
論 文 の 内 容 の 要 旨

論文題目 Discovery of Memory Performance Problems Using
Hardware Instruction Sampling

 （命令サンプリングによるメモリ性能問題の検出手法）サンプリングによるメモリ性能問題の検出手法）によるメモリ性能問題の検出手法）メモリ性能問題の検出手法）

 　　　氏　　名 ヘルム クリスティアン ルドルフ

In high-performance computing, many performance problems are caused by
the memory system. Because such performance bugs are hard to identify,
analysis tools play an important role in performance optimization. Today's
processors offer feature-rich performance monitoring units (PMU).
Information, which is not available through software-based techniques can be
obtained, and low overhead profiling is possible. One of the features offered by
the PMU is instruction sampling. It allows better attribution to code and data,
and it provides more detailed information about memory accesses compared to
previous hardware-based profiling methods.
The instruction sampling information is already used by some performance
analysis tools. They present the data to the user for manual analysis. Some of
the previous tools provide automatic discovery of performance problems. They
are specialized for one specific performance problem and cannot detect other
performance problems. In contrast, we combine the automatic detection of two
different performance problems with manual analysis features. We show that it
is a viable, low overhead approach to collect data from the whole application
first and then find different potential performance problems from the recorded
data.
One of the problems that we can automatically discover is DRAM contention.
We introduce a new approach based on latency measurement. This approach
can benefit from the precision of instruction sampling to identify specific code
locations and objects that are responsible for the DRAM contention. It can also
differentiate harmless high bandwidth consumption from contention, consider
the effectiveness of prefetching and measure the severity of contention.

The practical implementation of such a diagnosis system on CPUs is difficult.
In modern CPUs, there is an abundance of performance counters and only
superficial documentation. Different types of counters for bandwidth or
latency, that seemingly measure the same thing, produce different results.
There is no in-depth understanding of those performance counters, and naive
usage may lead to incorrect measurements.
We compare various hardware latency and bandwidth measurement methods
on CPUs by using micro-benchmarks. We show results of Intel Haswell,
Broadwell, and Skylake systems. With our experiments, we show how and why
performance counters for bandwidth and latency differ. Only the counters
inside of the memory controller correctly measure bandwidth. Latency
measured by instruction sampling is suitable to find DRAM contention, even
though it consists of DRAM delays and in-core delays. Based on these
experimental results, we establish our new detection method for bandwidth
contention.
Another common performance problem is false sharing. False sharing is hard
to detect manually because its occurrence depends on the data layout and
cache line size. Despite numerous previous efforts, detecting false sharing is
still difficult, and previous tools could not identify some cases of false sharing
as we show in this work. Our approach can differentiate false and true sharing,
and identify objects and source code lines where the accesses to falsely shared
objects are happening Our approach uses information from the hardware
coherency protocol to find shared data. In a second step, unintentionally
shared cache lines are identified by analysis of access patterns of threads. A
challenge is the exact specification of conditions, that samples must meet, for
false sharing to occur. The specification must be tight enough to not cause false
positives, but loose enough to require only a few samples for detection.
We implemented these detection methods in an open-source tool called
PerfMemPlus. The tool design is simple, provides support for many existing
and upcoming processors, and the recorded data can be easily used in future
research. PerfMemPlus also has manual performance data exploration
features.

We show that PerfMemPlus can automatically report performance problems
across a wide range of systems and benchmarks. First, we use artificial
benchmarks that generate a configurable load on the memory system and
benchmarks that deliberately cause false sharing and true sharing. Second, we
compare known and detected performance problems in the PARSEC and
Phoenix benchmarks. Additionally, we present case studies that show how
PerfMemPlus can pinpoint memory performance problems in the PARSEC
benchmarks and machine learning applications. The average profiling
overhead of our tool is around 5\%.

