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Abstract  

In biology, signaling pathways must reliably convert stimulation intensity into signaling 

activity in the presence of two sources of variability: Intracellular variation arising from 

within a cell (also referred to as intrinsic noise) and intercellular variation arising from 

cell-to-cell variability (also referred to as extrinsic noise). An example of intracellular 

variation is the stochastic fluctuation of a biochemical reaction; examples of intercellular 

variation, are the differences in gene expression and protein abundance among cells. In most 

models of biological systems, cell-to-cell variability causing different cellular responses 

between cells have thus far been considered “noise” that reduces the ability of the system to 

distinguish between different stimuli. Previous studies applying information theory to 

signaling pathways have examined the information transmission capacity at the 

cell-population level in which intercellular variation contributes to uncertainty and is noise, 

or at the single-cell level in which intercellular variation is absent (Summary Fig. 1). 

However, intercellular variation has the potential to enable individual cells to encode 

different information. Here, I hypothesized that some physiological systems, such as skeletal 

muscle, are better represented by a multiple-cell channel (Summary Fig. 1), which is a 

communication channel composed of a sum of single-cell channels and showed that 

intercellular variation increases information transmission of skeletal muscle with C2C12 

differentiated myotubes, isolated single-fibers of mice skeletal muscle.  

With intercellular variation, average dose-response of multiple-cells becomes graded, and I 

called this effect “response diversity effect” (Summary Fig. 2). I found that intercellular 

variation can serve as information rather than noise through response diversity effect, 

resulting more gradual dose-response of multiple-cell channel than that of a single-cell 

channel. 

In both C2C12 myotubes and isolated single-fibers, the intracellular variation was small 

and intercellular variation was large, which means that each cell responds accurately and 

reproducibly to a particular stimulus, but their responses differ from each other. It means that 

not only each cell can control its response accurately, but also the accuracy of the response of 
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a tissue is enhanced by response diversity effect, in which incorporated intercellular variation 

as information not noise In addition, I quantified the information transmission of human 

facial muscle contraction during intraoperative neurophysiological monitoring and found that 

information transmission of muscle contraction is comparable to that of a multiple-cell 

channel. Thus, the data in this study indicated that intercellular variation can increase 

information capacity of tissues. 

 

Summary Fig. 1. Schematic overview of cell-population, single-cell, and multiple-cell 

channel. 

 

Summary Fig. 2. the effect on the dose-response of multiple-cell channel with (A) and 

without intercellular variation (B). 
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1. Introduction 

1.1 Intercellular and intracellular variation in signal transduction 

In biology, signaling pathways transmit information about extracellular stimulation to 

control various cellular functions (1). These pathways must reliably convert stimulation 

intensity into signaling activity in the presence of two sources of variability: Intracellular 

variation arising from within a cell (also referred to as intrinsic noise) and intercellular 

variation arising from cell-to-cell variability (also referred to as extrinsic noise). An example 

of intracellular variation is the stochastic fluctuation of a biochemical reaction; examples of 

intercellular variation, are the differences in gene expression and protein abundance among 

cells (2, 3). In most models of biological systems, cell-to-cell variability causing different 

cellular responses between cells have thus far been considered “noise” that reduces the ability 

of the system to distinguish between different stimuli. This limits how the dynamic range of a 

biological system is calculated and thus may not represent physiology. 

 

1.2 Information analysis of signaling pathways in previous studies regarded 

intercellular variation as noise. 

To determine the information transmission capacity of a relevant physiological system, 

skeletal muscle, I used mutual information (4, 5), a mathematical principle for calculating the 

dependency between two variables (Fig. 1B). In most applications of mutual information, 

high variability reduces information transmission (Fig. 1A). Previous studies applying 

information theory to signaling pathways have examined the information transmission 
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capacity at the level of a population of cells (6-22) or of single cells (23) (Fig. 1C) (Table 1). 

These are referred to as channels, with the cell-population channel representing all of the 

cells as a single communication channel and the single-cell channel considering each cell 

individually. I hypothesized that some physiological systems, such as skeletal muscle, are 

better represented by a multiple-cell channel, which is a communication channel composed of 

a sum of single-cell channels (Fig. 1C). Unlike the cell-population channel in which 

intercellular variation contributes to uncertainty and is noise and the single-cell channel in 

which intercellular variation is absent, the multiple-cell channel incorporates intercellular 

variation as information (Fig. 1D). I propose that, by analyzing single-cell channels and 

incorporating these into a multiple-cell channel, I can accurately determine how much 

information is physiologically transmitted in a tissue or organ for which the response 

involves summing the output of the individual cells. Thus, I analyzed multiple-cell channels 

of Ca
2+

 response of C2C12 differentiated myotubes and the contraction of isolated 

single-fibers from flexor digitorum brevis (FDB) muscle of mice by electrical pulse 

stimulation (EPS) to investigate whether and how the intercellular variation increase 

information capacity of a skeletal muscle. 
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Fig. 1. Information transmission in a cell-population, a single-cell, and a multiple-cell 

channel. (A) The relationship between stimulation (S) and response (R) and the effect of 

variation on the ability to discriminate between high and low intensity stimulation. (B) 

Equation defining mutual information between stimulation and response. S, R, C, and N 

represent the set of stimulations, responses, cells, and the number of repetitions of stimulation, 

respectively.      and           are probability distributions of stimulation intensity and 

response intensity, respectively, and             is a conditional probability distribution of 

the response for a given stimulation. (C and D) Mutual information of a cell-population, a 

single-cell, and a multiple-cell channel. For a cell-population channel, response probability 

distribution is calculated from a single stimulation for each cell and includes both 

intracellular and intercellular variation as noise. For a single-cell channel, response 

probability distribution is calculated from repetitive stimulation for each cell and includes 
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intracellular variation as information. A multiple-cell channel, composed of a combination of 

single-cell channels, includes both intercellular and intracellular variation as information. 

Mutual information in the different channels differs in the definition of response R: For a 

cell-population channel, R =         ; for a single-cell channel, R =        ; for a 

multiple-cell channe, R =           , where      is the number of repetitions of 

stimulation and     is the cell. 
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Table 1. A summary of previous studies that calculated mutual information of signaling 

pathways. The mutual information calculated using cell-population channels, single-cell 

channels, and multiple-cell channels in previous studies and this study are summarized. 

Multiple-cell channel studies are indicated in bold. MI, mutual information. 

Input Output MI (bits) 

(mean ± S.D.) 

Channel Sample 

Size per 

Dose 

Literature 

Bcd Hb 1.5 ±0.15 Cell-population < 1000 Tkačik et al. (7) 

TNF NF-κB, ATF-2 0.92, 0.85 Cell-population 350 Cheong et al. 

(14) 

NGF, 

PACAP, 

PMA 

pERK,pCREB, 

c-Fos,EGR1 

> 1 Cell-population 1000～

2000 

Uda et al. (16) 

EGF, 

ATP,  

LPS 

ERK, Ca2+, 

 NF-κB 

> 1.7 Cell-population < 5320 Selimkhanov et 

al. 

(18) 

GnRH ppERK, EGR1, 

NFAT-NF, 

NFAT-RE 

> 1 Cell-population < 10000 Garner et al. 

(19) 

ATP Ca2+ > 1.2 Cell-population < 2500 Potter et al. (20) 

Ach Ca2+ 2.06 ± 0.31 Single-cell 5 Keshelava et al. 

(23) 

EPS Ca2+ 1.15 ± 0.52 Single-cell 

 

20 This study 

Single-fiber 

Contraction 

0.74± 0.29 

Ca2+ (512 cells) 

3.21 

Multiple-cell 

Single-fiber 

Contraction 

(512 cells) 

2.65 

Skeletal muscle 

contraction 

(#1, Oris up) 

2.83 

A tissue 10 
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1.3 Information transmission of skeletal muscle 

The analysis of multiple-cell channel described above regarded the response of a tissue as the 

sum of the outputs of all individual cells in the tissue. However, a skeletal muscle in vivo, is 

innervated and controlled by multiple motor neurons with their own activation threshold. As 

the stimulation becomes stronger, the more muscle fibers are recruited (24). Thus, the 

contractile strength depends both on the contractile strength of the individual muscle fibers 

and on the number of the recruited muscle fibers. It is unclear whether the intercellular 

variation contributes to information capacity even in the presence of the effect of the 

recruitment. In order to solve this problem, I built the mathematical model considering the 

recruitment and calculated mutual information between EPS and the sum of Ca
2+

 response of 

a set of C2C12 myotubes recruited by the stimulation. I also calculated mutual information of 

human facial muscle contraction during intraoperative neurophysiological monitoring to 

quantify the information transmission in a skeletal muscle in vivo. 

 

1.4 Purpose of this study 

In summary, the purposes of this study are to analyze multiple-cell channels to clarify the 

contribution of the intercellular variation which was regarded as noise in previous studies. I 

investigated the contribution of intercellular variation to the increase in mutual information of 

multiple-cell channels and found that the intercellular variation enables the muscle systems to 

encode the high amount of information even in the presence of the effect of the recruitment. 
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2. Materials and Methods  

2.1 Cell culture and the establishment of C2C12 cell lines stably expressing GCaMP 

C2C12 cells (kindly provided by Takeaki Ozawa, University of Tokyo, Tokyo, Japan) were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; 25 mM glucose; Wako, Japan) 

supplemented with 10% fetal bovine serum (Nichirei Bioscience Incorporated, Japan) in an 

incubator at 37°C under a 5% CO2 atmosphere.  

C2C12 cells stably expressing the Ca
2+

 biosensor, GCaMP6f (addgene #40755) (25), were 

established with the PiggyBac Transposase System (System Biosciences, U.S.A.) (26). One 

hundred and fifty µL of Opti-MEM (Life technologies, U.S.A.) containing 4 µL of 

Lipofectamin 2000 (Invitrogen, U.S.A.), and Opti-MEM containing 1.0 µg of PiggyBac 

transposon vector clone and 0.2 µg of PiggyBac transposase expression vector were mixed 

and incubated for 5 min. Thereafter, 50% confluent C2C12 cells were seeded on a 35-mm 

dish, transfected with the mixture, and incubated for 6 h. For the selection of transfected cells, 

the cells were cultured with DMEM with 10% fetal bovine serum and 20 µg/mL of 

Blasticidin S Hydrochloride (Wako, Japan). Selected cells were seeded on a Cell Culture Dish 

(Corning Incorporated, U.S.A.) and cultured until colonies formed. The colonies were picked 

and seeded on a Cell Culture Dish 430167. After seeding and proliferation, the cells were 

stored at a concentration of 1.0 ×10
5
 cells/mL with Bambanker (NIPPON Genetics, Japan).  

 

2.2 Differentiation induction of C2C12 cells 

C2C12 cells were seeded into 4-well rectangular plates (Thermo Fisher Scientific, U.S.A.) at 
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a density of 2.0 x 10
5
 cells/well, with 3 mL of 25 mM glucose DMEM supplemented with 

10% fetal bovine serum. After 2 days, the medium was switched to a differentiation medium 

consisting of 25 mM glucose DMEM supplemented with 2% horse serum (Nichirei 

Bioscience Incorporated, Japan). Ten days after differentiation, cells were used for electrical 

pulse stimulation (EPS) (27). 

 

2.3 Fluorescence Microscopy and Electrical pulse stimulation (EPS) to C2C12 

Differentiated C2C12 myotubes stably expressing GCaMP6f were washed 3 times with PBS 

and starved in 3 mL fresh Medium 199, Hanks’ Balanced Salts (Life technologies, U.S.A.) 

for 1 hour. Mineral oil (Sigma Aldrich, U.S.A.) was stratified to prevent vaporization of the 

medium prior to the fluorescence imaging. Fluorescence imaging was performed with an 

inverted fluorescence microscope, IX 83 (Olympus, Japan) equipped with a UPLSAPO10X2 

objective lens (Olympus, Japan) an ORCA-R2 C10600-10B CCD camera (Hamamatsu 

Photonics, Japan), a U-HGLGPS mercury lamp (Molecular Devices, U.S.A.), a U-FBNA 

mirror unit (Olympus, Japan), an MD-XY30100T-META automatically programmable stage 

position (Molecular Devices, U.S.A.). EPS was performed according to the method of 

Manabe et al. (30). The 4-well plates were connected to the electrical stimulation apparatus, a 

4-well C-Dish (Ion Optix Corp., Milton, MA, USA), and stimulated by electric pulses 

generated by an electrical pulse generator (Uchida Denshi, Hachioji, Japan). Under the 

microscope, C2C12 myotubes were stimulated with electric pulses of various voltages for 3 

ms every 10 seconds. The exposure time was 25 ms for each image and 70 time-lapse images 
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for each of the 551 cells were acquired for each stimulation. Cells were repetitively 

stimulated for 20 times each of 10 different voltages, 0, 5, 10, 15, 20, 30, 40, 50, 60, 75 V. A 

single cycle was composed of one of each of the 10 voltages and each cycle was repeated 20 

times, randomizing the order of stimulation independently every cycle. The timing of EPS 

was controlled with DIO-0808TY-USB digital I/O terminal (CONTEC, Japan) and EPS was 

imposed 400 ms after opening the shutter of the camera (Fig. 2). 

 

 

 

Fig. 2. Experimental setup of EPS-dependent Ca
2+

 response in C2C12 myotubes and of 

cell-contraction in single-fiber cells. When the signal reached the digital I/O terminal from 

the computer (PC), the terminal sent the signals to the CCD camera and the electrical pulse 

generator to start both image acquisition and EPS. For C2C12 myotubes, the terminal sent a 

signal to the camera 400 ms before the signal to the electrical pulse generator. For single-fiber 

cells, the terminal sent a signal to the camera 50 ms before the signal to the electrical pulse 

generator. Signal was then sent to the electrical pulse generator every one second. 
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2.4 Quantification of Ca
2+

 response 

After background subtraction from Ca
2+

 time-lapse images acquired by fluorescent 

microscopy, regions of interest (ROIs) in C2C12 myotubes were selected manually. The time 

course data for the Ca
2+

 response of each C2C12 myotube were acquired by averaging 

intensity within each ROI for each image. Basal Ca
2+

 was defined by time average of 16 time 

points before any stimulation, and Ca
2+

 amplitude was defined by the maximum Ca
2+

 

response subtracted by the basal Ca
2+

. AUC was defined by the sum of the difference 

between Ca
2+

 response and the basal Ca
2+

, multiplied by time step 25 ms. 

 

2.5 Single-fiber isolation from a skeletal muscle 

Satellite cells were prepared as described previously with modification (28). Briefly, 12 

week-old C57/BL6J mice were sacrificed by cervical dislocation and the flexor digitorum 

brevis muscle (FDB) was gently removed. Dissected muscles were then digested in 0.25% 

collagenase solution (Collagenase Type1; Worthington, Lakewood, NJ) consisting of 

GlutaMAX Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 1% 

penicillin-streptomycin and 10% fetal bovine serum (Corning, NY, USA) at 37 °C for 150 

min. All tubes, dish, and pipets were coated with 5% bovine serum albumin (BSA) solution in 

PBS to avoid the adhesion of fibers. FDB was then transferred to a 50-mm Petri dish 

containing 8 mL of DMEM solution supplemented with 1% penicillin-streptomycin. Under a 

stereoscopic microscope, the muscles were gently disassembled using 1 mL pipettes to 

separate them into individual muscle fibers. Cell debris was completely removed by 
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exchanging the solution for fresh DMEM solution numerous times, and 50 fibers were 

transferred to a 1.5 mL centrifuge tube. The tubes were upright for 5 min to allow the fibers 

to settle to the bottom, the supernatant was gently aspirated using a Pasteur pipette, and 1 mL 

of fresh DMEM supplemented with 1% penicillin-streptomycin was added. All of the 

solution containing the fibers was transferred to 2-well Lab-Tek™ II Chamber Slide (Thermo 

Fisher Scientific, Waltham, USA) containing 1 mL of fresh DMEM supplemented with 1% 

penicillin-streptomycin. 

 

2.6 Microscopy and EPS-dependent contraction of single muscle fibers 

Individual fibers of FDB were stimulated with an electric pulse system developed previously 

for the C2C12 or primary myotubes contraction (29, 30). The 2-well Chamber Slide was 

connected to the electrical stimulation apparatus and a 2-well electrode (Uchida-denshi, 

Hachioji, Japan), and fibers were stimulated with electric pulses generated by the power 

supply (Uchida-denshi). A stimulation cycle consisted of 3 ms duration of EPS and 997 ms 

intervals at 1 Hz for 10 sec. The initial voltage was 0 V, and the voltage was increased by 0.1 

V from 1.5 V to 4.5 V. Contraction of the fibers was recorded under the microscope with the 

objective lens (X4). 

 

2.7 Image analysis and quantification of contraction of single skeletal muscle fibers 

After selecting the region with only a single fiber, images were smoothed with a Gaussian 

filter and the edge region was enhanced with a Sobel filter. The edge-enhanced images were 
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binarized by triangle method. Noises, like spots of binarized images, were removed by the 

opening filter, holes in fiber region were filled, and noise was removed by the opening filter. 

The selected regions were regarded as single-fiber regions and the time course data for 

contraction of each fiber were acquired for each image by quantifying the areas in the 

selected regions. Basal was defined by time average of last 10 time points of the time course 

data, and maximal contraction was defined by basal subtracted by minimal area of the time 

course.  

 

2.8 Calculation of probability distribution 

Using an adaptive partitioning method (31), I calculate probability distributions of Ca
2+

 

amplitude and fiber contraction from the experimental data at the single-cell level obtained 

by repetitive stimulation. I calculated the conditional probability distribution of the response 

for a given stimulation of a single-cell channel with the single-cell data obtained by repetitive 

stimulation and that of a cell-population channel with the cell-population data obtained in the 

first stimulation. S, C, and N represent the set of stimulation, cell, and the number of 

stimulations, respectively, and the response r is the function of C and N and can be expressed 

as       . The conditional probability distribution of the response for a given stimulation is 

           . When      is the cell variable and     is the repeat number variable, the 

conditional probability distribution of a single-cell channel of cell c is            , and the 

conditional probability distribution of a cell-population channel calculated by a single 

stimulation is               . By applying the adaptive partitioning method for the 
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experimental data of a single cell, I calculated the probability distribution of               

For that of the cell population at a single stimulation, I calculated probability distribution of 

              . 

 

2.9 Calculation of the mutual information and channel capacity 

The mutual information between probability variables S and R is given by 

                        
      

          , (Eq. 1)  

where S is the stimulation and R is the response, and        is               or 

                as calculated from experimental data. The calculation of the mutual 

information requires an input probability distribution     . An input probability distribution 

cannot be definitively determined in a biological system; however, the optimal input 

probability distribution for the maximal mutual information, referred to as the channel 

capacity, in the channel is often used as an input probability distribution. The channel 

capacity can be estimated by Blahut-Arimoto algorithm (32, 33). In this study, I defined the 

“mutual information” the mutual information estimated with the optimal input probability 

distribution for the summed response of the total cells, and I defined “channel capacity” as 

the mutual information estimated with the optimal input probability distribution for each 

channel. 

 

2.10 Intracellular and intercellular variations 

The total variation of each input condition can be divided into intracellular and intercellular 
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variations. Intracellular variation is the sum of the variance of the total cells and can be 

written as follows: 

                                               . (Eq. 2) 

Intercellular variation is the sum of squares of the difference between the average of 

each cell and the average of all and can be written as follows: 

                                               .  (Eq. 3) 

The total variation was defined by the sum of the intracellular and intercellular 

variations, and the contributions of intracellular and intercellular variations to the total 

variation were calculated. 

 

2.11 Estimation of the bias in the mutual information calculation caused by sample size, 

a number of stimulation events at a given dose 

I estimated the bias in the calculation of the mutual information using a Hill equation 

response model (Fig. 5). The average dose-response was fixed and assumed that to obey the 

Hill equation,  

  
  

     
 , (Eq. 4) 

where s is the stimulation variable, r is the response variable, n is the Hill coefficient and KD 

is the dissociation constant. In the toy example shown in Fig. 5, KD is 30 and n is 4. I 

examined the bias caused by small sample size (in the experiments in this study, the number 

of repetitions of the EPS at each voltage) by adding the Gaussian noise with various standard 

deviation. On this model, the response is expressed as follows: 
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,  (Eq. 5) 

where s is the stimulation variable, r is the response variable,   is Gaussian noise with a 

mean of 0 and the standard deviation is  . Gaussian noise is assumed to be independent and 

have the same variance for all input. On the assumption of continuously and uniformly 

distributed input from 0 to 75, the averaged dose-response was numerically integrated with 

respect to input so that interdose variation of response was calculated to 0.143. When   is 

defined as the ratio of intradose variation and the total variation,   is written by the 

expression: 

  
                   

                                        
  (Eq. 6) 

So, intradose.variation can be expressed as follows 

                                       
 

    
. (Eq. 7) 

When   is 0.02, 0.04, 0.08, 0.16, 0.32, 0.64 and 0.9, intradose variation is 0.054, 0.077, 

0.112, 0.165, 0.260, 0.504, 1.135, respectively. These intradose variations were used for the 

standard deviation of Gaussian noise of the Hill model. I sampled various sizes of cells (3, 5, 

10, 20, 40, 80, 200, 400, 800, 1000 cells) 30 times for each sample size from the Hill model 

and estimated the mutual information. I assumed that sample size 1000 is sufficiently large 

and has ignorable bias. Thus, the calculation bias was defined by the difference between the 

average mutual information of sample size 20, the number of repetitive stimulations at each 

voltage that I used in the experiment, and that of sample size 1000. 

To examine how many cells there were in the experimental data with   smaller than that 

used in the model, intradose and interdose variations, and   of each cell were calculated as 
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follows; 

                                           , (Eq. 8) 

                                           . (Eq. 9) 

 

2.12 Calculation of the mutual information of a multiple-cell channel 

I calculated the mutual information of a multiple-cell channel by calculating the probability 

distribution of the summed responses of multiple cells as follows: 

                 . (Eq. 10) 

The optimal input probability distribution for the summed response of the total cells was 

used to calculate the mutual information of multiple-cell channels. For a 2-cell channel, I 

calculated the mutual information for all combinations of pairs of the single cells. When the 

responses of 2-cells were combined, I used all combinations of the responses to the same 

stimulation (Fig 10A and 11C). 

To investigate the contribution of the intracellular and intercellular variations to the 

increase in the mutual information achieved by combining single-cell channels, I calculated 

the mutual information of a multiple-cell channel composed of the same cell         (Fig. 

10B and 11D, red lines) and the mutual information of a multiple-cell channel composed of 

different cells         (Fig. 10B and 11D, blue line). To calculate        , I virtually 

created the multiple-cell channel by resampling responses 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 

times repetitively to the same stimulation from the same cell, randomizing the order of 

responses every time.         was defined as the mutual information of the summed 
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response of the virtual multiple-cells and was calculated once for each cell for each resample 

size. I calculated         by resampling 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 cells for the 

Ca
2+

 amplitude in C2C12 myotubes, and 1, 2, 4, 8, 16, 32 cells for the contraction of single 

fibers with replacement from the total cells.         was defined as the mutual information 

of the summed response of the resampled multiple cells and calculated 100 times for each 

resample size. The resampling was performed independently for each resample size. The 

order of responses was randomized every time the response was resampled.  

Because there were only 50 cells for single fibers, I extrapolated the standard deviation to 1, 

2, 4, 8, 16, 32, 64, 128, 256, 512 cells and calculated an extrapolated         (Fig. 14D, 

green line). I assumed that the average of dose-response reaches equilibrium and does not 

change over 50 cells, and the standard deviation of the average response becomes smaller as 

the number of cells increases. The noise obeys Gaussian distribution and is independent for 

all input. When n is the number of cells, the average of n-cell summed response is 

           
 

  
   (Eq. 11) 

and the standard deviation of n-cell summed response is 

            
 

  
.  (Eq. 12) 

Note that the extrapolation using Eqs. 11 and 12 holds if some cells did not make any 

response at the given stimulation. 

 

2.13 The contribution of       and         to         

The mutual information can be expressed by the entropy of response     , and the 
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conditional entropy of response for a given stimulation        as follows: 

                   .  (Eq. 13) 

With the input probability distribution and the calculated response probability distribution, 

     and        can be calculated as follows: 

                                ,  (Eq. 14) 

                                    .  (Eq. 15) 

The difference of the mutual information of two different channels, defined as        , can 

be written as 

                      , (Eq. 16) 

where       is the difference of the entropy of response, and         is the difference of 

the conditional entropy of response for a given stimulation. The differences were defined by  

                  ,  (Eq. 17) 

                        ,  (Eq. 18) 

where       and         represent the average of      and        of 100 resampled 

populations of n-cell channels (Fig. 10C, D, 14E, F, 12). 

 

2.14 Binary channel with Gaussian noise 

I built the binary response model, with a fixed threshold in each cell but different among 

individual cells (Fig. 12). The response of each cell can be written as 

      
                    

                     
 ,  (Eq. 19) 

where s is the stimulation variable, r is the response variable,   is Gaussian noise with a 
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standard deviation of 0.1. The threshold is fixed in each cell but different among individual 

cells and is continuously and uniformly distributed from 0 to 1 in the cell population. I 

assumed two kinds of input probability distribution: One is continuous uniform distribution 

from 0 to 1, and the other is discrete uniform distribution of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1.0. I resampled 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 cells 100 times from this model 

and calculated the average of         for each number of cells when continuous and 

discrete input probability distribution was given. 

 

2.15 Ethics committee certification 

I complied with Japan’s Ethical Guidelines for Epidemiological Research, and the study as 

approved by the Institutional Review Board and the Ethics Committee of Tokyo University 

Hospital. (3530-(1)). Subjects were recruited by the related law. 

2.16 Patients 

This study included 5 consecutively enrolled patients with a newly diagnosed AN (vestibular 

schwannoma) or CPA (cerebellopontine angle) meningioma treated with retrosigmoid surgery 

at the University of Tokyo Hospital (Tokyo, Japan) from 2018 through 2019. All patients 

were 15 years of age or older. Informed consents were obtained during the pre-operative 

explanation. 

 

2.17 Intraoperative facial muscle monitoring/Continuous Direct FREMAP Monitoring 

Continuous Direct FREMAP (Facial nerve Root Exit zone–elicited compound Muscle Action 
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Potential) Monitoring was performed as previously described (34, 35). Briefly, monopolar 

needle electrodes were placed on the orbicularis oculi and orbicularis oris (up and down) 

muscles, under general anaesthesia before surgical operation with a reference electrode 

placed on the shoulder. Anesthesia was controlled by an anesthesiologist and except for use 

of a short-acting induction agent (rocuronium bromide up to 0.9 mg/ kg of body weight) for 

the initial 30 minutes, paralytic agents were strictly avoided throughout the operation. I used 

the “the Neuropack MEE1200 recording system” (Nihon Kohden, Tokyo, Japan) as a 

recording system. During tumor excision, the surgeon identified the facial nerve root at the 

brainstem (on the root exit zone of the facial nerve) and placed a specially designed 

hat-shaped monopolar electrode (Ad-Tech Medical Instrument Corporation), called the 

FREMAP electrode. continuous monitoring of evoked facial nerve EMGs were recorded. In 

this monitoring, the facial nerve was electrically stimulated at a frequency of 1 Hz, 

Stimulation conditions were as follows: 0.1 mA step by step within a stimulation intensity of 

0.1-2.0 mA at a frequency of 1-3 Hz with 10 repetitive stimulations. 

 

2.18 Motor unit model 

I modeled skeletal muscle contraction by EPS to a motor nerve as the composition of three 

serial channels, the channel from S to N, N to M, the and M to R. S denotes EPS, N denotes 

the response of motor neurons, M denotes the contraction of muscle fibers, and R denotes the 

summed muscle contraction. For S, I used 10 voltages; 0, 5, 10, 15, 20, 30, 40, 50, 60, and 75 

V; voltage conditions for C2C12 experiment. 
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  In the channel from S to N, N remains zero below a threshold of S, θ, and monotonically 

increases above θ (Fig. 19). I set the number of thresholds as divisors of 10: 1, 2, 5, and 10. N 

is an effective voltage given to M. If a number of thresholds is one, θ1 is 0 V and N 

monotonically increase, meaning that N is equal to S. If a number of thresholds is two, θ1 is 0 

V and θ2 is at 30 V. This means that for N2, N2 is 5 V when S is 40 V, N2 is 10 V when S is 50 

V, etc. I set θ as 0, 10, 20, 40, and 60 V for five thresholds, and as 0, 5, 10, 15, 20, 30, 40, 50, 

60, and 75 V for ten thresholds. Note that each neuron has a different threshold, and that a 

neuron in the model does not physiologically indicate a single neuron, but many neurons 

having the same threshold. 

In the channel from N to M, I assumed that the neurons with the same threshold control the 

fixed set of skeletal muscle fibers. I set the number of skeletal muscle fibers controlled by 

each set of neurons with the same threshold as 64 in Fig. 18, 20, and 1, 2, 4, 8, 16, 32, and 64 

in Fig. 21. Each set of neurons with the same threshold transmits the effective voltage N to 

the fibers controlled by these neurons, and the contraction of skeletal muscle fibers, M change 

according to N. I substituted the skeletal muscle fibers for C2C12 Ca
2+

 response data. I 

constructed the channels with or without intercellular variation. In the channel with 

intercellular variation, responses were resampled from different cells. In the channel without 

intercellular variation, I virtually created the set of skeletal muscle fibers without intercellular 

variation responses by resampling responses repetitively from the same cell, randomizing the 

order of responses every time.  

In the channel from M to R, I assumed that the muscle contraction R is the sum of M, the 
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sum of all muscle fibers. 

I calculated the mutual information between EPS S and muscle contraction R for the 

channel with intercellular variation,        , and without intercellular variation,        . I 

performed a two-way ANOVA with number of neuron and group (with/without intercellular 

variation) as the independent variables, and mutual information as the dependent variable for 

each number of muscle fibers at each neuronal threshold. The Bonferroni adjusted p-values (n 

= 7; the number of panels) between mutual information and group were calculated. 

 

2.19 Data and materials 

Data are available online at http://kurodalab.bs.s.u-tokyo.ac.jp/ja/publication/info/wada/ . 
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3. Results 

3.1 Examination of Experimental condition for information analysis 

Calculation of mutual information for single-cell channels and multiple-cell channels requires 

acquiring data for the single-cell response (R) to repetitive stimulation (S) with various 

intensities (Fig. 1C, middle). Therefore, I measured the Ca
2+

 response induced by repetitive 

EPS in differentiated C2C12 myotubes (29) (Fig. 3 and 4). Using C2C12 cell lines stably 

expressing GCaMP6f, a fluorescent Ca
2+

 probe (25) and differentiated into myotubes, I found 

that the Ca
2+

 response to a single EPS lasted ~1 second and was consistent for 200 repetitive 

stimulations (Fig. 3). Thus, I avoided the technical problem of time variation in the response 

by repetitively stimulating each myotube 20 times at 10 different voltages. This paradigm not 

only produced a time-invariant response but was also sufficient to avoid underestimation of 

mutual information (Fig. 4). I also determined that, although an overestimation bias was 

present, it was small enough to have little effect on the calculation of the mutual information 

from data acquired with 20 repetitive stimulations of 551 clonal C2C12 myotubes (Fig. 5).  
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Fig. 3. The definition of Ca
2+

 amplitude and Ca
2+

 amplitude by repetitive EPS at 30V. 

(A) Ca
2+

 amplitude (red arrow) and AUC (blue area) were defined (Materials and Methods). 

(B) Correlation coefficient between Ca
2+

 amplitude and AUC in each cell was 0.88 ± 0.13 

(mean ± S.D.), indicating Ca
2+

 amplitude and AUC were positively correlated. I used Ca
2+

 

amplitude as the feature value of Ca
2+

 response. (C) Ca
2+

 amplitude by repetitive EPS 

stimulation (30V). Blue: Ca
2+ 

amplitude in each cell (n=19). Red: the ensemble average. The 

amplitudes of many cells remained the same through 200 stimulations. Amplitude decay 

started when the number of repetitions exceeded 200. I set the total number of repetitions to 

200. 
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Fig. 4. The conditional probability distribution of Ca
2+

 amplitudes for a given 

stimulation of the cells having various mutual information. In setting the total number of 

stimulations, the number of inputs and the sample size in each stimulation has a trade-off 

relationship. Using the 10 conditions, 0, 5, 10, 15, 20, 30, 40, 50, 60, 75 V, I examined the 

conditional probability distribution of Ca
2+

 amplitude in C2C12 myotubes for a given 

stimulation. The mutual information for each myotube is indicated at the top and the data are 

presented in order of increasing mutual information. Because of few leaps of the position of 

probability distribution between adjacent input conditions for cells with various different 

mutual information, I concluded that these 10 conditions were sufficient to avoid 

underestimation of the mutual information in a single-cell channel. 
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Fig. 5. Estimation of bias caused by sample size, the number of repetitions at each 

stimulation, calculated with a toy mathematical model. (A) A dose-response of the Hill 

model from a toy mathematical model of Ca
2+

 amplitude in response to 4 stimulations at each 

voltage. The model includes Gaussian noise with various standard deviations. In the Hill 

model, the response to the stimulation can be expressed as   
  

     
  

        

 
 

     
 

  
  

    
 (Eq. 5). In the example, KD is 30, Hill coefficient n is 4, s is a stimulation 

variable, r is a response variable,   is a Gaussian noise with a mean of 0, and the standard 

deviation is  .   is defined as the ratio of intradose variation to the total variation, the sum 

of intradose and interdose variations (Eq. 6). When the values of   are 2, 4, 8, 16, 32, 64, 

and 90%, the values of intradose variation   are 0.054, 0.077, 0.112, 0.165, 0.260, 0.504, 

and 1.135, respectively. Gaussian noise is added independently with each   for all doses. 
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Color indicates noise at each  :  2% (black), 4% (yellow), 8% (magenta), 16% (cyan), 32% 

(red), 64% (green), and 90% (blue). (B) The relationship of sample size (number of 

repetitions of the stimulation) and calculated mutual information by adding Gaussian noises 

with various standard deviations. Bars indicate the standard deviation. (C) Histogram of 

calculated   of each cell from the experimental data (Eqs. 6, 8, and 9). Red line indicates the 

empirical distribution. Dashed line indicates the given  . 

(D) The bias of mutual information when the sample size is 20. The value of    for the 

models is given,   is the standard deviation calculated from the given  , “percentile” is the 

percentage of the cells with smaller   than the given value. As    becomes smaller, the 

smaller   becomes.     and       are the mutual information when sample sizes are 20 

and 1000, respectively.              is the bias in the mutual information, and 

            is the bias in the average number of controllable states. At a sample size of 20, 

representing the number of repetitive stimulations used in the experiments, bias in the number 

of controllable states was an overestimation ranging from 0.14 to 0.24. Because the data with 

the C2C12 myotubes resulted in 2.32 controllable states for a single-cell channel and 1.70 

controllable states for a cell-population channel (determined from the optimal input), even the 

maximal bias (when   was 2%) does not affect the conclusion that a single-cell channel can 

transmit more information than a cell-population channel. Moreover, only ~8% of the 

myotubes had an   less than 2%. Therefore, I concluded that calculation bias existed but 

had little effect on results and interpretation and that the sample size of 20 repetitive 

stimulations at each voltage was adequate. 
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3.2 Information transmission of a single-cell channel in differentiated myotubes 

From the analysis of 551 C2C12 myotubes, I observed that Ca
2+

 amplitude generally 

increased as the voltage increased (Fig. 6A); however, the dose-response of the Ca
2+

 

amplitude varied from myotube to myotube (Fig. 6B). The variation of Ca
2+

 amplitude for 

each myotube was much smaller than that for the population (Total) (Fig. 6B, C). The larger 

variation of the population derived from large intercellular variation (Fig. 6D, Eqs. 2 and 3 in 

Materials and Methods). On average, intercellular variation accounted for 83% of the total 

variation, indicating that intercellular variation is much larger than intracellular variation for 

the C2C12 myotube Ca
2+

 response.  
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Fig. 6. Information transmission of a single-cell channel for electrical pulse stimulation 

into increases in Ca
2+

 amplitude in C2C12 myotubes. (A) Ca
2+

 response in individual 

differentiated C2C12 myotubes by repetitive stimulation (20 times) with 10 different 

intensities of electrical pulse stimulation (EPS). “Cell 1” to “Cell 3” are representative 

single-cell responses. “Total” indicates the responses in 551 myotubes. Each blue line 

indicates the Ca
2+

 response induced by single stimulation for each cell. Red lines indicate the 

summed response time course of the total cells. (B) Ca
2+

 amplitude versus voltage from the 3 

cells shown in (A). A dot indicates Ca
2+

 amplitude to each single stimulation. Ca
2+

 amplitude 

is defined as the maximum response subtracted by basal Ca
2+

 before stimulation (Fig. 3). 

Black line, the average dose-response. (C) Average Ca
2+

 amplitudes induced by 75V EPS in 

individual C2C12 myotubes and in the total population. The error bars indicate standard 

deviations. (D) The percentages of intercellular (white) and intracellular (black) variation in 

the total variation for the indicated voltage of EPS (Eqs. 2 and 3 in Materials and Methods). 

(E) Histogram of the mutual information between intensity of EPS and Ca
2+

 amplitude in 

single-cell channels. Red dashed line, the average of channel capacity of a single-cell channel 

(1.45 bits); red solid line, the average mutual information of a single-cell channel (1.15 bits); 

black dashed line, channel capacity of the cell-population channel (0.76 bits); black solid line, 

the mutual information of the cell-population channel (0.33 bits). I used the optimal input 

probability distribution for the summed response of the total cells to calculate the mutual 

information (Fig. 7A, B), and the optimal input probability distribution for each channel to 

calculate channel capacity (see Materials and Methods). 
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To quantify how much information about voltage can be encoded in the amplitude of a 

Ca
2+

 response in a single-cell channel and cell-population channel, I calculated the 

probability distribution of Ca
2+

 amplitudes at each voltage for each myotube, calculated the 

mutual information of each single-cell channel relating voltage with Ca
2+

 amplitude, then 

plotted the frequency of the mutual information values for the 551 myotubes (Fig. 6E). I then 

calculated both the average mutual information and the channel capacity for the system 

represented as a single-cell channel and as a cell-population channel.  I then calculated the 

average mutual information in a single-cell channel as 1.15 ± 0.52 bits (mean ± S.D.) (Fig. 

6E, red solid line. See Materials and Methods, Fig. 7A, B for details). Each n-bit indicates 2
n
 

states. The result indicates that among the 10 voltage conditions (10 states = 2
3.32

 ; that is 3.32 

bits), on average a single-cell can distinguish 2.32 conditions (2.32 states = 2
1.21

). I calculated 

the mutual information in the cell-population channel as 0.33 bits (Fig. 6E, black solid line), 

indicating that on average the cell-population channel cannot distinguish between even 2 

conditions. This means that as a population, the myotubes cannot distinguish even the 

presence or absence of stimulation. Thus, the single-cell channel transmitted more 

information than the cell-population channel, because the cell-population channel includes 

the high intercellular variation as source of uncertainty.  
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Fig. 7. The summed response of the total cells and the optimal input probability 

distribution for the summed response. (A) The summed response of the Ca
2+

 amplitudes at 

each voltage (0 – 75 V) for all 551 C2C12 myotubes. (B) The optimal input probability 

distribution for the summed response of the Ca
2+

 amplitude in all 551 C2C12 myotubes. (C) 

The summed response of contraction for all 50 skeletal muscle fibers stimulated from 0 – 4.5 

V.(D) The optimal input probability distribution for the summed response of contraction of all 

50 skeletal muscle fibers. 
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I calculated the channel capacity, which is the maximum amount of information that can be 

transmitted, of the single-cell channel as 1.45 bits on average (Fig 6E, red dashed line). 

Furthermore, there was a strong correlation (r = 0.947) between mutual information with the 

optimal input probability distribution for the summed response and channel capacity of 

single-cell channels (Fig. 8). Therefore, hereafter unless otherwise specified, I defined the 

“mutual information” as the mutual information calculated with the optimal input probability 

distribution for the summed response of the total cells, and I defined “channel capacity” as 

the mutual information calculated with the optimal input probability distribution for each 

channel. The channel capacity of the myotubes represented by a cell-population channel was 

0.76 bits (Fig. 6E, black dashed line), which is similar to the 1-bit capacity found in previous 

studies of cell-population channels (Table 1) (6-22). I obtained similar results for the mutual 

information and channel capacities for single-cell channels and cell-population channels in 

two independent clones of C2C12 myotube lines stably expressing GCaMP6f (Fig. 9A, B). 

Additionally, these two clones also exhibited greater intercellular variation than intracellular 

variation (Fig. 9C, D).  
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Fig. 8. Mutual information with the optimal input probability distribution for the 

summed response and channel capacity of single-cell channels in C2C12 myotubes. A 

dot indicates the mutual information calculated with the optimal input probability distribution 

for the summed response and the channel capacity of single-cell channels. The black line 

indicates y = x; the blue line indicates the regression line (y = 0.993 x – 0.285 with 

correlation coefficient, 0.947). I used the optimal input probability distribution for the 

summed response of the total cells to calculate the mutual information, and I used the optimal 

input probability distribution for each single-cell channel to calculate the channel capacity. 
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Fig. 9. Mutual information in two other independent clones (#2, #3) of C2C12 myotubes 

stably expressing GCaMP6f. (A and B) Histograms of mutual information of single-cell 

channels in clone #2 (A) and #3 (B). The numbers of cells of clone #2 and #3 were 34 and 86 

respectively. Red solid line, the average of the mutual information of single-cell channels 

(1.19 bits for clone #2; 0.85 bits for clone #3); red dashed line, the channel capacities of 

single-cell channels (1.43 bits for clone #2; 1.02 bits for clone #3); black solid line, channel 

capacities of cell–population channels (0.75 bits for clone #2; 0.38 bits for clone #3); black 

dashed line, the mutual information of cell–population channels (0.55 bits for clone #2; 0.26 

bits for clone #3 (B). In both clones, the average of the mutual information for single-cell 

channels was larger than that for a cell-population channel. (C and D) The percentages of 

intercellular (white) and intracellular (black) variations in the total variation by the indicated 

voltage of EPS in a clone #2 (C) and #3 (D) (Eqs. 2 and 3). In both clones, intercellular 
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variations were larger than intracellular variations. I used the optimal input probability 

distribution for the summed response of the total cells to calculate the mutual information, 

and I used the optimal input probability distribution for each channel to calculate the channel 

capacity (Fig. 9A, B, dashed lines). 
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3.3 Information transmission of a multiple-cell channel 

In the cell-population channel, intercellular variation is regarded as uncertainty of signal 

intensity and represents noise. Therefore, the mutual information in the cell-population 

channel is lower than that in the single-cell channel. In contrast, by representing the 

single-cell channels as a multiple-cell channel, intercellular variation enables individual 

single-cells to encode different information, such as different signal intensities. Thus, I 

predicted that a multiple-cell channel composed of a sum of single-cell channels encodes 

more information than a single-cell channel (Fig. 10A). To examine this possibility, I 

calculated the mutual information of a 2-cell channel for every pair of myotubes (Fig. 10B). 

The 2-cell channel is a sum of two different single-cell channels (Eq. 10 in Materials and 

Methods). I summed the responses of two paired cells to calculate the probability distribution 

of the summed response, which I used as the response of a 2-cell channel to calculate the 

mutual information of a 2-cell channel. The average mutual information of the 2-cell channel 

was 1.55 ± 0.43 bits (mean ± S.D.) (Fig. 10B, black line). This result indicated that on 

average 2.94 conditions can be distinguished by a 2-cell channel. Thus, a 2-cell channel can 

transmit more information and distinguish more conditions than a single-cell channel, which 

only distinguished 2.32 conditions on average (Fig. 10B, red line). Moreover, increasing the 

number of cells in a multiple-cell channel increased the mutual information (Fig. 10C, blue). 

In the myotube experiments with 10 stimulation intensities, the mutual information plateaued 

with the inclusion of ~2
7
 (=128) myotubes at 3.13 bits, because the mutual information 

approached the amount of information of input (3.32 bit). Consequently, the mutual 
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information for a multiple- cell channel with greater than 2
7
 cells is likely underestimated.  

 

 

Fig. 10. Information transmission of a multiple-cell channel composed of single-cell 

channels. (A) A multiple-cell channel showing that the output of a multiple-cell channel is 

the sum of the output of single-cell channels. S, stimulus; M, multiple single cells; R, 

response. (B) Histogram of the mutual information of a multiple-cell channel comprised of 

2-cell channels (Eq. 10 in Materials and Methods). Black line, the average mutual 

information of 2-cell channels (1.55 bits); red line, the average mutual information of 

single-cell channels (1.15 bits). (C) The mutual information of a multiple-cell channel 

according to the number of cells included as single-cell channels. Blue line, the average 

mutual information of a multiple-cell channel composed of single-cell channels from the 551 

different myotubes, defined as        . Red lines, the mutual information of a multiple-cell 

channel composed of the same myotube by resampling responses repetitively from the same 

myotube, defined as        . Black line, the average of        . Bars indicate standard 

deviation for both black and blue lines. 
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3.4 Increase in information transmission by intercellular variation 

To examine the contributions of intracellular and intercellular variations to the increase in the 

mutual information, I created a virtual multiple-cell channel composed of multiple instances 

of the same myotube. To generate this virtual channel, I resampled responses repetitively 

from the same cell, which eliminated intercellular variation. I then calculated the mutual 

information of a multiple-cell channel for each of the 551 myotubes (Fig. 10C, red). Hereafter, 

I define the mutual information of a multiple-cell channel composed of different myotubes as 

        and that of the same myotube as        . For a 2-cell channel, about half of the 

myotubes had mutual information         that was larger than the average         

(compare number of red lines with blue value at 2
1
 on x-axis in Fig. 10B). However, as the 

number of myotubes in a multiple-cell channel increased, the average of         (Fig. 10C, 

blue) gradually exceeded most of         (Fig. 10C, red). Because         includes 

intercellular variation and         does not, intercellular variation appeared a key 

component for information encoding of a multiple-cell channel.  

To understand how the mutual information of a multiple-cell channel exceeded that of a 

single-cell channel, I used another mathematical expression for the mutual information: 

                    

     is the amount of information of the response;      is defined as the average 

logarithm of the number of distinguishable states of responses.        is the amount of 

information in the response for a given stimulation intensity;        is defined as the 

average logarithm of the number of response observed for a given stimulation intensity. The 
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mutual information becomes larger as      increases or        decreases.      can 

increase by averaging the different dose-responses of multiple-cells because the 

distinguishable number of responses increases. When different dose-responses, like those of 

Ca
2+

 increase of myotubes (Fig. 6B), are averaged, the dose-response relationship is graded 

(Fig. 11A, C). I called this effect “response diversity effect”. On the other hand,        can 

decrease if the number of cells in the multiple-cell channel increases, because the variance in 

the averaged response decreases (Fig. 11A-C). I called this effect “large number effect”. For a 

pair of identical cells,      cannot increase (Fig. 4B); thus, for      to change, there 

must be intercellular variation (Fig. 4A). For a pair of identical cells, the only way for the 

mutual information to increase is for the variance to decrease by testing the cell more times. I 

examined the contribution of a change in     ,        from the effect of intercellular 

variation and a change in       ,         to the increase in the mutual information of a 

multiple-cell channel with different myotubes or identical myotubes (Fig. 11D, E, Eqs. 14, 15, 

17, and 18 in Materials and Methods). Both       and          contributed to 

         for the multiple-cell channel with different myotubes (Fig. 11D). Thus, both the 

response diversity effect and large number effect contributed to the increase in the mutual 

information of a multiple-cell channel composed of different myotubes. By contrast, only 

         contributed to          (Fig. 11E), indicating that only the large number effect 

contributed to the increase in the mutual information of a multiple-cell channel with the 

identical myotubes. The rate of the increase in         as the number of myotube increased 

was larger than that of the increase in         from 2
2
 to 2

6
 myotubes. This difference in the 
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rate of increase occurred in the different myotube model       increased. The decrease 

      that occurred for multiple-cell channels composed of more than 2
5
 cells (Fig. 11D, E) 

is an artifact caused by underestimation of       from using discrete input probability 

distribution (Fig. 12). If the input probability distribution is continuous,       increases 

monotonically as the number of cells increases (Fig. 12). Thus, with a continuous input 

probability distribution,       would contribute to the increase in the mutual information 

for the entire range in multiple-cell channel with different myotubes. Intercellular variation 

causes the increase in      ; therefore, intercellular variation increases the information 

transmission of a multiple-cell channel. 
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Fig. 11. The response diversity effect and the large number effect of 2 cells with different 

or identical responses on the mutual information of a 2-cell channel. (A) The effect of 

averaging a pair of cells with different dose-response relationships. (B) The effect of 

averaging a pair of cells with identical dose-response relationships. (C) The effects caused by 

intercellular variation and increase in a number of cells. (D) The contribution of the 

difference in the average     ,      , and the difference in the average        , 

          to differences in the average        ,            in a multiple-cell channel 

composed of different single-cell channels in the C2C12 Ca
2+

 response. The differences were 

defined by those between     ,        ,         for each number of cells and those 

whose size is 1 (Eqs. 16, 17, and 18 in Materials and Methods). (E) The contribution of 

      and          to           in a multiple-cell channel composed of the same 

single-cell channel. I used the optimal input probability distribution for the summed response 

of the total cells to calculate the mutual information. 
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Fig. 12. The effect of discrete and continuous input on       and          in a 

binary response model. (A) A binary response model, with a threshold that is different 

among individual cells and evenly distributed from 0 to 1 (Eq. 19) (Materials and Methods). 

Each cell responds 0 if s is smaller than the threshold and responds 1 if s is larger than the 

threshold. Gaussian noise with a standard deviation of 0.1 was added independently to the 

total cells and to the stimulation. (B) Discrete uniform input probability distribution of 0, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. (C) Continuous uniform input probability distribution 

from 0 to 1. (D) The contribution of       and          to the mutual information in a 

multiple-cell channel composed of different single-cell channels,         , with discrete 
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input probability distribution. As the number of cells increases,       increases and then 

decreases. The differences         ,      , and         for each number of cells were 

defined by the differences from those when the number of cells is 1 (Eqs. 16, 17, and 18). (E) 

The contribution of       and          to the mutual information in a multiple-cell 

channel composed of different single-cell channels,         , with continuous input 

probability distribution. As the number of cells increases,       increases monotonically. 

The differences         ,        and         for each number of cells were defined by 

the differences from those when the number of cells is 1 (Eqs. 16, 17, and 18).  
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3.5 Information transmission in isolated skeletal muscle fibers 

The Ca
2+

 response triggers skeletal muscle contraction, representing a final biological output. 

To evaluate information transmission in skeletal muscle contraction, isolated single fibers 

from FDB muscle of mice were isolated and electrically stimulated to induce contraction as a 

physiological output (28) by the collaboration with Tokyo Metropolitan University (see 

Acknowledgements). Contractions in response to 10 repetitive stimulations at 32 different 

voltages were measured and I calculated the mutual information between EPS and 

contraction (Fig. 13, 14) (Materials and Methods). Similar to the C2C12 myotube Ca
2+

 

response, for the same voltage, contraction varied from fiber to fiber (Fig. 13). The variation 

of contraction for each fiber was much smaller than that across the population (Fig. 13B). 

The larger variation of the fiber population derived from a large intercellular variation (Fig. 

14A, Eqs. 2 and 3 in Materials and Methods). Similar to the C2C12 myotubes, on average, 

intercellular variation accounted for 86% of the total variation. 
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Fig. 13. Contraction of single muscle fibers. (A) Contraction in individual fibers in 

response to 10 times-repetitive stimulation with 32 different voltages of EPS from 0 – 4.5 V. 

“Cell 1” to “Cell 3” are representative of the contraction of single fibers. “Total” indicates 

responses in 50 fibers. Each blue line indicates a time course of the contraction by a single 

stimulation for each cell. Red lines indicate the averaged time course. (B) Dose-responses of 

contraction for the data shown in (A). A dot indicates maximal contraction induced by each 

single stimulation. Black line, the average dose-response. 
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As I did for the C2C12 myotubes, I calculated the summed response of all of the fibers (a 

total of 50) and calculated the optimal input probability distribution of the summed response 

of the total cells and used this to determine channel capacity (Fig. 7C, D). The experimental 

conditions and outputs are different, thus, the values for the mutual information for 

EPS-induced contraction of single-fiber cells and those for EPS-induced Ca
2+ 

amplitude in 

C2C12 myotubes are not directly comparable. I calculated the mutual information between 

EPS and contraction in a single-cell channel for each cell (Fig. 14B) as 0.74 ± 0.29 bits (mean 

± S.D.) (Fig. 14B, red solid line). I also calculated the mutual information in the 

cell-population channel and found that the mutual information of the cell-population channel 

was 0.25 bits (Fig. 14B, black solid line). Thus, similar to the mutual information for 

EPS-induced C2C12 myotube Ca
2+

 response, the mutual information for EPS-induced fiber 

contraction is greater when evaluated as a single-cell channel than as a cell-population.  

Using the optimal input probability distribution for the summed response of the total fibers, 

I calculated the mutual information of 2-cell channels for each pair of fibers. The average 

mutual information of the 2-cell channel was 1.01 ± 0.32 bits (mean ± S.D.) (Fig. 14C, black, 

Eq. 10 in Materials and Methods), indicating that on average 2.02 conditions can be 

distinguished by a pair of fibers. Additionally, a 2-cell channel can transmit more information 

(2.02 conditions) than a single-cell channel for which only 1.67 conditions can be 

distinguished on average. As the number of the fibers composing the multiple-cell channel 

increased, the mutual information of the multiple-cell channel increased (Fig. 14D, blue), 

consistent with the increased information transmission that I observed by increasing the 
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number of the cells in the multiple-cell channel for the C2C12 myotubes. Using the same 

method that I used for the C2C12 myotube data (Fig. 10C), I generated         for 50 fibers 

(Fig. 14D, red lines). For a 2-cell channel, about 40% of         was larger than the average 

of        . However, unlike the C2C12 myotube multiple-cell channel, when the number of 

cells in a multiple-cell channel increased, the percent of         (Fig. 14D, red) that 

exceeded the average         (Fig. 14D, blue) did not become smaller. However, at 50, the 

sample size of the single fibers is smaller than the 551 of C2C12 myotubes, thus I cannot 

conclude that         would not become larger than         if calculated for a larger 

number of cells. Therefore, I extrapolated the standard deviation of an n-cell summed 

response to larger numbers of cells and calculated         using this n-cell response (Fig. 

14D, green, Eqs. 11, and 12 in Materials and Methods). This n-cell calculation showed the 

expected reduction in the percent of         (Fig. 14D, red) that exceeded the average of 

the extrapolated         (Fig. 14D, green). Thus, the muscle fiber system also transmitted 

more information as the number of cells of the multiple-cell channel increased as a result of 

the incorporation of intercellular variation.  

I examined the contribution of       and          to the increase in mutual 

information of a multiple-cell channel (Fig. 14E, F, Eqs 14, 15, 17 and 18 in Materials and 

Methods). The results were the same as for the C2C12 myotube system: Both       and 

         contributed to the extrapolated          (Fig. 14E), whereas only          

contributed to          (Fig. 14F). Thus, for both fiber contraction and the Ca
2+

 response in 

C2C12 myotubes, both the large number effect and the response diversity effect increased 
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information transmission of a multiple-cell channel.   

 

 

Fig. 14. Information transmission of a single-cell channel and a multiple-cell channel for 

electrical pulse stimulation into contraction of single skeletal muscle fibers. (A) The 

percentages of intercellular (white) and intracellular (black) variation in the total variation for 

the indicated voltage of EPS in single fibers (Eqs. 2 and 3 in Materials and Methods). The 

average intracellular variation was 86% of the total variation across all voltages. (B) 

Distribution of the mutual information between intensity of EPS and contraction in single-cell 

channels. Red dashed line, the average channel capacity of a single-cell channel (1.38 bits); 

red solid line, the average mutual information of a single-cell channel (0.74 bits); black 

dashed line, channel capacity of a cell-population channel (0.36 bits); black solid line, mutual 

information of a cell-population channel (0.25 bits). (C) Histogram of the mutual information 

of multiple-cell channel comprised of 2-cell channels (Eq. 10 in Materials and Methods). 
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Black line, the average mutual information of a 2-cell channel (1.01 bits); red line, the 

average mutual information of a single-cell channel (0.74 bits). (D) Mutual information of a 

multiple-cell channel according to the number of cells included as single-cell channels. Blue 

line, the average mutual information of a multiple-cell channel composed of different cells, 

       . Bar indicates standard deviation. Blue line ends at 2
5
 cells because the sample size 

(the number of single-fiber) is 50. Red lines, the mutual information of a multiple-cell 

channel composed of 50 copies of the same cell by resampling responses repetitively from 

the same cell,        . Black line, the average        . Bar indicates standard deviation. 

Green line, mutual information of an extrapolated multiple-cell channel comprised of 

different cells generated by extrapolating the standard deviation to the number of cells (Eq. 

11 in Materials and Methods). (E) The contribution of       and          to 

          in a multiple-cell channel composed of different single-cell channels. (Eqs. 16, 17 

and 18 in Materials and Methods). (F) The contribution of       and          to 

          in a multiple-cell channel composed of copies of the same single-cell channel. I 

used the optimal input probability distribution for the summed response of the total cells to 

calculate the mutual information and the optimal input probability distribution for each 

channel to calculate channel capacity (dashed lines in B). 
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3.6 Information transmission of human facial muscle contraction 

I next examined information transmission of muscle contraction in vivo. Human facial muscle 

contractions by electromyography in response to 10 repetitive EPS of facial nerves at 20 

different currents in five human patients were measured during intraoperative 

neurophysiological monitoring (Fig. 15A, 16A) by the collaboration with Tokyo University 

Hospital (see Acknowledgements). I calculated the peak-to-peak amplitude of the 

electromyogram (Fig. 16B), a measure of muscle contraction (34, 35) (Fig. 15B-D, 17). I 

calculated the mutual information between EPS and contraction (Fig. 15B-D). I used the 

optimal input probability distribution to each muscle contraction to calculate maximum 

mutual information, i.e. channel capacity. The channel capacities of facial muscle contraction 

were similar, between around 2 to 3 bits for each muscle (Fig. 15, 17). Because this is more 

information than I determined were transmitted for the Ca
2+

 response in single C2C12 

myotubes (1.45 bits) and for contraction of single-fiber cells (1.38 bits) (Fig. 6E, 14B), 

mutual information for facial muscle contraction appeared best determined from a 

multiple-cell channel. 
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Fig. 15 Information transmission of human facial muscle contraction. (A) Diagram of 

intraoperative continuous monitoring of evoked facial nerve electromyograms in patients 

undergoing acoustic neuroma surgery. EPS is electrical pulse stimulation, Oculi. is orbiculis 

oculi muscle, and Oris. oribiculis oris muscle. (B-D) Dose-response of human facial muscle 

contraction by EPS in the orbiculis oculi muscle and up and down orbiculis oris muscles. The 

channel capacity in each muscle is shown. A dot indicates peak-to-peak amplitude to each 

single stimulation. Peak-to-peak amplitude is defined as the maximum response of the 

electromyogram subtracted by the minimum response (Fig. 16B). The results of other four 

patients are shown in Fig. 17. 
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Fig. 16. Contraction of human facial muscles. (A) Contraction of human facial muscles 

(Oculi, Oris. up, Oris. down) in response to 10 times-repetitive stimulation with 20 different 

currents of EPS from 0.1 - 2.0 mA in patient #1 (Fig. 15), #2 (Fig. 17A), #3 (Fig. 17B), #4 

(Fig. 17C), and #5 (Fig. 17D). Each blue line indicates a time course of the contraction by a 

single stimulation for each cell. Red lines indicate the averaged time course. (B) Peak-to-peak 

amplitude is defined as the maximum response of the electromyogram subtracted by the 

minimum response. 
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Fig. 17. Information capacity of human facial muscle contraction in the patients #2 and 

#3. Dose-response curves for human facial muscle contraction in patients #2 (A),#3 (B), #4 

(C) and #5 (D). The channel capacity in each muscle is shown.   
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All skeletal muscle fibers in a muscle do not receive the same stimulation. A muscle is 

innervated and controlled by multiple motor neurons. A set of a motor neuron and innervated 

skeletal muscle fibers is known as a motor unit (Fig. 18A) (36). Motor neuron activity varies 

according to activation threshold, resulting in contraction of a skeletal muscle by summing 

the contraction of skeletal muscle fibers in each motor unit, a process known as recruitment 

(24). As the stimulation becomes stronger, the more motor units are recruited and muscle 

contraction becomes stronger. Thus, the mutual information between EPS and muscle 

contraction involves not only the effect of skeletal muscle fiber contraction but also that of 

recruited motor neurons. Therefore, it remains unclear whether the intercellular variation of 

skeletal muscle fibers could contribute to the increase in the mutual information of a skeletal 

muscle even in the presence of the effect of recruitment of motor neurons.  

 

3.7 Intercellular variation can contribute to increase in information transmission even 

in the presence of the effect of motor neurons 

To address this issue, I constructed a mathematical model of three serial channels considering 

the recruitment of motor units (Fig. 18A). In this model, S denotes EPS, N denotes the 

response of motor neurons, M denotes the contraction of muscle fibers, and R denotes the 

summed muscle contraction. In the channel from S to N, N remains zero below a threshold of 

S, θ, and monotonically increases above θ (Fig. 18B, 19). In the channel from N to M, I 

constructed the channels with or without intercellular variation, and examined the 

contribution of the intercellular variation of skeletal muscle fibers (Fig. 18C, D). In the 
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channel with intercellular variation, responses were resampled from different cells (Fig. 18C). 

In the channel without intercellular variation, responses were resampled from the same cell 

(Fig. 18D). In the channel from M to R, muscle contraction R is the sum of M, the sum of all 

muscle fibers. I calculated mutual information between EPS S and muscle contraction R. 

Mutual information with intercellular variation,         (Fig. 18E, blue), was larger than 

most of mutual information without intercellular variation,         (Fig. 18E, red), 

indicating that intercellular variation of muscle fiber contraction can contribute to 

information transmission of muscle contraction, even in the presence of the effect of recruited 

motor neurons. 
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Fig. 18 The mathematical model of muscle contraction including motor neurons.  

(A) EPS-dependent muscle contraction through motor neurons (left). Three serial channels 

from stimulus S to neuron N, from neuron N to motor unit M, and from motor unit M to 

response R (right). (B) The channel from S to N. The response of motor neurons with the 

different thresholds, θ. Note that each neuron has a different threshold. Because 

experimentally I used 10 steps of stimulation intensity, I set the numbers of thresholds as 

divisors of 10: 1, 2, 5, and 10 (Fig. 19). (C, D) The channel from N to M with intercellular 

variation (C) and without intercellular variation (D). The dose -responses of muscle fibers are 

controlled by the neurons with a certain threshold. I used Ca
2+

 response in C2C12 myotubes 

as muscle fiber response, and the responses were resampled from different cells (C) or from 

the same cell (D). I set 64 muscle fibers controlled by each neuron with the same threshold 

(Fig. 21). (E) The mutual information with intercellular variation,         (blue), and 

without intercellular variation,         (red), and the average of         (black). Bars 

indicate standard deviation for both black and blue lines.  
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Fig. 19. The channel from S to N with different numbers of neurons. (A–D) The numbers 

of neurons are 1 (A), 2 (B), 5 (C), and 10 (D). I used 10 voltages for stimulation intensity S; 0, 

5, 10, 15, 20, 30, 40, 50, 60, and 75 V (Fig. 6). I modeled N as a nonlinear transformation of S 

on a discrete space composed of the 10 voltages according to the corresponding threshold. I 

set the number of thresholds as divisors of 10: 1, 2, 5, and 10. N is an effective voltage given 

to M. When the number of neurons is 1 (A), θ1 is 0 V and N monotonically increases, 

meaning that N is equal to S. When the number of neurons is 2 (B), θ1 is 0 V and θ2 is at 30 V. 

This means that for N2, N2 is 5 V when S is 40 V, N2 is 10 V when S is 50 V, etc. I set θ as 0, 

10, 20, 40, and 60 V for five thresholds (C), and as 0, 5, 10, 15, 20, 30, 40, 50, 60, and 75 V 

for ten thresholds (D). Note that interval of voltages in the x- and y-axes are not equal. 
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In this model, I did not include noise in the channel from S to N. However, there must be 

noise and response of neurons fluctuates. Therefore, the contribution of neurons is 

overestimated and the contribution of intercellular variation is underestimated in our 

calculations. The reduction in the difference between         and         that occurred 

with the increase in the number of neurons was an artifact caused by the number of steps of 

stimulation intensity used in the experiments (Fig. 20). The difference between         and 

        should remain regardless of the number of neurons.   
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Fig. 20. The effect of the number of steps of stimulation intensity on mutual information 

with or without intercellular variation. (A-B) The mutual information with intercellular 

variation,         (blue), and without intercellular variation,         (red), and the 

average of         (black) when the number of steps of stimulation intensity is 10 (A) and 5 

(B). (C) The difference between         and        ,        , when the number of steps 

of stimulation intensity is 10 (solid) and 5 (dashed).  When the number of steps of 

stimulation intensity is 10,         becomes close to 0 when the number of neurons is 10. 

When the number of steps of stimulation intensity is 5,         becomes close to 0 when 

the number of neurons is 5. In both cases,         becomes close to 0 at the number of 

neurons reaches the number of steps of stimulation intensity. The reduction in the difference 

between         and         according to the increase in the number of neurons is an 

artifact caused by the number of steps of stimulation intensity.  
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Fig. 21.         and         with different numbers of muscle fibers controlled by 

each neuron. (A-G) The mutual information is plotted with intercellular variation,         

(blue), and without intercellular variation,         (red), and the average of         

(black) with indicated number of muscle fibers controlled by each set of neurons. I performed 

a two-way ANOVA with number of neurons and group (with/without intercellular variation) 

as the independent variables, and mutual information as the dependent variable (see Methods) 

for each number of muscle fibers controlled by each neuron. The Bonferroni adjusted 

p-values (n = 7; the number of panels) between mutual information and group are shown in 

each panel. The mutual information with or without intercellular variation is significantly 

different when a number of muscle fibers controlled by each neuron is more than 4, 

indicating that the intercellular variation can contribute to increase in information capacity 

even when a small number of muscle fibers are controlled by neurons. Therefore, it is 

physiologically plausible that intercellular variation can contribute to increase in information 

capacity.  
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4. Discussion 

4.1 Biological meaning of the output of multiple-cell channels 

In this study, I examined the information transmission of a muscle composed of multiple 

muscle fibers for which the output (contraction) is the sum of responses of individual cells. 

Another biological example is the regulation of hormone secretion, for which the total 

amount of a hormone released is the sum of the hormone secreted from individual cells. The 

analysis in this study indicated that, like muscle contraction, secretion of a hormone can be 

regulated more precisely in the presence of intercellular variation than in the absence. When 

single-cell response is switch-like, both intracellular variation and intercellular variation can 

contribute to information transmission capacity of the multiple-cell channel by stochastic 

resonance (37). The results showed that the intercellular variation can increase information 

capacity through the response diversity effect even when single-cell response is not 

switch-like. 

 

4.2 Gradualness of the dose-response of cell-population 

I found that intercellular variation can serve as information rather than noise. Intercellular 

variation increased information transmission through a response diversity effect: The 

dose-response of a multiple-cell channel becomes more gradual than that of a single-cell 

channel, resulting in increase in information entropy, H(R). A similar gradualness of the 

response at a cell-population level occurs in progesterone-induced mitogen-activated protein 

kinase (MAPK) activation in Xenopus oocytes (38). MAPK activation in individual cells 
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shows all-or-none responses, and the thresholds for MAPK activation differ between 

individual cells. Therefore, the dose-response relationship for MAPK activation at the 

cell-population level becomes gradual. If the amount of secreted progesterone gradually 

changes in response to environmental and nutrient conditions, the number of mature oocytes 

can be gradually controlled. The response diversity effect may also contribute to the precise 

regulation of the number of mature oocytes in response to changes in environmental and 

nutrient conditions. Because the experiments with MAPK activation were “snapshot” 

experiments (Fig. 1D), those data cannot differentiate whether the different responses 

between individual cells is derived from intercellular variation or from intracellular variation. 

Dueck et al. proposed a hypothesis that graded population response mediated by individual 

variation can be functionally important mechanism bridging the discrete outputs of a cell and 

quantitative response in their essay (39), which is similar to the idea of response diversity 

effect. However, it is not explicitly mentioned whether the individual variation is derived 

from intercellular variation or from intracellular variation. 

 

4.3 Multiple-cell channel with intercellular variation 

Some previous studies evaluated the effect of the cell-population size on the mutual 

information of multiple-cells. However, intercellular and intracellular variations were not 

distinguished in those works because they did not stimulate the cells repetitively. Cheong et 

al. (14) showed that the mutual information of a multiple-cell channel increases as the 

number of cells increases, though response diversity effect and large number effect were not 
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distinguished. Sudarman et al. (21) showed that variation in the single-cell response can 

increase mutual information of the response of multiple-cells; however, the increase in 

mutual information in their work was due to stochastic resonance.  

Thus, the contribution of intercellular variation to the gradual dose-response and to the 

increase in mutual information by large sample size did not be investigated. Ferrell et al. 

showed a that a cell-population level analysis could produce a gradual dose-response 

relationship (38), whereas Cheong et al. (14) and Sudarman et al. (21) showed that 

information transmission in multiple-cell channels is greater than that of single-cell channels. 

Here, I integrated these two concepts— gradual dose-response at cell-population level and an 

increase of information transmission in multiple-cells— into the concept of the response 

diversity effect, which explained how intercellular variation can increase information 

transmission. 

 

4.4 Summaty and conclusion 

In skeletal muscle cells, I found that intracellular variation is small and intercellular 

variation is large, which means that each cell responds accurately and reproducibly to a 

particular stimulus, but their responses differ from each other. Under such conditions, 

intercellular variation can have a large contribution to information transmission capacity. 

Intercellular variation can be derived from the differences in gene expression and protein 

abundance among cells (2, 3), as well as metabolic differences. I anticipate that many 

biological systems use a combination of intracellular and intercellular variation, in different 
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ways, to precisely control responses to a range of stimuli. Thus, multiple-cell channels 

provide the best representation for determining information capacity of biological tissues and 

organs. The ability to calculate and model information capacity will enable researchers to 

explore tissue-level responses, understand how biological variation of cells of the same type 

contribute to the dynamic range of stimulus-response profiles, and investigate how cellular 

dysfunction that alters intercellular variation can contribute to disease, such as occurs in 

muscular dystrophy or diseases associated with impaired muscle contraction.   
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