotv remains rather �at after a speedup loss of more than two. Also, the point where the limit is

crossed is di�erent for benchmarks and systems. However, severe DRAM contention of more than 2.25x

speedup loss always results in an average latency above the limit. The latency also di�ers between the

benchmarks. Dotv always has the highest latency, followed by sumv and countv. When we look at the

actual scalability (Figure 7.13) of the large array version, and not the speedup loss, we see that dotv has

the worst scalability, followed by sumv and �nally countv. The benchmarks with low scalability have

a high latency. This bad scalability may come from additional factors that also delay the instruction

processing, which then increases the latency. We already know from our prior experiments that the

instruction sampling latency consists of in-core processing delays as well as memory access delays.
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The coe�cient of variation of the latency measurement is on average 35.01% and at most 53.24%. It

indicates that the latency can vary between experiments. A large number of samples or the repetition

of experiments is required to obtain reliable results.
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Figure 7.18. The more severe the performance problem is, the higher the DRAM access latency rises.

The latency is higher in the benchmarks that su�er more from DRAM contention.

Comparison to DRAM Bandwidth

The measured DRAM bandwidth, shown in Figure 7.20 does not increase above the hardware limit.

The DRAM bandwidth can not be used to judge the severity of the contention. In contrast, the DRAM

access latency rises higher, even if we already hit the bandwidth limit of the system. Thus, the latency

can be an indicator of the severity of the contention. The correlation of speedup loss and latency in

Figure 7.19 shows this.

A speci�c example of this is dotv on Comet. The scalability loss di�ers depending on the number of

threads. It is about 2 with 6 threads and about 4.5 with 18 threads (Figure 7.14). Not matter if we run

the application with 6 threads or 18 threads, there is no di�erence in the bandwidth (Figure 7.20). In

contrast, the latency di�ers between 500 cycles and 1100 cycles (Figure 7.18).

Just by looking at the DRAM bandwidth, one can not judge if an application is su�ering from limited

DRAM bandwidth. The di�erence between the benchmarks is also not visible when looking at the

DRAM bandwidth. For example, on Comet, with 6 threads the bandwidth of all benchmarks is similar

and close to the maximum. Just by looking at the DRAM bandwidth, one could conclude that all

benchmarks su�er from DRAM contention. However, at this point, the speedup loss ranges between

1.2 for countv and 2.1 for dotv. The DRAM access latency shows this di�erence. It ranges from about

160 for countv, to over 500 for dotv. By using the latency, we can see that countv is not impacted by

the constraint DRAM bandwidth, but dotv is su�ering from the limited DRAM bandwidth.
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Figure 7.19. The average DRAM access latency for intervals of speedup loss. The upper bound of the

speedup loss intervals is denoted on the horizontal axis.
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Figure 7.20. The bandwidth reaches a upper limit and can not be used to judge the severity of the

contention problem. The displayed bandwidth is the combined read and write bandwidth measured

with IMC counters.
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False positives

False positive detection of DRAM contention occurs in these experiments. A very low speedup loss,

for example, less than 10%, is a case where DRAM contention has only a minimal in�uence on the

performance. If such cases, with very low speedup loss, are reported as DRAM contention it is a false

positive. There is no exact de�nition of such a speedup loss threshold. We use 10% as an example

here. Table 7.5 shows all of those cases in experiments with a sampling period of 500 or 1000. Higher

sampling periods are not included because we showed before that results may get unreliable.

Table 7.5. A summary of the cases where DRAM contention was detected despite the speedup loss

being less than 10%.

System Benchmark Threads Speedup Loss Detection Count Average Latency
Arcturus sumv 4 1.07 2 out of 20 373

Comet sumv 1 1.0 5 out of 20 333

Comet sumv 2 1.05 6 out of 20 331

All of the cases occur in the sumv benchmark with a low thread count of up to 4. A thread count of 4 is

not enough to saturate the memory bandwidth of current systems, as we have shown in Section 4.3.4.

A di�erentiation of DRAM limitations and core-local limitations as described in Section 4.3.4 would

solve those false positive detections.

Remote DRAM Bandwidth Contention

So far we evaluated the discovery of local DRAM contention. But the method also works on the remote

DRAM, as we show with the following experiments. For these experiments, we allocated all threads on

one node and all the data on the other node. This way all DRAM accesses are remote DRAM accesses.

The latency limit for remote DRAM contention is higher than for the local DRAM contention. It is also

determined using a pointer chasing benchmark. Because the remote DRAM bandwidth is more limited

compared to the local DRAM bandwidth, the speedup over the serial version is lower. On Arcturus,

Comet, and Spica, the speedup over the sequential version is limited to about 3x. On Rigel, a sightly

higher speedup of 6x is achieved. Because the performance of the version with a data size that �ts into

the L3 cache does not change, the speedup loss reaches higher values of up to 7x.

Figure 7.21 shows the detection results. The trend is similar to the local DRAM contention. Higher

values of the speedup loss are always detected, and low values are only partially detected. In the local

DRAM case, a speedup loss of greater than 2.25 leads to certain detection of the problem. In the remote

DRAM case, a speedup loss of greater than 3.5 leads to certain detection. A higher sampling period has

fewer e�ects on the detection accuracy compared to the local DRAM.

A look at the remote DRAM latency con�rms the similarity to the local DRAM results. Figure 7.22

shows the average latency at intervals of speedup loss. Even though the measured latency values and

the hardware thresholds di�er, the general trend is the same as for the local DRAM latency shown in

Figure 7.19.
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Figure 7.21. The Percentage of remote DRAM contention detection for intervals of speedup loss. The

values on the horizontal axis denote the upper bound of the interval.
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Figure 7.22. The average remote DRAM access latency for intervals of speedup loss. The upper bound

of the speedup loss intervals is denoted on the horizontal axis.
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7.3.2 Small Kernels

All of the Stream benchmarks su�er from DRAM contention. It is reliably detected at sampling periods

ranging from 500 to 32000 as shown in Figure 7.23 to Figure 7.26. Only the copy benchmark shows

slightly lower detection rates at high sampling periods as depicted in Figure 7.24. All of the Stream

benchmarks have a DRAM latency much higher than the system latency as shown in Figure 7.27. As

expected, this indicates the severe bandwidth boundness of those benchmarks. Because of high cache

hit rates mMat does not have enough DRAM access samples for detection and for calculation of the

latency.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

500 1000 2000 4000 8000 16000 32000

D
e
te

ct
io

n
 P

e
rc

e
n
t

Sampling Period

DRAM Contetion Detection in add orig

arcturus comet rigel spica

Figure 7.23. The DRAM bandwidth contention detection results of Stream add.
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Figure 7.24. The DRAM bandwidth contention detection results of Stream copy.
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Figure 7.25. The DRAM bandwidth contention detection results of Stream scale.
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Figure 7.26. The DRAM bandwidth contention detection results of Stream triad.
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Figure 7.27. The average local DRAM access latency of the Stream benchmarks.
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7.3.3 PARSEC Benchmarks

The method of evaluation is di�erent from the arti�cial benchmarks because no clear metric for the

performance loss caused by DRAM contention exists. Still, the results show that our DRAM contention

detection approach also works for realistic applications.

Benchmarks

We evaluated the automatic discovery using all of the 13 PARSEC [10] benchmarks. All PARSEC bench-

marks were executed with the native input set and the speedup results are based on the time required

for the region of interest (ROI). We use the maximum number of physical cores available on the sys-

tems. Those numbers are shown in Table 7.1. Except for Facesim and Fluidaniamate, where we used

32 threads due to limitations in the benchmark. In this paper, we present the results for the pthreads

version of all benchmarks except for Freqmine, which only has an OpenMP version. PerfMemPlus

supports other parallelization methods such as Intel TBB, but we omit the results in this paper because

it does not provide any relevant insights.

The PARSEC benchmarks were analyzed in several previous studies [9, 10, 23, 26, 61, 67, 75, 102, 111] so

that we conclude the ground truth of the performance problems from the existing literature. Only two

benchmarks have known memory-related performance issues.

Canneal su�ers from memory issues [26] that cause slowdown and it has the second-highest band-

width requirement [10] of all PARSEC benchmarks.

Streamcluster is sensitive to DRAM speed [9] and has the highest main memory bandwidth require-

ment of all PARSEC benchmarks [10]. There are also NUMA issues due to the allocation of the main

array to one node and accesses from both nodes [61]. Data locality is worsened by shu�ing pointers

to data between algorithm iterations [75].

All benchmarks were executed 10 times. The provided performance results are the average of those

10 repetitions. For detection results, we show in how many of the 10 cases DRAM contention was

found.

Cases of DRAM Contention Detection

PerfMemPlus detected DRAM contention in some of the PARSEC benchmarks. In canneal, one function

that accesses two di�erent objects was pointed out. The reported function swap_cost contributes more

than 75% to the total execution time. In streamcluster, PerfMemPlus reported one function accessing

one object. The reported function, called pgain contributes more than 80% to the total execution time.

DRAM contention was also reported in one case in the benchmark bodytrack, running on Rigel. How-

ever, this case occurred in the tar program which is executed to prepare the required data to run this

benchmark. In �uidanimate and facesim, instances of DRAM contention are reported, when pro�ling

is done with low sampling periods. However, they occur in functions that contribute less than 5% to

the total execution time. When using sampling periods higher than 4000, there are not enough DRAM

access samples in the concerned functions. Because of those small contributions of the functions to the

overall execution time, we did not consider to optimize those applications. In �uidanimate, those func-

tions are AdvanceParticlesMTi, ProcessCollisionsMTi and RebuildGridMti. In facesim, those functions

are One_Newton_Step_Toward_Steady_State_CG_

Helper_I, One_Newton_Step_Toward_Steady_State_CG_Helper_III and dP_From_dF. In all other bench-

marks, no instance of DRAM contention was reported. This matches our expectations because no

DRAM contention is known in those benchmarks from the existing literature.
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Performance Optimization

We tried to �x the issue of DRAM contention in canneal and streamcluster. In canneal, we applied

interleaved allocation to the two reported objects. The details of the �ndings and optimization are

described in the case study in Section 7.9.1. For streamcluster, we applied two di�erent optimizations.

The �rst one is to use interleaved allocation for the identi�ed object. The second one changes the data

access pattern and results in better cache hit rates. On Spica, the L1 hit rate increases from 72% to 94%.

The details of this optimization are described in the case study in Section 7.9.2.

Figure 7.28 shows the speedup that was obtained by these modi�cations. In contrast to the arti�cial

benchmarks described in the last section, this speedup is not directly a measure of the severity of the

contention. The quality of the optimization also in�uences the achieved speedup. The execution time

measurements, that Figure 7.28 is based on have an average coe�cient of variation of 28.15% and at

most 32.51%. In canneal, the DRAM contention problem is not severe. A maximum speedup of 20%

can be achieved on Spica, which is the system with the lowest DRAM bandwidth. On Comet, there is a

1% slowdown. On the other two systems, there is a small speedup of a few percents. The DRAM con-

tention is more severe in streamcluster. The interleaved allocation brings higher speedups compared to

canneal. With interleaved allocation, a speedup between 7% on Rigel and 65% on Spica was obtained.

With the copy shu�e optimization that reduces the number of DRAM accesses, a speedup between

40% on Rigel and 2.54 times on Spica was achieved. On the systems with lower DRAM bandwidth, a

higher speedup was achieved. The existing literature also states that streamcluster has higher memory

bandwidth requirements compared to canneal [10].
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Figure 7.28. The speedup obtained through optimization of the allocation in streamcluster and canneal.

The optimization of the shu�e operation of streamcluster leads to an even higher speedup.

Detection Results in Canneal

Figure 7.29 shows that on Spica, the detection rates are the highest. On Comet and Arcturus, there

are some cases of detection. On Rigel, DRAM contention is never detected. Rigel is also the system

with the highest DRAM bandwidth. Figure 7.30 shows that even with the improved allocation, cases of

DRAM contention are reported. But there are fewer cases reported compared to the original version.

Overall canneal is only slightly a�ected by DRAM contention, and the detection results re�ect that.

Only in some cases, it is detected. We see a similar result in the arti�cial benchmarks. If the DRAM

contention is not severe, detection is not guaranteed.
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Figure 7.29. The detection of DRAM contention in the original version of the canneal benchmark.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

500 1000 2000 4000 8000 16000 32000 64000 128000 256000 512000

D
e
te

ct
io

n
 P

e
rc

e
n
t

Sampling Period

DRAM Contetion Detection in canneal fixed

arcturus comet rigel spica

Figure 7.30. The detection of DRAM contention in the optimized version of the canneal benchmark.
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Detection Results in Streamcluster

Figure 7.31 shows the DRAM contention detection results of the unoptimized version of streamcluster.

Spica has the lowest DRAM bandwidth and DRAM contention is always detected on this system. On

Arcturus, it is also often detected. Both of them are Broadwell architecture. On Comet, even though

speedups were higher than on Arcturus the detection results are worse. The contention is only detected

in a few cases. On Rigel, where interleaved allocation brings only a slight performance bene�t, DRAM

contention is only found once.

After applying the interleaved allocation optimization, the number of detections drops, as shown in

Figure 7.32. Only some cases of DRAM contention are found on Arcturus and Comet.

It drops even further after applying the better optimization, which improves cache hit rates. Those

results are shown in Figure 7.33. The number of DRAM accesses drops signi�cantly. At a sampling

period of 8000, the average number of DRAM samples taken in a pro�le of the identi�ed function drops

from 399 to 18. In many cases, there are not enough samples available to calculate a reliable average

of the latency based on the conditions described in Section 4.2.
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Figure 7.31. The detection of DRAM contention in the original version of the streamcluster benchmark.
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Figure 7.32. The detection of DRAM contention in the streamcluster benchmark with interleaved allo-

cation of the array block.
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Figure 7.33. The detection of DRAM contention in the streamcluster benchmark with an optimized

shu�e implementation.

DRAM Latency

The average DRAM access latency of canneal and streamcluster in both the original version and �xed

version is shown in Figure 7.34. The maximum coe�cient of variation of the latency is 60.80% for can-

neal and 14.91% for streamcluster. On average it is 21.17%. We do not include the version of stream-

cluster with the improved shu�e operation. Because of the improved cache hit rates in this version,

most of the time there are not enough DRAM access samples available to calculate an average DRAM

latency, that would satisfy the conditions mentioned in Section 4.3.5. The hardware threshold is drawn

as a blue line. Spica has the lowest DRAM bandwidth and also bene�ts the most from the optimiza-

tions. The latency values on Spica, for the initial version, are far above the limit, whereas the �xed

version has a latency below the limit. On Rigel, the latencies are always below the limit. Rigel is the

system with the highest memory bandwidth and the least bene�t from the optimizations. On Arcturus

and Comet, the applications su�er slightly from the limited DRAM bandwidth. The latencies are close

to the limit, and there is no clear di�erence between the original and optimized version. In all cases,

the latency of streamcluster is higher than that of canneal. Streamcluster su�ers more from the DRAM

contention, and interleaved allocation leads to higher speedups for streamcluster compared to can-

neal. Overall we can see a trend that more severe DRAM contention results in higher latency. Also in

realistic applications, the DRAM access latency is a metric for the severity of DRAM contention.
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Figure 7.34. The average DRAM access latency of the streamcluster benchmark and canneal bench-

mark.

Influence of the Sampling Period

The e�ect of the sampling period is not visible as clearly as for the arti�cial benchmarks. In the ar-

ti�cial benchmarks, only a sampling period of 500 or 1000 produced reliable results. In streamcluster

and canneal, also higher sampling periods are viable. We observe slightly worsened detection results

at a sampling period of 32,000 or higher. The PARSEC benchmarks run much longer than the arti�-

cial benchmarks. Thus at the same sampling period, the PARSEC benchmarks will accumulate more

samples. A suitable choice of the sampling period depends on the pro�led application.

7.4 NUMA Imbalance

Because the NUMA imbalance metric is simply based on the number of accesses, we do not evaluate it

with special micro-benchmarks. We conduct the evaluation using the small kernels and the PARSEC

benchmarks.

7.4.1 Small Kernels

For the Stream benchmarks, the NUMA imbalance is low. This is the expected behavior because the

initialization, which means the �rst touch of the arrays is done using all of the available threads. The

pro�ling data of the matrix multiplication benchmark does not contain enough DRAM accesses to

calculate the NUMA imbalance metric. The results are shown in Table 7.6. Because the measured low

imbalance matches our expectations, we did not implement and test interleaved allocation.
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Table 7.6. The NUMA imbalance of the small kernels. For the matrix multiplication benchmark there

are not enough DRAM access samples to calculate the imbalance.

add copy scale triad mMat

Arcturus 0.06 0.18 0.04 0.06 0

Comet 0.08 0.10 0.05 0.06 0

Rigel 0.02 0.04 0.02 0.02 0

Spica 0.05 0.17 0.05 0.06 0

7.4.2 PARSEC Benchmarks

Out of the PARSEC Benchmarks only two show a DRAM contention problem. The NUMA imbalance

of those benchmarks is evaluated in Section 7.9.1 and Section 7.9.2.

7.5 Channel Imbalance

The evaluation of the channel imbalance serves two purposes. First, we want to know if the mea-

surement works correctly. For this part of the evaluation, we use a micro-benchmark that deliberately

causes an imbalance by using only speci�c channels. Second, we want to evaluate the imbalance in real

applications. For this purpose, we use two groups of benchmarks. First, small kernels with a uniform

and easily analyzable behavior and second the realistic PARSEC benchmarks.

7.5.1 Micro-Benchmark

With a micro-benchmark that accesses only speci�ed channels, we verify if the tra�c on the separate

channels is correctly counted and if it is distinguishable. This benchmark works on Arcturus and

Spica because for those systems we have reverse engineered the address mapping. The benchmark

�rst allocates an array. Each individual element has a size of 64 Bytes to match the cache line size.

Addresses below the granularity of a cache line do not change the mapping thus smaller elements are

not of interest. Second, for each index within the array, the physical address is calculated. Each physical

address is tested against the address mapping. If the address lies withing the speci�ed channel, rank,

and bank the index is saved in a list. After this preparation follows the actual benchmark step. In a

parallel for loop, the saved indexes are used and the corresponding data in the main array is accesses.

Each memory access is followed by cache line �ush instruction to enforce a load from DRAM.

We show the results in Figure 7.35 and Figure 7.36 respectively. On both systems, we observe that the

used channels clearly stand out from the unused channels. We also conduct the experiments with other

channel number combinations and found that the approach works regardless of the channel that was

used. In other words, also the usage of only channel 3 can be seen. On Arcturus, channel speci�cation

for the benchmark di�ers from the channel speci�cation for the measurement. Because in hardware

the channels are named as 0, 1, 4, and 5. However, the access benchmark is not aware of this hardware

names and uses the channels 0, 1, 2, and 3. On Spica, the channel naming of measurement and access

benchmark is the same.
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Figure 7.35. The measured consumed memory bandwidth on di�erent channels on Arcturus when

enforcing accesses to speci�c channels.
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Figure 7.36. The consumed memory bandwidth on di�erent channels on Spica when enforcing accesses

to speci�c channels.
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7.5.2 Small Kernels

The four Stream benchmarks in Figure 7.37, Figure 7.38, Figure 7.39, and Figure 7.40 show high band-

width usage on all channels. It is the same on all channels and all systems. The channel bandwidth of

the matrix multiplication benchmark shown in Figure 7.41 is low and the same for all channels.
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Figure 7.37. The consumed memory bandwidth on di�erent channels when pro�ling Stream add.
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Figure 7.38. The consumed memory bandwidth on di�erent channels when pro�ling Stream copy.
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Figure 7.39. The consumed memory bandwidth on di�erent channels when pro�ling Stream scale.
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Figure 7.40. The consumed memory bandwidth on di�erent channels when pro�ling Stream triad.
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Figure 7.41. The consumed memory bandwidth on di�erent channels when pro�ling OpenBLAS

DGEMM.

7.5.3 PARSEC Benchmarks

Among the PARSEC benchmarks, there are many with very low bandwidth requirements. Those in-

clude bodytrack (Figure 7.43), dedup (Figure 7.45), facesim (Figure 7.46), ferret (Figure 7.47), and swap-

tions (Figure 7.50). Some benchmarks show short spikes of medium bandwidth requirements. Those

are blackscholes (Figure 7.42), canneal (Figure 7.44), and freqmine (Figure 7.48). In all of the above-

mentioned benchmarks, the bandwidth is equally balanced on all channels.

The benchmark with a long period of high bandwidth consumption is streamcluster shown in Fig-

ure 7.49. On Rigel and Spica, there is a slight di�erence in the bandwidth on di�erent channels. The

channels can be divided into two groups. One group of channels shows a lower bandwidth and the

other group a higher bandwidth. The di�erence between the two groups is 5GB/s on Rigel and 2GB/s

on Spica. On Arcturus and Comet, the bandwidth consumption is well balanced.
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Figure 7.42. The bandwidth on the di�erent channels when pro�ling blackscholes.

 0
 2000
 4000
 6000
 8000

 10000
 12000

 0  5  10  15  20  25  30  35

B
a
n
d

w
id

th
 (

M
B

/s
)

Time (s)

Channel Bandwidth of bodytrack on arcturus

Channel
0
1
4
5

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

B
a
n
d

w
id

th
 (

M
B

/s
)

Time (s)

Channel Bandwidth of bodytrack on comet

Channel
0
1
4

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0  5  10  15  20  25  30  35  40

B
a
n
d

w
id

th
 (

M
B

/s
)

Time (s)

Channel Bandwidth of bodytrack on rigel

Channel
0
1
2
3
4
5

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0  5  10  15  20  25  30  35

B
a
n
d

w
id

th
 (

M
B

/s
)

Time (s)

Channel Bandwidth of bodytrack on spica

Channel
0
1
2
3

Figure 7.43. The bandwidth on the di�erent channels when pro�ling bodytrack.
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Figure 7.44. The bandwidth on the di�erent channels when pro�ling canneal.
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Figure 7.45. The bandwidth on the di�erent channels when pro�ling dedup.
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Figure 7.46. The bandwidth on the di�erent channels when pro�ling facesim.
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Figure 7.47. The bandwidth on the di�erent channels when pro�ling ferret.
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Figure 7.48. The bandwidth on the di�erent channels when pro�ling freqmine.
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Figure 7.49. The bandwidth on the di�erent channels when pro�ling streamcluster.
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Figure 7.50. The bandwidth on the di�erent channels when pro�ling swaptions.

7.6 Row Bu�er Miss

We evaluate the row bu�er miss detection using micro-benchmarks, the small kernels, and the PAR-

SEC benchmarks. With the micro-benchmarks, we verify that the measurement is correct. In the small

kernels, we �nd cases of low row bu�er hit rate and introduce a performance optimization. The PAR-

SEC benchmarks have good row bu�er hit rates. For the row bu�er hit rate the development with a

changing number of threads is interesting because we expect a higher conc�ict ratio with more threads.

Thus we use the per-thread display instead of a time-resolved graph in these evaluations.

7.6.1 Micro-Benchmarks

For a basic correctness check, we evaluate the measurement approach with a micro-benchmark. Our

experiments con�rm that the page empty, page con�ict, and page hit ratio can be measured using the

method introduces in Section 4.6.

Our evaluation is based on two known facts. First, in open page management, parallel memory accesses

to di�erent memory locations worsen the hit ratio and increase to con�ict ratio. Multiple threads

accessing di�erent addresses cause many accesses to di�erent rows in a short time. Second, when

more banks are available the con�ict rate should decrease and the hit rate should increase. E�ectively,

more row bu�ers are available for caching open rows. Thus, the micro-benchmark’s memory accesses

are done by a con�gurable number of threads and are limited to a con�gurable number of banks. It is

based on the access benchmark used for the evaluation of the channel imbalance measurement. Due

to hardware limitations, the experiments were only executed on Arcturus.
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In Figure 7.51 four diagrams are shown. The di�erent diagrams represent cases with a di�erent number

of banks used. In all of the four diagrams, we see an increase in the con�ict ratio and a decrease in the

hit ratio. By using more banks, the e�ect of the worsening hit ratio can be reduced.
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Figure 7.51. The row bu�er hit and miss ratios over the number of threads. The four diagrams show

the situation when access is limited to 1, 2, 8, or 16 banks.

The e�ect of the number of banks can be seen more clearly in Figure 7.52. When using one thread,

as shown in the left diagram, the number of banks does not in�uence the hit ratio. In contrast, when

using 22 threads, the number of banks has a signi�cant in�uence on the hit rate.

Figure 7.53 shows the speedup obtained when increasing the number of threads. The number of avail-

able banks limits the speedup.
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Figure 7.52. The row bu�er hit and miss ratios over the number of used banks. The two diagrams show

the situation when accesses come from 1 thread or 22 threads.

CHAPTER 7. EVALUATION 128



 5

 10

 15

 20

 5  10  15  20

S
p
e
e
d
u
p

Threads

Speedup on arcturus

Banks
1
2
4
8

16

Figure 7.53. The parallel speedup for di�erent number of used banks.

7.6.2 Small Kernels

For the small kernels, we can observe a similar phenomenon as for the micro-benchmarks. As shown

in Figure 7.54, the con�ict ratio increase with the number of threads while the hit ratio decreases. The

copy benchmark from Stream is di�erent from the other benchmarks. It has higher hit ratios, lower

con�icts, and lower page empty ratios. The matrix multiplication benchmark which is not bandwidth

bound has a high page empty ratio.

The di�erence in row bu�er hit ratio between copy and scale is surprising because the source code of

both benchmarks is very similar. Not just the row bu�er hit rate, but also the performance between

scale and copy is di�erent as shown in Figure 7.55. Triad and add are expected to be slower because

they access more data. GCC recognizes the memory copy pattern and uses a special internal memcopy

function. Thus, the resulting assembly code is di�erent. The source code and generated assembly code

of scale are shown in Figure 7.56. The code of copy is shown in Figure 7.57. The compiler used is

GCC 7.5. The compiler �ags are -fopenmp and -O3 for both benchmarks. In the assembly code of

copy in Figure 7.57b we can see four optimizations. First, the use of 256bit instructions instead of

128bit instructions. Second, the use of prefetch instructions. Third, the use of four moves in one loop

iterations. Fourth, the use of streaming stores instead of conventional store instructions.

Figure 7.58 shows the execution time when applying di�erent optimizations to Stream scale. It com-

pares non-temporal stores (nt) and the vector instructions size (128 bit and 256 bit). Mostly the non-

temporal stores are responsible for the improved performance. When using non-temporal stores, the

performance of scale is very close to the performance of copy. Also, the row bu�er hit rate is improved

when using streaming stores as shown in Figure 7.59.

The same non-temporal store optimization can also be applied to Stream add and Stream triad. Fig-

ure 7.60 shows the improved performance and Figure 7.61 shows the improved row bu�er hit rate.
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Figure 7.54. The row bu�er status over the number of threads in the Stream benchmarks and the matrix

multiplication benchmark.
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Figure 7.55. The execution time of the Stream benchmarks.
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1 #pragma omp parallel for
2 for (j=0; j<STREAM_ARRAY_SIZE; j++)

3 b[j] = scalar∗c[j];

4 #endif

(a) Original source code.

1 movapd (%r10,%rcx)

2 mulpd %xmm1, %xmm0

3 movups %xmm0, (%rdi,%rcx)

(b) Assembly generated by GCC.

Figure 7.56. Code of Stream scale

1 #pragma omp parallel for
2 for (j=0; j<STREAM_ARRAY_SIZE; j++)

3 b[j] = c[j];

4 #endif

(a) Original source code.

1 prefetcht0 0x100(%rsi)

2 prefetcht0 0x140(%rsi)

3 prefetcht0 0x180(%rsi)

4 prefetcht0 0x1c0(%rsi)

5 vmovdqu (%rsi),%ymm0

6 vmovdqu 0x20(%rsi),%ymm1

7 vmovdqu 0x40(%rsi),%ymm2

8 vmovdqu 0x60(%rsi),%ymm3

9 vmovntdq %ymm0,(%rdi)

10 vmovntdq %ymm1,0x20(%rdi)

11 vmovntdq %ymm2,0x40(%rdi)

12 vmovntdq %ymm3,0x60(%rdi)

(b) Assembly generated by GCC.

Figure 7.57. Code of Stream copy
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Figure 7.58. The execution time of di�ernt optimizaions of Stream scale.

 0

 20

 40

 60

 80

 100

 5  10  15  20

Pe
rc

e
n
t

Threads

scale 256_nt on arcturus

pageHit
pageEmpty

pageConflict

Figure 7.59. Row bu�er hit rate of Stream scale with non-temporal stores optimizaion.
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Figure 7.60. The execution time of the original version and the optimized version of Stream triad and

Stream add.
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Figure 7.61. The row bu�er hit status of the optimized Stream triad and Stream scale.
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7.6.3 PARSEC Benchmarks

Figure 7.62 to Figure 7.70 show the results of the PARSEC benchmarks. In all of the PARESC bench-

marks, the con�ict ratio is very low, usually below 15%. Generally the hit ratio is higher, it is higher

than the percentage of page empty. They perform better than the kernel benchmarks. Streamcluster

(Figure 7.69) shows worsening hit ratio when increasing the number of threads. In contrast, the other

benchmarks have relatively stable ratios when changing the number of threads.
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Figure 7.62. The row bu�er status over the

number of threads of blackscholes.
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Figure 7.63. The row bu�er status over the

number of threads of bodytrack.
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Figure 7.64. The row bu�er status over the

number of threads of canneal.
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Figure 7.65. The row bu�er status over the

number of threads of dedup.
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Figure 7.66. The row bu�er status over the

number of threads of facesim.
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Figure 7.67. The row bu�er status over the

number of threads of ferret.
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Figure 7.68. The row bu�er status over the

number of threads of freqmine.
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Figure 7.69. The row bu�er status over the

number of threads of streamcluster.
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Figure 7.70. The row bu�er status over the

number of threads of swaptions.
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7.7 Profiling Overhead

Pro�ling needs to be done only once, no matter what performance problem is analyzed. We �rst

discuss the average overhead of PerfMemPlus and then go into the details for individual systems and

benchmarks.

The overhead of PerfMemPlus pro�ling varies with the sampling period. As shown in Figure 7.71, it

ranges between 3% and 9% on average. In this �gure, the average overall benchmarks and all systems

is reported. In some cases, there is a negative overhead when pro�ling. In those cases, the overhead

is counted as zero overhead in this calculation of the average. In Figure 7.71, the overhead increases

from a sampling period of 32000 to 64000. This happens because we did not pro�le the arti�cial DRAM

contention benchmarks with a sampling period higher than 32000. Those benchmarks have very low

overhead, thus when they are not included in the average overhead, the average overhead rises. The

highest overhead observed occurs on Spica when pro�ling dedup with 48 threads. The overhead, in

this case, is 160%.
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Figure 7.71. The average overhead of PerfMemPlus pro�ling across all systems and all benchmarks.

7.7.1 Artificial False Sharing Benchmarks

The average overhead of pro�ling the arti�cial false sharing benchmarks is shown in Figure 7.72. Some

of the arti�cial micro-benchmarks show high variations in the execution time, especially in the original

versions that su�er from false sharing. We do not use the results from those benchmarks for the

evaluation of the overhead. Instead, we provide overhead results from pro�ling the �xed version of

those benchmarks. All diagrams are drawn with the same scale of up to 35% overhead.

In boost_spinlock (Figure 7.73), the maximum overhead is 17%. It drops with higher sampling periods.

On Spica, there is a negative overhead in some cases. The overhead of the locked benchmark is at most

24%, as can be seen in Figure 7.74. It quickly drops to low levels at sampling periods of 8000 or higher.

A similar maximum overhead occurs in the lockless benchmark, as shown in Figure 7.75. The overhead

in ref_count (Figure 7.76) is at most 12%. There is no �xed version of the true sharing benchmark. The

overhead of pro�ling the true sharing benchmark is shown in Figure 7.77.
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Figure 7.72. The average overhead of pro�ling the arti�cial false sharing benchmarks.
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Figure 7.73. The overhead of pro�ling boost spinlock.
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Figure 7.74. The overhead of pro�ling locked.
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Figure 7.75. The overhead of pro�ling lockless.
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Figure 7.76. The overhead of pro�ling ref count.
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Figure 7.77. The overhead of pro�ling true sharing.
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7.7.2 Phoenix Benchmarks

In the Phoenix benchmarks, we also saw unstable execution times in the original versions. Thus, we

report the speedup for the �xed versions. The average overhead of pro�ling the Phoenix benchmarks

is shown in Figure 7.78.
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Figure 7.78. The average overhead of pro�ling the Phoenix benchmarks.

Figure 7.79 shows the overhead when pro�ling the linear regression benchmark. On Spica, the over-

head is much higher than on the other systems. Histogram has a high variation of the execution time in

the if Figure 7.80 shows the overhead that occurs when pro�ling histogram. The pro�ling overhead in

histogramFs is displayed in Figure 7.81. There is a speedup when pro�ling with low sampling periods

on all systems.
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Figure 7.79. The overhead of pro�ling linear regression.
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Figure 7.80. The overhead of pro�ling histogram (original input).
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Figure 7.81. The overhead of pro�ling histogram (false sharing input).
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7.7.3 Artificial DRAM Contention Benchmarks

The average overhead of pro�ling the arti�cial DRAM contention benchmarks is shown in Figure 7.82.

With a higher number of threads, the overhead decreases.
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Figure 7.82. The average overhead of pro�ling the arti�cial DRAM contention detection benchmarks.

For the arti�cial benchmarks used for the DRAM contention detection evaluation, we show the over-

head with 1 thread and 18 threads. We chose 18 threads because even the smallest system supports 18

threads and because we want to show the di�erence when using one thread or many threads. All dia-

grams show the same overhead range of -2% to +20%. In general, the overhead is lower with a higher

thread count. On Comet, with a sampling period of 500, the overhead is much higher than on the other

systems when pro�ling countv (Figure 7.83) and sumv (Figure 7.85). With one thread, the overhead

drops quickly with higher sampling periods. When using 18 threads, there is only a small decrease in

the overhead.
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Figure 7.83. The overhead of pro�ling countv with one thread (left) and 18 threads (right).
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Figure 7.84. The overhead of pro�ling dotv with one thread (left) and 18 threads (right).
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Figure 7.85. The overhead of pro�ling sumv with one thread (left) and 18 threads (right).

7.7.4 PARSEC Benchmarks

The average overhead of pro�ling the PARSEC benchmarks increased with the number of threads as

shown in Figure 7.86.

The overhead of pro�ling the PARSEC benchmarks di�ers greatly depending on the benchmark. All

diagrams show the same overhead range of -5% to 35%. We show the results when pro�ling the bench-

marks using 4 threads and when the number of threads is equal to the number of physical cores of the

system.

When using four threads, the overhead of pro�ling blackscholes is always below 10%, as shown in

Figure 7.87. When using 56 threads on Rigel, the overhead rises to up to 35% but drops to below

3% when pro�ling with a sampling period of 4000 or higher (Figure 7.88). The overhead of pro�ling

bodytrack is similar in both pro�led thread count versions, as shown in Figure 7.89 and Figure 7.90.

When pro�ling canneal, the overhead rises when pro�ling with more threads. It is shown in Figure 7.91

and Figure 7.92 respectively. The overhead of pro�ling dedup on Spica with four threads (Figure 7.93) is

higher than on the other systems. In contrast to the overhead of pro�ling most of the other benchmarks,

it does not decrease with higher sampling periods. Figure 7.94 shows that when increasing the number

of threads, the pro�ling overhead increases. On Spica, we see an unusual high overhead of up to 160%

that does not decrease with higher sampling periods. The pro�ling overhead of facesim is similar when

using four threads (Figure 7.95) and when using 32 threads (Figure 7.96). The overhead decreases with

higher sampling periods. On Spica, the overhead increases with the number of threads. The pro�ling

overhead of ferret is very low. It never exceeds 10%, as shown in Figure 7.97. There is also a negative
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Figure 7.86. The average overhead of pro�ling the PARSEC benchmarks with four threads and with

the maximum thread count.
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overhead on Comet. With a higher number of threads, the overhead decreases further, as shown in

Figure 7.98. Pro�ling ferret can be done with low overhead. Both with four threads and 32 threads,

as shown in Figure 7.99 and Figure 7.100. The pro�ling overhead of freqmine is much lower with the

maximum thread count than with four threads. It drops from up to 15%, as shown in Figure 7.101 to a

maximum of 3%, as shown in Figure 7.102. A similar phenomenon is observed when pro�ling raytrace.

The overhead decreases when using more threads. The detailed numbers are plotted in Figure 7.103

and Figure 7.104. The overhead of pro�ling streamcluster is generally low, as visualized in Figure 7.105

and Figure 7.106. But on Rigel, with 56 threads and a sampling period of 500, the overhead reaches 30%.

The overhead of pro�ling swaptions is shown in Figure 7.107 and Figure 7.108. It increases when using

more threads. Except for Spica, where it decreases. The pro�ling overhead of vips decreases with a

higher number of threads. From up to 21%, as shown in Figure 7.109 to a maximum of 5%, as shown

in Figure 7.110. The pro�ling overhead of x264 behaves similar to vips. It decreases from up to 15%, as

shown in Figure 7.111 to a maximum of 5%, as shown in Figure 7.111.
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Figure 7.87. The overhead of pro�ling blacksholes with 4 threads.
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Figure 7.88. The overhead of pro�ling blacksholes with as much threads as physical cores available

(Arcturus 44, Comet 36, Rigel 56, Spica 48).
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Figure 7.89. The overhead of pro�ling bodytrack with 4 threads.
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Figure 7.90. The overhead of pro�ling bodytrack with as much threads as physical cores available

(Arcturus 44, Comet 36, Rigel 56, Spica 48).
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Figure 7.91. The overhead of pro�ling canneal with 4 threads.
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Figure 7.92. The overhead of pro�ling canneal with as much threads as physical cores available (Arc-

turus 44, Comet 36, Rigel 56, Spica 48).
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Figure 7.93. The overhead of pro�ling dedup with 4 threads.

-5

 0

 5

 10

 15

 20

 25

 30

 35

500 1000 2000 4000 8000 16000 32000 64000 128000 256000 512000

O
v
e
rh

e
a
d
 P

e
rc

e
n
t

Sampling Period

Overhead of Profiling dedup orig With Max Thread Count

arcturus comet rigel spica

Figure 7.94. The overhead of pro�ling dedup with as much threads as physical cores available (Arcturus

44, Comet 36, Rigel 56, Spica 48). Because the overhead on Spica reaches 160% with all sampling rates

the visualization is cut in this diagram.
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Figure 7.95. The overhead of pro�ling facesim with 4 threads.
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Figure 7.96. The overhead of pro�ling facesim with 32 threads.
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Figure 7.97. The overhead of pro�ling ferret with 4 threads.
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Figure 7.98. The overhead of pro�ling ferret with as much threads as physical cores available (Arcturus

44, Comet 36, Rigel 56, Spica 48).
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Figure 7.99. The overhead of pro�ling �uidanimate with 4 threads.
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Figure 7.100. The overhead of pro�ling �uidanimate with 32 threads.
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Figure 7.101. The overhead of pro�ling freqmine with 4 threads.
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Figure 7.102. The overhead of pro�ling freqmine with as much threads as physical cores available

(Arcturus 44, Comet 36, Rigel 56, Spica 48).
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Figure 7.103. The overhead of pro�ling raytrace with 4 threads.
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Figure 7.104. The overhead of pro�ling raytrace with as much threads as physical cores available

(Arcturus 44, Comet 36, Rigel 56, Spica 48).
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Figure 7.105. The overhead of pro�ling streamcluster with 4 threads.
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Figure 7.106. The overhead of pro�ling streamcluster with as much threads as physical cores available

(Arcturus 44, Comet 36, Rigel 56, Spica 48).
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Figure 7.107. The overhead of pro�ling swaptions with 4 threads.
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Figure 7.108. The overhead of pro�ling swaptions with as much threads as physical cores available

(Arcturus 44, Comet 36, Rigel 56, Spica 48)..
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Figure 7.109. The overhead of pro�ling vips with 4 threads.
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Figure 7.110. The overhead of pro�ling vips with as much threads as physical cores available (Arcturus

44, Comet 36, Rigel 56, Spica 48).
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Figure 7.111. The overhead of pro�ling x264 with 4 threads..
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Figure 7.112. The overhead of pro�ling x264 with as much threads as physical cores available (Arcturus

44, Comet 36, Rigel 56, Spica 48).
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7.7.5 Comparison with Existing Tools

PerfMemPlus supports the automatic discovery of two di�erent performance problems and, in addition,

manual analysis of performance data, that was captured with one pro�ling run. No existing tool has

this amount of features. We compare the overhead of PerfMemPlus with tools that support a part of the

features. Overall, even though PerfMemPlus supports more performance problem discovery features,

the overhead is similar to tools that specialize on one speci�c performance problem. Some of the

specialized false sharing detection tools slightly outperform PerfMemPlus in terms of overhead.

False Sharing Detection

Among the false sharing detection tools, Predator has a rather high overhead. It is less than 50% in 17

applications of PARSEC and Phoenix [68]. In the remaining 5 applications, it has a higher overhead of

up to 23 times. Feather has low overhead but requires some custom optimizations in the Linux kernel

to achieve it. The overhead increases with the number of threads and also depends on the sampling

period. In the PARSEC benchmarks, it is between 1% and 209%. With four threads, the geometric mean

ranges from 3% to 5%. With 16 threads, from 7% to 9% and with 32 threads, from 12% to 15% [13].

Jayasena et al. report an overhead of 2% but do not show a detailed analysis of the overhead [55]. TMI

has an average overhead of 2% and a maximum overhead of 17% [17]. The average overhead of Sheri�

is 20% but there are two exceptions with an overhead of 8.2 and 11.4 times [66]. PerfMemPlus achieves

good detection results of greater than 90% with a sampling period of up to 4000. A sampling period

of 8000 it performs only slightly worse. At those sampling periods, the average overhead is below

5% and below 4% respectively. The overhead is in the same range as the best false sharing detection

tools.

DRAM Contention Detection

For DRAM contention detection, there is no existing tool with the same feature set available. However,

DR-BW is solving a related problem of �nding remote DRAM contention in NUMA systems. It has

an average overhead of 3.3% with a maximum of 10% when using 64 threads [128]. The choice of a

reasonable sampling rate for DRAM detection is more di�cult. In the micro-benchmarks, a sampling

period of 500 or 1000 is required for accurate detection. At this sampling period, the average overhead

is below 3% and below 2% respectively, as shown in Figure 7.82. In the PARSEC applications, a sampling

period of up to 4000 is suitable. When pro�ling PARSEC at this sampling rate, the average overhead

about 8%. This is shown in Figure 7.86.

Manual Analysis

Regarding tools with manual analysis features and visualizations, the overhead of MemAxes is re-

ported in only two benchmarks. In both cases, it is below 10% [30]. NumaMMA, which provides a

time/address visualization that is similar to the one of PerfMemPlus, comes with an overhead of at

most 12% [120].

7.7.6 Possibilities to Reduce the Overhead

Some of the specialized tools have a lower overhead than PerfMemPlus. A measure to reduce the

overhead for false sharing detection and DRAM contention detection would be to increase the latency

limit from which latency samples are taken. This is a feature in the hardware to ignore low-latency

loads. But because we want a full picture of the memory accesses for the detection of other problems,
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we have set this limit to zero. With a limit of zero, we can record cache hit rates. If those are not of

interest, increasing this threshold is a good way to reduce the overhead. The minimum allocation size

to track is another way to reduce the overhead. If there are many malloc calls in an application, each

one incurs additional overhead. By ignoring allocations smaller than a speci�ed size, the overhead can

be reduced.

7.8 Data Processing Overhead

PerfMemPlus requires a post-processing phase after the pro�ling to prepare the samples and alloca-

tion data for analysis. The details of this process are described in Section 5.1. We analyze the post-

processing delay using the PARSEC benchmarks executed with the maximum thread count supported

by the system. Those are the closest to the application of PerfMemPlus on real HPC applications.

The post-processing consists of three phases. First, the samples captured by perf are written into the

SQLite database. Second, the data of the allocation tracker is written into the SQLite database. Finally,

the allocation data is merged with the samples. For each memory access sample, the accessed object

is assigned. The average post-processing time, split into the three phases, is shown in Figure 7.113.

The import of the allocation consumes most of the time. It does not change with the sampling period

because the sampling rate has no in�uence on the allocation tracking. The time required import of the

samples and processing of the samples decreases with higher sampling periods. The time required for

reading the allocation data depends on the number of allocations that were recorded. The minimum

allocation size can be adjusted to change the amount of recorded data.
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Figure 7.113. The processing time of PerfMemPlus split into three phases. The displayed data is the

average over all PARSEC benchmarks executed with the maximum thread count.

The post-processing time and recorded data size di�er greatly depending on the pro�led benchmark.

Figure 7.114 shows a comparison of the di�erent benchmarks. The size of the allocation data is inde-

pendent of the sampling rate. It is shown as the bar on the left for each benchmark. The next two bars

show the size of the sample data. The size of the sample data depends on the sampling rate. Thus,

this �gure shows the size of the sample data for di�erent sampling periods. As expected, the sampling

data size decreases with higher sampling periods. The two bars on the right show the post-processing

time. They correspond to the axis on the right. In the benchmarks where the allocation data size is

large, the processing time is also large. In some benchmarks, like canneal or swaptions, an increased

sampling period does only slightly decrease the post-processing time. Because reading the allocation

data takes most of the time, and importing and processing the samples is quick in comparison. Facesim

and �uidanimate also have long post-processing times. In those benchmarks, the sample import and
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processing takes more time. Thus the sampling rate has a higher in�uence on the post-processing time.

Especially in facesim, where the allocation data size is below 40 MB. If the allocation tracking is turned

o�, the fraction required for importing the allocation data will be zero, and the sample processing will

be close to zero because all samples will be updated to the same object.

In summary, the sampling period and the minimum allocation size both a�ect the post-processing

time. It depends on the application, which of the parameter needs to be adjusted to reduce the post-

processing delay. The size of the recorded data is a good indicator of the expected processing time.
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Figure 7.114. The data size and processing time when pro�ling the PARSEC benchmarks. The �rst

three bars on the left side of every benchmark are data sizes and correspond to the axis on the left. The

two bars on the right side of each benchmark are execution times and correspond to the axis on the

right.

7.9 Case Studies

In this section we discuss how we found performance problems in three PARSEC benchmarks and two

other machine learning applications.

7.9.1 Canneal

Our tool has automatically discovered DRAM contention on Spica but not on the other systems. A

summary of the reported metrics is shown in Table 7.7. On Spica, the relative latency reaches values

of up to two. On the other systems, the relative latency is below one. Table 7.1 shows that Spica has

the lowest per-node bandwidth of all systems. We conclude that on this system, with the low DRAM

speed, the performance su�ers. But on the other systems, with a higher DRAM speed, the available

bandwidth is enough.
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The origin of contention was reported in the function netlist_elem::swap_cost when it accesses the

std::vector called elements. This matches previous �ndings of Eyerman [26], and the fact that this

benchmark has the second-highest bandwidth requirement [10] of all PARSEC benchmarks. For the

identi�ed function and object, there is a NUMA imbalance of 1, which indicates that data is completely

allocated on one node but then accessed from all nodes.

Looking at the details, the automatic discovery reported two instances of memory bandwidth limita-

tion. Both occur in the function netlist_elem::swap_cost. The �rst one when accessing the std::vector

elements. The second one when accessing the std::vector locations.

In order to make better use of both memories, we applied interleaved allocation to those two objects

by implementing a custom allocator for std:vector. There are performance improvements on Spica, but

not on the other systems. Even with interleaved allocation, the NUMA imbalance does not drop to 0.

That is because, in Canneal, the array elements accessed by each thread are decided randomly. Thus

even if the data is distributed evenly across the whole system, the accesses can still be imbalanced.

After applying interleaved allocation, the relative latency drops to values around one on Spica.

Table 7.7. Interleaved allocation only leads to speedup of the Canneal benchmark on the slower sys-

tems. On the faster systems no DRAM contention is detected.

Server Speedup Allocation Relative
Latency

NUMA
Imbalance

Arcturus 0.0%

default 0.91 1.00

interleave 0.79 0.76

Comet 3.0%

default 0.81 1.00

interleave 0.81 0.77

Rigel -5.1%

default 0.53 0.90

interleave 0.49 0.67

Spica 2 Nodes 30.4%

default 1.27 1.00

interleave 0.90 0.76

Spica 4 Nodes 42.0%

default 2.0 1.00

interleave 1.10 0.80

7.9.2 Streamcluster

Our automatic analysis reports that, in the function pgain, accesses to the array block exceed the

available bandwidth and that there a is high NUMA imbalance. This �ndings match those of previous

analysis [9,10,61,128]. Table 7.8 shows the relative latency, NUMA imbalance, and speedup on di�erent

servers. The report given by PerfMemPlus is shown in Figure 7.115. In the function pgain, accesses

to the array block exceed the available bandwidth. The NUMA imbalance only considers the object

and function where DRAM contention was reported. The relative latency is high on Spica, around the

limit of 1 on Arcturus and Comet, and low on Rigel. The NUMA imbalance is high, and the interleaved

allocation of the identi�ed object results in increased performance. The speedup is higher on the

systems with higher relative latency.

Figure 7.115. The automatic discovery report lists the performance problems and their locations in the

streamcluster benchmark.
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Table 7.8. The NUMA imbalance of Streamcluster is high on all systems. Interleaved allocation brings

higher speedups on the systems with higher relative latency.

Server Speedup Allocation Relative
Latency

NUMA
Imbalance

Arcturus 30.2%

default 1.06 1.00

interleave 0.91 0.01

Comet 41.2%

default 0.94 1.00

interleave 0.96 0.11

Rigel 9.5%

default 0.64 0.91

interleave 0.51 0.01

Spica 2 Nodes 66.6%

default 1.84 1.00

interleave 0.80 0.01

Spica 4 Nodes 70.9%

default 2.35 1.0

interleave 0.85 0.02

Additionally, false sharing occurs in the function pgain accessing an array called work_mem. The

array and access locations were pointed out by the automatic discovery of PerfMemPlus. When we

checked the source code at the indicated location we found that there is already padding to prevent

false sharing in this application. But it assumes a cache line size of 32 bytes. We set the padding to

match the real cache line size of 64 bytes. Like shown in Figure 7.2 it leads to a speedup between 1%

and 6% depending on the system.

The third known problem of bad locality [75] cannot be detected by our automated approach. However,

it can be diagnosed using visualizations created by PerfMemPlus. The function pgain accessing the

array block was identi�ed as the main o�ender from the function and object pro�les. We focused the

analysis on this function and object. Figure 7.116a shows the addresses within the array block that are

accessed over time. This diagram shows one speci�c thread, but it looks similar for other threads. Each

point represents one access sample. The �gure shows no clear structure and addresses are accessed

randomly. Moreover, every thread accesses the whole range of the array.

Time[ms]

A
dd

re
ss

0 14696 29392 44088 58784
0x03fe1020

0x0b9f2f36

0x13404e4c

0x1ae16d62

0x22828c78

Thread Id 38889

(a) Initial pointer shu�e version. Accesses are dis-

tributed randomly throughout the whole array.

Time[ms]

A
dd

re
ss

0 11149 22299 33448 44598
0x3231b010

0x39d2c7d1

0x4173df92

0x4914f753

0x50b60f14

Thread Id 37701

(b) Optimized copy shu�e version. Accesses concen-

trate on a small space of the array indicated by the thick

horizontal line.

Figure 7.116. The access pattern of the array block in the function pgain in one thread of the stream-

cluster benchmark.

The reason for this random access is that the clustering part is repeatedly executed and data needs

to be processed multiple times in di�erent orders for this algorithm to work correctly. In this imple-

mentation, not the data itself is shu�ed, but pointers to the data are shu�ed. Consequently, in every

iteration di�erent addresses are accessed by every thread. A comment in the source code indicates that

it was done to avoid copying the large data elements and to increase performance. We changed it to

a copy based shu�e operation that copies the actual data and does not change the pointers as already

suggested by Majo et al. [75]. The accessed addresses stay the same even though the underlying data
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changes. By using PerfMemPlus to display the access patterns such problems can be discovered easier

compared to manual examination, which was used in the previous publication. In the optimized ver-

sion, we saw that a thread mostly accesses the same part of the array throughout the execution. This is

indicated by the horizontal line in Figure 7.116b. The diagrams for other threads look similar with the

horizontal line shifted on the vertical axis because they access a di�erent part of the array. A colored

version of this diagram, that shows four threads is available in Figure 5.12. This optimization resulted

in an improved L1 hit rate in the concerned functions and objects. On Spica, the L1 hit rate increases

from 72% to 94%. The result of this optimization is a speedup between 40% on Rigel and 2.5 times on

Spica, as shown on the right side of Figure 7.28.

7.9.3 Freqmine

We found a case of false sharing in freqmine. It was not found by specialized false sharing detection

tools [13,55]. The performance penalty is similar to the one in streamcluster. Both of them have found

the false sharing in streamcluster.

Perf c2c [77] does also detect modi�ed cache lines. However, it cannot identify the object and cannot

con�rm whether there is true or false sharing. With a manual exploration of the data captured by Intel

VTune [47] false sharing can also be detected. But it can not automatically con�rm false sharing.

We veri�ed that it is an actual case of false sharing by reading the source code. The falsely shared object

is the class stack with a size of 20 bytes. There is an array named list, which is de�ned in fp_tree.cpp,

with one element of type stack for each thread. If the stack objects are placed in one cache line, false

sharing occurs. Because allocation is done using the new operator for each stack item individually,

the placement depends on the memory allocator. In our case, we con�rmed that individual stack items

are placed in the same cache line with an empty space of 16 bytes between the objects. The method

shown in Section 5.3.2 prints the allocations that were issued from the same place in the source code

and that share cache lines. Write accesses happen at multiple lines inside the parallel section of the

FP_tree::FP_growth function. The �elds FS and top of the class stack are written.

There are a few possible reasons why the previously developed tools have missed this case of false

sharing. First of all, in freqmine, the occurrence of false sharing depends on the memory allocator. If

the memory allocator makes a di�erent choice, then false sharing may not occur. The performance

impact of false sharing in this benchmark is low. The existing tools may not consider such a light case

of false sharing.

The machine learning approach by Jayasena et al. [55] is based on a trained classi�er. This tool uses data

from the PMU that also includes the HITM �ag. Thus, it should have the required data for detection.

But if the training data does not represent the behavior that happens in freqmine, false sharing can not

be found.

The second tool [13] detects false sharing independently of objects. Only after a pair of addresses has

been identi�ed the object is resolved. It is not explained if an object is identi�ed by a common call path

or individual malloc calls. There are statistical limitations, that could lead to missing a case of false

sharing. First, a thread must execute a certain number of memory accesses to be considered. Second,

their approach needs to work with a limited amount of debug registers and can only cover a part of

the addresses. There are four debug registers available on Intel processors. Each has alignment and

size constraints. The constraints are:

• Address length of 1,2,4 or 8 bytes can be monitored.

• The address must be naturally aligned to the monitored length.

For example, if a four byte address is monitored the start address must be aligned to four bytes. Because

cache lines are 64 bytes long, only a part of a cache line can be covered. The address where a previous
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access was recorded doesn’t need to we watched. But all other addresses in the cache line should be

covered. First, the size of the watched addresses must be picked. This is done assuming an in�nite

amount of debug registers. Monitoring of eight byte regions would be best because it allows covering

a higher fraction of the cache line. But if the eight byte regions would partially overlap with the

previously published address smaller ranges are used. After this �rst step, there is a list of debug

register con�gurations with start address and size. From this list, four entries are chosen randomly

and the real debug registers are programmed. The authors mention that it is a probabilistic approach,

that has a high probability to detect false sharing, but it is not guaranteed to detect it.

7.9.4 Mnist

The application called Mnist [116] is a neural network implemented in plain C++ without using any

specialized libraries. It performs handwritten digit recognition on the Mnist [63] dataset. It is a single-

threaded application. As it is typical for neural networks, this application executes many matrix multi-

plications. The matrix multiplications are implemented as operator* function templates. The template

parameters specify the matrix size.

The function pro�le showed that the operator*<1000, 100, 784> has a higher latency than any other

function. The objects accessed by this function are shown in Figure 7.117. All high latency accesses go

to one object with id 3. The allocation call stack showed that object 3 is a matrix. Figure 7.118 shows

the cache hit rates of the function operator*<1000, 100, 784> when it accesses the object 3. About 91%

of the memory accesses hit the L2 cache. All other functions have cache L1 hit rates over 95%. Only

this one function performs badly.

Figure 7.117. The object pro�le of objects accessed by operator*<1000, 100, 784>. The screenshot is

cut to show only the most signi�cant object. Accesses to one speci�c object are responsible for the

majority of latency.

L1 74 19.5541 0

LFB 240 30.5417 2

L2 8497 21.756 91

L3 435 45.8092 4

Local DRAM 1 261 0

Memory Level Count Average Latency Hit Rate

Figure 7.118. The cache hit rates and latencies of the operator*<1000, 100, 784> function accessing one

speci�c matrix with id 3. Most of the accesses hit the L2 cache. Other functions have high L1 cache hit

rates.

We implemented cache blocking in the operator*<1000, 100, 784> function. We only changed the one

template specialization that processes the identi�ed matrix type and did not modify other functions

that multiply matrices of di�erent sizes. PerfMemPlus pointed out only the function and object where

modi�cation was necessary and did not report cases where no optimization was necessary. The perfor-

mance was increased by 12.8% on Spica and 7.7% on Comet. L1 cache hit rates of the speci�c function

and object were increased to 99.8%.
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Figure 7.119 shows the overhead in relation to the sampling period. As expected, the overhead rises

when more samples are taken. Under 3% overhead can be achieved.
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Figure 7.119. The overhead of pro�ling the Mnist benchmark.

7.9.5 N3LP

N3LP [100] is a neural machine translation application. It is implemented using the Eigen library [35]

for arithmetic operations.

The automatic analysis showed that there is DRAM contention in six di�erent functions. Figure 7.121

shows a pro�le of those functions. It is detected on all systems. The relative latency is higher than in

any of the other benchmarks, as shown in Table 7.9.

To get more details, we looked at inlined functions, callstacks and source code lines of the reported

functions, which is possible due to the precision of the instruction sampling. Almost all the latency of

the function SoftMax::backward is produced by the source code line: grad.weight += delta*input.transpose().
Where delta and input are two vectors. Assuming that the Eigen library already does as much opti-

mization as possible, we suspected that the culprit must be in the way it is used. We resolved the call

stacks to each of the other reported functions to �nd out from where in the user code they are called.

Figure 7.122 shows one of those callstacks. Normal pro�lers use the fraction of the execution time to

sort functions. Whereas PerfMemPlus shows the latency contribution, coming from each calling func-

tion. In summary, we identi�ed that mainly the functions LSTM::backward and SoftMax::backward are

calling the Eigen operations with high latency. The cache and memory details window of PerfMem-

Plus showed that the average L1 cache hit rate in those six functions is only 40% and only 15% in

SoftMax::backward. The NUMA imbalance is at most 0.29. There is only a small imbalance, and as

expected, interleaved allocation does reduce the NUMA imbalance, but only results in a minimal per-

formance bene�t of at most 6.2%.

Instead of interleaved allocation, Qiao et al. [100] introduced a di�erent optimization that increases

data locality. In this optimization, the single vectors are merged into a matrix. This way Eigen can

execute a matrix-matrix multiplication instead of multiple vector-vector multiplications and Eigen is

able to apply better optimizations such as cache blocking. Applying this optimization, we achieved

higher cache hit rates and performance improvements of 3.45x on Spica with 48 threads and 3.14x on

Comet with 36 threads. Parallel scalability was signi�cantly improved as shown in Figure 7.120. With

a sampling period of 8000 the overhead is around 13% on Comet and Spica.

CHAPTER 7. EVALUATION 158



Table 7.9. N3LP su�ers from severe DRAM contention on all systems. The NUMA imbalances is low

and consequently interleaved allocation does not result in large speedups.

Server Speedup Allocation Relative
Latency

NUMA
Imbalance

Arcturus 0.0%

default 2.67 0.23

interleave 1.75 0.0

Comet 6.2%

default 3.70 0.29

interleave 2.74 0.02

Rigel 0.0%

default 2.50 0.20

interleave 2.4 0.0

Spica 2 Nodes 2.0%

default 4.56 0.24

interleave 3.53 0.01

Spica 4 Nodes 6.0%

default 4.33 0.20

interleave 3.59 0.097
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Figure 7.120. The parallel scaling of the initial and the optimized version of N3LP on Comet and Spica.

SoftMax::backward 18.48 617.47 26.17 3.77

Eigen::internal::general_matrix_vector_product<long, float, Eigen::internal::const_bla… 16.36 94.12 20.56 0.57

Eigen::internal::outer_product_selector_run<Eigen::Matrix<float, -1, -1, 0, -1, -1>, Eige… 15.52 241.25 14.51 1.47

Eigen::internal::outer_product_selector_run<Eigen::Matrix<float, -1, -1, 0, -1, -1>, Eige… 15.51 242.32 14.51 1.48

Eigen::internal::general_matrix_vector_product<long, float, Eigen::internal::const_bla… 15.15 178.79 18.01 1.09

Eigen::internal::outer_product_selector_run<Eigen::Matrix<float, -1, -1, 0, -1, -1>, Eige… 11.79 100.08 3.22 0.61

Function Execution Time % Average Latency Latency % Latency Factor

Figure 7.121. The function pro�le, which shows the functions contributing to the latency in N3LP.

Figure 7.122. The callstack of one of the reported functions in the Eigen library. The percentage of

total latency is shown in the right column.
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Chapter 8

Conclusion

In this thesis, we show that instruction sampling can be used to diagnose a variety of di�erent memory

performance problems in an application. Hardware instruction sampling enables pro�ling with low

overhead and provides data about the hardware that is not available through purely software-based

methods. We show that it is feasible to collect data from the complete application, without limitation

to speci�c parts, and then automatically search for di�erent types of memory performance problems

within this data. This enables easy performance analysis of unknown applications. Especially our

automatic discovery features simplify the search for performance problems. For this, we introduce

a new approach for �nding DRAM contention and methods to diagnose the cause of the contention.

We also improve existing false sharing detection techniques. The pro�ling overhead is comparable to

other existing approaches that can only �nd one speci�c type of performance problem.

Instead of looking at the consumed DRAM bandwidth, we proposed that the DRAM access latency is

a better indicator of DRAM contention. The DRAM access latency can be recorded with instruction

sampling, and thus the origin of DRAM contention can be attributed to individual instructions and

objects. The DRAM access latency also allows di�erentiating DRAM contention from harmless high

bandwidth consumption. The severeness of the DRAM contention is also expressed by the DRAM

access latency. The e�ectiveness of prefetching is also considered in the DRAM latency.

Our experiments show the instruction sampling latency consists of in-core delays and DRAM access

delays. Nevertheless, it is suitable to use it for the detection of DRAM contention. However, in some

cases, we would like to know the bandwidth consumption of a program and not just the information if

there is bandwidth contention or not. In this case, we must rely on performance counters for memory

bandwidth. There is a variety of counters that seemingly measure the main memory bandwidth. But

we showed that only one of them, the IMC counter measures the correct memory bandwidth. Other

counters do not include prefetched accesses. Thus, we suggest using the IMC counters for bandwidth

measurements.

Our false sharing detection method uses the same data as the DRAM contention detection and manual

analysis features. It does not produce false positives, and we found a previously unknown case of false

sharing.

We provide an open-source tool that supports a wide range of existing processors, and support for

future generations will be available because we rely on Linux Perf. Our pro�ling tool is optimized

for analyzing memory performance problems and is easy to use for this purpose. With our SQLite

base data format, we enable easy access and exploration of the instruction sampling data for future

research.
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8.1 Outlook

Instruction sampling is a hardware feature that was introduced in x86 processors over 10 years ago.

But still, even with our new contributions, there is a lot of information in this data that is currently

unused. For example, information about TLB misses, locked accesses, and access patterns are neglected

in previous publications as well as in this thesis. With our tool implementation, we create a foundation

for exploring these aspects in the instruction sampling data.

Our detection of DRAM contention and false sharing is still very simple because it gives only a binary

classi�cation. A metric, that can predict the possible performance gain that can be achieved by �xing

the detected problems would be useful. The memory latency and the number of memory accesses

provide a base for such an estimation. But current processors have many features to hide memory

delays. How well those features work on a given code would have to be considered. We think that there

are performance counters available that would be suitable to report such detail about the execution of

instructions. By combining this information it will be possible to make a prediction of how much a

certain performance problem in�uences the overall execution time of the application.

An obvious extension of our work would be to port it to AMD processors, which recently re-gained

attention in the HPC market [28]. Because Linux Perf also supports AMD processors, no changes in

the pro�ling software would be necessary. However, the exact events to monitor are di�erent on AMD

hardware, and similar to our experiments, the true meaning of the reported data has to be veri�ed �rst.

In this thesis, we provide a portable way to do this.

Choosing suitable pro�ling settings is troublesome in some cases. There must be enough samples to

draw reliable conclusions. On the other hand, the overhead should not be too high. The pro�ling and

data processing overhead depends on two settings. The sampling rate and the minimum allocation

size. Depending on the application’s execution time, amount of allocations, and amount of memory

accesses, the optimal setting di�ers. If the pro�ling options would be set automatically, or adjusted

during runtime as necessary, it would make our tool easier to use.
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