

博士論文

Learning 3D mesh reconstruction from 2D images

（2D画像からの3Dメッシュの再構成の学習）

加藤 大晴

Learning 3D mesh reconstruction
from 2D images

Hiroharu Kato

Department of Mechano Informatics
Graduate School of Information Science and Technology

The University of Tokyo

This thesis is submitted for the degree of
Doctor of Philosophy

August 2020

Acknowledgements

This research was conducted under the supervision of Prof. Tatsuya Harada at Department
of Mechano-Informatics, Graduate School of Information Science and Technology, the
University of Tokyo.

Firstly, I would like to express the most profound appreciation to my supervisor Prof.
Tatsuya Harada. Since I was an undergraduate student in 2010, he has always supported me
with encouraging, constructive, and insightful conversations. His advices often led me to new
ideas. Beyond the technical aspects, he has strongly influenced my attitude and approach
to research. Without his guidance and constant feedback, this PhD would not have been
achievable.

I would like to extend my sincere thanks to Prof. Yasuo Kuniyoshi, Prof. Takeo Igarashi,
Prof. Kei Okada, and Assoc. Prof. Takuji Narumi for their constructive comments and
suggestions. They are sub-chief examiners of this doctoral thesis and their insightful feedback
have further refined this thesis.

My comfortable life in the laboratory was supported by the help of Assoc. Prof. Tomoyuki
Takahata, Lecturer Yoshitaka Ushiku, Lecturer Yusuke Mukuta, Asst. Prof. Mamoru
Nakamura, Dr. Tejero de Pablos Antonio, Dr. Yusuke Kurose, Dr. Hiroaki Yamane, Ms. Aoi
Kaneko, and Ms. Miyuki Kajisa. They have never spared any efforts for improving research
environment.

I spent a wonderful life in the lab, especially with Yusuke Mori, Dr. Takuhiro Kaneko,
and Naoyuki Gunji, who were in the same grade at the undergraduate school. Conversations
with them have helped me get through the pleasant but sometimes tough days.

Discussion with my colleagues were always inspirational. Unfortunately, I don’t have
space to list the names of all the people who have influenced me. Here, I especially would
like to thank Dr. Yoshitaka Ushiku, Dr. Yusuke Mukuta, Dr. Antonio Tejero de Pablos,
Dr. Hiroaki Yamane, Dr. Takuhiro Kaneko, Dr. Atsushi Kanehira Yusuke Mori, Naoyuki
Gunji, Kuniaki Saito, Katsunori Ohnishi, Keisuke Fukuta, Kosuke Arase, Kentaro Takemoto,
Shunya Wakasugi, and Daisuke Kasuga.

Finally, I am extremely grateful to my partner Hitomi for her support, encouragement,
and dedication to me.

Abstract

Understanding the 3D structure of an object at a glance, called single-view 3D object
reconstruction in computer vision, is a useful ability for machines. Because this is an
ill-posed problem, it is solved by learning 3D reconstruction from the data, in contrast
to traditional 3D reconstruction methods that employ geometric estimation. The question
to consider is what kind of data to learn from. Because of the large number of object
categories in the world, 3D object reconstruction has to be learned at a low cost. This thesis
explores methods for learning 3D object reconstruction using 2D images instead of costly
3D shapes. First, we develop a novel rasterization method to incorporate mesh rendering
into neural networks. We also present a detailed comparison of differentiable rasterization
methods. Second, to learn single-view 3D object reconstruction from multi-view images
with camera parameter and foreground mask annotations, we develop a mesh reconstruction
method using the renderer. Third, to use single-view images rather than multi-view images,
we propose to address the shape ambiguity inherent in single-view images. Fourth, to
use images without annotations, we propose learning reconstruction while separating the
foreground and background. By developing these techniques, we significantly reduce the
cost of training data required for 3D object reconstruction. We are the first to realize learning
3D mesh reconstruction from images while existing works use voxels, improve the accuracy
of reconstruction learned from single-view images by learning priors of views, and achieve
learning 3D object reconstruction from only images without additional supervision.

Table of contents

1 Introduction 1
1.1 Background and objective . 1

1.1.1 Differentiable rendering . 4
1.1.2 Variants of training data . 4

1.2 Summary of contributions . 9
1.3 Structure of the thesis . 10

2 Related work 11
2.1 3D reconstruction in computer vision . 11
2.2 Differentiable rendering . 11
2.3 Single-view 3D object reconstruction . 14

2.3.1 3D supervision . 14
2.3.2 Multi-view supervision . 14
2.3.3 Single-view supervision . 14

3 Differentiable rendering for neural networks 17
3.1 Importance of a mesh renderer for neural networks 17
3.2 Pseudo gradient for rendering . 18

3.2.1 Rendering pipeline and its derivative 18
3.2.2 Rasterization of a single face . 19
3.2.3 Rasterization of multiple faces . 21
3.2.4 Texture . 21
3.2.5 Lighting . 21

3.3 Comparison with other rasterization methods 22
3.3.1 Evaluation methodology . 22
3.3.2 Gradient visualization . 23
3.3.3 Optimization . 24
3.3.4 Discussion . 26

Table of contents

3.4 Simple applications . 27
3.4.1 3D DeepDream . 28

3.5 Summary . 29

4 Learning with multi-view images 44
4.1 Difficulty in learning 3D reconstruction from images 44
4.2 Method . 44
4.3 Experiments . 45

4.3.1 Experimental settings . 45
4.3.2 Qualitative evaluation . 47
4.3.3 Quantitative evaluation . 48
4.3.4 Limitation . 48

4.4 Summary . 48

5 Learning with annotated single-view images 52
5.1 Difficulty in learning from single-view images 52
5.2 Method . 52

5.2.1 View-based training for 3D reconstruction 53
5.2.2 View prior learning . 55
5.2.3 Internal pressure . 57
5.2.4 Modification of neural mesh renderer 57
5.2.5 Summary . 59

5.3 Experiments . 59
5.3.1 Experimental settings . 59
5.3.2 Synthetic dataset . 62
5.3.3 Natural image dataset . 68
5.3.4 Additional examples of single-view training 70
5.3.5 Performance of each category by multi-view training 70
5.3.6 Additional examples of multi-view training 70
5.3.7 Discriminators and optimization 71
5.3.8 Internal pressure in multi-view training 71

5.4 Summary . 72

6 Learning with unannotated single-view images 82
6.1 Difficulty in learning from unannotated images 82
6.2 Method . 83

6.2.1 Learning a category-specific common shape 83

viii

Table of contents

6.2.2 Training of a full model using a common shape 86
6.3 Implementation details . 88

6.3.1 Learning a category-specific common shape 88
6.3.2 Training of a full model using a common shape 91

6.4 Experiments . 94
6.4.1 CIFAR-10 . 94
6.4.2 PASCAL . 98
6.4.3 Discussion . 100

6.5 Summary . 103

7 Conclusion 109

References 113

ix

Chapter 1

Introduction

1.1 Background and objective

We humans can grasp the three-dimensional (3D) structure of an object, including its invisible
parts, at a glance. This ability is essential to many activities, such as grasping objects, avoiding
obstacles, and creating 3D models using computer-aided design (CAD) software. This skill
is called single-view 3D object reconstruction in computer vision. It has many practical
applications, such as robot grasping, 3D scene understanding for robots, object placement in
augmented reality, and CAD.

Recovering the 3D structure of an object from only a 2D image is an inherently ill-posed
problem. A 2D image does not provide either depth of visible surfaces or any information
of occluded structures. However, humans can solve this task easily1. Why is this possible?
Geometric reasoning is not the primary mechanism because of the ill-posedness. Instead,
we leverage knowledge about the shapes of objects that we have learned from experience.
We know the possible shapes of certain categories of objects and estimate the shapes in the
observed images by applying them. Similarly, single-view 3D object reconstruction requires
learning possible shapes of objects in advance from data.

The most straightforward approach to single-view 3D reconstruction is to employ su-
pervised learning using 2D images and their corresponding ground truth 3D models [9,
13, 21, 34, 39, 85, 101] as illustrated in Figure 1.1. To this purpose, most existing works
use ShapeNet [7], a large-scale 3D CAD dataset. Recent technical advancement has real-
ized to generate a high-quality 3D shape from a single image in the object categories in
ShapeNet [9, 13, 19, 107, 126]. However, this supervised learning is not scalable to the

1Though humans can use depth information estimated by both eyes, this ability is hardly degraded even
when depth information is not available. For example, we can do single-view 3D reconstruction when one eye
is closed or from a photograph where we cannot know the depth.

1

Introduction

Input image

Neural
network

3D model

Inference

Reconstruction
loss

3D model

Figure 1.1 Learning single-view 3D object reconstruction using 3D model annotations. The
dotted squares represent the training data. This framework is beyond the scope of this thesis.

Input image

Neural
network

3D model
Differentiable

rendering

Rendered images Multi-view images

Camera
parameters

Reconstruction
loss

Inference

Figure 1.2 Learning single-view 3D object reconstruction using multi-view 2D images with
camera parameter and silhouette annotations. The dotted squares represent the training data.
This framework corresponds to Chapter 4.

number of object categories because creating 3D annotations requires extraordinary effort
by professional 3D designers. Only thirteen object categories on ShapeNet have a sufficient
amount of 3D models for supervised learning. Therefore, single-view 3D object reconstruc-
tion in more diverse categories is still challenging so far. Instead, we propose to leverage 2D
images without 3D shape annotations for training as less costly datasets.

Learning from images is achieved by comparing ground truth images with views of an
estimated 3D shape. Figures 1.2, 1.3, and 1.4 show variants of training pipelines. A pipeline
is composed of the following operations.

1. Given an object image, we estimate the parameters of the underlying 3D object. We
estimate only a 3D shape in the simplest case. Optionally, we infer other parameters
such as camera pose and the color of object surfaces.

2. We generate an image by rendering the estimated 3D model and a given or estimated
camera pose.

2

1.1 Background and objective

single-view imageInput image

Neural
network

3D model
Differentiable

rendering

Rendered image

Camera
parameters

Inference

Reconstruction
loss

Figure 1.3 Learning single-view 3D object reconstruction using a single-view 2D image with
camera parameter and silhouette annotations. The dotted squares represent the training data.
The input image is reused to measure the reconstruction error. This framework corresponds
to Chapter 5.

3. We compute the difference between the input image and the reconstructed image.
Optionally, we use images of the same object from other viewpoints as additional
supervision.

4. We update the parameters of the 3D reconstruction model by back-propagating the
gradient of the loss function and gradient descent.

As explained above, there are several variants in training according to available datasets.
We aim to reduce the cost of creating training datasets. As expected, when there is less
information available, training becomes more difficult. In this thesis, we focus on three cases,
as discussed later.

For this render-and-compare framework to work well, high-quality images must be
generated through rendering. Therefore, we use polygon mesh as a 3D geometry repre-
sentation. Though voxels, a 3D extension of pixels, are the most widely used format in
3D machine learning because they can be processed by convolutional neural networks
(CNNs) [9, 61, 82, 86, 101, 107, 117, 121, 126], it is hard to process high-resolution voxels
because of their high memory consumption. Point clouds, sets of 3D points, have difficulty
handling textures and lighting because they do not have explicit surfaces. Contrary to these
representations, a polygon mesh is compact and it supports textures.

In summary, we realize learning single-view 3D object reconstruction from images, where
a mesh represents a 3D model. Previously, 3D shapes were used as a training signal instead
of images, or voxels were used as a 3D representation instead of meshes. We address three
cases illustrated in Figures 1.2, 1.3, and 1.4. We develop several novel methods that are
essential for this objective.

3

Introduction

Neural
network

3D model
Differentiable

rendering

Rendered image

Camera
parameters

Inference

Reconstruction
loss

Input image

Background
image

Figure 1.4 Learning single-view 3D object reconstruction using a single-view 2D image
without camera parameter and silhouette annotations. The dotted squares represent the
training data. The input image is reused to measure the reconstruction error. Camera
parameters and a background image are estimated in addition to the 3D object because their
annotations are not given. This framework corresponds to Chapter 6

1.1.1 Differentiable rendering

First, we develop a differentiable rendering module of a mesh for neural networks. As
neural networks are known to be extremely powerful for image recognition [47], we use a
neural network for the reconstruction module, and train it in an end-to-end manner. However,
training a system with rendering as a neural network is a challenging problem. Rendering
consists of projecting a mesh’s vertices onto the screen coordinate system and generating an
image through regular grid sampling [60]. Although the former is a differentiable operation,
the latter, referred to as rasterization, prevents back-propagation because of its discrete
nature. Therefore, we propose an approximate gradient for rasterization peculiar to neural
networks, facilitating end-to-end training. Our proposed renderer can flow gradients into
texture, lighting, and cameras as with object shapes. We name our renderer Neural Renderer.

1.1.2 Variants of training data

There are several variants in learning single-view 3D reconstruction from images depending
on available training data. We address the following three cases in this thesis.

1. The case that a set of multi-view images of an object and their viewpoint and silhouette
annotations are available. We can obtain this kind of data by a calibrated 3D scanning
system composed of multiple RGB cameras or a turntable. Though this is technically
the most straightforward case, it is costly to collect such data for many objects. Besides,

4

1.1 Background and objective

Training data Possible data source Architecture Chapter

Images with 3D shape annotations CAD Figure 1.1 Out of scope
Multi-view images with annotations 3D scanner Figure 1.2 Chapter 4
Single-view images with annotations Image collection

+ manual annotation
Figure 1.3 Chapter 5

Single-view images without annotations Image collection Figure 1.4 Chapter 6

Table 1.1 Variants of training data considered in this thesis. Annotations are composed of
silhouette and camera pose information.

there are object categories, such as airplanes, which are practically impossible to obtain
images in such a system. The training architecture is shown in Figure 1.2.

2. The case that only a single image is available for an object, but its viewpoint and
silhouette annotations are still available. This data can be obtained when the cost
of creating 3D annotations for 2D images is not negligible, but the cost of creating
silhouette and viewpoint annotations2 is allowed. This training data can be obtained in
most object categories. However, since creating annotations are still costly, this data is
also not very scalable to the number of object categories. The training architecture is
shown in Figure 1.3.

3. The case that an image collection of a certain object category is available, but no
additional annotations are provided. This kind of data is obtained by collecting images
and classifying them into object categories. Since the cost for training data creation is
low, this approach easily scales to various object categories. However, learning with
this supervision is very challenging. The training architecture is shown in Figure 1.4.

Table 1.1 shows the summary of these variants.

Chapter 4: Learning from multi-view images

Several prior works addressed learning single-view 3D object reconstruction from multi-view
images with silhouette and viewpoint annotations using voxels as 3D representation [107,
126]. However, voxels are not well suitable for this task because of two reasons. One is
that voxels cannot represent high-resolution shapes because their memory consumption is
cubic to their spatial resolution. The other is that images rendered from voxels are not suited

2Viewpoint annotation is typically made by overlaying a 3D template object on an image or via creating
keypoint annotations. In contrast to 3D shape annotation, creating viewpoint annotations does not require
professional 3D modeling skills.

5

Introduction

From original viewpoint
 Unobserved views

2D image
 Reconstructed 3D model

+ View prior learning

Figure 1.5 When a 3D reconstructor is trained using only a single view per object, because of
ambiguity in the 3D shape of an object, it reconstructs a shape which only fits the observed
view and looks incorrect from unobserved viewpoints (upper). By introducing a discriminator
that learns prior knowledge of correct views, the reconstructor is able to generate a shape
that is viewed as reasonable from any viewpoint (lower).

for the render-and-compare framework because they have cubic artifacts in views because
of their grid representation. Instead, our differentiable renderer allows us to use a mesh in
single-view 3D object reconstruction, which does not suffer from these two problems. In
the experiment section, we demonstrate that the accuracy of 3D reconstruction using mesh
outperforms that of a voxel-based method [126].

Chapter 5: Learning from single-view images with annotations

Because we do not know a ground truth 3D shape in view-based training, there is some
ambiguity in the possible shapes. In other words, several different 3D shapes can be projected
into the same 2D view, as shown in Figure 1.5. A standard way to reduce this ambiguity
is to use twenty or more views per object in training. However, this is impractical in many
cases in terms of feasibility and scalability. When creating a dataset by taking photos, it is
difficult to take pictures from many viewpoints if an object is moving or deforming. Also,
when creating a dataset using many images from the Internet, it is not always possible to
collect multiple views of an object. Therefore, it is desirable that a reconstructor can be
trained using a single view of an object.

Therefore, next, we focus on training a reconstructor using a single view for single-view
3D object reconstruction. In this case, the ambiguity in shapes in training is not negligible.

6

1.1 Background and objective

The upper half of Figure 1.5 shows single-view 3D reconstruction by the method proposed
in Chapter 4 Although this method requires multiple views per object for training, we used
a single view. As a result, though the reconstructed shape looks correct when viewed from
the same viewpoint as the input image, it looks incorrect from other viewpoints because the
reconstructor is unaware of unobserved views and generates shapes that only fit the observed
views.

How can a reconstructor overcome shape ambiguity and correctly estimate shapes? The
hint is in Figure 1.5. Humans can recognize that the three views in the upper are incorrect
because we have prior knowledge of how a chair look by having seen many chairs in the past.
If machines also know the correct views, they would use it to estimate shapes more accurately.
We implement this idea on machines by using a discriminator and adversarial training [17].
While the unobserved views of estimated shapes do not always correct, observed views
converge to the correct ones, as seen in the figure. Therefore, we train a discriminator that
distinguishes the observed views from the unobserved views. This results in the discriminator
obtaining knowledge regarding correct views. By training the reconstructor to fool the
discriminator, reconstructed shapes from all viewpoints become indistinguishable and look
reasonable from any viewpoint. The lower half of Figure 1.5 shows the results from the
proposed method.

Learning prior knowledge of 3D shapes using 3D models was tackled in other publica-
tions [21, 118]. In contrast, we focus on prior of 2D views rather than 3D shapes. Because
our method does not require any 3D models for training, ours can scale to various categories
where 3D models are hard to obtain.

Chapter 6: Learning from single-view images without annotations

The approach introduced in the previous section requires annotations of objects’ foreground
mask and viewpoint annotations, which are still not easy to obtain. Therefore, next, we
propose a novel method for training without these annotations and demonstrate that we can
learn objects’ 3D shape, pose, and texture from categorized natural images without additional
supervision. Figure 1.6 shows our result on the test set of CIFAR-10 [46], a dataset for
image classification. This dataset has no ground truth 3D shapes, no multiple views of the
same object, no foreground masks of objects, and no viewpoint information. The success
in single-view 3D object reconstruction on this challenging dataset indicates leveraging
natural images for 3D reconstruction and realizing 3D object reconstruction on various object
categories.

Because there is no supervision about 3D objects, we have to use images themselves as
supervision. Therefore, we adopt the analysis-by-synthesis framework and train this model by

7

Introduction

Estimate Render

Minimize difference

3D shape Texture3D pose Background image

Input image Reconstructed image

Figure 1.6 Our proposed model estimates an object’s 3D shape, pose, texture, and background
from an image. It requires only categorized object images for training. This figure shows the
system architecture and result on CIFAR-10.

comparing an input image with a reconstructed 3D object’s rendered image. The procedure
is as follows. At first, we estimate 3D shape, pose, texture, and background from the input
using neural networks. Secondly, we render an image of the estimated 3D scene. Finally,
we compute image reconstruction error and optimize the neural networks by minimizing the
error. Though this framework is simple, training a meaningful model is not straightforward
because it easily fails to learn, as depicted in Figure 1.7. One example is to expand an
object’s shape to cover the whole image and copy the input image into the texture. Another
example is to shrink an object and copy the input image into the background. Though image
reconstruction is almost perfect in both cases, we know that these 3D scenes are unrealistic.
The technical key point is to explicitly induct our knowledge about 3D structures into neural
networks in the form of training methods, constraints, and regularization. Concretely, our
main priors are (1) all shapes in the same object category are similar, and they can be made by
small deformation of a category-specific common shape, (2) surfaces of objects are smooth,
and (3) texture and background images are sufficiently simple. Based on these assumptions,
we separate training steps into category-specific common shape generation and full training
using a common shape, and carefully design constraints and regularization. We demonstrate
the effectiveness of our training strategy and constraints based on these priors in experiments
on CIFAR-10 and PASCAL 3D+ [123] datasets.

8

1.2 Summary of contributions

Input

TextureShape Background

Reconstructed Input

TextureShape Background

Reconstructed

Figure 1.7 Examples of trivial and inferior solutions. We know these 3D scenes are unrealistic.
However, neural networks cannot know it by self-supervision. Therefore, we induct several
kinds of structural knowledge of 3D scenes into our model.

1.2 Summary of contributions

The major contributions can be summarized as follows.

• Chapter 3. We propose the first approximated gradient of mesh rendering for neural
networks. We compare ours and other differentiable rasterizers [8, 54, 57] in exper-
iments and clarify their performances and features. Also, we make the code of the
renderer publicly available.

• Chapter 4. We perform learning 3D mesh reconstruction from a single image without
3D supervision. Experiments demonstrate the practicality of our renderer and the
advantage of mesh reconstruction over voxel reconstruction.

• Chapter 5. We propose a method to predict shapes that look reasonable from any
viewpoint by learning prior knowledge of object views. We also conduct experiments
on both synthetic and natural image datasets and observe a significant performance
improvement for both datasets, especially when only a single image per object is
provided in training.

• Chapter 6. Ours is the first study to train single-view 3D object reconstruction, pose
estimation, and texture estimation using only categorized natural images. We demon-
strate that introducing training of a category-specific common shape, and constraints
about 3D scenes are essential.

9

Introduction

1.3 Structure of the thesis

In this thesis, we aim to develop methods to learn single-view 3D mesh reconstruction from
images. In Chapter 1, we describe the background and objective. Specifically, we state
the necessity to develop a differentiable rendering module for neural networks, and the
three essential training data variants and their technical challenges. In Chapter 2, we have
more comprehensive discussion on existing works and clarify the relationship between them
and ours. In Chapter 3, we propose a rendering module, which is requisite for learning
single-view mesh reconstruction from images in an end-to-end manner, and compare it and
related methods in experiments to reveal their features. In Chapter 4, 5, 6, we study learning
single-view 3D reconstruction in the three settings shown in Table 1.1. Finally, in Chapter 7,
we conclude this thesis and remark future directions.

10

Chapter 2

Related work

This chapter presents related work on differentiable rendering, an important technical element
of this thesis, and learning single-view 3D object reconstruction.

2.1 3D reconstruction in computer vision

There is a vast amount of 3D reconstruction works in computer vision. One well-known
task is to reconstruct 3D geometry from multiple views of a scene. While multi-view stereo
assumes that camera parameters are given, structure-from-motion [109] optimizes both
geometry and camera parameters. Another research direction is to estimate the depth of
surfaces using additional cues such as shading [28], texture [113], and camera focus [70, 78].
However, all of these approaches cannot predict an object’s whole shape because its part may
not be observed. Learning-based 3D reconstruction handles whole shape reconstruction, and
it becomes getting popular since the appearance of large-scale 3D CAD model dataset [7]
and the success of deep neural networks in computer vision [47]. This thesis also follows
this direction.

2.2 Differentiable rendering

A renderer takes geometry, material, light, and camera parameters and outputs an image.
Differentiable renderer indicates a renderer such that the gradient of an output image with
respect to input parameters is defined. Differentiable rendering is used to optimize 3D scene
parameters or neural networks that produce them by minimizing a loss function defined
on rendered 2D images. A gradient needs not to be a mathematically valid one. Since the

11

Related work

objective is optimization, rather than mathematical correctness, practical effectiveness for
optimization is more critical. Our proposal is also an inaccurate but useful pseudo gradient.

There are two major rendering methods for mesh. One is real-time rendering using
rasterization, and the other is photorealistic rendering using path tracing. Since these two
differ significantly, their differentiable rendering methods have been developed individually.

In real-time rendering, an image is generated by converting vertices and lights from
the world space into the camera and screen space (projection), selecting a triangle that
corresponds to a pixel (rasterization), and computing the color of a pixel using selected
triangle, material, and light parameters (shading). Differentiation of projection is trivial
because a matrix multiplication does it. Differentiation of shading is also easy because most
popular shading models such as Lambert and Phong are trivially differentiable. However,
rasterization sometimes causes a optimization problem because a pixel can affect only
the selected triangle and cannot affect neighboring triangles that potentially influence the
pixel color. OpenDR [57], the first general differentiable rendering method, was the only
paper before the publication of our renderer [41]. It points out that the analytic gradient
of rasterization in rendering is not useful for shape optimization. And, it proposes an
approximate gradient so that a gradient of a pixel effect to triangles of neighboring pixels.
However, because it does not use the gradient of a loss function with respect to pixels in back-
propagation, its gradient would not be very useful for optimization. We describe our solution
to this problem in the next chapter. Another early approach to incorporating renderings into
neural networks is to estimate the gradient of a black-box non-differentiable renderer [84].
However, its gradient is noisy and not very good for optimization compared to differentiable
rendering. After the publication of our work, several differentiable rendering methods have
been proposed. Liu et al. [54] propose to approximate the forward pass of rasterization by
blurring triangles instead of approximating gradients so that multiple triangles are assigned
to one pixel. Chen et al. [8] classify pixels into foreground and background, and propose to
use a method similar to Liu et al. [54] for the background pixels, and analytical gradients
using barycentric coordinates for the foreground pixels.

In the path-tracing of photorealistic rendering, the main difficulty of differentiable render-
ing is in a non-differentiability in the rendering equation. Though most reflection functions
are differentiable, because the integral of incident lights is evaluated using Monte Carlo
estimation, auto differentiation frameworks cannot evaluate the effect of geometry change to
pixel colors. To this issue, Li et al. [53] propose to sample points on all edges for derivative
computation. Because edge finding and sampling are slow, Loubet et al. [58] propose a
biased but efficient gradient computation by reparameterization and integrate it into Mitsuba

12

2.2 Differentiable rendering

3D representation Method

Mesh (local illumination) OpenDR [57] NMR (ours) [41] SoftRas [54] DIB-R [8]
Mesh (global illumination) Redner [53] Mitsuba 2 [58, 73] PSDR [135]
Voxel PTN [126] DRC [107] Henzler et al. [27]
Point cloud Insafutdinov et al. [31] DSS [130]
Neural implicit function Liu et al. [55] Niemeyer et al. [72] Mildenhall et al. [63]

Table 2.1 Differentiable rendering methods.

2 renderer [73]. Instead, Zhang et al. [135] propose an efficient and unbiased method by
differentiating path integral instead of the original rendering equation.

There are differentiable renderers for other 3D representations too. Table 2.1 shows
representative methods in this field. Voxels, which are 3D extensions of pixels, are widely
used with neural networks for classification [61, 82, 86, 117, 121], 3D reconstruction and
generation [9, 26, 101, 107, 117, 126] because CNN easily processes them. Because the
memory efficiency of voxels is not very good, some recent works have incorporated more
efficient representations [86, 101, 112]. Compared with differentiable rendering of mesh,
differentiable rendering of voxels is simply achieved by sampling points in 3D space from
voxels using trilinear sampling [107, 126, 26]. Point cloud represents a 3D scene by a set of
points. It has been used for both recognition [44, 80, 81] and reconstruction [13, 31, 130].
Differentiable rendering of point cloud is achieved by projecting it to 2D screen assuming
that the points have a size [31, 130]. Recently, representing a 3D shape implicitly in the
weights of neural networks become getting popular [8, 62, 76]. Liu et al. [55], Niemeyer et
al. [72], and Mildenhall et al. [63] concurrently propose differentiable rendering methods for
this neural implicit representations.

Physics-based vision, such as shape-from-shading [28] and photometric stereo [115], also
models a generative process of an image as with differentiable rendering. Their advantage
is to design optimization methods and additional constraints jointly with image generation
models, and their disadvantage is difficulty in handling complex light and illumination
models like global illumination. In contrast, though differentiable photorealistic rendering
can manage sophisticated image generation processes, optimization over it may not be easy.
Our work is not in physics-based vision because we do not use light models for geometry
estimation. However, a combination of differentiable rendering and shading is demonstrated
to be effective in another work [25].

Please refer to our recent survey [42] for a more comprehensive review.

13

Related work

2.3 Single-view 3D object reconstruction

We classify single-view 3D object reconstruction works by supervision for 3D geometry. The
simplest case is 3D supervision where pairs of a 2D image and its corresponding 3D shape
is available for standard supervised training. We call a weakly-supervised setting where
multi-view images of an object are provided instead of its 3D shape multi-view training.
Finally, we consider single-view training, a case where only a single view per object is given
for training.

2.3.1 3D supervision

When plenty of 3D object models are available, using 3D shapes as training signals, as
illustrated in Figure 1.1, would be the most straightforward way. The advent of large-scale 3D
shape datasets, such as ShapeNet [7], has popularized this approach. A significant advantage
of 3D supervision is that there is no ambiguity in 3D object shape in an object image.
One research direction is handling irregular 3D representations, such as high-resolution
voxels [23, 101], point clouds [13], meshes [19, 111], and neural implicit representations [8,
62, 76]. Another path is generalization to novel object categories that are not observed in
training [96, 102, 137].

2.3.2 Multi-view supervision

3D geometry is understandable from multi-view images without exact 3D data, and we can
use them as supervision with silhouette and camera parameter annotations, as illustrated
in Figure 1.2. We need a differentiable 3D-to-2D projection module to use 2D views as
supervision. To this purpose, several differentiable projection modules have been developed
as shown in Table 2.1. Compared with 3D supervision, creating a multi-view dataset is less
costly. However, collecting multiple views is still expensive because it requires a specialized
3D capture system.

We address learning single-view 3D object reconstruction with multi-view supervision
in Chapter 4. The closest work to ours is Yan et al. [126] because it is the first multi-view
training work. Though they use voxels, we demonstrate that using mesh is preferable.

2.3.3 Single-view supervision

Collecting a single-view image per object is not hard and less costly. However, since learning
only from images is very challenging, additional supervision is typically required so far. A
typical case is to use silhouette and camera parameter annotations, as illustrated in Figure 1.3.

14

2.3 Single-view 3D object reconstruction

Supervision Chapter 5 [84] [108] [25] [26] [140]† [71]‡ Chapter 6

Natural images ✓ ✓ ✓ ✓ ✓
No viewpoint annotation ✓ ✓ ✓ ✓ ✓ ✓ ✓
No silhouette annotation ✓ ✓ ✓

Table 2.2 Works that aim supervision reduction in single-view training. No silhouette
annotation includes works that use images without backgrounds. †Zuffi et al. [140] leverage
a simulator. ‡Nguyen-Phuoc et al. [71] cannot represent 3D shapes explicitly.

Work Discrimination
(a) [34, 127] Positive: Predicted 3D shapes

Negative: Their corresponding ground truth 3D shapes
(b) [21, 118] Positive: Predicted 3D shapes

Negative: 3D shape collections
(c) Ours Positive: Views of predicted 3D shapes from observed viewpoints

Negative: Views of predicted 3D shapes from random viewpoints
(d) - Positive: Views of predicted 3D shapes

Negative: Views in a training dataset

Table 2.3 Summary of discriminators in learning-based 3D reconstruction. Discriminator (d)
is described in Section 5.2.2.

There is a variety of additional supervision in single-view training. Kar et al. [38] propose
a method to recover 3D shapes and viewpoints from natural images with annotations of
silhouettes and keypoints of objects. Kanazawaet al. [36] translate this framework into neural
networks and incorporate texture prediction. Tulsiani et al. [107] applie their multi-view
training method that requires silhouette and viewpoint supervision onto a single-view dataset,
and later they relax this dataset requirement by integrating pose prediction [108]. Rezende et
al. [84] train 3D reconstruction from images. However, their dataset is composed of very
simple primitives without backgrounds. Henzler et al. [26] train 3D object reconstruction
from natural images with silhouette annotations. Nguyen-Phuoc et al. [71] train neural 3D
representation from natural images. Zuffi et al. [140] leverage simulators to learn rare 3D
objects. Henderson and Ferrari [25] propose to use shading for shape estimation. All existing
methods require at least silhouette annotations. Contrary to these works, our method learns
explicit 3D structures from categorized natural images without any supervision. Table 2.2
shows a summary.

Even when silhouette and viewpoint annotations are provided in single-view training,
the ambiguity of 3D shape is not negligible. For this problem, some methods use human

15

Related work

knowledge of shapes as regularizers or constraints. For example, the graph Laplacian of
meshes is regularized [36, 111], and shapes are assumed to be symmetric [36]. Instead of
designing constraints manually, there are some attempts to acquire prior knowledge of shapes
from data. Learning category-specific mean shapes [36, 38] is an example. Adversarial
training is another way to learn shape priors. Yang et al. [127] and Jiang et al. [34] use
discriminators on an estimated shape and its corresponding ground truth shape to make the
estimated shapes more realistic. Gwak et al. [21] and Wu et al. [118] use discriminators on
generated shapes and a shape collection. In contrast, our method does not require 3D models
to learn prior knowledge. Table 2.3 lists a summary of these discriminators.

We address learning single-view 3D object reconstruction with single-view supervision
in Chapter 5 and Chapter 6. The closest works to ours in Chapter 5 are Gwak et al. [21] and
Wu et al. [118] because they are also about learning geometric prior from data. While prior
of 3D shapes is learned by leveraging 3D models in these works, prior of 2D views is learned
in our work. The relation of Chapter 6 and existing works is summarized in Table 2.2.

16

Chapter 3

Differentiable rendering for neural
networks

3.1 Importance of a mesh renderer for neural networks

A rendering function takes 3D geometry, material, lighting, and camera parameters as input
and outputs a pixel image. A differentiable rendering function is a rendering function in
that the derivative of an output pixel with respect to each input is defined. It is important
to note that the derivatives do not have to be the same as the analytical derivatives. Rather,
values that are approximated but useful for optimization are better, as demonstrated in several
works [57, 58].

Differentiable rendering is necessary to learn 3D reconstruction from 2D images without
using 3D shapes. To use images as supervision, images must be rendered from an estimated
3D shape. To optimize the 3D reconstruction function with the gradient method, the gradients
about the reconstruction error have to flow through the rendering function.

Differentiable rendering functions can also be applied to other problem settings. For
example, in learning to estimate the 3D pose of a human body or hand, 3D shapes are often
also given as supervision. A loss of 2D image reconstruction can be used in conjunction with
the loss of 3D shape reconstruction. There are also applications where image reconstruction
is not an objective function, such as generating 3D adversarial examples [124, 134] or style
transfer of 3D models [68].

In this chapter, we propose a novel differentiable rendering layer that is specific to deep
learning. Since it is widely known that deep neural networks are remarkably effective
in computer vision [47], the integration of differentiable rendering and neural networks
is a promising direction. In contrast to general differentiable rendering functions [57], a

17

Differentiable rendering for neural networks

(a) Example of mesh & pixels

(b) Standard rasterization

(c) Derivative of (b)

(d) Modification of (b)

(e) Derivative of (d)

Forward pass of
proposed method

Backward pass of
proposed method

�" = (�" , �")

�*	, �*(�")

�*

�"

�*

�"

�*

�"

�*

�"�, �-

No gradient flow

Blurred image

�"*

Figure 3.1 Illustration of our method. vvvi = {xi,yi} is one vertex of the face. I j is the color of
pixel Pj. The current position of xi is x0. x1 is the location of xi where an edge of the face
collides with the center of Pj when xi moves to the right. I j becomes Ii j when xi = x1.

derivative of a loss function to be optimized with respect to pixels can be used to compute an
optimal shape deformation in the case of deep learning. We employ this approach to define
approximate gradients of a rendering function.

3.2 Pseudo gradient for rendering

In this section, we describe the technical details of our differentiable renderer named Neural
Renderer, which is a 3D mesh renderer with gradient flow.

3.2.1 Rendering pipeline and its derivative

A 3D mesh consists of a set of vertices {vvvo
1,vvv

o
2, ..,vvv

o
Nv
} and faces { fff 1, fff 2, .., fff N f

}, where the
object has Nv vertices and N f faces. vvvo

i ∈ R3 represents the position of the i-th vertex in the
3D object space and fff j ∈ N3 represents the indices of the three vertices corresponding to the
j-th triangle face. To render this object, vertices {vvvo

i } in the object space are transformed into

18

3.2 Pseudo gradient for rendering

(a) Example of mesh & pixels

(b) Standard rasterization

(c) Derivative of (b)

(d) Modification of (b)

(e) Derivative of (d)

Forward pass of
proposed method

Backward pass of
proposed method

�" = (�" , �")

�*	, �*(�")

�*

�"

�*

�"

�*

�"

�*

�"�, �-
.

No gradient flow

Blurred image

�"*
.

�"*
/

�-
/

Figure 3.2 Illustration of our method in the case where Pj is inside the face. I j changes when
xi moves to the right or left.

vertices {vvvs
i}, vvvs

i ∈ R2 in the screen space using camera parameters. This transformation is
represented by a combination of differentiable transformations such as matrix product [60].

An image is generated from {vvvs
i} and { fff j} via sampling in real-time rendering by

rasterization. Figure 3.1 (a) illustrates rasterization in the case of single triangle. If the
center of a pixel Pj is inside of the face, the color I j of the pixel Pj becomes the color of the
overlapping face Ii j. Because this is a discrete operation, assuming that Ii j is independent of
vvvi,

∂ I j
∂vvvi

is zero almost everywhere, as shown in Figure 3.1 (b–c). This means that the error
signal back-propagated from a loss function to pixel Pj does not flow into the vertex vvvi.

3.2.2 Rasterization of a single face

For ease of explanation, we describe our method using the x-coordinate xi of a single vertex
vvvi = vvvs

i in the screen space and a single gray-scale pixel Pj. We consider the color of Pj to be
a function I j(xi) on xi and freeze all variables other than xi.

First, we assume that Pj is outside the face, as shown in Figure 3.1 (a). The color of
Pj is I(x0) when xi is at the current position x0. If xi moves to the right and reaches the

19

Differentiable rendering for neural networks

point x1, where an edge of the face collides with the center of Pj, I j(xi) suddenly turns to
the color of hitting point Ii j. Let δ x

i be the distance traveled by xi, let δ x
i = x1 − x0, and let

δ I
j represent the change in the color δ I

j = I(x1)− I(x0). The partial derivative ∂ I j(xi)
∂xi

is zero
almost everywhere, as illustrated in Figure 3.1 (b–c).

Because the gradient is zero, the information that I j(x0) can be changed by δ I
j if xi

moves by δ x
i to the right is not transmitted to xi. This is because I j(xi) suddenly changes.

Therefore, we replace the sudden change with a gradual change between x0 and x1 using

linear interpolation. Then, ∂ I j
∂xi

becomes
δ I

j
δ x

i
between x0 and x1, as shown in Figure 3.1 (d–e).

The derivative of I j(xi) is different on the right and left sides of x0. How should one
define a derivative at xi = x0? We propose switching the values using the error signal δ P

j

back-propagated to Pj. The sign of δ P
j indicates whether Pj should be brighter or darker.

To minimize the loss, if δ P
j > 0, then Pj must be darker. On the other hand, the sign of δ I

j

indicates whether Pj can be brighter or darker. If δ I
j > 0, Pj becomes brighter by pulling

in xi, but Pj cannot become darker by moving xi. Therefore, a gradient should not flow if
δ P

j > 0 and δ I
j > 0. From this viewpoint, we define ∂ I j(xi)

∂xi
|xi=x0 as follows.

∂ I j(xi)
∂xi

∣∣∣
xi=x0

=


δ I

j
δ x

i
; δ P

j δ I
j < 0.

0; δ P
j δ I

j ≥ 0.
(3.1)

Sometimes, the face does not overlap Pj regardless of where xi moves. This means that
x1 does not exist. In this case, we define ∂ I j(xi)

∂xi
|xi=x0 = 0.

We use Figure 3.1 (b) for the forward pass because if we use Figure 3.1 (d), the color of
a face leaks outside of the face. Therefore, our rasterizer produces the same images as the
standard rasterizer, but it has non-zero gradients.

The derivative with respect to yi can be obtained by swapping the x-axis and y-axis in the
above discussion.

Next, we consider a case where Pj is inside the face, as shown in Figure 3.2 (a). In this
case, I(xi) changes when xi moves to the right or left. Standard rasterization, its derivative, an
interpolated function, and its derivative are shown in Figure 3.2 (b–e). We first compute the
derivatives on the left and right sides of x0 and let their sum be the gradient at x0. Specifically,
using the notation in Figure 3.2, δ Ia

j = I(xa
1)− I(x0), δ Ib

j = I(xb
1)− I(x0), δ a

x = xa
1 − x0 and

20

3.2 Pseudo gradient for rendering

δ b
x = xb

1 − x0, we define the gradients as follows.

∂ I j(xi)
∂xi

∣∣∣
xi=x0

=
∂ I j(xi)

∂xi

∣∣∣a
xi=x0

+
∂ I j(xi)

∂xi

∣∣∣b
xi=x0

. (3.2)

∂ I j(xi)
∂xi

∣∣∣a
xi=x0

=


δ Ia

j
δ a

x
; δ P

j δ Ia

j < 0.

0; δ P
j δ Ia

j ≥ 0.
(3.3)

∂ I j(xi)
∂xi

∣∣∣b
xi=x0

=


δ Ib

j
δ b

x
; δ P

j δ Ib

j < 0.

0; δ P
j δ Ia

j ≥ 0.
(3.4)

3.2.3 Rasterization of multiple faces

If there are multiple faces, our rasterizer draws only the frontmost face at each pixel, which is
the same as the standard method [60]. During the backward pass, we first check whether or
not the cross points Ii j, Ia

i j, and Ib
i j are drawn, and do not flow gradients if they are occluded

by surfaces not including vvvi.

3.2.4 Texture

Textures can be mapped onto faces. In our implementation, each face has its own texture
image of size st × st × st . We determine the coordinates in the texture space corresponding
to a position ppp on a triangle {vvv1,vvv2,vvv3} using the barycentric coordinate system. In other
words, if ppp is expressed as ppp = w1vvv1 +w2vvv2 +w3vvv3, let (w1,w2,w3) be the corresponding
coordinates in the texture space. Bilinear interpolation is used for sampling from a texture
image.

3.2.5 Lighting

Lighting can be applied directly to a mesh, unlike voxels and point clouds. In this work,
we use a simple ambient light and directional light without shadows. Let la and ld be
the intensities of the ambient light and directional light, respectively, nnnd be a unit vector
indicating the direction of the directional light, and nnn j be the normal vector of a surface. We
then define the modified color of a pixel Il

j on the surface as Il
j =
(
la +

(
nnnd ·nnn j

)
ld) I j.

In this formulation, gradients also flow into the intensities la and ld , as well as the
direction nnnd of the directional light. Therefore, light sources can also be optimized.

21

Differentiable rendering for neural networks

3.3 Comparison with other rasterization methods

There are three other representative differentiable rasterization methods. OpenDR [57]
associates the screen coordinates of a pixel with the gradients of neighboring pixels using
Sobel differential filter. SoftRas [54] and DIB-R [8] replace the discrete assignment of a
triangle to a pixel with a soft continuous assignment of multiple triangles by blurring edges.
These two differ in blurring method. Unlike our method, all of these methods do not consider
the gradient of a loss function with respect to pixel colors. In this section, we compare
rasterization methods by (1) visualizing gradients in a simple case and (2) optimizing a shape
with multi-view silhouettes.

3.3.1 Evaluation methodology

Evaluation of differentiable rasterization methods is not so straightforward. The objective is
to obtain the derivative of a rasterization function that is useful for shape optimization. As
described, analytically-correct derivatives are not always useful. Therefore, the performance
of differentiable rasterization has to be measured by optimization. This is in contrast to
evaluation of differentiable photorealistic rendering methods. Their objective is to obtain
the derivative of Monte Carlo integration. Therefore, approximated analytical derivative by
finite differences can be used as ground-truth.

Several papers provide evaluation of differentiable rendering methods by training single-
view 3D object reconstruction [8, 54]. However, a fair comparison is hard because setting
all conditions the same other than rasterization is difficult. Shape regularization functions
are often co-used for training, but different rasterization functions may be suited to different
regularization functions. Fair setting of their hyperparameters is also non-trivial. In addition,
when RGB images are used for training, the difference of shading function implementations
would affect reconstruction accuracy. Analyzing properties of each method by reconstruction
is also hard because many factors affect it. Therefore, we think single-view 3D object
reconstruction is a too complicated task for evaluation.

We argue that evaluation must be by simple optimization tasks for a fair and informative
comparison. Superficially, we conduct two experiments in this thesis.

• Visualizing the gradients of a loss function with respect to vertices in a very simple
scene. We also give the derivative of the loss function with respect to pixels. A scene
and gradients at pixels are controlled so that the desired movement or deformation
of the shape is intuitively understandable. By comparing the desired movement and
the visualized gradients, we can qualitatively analyze the behavior of differentiable
rasterization methods.

22

3.3 Comparison with other rasterization methods

• Optimizing a shape so that its multi-view silhouettes fit given silhouette images. This
tasks is relatively complicated because we have to tune some hyperparameters such
as learning rate, but useful for measuring the practical effectiveness in optimization
quantitatively. We use silhouette only and do not use shaded images to avoid differ-
ences in shading implementations. Also, we do not use regularization terms to avoid
hyperparameter tuning of them.

These tasks may look too simplified. Nonetheless, in addition to more complicated but
practical tasks like learning single-view 3D object reconstruction, we think these tasks are
useful for analysis.

3.3.2 Gradient visualization

We visualize the gradients of different rasterization methods in a simple scene illustrated in
Figure 3.3 and Figure 3.4. We consider a scene composed of a single triangle colored white
(p = 1) and black background (p = 0). Also, with a loss function L to be minimized, we
assume that the gradient of L with respect to pixels ∂L

∂ p has a non-zero value at one pixel.

From ∂L
∂ p , we can know that a preferred sign of pixel color change to minimize the loss L .

For example, when 0 < ∂L
∂ p , p should be smaller to decrease L . In this scene, p becomes

smaller when it changes from white to black. Therefore, given a scene and gradients, we can
intuitively determine a preferred direction of triangle movement. The first to third rows in
these figures represent a scene, gradients, and preferable triangle movements.

The green arrows in Figure 3.3 (d) and Figure 3.4 (d) show the direction of triangle
movements computed by our rasterizer. All the results match the intuitively preferable ones.
Figure 3.3 (e) and Figure 3.4 (e) show the result of OpenDR [57]. In the rightmost column
in Figure 3.3 (e), the triangle does not move because OpenDR uses Sobel differential filter
that does not relate pixels that are distant more than two pixels1. Because only the sign of
gradients differ in Figure 3.3 and Figure 3.4, the moving directions are flipped. However, in
general, flipping the sign of gradient does not indicate that the movement must be flipped.
For example, the triangle moves left while it should not do in the third column in Figure 3.4
(e). Leveraging ∂L

∂ p in back-propagation solves this issue. Figure 3.3 (f–g) and Figure 3.4
(f–g) show the result of SoftRas [54] and DIB-R [8]. The triangle does not move in some
cases because of small blurring radius. However, if we set it larger, the rendered image
becomes too blurry.

1In the experiments of the OpenDR paper, the authors use Gaussian blur before computing image reconstruc-
tion error probably because of this gradient locality issue. However, handling this locality issue in a rendering
function would have advantages since Gaussian blur cannot be used in some cases, such as adversarial training
and style transfer.

23

Differentiable rendering for neural networks

The rendered images of SoftRas and DIB-R are blurred because they provide gradients
by approximating the forward-pass of rendering. On the contrary, ours and OpenDR do not
affect rendering quality because they approximate the backward-pass of rendering. Though
OpenDR sometimes provides unfavorable gradients, ours improve it by using ∂L

∂ p . This

is possible because ours is for neural networks. In general rendering functions, ∂L
∂ p is not

always available.

3.3.3 Optimization

We compare the practical effectiveness of differentiable rasterizers by applying them to
optimization. We optimize the vertices of a sphere so that the difference between their
silhouettes and given object silhouettes become small. We use 3D models of bunny and
teapot. We render their silhouettes from 24 silhouettes and use them as optimization signal.
We also evaluate a modified rasterizer that will be introduced in Chapter 5. We notated it
Ours v2. In the newer version, we associate a pixel with triangles at its neighboring pixels
only instead of all pixels to reduce computation cost. Also, we slightly modify the definition
of gradients in Eq. 3.1 to improve stability when δ x

i is small.
We used Adam optimizer. We tuned learning rate by using OpenDR for bunny model

and Gaussian pyramid for image comparison, and we set it to 0.03 for all methods. Blurring
parameters of Soft Rasterizer (SoftRas) and DIB-R were tuned to obtain the best results. The
number of optimization iterations was set to 100. Image size is set to 256×256 pixels.

First, we use the sum of squared error of pixels as a loss function. Figure 3.5 shows the
optimized shapes. The optimized silhouettes by our methods are very close to the target
silhouette. The silhouette by OpenDR is not good. The gradients by OpenDR are defined
only on object edges as demonstrated in Figure 3.3 and Figure 3.4, which probably caused
optimization difficulty. The silhouettes by Soft Rasterizer and DIB-R look fine as ours.
Figure 3.6 shows the image reconstruction error during optimization. Ours v2 is the best
and it is followed by SoftRas, ours v1, DIB-R, and OpenDR. Except for OpenDR, the
difference of reconstruction errors is relatively small and it is visually unnoticeable. The
reconstructed surfaces are not smooth because we use silhouettes for optimization and we do
not use shading information. This is to avoid differences in shading implementation affecting
reconstruction. Also, we do not use any regularization methods to make the surfaces smooth
to avoid the effects of hyperparameter selection.

In OpenDR paper, Gaussian pyramid is used for image comparison. Figure 3.7 and
Figure 3.8 show optimized shapes and convergence when we use Gaussian pyramid in a
loss function. We set the number of downsampling to 1. We do not observe significant
improvements if we increase the number of downsampling. With Gaussian pyramid, the

24

3.3 Comparison with other rasterization methods

results by OpenDR are greatly improved. This suggests that using the Gaussian pyramid
to make object edges blurred is essential for OpenDR. However, the optimization result of
OpenDR is still inferior to other methods both visually and quantitatively. The optimization
results using other rasterizers do not differ much if we use the Gaussian pyramid. Note that
the Gaussian pyramid can be used only for pixel-level image comparison. When the objective
function is a comparison of image features like the perceptual loss [35], image style transfer,
or adversarial training, it cannot be used.

Ours and Soft Rasterizer support anti-aliasing by generating a larger image and downscal-
ing it. Figure 3.9 shows the difference of convergence with anti-aliasing. When anti-aliasing
is used, convergence is consistently improved. The gradients of pixels are binary when
anti-aliasing is not used, and they become continuous and smoother when it is used. This
property probably avoids sudden large movement of the vertices and enable more careful and
detailed reconstruction. The effect is the most significant in ours v1, and it becomes better
than Soft Rasterizer in this optimization experiment.

The discrepancy between ours and approximated rendering (Soft Rasterizer and DIB-R)
can be interpreted by blurring. Since ours has no blurred region in rendered images, our
convergence is better than the others. As illustrated in Figure 3.3, the blurred area is outside
the shape. Therefore, when the difference between blurred images and ground-truth images
is minimized, optimized shapes become slightly smaller than correct ones. Though the
center of the blurring radius of Soft Rasterizer is on object edges, optimized shapes become
smaller. For example, let us assume an estimated shape and ground-truth shape are circles,
its estimated radius is rc, and we blur it with width rb. The blurred area outside the shape is
(rc+rb)

2−r2
c , which is larger than the blurred area inside the shape r2

c −(rc−rb)
2. Therefore,

to minimize reconstruction error, the estimated radius rc should be slightly smaller than the
true one. Figure 3.10 shows false positive and false negative during optimization. False
positive is the ratio of pixels that are estimated as an object silhouette, but their corresponding
ground-truth are in the background. False negative is the ratio of pixels that are estimated
as background, but their corresponding ground-truth are foreground. In Soft Rasterizer and
DIB-R, the false negative rate is consistently higher than the false positive rate, which implies
that the estimated shape is smaller than the correct one. In contrast, the false negative rate
and false positive rate are similar values in our methods2, which means the estimated size is
almost the same as the ground-truth. This data shows that not blurring rendered images is
better for optimization.

2When anti-aliasing is employed, the curves become smooth. The reduction of the variance is the most
significant in ours v1. This would be the reason for the improvement of optimization by anti-aliasing.

25

Differentiable rendering for neural networks

Method Implementation Optimization time (seconds)
Ours GPU 8
Ours v2 GPU 5
OpenDR CPU 804
Soft Rasterizer GPU 60
DIB-R GPU 19

Table 3.1 Comparison of speed of differentiable rasterizers. Note that this comparison is by
our Chainer wrapper for the author implementations of OpenDR, Soft Rasterizer, DIB-R.
The wrapper is not well optimized, so the speed of these rasterizers can be several times
faster in practice.

Table 3.1 shows the speed for optimization. For each optimization iteration, 24 silhouette
images of 224× 224 pixels are generated, and their back-propagation is computed. The
number of iterations is 100. Since OpenDR is not intended to be used in neural networks,
it is implemented for CPU only and does not support parallel rendering of multiple images
in a minibatch. Therefore, the speed is much slower than the others. Though we consider
the relation of a pixel and its nearby triangles for gradient computation, Soft Rasterizer uses
all pairs of pixels and triangles in a scene. Therefore its computation is slow in GPU-based
methods.

3.3.4 Discussion

We summarize the advantages and disadvantages of each differentiable rasterization method
observed in these two experiments.

OpenDR This is a pioneering work in differentiable rasterization. The main characteristic
in optimization is that it does not modify forward rendering, so rendered images are
not blurred. However, the gradients are less useful for optimization than the newer
methods. Using the Gaussian pyramid improves the performance, but it is still inferior.
Rendering speed is also slow because it does not support GPU and parallel rendering
of a minibatch because it is not designed for neural networks.

Soft Rasterizer In this method, the gradients are provided by rendering blurred silhouettes.
The derivative is non-approximated and mathematically valid. The implementation is
simple because we can take the benefit of auto-differentiation frameworks. In shape
optimization, convergence is as fast as ours and DIB-R. Estimated shapes become
slightly smaller than correct ones because of blurring.

26

3.4 Simple applications

DIB-R The difference between DIB-R and Soft Rasterizer in rasterization is how to blur
silhouettes. While Soft Rasterizer distributes blurred region equally in outside and
inside silhouettes, DIB-R distributes it only outside silhouettes. Therefore, estimated
shapes are further smaller.

Ours This method does not affect rendered images as with OpenDR. It works well for
pixel-level optimization, and convergence in optimization is slightly better than Soft
Rasterizer and DIB-R because it does not blur rendered images. Also, it is the only
method that consider the derivative of a loss function with respect to pixels in back-
propagation, which is expected to be stabilize optimization. Though the gradients of
our first version are less stable, probably because the upper bound is not limited. Our
second version improves the stability.

As a renderer, not as a rasterizer, ours has some drawbacks. One only supports a simple
Lambert model for shading, and it does not have more advanced shading methods. Lighting
is also limited. Though the implementation is in CUDA, it is not optimized well, and it could
be more efficient. Also, it only supports Chainer in popular neural network libraries.

3.4 Simple applications

Before applying our render to learning single-view 3D object reconstruction, we apply it to
gradient-based 3D mesh editing without training neural networks to test its differentiability
with respect to vertices and texture images. Specifically, we conduct a 3D version of style
transfer [16] and DeepDream [67]. We denote an image of a mesh m rendered from a
viewpoint φi by R(m,φi). Gradient-based image editing techniques [16, 67] generate an
image by minimizing a loss function L (x) on a 2D image x via gradient descent. In this
work, instead of generating an image, we optimize a 3D mesh m consisting of vertices
{vvvi}, faces { fff i}, and textures {ttt i} based on its rendered image R(m|φi). Figure 3.11 and
Figure 3.12 illustrate the optimization procedure of the proposed 2D-to-3D style transfer and
3D DeepDream, respectively.

For 2D images, style transfer is achieved by minimizing content loss and style loss
simultaneously [16]. Specifically, content loss is defined using a feature extractor fc(x) and
content image xc as Lc(x|xc) = | fc(x)− fc(xc)|22. Style loss is defined using another feature
extractor fs(x) and style image xs as Ls(x|xs) = |M(fs(x))−M(fs(xs))|2F . M(x) transforms
a vector into a Gram matrix.

In 2D-to-3D style transfer, content is specified as a 3D mesh mc. To make the shape of the
generated mesh similar to that of mc, assuming that the vertices-to-faces relationships { fff i} are

27

Differentiable rendering for neural networks

the same for both meshes, we redefine content loss as Lc(m|mc) = ∑{vvvi,vvvc
i }∈(m,mc) |vvvi − vvvc

i |
2
2.

We use the same style loss as that in the 2D application. Specifically, Ls(m|xs,φ) =

|M(fs(R(m,φ)))−M(fs(xs))|2F . We also use a regularizer for noise reduction. Let P

denote the a set of colors of all pairs of adjacent pixels in an image R(m,φ). We define this
loss as Lt(m|φ) = ∑{pppa,pppb}∈P |pppa − pppb|

2
2.

The objective function is L = λcLc +λsLs +λtLt . We set an initial solution of m as
mc and minimize L with respect to {vvvi} and {ttt i}.

We applied 2D-to-3D style transfer to the objects shown in Figure 3.13. Optimization
was conducted using the Adam optimizer [43] with β1 = 0.9, and β2 = 0.999. We rendered
images of size 448×448 and downsampled them to 244×224 to eliminate aliasing. The
batch size was set to 4. During optimization, images were rendered at random elevations
and azimuth angles. Texture size was set to st = 4. The style images we used were selected
from [11, 35]. λc, λs, and λt are manually tuned for each input. The feature extractors fs for
style loss were conv1_2, conv2_3, conv3_3, and conv4_3 from the VGG-16 network [97].
The intensities of the lights were la = 0.5 and ld = 0.5, and the direction of the light was
randomly set during optimization. The α value of Adam was set to 2.5e−4,5e−2 for
{vvvi},{ttt i}. The number of parameter updates was set to 5,000.

Figure 3.14 presents the representative results of 2D-to-3D style transfer. Additional
results are shown in Figures 3.16, 3.17, 3.18, 3.19. The styles of the paintings were accurately
transferred to the textures and shapes. From the outline of the bunny and the lid of the teapot,
we can see the straight style of Coupland and Gris. The wavy style of Munch was also
transferred to the side of the teapot. Interestingly, the side of the tower of Babel was
transferred only to the side, not to the upside, of the bunny.

3.4.1 3D DeepDream

We extend DeepDream for 2D images to 3D shapes and textures. Figure 3.12 illustrates the
optimization procedure of the proposed method.

Let f (x) be a function that outputs a feature map of an image x. For 2D images, a
DeepDream of image x0 is achieved by minimizing −| f (x)|2F via gradient descent starting
from x = x0. Optimization is halted after a few iterations. Following a similar process, we
minimize −| f (R(m,φ))|2F with respect to {vvvi} and {ttt i}.

In the experiments of 3D DeepDream, we use the same objects, optimizer, and rendering
setting as with 2D-to-3D style transfer. Different from 2D-to-3D style transfer, images
are rendered without lighting. The feature extractor was the inception_4c layer from
GoogLeNet [100]. The α value of Adam was set to 5e−5,1e−2 for {vvvi},{ttt i}. Optimization
is stopped after 1,000 iterations.

28

3.5 Summary

Figure 3.15 presents the results of DeepDream. A nose and eyes emerged on the face of
the bunny. The spout of the teapot expanded and became the face of a bird, while the body
appeared similar to a bus. These transformations matched the 3D shape of each object.

3.5 Summary

In this section, we proposed approximated gradients for mesh rendering functions. The
derivative of a loss function to be optimized with respect to pixels is given in neural networks.
We found that gradients computed with this information are more useful for optimizing
vertices than those of a general differentiable rendering function [57]. We also found that
differentiable rendering methods by blurring images tend to estimate object shapes smaller,
whereas our non-approximated rendering does not suffer from this issue. We verified
gradients of textures and vertices by our renderer using 2D-to-3D style transfer and 3D
DeepDream, which are novel applications.

29

Differentiable rendering for neural networks

(a) Pixels p

(b) Gradients ∂L
∂ p

(c) Movement None None Right Right

(d) Our renderer

(e) OpenDR [57]

(f) SoftRas [54]

(g) DIB-R [8]

Figure 3.3 Comparison of differentiable rasterization methods. (a) A scene to be studied.
Green points and lines show a triangle. Pixels on and outside the triangle are colored white
(p = 1) and black (p = 0),respectively. (b) Four cases of gradients. Black pixels indicate
∂L
∂ p = 0 and blue pixels indicate 0 < ∂L

∂ p . (c) Preferable movement of triangles. Blue pixels
have to become black from white to minimize L . When blue pixels are on the triangle, it is
achieved by moving the triangle to the right. (d–f) Green arrows show the moving directions
of the vertices by gradient decent. Ours is the only one that matches (c).

30

3.5 Summary

(a) Pixels p

(b) Gradients ∂L
∂ p

(c) Movement Left Left None None

(d) Our renderer

(e) OpenDR [57]

(f) SoftRas [54]

(g) DIB-R [8]

Figure 3.4 Comparison of differentiable rasterization methods. (a) A scene to be studied. (b)
Four cases of gradients. Red pixels indicate ∂L

∂ p < 0. (c) Preferable movement of triangles.
Red pixels have to become white from black to minimize L . When red pixels are outside
the triangle, it is achieved by moving the triangle to the left. (d–f) Green arrows show the
moving directions of the vertices by gradient decent. Ours is the only one that matches (c).

31

Differentiable rendering for neural networks

Init Target Ours Ours v2 OpenDR SoftRas DIB-R

Figure 3.5 Optimized shapes by different differentiable rasterization methods. Two views are
shown for each object.

32

3.5 Summary

0 20 40 60 80 100
Iteration

103

104

Re
co

ns
tru

ct
io

n
er

ro
r Ours

Ours v2
OpenDR
SoftRas
DIB-R

0 20 40 60 80 100
Iteration

103

104

Re
co

ns
tru

ct
io

n
er

ro
r Ours

Ours v2
OpenDR
SoftRas
DIB-R

Figure 3.6 Image reconstruction error during optimization. The used object models are bunny
(upper) and teapot (lower).

33

Differentiable rendering for neural networks

Init Target Ours Ours v2 OpenDR SoftRas DIB-R

Figure 3.7 Optimized shapes by different differentiable rasterization methods. Gaussian
pyramid, the number of downsampling of which is one, is used for a loss function. Two
views are shown for each object.

34

3.5 Summary

0 20 40 60 80 100
Iteration

103

104

Re
co

ns
tru

ct
io

n
er

ro
r Ours

Ours v2
OpenDR
SoftRas
DIB-R

0 20 40 60 80 100
Iteration

103

104

Re
co

ns
tru

ct
io

n
er

ro
r Ours

Ours v2
OpenDR
SoftRas
DIB-R

Figure 3.8 Image reconstruction error during optimization. Gaussian pyramid, the number of
downsampling of which is one, is used for a loss function. The used object models are bunny
(upper) and teapot (lower).

35

Differentiable rendering for neural networks

0 20 40 60 80 100
Iteration

103

104

Re
co

ns
tru

ct
io

n
er

ro
r Ours

Ours v2
OpenDR
SoftRas
DIB-R
Ours, anti-aliasing
Ours v2, anti-aliasing
SoftRas, anti-aliasing

0 20 40 60 80 100
Iteration

103

104

Re
co

ns
tru

ct
io

n
er

ro
r Ours

Ours v2
OpenDR
SoftRas
DIB-R
Ours, anti-aliasing
Ours v2, anti-aliasing
SoftRas, anti-aliasing

Figure 3.9 Image reconstruction error during optimization. Gaussian pyramid, the number of
downsampling of which is one, is used for a loss function. Anti-aliasing of rasterization is
used if supported. The used object models are bunny (upper) and teapot (lower).

36

3.5 Summary

0 20 40 60 80 100
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

Ra
te

Ours FP
Ours FN
Ours v2 FP
Ours v2 FN
SoftRas FP
SoftRas FN
DIB-R FP
DIB-R FN

0 20 40 60 80 100
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

Ra
te

Ours FP
Ours FN
Ours v2 FP
Ours v2 FN
SoftRas FP
SoftRas FN
DIB-R FP
DIB-R FN

Figure 3.10 False positive (FP) and false negative (FN) rate during optimization. Gaussian
pyramid, the number of downsampling of which is one, is used for a loss function. Anti-
aliasing is employed in the lower figure. The used object model is bunny.

37

Differentiable rendering for neural networks

3D model
Differentiable

rendering

Random
viewpoint

Pre-trained
neural network

Image
features

Difference
of styles

Rendered image

Minimize

Style image

Pre-trained
neural network

Image
features

Figure 3.11 The optimization procedure of the proposed 2D-to-3D style transfer.

3D model
Differentiable

rendering

Random
viewpoint

Pre-trained
neural network

Image
features

Norm of
features

Rendered image

Maximize

Figure 3.12 The optimization procedure of the proposed 3D DeepDream.

Figure 3.13 Initial state of meshes in style transfer and DeepDream. Rendered from six
viewpoints.

38

3.5 Summary

Figure 3.14 2D-to-3D style transfer. The leftmost images represent styles. The style images
are Thomson No. 5 (Yellow Sunset) (D. Coupland, 2011), The Tower of Babel (P. Bruegel the
Elder, 1563), The Scream (E. Munch, 1910), and Portrait of Pablo Picasso (J. Gris, 1912).

Figure 3.15 DeepDream of 3D mesh.

39

Differentiable rendering for neural networks

Figure 3.16 Additional results of style transfer. The style images are Self-Portrait (A. Bailly,
1917), Jesuits III (L. Feininger, 1915), Ritmo plastico del 14 luglio (S. Gino, 1913), and The
Starry Night (V. van Gogh, 1889), Portrait of Pablo Picasso (J. Gris, 1912), and The Great
Wave off Kanagawa, (Hokusai, 1829-1832).

40

3.5 Summary

Figure 3.17 Additional results of style transfer. The style images are The Trial (W. Lettl,
1981), Bicentennial Print (R. Lichtenstein, 1975), Portrait of a Friend (M. H. Maxy, 1926),
The Scream (E. Munch, 1910), Femme nue assise (P. Picasso, 1909), and Sketch [35].

41

Differentiable rendering for neural networks

Figure 3.18 Additional results of style transfer. The style images are Self-Portrait (A. Bailly,
1917), Thomson No. 5 (Yellow Sunset) (D. Coupland, 2011), The Tower of Babel (P. Bruegel
the Elder, 1563), Jesuits III (L. Feininger, 1915), Ritmo plastico del 14 luglio (S. Gino, 1913),
and The Starry Night (V. van Gogh, 1889).

42

3.5 Summary

Figure 3.19 Additional results of style transfer. The style images are The Great Wave
off Kanagawa, (Hokusai, 1829-1832), The Trial (W. Lettl, 1981), Bicentennial Print (R.
Lichtenstein, 1975), Portrait of a Friend (M. H. Maxy, 1926), Femme nue assise (P. Picasso,
1909), and Sketch [35].

43

Chapter 4

Learning with multi-view images

4.1 Difficulty in learning 3D reconstruction from images

When learning 3D reconstruction from 2D images, we have to integrate a module that projects
an estimated 3D shape to a 2D plane into the training pipeline. A few works have used
voxel rendering methods to achieve this goal [107, 126], but none has used meshes that are
more suited to learning 3D reconstruction by rendering1. We employ the rendering method
proposed in the previous chapter for this task.

This chapter addresses the simplest and technically easiest case of learning 3D object
reconstruction from images. We assume multiple images of a single object from various
viewpoints are given for training. We also assume the extrinsic and intrinsic parameters of
cameras and the foreground masks of the images are available. Collecting such data requires
a 3D scanning system composed of calibrated cameras. Therefore, the cost of such a dataset
is not very low. Nevertheless, the cost is relatively lower than creating 3D shape datasets.

4.2 Method

Yan et al. [126] demonstrated that single-image 3D reconstruction can be realized without
3D training data. In their setting, a 3D generation function G(x) on an image x was trained
such that silhouettes of a predicted 3D shape {ŝi = R(G(x),φi)} matches the ground truth
silhouettes {si}, assuming that the viewpoints {φi} are known. This pipeline is illustrated in
Figure 1.2. While Yan et al. [126] generated voxels, we generate a mesh.

Although voxels can be generated by extending existing 2D image generators [17, 83] to
3D, mesh generation is not so straightforward. In this work, instead of generating a mesh

1At the time of submitting our original paper [41].

44

4.3 Experiments

from scratch, we deform a predefined mesh to generate a new mesh. Specifically, we use an
isotropic sphere with 642 vertices and move each vertex vvvi as vvvi +bbbi + ccc using a local bias
vector bbbi and global bias vector ccc. Additionally, we restrict the movable range of each vertex
within the same quadrant on the original sphere. The faces { fff i} are unchanged. Therefore,
the intermediate outputs of G(x) are bbb ∈ R642×3 and ccc ∈ R1×3. The mesh we use is specified
by 642×3 parameters, which is far less than the typical voxel representation with a size of
323. This low-dimensionality is presumably beneficial for shape estimation.

The generation function G(x) is trained using silhouette loss Lsl and smoothness loss
Lsm. Silhouette loss represents how much the reconstructed silhouettes {ŝi} differ from the
correct silhouettes {si}. Smoothness loss represents how smooth the surfaces of a mesh are
and acts as a regularizer. The objective function is a weighted sum of these two loss functions
L = λslLsl +λsmLsm.

Let {si} and {ŝi} be binary masks, θi be the angle between two faces including the i-th
edge in G(x), E be the set of all edges in G(x), and ⊙ be an element-wise product. We define
the loss functions as:

Lsl(x|φi,si) = − |ŝi ⊙ si|1
|ŝi + si − ŝi ⊙ si|1

. (4.1)

Lsm(x) = ∑
θi∈E

(cosθi +1)2. (4.2)

Lsl corresponds to a negative intersection over union (IoU) between the true and reconstructed
silhouettes. Lsm ensures that intersection angles of all faces are close to 180 degrees.

We assume that the object region in an image is segmented via preprocessing in common
with the exiting works [13, 107, 126]. We input the mask of the object region into the
generator as an additional channel of an RGB image.

4.3 Experiments

4.3.1 Experimental settings

To compare our mesh-based method with the voxel-based approach by Yan et al. [126], we
used nearly the same dataset as they did2. We used 3D objects from thirteen categories in
the ShapeNetCore [7] dataset. Images were rendered from 24 azimuth angles with a fixed
elevation angle, under the same camera setup, and lighting setup using Blender. The render

2The dataset we used was not exactly the same as that used in [126]. The rendering parameters for the input
images were slightly different. Additionally, while our silhouette images were rendered by Blender from the
meshes in the ShapeNetCore dataset, theirs were rendered by their PTNs using voxelized data.

45

Learning with multi-view images

Figure 4.1 3D mesh reconstruction from a single image. Results are rendered from three
viewpoints. First column: input images. Second through fourth columns: mesh reconstruction
(proposed method). Fifth through seventh columns: voxel reconstruction [126].

Figure 4.2 Generation of the back side of a CRT monitor with/without smoothness regularizer.
Left: input image. Center: prediction without regularizer. Right: prediction with regularizer.

size was 64×64 pixels. We used the same training, validation, and test sets as those used
in [126].

We compared reconstruction accuracy between the voxel-based and retrieval-based
approaches [126]. In the voxel-based approach, G(x) is composed of a convolutional encoder
and deconvolutional decoder. While their encoder was pre-trained using the method in
Yang et al. [128], our network works well without any pre-training. In the retrieval-based
approach, the nearest training image is retrieved using the fc6 feature of a pre-trained
VGG network [97]. The corresponding voxels are regarded as a predicted shape. Note
that the retrieval-based approach uses ground truth voxels for supervision. To evaluate the
reconstruction performance quantitatively, we voxelized both the ground truth meshes and
the generated meshes to compute the intersection over union (IoU) between the voxels. The
size of voxels was set to 323. For each object in the test set, we performed 3D reconstruction
using the images from 24 viewpoints, calculated the IoU scores, and reported the average
score.

46

4.3 Experiments

Retrieval [126] Voxel-based [126] Mesh-based (ours)
airplane 0.5564 0.5556 0.6172
bench 0.4875 0.4924 0.4998
dresser 0.5713 0.6823 0.7143
car 0.6519 0.7123 0.7095
chair 0.3512 0.4494 0.4990
display 0.3958 0.5395 0.5831
lamp 0.2905 0.4223 0.4126
loudspeaker 0.4600 0.5868 0.6536
rifle 0.5133 0.5987 0.6322
sofa 0.5314 0.6221 0.6735
table 0.3097 0.4938 0.4829
telephone 0.6696 0.7504 0.7777
vessel 0.4078 0.5507 0.5645
mean 0.4766 0.5736 0.6016

Table 4.1 Reconstruction accuracy measured by voxel IoU. Higher is better. Our mesh-based
approach outperforms the voxel-based approach [126] in ten out of thirteen categories.

We used an encoder-decoder architecture for the generator G(x). Our encoder is nearly
identical to that of [126], which encodes an input image into a 512D vector. Our decoder is
composed of three fully-connected layers. The sizes of the hidden layer are 1024 and 2048.
The render size of our renderer is set to 128×128 and downsampled them to 64×64. We
rendered only the silhouettes of objects without using textures and lighting. We set λsl = 1
and λsm = 0.001 in Section 4.3.2, and λsm = 0 in Section 4.3.3. We trained our generator
using the Adam optimizer [43] with α = 0.0001, β1 = 0.9, and β2 = 0.999. The batch size
was set to 64. In each minibatch, we included silhouettes from two viewpoints per input
image.

4.3.2 Qualitative evaluation

We trained thirteen models with images from each class. Figure 4.1 presents a part of results
from the test set by our mesh-based method and the voxel-based method [126]3. These
results demonstrate that a mesh can be correctly reconstructed from a single image using our
method.

Compared to the voxel-based approach, the shapes reconstructed by our method are more
visually appealing from the two points. One is that a mesh can represent small parts, such as
airplane wings, with high resolution. The other is that there is no cubic artifacts in a mesh.

3We trained generators using the code from the authors and our dataset.

47

Learning with multi-view images

Although low resolutions and artifacts may not be a problem in tasks such as picking by
robots, they are disadvantageous for computer graphics, computational photography, and
data augmentation.

Without using the smoothness loss, our model sometimes produces very rough surfaces.
That is because the smoothness of surfaces has little effect on silhouettes. With the smooth-
ness regularizer, the surface becomes smoother and looks more natural. Figure 4.2 illustrates
the effectiveness of the regularizer. However, if the regularizer is used, the voxel IoU for the
entire dataset becomes slightly lower.

Figure 4.3 and Figure 4.4 show additional results of 3D reconstruction.

4.3.3 Quantitative evaluation

We trained a single model using images from all classes. The reconstruction accuracy is
shown in Table 4.1. Our mesh-based approach outperforms the voxel-based approach [126]
for ten out of thirteen categories. Our result is significantly better for the airplane, chair,
display, loudspeaker, and sofa categories. The basic shapes of the loudspeaker and
display categories are simple. However, the size and position vary depending on the objects.
The fact that a meshes are suitable for scaling and translation presumably contributes to the
performance improvements in these categories. The variations in shapes in the airplane,
chair and sofa categories are also relatively small.

Our approach did not perform very well for the car, lamp, and table categories. The
shapes of the objects in these categories are relatively complicated, and they are difficult to
be reconstructed by deforming a sphere.

4.3.4 Limitation

Although our reconstruction method already surpasses the voxel-based method in terms of
visual appeal and voxel IoU, it has a clear disadvantage in that it cannot generate objects
with various topologies. In order to overcome this limitation, it is necessary to generate the
faces-to-vertices relationship { fff i} dynamically. This is beyond the scope of this study, but it
is an interesting direction for future research.

4.4 Summary

Using the renderer proposed in the previous chapter, we proposed a method to reconstruct a
3D mesh from a single image, the performance of which is superior to the existing voxel-
based approach [126] in terms of visual appeal and the voxel IoU metric. Ours is the first

48

4.4 Summary

work to learn 3D mesh reconstruction from 2D images. We found that, compared with
voxel reconstruction, accuracy of mesh reconstruction is better in shapes that have thin
structures such as airplane and chair, and shapes that are simple such as display and
loudspeaker.

49

Learning with multi-view images

Figure 4.3 3D mesh reconstruction from a single image. The leftmost images are the inputs.
Results are rendered from six viewpoints.

50

4.4 Summary

Figure 4.4 3D mesh reconstruction from a single image. The leftmost images are the inputs.
Results are rendered from six viewpoints.

51

Chapter 5

Learning with annotated single-view
images

5.1 Difficulty in learning from single-view images

Learning single-view 3D object reconstruction from single-view images is preferable because
collecting them is less expensive than collecting multi-view images. Multi-view image
collection requires specialized equipment, while single-view image collection involves just
taking a photograph. Another way is to collect images that are on the Internet.

The problem in learning 3D reconstruction with a single image per object is the high
ambiguity of the 3D shape in a single image. If a 3D shape is given as supervision, there is no
ambiguity of shape at all. In the case of learning from multi-view images as in the previous
chapter, there is some ambiguity. However, if the number of given views is large, it is not a
severe problem. However, in the case of a single image per object, as shown in Figure 1.5, we
cannot obtain good results only by minimizing image reconstruction error. This is because
views of reconstructed objects from other viewpoints are not taken into account.

In this chapter, we propose a way to learn the validity of a shape’s appearance from
data. This criterion is used in conjunction with image reconstruction during learning and
significantly improves 3D object reconstruction performance. This chapter was published
as [40].

5.2 Method

In this section, we introduce a simple view-based method in the previous chapter. Then, we
describe our main technique, called view prior learning (VPL). We also explain a technique

52

5.2 Method

Image xij Encoder Enc
Shape decoder Decs

Texture decoder Dect

Renderer P
3D model

Corresponding viewpoint vij

View comparison

Renderer PRandom viewpoint vkl Gradient reversal

Gradient reversal

Discriminator Dis View discrimination loss Ld

Reconstruction loss Lr

Internal pressure Internal pressure loss Lp

View

View

Trainable function Other functionLossInput

Figure 5.1 Architecture of the proposed method. The main point of our method is the use
of discrimination loss to learn priors of views. While the discriminator aims to minimize
discrimination loss, the encoder and decoders try to maximize it using a gradient reversal
layer.

Image A

Encoder & Decoder

Renderer
Viewpoint A

Image B

Viewpoint B
Renderer

View comparison View comparison Reconstruction loss

Figure 5.2 Reconstruction loss in multi-view training. Images A and B are views of the same
object. Although only the loss with respect to a view reconstructed from image A is shown
in this figure, the loss with respect to image B is also computed.

to further improve reconstruction accuracy by applying internal pressure to shapes. Figure 5.1
shows the architecture of our method.

For training, our method requires a dataset that contains single or multiple views of
objects, and their silhouette and viewpoint annotations, similar to previous studies [36, 107,
126]. Additionally, ours can also use class labels of views if they are available. After training,
reconstruction is performed without silhouette, viewpoint, and class label annotations.

5.2.1 View-based training for 3D reconstruction

In this section, we describe our baseline method for 3D reconstruction. We extend a method
which uses silhouettes in the previous chapter to handle textures using a texture decoder and
perceptual loss [35].

Overview. The common approach to view-based training of 3D reconstructors is to min-
imize the difference between views of a reconstructed shape and views of a ground truth
shape. Let xi j be the view of an object oi from a viewpoint vi j, No be the number of objects

53

Learning with annotated single-view images

in the training dataset, Nv be the number of viewpoints per object, R(·) be a reconstructor
that takes an image and outputs a 3D model, P(·, ·) be a renderer that takes a 3D model and a
viewpoint and outputs the view of the given model from the given viewpoint, and Lv(·, ·) be
a function that measures the difference between two views. Then, our reconstruction loss is
defined as

Lr(x,v) =
No

∑
i=1

Nv

∑
j=1

Nv

∑
k=1

Lv(P(R(xi j),vik),xik). (5.1)

We call the case where Nv = 1 single-view training. In this case, the reconstruction loss is
simplified to Lr(x,v) = ∑

No
i=1 Lv(P(R(xi1),vi1),xi1). We call the case where 2 ≤ Nv multi-

view training.

3D representation and renderer. Some works use voxels as a 3D representation in view-
based training [107, 126]. However, voxels are not well suited to view-based training because
using high-resolution views of voxels is difficult as voxels are memory inefficient. Therefore,
we use a mesh and a differentiable renderer1.

Reconstructor. In this work, a 3D model is represented by a pair of a shape and a texture
image. Our reconstructor R(·) uses an encoder-decoder architecture. An encoder Enc(·)
encodes an input image, and a shape decoder Decs(·) and texture decoder Dect(·) generate a
3D mesh and a texture image, respectively. We generate a shape by moving the vertices of a
pre-defined mesh as in the previous chapter. The details of the encoder and the decoders are
described in the experiment section.

View comparison function. Color images (RGB channels) and silhouettes (alpha chan-
nels) are processed separately in Lv(·, ·). Let x and x̂ = P(R(x),v) be a ground truth view
and an estimated view, xc, x̂c be the RGB channels of x, x̂, and xs, x̂s be the alpha channels
of x, x̂. The silhouette at the i-th pixel xsi is set to one if an object exists at the pixel and to
zero if the pixel is part of the background. xs can take a value between zero and one owing to
anti-aliasing of the renderer. To compare color images xc, x̂c, we use perceptual loss Lp [35]
with additional feature normalization. Let Fm(·) be the m-th feature map of N f maps in a
pre-trained CNN for image classification. In addition, let Cm, Hm, Wm be the channel size,
height, and width of Fm(·), respectively. Specifically, we use the five feature maps after
convolution layers of AlexNet [47] for Fm(·). Then, using Dm =CmHmWm, the perceptual

1We modified the approximate differentiation of the renderer in the previous chapter. Details are described
later.

54

5.2 Method

loss is defined as

Lp(x̂c,xc) =
N f

∑
m=1

1
Dm

∣∣∣∣ Fm(x̂c)

|Fm(x̂c)|
− Fm(xc)

|Fm(xc)|

∣∣∣∣2 . (5.2)

For silhouettes xs, x̂s, we use their multi-scale cosine distance. Let xi
s be an image obtained by

down-sampling xs 2i−1 times, and Ns be the number of scales. We define the loss function as

Ls(xs, x̂s) =
Ns

∑
i=1

(
1− xi

s · x̂i
s

|xi
s||x̂i

s|

)
. (5.3)

We also use negative intersection over union (IoU) of silhouettes, as was used in the previous
chapter. Let ⊙ be an elementwise product. This loss is defined as

Ls(xs, x̂s) = 1− |xs ⊙ x̂s|1
|xs + x̂x − xs ⊙ x̂s|1

. (5.4)

The total reconstruction loss is Lv = Ls +λcLc. λc is a hyper-parameter.

Training. We optimize R(·) using mini-batch gradient descent. Figure 5.1 shows the
architecture of single-view training. In multi-view training, we randomly take two views
of an object in one minibatch. The architecture for computing Lr in this case is shown in
Figure 5.2.

5.2.2 View prior learning

As described in Chapter 1, in view-based training, a reconstructor can generate a shape that
looks unrealistic from unobserved viewpoints. In order to reconstruct a shape that is viewed
as realistic from any viewpoint, it is necessary to (1) learn the difference between correct
views and incorrect views, and (2) tell the reconstructor how to modify incorrect views. In
view-based training, reconstructed views from observed viewpoints converge to the real
views in a training dataset by minimizing the reconstruction loss, and views from unobserved
viewpoints do not always become correct. Therefore, the former can be regarded as correct
and realistic views, and the latter can be regarded as incorrect and unrealistic views. Based
on this assumption, we propose to train a discriminator that distinguishes estimated views at
observed viewpoints from estimated views at unobserved viewpoints to learn the correctness
of views. The discriminator can pass this knowledge to the reconstructor by back-propagating
the gradient of the discrimination loss into the reconstructor via estimated views and shapes
as with adversarial training in image generation [17] and domain adaptation [15].

55

Learning with annotated single-view images

Concretely, let Dis(·, ·) be a trainable discriminator that takes a view and its viewpoint
and outputs the probability that the view is correct, and V be the set of all viewpoints in the
training dataset. Using cross-entropy, we define view disrcimination loss as

Ld(xi j,vi j) =− log(Dis(P(R(xi j),vi j),vi j))

− ∑
vu∈V ,vu ̸=vi j

log(1− (Dis(P(R(xi j),vu),vu)))

|V |−1
. (5.5)

In minibatch training, we sample one random view for each reconstructed object to compute
Ld .

Stability of training. Although adversarial training is generally not stable, training of our
proposed method is stable. It is known that training of GANs fails when a discriminator is
too strong to be fooled by a generator. This problem is explained from the distinction of the
supports of real and fake samples [2]. However, in our case, it is very difficult to distinguish
views correctly in an earlier training stage because view reconstruction is not accurate and
views are incorrect from any viewpoint. Even in a later stage, the reconstructor can easily
fool the discriminator by slightly breaking correct views. Therefore, the discriminator cannot
be dominant in our method.

Optimization of the reconstructor. The original procedure of adversarial training requires
optimizing a discriminator and a generator iteratively [17]. Subsequently, Ganin et al. [15]
proposed to train a generator using the reversed gradient of discrimination loss. The proposed
gradient reversal layer does nothing in the forward pass, although it reverses the sign of
gradients and scales them λd times in the backward pass. This layer is posed on the right
before a discriminator. Because this optimization procedure is not iterative, the training
time is shorter than iterative optimization. Furthermore, we experimentally found that the
performances of the gradient reversal and iterative optimization are nearly the same in our
problem. Therefore, we use the gradient reversal layer for training the reconstructor.

Image type for the discriminator. The discriminator can take both RGBA images and
silhouette images. We give it RGBA images when texture prediction is conducted, otherwise
we give it silhouettes.

Class conditioning. In addition, a discriminator can be conditioned on class labels using
the conditional GAN [64] framework. When class labels are known, view discrimination

56

5.2 Method

(,)xv

1
yv

1

(,)xv

2
yv

2

(,)xv

3
yv

3

pi pi+1pi−1

w1

w2

w3

(,)xi yi

pi pi+1pi−1

(a) (b)

Δx

pi pi+1pi−1

1

Pixel moves
to the right

i

pi pi+1pi−1

(c)

Δx

pi pi+1pi−1

1

Pixel moves
to the left

i

Figure 5.3 Our assumptions on the differentiation of a renderer.

becomes easier and the discriminator becomes more reliable. We use the projection discrimi-
nator [65] for class conditioning. Note that the test phase does not require class labels.

Another possible discriminator. We propose to train a discriminator on views of recon-
structed shapes at observed and unobserved viewpoints. Another possible approach is to
distinguish reconstructed views from real views in a training dataset. In fact, this discrim-
inator does not work well because generating a view that is difficult to distinguish from
real views is very difficult. This is caused by the limitation of the representation ability of
the reconstructor and renderer. Table 2.3 shows a summary of the discriminators we have
explained thus far.

5.2.3 Internal pressure

One of the most popular methods in multi-view 3D reconstruction is space carving [50].
In space carving, a point inside all silhouettes is assumed to be inside the object. In other
words, in terms of shape ambiguity, space carving produces the shape with the largest volume.
Following this policy, we inflate the volume of estimated shapes by giving them internal
pressure in order to maximize their volume. Concretely, we add a gradient along the normal
of the face for each vertex of a triangle face. Let pi be one of the vertices of a triangle face,
and n be the normal of the face. We add a loss term Lp that satisfies ∂Lp(pi)

∂ pi
=−n.

5.2.4 Modification of neural mesh renderer

In our implementation, we compute the differentiation of a renderer in a different way from
the previous chapter because we found that it is not stable when δ x

i is very small. Furthermore,

57

Learning with annotated single-view images

the computation time is significant because a very large number of pixels is involved in
computing the gradient with respect to one pixel. The approximate differentiation described
in this section solves both problems.

Suppose three pixels are aligned horizontally, as shown in Figure 5.3 (a). Their co-
ordinates are (xi−1,yi−1), (xi,yi), and (xi+1,yi+1), and their colors are pi−1, pi, and pi+1,
respectively. Pixel i is located on a polygon, and its three vertices projected onto a 2D plane
are (xv

1,y
v
1), (x

v
2,y

v
2), and (xv

3,y
v
3). Then (xi,yi) can be represented by their weighted sum

(xi,yi) = w1(xv
1,y

v
1)+w2(xv

2,y
v
2)+w3(xv

3,y
v
3). Let L be the loss function of the network.

When the gradient with respect to a pixel (∂L
∂xi

, ∂L
∂yi

) located at (xi,yi), is obtained, the gra-

dient with respect to the vertices of the polygon (∂L
∂xv

1
, ∂L

∂yv
1
), (∂L

∂xv
2
, ∂L

∂yv
2
), (∂L

∂xv
3
, ∂L

∂yv
3
) can be

computed using w1, w2, w3, and the chain rule.
We assume that when a pixel i moves to the right by ∆xi, the pixel color changes, as shown

in Figure 5.3 (b). Concretely, the color of pixel i changes to pi +(pi−1 − pi)∆x and the color
of pixel i+1 changes to pi+1 +(pi − pi+1)∆x. Then, ∂ pi

∂xi
= pi−1 − pi and ∂ pi+1

∂xi
= pi − pi+1.

Let gi be the gradient of the loss function back-propagated to pixel i, gi =
∂L
∂ pi

. Then, the
gradient of xi is

∂L

∂xi
=

∂L

∂ pi

∂ pi

∂xi
+

∂L

∂ pi+1

∂ pi+1

∂xi

= gi(pi−1 − pi)+gi+1(pi − pi+1)

= (gp
i)

right. (5.6)

In the case where pixel i moves to the left, we can compute the gradient in a similar
manner. Thus,

∂L

∂xi
=

∂L

∂ pi

∂ pi

∂xi
+

∂L

∂ pi−1

∂ pi−1

∂xi

= gi(pi − pi+1)+gi−1(pi−1 − pi)

= (gp
i)

left. (5.7)

The problem is whether to use (gp
i)

right or (gp
i)

left. When xi moves to the right, the
decrease in L is proportional to (d)right =−(gp

i)
right. When xi moves to the left, the decrease

in L is proportional to (d)left = (gp
i)

left. We define the gradient differently according to the
following three cases.

• When max((d)right,(d)left)< 0, the loss increases by moving the pixel i. Therefore, in
this case, we define ∂L

∂xi
= 0.

58

5.3 Experiments

• When 0 ≤ max((d)right,(d)left) and (d)left < (d)right, the loss decreases more by mov-
ing pixel i to the right. In this case, we define ∂L

∂xi
= (gp

i)
right.

• When 0 ≤ max((d)right,(d)left) and (d)right < (d)left, it is better to move pixel i to the
left. In this case, we define ∂L

∂xi
= (gp

i)
left.

The gradient with respect to yi is defined in a similar way.

5.2.5 Summary

In addition to using reconstruction loss Lr = Ls + λcLc, we propose to use view dis-
crimination loss Ld to reconstruct realistic views and internal pressure loss Lp to inflate
reconstructed shapes. The total loss is L = Ls +λcLc +Ld +λpLp. The hyperparameters
of loss weighting are λc, λp, and λd . Because λd is used in the gradient reversal layer, it does
not appear in L . The entire architecture is shown in Figure 5.1.

5.3 Experiments

We tested our proposed view prior learning (VPL) on synthetic and natural image datasets.
We conducted an extensive evaluation of our proposed method using a synthetic dataset
because it consists of a large number of objects with accurate silhouette and viewpoint
annotations.

As a metric of the reconstruction accuracy, we used intersection over union (IoU) of a
predicted shape and a ground truth that was used in many previous publications [9, 13, 36, 39,
85, 101, 107, 126]. To fairly compare our results with those in the literature, we computed
IoU after converting a mesh into a volume of 323 voxels2.

5.3.1 Experimental settings

Optimizer

We used the Adam optimizer [43] in all experiments. In our ShapeNet experiments, the
Adam parameters were set to α = 4e−4,β1 = 0.5,β2 = 0.999. In the PASCAL experiments,
the parameters were set to α = 2e−5,β1 = 0.5,β2 = 0.999. The batch size is set to 64 in
our ShapeNet experiments, and set to 16 in our PASCAL experiments.

2Another popular metric is the chamfer distance of point clouds. However, this metric is not suitable for use
in view-based learning. Because it commonly assumes that points are distributed on surfaces, it is influenced by
invisible structures inside shapes, which are impossible to learn in view-based training. This problem does not
arise when using IoU because it commonly assumes that the interior of a shape is filled.

59

Learning with annotated single-view images

deconv (256, 3, 2)

reshape (2)

linear (512*2*2)

deconv (128, 3, 2)

deconv (64, 3, 2)

conv (3, 1, 1)

× 6

 coordinates 16 × 16 × 3

hidden state h

(for each face of a cube)

assign to vertices of a cube

 coordinates 1352 × 3

Figure 5.4 Architecture of the shape decoder used in the ShapeNet experiments. The 16×16
vertices on each face of the cube are separately generated, and they are merged into 1352
vertices. The dimension of the input vector is 512. All linear and deconvolution layers except
the last one are followed by ReLU nonlinearity.

Encoder, decoder and discriminator

We used the ResNet-18 architecture [24] for the encoders in all experiments. The weights
of the encoder were randomly initialized in the ShapeNet experiments. The weights were
initialized using the weights of the pre-trained model from [24] in the PASCAL experiments.

We generated a 3D shape and texture image by deforming a pre-defined cube. The
number of vertices on each face of the cube is 16× 16, and the vertices on the edge of
the cube are shared within two faces. The total number of vertices is 1352. The size of a
texture image on each face is 64×64 pixels. The shape decoder outputs the coordinates of
the vertices of this cube, and the texture decoder outputs six texture images. Figures 5.4
and 5.5 show the architecture of the shape decoders used in the ShapeNet and PASCAL
experiments. Figure 5.6 shows the architecture of the texture decoder used in all experiments.
Figures 5.7 and 5.8 show the architectures of the discriminators in the ShapeNet and PASCAL
experiments. The layers used in the architecture figures are as follows:

• linear(a) is an affine transformation layer. a is the number of feature maps.

• conv(a,b,c) is a 2D convolution layer. The number of feature maps is a, the kernel
size is b×b, and the stride size is c× c.

60

5.3 Experiments

linear (4056)

linear (4096)

hidden state h

 coordinates 1352 × 3

linear (4096)

Figure 5.5 Architecture of the shape decoder used in the PASCAL experiments. The dimen-
sion of the input vector is 512. All linear layers except the last one are followed by ReLU
nonlinearity.

deconv (256, 5, 2)

reshape (4)

linear (512*4*4)

deconv (128, 5, 2)

deconv (64, 5, 2)

deconv (3, 5, 2)

× 6

texture image of
one face

hidden state h

(for each face of a cube)

Figure 5.6 Architecture of the texture decoder used in all experiments. A texture image
of size 64× 64 is generated separately for each face of a cube. The input vector has 512
dimensions. All linear and deconvolution layers except the last one are followed by Batch
Normalization [32] and ReLU nonlinearity.

• deconv(a,b,c) is a 2D deconvolution layer. The number of feature maps is a, the
kernel size is b×b, and the stride size is c× c.

• reshape(a) reshapes a vector into feature maps of size a×a.

• tile(a) tiles a vector into feature maps of size a×a.

• concat(·) stacks two feature maps.

Other hyperparameters

Table 5.1 and Table 5.2 show the number of training iteration and the weights of loss terms
in ShapeNet and PASCAL experiments.

61

Learning with annotated single-view images

tile (112)

conv (64, 5, 2)

concat

conv (32, 5, 2)

conv (1, 5, 2)

linear (32)

conv (128, 5, 2)

conv (256, 5, 2)

conv (256, 5, 2)

Image x viewpoint v

prediction map

Figure 5.7 The architecture of the discriminator used in the ShapeNet experiments. The size
of the input image is 224×224. A viewpoint is represented by a three-dimensional vector of
the elevation, azimuth, and distance to the object. Spectral Normalization [66] is applied to
all convolution and linear layers. All convolution layers except the last one are followed by
LeakyReLU nonlinearity.

5.3.2 Synthetic dataset

As a synthetic dataset, we used ShapeNet [7], a large-scale dataset of 3D CAD models. We
use 43,784 objects in thirteen categories from ShapeNet. By using ShapeNet and a renderer,
a dataset of views, silhouettes, viewpoints, and ground truth 3D shapes can be synthetically
created. We used ground truth 3D shapes only for validation and testing. We used rendered
views and train/val/test splits provided by Kar et al. [39]. In this dataset, each 3D model is
rendered from twenty random viewpoints. Each image has a resolution of 224×224. We
augmented the training images by random color channel flipping and horizontal flipping, as
was used in [39, 85]3. We use all or a subset of views for training, and all views were used
for testing.

We used Batch Normalization [32] and Spectral Normalization [66] in the discriminator.
The parameters were optimized with the Adam optimizer [43]. The hyperparameters were
tuned using the validation set. We used Equation 5.3 as the view comparison function for
silhouettes.

3When flipping images, we also flip the corresponding viewpoints.

62

5.3 Experiments

tile (113)

conv (128, 4, 2)

concat

conv (64, 4, 2) linear (64)

conv (256, 4, 2)

conv (512, 4, 1)

conv (1, 4, 1)

Image x viewpoint v

prediction map

Figure 5.8 Architecture of the discriminator used in the PASCAL experiments. The size of
the input image is 224× 224. A viewpoint is represented by a 3× 3 rotation matrix. All
convolution layers except the last one are followed by LeakyReLU nonlinearity.

Training type Nv TP VPL #training iteration λc λd λp

single-view 1 50000 - - 0.0001
single-view 1 ✓ 50000 0.5 - 0.0001
single-view 1 ✓ 100000 - 0.2 0.0001
single-view 1 ✓ ✓ 100000 0.5 2 0.0001

multi-view 2,3,5,10,20 25000Nv - - 0.0001
multi-view 2,20 ✓ 25000Nv 0.1 - 0.0001
multi-view 2,3,5,10,20 ✓ 50000Nv - 0.03 0.0001
multi-view 2,20 ✓ ✓ min(50000Nv,500000) 0.1 0.3 0.0001

Table 5.1 Hyperparameters used in the ShapeNet experiments.

Single-view training

At first, we trained reconstructors in single-view training described in Section 5.2.1. Namely,
we used only one randomly selected view out of twenty views for each object in training.

Figure 5.9 shows examples of reconstructed shapes with and without VPL. When viewed
from the original viewpoints (b), the estimated shapes appear valid in all cases. However,
without VPL, the shapes appear incorrect when viewed from other viewpoints (c–e). For
example, the backrest of the chair is too thick, the car is completely broken, and the airplane
has a strange prominence in the center. When VPL is used, the shapes look reasonable from
any viewpoint. These results clearly indicate that the discriminator informed the reconstructor
regarding knowledge of feasible views.

63

Learning with annotated single-view images

Training type TP VPL #training iteration λc λd λp

category-agnostic 15000 - - 0.00003
category-agnostic ✓ 15000 0.01 - 0.00003
category-agnostic ✓ 50000 - 2 0.00003
category-agnostic ✓ ✓ 250000 0.01 0.5 0.00003

category-specific 5000 - - 0.00003
category-specific ✓ 5000 0.01 - 0.00003
category-specific ✓ 40000 - 2 0.00003
category-specific ✓ ✓ 80000 0.01 0.5 0.00003

Table 5.2 Hyperparameters used in the PASCAL experiments.

Table 5.3 shows a quantitative evaluation of single-view training. VPL provides signifi-
cantly improved reconstruction performance. This improvement is further boosted when the
discriminator is class conditioned. We can tell that conducting texture prediction also helps
training accurate reconstructors.

VPL is particularly effective with the phone, display, bench, and sofa categories. In
contrast, VPL is not effective with the lamp category. In the case of phone and display
categories, because the silhouettes are very simple, the shapes are ambiguous and various
shapes can fit into one view. Although integrating texture prediction reduces the ambiguity,
VPL is much more effective. In the case of bench and sofa categories, learning their long
shapes is difficult without considering several views. Because the shapes in the lamp
category are diverse and the training dataset is relatively small, the discriminator cannot learn
meaningful priors.

Multi-view training

Second, we trained reconstructors using multi-view training as described in Section 5.2.1.
Namely, we used two or more views out of twenty views for each object in training.

Table 5.4 shows the relationship between the reconstruction accuracy and the number
of views per object Nv used for training. Texture prediction was not conducted in this
experiment, and the difference between the proposed method and the baseline is the use of
VPL with class conditioning. Our proposed method outperforms the baseline in all cases,
which indicates that VPL is also effective in multi-view training. The effect of VPL increases
as Nv decreases, as expected. Figure 5.10 shows reconstructed shapes with texture prediction
when Nv = 2. When VPL is used, the shape details become more accurate.

64

5.3 Experiments

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5.9 Examples of single-view training on the ShapeNet dataset. (a) Input images.
(b) Reconstructed shapes viewed from the original viewpoints. (c–e) Reconstructed shapes
viewed from other viewpoints.

Discriminator and optimization

We discussed two types of discriminators in the last paragraph of Section 5.2.2 and empha-
sized the importance of discriminating between estimated views rather than estimated views
and real views. We validated this statement with an experiment. We ran experiments in
single-view training using the discriminator of Table 2.3 (d). We also tested the iterative
optimization used in GAN [17] instead of using a gradient reversal layer [15]. However, in
both cases, we were unable to observe any meaningful improvements from the baseline by
tuning λd . This fact indicates that the discriminator in Figure 2.3 (d) does not work well in
practice, and discriminating estimated views is key to effective training.

65

Learning with annotated single-view images

V
PL

C
C

T
P ai
rp

la
ne

be
nc

h

dr
es

se
r

ca
r

ch
ai

r

di
sp

la
y

la
m

p

.479 .266 .466 .550 .367 .265 .454
✓ .500 .347 .583 .673 .413 .399 .443
✓ ✓ .513 .376 .591 .701 .444 .425 .422

✓ .483 .284 .544 .535 .356 .372 .443
✓ ✓ .524 .378 .581 .705 .442 .422 .441
✓ ✓ ✓ .531 .385 .591 .701 .454 .423 .441

V
PL

C
C

T
P sp
ea

ke
r

ri
fle

so
fa

ta
bl

e

ph
on

e

ve
ss

el

al
l

.524 .382 .367 .342 .337 .439 .403
✓ .578 .481 .464 .423 .583 .486 .490
✓ ✓ .596 .479 .500 .436 .595 .485 .505

✓ .534 .386 .370 .361 .529 .448 .434
✓ ✓ .561 .510 .475 .443 .625 .490 .508
✓ ✓ ✓ .570 .521 .508 .444 .601 .498 .513

Table 5.3 IoU of single-view training on the ShapeNet dataset. VPL: proposed view prior
learning. CC: class conditioning in the discriminator. TP: texture prediction.

Comparison with manually-designed priors

Our proposed internal pressure (IP) loss and some regularizers and constraints used in [36,
111] were designed using human knowledge regarding shapes. Table 5.5 shows a comparison
with VPL. This experiment was conducted in single-view training without texture prediction.

This result shows that IP loss improves performance. The symmetricity constraint also
improves the performance, however, some objects in ShapeNet are actually not symmetric.
By regularizing the graph Laplacian and the edge length of meshes, although the visual
quality of the generated meshes became better, improvement of IoU was not observed.

VPL cannot be compared with the learning-based 3D shape priors detailed by Gwak et
al. [21] and Wu et al. [118] because these methods require additional 3D models for training,
and their methods are applicable to voxels rather than meshes.

66

5.3 Experiments

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5.10 Examples of multi-view training on ShapeNet (Nv = 2). Panels (a–e) are the
same as in Figure 5.9.

Comparison with state-of-the-arts

Our work also shows the effectiveness of view-based training. Table 5.6 shows the recon-
struction accuracy (IoU) on the ShapeNet dataset by our method and recent papers4.

Our method outperforms existing view-based training methods [126]. The main differ-
ences between our baseline and ours in the previous chapter 4 are the internal pressure and
the training dataset. Because the resolution of our training images (224×224) is larger than

4The most commonly used dataset of ShapeNet for 3D reconstruction was provided by Choy et al. [9].
However, we found that this dataset is not suitable for view-based training because there are large occluded
regions in the views owing to the narrow range of elevation in the viewpoints. Therefore, we used a dataset by
Kar et al. [39], in which images were rendered from a variety of viewpoints. A comparison of the results from
both datasets is not so unfair because the performance of 3D-R2N2 [9] is close in both datasets.

67

Learning with annotated single-view images

Nv 2 3 5 10 20
Baseline .575 .596 .620 .641 .652
Proposed .583 .600 .624 .644 .655

Table 5.4 The relation between the number of views per object Nv and the reconstruction
accuracy (IoU) in multi-view training.

Prior IoU
None .387
Internal pressure (IP, ours) .403
IP & Symmetricity [36] .420
IP & Regularizing graph Laplacian [36, 111] .403∗

IP & Regularizing edge length [111] .403∗

IP & View prior learning (ours) .505

Table 5.5 Comparison of our learning-based prior with manually-designed shape regularizers
and constraints. ∗No meaningful improvement was observed.

theirs (64×64) and the elevation range in the viewpoints ([−20◦,30◦]) is wider than that of
theirs (30◦ only), more accurate and detailed 3D shapes can be learned in our experiments.

It may be surprising that our view-based method outperforms reconstructors trained using
3D models. Although view-based training is currently less popular than 3D-based training,
one can say that view-based training has much room for further study.

5.3.3 Natural image dataset

If a 3D model is available, we can synthetically create multiple views with accurate silhouette
and viewpoint annotations. However, in practical applications, it is not always possible to
obtain many 3D models, and datasets must be created using natural images. In this case,
generally, multi-view training is not possible, and silhouette and viewpoint annotations are
noisy. Therefore, to measure the practicality of a method, it is important to evaluate it in such
a case.

Thus, we used the PASCAL dataset preprocessed by Tulsiani et al. [107]. This dataset
is composed of images in PASCAL VOC [12], annotations of 3D models, silhouettes, and
viewpoints in PASCAL 3D+ [123], and additional images in ImageNet [89] with silhouette
and viewpoint annotations automatically created using [52]. We conducted single-view
training because there is only one view per object. Because this dataset is not large, the
variance in the training results is not negligible. Therefore, we report the mean accuracy from

68

5.3 Experiments

Nv IoU
Single-view training
Our best model♯ 1 .513
Multi-view training
PTN [126] 24 .574
Ours (Chapter 4) 24 .602
Our best model♯ 20 .655
3D supervision
3D-R2N2♯ [39] 20 .551
3D-R2N2♭ [9] 24 .560
OGN♭ [101] 24 .596
LSM♯ [39] 20 .615
Matryoshka♭ [85] 24 .635
PSGN♭ [13] 24 .640
VTN♭ [85] 24 .641

Table 5.6 Comparison of our method and state-of-the-art methods. Although supervision
is weaker, our proposed method outperforms the other models trained using 3D models.
♯♭Models denoted with the same symbol use the same rendered images.

five runs with different random seeds. We used the pre-trained ResNet-18 model [24] as the
encoder as with [36, 107]. The parameters were optimized with the Adam optimizer [43].
We constrained estimated shapes to be symmetric, as with a previous study [36]. We used
Equation 5.4 as the view comparison function for silhouettes.

Table 5.7 shows the reconstruction accuracy on the PASCAL dataset. Our proposed
method consistently outperforms the baseline and provides state-of-the-art performance for
this dataset, which validates the effectiveness of our proposed method. Category-specific
models outperform category-agnostic models because the object shapes in these three cat-
egories are not very similar and multitask learning is not beneficial. The performance
difference when texture prediction is used is primarily caused by the relative weight of the
internal pressure loss.

Figure 5.11 shows typical improvements that can be gained using our method. Improve-
ments are prominent on the wings of the airplane, the tires of the car, and the front legs of
the chair when viewed from unobserved viewpoints.

In this experiment, internal pressure loss plays an important role because observed
viewpoints are not diverse. Figure 5.12 shows a reconstructed shape without internal pressure.
The trunk of the car is hollowed, and this hollow cannot be filled by VPL because there are
few images taken from viewpoints such as (c–e) in the dataset.

69

Learning with annotated single-view images

airplane car chair mean
Category-agnostic models
DRC [107] .415 .666 .247 .443
Baseline (s) .448 .652 .272 .458
Proposed (s) .450 .672 .292 .471
Baseline .440 .640 .280 .454
Proposed .460 .662 .296 .473
Category-specific models
CSDM [38] .398 .600 .291 .429
CMR [36] .46 .64 n/a n/a
Baseline (s) .449 .679 .289 .472
Proposed (s) .472 .689 .303 .488
Baseline .450 .669 .293 .470
Proposed .475 .679 .304 .486

Table 5.7 IoU of single-view 3D reconstruction on the PASCAL dataset. The difference
between the proposed method and the baseline is the use of view prior learning. (s) indicates
silhouette only training without texture prediction (λc = 0).

5.3.4 Additional examples of single-view training

Figures 5.13, 5.14, and 5.15 show some reconstruction examples of phone, display, bench,
sofa, and lamp categories on the ShapeNet dataset using single-view training. These figures
correspond to the description in Section 5.3.2. The difference among categories and the use
of texture prediction can be examined from these figures.

5.3.5 Performance of each category by multi-view training

In Section 5.3.2, only the average performance in all categories on the ShapeNet dataset has
been reported. Table 5.8 shows reconstruction accuracy of each category.

5.3.6 Additional examples of multi-view training

Figures 5.16, 5.17, 5.18, and 5.19 show results from our best performing models using
multi-view training (Nv = 20) for those interested in the state-of-the-art performance on the
ShapeNet dataset. As can be seen in the figure, high-quality 3D models with textures can be
reconstructed without using 3D models for training. The mean IoU of our method without
texture prediction is 65.5, and the mean IoU of our method with texture prediction is 65.0.
In contrast to single-view training, texture prediction does not improve the performance in
multi-view training for large Nv.

70

5.3 Experiments

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5.11 Examples on the PASCAL dataset. Panels (a–e) are the same as in Figure 5.9.

5.3.7 Discriminators and optimization

Table 5.9 shows the performances of the discriminators in Table 2.3 (c–d) in single-view
training. The discriminator in Table 2.3 (d) does not work well in all cases. This table
corresponds to the description in Section 5.3.2.

5.3.8 Internal pressure in multi-view training

In Section 5.3.2, we validated the effect of the internal pressure loss in single-view training.
Table 5.10 shows that this loss is also effective in multi-view training. This experiment was
conducted without texture prediction and view prior learning.

71

Learning with annotated single-view images

Proposed
w/o IP

(a) (b) (c) (d) (e)

Figure 5.12 An example of reconstruction without internal pressure (IP). Panels (a–e) are the
same as in Figure 5.9.

5.4 Summary

This chapter proposed a method to learn prior knowledge of views for view-based training of
3D object reconstruction. We verified our approach in single-view training on both synthetic
and natural image datasets. We also found that our method is effective, even when multiple
views are available for training. The key to our success involves using a discriminator with
two estimated views from observed and unobserved viewpoints. Our data-driven method
works better than existing manually-designed shape regularizers. We also showed that view-
based training works as well as methods that use 3D models for training. The experimental
results validate these statements.

Our proposed method, view prior learning (VPL), is particularly effective in cases where
there is a high degree of ambiguity in the 3D shape due to the simplicity of the shape projected
in 2D, such as phone and display. Our method is also effective for bench and sofa because
the appearances of their long shapes vary with different viewpoints. These observations
confirm our proposed method of increasing the validity of shapes from multiple viewpoints
in addition to reducing image reconstruction error. We also found that the performance is
improved by reconstructing textures as well as shapes, and that our method is effective not
only for synthetic images but also for natural images.

72

5.4 Summary

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5.13 Examples on the ShapeNet dataset in single-view training. Panels (a–e) are the
same as in Figure 5.9. This figure corresponds to Section 5.3.2.

73

Learning with annotated single-view images

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5.14 Examples on the ShapeNet dataset in single-view training. Notation of (a–e) is
the same as in Figure 5.9. This figure corresponds to Section 5.3.2.

74

5.4 Summary

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5.15 Examples on the ShapeNet dataset in single-view training. Notation of (a–e) is
the same as in Figure 5.9. This figure corresponds to Section 5.3.2.

75

Learning with annotated single-view images

N
v

V
PL

T
P ai
rp

la
ne

be
nc

h

dr
es

se
r

ca
r

ch
ai

r

di
sp

la
y

la
m

p

2 .615 .467 .658 .767 .512 .465 .476
2 ✓ .619 .476 .667 .770 .518 .467 .477
3 .631 .495 .673 .775 .537 .499 .490
3 ✓ .638 .507 .674 .779 .543 .497 .491
5 .654 .530 .696 .787 .554 .539 .502
5 ✓ .662 .542 .699 .792 .565 .533 .502
10 .673 .570 .712 .795 .582 .572 .510
10 ✓ .681 .577 .718 .798 .584 .570 .508
20 .688 .593 .722 .799 .597 .599 .512
20 ✓ .691 .598 .724 .802 .601 .597 .505

2 ✓ .614 .469 .663 .768 .511 .475 .477
2 ✓ ✓ .618 .481 .666 .772 .522 .476 .480
20 ✓ .685 .588 .723 .799 .597 .589 .508
20 ✓ ✓ .686 .589 .723 .803 .598 .592 .508

N
v

V
PL

T
P sp
ea

ke
r

ri
fle

so
fa

ta
bl

e

ph
on

e

ve
ss

el

al
l

2 .631 .603 .588 .517 .622 .557 .575
2 ✓ .631 .598 .590 .529 .687 .556 .583
3 .639 .624 .599 .535 .672 .573 .596
3 ✓ .638 .625 .607 .552 .680 .574 .600
5 .657 .642 .623 .564 .721 .589 .620
5 ✓ .656 .647 .629 .571 .725 .593 .624
10 .671 .660 .640 .585 .750 .606 .641
10 ✓ .673 .661 .648 .593 .761 .606 .644
20 .678 .665 .651 .595 .766 .615 .652
20 ✓ .680 .664 .656 .607 .775 .613 .655

2 ✓ .624 .605 .582 .523 .649 .560 .579
2 ✓ ✓ .631 .607 .589 .529 .678 .557 .585
20 ✓ .674 .663 .648 .603 .762 .615 .650
20 ✓ ✓ .676 .661 .651 .597 .759 .613 .650

Table 5.8 IoU of multi-view training on the ShapeNet dataset dataset. This table corresponds
Section 5.3.2. VPL: proposed view prior learning. TP: texture prediction.

76

5.4 Summary

(a) (b) (c) (d) (e)

Figure 5.16 Examples of thirteen categories on the ShapeNet dataset by multi-view training
(Nv = 20) without texture prediction. Panels (a–e) are the same as in Figure 5.9.

77

Learning with annotated single-view images

(a) (b) (c) (d) (e)

Figure 5.17 Examples of thirteen categories on the ShapeNet dataset by multi-view training
(Nv = 20) without texture prediction. Panels (a–e) are the same as in Figure 5.9.

78

5.4 Summary

(a) (b) (c) (d) (e)

Figure 5.18 Examples of thirteen categories on the ShapeNet dataset by multi-view training
(Nv = 20) with texture prediction. Panels (a–e) are the same as in Figure 5.9.

79

Learning with annotated single-view images

(a) (b) (c) (d) (e)

Figure 5.19 Examples of thirteen categories on the ShapeNet dataset by multi-view training
(Nv = 20) with texture prediction. Panels (a–e) are the same as in Figure 5.9.

80

5.4 Summary

Discriminator Optimization Texture IoU
None - .403

Table 2.3 (c) Gradient reversal .505
Table 2.3 (c) Iterative .514
Table 2.3 (d) Gradient reversal .403∗

Table 2.3 (d) Iterative .403∗

None - ✓ .434
Table 2.3 (c) Gradient reversal ✓ .513
Table 2.3 (c) Iterative ✓ .510
Table 2.3 (d) Gradient reversal ✓ .434∗

Table 2.3 (d) Iterative ✓ .434∗

Table 5.9 Evaluation of the discriminators in Table 2.3 (c–d). ∗No meaningful improvement
was observed by tuning λd .

Supervision Nv Internal pressure IoU
Single-view 1 .387
Single-view 1 ✓ .403
Multi-view 20 .648
Multi-view 20 ✓ .652

Table 5.10 Effect of internal pressure loss.

81

Chapter 6

Learning with unannotated single-view
images

6.1 Difficulty in learning from unannotated images

Learning 3D object reconstruction from unannotated images is quite inexpensive. The
previous chapters assume that object silhouettes and camera parameters are given, which
is relatively costly. This is because annotating segmentation is a time-consuming task, and
annotating accurate camera parameters requires special skills. It is preferable to avoid these
expensive tasks in learning single-view 3D object reconstruction of a large number of object
categories.

In learning from images without any annotations, it is difficult to reconstruct images while
separating objects from backgrounds. If the training is based only on image reconstruction,
it results in reconstruction that does not distinguish between an object and background, as
shown in Figure 1.7. In the previous chapters, such a problem does not arise because the
silhouette of an object is assumed to be given as supervision.

In this chapter, to prevent background and texture predictors from simply copying an
input image, we propose a method to first learn category-specific template shapes, and
then to learn 3D object reconstruction using them. In the first step, we use a similar idea
to the previous chapter. We optimize a template shape so that images of it from random
viewpoints look like images in its category. In the second step, we restrict shapes to be
reconstructed to the slight deformations of a template shape. Therefore, image reconstruction
cannot be achieved by simply copying an input image. This method allows us to achieve 3D
reconstruction that separates objects from backgrounds.

82

6.2 Method

Constraints

Shape: smooth surface, symmetrical
Texture: few-color image
Background: horizontal stripe

Constraints
Shape: deformation of a common shape
Texture: smooth
Background: horizontal stripe

First step: generating a common shape

Second step: full training using a common shape

Apperance

Apperance

Shapes

Textures

Generate

BackgroundsGenerated images

Render
Distribution

matching

Random noises

Random viewpoints

Input images

Shape deformation

Texture

BackgroundReconstructed image

Render
Reconstruction

Input image

Camera pose

Common shape

Estimate

Figure 6.1 Training steps and constraints of our proposed method.

6.2 Method

We propose a method to train single-view 3D object reconstruction in Figure 1.6 with self-
supervision while avoiding unrealistic solutions like these shown in Figure 1.7. The cause of
the failures in Figure 1.7 is that copying an input image into texture or background is the
easiest way to minimize the reconstruction error being unaware of shapes. Therefore, we
propose to focus on reconstruction of shapes at first by limiting the representation capacity
of textures and backgrounds to prevent from copying an input. Because image reconstruction
is infeasible with this limited model, instead of training image reconstruction for each image,
we aim to obtain a single category-specific common shape that is used in the following step.
We also constrain a shape to be symmetric and make the surfaces smooth to avoid complicated
shapes. In the second step, we train the reconstruction model. We limit reconstructed shapes
to deformation of the common shape obtained in the first step not to copy an input into a
texture image. Also, we limit the representation capacity of the background generator as
with the first step. Figure 6.1 shows a summary of the training steps and Table 6.1 shows the
introduced constrains. We describe the details of each step in the following sections.

6.2.1 Learning a category-specific common shape

The objective of this step is to obtain a single common shape in a category. To avoid poor
solutions that do not separate geometry and appearance, we must introduce an additional
constraint. How to design such a constraint has been discussed in intrinsic image decomposi-
tion [6]. Making reflectance constant where the spatial gradient of pixel intensity is low is
one of the widely known assumptions [18, 29, 51]. However, some recent work suggests that

83

Learning with unannotated single-view images

Category Sub category Prior Step I Step II

Geometry Local Shapes must be locally smooth ✓
Geometry Global Shapes must be symmetric ✓
Appearance Object surface Textures only contain a few colors ✓
Appearance Background Background is horizontal stripes ✓ ✓

Geometry - Shapes are deformations of a common shape ✓

Table 6.1 Designed priors used in this chapter.

restricting the number of colors is a promising assumption [5, 87, 95] by leveraging the fact
that typical images contain only a few colors [74]. We also follow this direction. Besides, we
limit background images to horizontal stripes not to copy an input. Horizontal stripes can
express rough scene structures, such as the sky and grasses. However, they cannot express
objects1.

Reconstructing an image that looks close to an input image is infeasible by this model
because of these strong limitations. Therefore, instead of reconstructing each image, we
propose to train a generative model of images in a category by rendering generated 3D
objects from various viewpoints. However, training a discriminator like GANs [17] is not
feasible because a discriminator can use the introduced limitations to recognize generated
images. Therefore, we use feature matching [91] and the Chamfer distance to match the
distributions of training images and generated images.

Because the representation capacity of textures and backgrounds is limited, shapes try to
become excessively complicated to represent edges in images. Therefore, we introduce local
and global priors for shapes. The local prior is that shapes are locally smooth. This prior is
first introduced in shape-from-shading [30] and has been demonstrated to be useful for stereo
matching [114] and single-view 3D object reconstruction [5, 36, 111]. The global prior that
shapes are symmetric, which is known to be useful for estimating occluded surfaces [105]
and single-view reconstruction [36, 119]. Such a regularization is also popular in single-view
3D object reconstruction [36, 111].

The top-right part in Figure 6.1 shows the architecture of this step. The objective function
is composed of the distribution matching loss Lm and a regularizer for shape smoothness Ls.
Though inputs are random noises, generated shapes converge to a single shape after training,
which is similar to mode collapse in GANs. The details of each component in this step are as
follows.

1We also tried total variation regularization and Gaussian blurring of textures and backgrounds in our
preliminary experiment. However, we found that these limitations are not enough to prevent from copying.

84

6.2 Method

Shape generation. We generate a shape by deforming vertices of a pre-defined sphere
using a neural network that takes a random vector as input. Deforming sphere is a commonly
used approach in single-view 3D object reconstruction [36, 111]. After a shape is generated,
it is scaled to fit into a unit cube. Additionally, we manually set the initial dimensions of
the sphere in each category. For the global prior, we make shapes symmetric by generating
the left half of the shape by the neural network and creating the right half by flipping it. For
the local geometry prior, we introduce a regularizer Ls that has several terms. One is to
minimize graph Laplacian of a mesh, which represents approximated mean curvature at each
vertex [103]. The other is angles between two neighboring triangle polygons, which implies
smoothness at each edge. The details of these regularizers are described later.

Texture generation. We assume that the UV-mapping of a texture image and surfaces is
pre-defined and fixed during training. We generate a texture image using a neural network
that has DCGAN [83]-like architecture with residual connections [24]. Instead of generating
a three-channel RGB image, we generate a Nc-channel image by a neural network and
normalize each pixel, so that the sum of the channel values is one. Additionally, a color
palette of Nc colors is generated by another neural network. Then, an RGB image is generated
by mixing the Nc colors according to the Nc-channel image. Though the representation
capability of this reparameterization is the same as the original network when Nc ≥ 3, it
generates few-color images in practice.

Pose generation. We assume that and only azimuth and elevation of viewpoints can be
changed, assuming that the camera is always directed to the center of the object and the
distance to the object is fixed. Additionally, We assume the upward direction of the camera is
also fixed. We randomly sample viewpoints from a manually-designed distribution without
training. The distributions used in experiments are described later.

Background generation. Background images are constrained to horizontal stripes, as
described above. We use a multi-layer neural network that takes a noise vector and outputs
H colors to generate an image of height H.

Rendering. We render an image using a generated shape, pose, texture, and background
with random directional lights. Using lights is essential to express shapes with few-color
textures because shading is an essential cue for understanding shapes. We use a differentiable
renderer proposed in the previous chapter to back-propagate the gradient from the loss
function into generators.

85

Learning with unannotated single-view images

Feature matching and Chamfer distance. We employ two metrics to make close the dis-
tribution of images in a dataset and generated images. The one is feature matching [91], and
the other is Chamfer distance. Let Nb be the number of samples in a minibatch, and f t

i and f g
i

be the image features of i-th training image and i-th randomly generated image in a minibatch,
respectively. The feature matching loss represents the distance between the mean of both
feature sets. It is defined as Lfm =

∣∣∣∑i f t
i

Nb
− ∑i f g

i
Nb

∣∣∣
1
. Regarding f t

i and f g
i as point sets, Chamfer

distance between these sets are defined as Lc =
1

Nb

(
∑i min j

∣∣∣ f t
i − f g

j

∣∣∣+∑i min j

∣∣∣ f g
i − f t

j

∣∣∣).
We use a hyperparameter λm to balance them. The loss for distribution matching is
Lm = (1−λm)Lfm +λmLc.

Post-processing. The variance of polygon sizes should be smaller for proper texture map-
ping. However, a generated common shape may not satisfy it. Therefore, we generate
another mesh using a generated mesh as supervision. The training objective is composed
of the difference between silhouettes, the variance of polygon sizes, and the sum area of
the surfaces. This post-processing significantly reduces the variance of polygon sizes while
maintaining the whole shape.

6.2.2 Training of a full model using a common shape

In the second step, we train the model in Figure 1.6 while limiting generated shapes to
deformations of a category-specific common shape. We use encoder-decoder architectures
for shape, pose, texture, and background estimation. We do not employ the few-color
constraint for textures because using common shapes avoid the fault in the left of Figure 1.7.
Instead, we regularize the total variation [88] of textures to reduce noise. We use the same
background generator in the previous step to prevent the fault in the right of Figure 1.7. We
render images without using directional lights because textures can represent shadings in this
step.

The bottom-right part in Figure 6.1 shows the architecture of this step. In this step, as
described later, we explore better shapes and poses for each image by random perturbation and
record them at each training iteration to avoid local minima. In addition to the components
shown in the figure, we employ view prior learning (VPL) proposed in the previous chapter
to stabilize training. Summarily, the loss function is composed of the following four terms.
(1) Reconstruction loss. We compare input images with reconstructed images using the
recorded shapes, estimated textures, the recorded poses, and estimated backgrounds. We
also use feature matching to improve the reality of reconstructed images. (2) Mean absolute
error between estimated shapes/poses and the recoded shapes/poses during training. (3) Total

86

6.2 Method

variation of estimated texture images. (4) VPL loss. To facilitate an early phase of training, at
the i-th iteration, we select training samples randomly from first to i-th image in the dataset.
This trick makes the model see the same image frequently in an early stage, which simplifies
finding better poses and improve the accuracy of pose estimation.

The details of each component in this step are as follows.

Shape prediction. We deform a category-specific base shape using free-form deforma-
tion [94] similar to several other object reconstruction works [49, 132]. We use a spatial grid
of 4×4×4 vertices, and regress 4×4×4×3 variables that represent the difference between
the original grid and a deformed grid by a neural network. Besides, we use another neural
network to regress the relative height, width, and length of shapes. After deformation, we
scale the estimated shapes to fit a unit cube.

We found in our preliminary experiments that the variation of generated shapes tends
to be very small because exploring various shapes using only a differentiable renderer and
gradient descent is difficult due to local minima. Therefore, we explore and record better
shapes for each input image at each training iteration by random perturbation. Concretely,
we render images using an estimated shape, a recorded shape, a recorded shape with random
perturbation, and random shapes. Then, we compute the reconstruction loss of these images
to find the best shape, and record it as the best shape for the image.

Pose prediction. In this step, we parameterize a 6DoF object/camera pose by the azimuth
and the elevation of a viewpoint, the in-plane rotation of an object, the coordinates of the
center point of the object in the image, and a scale of the object. We regress these six
parameters by a neural network. We adopt the multiple regression method used in [31].

Similarly to shape estimation, we also need to explore better poses by random perturba-
tions to avoid local minima. For each training iteration, for each image, we render images
using an estimated pose, a recorded pose, a recorded pose with random perturbations, and
random poses. We compute reconstruction loss and record a pose that gives minimum
reconstruction error.

Photometric per-instance fine-tuning. In inference, we slightly adjust the outputs by
neural networks by minimizing the reconstruction loss. Zuffi et al. [140] also employed
a similar technique. This is possible because we can compute the loss without silhouette
annotations. We successively optimize the estimated background, pose, and shape. We do
not optimize texture to avoid copying the input.

87

Learning with unannotated single-view images

Dataset Category Elevation Azimuth
CIFAR-10, PASCAL car Uniform (0, 30) Uniform(0,360)
CIFAR-10 horse Uniform (-10, 10) Beta(1.5,1.5)∗180
PASCAL aeroplane Uniform (-60, 60) Beta(1.5,1.5)∗180
PASCAL chair Uniform (0, 30) Uniform(0,360)

Table 6.2 Predefined distribution of viewpoints. When azimuth is zero, the camera is located
in front of the object.

Dataset Category Width Height Length
CIFAR-10, PASCAL car 0.5 0.5 1.0
CIFAR-10 horse 1.0 1.0 1.0
PASCAL aeroplane 1.0 0.5 1.0
PASCAL chair 1.0 1.0 1.0

Table 6.3 Initial dimensions in common shape learning.

6.3 Implementation details

6.3.1 Learning a category-specific common shape

We explain the details of the top part of Figure 6.1 in this section. The inputs are training
images and the distributions of random noises and random viewpoints. We train neural
networks for shape, texture, and background generation. The loss function has two terms.
The one is to match distributions of training and generated images. The other is to regularize
the surfaces of shapes.

Input image. In both CIFAR-10 and PASCAL experiments, we extract images that belong
to the target category from the datasets for training. The range of pixels is normalized to
{−1,1}. In the PASCAL experiments, we crop object regions using the provided bounding
boxes so that the height and width of a bonding box is 80% of the image and resize them to
224×224. In the CIFAR-10 experiments, we take random crops from images padded by two
pixels on each side for data augmentation.

Distributions of random noises and viewpoints. The random noises have 128 dimensions
and follow the standard Gaussian distribution. Table 6.2 shows the distributions of viewpoints
in each object category.

88

6.3 Implementation details

Input
(128)

128 × 4 × 4
Linear, ReLU, reshape

128 × 128 × 128
ResBlock × 5, ReLU

Color map
(Nc × 128 × 128)

Conv3, softmax

Color palette
(Nc × 3)

Linear, tanh

Nc × 3 × 128 × 128 Nc × 3 × 128 × 128
Tile Tile

Texture image
(3 × 128 × 128)

Multiply, sum

128 × H × W

128 × 2H × 2W

128 × H × W

128 × 2H × 2W

ReLU, Conv3

128 × 2H × 2W

Unpooling

ReLU, Conv3Unpooling

128 × 2H × 2W
Add

Texture generation (first step) ResBlock

Input
(128)

128 × 4 × 4
Linear, ReLU, reshape

128 × 128 × 128
ResBlock × 5, ReLU

3 × 128 × 128
Conv3

3
Linear

3 × 128 × 128
Tile

Texture image
(3 × 128 × 128)

Add, tanh

Texture generation (second step)

1024

1024
Linear, ReLU

Linear, ReLU

Figure 6.2 The architectures of our texture generation / estimation networks.

Input
(128)

4096
Linear, ReLU

4096
Linear, ReLU

Stripe colors
(3 × H)

Linear

Base color
(3)

3 × H × W 3 × H × W
Tile Tile

Background image
(3 × H × W)

Add, tanh

Background generation

4096

4096

Linear, ReLU

Linear, ReLU

Linear

Figure 6.3 The architecture of our background generation / estimation network.

Shape generation. We move the vertices of an icosphere with 642 vertices to generate a
shape. We manually give a rough aspect ratio of an object by setting the initial dimensions
of the sphere. Table 6.3 shows the parameters. The shape generation network has three
fully-connected layers that takes 128-dimensional vector and outputs 642×3 variables. We
set the numbers of neurons in two hidden layers to 4096 and use ReLU activation function.

Texture generation. The left of Figure 6.2 illustrates the network architecture to generate
a texture image that has Nc colors. We set the size of a texture image to 128×128.

Background generation. Figure 6.3 illustrates the network architecture of a background
generator.

Distribution matching loss. The distribution matching loss Lm is composed of feature
matching loss Lfm [91] and the Chamfer distance Lc. Though we described Lfm and Lc in
the case that image features f t

i and f g
i are vectors in Section 6.2.1, we actually use multi-scale

feature maps in the CIFAR-10 and PASCAL experiments. We assume that the i-th image in

89

Learning with unannotated single-view images

a minibatch has L feature maps and the size of l-th feature map fil is Hl ×Wl . With these
notations, we define the distance of two feature maps fi, f j as

D(fi, f j) =
L

∑
l=1

1
HlWl

Hl

∑
y=1

Wl

∑
x=1

∣∣ filxy − f jlxy
∣∣
1 . (6.1)

Using this distance, we define the feature matching loss and Chamfer distance as

Lfm(f t , f g) = D(
Nb

∑
i=1

f t
i

Nb
,

Nb

∑
i=1

f g
i

Nb
) (6.2)

Lc(f t , f g) =
1

Nb
(

Nb

∑
i=1

min
i

D(f t
i , f g

i)+
Nb

∑
i=1

min
j

D(f g
i , f t

i)). (6.3)

We introduce a hyper parameter λm to balance these two functions.

Lm = λmLc +(1−λm)Lfm. (6.4)

We set λm to {0.9,0.3,0.3,0.9,0.8} for {CIFAR-10 car, CIFAR-10 horse, PASCAL aero-
plane, PASCAL car, and PASCAL chair}. The feature maps need to have features that
capture shapes of a target object to make the distribution matching loss meaningful. There-
fore, the networks for feature extraction have to be trained to be aware of the target category.
As feature maps, we use layers right before three sub-sampling operations of WRN-16-4 pre-
trained using CIFAR-10 dataset in the CIFAR-10 experiments. In the PASCAL experiments,
we use layers after the five convolution operations of AlexNet pre-trained using ImageNet2.

Regularization of surfaces. We introduce a regularization term Ls to make smooth sur-
faces. Specifically, we minimize the graph Laplacian of a mesh, which represents approx-
imated mean curvature at each vertex [103], and angles between two neighboring triangle
polygons, which implies smoothness at each edge. For a mesh of Nv vertices, let L ∈ RNv×Nv

be a Laplacian matrix of vertices v ∈RNv×3 and let tl ∈R+ be a hyper parameter that controls
tolerance. We minimize

Lg1 = max((∑
i
∥Liv∥1

2)− tl,0)2, (6.5)

Lg2 = ∑
i
∥Liv∥2

2. (6.6)

2ImageNet contains several object categories that relate to airplanes, cars, and chairs.

90

6.3 Implementation details

Similarly, let θi, j be the angle between normal vectors of two neighboring triangle polygons
fi and f j and let ta ∈ R+ be a hyper parameter, we minimize

La1 = max(∥∑
i, j

θi, j∥− ta,0)2. (6.7)

La2 = ∑
i, j

θ
2
i, j. (6.8)

The regularization term Ls is a weighted sum of these terms using hyperparameters λg1 ,λg2,λa1,λa2 .

Ls = λg1Lg1 +λg2Lg2 +λa1La1 +λa2La2. (6.9)

The hyperparameters (λg1 , λg2 , λa1 , λa2 , tl , ta) are set to {(0, 0.3, 0.1, 0, 0, 2.0), (0.02, 0.2,
0.5, 0, 2.0, 5.0), (0, 0.3, 0, 0, 0, 0), (0, 0.3, 0.1, 0.1, 0.1, 2.0), (1.0, 0, 0.1, 0, 4.0, 3.0)} for
{CIFAR-10 car, CIFAR-10 horse, PASCAL aeroplane, PASCAL car, PASCAL chair}.

Optimization. The loss function is the sum of Lm and Ls. We used Adam optimizer
with α = 0.0001, β1 = 0.5, and β2 = 0.99 for optimization in all experiments. The batch
size is set to 64, and the number of training iterations is set to {1200,300,200,800,200}
for {CIFAR-10 car, CIFAR-10 horse, PASCAL aeroplane, PASCAL car, PASCAL chair},
respectively.

6.3.2 Training of a full model using a common shape

The bottom-right part of Figure 6.1 illustrates the system in this step. The inputs are training
images and a common shape of the category obtained in the previous step. We train neural
networks for shape, texture, background, and camera pose prediction. We use encoder-
decoder architectures for these networks. As encoders, we use WRN-16-4 in the CIFAR-10
experiments and ResNet-18 in the PASCAL experiments without pre-training. We set the
dimension of embedding to 128.

Input image. We use the same images used in the previous step except for data augmen-
tation. We do not use data augmentation in the CIFAR-10 experiments. In the PASCAL
experiments, we apply small random translations of images when we input them to the neural
networks as with [107].

Shape estimation. To predict a shape from an image, we deform a common shape using
free-form deformation [94]. At first, we define a 4×4×4 grid that envelops the common

91

Learning with unannotated single-view images

shape. Then, we regress the displacements of 4×4×4 grid points by neural networks. Let
NNg be a three-layer neural network that takes a latent vector and outputs 4× 4× 4× 3
variables that represent the displacements of each grid point. Besides, we use another network
NNs that outputs three variables that represent the scaling along the x-axis, y-axis, and z-axis.
With these notations, we define the displacement of each grid point as

gxyz = NNg(h)xyzNNs(h). (6.10)

The difference between two shapes can be measured by

Lshape(g, ĝ) = ∑
x,y,z

∣∣gxyz − ĝxyz
∣∣
1 . (6.11)

Texture estimation. The middle part of Figure 6.2 illustrates the network architecture for
texture estimation. We do not use the few-color constraint for textures in this step.

Background estimation. We use the same background decoder used in the previous step.

Camera pose estimation. A camera/object pose has seven parameters in our implementa-
tion: an elevation and azimuth angle of a viewpoint, an in-plane rotation angle, the size and
center point of the 2D bounding box of an object in an image. We use a three-layer neural
network that outputs these parameters.

Loss functions. For i-th training image xin
i in a minibatch, let sp

i ,s
r
i , ti,bi, pp

i , pr
i be a shape

predicted by neural networks, a shape recorded during training, a predicted texture image, a
predicted background image, a predicted pose, and a recorded pose, respectively. We render
the following four images.

xpred
i = render(sr

i , ti,bi, pr
i). (6.12)

xrec
i = render(sp

i , ti,bi, pp
i). (6.13)

xreal
i = render(sr

i , ti,bi, pr
i). (6.14)

xfake
i = render(sr

i , t j,bi, pr
i). (6.15)

92

6.3 Implementation details

Also, we extract features from three images.

f in
i = extract(xin

i). (6.16)

f pred
i = extract(xpred

i). (6.17)

f rec
i = extract(xrec

i). (6.18)

To measure the accuracy of image reconstruction, we define the reconstruction loss Lrec and
feature matching loss Lfm as follows.

Lrec =
1

Nb

(
∑

i
D(f in

i , f rec
i)+D(f in

i , f pred
i)

)
. (6.19)

Lfm = D(
Nb

∑
i=1

f in
i

Nb
,

Nb

∑
i=1

f rec
i
Nb

). (6.20)

We use the total variation loss Ltv for denoising texture images. Let tiuv be the color at uv
coordinates of i-th texture image. We define the loss as

Ltv =
1

Nb
∑

i
(

1
(Ht −1)Wt

Ht−1

∑
u=1

Wt

∑
v=1

∣∣tiuv − ti(u+1)v
∣∣+

1
Ht(Wt −1)

Ht

∑
u=1

Wt−1

∑
v=1

∣∣tiuv − tiu(v+1)
∣∣) . (6.21)

In addition, to make the shape and pose prediction close to the shapes and poses explored
and recorded by random exploration during training iterations, we use the following loss
functions.

Lr =
1

Nb
∑

i

(
Lshape(s

p
i ,s

r
i)+Lpose(pp

i , pr
i)
)
. (6.22)

Also, we use a loss function of view prior learning proposed in the previous chapter. Using a
discriminator, the loss is defined as

Lv =
1

Nb
∑

i
− log(dis(xr

i))− log(1−dis(x f
i)). (6.23)

The loss function to be minimized is

L = Lrec +λfmLfm +λtvLtv +Lr +λvLv. (6.24)

93

Learning with unannotated single-view images

(a) all (b) w/o
SM

(c) w/o SY (d) w/o TS (e) w/o BS

Figure 6.4 Category-specific common shapes on CIFAR-10 dataset generated (a) with all
proposed constrains, (b) without the smoothness regularization, (c) without the symmetricity
constraint (d) without the texture simplicity constraint, and (e) without the background
simplicity constraint. These images are rendered in 256×256 resolution with upsampled
background images.

We set {λfm,λtv,λv} to {(0.4, 0.2, 0.01), (0.4, 1, 1), (0.4, 0.1, 1), (0.4, 0.1, 1), (0.4, 0.1, 1)}
for {CIFAR-10 car, CIFAR-10 horse, PASCAL aeroplane, PASCAL car, PASCAL chair}.

Optimization. We use Adam optimizer with the same parameter as the previous step for
optimization. The number of iterations is set to 10000 in all categories.

6.4 Experiments

6.4.1 CIFAR-10

We mainly tested our method on the CIFAR-10 dataset [46] because it is composed of natural
images and contains thousands of images per object category. We focused on car and horse
classes among ten object categories, because car is an artificial and rigid object and one of
the most commonly used categories on the synthetic ShapeNet dataset [7] and horse is a
deformable natural object and it is not contained in ShapeNet. We trained WRN-16-4 [133]
on the CIFAR-10 training set for feature extraction. We used three layers right before
sub-sampling as feature maps.

Common shape learning

At first, we evaluate the first step described in Section 6.2.1. We set the number of colors of
car texture to four, and that of horse to one. We trained 10 models for each category using
different random seed and selected the best-looking one. Figure 6.4 (a) shows generated

94

6.4 Experiments

(a)

(b)

(c)

(d)

Figure 6.5 Representative results of 3D shape, pose, texture, and background estimation on
CIFAR-10 test set. To understand the shapes and textures better, images are rendered at a
higher resolution with upsampled backgrounds. Since the input images (a) are explicitly
disentangled into 3D object elements, objects can be rendered from another viewpoint (d).
Randomly selected results are in the appendix.

common shapes by our proposed method using different random noise. The generated shapes,
textures, and backgrounds look plausible. Particularly, the horse correctly has four legs, and
the car has four tires on the texture. The bright and dark regions in the background of car
represent the sky and roads, and the background of horse shows grasses. This result indicates
that the generators work properly.

Figure 6.4 (b–e) shows ablation study. (b) When the regularization of shape smoothness
is removed, thin lines are generated to represent edges, which results in unrealistic shapes.
(c) The shape symmetricity constraint seems unimportant for car, but it helps to generate
legs on horse regularly. (d) Even when the texture simplicity constraint is removed, the
texture does not represent the whole scene as in the left of Figure 1.7 because of constraints
on shapes. However, the texture of horse contains the colors of horses and grasses, that
results in the incorrect shape. (e) When the background simplicity constraint is not used, the

95

Learning with unannotated single-view images

(a) Input (b) w/ C (c) w/ C (d) w/o C (e) w/o C

Figure 6.6 Training without our proposed two-stage training with and without proposed
constraints (C). (b, d) is rendered using estimated viewpoints, and (c, e) is rendered using
other viewpoints. (b–c) and (d–e) correspond to the left and right of Figure 1.7 respectively.
These results confirm the importance of training shapes explicitly.

background generator tries to represent shapes, especially in horse . These results indicate
introducing our prior knowledge about 3D scenes into a model is essential in self-supervised
shape learning, and all of the proposed constraints and regularization are indispensable.

Full training using common shapes

Secondly, we evaluate the second step using the common shapes obtained in the previous
step. Figure 6.5 shows representative results on the test set. (a–b) The result of reconstruction
demonstrates that ours can reconstruct images that look similar to input images. (c) Estimated
shapes, poses, and backgrounds can be further improved by photometric reconstruction loss
and gradient descent. (d) Rendered images from other viewpoints show that these objects
have correct 3D shapes, and the shapes are different according to the input images.

Effectiveness of two-stage training

One of the most important techniques of our method is to separate training into two stages.
To validate its effectiveness, we trained our models in a single stage. Figure 6.6 shows the
reconstruction results by the learned models. When all the constraints except for the texture
simplicity are used, the textures represent edges of shapes, which results in incorrect shapes
(b–c). When these constraints are not used, the reconstructed images look the same from any
viewpoint because the background estimator copies input images (d–e). Apparently, neither
model understands these 3D scenes correctly. These results correspond to the left and right
of Figure 1.7 respectively.

96

6.4 Experiments

(a) Ours (common shape)

(b) Ours (full model)

(c) HoloGAN on CIFAR-10

Figure 6.7 Comparison of ours with HoloGAN on CIFAR-10. Images at the same column
are rendered by roughly the same viewpoints.

Figure 6.8 Generated common shapes of aeroplane, car, and chair on PASCAL dataset.

Comparison with existing works

To the best of our knowledge, this is the first work to learn single-view 3D object reconstruc-
tion from natural image collections without supervision. Therefore, we cannot conduct fair
comparison between our work and existing works. One related approach would be structure-
from-motion. Therefore, we tested COLMAP [92, 93] on CIFAR-10, however, it failed to
reconstruct a shape because it cannot find initial corresponding image pairs. HoloGAN [71]
learns a generative model of images with implicit but manipulable 3D representation from
natural images though it is slightly different from 3D reconstruction. Figure 6.7 shows
comparison of ours with HoloGAN trained on CIFAR-10. While the shapes produced by our
method are consistent from multiple viewpoints, the shapes produced by HoloGAN are not.
This result indicates the importance of having explicit 3D representations.

97

Learning with unannotated single-view images

(a)

(b)

(c)

(d)

(e)

Figure 6.9 Representative results of 3D shape, pose, texture, and background estimation on
PASCAL validation set, and comparison of them with results by other methods. (a) Input
images. (b) Reconstructed images by our method. Rendered using estimated viewpoints.
(c) Reconstructed images by our method using another viewpoint. (d) Shape and texture
estimation in the previous Chapter. (e) Shape estimation by Tulsiani et al. [107]. Randomly
sampled results of ours are in the appendix.

6.4.2 PASCAL

We also evaluated our method on PASCAL dataset preprocessed by Tulsiani et al. [107].
This dataset contains three object categories, aeroplane, car, and chair. It is composed of
images from PASCAL VOC [12] and ImageNet [10]. Shape, silhouette, and pose annotations
are provided for PASCAL images by PASCAL 3D+ [123]. Object regions were cropped
using bounding boxes and resized to the same size. We do not use these annotations except

98

6.4 Experiments

#training stages Regularization
Shape Viewpoint

aero car chair aero car chair

single w/o all .245 .326 .180 .152 .167 .172
single all .114 .434 .150 .180 .487 .302

two w/o smoothness .271 .429 .223 .192 .646 .767
two w/o symmetricity .268 .442 .219 .200 .764 .535
two w/o texture simplicity .307 .534 .238 .231 .681 .786
two w/o background simplicity .297 .380 .217 .181 .502 .279
two all .302 .604 .235 .242 .781 .654

Table 6.4 Accuracy of shape and viewpoint estimation on PASCAL 3D+ dataset. These
numbers indicate that (1) our proposed two-stage training significantly improves the accuracy
of both tasks, and (2) all of the proposed four regularizations/constrains is effective on at
least one object category.

Method Silhouettes & viewpoints aero car chair

CSDM [38] annotated .398 .600 .291
DRC [107] annotated .415 .666 .247
CMR [36] annotated .46 .64 n/a
Chapter 5 annotated .472 .689 .303
Chapter 5 estimated by ours .302 .604 .235

Table 6.5 Comparison of shape reconstruction accuracy with existing methods that require
additional silhouette and viewpoint annotations for training. Though the accuracy of ours is
lower than other recent works because of the difficulty of the task, the performance drop is
not quite significant for car and chairs.

for evaluation. We used ResNet-18 architecture as encoders, and the same decoders as the
CIFAR-10 experiments. We used five layers after the convolution operation of pre-trained
AlexNet [47] as image features. Though this feature extractor requires additional supervision
by ImageNet, this would be replaceable by any self-supervised representation learning
methods. Since input images were cropped and resized using bounding boxes, we also
cropped and resized rendered images. This reduces the degree of freedom of poses from six
to three.

Figure 6.8 shows obtained category-specific common shapes by the first training step.
Though they are not very beautiful, we can see that our method produces reasonable shapes on
this dataset. Figure 6.9 shows several results of single-view reconstruction on the validation
set by second training step. These results demonstrate that our proposed method works

99

Learning with unannotated single-view images

properly on PASCAL dataset. Though our shapes are rough and simple, the quality of ours
is competitive with other recent methods because learning shapes from natural images is a
very challenging task. Our estimated textures are more accurate than these in Chapter 5, and
our estimated shapes are not very different from these by Tulsiani et al. [107]. Though the
variation of our shapes is smaller than others, the variety of shapes by other methods does
not always correctly reflect the input images (e.g. aeroplane in row (e)).

Because the images we used are resized to square using bounding boxes, our method
cannot estimate an aspect ratio of an object correctly. Therefore, we cannot use annotated
shapes for evaluation as is. Instead, we use the reconstruction accuracy of VPL with
silhouettes and poses estimated by our method to evaluate the effectiveness of our proposed
method quantitatively. We used foreground masks of reconstructed images as silhouette
images. Additionally, we made the boundary of objects sharper using CRF [45]. Table 6.4
shows pose estimation accuracy on the training set and shape estimation accuracy on the
validation set. Shape reconstruction accuracy is measured by intersection over union between
ground truth and estimated shapes, and viewpoint estimation accuracy is measured by the
π

6 score used in [106]. The significant difference in accuracy between single-stage training
and our two-stage training indicates that our proposal to focus on shapes first is essential for
this task. Introducing regularization in single-step training improves viewpoint estimation
because it prevents shapes from shrinking. However, this does not help shape estimation.
When smoothness regularization is not used in two-stage training, both shape estimation
and viewpoint estimation accuracy decrease except for viewpoints of chair. This means that
understanding poses is sometimes easier from sharp objects, however, it hurts the accuracy of
silhouette and shape estimation. The simplicity of textures is effective only for car because
separating foregrounds are relatively easy in other categories. The symmetricity constraint
of shapes and simplicity constraint of backgrounds is confirmed to be effective in all cases.
Table 6.5 provides quantitative comparison of our self-supervised shape reconstruction
method with state-of-the-art methods on PASCAL dataset that use silhouette and viewpoint
supervision. Though ours are not better as is expected, the performance gap between ours
and other methods are not so huge except for aeroplane.

6.4.3 Discussion

Though we believe that this work is an important step toward 3D understanding with self-
supervision, the accuracy of our method is not very high as the task is very challenging. In
this section, we list our observations in the experiments and possible solutions. Please see
the appendix for more qualitative results.

100

6.4 Experiments

Figure 6.10 Randomly selected images in our training dataset. From top to bottom: CIFAR-10
car, CIFAR-10 horse, PASCAL aeroplane, PASCAL car, and PASCAL chair.

• Our method is not very good at reconstruction of small details (cf. legs of horses) and
estimation of poses in ambiguity (cf. aeroplane). Also, the intra-class variance of
generated shapes is small. One reason is that the reconstruction loss using pre-trained
image features does not always capture category-specific fine-grained features. A
reliable measure of image reconstruction is quite essential in self-supervised learning
based on render-and-compare loss because reconstruction loss is the only supervision.
Incorporating unsupervised learning of keypoints [99] would alleviate this problem.

• We introduced three assumptions in the introduction section. Though they hold in car,
horse, chair, and aeroplane categories, our proposed method does not work well in
cat and dog on CIFAR-10 because the deformation of shapes is relatively large. One
possible way to learn large deformation would be using videos for training.

• We used manually-designed pose distributions in the common shape learning. However,
designing them is not straightforward in some categories. For example, the viewpoint
distribution of horse images are far from uniform because there are many photos of
zoom up of heads, but fewer photos of tails. How to deal with biased distributions
would be an important and interesting problem.

Training data

Figure 6.10 shows randomly selected training samples from our experiments. Different
from commonly used datasets such as ShapeNet, foregrounds and backgrounds are not
separated, viewpoints are unknown, objects have various shapes and sizes, and they locate
and rotate freely. Though learning about 3D from these datasets is very challenging due to

101

Learning with unannotated single-view images

(a) Ours

(b) HoloGAN

Figure 6.11 Comparison of ours with HoloGAN on PASCAL dataset. Images are rendered at
50 degree intervals.

these characteristics, we think that trying this is a necessary step toward fundamental 3D
understanding in machines.

Comparison with HoloGAN on PASCAL

We showed comparison between ours and HoloGAN on CIFAR-10 in Figure 6.7. For this
comparison, we used codes provided by the authors. Specifically, we used default settings
for CelebA dataset except for elevation and azimuth, which are set to the values for the cars
included in the thesis. In addition, we show comparison on PASCAL dataset in Figure 6.11.
Though images generated by HoloGAN are improved, they still lack consistency from
multiple viewpoints. Especially, this method seems not good at generating front images of
cars.

Randomly selected results

In Figure 6.5 and Figure 6.9, selected results on CIFAR-10 and PASCAL datasets are shown.
For further qualitative evaluation, randomly selected results are shown in Figure 6.12 to
Figure 6.21. Input images are shown in the top rows, reconstructed images using estimated
shapes, poses, textures, and backgrounds are shown in the middle rows, and reconstructed
images using a fixed viewpoint are shown in the bottom rows. For training set, the best shapes
and viewpoints found during training are used, and for validation set, predicted shapes and
viewpoints by the shape estimator and viewpoint estimator are used. Photometric fine-tuning
are used for only validation set.

102

6.5 Summary

Figure 6.12 Randomly selected results on CIFAR-10 car training set.

6.5 Summary

This chapter presented a method to learn single-view reconstruction of the 3D shape, pose,
and texture of objects from categorized natural images in a self-supervised manner. This
work is the first to achieve learning 3D object reconstruction from unannotated images.
The two main techniques were two-stage training to focus on shapes, and inducting strong
regularization and constraints to the surface of shapes and background images. Results of
experiments on CIFAR-10 and PASCAL confirm the importance of our proposed techniques.
Besides, we summarized observations and possible research directions.

103

Learning with unannotated single-view images

Figure 6.13 Randomly selected results on CIFAR-10 car validation set.

Figure 6.14 Randomly selected results on CIFAR-10 horse training set.

104

6.5 Summary

Figure 6.15 Randomly selected results on CIFAR-10 horse validation set.

Figure 6.16 Randomly selected results on PASCAL aeroplane training set.

105

Learning with unannotated single-view images

Figure 6.17 Randomly selected results on PASCAL aeroplane validation set.

Figure 6.18 Randomly selected results on PASCAL car training set.

106

6.5 Summary

Figure 6.19 Randomly selected results on PASCAL car validation set.

Figure 6.20 Randomly selected results on PASCAL chair training set.

107

Learning with unannotated single-view images

Figure 6.21 Randomly selected results on PASCAL chair validation set.

108

Chapter 7

Conclusion

Understanding the 3D structure of objects from an image is essential in computer vision for
its broad applications in robotics, augmented reality, autonomous driving, and 3D designing.
To enable single-view 3D object reconstruction in various object categories beyond ShapeNet
dataset, we think that leveraging 2D images for training instead of employing 3D objects
is a promising direction because we can access a massive amount of 2D visual data on the
Internet. With this spirit, we developed several techniques for different dataset settings.

What we want to get is 3D, but what we have for training is 2D. Therefore, we must
have something to bridge 3D world space and 2D image space. Rendering is a technique to
translate 3D models into 2D images, but it is one-way street. To make it a bridge, we need
inverse of rendering. We realize it by defining derivative of a rendering function. Also, since
most modern computer vision methods are described by the language of neural networks,
a compatibility with them is important. Also, to represent rich 3D models compactly, we
have to use mesh as a 3D representation. In Chapter 3, we proposed a differentiable mesh
rendering method for neural networks to realize end-to-end training of neural networks that
include rendering functions. While some related renderers [8, 54] provide gradients by
blurring output images, the proposed renderer was showed to provide reasonable gradients
without affecting image quality. In addition, we found that using the gradient of a loss
function to be optimized can improve the quality of gradients. These findings would be
useful for designing more sophisticated differentiable rasterization functions.

When developing a robot that grasps a specific object, we have the physical object in most
cases. In such a case, collecting multi-view images of the objects, camera parameters, and
silhouette annotations are relatively easy with a calibrated 3D scanning system. In Chapter 4,
we applied the proposed renderer to learning 3D object reconstruction from multi-view
images with silhouette and camera parameter annotations. We demonstrated that the renderer

109

Conclusion

is useful for learning with neural networks. We found that using meshes is better than using
voxels in learning from images.

Learning 3D object reconstruction is to have knowledge of typical 3D shapes and their
variations. By learning only from image reconstruction, correct knowledge may not be
obtained because there are strange shapes that reconstruct images accurately. This issue is
serious when the number of views per image is a few or one. We need additional criteria
about correctness of 3D shapes. In Chapter 5, we proposed to learn the validity of views of
reconstructed objects to overcome 3D shape ambiguity in images. We significantly improved
3D reconstruction accuracy with our proposed method, especially when the number of views
for training is small. We think that learning only from reconstruction is not enough in general,
and having other criteria that inform machines about 3D scenes is important.

Learning from images without any additional annotations is very low cost. To have 3D
reconstruction models for everything around us, this learning scheme would be required.
In Chapter 6, we proposed the first method for learning 3D object reconstruction from
only images. We demonstrated that ours can learn 3D geometry on challenging CIFAR-10
and PASCAL datasets. We found that introducing a two-step training method and several
heuristic constraints is useful to overcome the ill-posed reconstruction problem. We also had
discussion on difficult cases and how they could be overcome. We introduced assumptions
(or priors) of geometry, lighting, appearance on object surfaces and background. In some
object categories, our assumptions do not hold.

One common principle in these developments is to introduce our structural knowledge
into neural networks. 2D images are generated from 3D models, and the way of 3D-to-2D
conversion is well known. We leverage it for weakly-supervised learning of 3D reconstruction
with 2D image supervision in Chapter 3 and Chapter 4. A 3D shape can be looked at from
multiple viewpoints, and all views have to be proper if the shape is correct. This knowledge
improved accuracy of 3D reconstruction in Chapter 5. When supervision is very limited,
we have to design a training method and constraints carefully with our knowledge about
3D scenes, as shown in Chapter 6. An images is 2D array of pixels, though the world
that produced the image is originally in 3D space. The recent popular image recognition
methods [47] and image generation methods [17] process images in the 2D space and ignore
that fact that the world is 3D. Ours is on the opposite. Though our work presented here is
limited in 3D reconstruction, using 3D inductive bias would be beneficial for other tasks in
computer vision.

Since our method can estimate the rough 3D shapes of objects such as tables and chairs,
it would be useful for AR applications and simple obstacle avoidance for robots. When
it is improved further in the future, it will be used for robot grasping and assistance for

110

3D designing. Currently, the object category to handle is limited to thirteen classes in
ShapeNet and other ones of simple shapes. One bottleneck is in the shape generation method.
We create shapes by deforming a pre-defined sphere, which limits the topology of objects.
Recently, several methods to overcome this issue has been developed in the context of 3D
supervision [69, 75]. Integrating them with our view-based training would be a promising
direction. Another issue is learning of complicated shapes from unannotated natural images.
This is because the priors we designed are for generating simple 3D scenes. Instead, learning
sophisticated priors from data would be required for object categories of complex shapes.
Learning 3D shape priors in some object categories [3, 21, 118] and transferring the prior
by leveraging the knowledge of generalization of 3D object reconstruction for unseen
classes [96, 137] is a possible direction.

Applications of differentiable rendering are not limited to single-view 3D object recon-
struction. In computer vision, many problems are solved by modeling and inverting an
image generation process. Images are generated via rendering from the 3D world, and a
polygon mesh is an efficient, rich and intuitive 3D representation. Therefore, “backward
pass” of mesh renderers is important. After releasing the code of our renderer, it has been
applied to human pose estimation [33, 56, 110, 125], face reconstruction [90, 119, 138],
hand pose estimation [4, 136, 139], 3D animal reconstruction [140], object pose estima-
tion [98, 116], object tracking [104], correspondence estimation [48, 131], finding 3D
adversarial examples [1, 22, 120, 124], depth estimation [37], image manipulation [129],
image segmentation [20], cartoon character generation [79], and scene generation [59], in ad-
dition to single-view object reconstruction [14, 36, 77, 122]. Besides ours and OpenDR [57],
newer differentiable rendering methods are emerging [8, 53, 54, 58, 135]. We would like to
see this research field grow more.

Toward single-view 3D object reconstruction of various object categories, we developed
several essential components in this thesis. We hope that our work will lead to the achievement
of this goal.

111

References

[1] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and
Anh Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses
of familiar objects. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[2] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. In International Conference on Learning Representations
(ICLR), 2017.

[3] Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen. Meshlet priors for 3d
mesh reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[4] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Pushing the envelope for rgb-
based dense 3d hand pose estimation via neural rendering. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[5] Jonathan T Barron and Jitendra Malik. Shape, illumination, and reflectance from
shading. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
37(8):1670–1687, 2014.

[6] Harry Barrow, J Tenenbaum, A Hanson, and E Riseman. Recovering intrinsic scene
characteristics. 1978.

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv, 2015.

[8] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[9] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In
European Conference on Computer Vision (ECCV), 2016.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

113

References

[11] Vincent Dumoulin, Jonathon Shlens, Manjunath Kudlur, Arash Behboodi, Filip Lemic,
Adam Wolisz, Marco Molinaro, Christoph Hirche, Masahito Hayashi, Emilio Bagan,
et al. A learned representation for artistic style. In International Conference on
Learning Representations (ICLR), 2017.

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International Journal of
Computer Vision (IJCV), 88(2):303–338, 2010.

[13] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation network for 3d
object reconstruction from a single image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[14] Qiaojun Feng, Yue Meng, Mo Shan, and Nikolay Atanasov. Localization and mapping
using instance-specific mesh models. In International Conference on Intelligent
Robots and Systems (IROS), 2019.

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. Journal of Machine Learning Research (JMLR), 17(59):
1–35, 2016.

[16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems (NeurIPS), 2014.

[18] Roger Grosse, Micah K Johnson, Edward H Adelson, and William T Freeman. Ground
truth dataset and baseline evaluations for intrinsic image algorithms. In International
Conference on Computer Vision (ICCV), 2009.

[19] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu
Aubry. Atlasnet: A papier-mache approach to learning 3d surface generation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[20] Shir Gur, Tal Shaharabany, and Lior Wolf. End to end trainable active contours via
differentiable rendering. In International Conference on Learning Representations
(ICLR), 2020.

[21] JunYoung Gwak, Christopher B Choy, Manmohan Chandraker, Animesh Garg, and
Silvio Savarese. Weakly supervised 3d reconstruction with adversarial constraint. In
International Conference on 3D Vision (3DV), 2017.

[22] Abdullah Hamdi and Bernard Ghanem. Towards analyzing semantic robustness of
deep neural networks. In International Conference on Computer Vision Workshop on
Explaining Visual Artificial Intelligence Models, 2019.

114

References

[23] Christian Hane, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 42(6):
1348–1361, 2019.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[25] Paul Henderson and Vittorio Ferrari. Learning single-image 3d reconstruction by
generative modelling of shape, pose and shading. International Journal of Computer
Vision (IJCV), 128(4):835–854, 2019.

[26] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escaping plato’s cave using
adversarial training: 3d shape from unstructured 2d image collections. In International
Conference on Computer Vision (ICCV), 2019.

[27] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping plato’s cave: 3d shape
from adversarial rendering. In International Conference on Computer Vision (ICCV),
2019.

[28] Berthold KP Horn. Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view. Technical report, Massachusetts Institute of Technology,
1970.

[29] Berthold KP Horn. Determining lightness from an image. Computer graphics and
image processing, 3(4):277–299, 1974.

[30] Katsushi Ikeuchi and Berthold KP Horn. Numerical shape from shading and occluding
boundaries. Artificial intelligence, 17(1-3):141–184, 1981.

[31] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised learning of shape and
pose with differentiable point clouds. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[32] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning (ICML), 2015.

[33] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang Liu, and Hujun Bao.
Bcnet: Learning body and cloth shape from a single image. In European Conference
on Computer Vision (ECCV), 2020.

[34] Li Jiang, Shaoshuai Shi, Xiaojuan Qi, and Jiaya Jia. Gal: Geometric adversarial loss
for single-view 3d-object reconstruction. In European Conference on Computer Vision
(ECCV), 2018.

[35] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In European Conference on Computer Vision (ECCV),
2016.

115

References

[36] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning
category-specific mesh reconstruction from image collections. In European Confer-
ence on Computer Vision (ECCV), 2018.

[37] Masaya Kaneko, Ken Sakurada, and Kiyoharu Aizawa. Tridepth: Triangular patch-
based deep depth prediction. In International Conference on Computer Vision Work-
shop on Deep Learning for Visual SLAM, 2019.

[38] Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. Category-specific
object reconstruction from a single image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[39] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo
machine. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[40] Hiroharu Kato and Tatsuya Harada. Learning view priors for single-view 3d recon-
struction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[41] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[42] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim
Kehl, and Adrien Gaidon. Differentiable rendering: A survey. arXiv, 2020.

[43] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015.

[44] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models. In International Conference on Computer Vision
(ICCV), 2017.

[45] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs
with gaussian edge potentials. In Advances in Neural Information Processing Systems
(NeurIPS), 2011.

[46] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2012.

[48] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani. Canonical surface mapping
via geometric cycle consistency. In International Conference on Computer Vision
(ICCV), 2019.

[49] Andrey Kurenkov, Jingwei Ji, Animesh Garg, Viraj Mehta, JunYoung Gwak, Christo-
pher Choy, and Silvio Savarese. Deformnet: Free-form deformation network for 3d
shape reconstruction from a single image. In Winter Conference on Applications of
Computer Vision (WACV), 2018.

116

References

[50] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving.
International Journal of Computer Vision (IJCV), 38(3):199–218, 2000.

[51] Edwin H Land and John J McCann. Lightness and retinex theory. Journal of the
Optical Society of America (JOSA), 61(1):1–11, 1971.

[52] Ke Li, Bharath Hariharan, and Jitendra Malik. Iterative instance segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[53] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte
carlo ray tracing through edge sampling. ACM Transactions on Graphics (TOG), 37
(6):222:1–222:11, 2018.

[54] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft rasterizer: Differentiable ren-
dering for unsupervised single-view mesh reconstruction. In International Conference
on Computer Vision (ICCV), 2019.

[55] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer implicit
surfaces without 3d supervision. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[56] Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, and Shenghua Gao. Liquid
warping gan: A unified framework for human motion imitation, appearance transfer
and novel view synthesis. In International Conference on Computer Vision (ICCV),
2019.

[57] Matthew M Loper and Michael J Black. Opendr: An approximate differentiable
renderer. In European Conference on Computer Vision (ECCV), 2014.

[58] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. Reparameterizing dis-
continuous integrands for differentiable rendering. ACM Transactions on Graphics
(TOG), 38(6):1–14, 2019.

[59] Andrew Luo, Zhoutong Zhang, Jiajun Wu, and Joshua B Tenenbaum. End-to-end
optimization of scene layout. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[60] Steve Marschner and Peter Shirley. Fundamentals of computer graphics. CRC Press,
2015.

[61] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network
for real-time object recognition. In International Conference on Intelligent Robots
and Systems (IROS), 2015.

[62] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. Occupancy networks: Learning 3d reconstruction in function space. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[63] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In European Conference on Computer Vision (ECCV), 2020.

117

References

[64] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv,
2014.

[65] Takeru Miyato and Masanori Koyama. cgans with projection discriminator. In
International Conference on Learning Representations (ICLR), 2018.

[66] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. In International Conference on
Learning Representations (ICLR), 2018.

[67] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going
deeper into neural networks. Google Research Blog, 2015.

[68] Alexander Mordvintsev, Nicola Pezzotti, Ludwig Schubert, and Chris Olah. Differen-
tiable image parameterizations. Distill, 2018.

[69] Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W Battaglia. Polygen: An au-
toregressive generative model of 3d meshes. In International Conference on Machine
Learning (ICML), 2020.

[70] Shree K Nayar and Yasuo Nakagawa. Shape from focus. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 16(8):824–831, 1994.

[71] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. Hologan: Unsupervised learning of 3d representations from natural images. In
International Conference on Computer Vision (ICCV), 2019.

[72] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Dif-
ferentiable volumetric rendering: Learning implicit 3d representations without 3d
supervision. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[73] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: a
retargetable forward and inverse renderer. ACM Transactions on Graphics (TOG), 38
(6):203:1–203:17, 2019.

[74] Ido Omer and Michael Werman. Color lines: Image specific color representation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004.

[75] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep mesh recon-
struction from single rgb images via topology modification networks. In International
Conference on Computer Vision (ICCV), 2019.

[76] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape repre-
sentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[77] Bo Peng, Wei Wang, Jing Dong, and Tieniu Tan. Learning pose-invariant 3d object
reconstruction from single-view images. arXiv, 2020.

118

References

[78] Alex Paul Pentland. A new sense for depth of field. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 9(4):523–531, 1987.

[79] Omid Poursaeed, Vladimir Kim, Eli Shechtman, Jun Saito, and Serge Belongie. Neural
puppet: Generative layered cartoon characters. In Winter Conference on Applications
of Computer Vision (WACV), 2020.

[80] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[81] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[82] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas Guibas. Volumetric and multi-view cnns for object classification on 3d data.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[83] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In International Conference
on Learning Representations (ICLR), 2016.

[84] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia, Max
Jaderberg, and Nicolas Heess. Unsupervised learning of 3d structure from images. In
Advances in Neural Information Processing Systems (NeurIPS), 2016.

[85] Stephan R Richter and Stefan Roth. Matryoshka networks: Predicting 3d geometry via
nested shape layers. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[86] Gernot Riegler, Ali Osman Ulusoys, and Andreas Geiger. Octnet: Learning deep
3d representations at high resolutions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[87] Carsten Rother, Martin Kiefel, Lumin Zhang, Bernhard Schölkopf, and Peter V Gehler.
Recovering intrinsic images with a global sparsity prior on reflectance. In Advances
in Neural Information Processing Systems (NeurIPS), 2011.

[88] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

[89] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[90] Mihir Sahasrabudhe, Zhixin Shu, Edward Bartrum, Riza Alp Guler, Dimitris Samaras,
and Iasonas Kokkinos. Lifting autoencoders: Unsupervised learning of a fully-
disentangled 3d morphable model using deep non-rigid structure from motion. In
International Conference on Computer Vision Workshop on Geometry Meets Deep
Learning, 2019.

119

References

[91] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[92] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[93] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
Pixelwise view selection for unstructured multi-view stereo. In European Conference
on Computer Vision (ECCV), 2016.

[94] Thomas W Sederberg and Scott R Parry. Free-form deformation of solid geometric
models. ACM Transactions on Graphics (TOG), 20(4):151–160, 1986.

[95] Li Shen, Chuohao Yeo, and Binh-Son Hua. Intrinsic image decomposition using
a sparse representation of reflectance. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 35(12):2904–2915, 2013.

[96] Daeyun Shin, Charless C Fowlkes, and Derek Hoiem. Pixels, voxels, and views: A
study of shape representations for single view 3d object shape prediction. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[97] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. International Conference on Learning Representations
(ICLR), 2015.

[98] Juil Sock, Pedro Castro, Anil Armagan, Guillermo Garcia-Hernando, and Tae-Kyun
Kim. Tackling two challenges of 6d object pose estimation: Lack of real annotated
rgb images and scalability to number of objects. arXiv, 2020.

[99] Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tompson, and Mohammad
Norouzi. Discovery of latent 3d keypoints via end-to-end geometric reasoning. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[100] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[101] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating
networks: Efficient convolutional architectures for high-resolution 3d outputs. In
International Conference on Computer Vision (ICCV), 2017.

[102] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun,
and Thomas Brox. What do single-view 3d reconstruction networks learn? In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[103] Gabriel Taubin. A signal processing approach to fair surface design. In International
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 1995.

120

References

[104] Catherine Taylor, Chris Mullany, Robin McNicholas, and Darren Cosker. Vr props:
An end-to-end pipeline for transporting real objects into virtual and augmented envi-
ronments. In International Symposium on Mixed and Augmented Reality (ISMAR),
2019.

[105] Sebastian Thrun and Ben Wegbreit. Shape from symmetry. In International Conference
on Computer Vision (ICCV), 2005.

[106] Shubham Tulsiani and Jitendra Malik. Viewpoints and keypoints. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

[107] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik. Multi-view
supervision for single-view reconstruction via differentiable ray consistency. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[108] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Multi-view consistency as
supervisory signal for learning shape and pose prediction. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[109] Shimon Ullman. The interpretation of visual motion. MIT Press, 1979.

[110] Min Wang, Feng Qiu, Wentao Liu, Chen Qian, Xiaowei Zhou, and Lizhuang Ma.
Ellipbody: A light-weight and part-based representation for human pose and shape
recovery. arXiv, 2020.

[111] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
Pixel2mesh: Generating 3d mesh models from single rgb images. In European
Conference on Computer Vision (ECCV), 2018.

[112] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn:
Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions
on Graphics (TOG), 36(4):72:1–72:11, 2017.

[113] Andrew P Witkin. Recovering surface shape and orientation from texture. Artificial
intelligence, 17(1-3):17–45, 1981.

[114] Oliver Woodford, Philip Torr, Ian Reid, and Andrew Fitzgibbon. Global stereo
reconstruction under second-order smoothness priors. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 31(12):2115–2128, 2009.

[115] Robert J Woodham. Photometric method for determining surface orientation from
multiple images. Optical engineering, 19(1):139 – 144, 1980.

[116] Di Wu, Yihao Chen, Xianbiao Qi, Yuyong Jian, Weixuan Chen, and Rong Xiao.
Neural mesh refiner for 6-dof pose estimation. arXiv, 2020.

[117] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learn-
ing a probabilistic latent space of object shapes via 3d generative-adversarial modeling.
In Advances in Neural Information Processing Systems (NeurIPS), 2016.

[118] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Freeman,
and Joshua B Tenenbaum. Learning shape priors for single-view 3d completion and
reconstruction. In European Conference on Computer Vision (ECCV), 2018.

121

References

[119] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning
of probably symmetric deformable 3d objects from images in the wild. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[120] Xugang Wu, Xiaoping Wang, Xu Zhou, and Songlei Jian. Sta: Adversarial attacks on
siamese trackers. arXiv, 2019.

[121] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[122] Nan Xiang, Li Wang, Tao Jiang, Yanran Li, Xiaosong Yang, and Jianjun Zhang.
Single-image mesh reconstruction and pose estimation via generative normal map. In
International Conference on Computer Animation and Social Agents (CASA), 2019.

[123] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for
3d object detection in the wild. In Winter Conference on Applications of Computer
Vision (WACV), 2014.

[124] Chaowei Xiao, Dawei Yang, Bo Li, Jia Deng, and Mingyan Liu. Meshadv: Adversarial
meshes for visual recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[125] Sasuke Yamane, Hirotake Yamazoe, and Joo-Ho Lee. Human motion generation
based on gan toward unsupervised 3d human pose estimation. In Asian Conference on
Pattern Recognition (ACPR), 2019.

[126] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective trans-
former nets: Learning single-view 3d object reconstruction without 3d supervision. In
Advances in Neural Information Processing Systems (NeurIPS), 2016.

[127] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen. Dense 3d object reconstruc-
tion from a single depth view. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 41(12):2820–2834, 2018.

[128] Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-supervised
disentangling with recurrent transformations for 3d view synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2015.

[129] Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Freeman,
and Josh Tenenbaum. 3d-aware scene manipulation via inverse graphics. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

[130] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung.
Differentiable surface splatting for point-based geometry processing. ACM Transac-
tions on Graphics (TOG), 38(6), 2019.

[131] Yang You, Chengkun Li, Yujing Lou, Zhoujun Cheng, Lizhuang Ma, Cewu Lu, and
Weiming Wang. Semantic correspondence via 2d-3d-2d cycle. arXiv, 2020.

[132] M Ersin Yumer and Niloy J Mitra. Learning semantic deformation flows with 3d
convolutional networks. In European Conference on Computer Vision (ECCV), 2016.

122

References

[133] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference (BMVC), 2016.

[134] Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu, Lingxi Xie, Yu-Wing Tai,
Chi-Keung Tang, and Alan L Yuille. Adversarial attacks beyond the image space. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[135] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. Path-
space differentiable rendering. ACM Transactions on Graphics (TOG), 39(6):143:1–
143:19, 2020.

[136] Xiong Zhang, Qiang Li, Hong Mo, Wenbo Zhang, and Wen Zheng. End-to-end hand
mesh recovery from a monocular rgb image. In International Conference on Computer
Vision (ICCV), 2019.

[137] Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenenbaum, Bill Freeman,
and Jiajun Wu. Learning to reconstruct shapes from unseen classes. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

[138] Hang Zhou, Jihao Liu, Ziwei Liu, Yu Liu, and Xiaogang Wang. Rotate-and-render: Un-
supervised photorealistic face rotation from single-view images. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[139] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus, and
Thomas Brox. Freihand: A dataset for markerless capture of hand pose and shape
from single rgb images. In International Conference on Computer Vision (ICCV),
2019.

[140] Silvia Zuffi, Angjoo Kanazawa, Tanja Berger-Wolf, and Michael J Black. Three-d
safari: Learning to estimate zebra pose, shape, and texture from images" in the wild".
In International Conference on Computer Vision (ICCV), 2019.

123

Publications

Reviewed Conference

1. Deniz Beker, Hiroharu Kato, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim
Kehl, and Adrien Gaidon, “Self-Supervised Differentiable Rendering for Monocular
3D Object Detection”, European Conference on Computer Vision (ECCV), 2020.

2. Hiroharu Kato and Tatsuya Harada, “Learning View Priors for Single-view 3D Recon-
struction”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

3. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada, “Neural 3D Mesh Renderer”,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

4. Hiroharu Kato and Tatsuya Harada, “Image Reconstruction from Bag-of-Visual-
Words”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

5. Hiroharu Kato, Tatsuya Harada, and Yasuo Kuniyoshi, “Visual Anomaly Detection
from Small Samples for Mobile Robots”, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012.

Preprints

1. Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim
Kehl, and Adrien Gaidon, “Differentiable Rendering: A Survey”, arXiv:2006.12057,
2020.

2. Hiroharu Kato and Tatsuya Harada, “Self-supervised Learning of 3D Objects from
Natural Images”, arXiv:1911.08850, 2019.

124

References

3. Andrew Shin, Leopold Crestel, Hiroharu Kato, Kuniaki Saito, Katsunori Ohnishi,
Masataka Yamaguchi, Masahiro Nakawaki, Yoshitaka Ushiku, and Tatsuya Harada,
“Melody Generation for Pop Music via Word Representation of Musical Properties”,
arXiv:1710.11549, 2017.

4. Hiroharu Kato and Tatsuya Harada, “Visual Language Modeling on CNN Image
Representations”, arXiv:1511.02872, 2015.

5. Hiroharu Kato and Tatsuya Harada, “Image Reconstruction from Bag-of-Visual-
Words”, arXiv:1505.05190, 2015.

Talks

1. Hiroharu Kato, “Recent Trends in Differentiable Rendering”, The Symposium on
Sensing via Image Information (SSII). 2020 (in Japanese).

2. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada, “Neural 3D Mesh Renderer”,
The Japanese Society for Artificial Intelligence (JSAI), 2019 (in Japanese).

3. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada, “[CVPR2018] Neural 3D
Mesh Renderer”, Meeting on Image Recognition and Understanding (MIRU). 2018 (in
Japanese).

4. Hiroharu Kato, “Modality Translation and Image Generation”, The Symposium on
Sensing via Image Information (SSII). 2018 (in Japanese).

5. Hiroharu Kato and Tatsuya Harada, “[CVPR2014] Image Reconstruction from Bag-of-
Visual-Words”, Meeting on Image Recognition and Understanding (MIRU). 2014 (in
Japanese).

Awards

1. NVIDIA Pioneering Research Award, Aug. 2018.

125

	Table of contents
	1 Introduction
	1.1 Background and objective
	1.1.1 Differentiable rendering
	1.1.2 Variants of training data

	1.2 Summary of contributions
	1.3 Structure of the thesis

	2 Related work
	2.1 3D reconstruction in computer vision
	2.2 Differentiable rendering
	2.3 Single-view 3D object reconstruction
	2.3.1 3D supervision
	2.3.2 Multi-view supervision
	2.3.3 Single-view supervision

	3 Differentiable rendering for neural networks
	3.1 Importance of a mesh renderer for neural networks
	3.2 Pseudo gradient for rendering
	3.2.1 Rendering pipeline and its derivative
	3.2.2 Rasterization of a single face
	3.2.3 Rasterization of multiple faces
	3.2.4 Texture
	3.2.5 Lighting

	3.3 Comparison with other rasterization methods
	3.3.1 Evaluation methodology
	3.3.2 Gradient visualization
	3.3.3 Optimization
	3.3.4 Discussion

	3.4 Simple applications
	3.4.1 3D DeepDream

	3.5 Summary

	4 Learning with multi-view images
	4.1 Difficulty in learning 3D reconstruction from images
	4.2 Method
	4.3 Experiments
	4.3.1 Experimental settings
	4.3.2 Qualitative evaluation
	4.3.3 Quantitative evaluation
	4.3.4 Limitation

	4.4 Summary

	5 Learning with annotated single-view images
	5.1 Difficulty in learning from single-view images
	5.2 Method
	5.2.1 View-based training for 3D reconstruction
	5.2.2 View prior learning
	5.2.3 Internal pressure
	5.2.4 Modification of neural mesh renderer
	5.2.5 Summary

	5.3 Experiments
	5.3.1 Experimental settings
	5.3.2 Synthetic dataset
	5.3.3 Natural image dataset
	5.3.4 Additional examples of single-view training
	5.3.5 Performance of each category by multi-view training
	5.3.6 Additional examples of multi-view training
	5.3.7 Discriminators and optimization
	5.3.8 Internal pressure in multi-view training

	5.4 Summary

	6 Learning with unannotated single-view images
	6.1 Difficulty in learning from unannotated images
	6.2 Method
	6.2.1 Learning a category-specific common shape
	6.2.2 Training of a full model using a common shape

	6.3 Implementation details
	6.3.1 Learning a category-specific common shape
	6.3.2 Training of a full model using a common shape

	6.4 Experiments
	6.4.1 CIFAR-10
	6.4.2 PASCAL
	6.4.3 Discussion

	6.5 Summary

	7 Conclusion
	References

