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Abstract 
The recent prevalence of amplicon and shotgun-metagenome sequencing has been 

producing numerous prokaryotic community structure datasets. However, methods for 

interpreting those structures from ecological perspectives are still insufficient. High-

rank taxonomies such as phyla and classes are often used to interpret community 

structures, but these prokaryotic taxonomies are often decoupled from their ecological 

and physiological traits. On the other hand, available prokaryotic trait databases are 

heavily biased to cultivated and well-characterized species, which are rare in nature. 

Here, I propose habitat-based analysis as a powerful and intuitive method for interpreting 

prokaryotic community structure datasets. First, I systematically processed public 

shotgun metagenome datasets and constructed a cultivation- and PCR-bias free database, 

ProkAtlas, that comprehensively links 16S rRNA gene sequences to prokaryotic habitats. 

Then, I developed a computational pipeline for habitat-based analysis of given 

prokaryotic community structure datasets. After confirmation of the method 

effectiveness using 16S rRNA gene sequence datasets from pure-cultured isolates, 

single-cell amplified genomes, and the Earth Microbiome Project, I applied my method 

to three datasets from environments of particular interest: coastal soil samples with 

salinity gradients, lake water samples with different salinity concentrations, human 

infant gut microbiome samples, developing soil samples along retreating glacier, and 

potentially polluted river-water samples. As a result, the habitat-based analysis was 

proved to give clear ecological interpretation of chemical characteristics, community 

assembly processes, and pollution sources. The ProkAtlas database and pipeline are 

available at https://msk33.github.io/prokatlas.html. 
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Chapter 1 | General Introduction 
1-1 Exploration of microbial ecology — a brief history 

Since the invention of the microscope, the astounding abundance and diversity of 

microbes have been reported in various environments (Barberán et al., 2017; Thompson 

et al., 2017). Today, microbes are recognized as the largest reservoir of genetic diversity 

on Earth, as well as indispensable players in maintaining ecosystems on any scale. 

Microbial ecology in both open-system and symbiotic environments has therefore been 

extensively studied in the context of fundamental and practical sciences (Antwis et al., 

2017; Thompson et al., 2017). �
     Historically, the ecology of environmental microbes has been studied through 

cultivation and isolation methods. This approach is part of a long tradition, dating back 

to the mid-19th century (Hitchens and Leikind, 1939). Microbes are isolated from 

environmental samples using a solid or liquid medium, and their traits (including 

physiology and metabolic function) are analyzed. Cultivation-dependent studies have 

increased our knowledge of individual microbial community members (Barberán et al., 

2017; T. Tanaka et al., 2014); however, these studies are necessarily limited to culturable 

species, which are in fact rather rare in the environment (Steen et al., 2019). Because of 

this limitation, overall microbial community structures in the environment for a long 

time remained unknown, and the environmental microbial community was once 

regarded as a “black box” (Fierer et al., 2009). Although there was no doubt about the 

functionality of microbial communities, their detailed compositions were a mystery; and 

this difficulty persisted until the development of new technology in the 1990s.�
From the 1990s, the development of molecular biological technology enabled 

researchers gradually to gain insight into environmental microbial community 

structures (Liu et al., 1997; Moyer et al., 1994). The basic procedure involves chemically 

extracting DNA molecules from environmental samples and analyzing the extracted 

DNA (or its amplicons, obtained by PCR), with the assumption that the extracted DNA 

is representative of the microbial community in the source sample (Handelsman et al., 

1998; Venter et al., 2004). This is therefore a culture-independent approach, which 

enabled microbial ecologists to quantitatively evaluate the overall composition of 

microbial community, including yet-to-be cultured microbes.�
While this culture-independent approach has undoubtedly expanded our view of 

microbial diversity, it has also posed a new problem regarding the handling of data. 
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Microbial community structure data, generated by culture-independent studies, are 

characterized by their high dimensionality (as a consequence of extreme diversity of 

microbes in the environment) (Bálint et al., 2016; Lynch and Neufeld, 2015). Because of 

this high dimensionality, microbial ecologists have struggled to effectively summarize, 

use, and interpret the community structure data. In the following two sections, I review 

the history of culture-independent approaches and struggles for effective use of the large 

data.�
 

1-2 Advances in culture-independent studies 

While the basic procedure for culture-independent microbial community analysis has 

not been updated for decades (Fierer, 2017; Hiraoka et al., 2016; Moyer et al., 1994; Venter 

et al., 2004), the methodology of DNA analysis has advanced remarkably. In the course 

of such methodological advance, two different types of study emerged in microbial 

ecology.�
 

Biodiversity-ecosystem function studies. Until around 2010, molecular methods for 

detecting single nucleotide polymorphisms, such as restriction fragment length 

polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE), had been 

commonly used (Moyer et al., 1994; Muyzer et al., 1993; Muyzer and Smalla, 1998). 

Unlike high-throughput sequencing, these techniques do not provide detailed 

nucleotide sequences of microbial community members; however, they do provide 

quantitative information on microbial community diversity. Band patterns obtained by 

RFLP and DGGE clearly indicate the alpha-diversity of each microbial community, and 

beta-diversity between pairs of communities (Figure 1-1) (Girvan et al., 2005; Wertz et 

al., 2006). �
Although taxonomic information was unavailable (without conducting labor-

intensive clone library analysis), these simple diversity evaluations provided 

mechanistic insights into the interplay between microbial communities and their 

environment (Girvan et al., 2005; Wertz et al., 2006), which is referred to as the 

biodiversity-ecosystem function (BEF) relationship. Biogeochemical studies, for example, 

regard soil microbial community structures as potential explanatory variables of 

biogeochemical processes (e.g. nitrification rate, carbon flux from the ground, etc.); in 

fact, many of them conclude that soil microbial community structures significantly 
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improve the predictability of biogeochemical processes, and therefore they should be 

incorporated into models of global biogeochemical cycling (Fierer et al., 2010; Graham 

et al., 2014; Isobe et al., 2018). Human gut microbiomes are also regarded as an 

explanatory variable of certain aspects of host phenotype, such as obesity and immune 

response (Li et al., 2008).�
 

Descriptive studies of microbial community structures. Subsequently from 2008, high-

throughput sequencers, such as the Roche 454 and the Illumina MiSeq/HiSeq, gradually 

reigned microbial community ecology (Schuster, 2008). As the cost of high-throughput 

sequencing has gradually decreased, shotgun metagenomic sequencing and amplicon 

sequencing have seen more common use among microbial ecologists (Bálint et al., 2016). 

Such techniques can reveal the microbial community structures in fine-scale taxonomic 

resolutions (Figure 1-2), and microbial diversity in a number of environments has been 

investigated and described (Gilbert et al., 2018; Thompson et al., 2017). For example, in 

the field of soil microbial ecology, biogeographical studies have successfully 

documented the global and regional distribution patterns of soil microbes (Caporaso et 

al., 2011; Lauber et al., 2009). Similarly, three distinct patterns of global variation in 

human gut microbiomes, known as enterotypes, have been identified (Arumugam et al., 

2011). �
 

1-3 What microbial ecology has missed 

As reviewed above, microbial ecology has been driven by technological advances in 

molecular biology during the past two decades. Microbial ecologists have elucidated the 

contribution of microbial community to ecosystem functions, as well as the patterns of 

microbial community structures in various environments. Despite this, they have not 

necessarily considered the biological and ecological traits of microbial community 

members (Guittar et al., 2019; Martiny et al., 2015). A greater focus on these traits should 

certainly give more insight into the function and dynamics of microbial ecosystems, 

considering that such trait-centric view has yielded insights into community dynamics 

of plant communities (Corlett and Westcott, 2013; Nemergut et al., 2016).�
In BEF studies, microbial community structure datasets are commonly 

summarized into simple diversity indices (Graham et al., 2016; Wertz et al., 2006). This 

is reasonable for RFLP and DGGE data, which are not accompanied by detailed 
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information on individual community members; however, recent high-throughput 

sequencing data are likewise treated without discussion on the community members 

(presumably carrying on the practice of RFLP/DGGE era). Importantly, the taxonomic 

descriptions of microbial community structure suffer from a similar problem. Microbial 

community structures are often compressed into high-rank taxonomic classifications (i.e., 

phyla or classes) (Thompson et al., 2017), and these high-rank classifications are largely 

decoupled from their ecological and physiological traits and can hardly provide 

meaningful ecological insights (Martiny et al., 2015).�
In conclusion, conventional microbial ecology studies only marginally 

consider detailed information on community members, which should be the great merit 

of introducing high-throughput sequencing. In other words, these studies do not take 

full advantage of the high-resolution data that next-generation sequencing technologies 

have brought about — in a sense, they may be still in the era of “first-generation 

sequencing” (Figure 1-2).�
 

1-4 Trait-based approach in microbial ecology 

Use of community members’ trait information is not a new idea in itself; in fact, plant 

ecologists have developed a framework of trait-based approaches over the past four 

decades (Grime, 1974; Violle et al., 2007), and has been a powerful tool to solve questions 

in community ecology, such as predicting the transition of community in response to 

environmental perturbations and formulizing community assembly rules in plant 

community (Garnier and Navas, 2012). The basic procedure of a trait-based approach is 

to first classify community members according to their ecological or physiological traits 

and then project that trait information to community structure datasets (Garnier and 

Navas, 2012). The trait information can be either quantitative (e.g. leaf size, root depth) 

or qualitative (e.g. annual/biennial/perennial, root architecture, resistance to grazing); 

community structures are represented by statistical distribution of quantitative traits or 

compositions of qualitative traits (Garnier and Navas, 2012; Violle et al., 2007).�
The prevalent use of high-throughput sequencing discussed above has paved 

the way for microbial ecology to follow the track of plant ecology (Krause et al., 2014), 

where community members can be identified without state-of-the-art technologies. 

Accordingly, some recent studies have adopted a trait-based approach to microbial 

ecology (Figure 1-3); however, the microbial traits used in this context are mostly limited 
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to genomic features of prokaryotes, namely rRNA gene copy number (Kearns and Shade, 

2017; Nemergut et al., 2016) and genome size (Barberán et al., 2014) (note that, due to 

their small size, many prokaryotic whole genomes have been sequenced and 

documented, and are now publicly available). Prokaryotes with a high gene copy 

number generally present high growth rates (i.e. take r-strategy) (Roller et al., 2016), and 

they proliferate after external perturbation or nutrient-rich environment (Kearns and 

Shade, 2017; Mise et al., 2020; Nemergut et al., 2016). Prokaryotes with large genomes 

tend to be ubiquitous across different soil types (Barberán et al., 2014), presumably due 

to their genomes allowing adaptation to various physicochemical conditions (Guieysse 

and Wuertz, 2012). 

Importantly, these trait-based approach works well to address traditional 

questions in BEF studies. By using information of rRNA copy number, for example, the 

predictable relationship between biodiversity (dominance of r-strategists) and 

ecosystem functioning (recovery from perturbation; degradation of nutrients) was 

elucidated. Therefore, trait-based approach would contribute to explain and predict the 

dynamics and functioning of microbial communities (Oliverio et al., 2017), which is a 

part of the ultimate goal of microbial ecology (Antwis et al., 2017; Griffiths and Philippot, 

2013) (Figure 1-3). 

Nevertheless, traits other than genomic features, especially microbial 

phenotypes and functions, have not been adopted for trait-based approaches, with some 

rare exceptions explained below. Considering the versatility of trait-based approaches 

in plant community ecology, expanding trait-based approaches to microbial phenotypes 

and functionalities should certainly contribute to microbial ecology. Until recently, 

however, this has been severely hampered because of the poor searchability of microbial 

trait information.�
The cultivated microbial phenotypic/functional information is documented in 

the form of natural linguistic text (either published as an article in a journal, typically the 

International Journal of Systematic and Evolutionary Microbiology (IJSEM), or included in 

Bergey’s Manual of Systematic Bacteriology (Bergey’s Manual)). There is currently no 

readily-accessible and unified platform, similar to the National Center for Biotechnology 

Information (NCBI), for example, for this information. Only recently, several databases 

containing microbial trait information have been developed (Barberán et al., 2017; S. 

Louca et al., 2016; Reimer et al., 2019). Thanks to this advance, microbial ecologist have 
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just started using a number of phenotypic/functional traits including cell shapes, 

pigmentations, oxygen tolerances, and metabolic potentials (Choudoir et al., 2018; 

Guittar et al., 2019; Stilianos Louca et al., 2016).�
While the usefulness of this approach is noteworthy, its limitation could be 

severe. As mentioned above, a high proportion of environmental microbes are yet to be 

cultivated, and therefore their biological traits have not been studied. For example, phyla 

Acidobacteria and Verrucomicrobia, which occupy typically 5–25% of soil bacteria 

(Delgado-Baquerizo et al., 2018), currently harbor limited number of isolated strains. In 

addition, phenotypes of microbes under laboratory conditions and in the natural 

environment may greatly differ. In fact, a large proportion of environmental microbes 

are viable but non-culturable (VBNC) (Nosho et al., 2018), and microbes in VBNC states 

have been shown to present different gene expression profiles from culturable ones 

(Giagnoni et al., 2018). This indicates that currently available trait information is 

commonly biased towards an “active” status.�
Furthermore, regarding the culturable microbes, the availability of microbial 

phenotypic information is strongly dependent on the microbial taxonomic system. Basic 

phenotypes, such as cell shapes, oxygen tolerance, and optimum growth temperature 

have been investigated and recorded for almost every microbial taxon. On the other 

hand, other useful phenotypic information, such as metabolic potentials, are not 

recorded unless that phenotypic information helps distinguish between the species (or 

subspecies, strains, etc.) in question.1�
 

1-5 Novel trait-based approach: habitat-based analysis 

Yet another fundamental microbial trait that has not yet been focused in the context of 

trait-based approach is habitat information (Thompson et al., 2017). Species that inhabit 

seawater are more likely to have the trait of adaptability to saline environments than 

species that inhabit freshwater only. Likewise, species that inhabit animal gut are more 

������������������������������������������������
� Publication policy of International Journal of Systematic and Evolutionary Microbiology states: 
“For a description of a new taxon, the following must be included with the submitted 
article [...]: ...... 3. A list of characteristics considered essential for membership in the taxon. 
4. A list of characteristics which qualify the taxon for membership in the next higher taxon. 
5. A list of diagnostic characteristics, i.e. characters which distinguish the taxon from 
closely related taxa. ......” (https://www.microbiologyresearch.org/journal/ijsem/scope; 
viewed December 12, 2019)�
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likely to have the trait of adaptability to copiotrophic (eutrophic) environments than 

species that inhabit soil only. Thus, habitat information is expected to provide insights 

into ecological and physiological characteristics of microbial communities. 

More importantly, habitat information is free of the practical problems 

mentioned above. Habitat information can be obtained without the reliance on 

cultivation and isolation experiments because accumulating shotgun metagenomic 

datasets, accompanied by environmental source information, themselves provide rich 

information about the environmental distribution of both cultured and non-cultured 

species. Environmental source information is recorded as the metadata in International 

Nucleotide Sequence Database Collaboration (INSDC; NCBI SRA/EMBL-EBI 

ERA/DDBJ DRA) (Karsch-Mizrachi et al., 2018) in accordance with the NCBI ontology 

systems. Additionally, shotgun metagenomic datasets can be systematically obtained 

from the INSDC without cumbersome curation.  

 

1-6 Overview of this dissertation 

In this dissertation, I aimed to propose habitat-based analysis of microbial communities 

and prove its usefulness for explaining and/or predicting microbial community 

dynamics and/or functioning (Figure 1-3). In Chapter 2, I describe the construction of a 

prokaryotic habitat database, ProkAtlas, which is the pre-requisite for performing 

habitat-based analysis of prokaryotic community structures. I also discuss possible uses 

of ProkAtlas (or the concept of habitat-based analysis itself), beyond its application to 

prokaryotic community data. In Chapter 3, I present empirical examples of habitat-based 

analysis using ProkAtlas, covering different environments and various aspects of 

ecology. In Chapter 4, I highlight the possible implications for future microbial ecology, 

as well as for biology in general. 
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Figure 1-1 (A) An example of band pattern dataset obtained by denaturing gradient gel 

electrophoresis (DGGE) (Mise et al., unpublished). One lane represents one microbial 

community. Alpha-diversity of each community can be calculated by the number of 

bands observed, whereas beta-diversity between communities can be estimated by the 

difference in band patterns between a pair of lanes. (B) Schematic illustration of 

microbial community ecology before the prevalent use of next-generation sequencers 
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(NGS). Molecular methods for detecting single nucleotide polymorphisms, such as 

restriction fragment length polymorphism (RFLP) and DGGE, only provide diversity 

indices such as Shannon indices and Bray-Curtis dissimilarities (a). When combined 

with clone library analysis, coarse taxonomic compositions could be estimated; however, 

clone library analysis is costly and laborious, and therefore practically not applicable in 

most cases (b). Traits of community members cannot be inferred from the band patterns 

of RFLP or DGGE (c). The correlations between the diversity indices and 

functions/dynamics of ecosystems can be statistically tested (d). 
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Figure 1-2 Schematic illustration of microbial community ecology in the era of next-

generation sequencers (NGS). NGS provides high-resolution information on taxonomic 

compositions (a) and diversity patterns (b) of microbial communities. The traits of 

microbial community members cannot be directly inferred from the taxonomic 

composition in many cases, with rare exceptions of phylogenetically-conserved traits 

such as nitrification and methanogenesis (Isobe et al., 2019; Martiny et al., 2015) (c). Aside 

from such exceptions, the NGS data are ultimately subjected to correlation-based 

analyses, in the same way as RFLP and DGGE data (d). 
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Figure 1-3 Schematic illustration of microbial community ecology and trait-based 

approach, presenting how this dissertation advances the academic field. High-resolution 

information, provided by NGS, can be used to infer the traits of microbial community 

members. In Chapter 2 of this dissertation, I present a novel method for this inference 

(a). The traits of community members can be mechanistically linked with the functions 

and dynamics of ecosystems, which is the strength specific to trait-based approach. In 

Chapter 3 of this dissertation, I provide some examples of such mechanistic links, 

intending to prove the significance of the method proposed in Chapter2 (b).  
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Chapter 2 | Construction of habitat database and its evaluation2 
2-1 Introduction 

In spite of the recent substantial increase in microbial community structure data, the 

methods for interpreting prokaryotic community structure datasets from ecological 

perspectives are still insufficient. As a promising solution to this problem, the trait-based 

approach can help ecological interpretation of community structure datasets (Barberán 

et al., 2014; Nemergut et al., 2016). The basic idea of this approach is to first classify 

prokaryotes according to their ecological or physiological traits and then project that 

trait information to community structure datasets. This means that trait-based approach 

is largely dependent on the quality and comprehensiveness of trait database. In fact, 

most of the trait-based microbial community studies focused on genomic traits such as 

genome size (Barberán et al., 2014) and rRNA gene copy number (Nemergut et al., 2016), 

which are available in authoritative public database. 

 The primary aim of the present study is to propose habitat-based analysis of 

microbial communities (see Chapter 1). For this analysis to work, ready-to-use microbial 

habit database is indispensable as discussed above. As an existing microbial habit 

database, MetaMetaDB, which links prokaryotic 16S rRNA gene sequences to 

environments, may be useful (Yang and Iwasaki, 2014). MetaMetaDB was constructed 

by curating pyrosequencing data from environmental samples, both amplicon 

sequencing data and shotgun metagenomic data, registered in INSDC. It contains only 

16S rRNA gene sequences, and each of the entries are labeled with one environmental 

category representing the source of the sequenced sample. However, the current form 

of MetaMetaDB suffers from a number of shortcomings. First, the size of research project 

is not considered, meaning that large projects dealing with many samples tend to be 

overrepresented. Second, because amplicon sequencing data were incorporated, the 

database inevitably bears primer biases (Klindworth et al., 2012). Moreover, the 

prevalent use of non-universal primers of 16S rRNA genes targeting specific clades of 

bacteria (Pfeiffer et al., 2014) critically hinders the balanced representation of prokaryotic 

community members in the environment. Third, MetaMetaDB has not been updated 

since 2014, and contain no sequences generated by state-of-the-art Illumina sequencers. 

������������������������������������������������
2 The content of this chapter has been partly published as the following paper: 
Mise and Iwasaki, 2020. Environmental atlas of prokaryotes enables powerful and intuitive 
habitat-based analysis of community structures. iScience (Cell Press). 
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 In this chapter, I report the development of extended and refined prokaryotic 

habitat database, named ProkAtlas that links 16S rRNA gene sequences to prokaryotic 

habitats, carrying on the basic structure of MetaMetaDB. 

 

2-2 Materials and methods 

2-2-1 ProkAtlas database construction: data collection 

The overall procedure of constructing ProkAtlas is illustrated in Figure 2-1 (A). I fetched 

all metagenomic sequence entries with environmental categories (NCBI taxon IDs) 

under 410657 (ecological metagenomes) and 410656 (organismal metagenomes) on July 

4, 2018. Those entries contained metagenomic data from diverse environments and were 

based on different sequencing platforms and library construction strategies. I selected 

entries annotated as whole-genome sequencing (WGS) (i.e., shotgun sequencing data) to 

avoid PCR-biased data due to amplicon sequencing (Klindworth et al., 2012). I further 

selected entries generated by the most popular platform, i.e., Illumina sequencers, but 

excluded entries generated by HiSeq 3000, 4000, or X because of their potential 

inaccuracies (Sinha et al., 2017). The filtered entries included 5,368 projects, which 

contained 1–3,693 runs each. To avoid datasets being too biased towards data from 

specific projects with high numbers of samples (Ramirez et al., 2018) and to keep the 

database size small, up to ten runs were randomly selected from each project (Figure 2-

1(B)). For each single-end or paired-end sequencing run, one or two gzipped fastq file(s), 

respectively, were downloaded from the ftp server of the European Nucleotide Archive 

(ENA). In the rare cases in which a gzipped fastq file exceeded the data size of 200 MB, 

the first 200 MB was retrieved.  

 

2-2-2 ProkAtlas database construction: data processing 

Paired-end sequences with overlapping regions of 20 bp or longer were merged using 

USERACH v11.0.667 (Edgar, 2010), while single-end sequences were used as they were. 

Low quality regions (Q-score < 20) at the 3′-ends were pruned, and sequences with mean 

Q-scores of less than 30 were discarded using PRINSEQ 0.20.4 (Schmieder and Edwards, 

2011). PARTIE (Torres et al., 2017) was used to remove amplicon sequence files 

mistakenly annotated as WGS. Sequences longer than 600 bases (the maximum read 

length of Illumina MiSeq and HiSeq) were removed, because they were likely artifacts. 

SortMeRNA 2.1 (Kopylova et al., 2012) trained with SILVA v132 Nr99 (Quast et al., 2013) 
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(hereafter referred to as SILVA) with the default parameter settings was used to extract 

16S rRNA gene regions from query sequences. From the SILVA database used in this 

study, eukaryotic sequences (i.e. those annotated as “Eukaryota” at the 

kingdom/domain level) had been removed beforehand, retaining only prokaryotic 16S 

rRNA gene sequences. To filter out non-16S rRNA hits that mingled in the output 

sequences from SortMeRNA, they were further subjected to a BLASTn (BLAST+ 2.3.0) 

search against SILVA with an e-value threshold of 1E-10. For each query sequence, an 

alignment covering the longest part of query sequence was selected among the top 100 

hits (in bitscore), and the aligned region of that query sequence was retrieved. When 

multiple hits tie in alignment length, one with the highest bitscore was chosen. If the 

longest-aligned query region was shorter than 150 bases excluding gaps, that sequence 

was removed. As a result, 1–43,259 rRNA gene sequences per project were obtained. 

Again, to prevent datasets from being biased towards data from specific big projects and 

to keep the database size small, I randomly sampled up to 100 sequences from each 

project (Figure 2-1(C)). Finally, I compiled 361,474 rRNA gene sequences, each retaining 

environmental category information (Table 2-1) that was accompanied by the original 

sequence dataset in DRA/ERA/SRA as a taxon ID. Note that each sequence in ProkAtlas 

is labeled by one environmental category. To test if the randomness of the sampling step 

affects results and if the sampling of 100 sequences from each project is enough, I 

prepared five additional alternative datasets: two by sampling 100 sequences (sets A and 

B) and three by sampling 500 sequences (sets C, D, and E; each contained 1,412,963 rRNA 

gene sequences). 

 

2-2-3 ProkAtlas pipeline and its implementation 

For habitat-based analysis of 16S rRNA gene sequence data, the ProkAtlas pipeline 

projects the associated environmental category data in ProkAtlas (originally presented 

as taxon IDs in DRA/ERA/SRA) to query sequences. A query can be either a single 

sequence from individual prokaryotic genome or a prokaryotic community dataset 

consisting of OTUs (or sub-OTUs, amplicon sequence variants) representative sequences 

and an OTU table (typically from amplicon and shotgun metagenomic sequencing). The 

ProkAtlas pipeline characterizes each query sequence or community with habitat 

preference scores, a vector denoting the composition of possible habitats inferred from 

compiled metagenomic sequences. A schematic illustration of the ProkAtlas pipeline is 
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provided as Figure 2-2. The pipeline consists of two parts, namely BLASTn search 

against ProkAtlas database and calculation of habitat preference scores based on the hits 

retrieved by the BLASTn search. 

The ProkAtlas pipeline uses a BLASTn search to query each input sequence 

against ProkAtlas, and all hits under an e-value threshold of 1E-5 are collected (the other 

parameters are set to default). Partial alignments are accepted because both query 

sequences and ProkAtlas entries can contain partial 16S rRNA genes (Figure 2-3 (A)–

(D)); however, hits harboring mismatches longer than 2 bp at either end of the alignment 

(Figure 2-3 (E)(F)) are ignored because they may be erroneous hits. The hits are further 

filtered to satisfy sequence similarity and alignment length criteria. The default value for 

sequence similarity and alignment length criteria are 97% and 150 bp, respectively, 

which is discussed later in this chapter. 

The habitat preference of a prokaryote or a prokaryotic community can be 

represented by a composition of environmental categories within the list of significant 

hits (Figure 2-2); however, simply counting a number of hits that are labeled with each 

environmental category may incorrectly emphasize hits to environments that are 

frequently studied, such as human gut. Therefore, the contribution of each 

environmental category is weighted by the log-transformed reciprocal of the proportion 

of sequences in that category within ProkAtlas (Yang and Iwasaki, 2014). This 

diminishes and increases the habitat preference scores of overrepresented and 

underrepresented categories, respectively. 

Mathematically, a habitat preference score of a prokaryote or a prokaryotic 

community for each environmental category is defined by: 

!" = 	
%&'(")" , &+,-"./" , &012" , … 4

∑%&/.6"-(.+/.2" 4	
; 

! =	8(!" × ;")
"

8;"
"

= ; 

> = ?log C
D2(2
D'(")

E , log C
D2(2

D+,-"./
E , log ?

D2(2
D012

F , …F	; 

ℎHIJKHK	LMNONMN&PN	QPRMN = 	
! ∘>

∑(! ∘>)	 

where &T"  is the number of significant hits to OTU i within a specific environmental 

category X, !" is the environmental vector denoting the habitat preference of OTU i, Ci 
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is the number of read counts of OTU i, !  is the average of environmental vectors 

weighted by the read count of each OTU (i.e. Ci), Rtot and RX are the number of ProkAtlas 

entries in total and within the environmental category X, respectively, and > is the 

vector of weighing factors of each environmental category. The arithmetic operator ∘ 

indicates the element-wise multiplication of two vectors with the same length 

(Hadamard product). When applied to a single prokaryotic sequence to illustrate the 

habitat preference of the corresponding microbe rather than community characteristics, 

the query is treated as a community composed of one OTU and one read (i.e., ! = !"). 

The ProkAtlas database and pipeline are available at 

https://msk33.github.io/prokatlas.html. 

 

2-2-4 Bird’s-eye visualization of prokaryote coappearance network 

Because I constructed ProkAtlas using shotgun metagenomic sequences only, each of 

the sequences in ProkAtlas covers different regions of 16S rRNA genes. To compare 

these staggered sequences, they were mapped to SILVA using BLASTn search and 

subjected to closed-reference clustering. More specifically, up to 100 top hits (ranked by 

bitscores) were retrieved after the BLASTn search. Following the principle of parsimony, 

the greedy algorithm was employed to obtain the (approximately) smallest subset of 

SILVA entries containing at least one top hit for every query sequence (Chvatal, 1979). 

Then, for each environmental category, the number of sequences associated with each 

SILVA entry was counted. Of the 115 environmental categories, 27 categories harboring 

more than 2,000 sequences successfully mapped to SILVA were subjected to 

visualization. Bray-Curtis dissimilarities between the SILVA entry composition vectors 

associated with the environmental categories and betweenness centralities were 

calculated and their network was visualized using the sna package on R ver3.5.1 (R Core 

Team, 2017). 

 

2-2-5 Application to 16S rRNA gene sequences of isolated and non-isolated 

prokaryotes 

I downloaded 16S rRNA gene sequences of pure-isolated bacterial strains from manually 

curated IJSEM phenotypic database (https://doi.org/10.6084/m9.figshare.427239, as of 

October 2018) (Barberán et al., 2017). In addition, I downloaded 16S rRNA gene 

sequences produced from a large SAG sequencing project (Rinke et al., 2013). The 
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ProkAtlas pipeline with the default parameter settings was used for habitat estimation, 

with an exception that I used three different alignment length thresholds, namely 150 

(recommended value), 200, and 250 bases, to check the robustness of the pipeline. In 

addition, to test whether the random sampling process in constructing ProkAtlas affects 

the results, I performed the same analysis using the five alternative datasets as described 

above. 

 For each set of estimated habitat compositions, consistency with the source-

environment information was tested. To test if estimated habitat compositions of soil-

derived isolates are actually soil-related, the scores of environmental categories related 

to soil (namely “soil”, “rhizosphere”, “rice paddy”, and “wetland”) were compared 

between soil-derived and other isolates using the Mann-Whitney U-test.  

 

2-3 Results and discussion 

2-3-1 ProkAtlas database and pipeline 

ProkAtlas was developed as a comprehensive database of prokaryotic habitat traits 

based on a meta-analysis of metagenome shotgun sequencing datasets (Figure 2-1). It 

comprises 361,474 16S rRNA gene sequences from 5,368 shotgun metagenome projects 

registered in the INSDC SRA/ERA/DRA databases. Notably, to achieve reliable but 

efficient prokaryotic habitat estimation, I tried to balance the database 

comprehensiveness and smallness. As discussed later, increasing the size of ProkAtlas 

marginally affects or improves the performance of habitat preference prediction, while 

computational cost linearly increases. It is also notable that the number of 16S rRNA 

gene sequences in ProkAtlas is comparable to those in Greengenes and SILVA (Glöckner 

et al., 2017; McDonald et al., 2012). Each sequence in ProkAtlas is labeled with one of the 

environmental categories listed in Table 2-1 for prokaryotic habitat estimation with 16S 

rRNA gene sequences. Although NCBI taxon IDs contain environmental categories of 

different granularity, they are accompanied by all of the metagenomic samples in 

DRA/ERA/SRA and therefore suitable for constructing a database that covers a wide 

variety of environments. The four major environmental categories, soil, marine, freshwater, 

and human_gut, comprise 72.6% of all sequences, and the top 27 categories comprise 90% 

of all sequences.  
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2-3-2 Bird’s-eye visualization of prokaryote coappearance network among diverse 

environments  

By enumerating 16S rRNA gene sequences that coappear in different environments 

using ProkAtlas, I obtained a comprehensive view of coappearance of prokaryotes 

among diverse environments as a network (Figure 2-4(A)). All ProkAtlas sequences 

were mapped to 39,049 SILVA entries, and their composition in each environmental 

category was quantified. Beta-diversities between the environmental categories were 

then calculated using the Bray-Curtis dissimilarity metric.  

 As expected, related environments such as soil and rhizosphere were strongly 

associated with each other. The betweenness centrality, which quantify propagation of 

prokaryotes among different environmental categories, of extreme environment (i.e., 

hydrothermal_vent) was low (Figure 2-4(B)). Regarding this observation, it is reasonable 

that prokaryote coappearances or migrations via extreme environments are rare because 

of their non-moderate conditions and geographical isolation. It was also found that 

information centralities of host-associated environments were relatively low. This 

observation was rather unexpected because prokaryotic hosts, especially animals, are 

generally expected to bring prokaryotes to different environments and promote their 

migration (Grossart et al., 2010). I assume that strong prokaryote-host dependencies 

prohibit prokaryotes from settling in new environments, regardless of their hosts’ 

movement, and that prokaryotic hosts may actually have limited roles in shaping 

microbial distributions across the earth. 

 

2-3-3 Consistency between sources of isolated and non-isolated prokaryotes and 

ProkAtlas habitat estimation 

ProkAtlas was applied to 1,021 (nearly) full-length 16S rRNA gene sequences of pure-

isolated bacterial strains from the International Journal of Systematic and Evolutionary 

Microbiology (IJSEM) phenotypic database (Barberán et al., 2017), as well as to 201 16S 

rRNA gene sequences retrieved from a large SAG sequencing project (Rinke et al., 2013). 

All sequences of pure-isolates and 183 (91.0%) sequences from SAGs had one or more 

significant hits in ProkAtlas. The habitat preference scores were overall consistent with 

their environmental sources: scores of soil-related environmental categories (namely soil, 

rhizosphere, rice_paddy, and wetland), for example, were significantly higher in soil-

derived sequences compared with sequences of isolates from all the other environments 
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(Mann-Whitney U-test, P < 0.001). This trend was similarly observed for various sets of 

environmental categories, including isolates and/or SAGs from seawater, plants, feces, 

groundwater, lake water, hydrothermal vent, and bioreactors (Figure 2-5). On the other 

hand, habitats estimated by ProkAtlas were inconsistent with the actual environmental 

sources for a portion of individual query sequences. Such conflict may be attributed to 

the fact that many prokaryotic species are distributed in broad ranges of environments 

(Sriswasdi et al., 2017), and isolation sources of cultured strains or sampling sites of 

SAGs could be actually rare habitats of that prokaryotic group. That means, while 

estimated habitat of a specific individual prokaryote can be sometimes incorrect, habitat 

preference scores of a prokaryotic community consisting of multiple species can still be 

an informative proxy of that community. In addition, the abovementioned trends were 

reproduced when the alignment length thresholds were raised to 200 or 250 bases 

(Figure 2-6) or when one of the five alternative datasets (sets A–E) was used (Figure 2-

7). Because of this, I assume that 150 bp threshold (a default value in my pipeline) and 

database size would be respectively long and large enough to achieve overall accuracy, 

while retaining enough amount of significant hits and saving computational cost. 
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Table 2-1 Environmental categories, numbers of 16S rRNA gene sequences labeled by 

these categories, and numbers of research projects of these categories contributing to 

ProkAtlas. The environmental categories were based on annotations in the NCBI SRA 

database. Note that due to data processing, several environmental categories are 

associated with a few sequences. 

 
  

Environmental Category
Number of
sequences

Number of
projects Environmental Category

Number of
sequences

Number of
projects

activated_carbon 44 1 insect 241 4
activated_sludge 7383 78 insect_gut 200 2
air 300 3 invertebrate 300 3
algae 308 4 lake_water 5700 57
anaerobic_digester 500 5 landfill 400 4
annelid 1038 13 leaf 500 5
ant 300 3 lichen 500 5
aquatic 2667 29 marine 45298 461
aquifer 1900 19 marine_sediment 3281 35
bat 143 2 microbial_fuel_cell 100 1
beach_sand 100 1 microbial_mat 1561 17
biofilm 300 3 mine_drainage 200 2
biofilter 100 1 mine_tailings 200 2
biogas_fermenter 600 6 mixed_culture 100 1
bioreactor 2923 32 money 200 2
bioreactor_sludge 200 2 mosquito 180 2
biosolids 200 2 moss 600 6
bird 100 1 mouse_gut 1194 18
bovine 200 2 oil_field 3 1
bovine_gut 700 7 oral 66 1
cave 100 1 oyster 100 1
chicken_gut 731 9 paper_pulp 100 1
compost 500 5 parasite 26 1
coral 1100 11 peat 7683 77
crab 100 1 permafrost 1449 16
crustacean 100 1 phyllosphere 12100 121
endophyte 30 1 pig_gut 576 6
epibiont 100 1 plant 4579 53
estuary 200 2 plastic 6 3
feces 1306 14 pollen 200 2
fermentation 300 3 rat_gut 100 1
fish_gut 25 1 rhizosphere 21152 213
food 604 7 rice_paddy 3100 31
food_fermentation 300 3 rock 148 2
food_production 100 1 rock_porewater 100 1
fossil 200 2 root_associated_fungus 100 4
freshwater 43216 437 root 400 1
freshwater_sediment 13744 239 salt_lake 1900 19
fungus 3737 38 salt_marsh 5400 54
glacier 500 5 sea_squirt 400 4
groundwater 9540 97 seawater 2977 30
gut 3167 36 sediment 6431 66
halite 14 1 skin 100 1
hot_springs 1056 12 sludge 100 1
human_bile 111 2 soil 90158 984
human_blood 1 1 sponge 300 3
human_eye 131 2 stromatolite 100 1
human 1815 25 subsurface 3020 32
human_gut 7502 80 surface 100 1
human_lung 291 3 symbiont 69 1
human_oral 500 5 termite_gut 2919 31
human_reproductive_system 100 1 terrestrial 2134 22
human_skin 400 4 tick 100 1
hydrocarbon 33 1 urban 6 1
hydrothermal_vent 4016 44 viral 600 6
hypersaline_lake 900 9 wastewater 3228 35
hypolithon 113 2 wetland 11900 119
indoor 100 1
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Figure 2-1 Schematic illustration of ProkAtlas construction. The symbol colors and sizes 

represent the sample sources and data sizes, respectively. Six-digit numbers starting 

with “ERP” and “ERR” indicate accession number of entries registered in 

DRA/ERA/SRA: a project (a set of data obtained under the same goal; canonically 

termed “BioProject”) and a run (a set of nucleotide sequence file(s) that derives from one 

library in one experiment), respectively. (A) Overview of the procedure of ProkAtlas 

construction. To construct a high-quality, small, and comprehensive database with 

minimized biases, I repeatedly screened and sampled metagenomic sequences. (B) 

Random sampling of entries in big projects that harbor more than ten runs. The data of 

such big projects were reduced to ten runs per project by random sampling. The 

randomly-picked entries (lower panel) were subjected to downstream processing 

described in (A). (C) Reduction of data from big projects. 16S rRNA gene sequences were 

extracted from quality-filtered metagenomic sequences (upper panel). Here, sequences 

from all runs in one project were pooled together. The number of extracted 16S rRNA 

gene sequences greatly varied between projects (middle panel); therefore, to mitigate 

biases, the data of projects harboring more than 100 sequences at this stage were reduced 

by random sampling (lower panel). 
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Figure 2-2 A schematic illustration of procedures to calculate habitat preference scores 

for prokaryotic communities. (A) Overview of the process. Prokaryotic community 

composition can be defined by the representative sequence and read count of each OTU. 

First, to characterize habitat preference of each OTU, the OTU representative sequences 

are subjected to BLASTn search against ProkAtlas database. Typically, each OTU has 

significant hits to sequences in multiple environmental categories, and the habitat 

preferences of each OTU may be represented as the environmental vector !. Overall 

habitat preference of a community is denoted as the average of ! weighted by the read 

count of each OTU, followed by the correction for the overrepresentation of well-studied 

environments like soil and marine. (B) Detailed schema of “one-to-many” mapping of a 

query sequence on ProkAtlas database. If one query sequence has multiple hits in 

ProkAtlas, the number of hits for each environmental category is presented as U . 

Therein, U is converted to the environmental vector U denoting the habitat preference 

of the OTU. 
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Figure 2-3 Schematic representation of alignment criteria of 16S rRNA gene sequences 

in the ProkAtlas pipeline. Black and gray rectangles indicate query and subject 

sequences, respectively. Vertical bars indicate successfully aligned regions by pairwise 

local alignment. While the upper four partial alignment patterns are accepted, the 

bottom two patterns are rejected. 
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Figure 2-4 (A) A bird’s-eye network visualization of the coocurrences. Nodes represent 

environmental categories. Edges are drawn only if Bray-Curtis dissimilarities are less 

than 0.9, and their color indicates the Bray-Curtis dissimilarities (smaller in dark than in 

bright). (B) A bar chart showing the betweenness centrality of each environment (i.e. the 

number of node pairs whose shortest paths contain the node representing that 

environment). 
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Figure 2-5. Habitat preference scores of isolates/SAGs derived from a specific type of 

environment. Each of the darker orange plot indicates the scores of isolates/SAGs from 

the relevant environment, while the lighter orange one indicates those of the other 

isolates/SAGs. (A) Prokaryotic isolates’ habitat preference scores of soil-related 

environments (soil, rhizosphere, rice_paddy, and wetland). (B) Prokaryotic isolates’ habitat 

preference scores of brine-related environments (marine, salt_marsh, and seawater).  (C) 

Prokaryotic isolates’ habitat preference scores of plant-associated environments 

(rhizosphere, phyllosphere, root, soil, and plant). (D) Prokaryotic isolates’ habitat preference 

scores of feces-associated environments (feces, gut, and human_gut). (E) SAGs’ habitat 

preference scores of brine-related environments (marine, salt_marsh, salt_lake, and 

seawater). (F) SAGs’ habitat preference scores of freshwater-related environments 

(freshwater, lake_water, and groundwater). (G) SAGs’ habitat preference scores of brackish 

lake-related environments (marine, salt_marsh, salt_lake, and seawater). (H) SAGs’ habitat 

preference scores of hydrothermus-related environments (hydrothermal_vent and 

hot_springs). (I) SAGs’ habitat preference scores of marine sediment-related 

environments (freshwater_sediment, sediment, marine_sediment, marine, salt_marsh, and 

salt_lake). (J) SAGs’ habitat preference scores of bioreactor-related environments 

(bioreactor and activated_sludge). Asterisks denote the results of the Mann-Whitney U-

tests (*P<0.05, ***P<0.001) between each pair of violin plots. 
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Figure 2-6. Violin plots indicating the effect of alignment length threshold on ProkAtlas-

estimated prokaryotic habitat preference scores. Panels in left, middle, and right 

columns show the results calculated with an alignment length threshold of 150 bases, 

200 bases, and 250 bases, respectively. Details on each panel are explained in Figure 2-5. 
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Figure 2-7. Violin plots indicating the effect of random sampling in constructing 

ProkAtlas on ProkAtlas-estimated prokaryotic habitat preference scores. Panels in the 

leftmost column indicate the results obtained using the released version of ProkAtlas. 

Those in the next two columns indicate the results from alternative databases, each 

constructed by independent random sampling with at the same depth as ProkAtlas (up 

to 100 sequences per project). Panels in the last three columns indicate the results from 

yet other databases, each constructed by independent random sampling at deeper depth 

(up to 500 sequences per project). Details on each panel are explained in Figure 2-5. 
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Chapter 3 | Habitat-based analyses of prokaryotic communities 
3-1 Introduction 

As described in Chapter 2, I developed prokaryotic habitat database named ProkAtlas 

and showed that it provides reliable information on prokaryotic habitats. This means 

that ProkAtlas can work as a reference database that facilitates habitat-based prokaryotic 

community analysis. In this chapter, I present proofs of concept that the habitat-based 

analysis provides ecological insights into community assembly, enabling intuitive 

interpretation of community structure datasets. 

To confirm the soundness of habit-based analysis at community scale, rather 

than for individual microbes, I first analyzed dataset from the Earth Microbiome Project 

(EMP) (Thompson et al., 2017). EMP is a global investigation of microbial communities 

in wide range of environments, providing abundant microbial community data with 

well-organized annotations on samples. EMP is characterized by the rigorous 

standardization of sampling and sequencing procedure (Gilbert et al., 2018); hence why 

EMP dataset is suitable for evaluating performance of ProkAtlas.  

Considering the positive result of this benchmarking with EMP dataset, habit-

based community analysis was regarded reliable. Thus, it was further applied to other 

datasets presenting specific spatial or temporal variations, namely agricultural soil 

samples with different salinity, lake water samples with different salinity, human infant 

gut microbiome samples, chronosequences of developing soils that were recently 

exposed after glacier retreat, and potentially polluted river-water samples, which had 

been obtained with different research aims. Of note, these were all 16S rRNA gene 

amplicon sequencing data and not included in ProkAtlas, which is composed of shotgun 

metagenomic sequences.  

 

3-2 Materials and methods 

EMP data were downloaded from the EMP ftp server in February 2019 (Thompson et al., 

2017). The data were based on the random picking of 2,000 samples and that of 5,000 

sequences per sample3. Sub-operational taxonomic units (sOTUs) clustered by Deblur 

(Amir et al., 2017) were used. Regarding the agricultural soil samples (Zhao et al., 2020), 

������������������������������������������������
3 
ftp://ftp.microbio.me/emp/release1/otu_tables/deblur/emp_deblur_150bp.subset_2k.rare_5
000.biom 
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the lake water samples (Ji et al., 2019), the human infant gut microbiome (Yassour et al., 

2016), chronosequences of developing soils on glacier forelands (Jiang et al., 2018; 

Mapelli et al., 2018), and potentially polluted river-water samples (Kirs et al., 2017), raw 

fastq sequence data were downloaded from public datasets (Table 3-1). All the sequences 

were generated by amplicon sequencing of 16S rRNA gene on Illumina MiSeq or HiSeq. 

Paired-end sequences with overlapping regions of 20 bp or longer were merged and 

quality-filtered using USEARCH v8.0.1623 (Edgar, 2010) (sequences with expected 

errors of 0.5 bp or less were kept), followed by removal of primer regions. sOTUs 

clustered by Deblur (Amir et al., 2017) with the default parameter settings were used. 

 The sOTUs were taxonomically annotated using RDP classifier (Wang et al., 

2007) trained with SILVA with a confidence value threshold of 0.5. For one of the glacier 

chronosequence soil datasets (Mapelli et al., 2018), sOTUs annotated as members of 

phylum Cyanobacteria were eliminated because some samples were covered by 

cyanobacterial mat (Mapelli et al., 2018). Then, the sOTUs in each dataset were subjected 

to ProkAtlas pipeline, attributing each prokaryotic community to its estimated habitat 

composition. Regarding EMP dataset, which consists of short sequences (150 bases, the 

same as the default alignment length threshold), alignment length thresholds were set 

to 140 bases. In addition, habitat preference scores of EMP samples were calculated using 

five alternative datasets, as explained in 2-2-2. 

 

3-3 Results and discussion 

3-3-1 Habitat-based analysis of the EMP dataset 

To test the versatility of habitat-based prokaryotic community analysis using ProkAtlas, 

I reanalyzed the EMP dataset, a large community-based project that collects and 

analyzes prokaryotic community samples from various natural environments 

(Thompson et al., 2017). Because each of the 16S rRNA gene amplicon-sequencing 

datasets in the EMP dataset is tagged with sampling-site metadata described by EMP 

Ontology, this dataset was used for assessing the validity of ProkAtlas-based analysis.  

Among the 91,364 sub-operational taxonomic units (sOTUs) in the EMP dataset, 32,117 

(35.2%), accounting for 65.3% of the total reads, were successfully mapped to ProkAtlas. 

The habitat preference scores of prokaryotic communities estimated by ProkAtlas were 

generally consistent with the sampling-site metadata in the EMP dataset (Figure 3-1). 

For example, prokaryotic communities annotated by soil (non-saline) showed higher 
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habitat preference scores of soil (31.7±12.9%, mean±sd) and rhizosphere (18.7±7.82%), 

compared with the other communities. Similarly, communities annotated as water 

(saline) showed higher habitat preference scores of marine (51.9±23.3%). This result, in 

line with the habitat preference scores of sequences from isolates and SAGs, highlights 

the reliability of the habitat preference scores. This in turn means that environmental 

source of a given sample may be estimated by ProkAtlas, for example to address forensic 

concerns (Carter et al., 2020). 

When one of the five alternative datasets (sets A–E) was employed instead of 

ProkAtlas, the consequent habitat preference scores were only marginally affected 

(Figure 3-2), where larger-size databases (sets C–E) slightly improved the sequence 

coverages (51.5–51.7% of sOTUs, accounting for 75.4–76.8% of total reads, were mapped). 

This is in line with the results of habitat preference analysis of isolates and SAGs (Figure 

2-7), where the alternative datasets provided habitat preference scores consistent with 

ones from ProkAtlas. Together, I argue that the size of ProkAtlas achieves a good balance 

between the information content and computational usability.  

  

3-3-2 Habitat-based analysis of agricultural soil samples with salinity gradients 

The first dataset contained 124 agricultural soil samples with different salinities sampled 

at 31 sites in northwest China (Zhao et al., 2020). These sampling sites spans more than 

400 km in longitude, and four samples were obtained from each site. The dataset 

contained 12,094 sOTUs, among which 12,052 (99.6%) and 7,631 (63.1%), accounting for 

99.8% and 67.9% of the total reads per sample on average, were taxonomically assigned 

at the phylum level and successfully mapped to ProkAtlas, respectively. 

 When phylum-level taxonomic structures were investigated as many 

amplicon-sequencing studies do, the estimated compositions were dominated by the 

phyla Proteobacteria (34.3±8.99%, mean±sd), Bacteroidetes (20.8±9.47%), and 

Gemmantimonadetes (11.7±4.63%) (Figure 3-3 (A)). On the other hand, when the estimated 

habitats were investigated, I observed a clear trend that the habitat preference 

compositions were affected by soil salinity concentration (Figure 3-3 (B)). More 

specifically, saline environments such as marine, seawater, esturay, and salt_lake showed 

substantial variation among the samples (2.44–26.4%) and a significant positive 

correlation with the soil salinity concentration (Spearman’s correlation test, ρ=0.60, 

P<0.001) as expected. Thus, ProkAtlas clearly and intuitively highlights the microbial 
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community characteristics of high-saline soils, which is consistent with previous 

knowledge on the relationship between salinity and prokaryotic community structures 

(Lozupone and Knight, 2007; Rath et al., 2019). 

 

3-3-3 Habitat-based analysis of non-saline, brackish, and saline lake water samples 

To further test the relationship between environmental salinity and habitat-based 

prokaryotic community structures, a dataset comprising prokaryotic community 

structures in saline and non-saline lake water was re-analyzed (Ji et al., 2019). To test the 

versatility of habitat-based analysis, I targeted lake water microbiomes as an example of 

semi-closed ecosystem, which contrasts with open field soil. This dataset contains 78 

prokaryotic community structure data from 25 lakes with diverse salinity. All these lakes 

are in Tubetan Plateau, where large number of lakes with different salinities are 

distributed. Two samples lacking sampling site information were excluded from the 

analysis. The dataset contained 6,054 sOTUs, among which 5,241 (86.6%), accounting 

91.2% of the total reads per sample on average were successfully mapped to ProkAtlas. 

All the sOTUs were taxonomically assigned at the phylum level. All samples were 

dominated by phyla Actinobacteria, Bacteroidetes, Cyanobacteria, and/or Proteobacteria 

(Figure 3-4 (A)). Phylum-level taxonomic compositions diverged highly even between 

samples with similar salinity concentrations and gave few ecological insights. On the 

other hand, the habitat-based analysis was able to differentiate the prokaryotic 

communities between the saline and non-saline lakes (Figure 3-4 (B)). The proportions 

of saline-water-related categories were significantly and strongly correlated with 

salinity (Spearman’s correlation test, ρ=0.88, P<0.001). Here, ProkAtlas reproduces the 

effect of salinity on prokaryotic community structures, which was previously elucidated 

at global and local scales (Lozupone and Knight, 2007; Rath et al., 2019; Thompson et al., 

2017), highlighting the robustness and validity of the database and pipeline. In addition, 

ProkAtlas relabels prokaryotic community members as salinity-tolerant/sensitive and 

thereby facilitates intuitive interpretation of prokaryotic community structures without 

cumbersome calibration or modeling. 

In summary, the habitat-based analysis here gave more direct and clearer 

interpretations of the prokaryotic community structure datasets from an ecological 

perspective than typical high-rank taxonomic analyses, in answering questions such as 

“Do environmental factors substantially and directionally affect prokaryotic community 
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structures?” 

 

3-3-4 Habitat-based analysis of human infant gut microbiome samples 

The third dataset consisted of human infant gut microbiome samples (Yassour et al., 

2016). In this study, 654 time-series infant feces samples were collected from Finnish 

infants aged 2 to 36 months. The dataset contained 2,113 sOTUs, among which 2,113 

(100%) and 1,374 (65.0%), accounting for 100% and 96.8% of total reads per sample on 

average, were taxonomically assigned at the phylum level and successfully mapped to 

ProkAtlas, respectively. 

 When phylum-level taxonomic compositions were investigated, the 

compositions were highly diverse until approximately 400 days after birth, after which 

the compositions stabilized and were dominated by Firmicutes and Bacteroidetes (Figure 

3-5 (A)). While this process was already well known (Bäckhed et al., 2015), the habitat-

based analysis gave another view on the process as the convergence to human gut-related 

environmental categories (Figure 3-5 (B)). This example shows that ProkAtlas can be 

used to evaluate the “maturity” of prokaryotic ecosystems undergoing temporal 

successions toward a stable state. It may be notable that recent trait-based studies in 

microbial ecology have suggested that, while taxonomic compositions during primary 

and secondary successions are often stochastic and uninterpretable (Ferrenberg et al., 

2013), traits of prokaryotic communities follow a path that is more predictable and 

interpretable (Kearns and Shade, 2017; Nemergut et al., 2016).  

 

3-3-5 Habitat-based analysis of developing soils 

Here I show another example of primary succession of developing microbial ecosystems: 

chronosequences of developing soil (Jiang et al., 2018; Mapelli et al., 2018). Retreating 

glacial chronosequence provides a transect of soil samples at different developmental 

stages, from unweathered bedrocks to matured (i.e. extensively weathered) soils (Castle 

et al., 2017; Delgado-Baquerizo et al., 2019). It has been acknowledged that weathering 

of soils affects soil microbial community structures, presumably mediated by soil 

chemical conditions (Castle et al., 2017; Delgado-Baquerizo et al., 2017); on the other 

hand, such transect is still valuable as a showcase of primary succession of an ecosystem, 

where temporal filtering such as priority effects or dispersal limitations strongly affects 

(Ferrenberg et al., 2013; Freedman and Zak, 2015).  
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Each of these datasets contained 21 bulk soil samples collected at seven 

sampling sites along a retreating glacial chronosequence. One was from Midtre 

Lovénbreen glacier moraine (Norway) (Mapelli et al., 2018), and the other was from 

Hailuogou Glacier Chronosequence (China) (Jiang et al., 2018). After the glacial retreat, 

those sites have been exposed to soil weathering for different time lengths. In both 

datasets, the phylum-level taxonomic compositions along the chronosequences 

presented clear gradients; however, the taxonomic clades constituting the gradients 

were quite different between the two — they were phyla Bacteroidetes and Chroloflexi in 

the Norwegian dataset (Figure 3-6 (A)) but phyla Acidobacteria, Bacteroidetes, and 

Proteobacteria in the Chinese dataset (Figure 3-6 (C)). Both of the gradients could be the 

outcomes of chemical condition changes (e.g., phosphorus depletion mitigation as a 

result of weathering) (Castle et al., 2017; Delgado-Baquerizo et al., 2017); however, their 

apparently different patterns hamper unified understanding of the prokaryotic 

community successions. On the other hand, the habitat-based analysis of the prokaryotic 

communities clearly illustrated similar convergence to soil-related environments during 

the courses of pedogenesis in both sites (Figure 3-6 (B)(D)). This suggests that 

prokaryotic habitat preference can be a useful trait for analyzing community successions. 

In addition, a notable difference was seen between the results of the bulk soil and infant 

gut datasets. Many of the infant gut prokaryotic communities were “matured” from the 

beginning possibly due to the priority effect (Figure 3-5 (B)) in contrast to the soil 

prokaryotic communities. 

The factor driving the primary succession of microbial community is 

enigmatic, and habitat-based analysis may give a hint to this question. One long-

discussed mechanism of primary succession is priority effects (Werner and Kiers, 2015). 

If this effect is prominent, young soils are be colonized by any microbe that arrived the 

soil earlier than other microbes. Soils under primary succession may be stochastically 

dominated by microbes that are not adaptive to soil environment, which are later 

competitively replaced with more adaptive microbes (Evans et al., 2017; Ferrenberg et 

al., 2013). Thus, under this effect, the overall adaptiveness of microbial community 

should be site-specific: some sites are dominated by adaptive microbes, while others are 

dominated by less adaptive ones. The results of habitat-based analysis do not support 

this effect in this specific case, where the proportion of soil-related (i.e. adaptive) 

members linearly increased along the transect. 
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A more plausible explanation may be that prokaryotic community structure 

had changed in accordance with transition in physicochemical factors. For example, soil 

weathering induces phosphorus depletion in the microbial community while mitigating 

nitrogen depletion (Bergkemper et al., 2016; Castle et al., 2017), affecting microbial 

diversity and functionality (Delgado-Baquerizo et al., 2017; Yao et al., 2018). 

In summary, the infant gut and developing soil datasets indicate that 

ProkAtlas can be used to evaluate the maturity of prokaryotic ecosystems undergoing 

temporal successions, without prior investigation on what the “matured” state is like. 

Notably, such effectiveness of habitat-based analysis can be placed into the context of 

recent discussions on trait-based microbial community ecology: although the primary or 

secondary successions of microbial communities are often stochastic and unpredictable 

(Ferrenberg et al., 2013), trait-based patterns tend to be more conserved, predictable, and 

easier to interpret (Kearns and Shade, 2017; Nemergut et al., 2016). 

 

3-3-6 Habitat-based analysis of potentially polluted river-water samples 

Habit-based analysis was further applied to potentially polluted river-water samples 

(Kirs et al., 2017). In this study, 25 water samples were collected at nine sampling sites 

in the Manoa stream, which flows through urbanized areas on Oahu Island, Hawaii, 

USA. High levels of fecal indicator bacteria (FIB) were reported in the estuary of Manoa 

stream neighboring popular bathing beaches (Goto and Yan, 2011), and sources of FIB 

were of interest in the contexts of both environmental and health sciences. The dataset 

contained 4,061 sOTUs, among which 4,000 (98.5%) and 2,389 (58.8%), accounting for 

99.7% and 75.1% of total reads, were taxonomically assigned at the phylum and 

proteobacterial class levels and successfully mapped to ProkAtlas, respectively. 

 The taxonomic structures showed a clear gradient from upstream (MS1–5) to 

downstream samples (MS7–9) (Figure 3-7 (A)). On the other hand, the investigation of 

the estimated habitats visualized two important ecological features. First, the transition 

from soil- and freshwater-related environments to seawater-related environmental 

categories was clearly observed from the upstream (MS1–5) to midstream (MS6) and 

downstream sites (MS7–9) (Figure 3-7 (B)). MS7–9 are located in a canal that is connected 

to the sea and directly influenced by tides, while MS6 is located approximately 500m 

upstream to the confluence with the canal (Kirs et al., 2017). Second, environmental 

categories related to anthropogenic water contamination (e.g., human_gut and 
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wastewater) showed a decrease from the upstream to midstream sites. This result was 

rather unexpected because potential pollution was expected to be introduced in 

urbanized areas (MS2–5) and increase their compositions along the river flow. Instead, 

the habitat-based analysis suggests that river water in the upstream, conserved forest 

area (MS1) already contains FIB. Notably, in line with this interpretation, some studies 

have claimed that riverine FIB largely come from soil instead of human pollution (Goto 

and Yan, 2011; Kirs et al., 2017). 

The present example showcases that microbial community data may be useful 

for tracing pollutant source in the environment. This concept is similar to that of 

microbial source tracking technology for identification of pollution sources or for 

forensic purposes (Knights et al., 2011; Unno et al., 2018). The basic idea of microbial 

source tracking technology is to investigate microbial community structures in polluted 

sites and potential pollution sites and compare these community structures. In this 

context, ProkAtlas would serve as a ready-made reference database, which does not 

require ad hoc sampling and metagenomic sequencing of potential sources. 

In summary, the habitat-based analysis here answered questions like “Where 

are prokaryotic communities from distinct environments mixed?” and “How do mixed 

communities develop in different environments?” without cumbersome preparation of 

reference datasets. 
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Table 3-1 Six 16S rRNA gene amplicon-sequencing datasets that underwent habitat-

based analysis.  

 

 
 

  

Sample description Number of
samples Data availability Reference

Saline agricultural soils sampled at 31 points scattered over 400 km
(north-west China) 124 INSD SRP136143 Zhao et al.,

2020
Saline and non-saline water samples sampled at 25 lakes (Tibet
Plateau, China) 78 INSD PRJNA503775 Ji et al., 2019

Stool of newborn Finnish infants (0–36 months old) 776 DIABIMMUNE project
website

Yassour et al.,
2016

Bulk soil samples at different developmental stages, obtained along
retreating glacier (Midtre Lovénbreen glacier, Norway) 21 INSD PRJEB12640 Mapelli et al.,

2018
Bulk soil samples at different developmental stages, obtained along
retreating glacier (Hailugou Glacier Chronosequences, China) 21 INSD PRJNA354498 Jiang et al.,

2018

Water sampled along Manoa Stream (Hawaii, USA) 25 INSD PRJNA376213 Kirs et al.,
2017
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Figure 3-1 Habitat preference scores of EMP prokaryotic communities. Habitat 

preference scores in each sampling site represented by EMP Ontology level 3 terms are 

shown. (A) Animal distal gut, (B) plant corpus, (C) sediment (saline), (D) plant 

rhizosphere, (E) soil (non-saline), (F) water (non-saline), and (G) water (saline). The y-

axes show the proportions of environmental categories within individual estimated 

habitat compositions. Means and standard deviations (by error bars) among EMP 

samples are shown. 
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Figure 3-2 Habitat preference scores of EMP prokaryotic communities in each sampling 

site represented by EMP Ontology level 3 terms, using the released version of ProkAtlas 

and five alternative databases obtained by repeating the random sampling of sequences. 

Details on each column and each panel are as explained in Figures 2-7 and 3-1, 

respectively. 
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Figure 3-3 Habitat-based analysis of soil samples with salinity gradients. (A) Phylum-

level taxonomic structures of the 31 plots ordered by soil salinity concentration (higher 

on the right than on the left). Each bar denotes the average of four replicates within one 

plot. Means among four replicates for each plot are indicated. (B) A scattergram of soil 

salinity concentrations and sum of habitat preference scores of brine-related 

environmental categories (estuary, hypersaline_lake, marine, salt_lake, salt_marsh, seawater, 

and marine_sediment). Means and standard deviations (by error bars) among four 

replicates for each plot are indicated. Result of the Spearman’s correlation test is also 

shown. 
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Figure 3-4 Habitat-based analysis of saline and non-saline water samples from 25 lakes. 

(A) Phylum-level taxonomic structures of the 76 samples ordered by salinity (higher on 

the right than on the left). (B) Habitat preference scores. Saline water-related: 

hypersaline_lake, marine, marine_sediment, salt_lake, salt_marsh, and seawater. Freshwater-

related: aquifer, freshwater, freshwater_sediment, groundwater, and lake_water. (C) A 

scattergram of water salinity concentrations and sum of habitat preference scores of 

saline water-related environmental categories in the estimated habitat compositions 

(estuary, hypersaline_lake, marine, marine_sediment, salt_lake, salt_marsh, and seawater). 

Result of the Spearman’s correlation test is shown. 
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Figure 3-5 Habitat-based analysis of human infant gut microbiome samples. (A) 

Phylum-level taxonomic structures of the 654 samples ordered by sampling ages (older 

on the right). (B) A scattergram of infant ages and sum of habitabt preference scores of 

human gut-related environmental categories (gut and human_gut). 
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Figure 3-6 Habitat-based analysis of glacial chronosequence soil samples. (A) Phylum-

level taxonomic structures and (B) sum of habitat preference scores of estimated soil-

related environmental categories (soil, rhizosphere, rice_paddy, and wetland) in soil 

samples taken from Midtre Lovénbreen glacier moraine (Norway) (Mapelli et al., 2018). 

(C) Phylum-level taxonomic structures and (D) sum of habitat preference scores of 

estimated soil-related environmental categories (soil, rhizosphere, rice_paddy, and wetland) 

in soil samples taken from Hailuogou Glacier Chronosequence (China) (Jiang et al., 2018). 

The samples are ordered by the length of weathering time. In (B) and (D), means and 

standard deviations (by error bars) among three replicates for each plot are shown, along 

with results of the Spearman’s correlation tests. 
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Figure 3-7 Habitat-based analysis of potentially polluted river-water samples. (A) 

Phylum- and proteobacterial-class level taxonomic structures at nine sampling points 

(more downstream on the right than on the left). (B) Habitat preference compositions. 

Ocean-related categories: estuary, hypersaline_lake, marine, salt_lake, salt_marsh, seawater, 

and marine_sediment. Soil-related categories: rhizosphere and soil. Freshwater-related 

categories: freshwater, aquifer, groundwater, and lake_water. Wastewater and human-

associated categories: gut, human, human_gut, and wastewater. The community structures 

are ordered by the geographical locations of sampling sites. 
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Chapter 4 | Concluding Remarks 
4-1 Overview of this dissertation 

In this dissertation, I propose a habitat-based analysis of prokaryotic community 

structure. To facilitate this, I developed ProkAtlas, a novel database comprehensively 

linking 16S rRNA gene sequences to prokaryotic habitats (Chapter 2). I, then, testified 

the effectiveness of habitat-based analysis in explaining and predicting microbial 

community dynamics, using datasets of soil, lake water, human gut, and river water 

microbiomes (Chapter 3). Overall, habitat-based analysis clarified the mechanistic and 

predictable relationships between ecosystem (i.e. environment) and microbial 

communities. For example, the relationship between environmental salinity and 

microbial community has been enigmatic (Rath et al., 2019); although statistical 

correlations have been reported, no causal mechanisms underlying the correlations had 

been reported. Contrastingly, habitat-based analysis clearly indicated that high salinity 

favored specific clades of prokaryotes that are adapted to marine environments (Figures 

3-3, 3-4). Habitat-based analysis also facilitated the evaluation of microbial community 

primary succession in barren soils and infant guts (Figures 3-5, 3-6). While the process 

of primary succession has been intensively investigated (Ortiz-Álvarez et al., 2018), the 

results of this study are novel in that successional processes were quantitively and 

intuitively evaluated. In short, habitat-based analysis well works as a novel trait-based 

approach to microbial community ecology, facilitating ecological interpretation of 

microbial community datasets. 

 

4-2 Habitat-based analysis from the viewpoint of bioinformatics 

Here, I applied a habitat-based analysis into the general context of biology, discussing 

the strengths and weaknesses of habitat-based analysis from a bioinformatic point of 

view. As discussed herein, the science of bioinformatics often provides unified solutions 

to problems raised in different fields of biology by taking advantage of common features 

of biological data. Due to the versatility of bioinformatics, I illustrated the contributions 

of this study to broader fields of biology beyond microbial ecology. 

 

4-2-1 Strength of ProkAtlas as a database: sustainability 

As discussed in Chapter 1, trait-based approach is fundamentally dependent on the trait 

database of the organisms in question. While genome-oriented traits (e.g., genome size, 
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rRNA gene copy number) have been available in well-maintained databases such as 

INSDC and JGI IMG/M (Markowitz et al., 2007), there has been no easily available 

database of microbial phenotypic/functional traits (Barberán et al., 2017), hindering the 

use of these traits in studies related to microbial community ecology. A critical problem 

is that these microbial phenotypic/functional traits are documented in journal articles 

or Bergey’s Manual in the form of natural linguistic text. 

In recent years, several databases of microbial phenotypic/functional traits 

have been developed (Barberán et al., 2017; Reimer et al., 2019). While these efforts are 

highly appreciated, their performances must be carefully assessed. Apart from 

cultivation biases (see Chapter 1), the tradeoff between the completeness and accuracy 

of the database is extremely severe. Automatic text parsing using natural linguistic 

processing technology is efficient but it is highly error-prone when applied 

to semantically opaque descriptions of microbial phenotypes (Barberán et al., 2017). To 

increase accuracy, manual compilation of data as described in journal articles or Bergey’s 

Manual may be effective; however, this process is labor-intensive and practically 

incapable of covering a wide variety of microbes. Notably, the only currently available 

manually-curated phenotypic database, to my knowledge, seems to be largely 

dependent on the efforts of American undergraduate students (Barberán et al., 2017).4 

The construction and maintenance (i.e., updating) of the database is undoubtedly 

laborious. In comparison, ProkAtlas requires a lesser degree of human effort for its 

construction and updating, making it more likely to be sustainable. 

Database search is an indispensable procedure in modern biology, and the 

quality and quantity (i.e. coverage or comprehensiveness) of databases inevitably affect 

every research. While popularly-used manually-curated databases, such as Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups 

(COG), are valuable, many researches in biology may be bound by these databases; the 

information not available in such mega-databases could be left unused. To foster the new 

budding researches, currently-unused information (for example, habitat information of 

microbes) would be useful. In this context, I argue that database construction without 

too much human effort is a valuable idea. 

������������������������������������������������
4 The acknowledgement of Barberán et al. (2017) says: “We also thank [...] and those 
undergraduates at Johns Hopkins University, the University of Notre Dame, and the 
University of Colorado who helped compile the database.”�
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4-2-2 Metadata in public databases 

ProkAtlas consists of 16S rRNA gene sequences annotated with their source 

environment (i.e. habitat). The environmental information was retrieved from metadata 

registered in INSDC SRA/ERA/DRA: NCBI taxonomy ID (e.g., “soil_metagenome”). 

Thus, the core idea of habitat-based analysis is the use of metadata in INSDC as microbial 

traits. This suggests that other metadata may also be used for a trait-based approach: 

nucleotide sequences annotated with any specific metadata, instead of source 

environment, may constitute a microbial trait database. 

In reality, however, the metadata in INSDC has a number of problems. For 

example, some of the soil metagenomic entries contain detailed information on sampling 

sites (e.g., land usage, climate, soil physicochemical properties); however, the 

vocabulary used for description is not standardized. Therefore, comparison between 

entries is difficult. More importantly, most entries lack such detailed information, which 

is not required to be entered by the users while registering their sequences. Although 

environmental ontologies such as EnvO (Thompson et al., 2017) and MIGS/MIMS (Field 

et al., 2008) can be registered in INSDC, few entries have one. 

Apart from developing trait databases, metadata is also vital when reusing 

data collected by other research teams. Such reuse of data is becoming increasingly 

common due to recent data deluge (Hiraoka et al., 2016), and for this reason, I predict 

that improvement of the metadata availability will critically affect the biology in the 

future.  

 

4-2-3 Short-read amplicon sequencing in the era of “fourth-generation” sequencing 

ProkAtlas was designed primarily for analyzing the amplicon sequencing dataset 

targeting 16S rRNA genes, which is now commonly performed (Chapter 3). As pointed 

out by many studies, amplicon sequencing targeting 16S rRNA genes has a number of 

shortcomings, including PCR bias, primer bias, and low resolution of 16S rRNA gene 

sequences (Bálint et al., 2016; Klindworth et al., 2012). While the sequencing cost is going 

down and long-read sequencers such as PacBio and MinION are getting popular 

(Hiraoka et al., 2016), conventional amplicon sequencing is getting less attention. 

Nevertheless, I argue that datasets from conventional methods have unique advantages. 

 Because diversity is the nature of biology, biological hypothesis often needs to 
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be tested in various kinds of organisms or ecosystems. Especially in macroecology, the 

variance of data is inevitably higher than those obtained in controlled laboratories, and 

many samples are required to statistically testify the hypothesis in question. Considering 

this, the availability of vast amount of data should be of high priority, and therefore use 

of conventional approaches is justified; and furthermore, making the most of datasets 

obtained by conventional methods is of great importance. 

 

4-2-4 Manipulating high dimensional data 

A key concept of biology is diversity at different scales: from biomes, to species, to genes. 

As a natural consequence, biologists often work with data consisting of a large number 

of elements (i.e., high dimensional data), including microbial community structure data 

consisting of thousands of species (see Chapter 1), orthologous tables in genomic studies 

covering thousands of orthologues, and gene expression data generated by 

transcriptomic or microarray experiments. While high dimensionality is an essential 

characteristic of biological data, it often hampers the intuitive interpretation and 

visualization of biological data. Therefore, reducing data dimensionality has been a vital 

goal within the field bioinformatics motivated by the strong need to facilitate discussion 

on the ever-increasing high dimensional data.  

In microbial ecology, multivariate statistics are popularly used. For example, 

microbial ecologists compress microbial community structure, consisting of thousands 

of species or OTUs, into two-dimensional plots using principal coordinate analysis 

(PCoA) or non-metric multivariate dimensional scaling. Similarly, genome-wide 

association studies summarize massive single nucleotide polymorphism (SNP) patterns 

using principal component analysis (PCA). While they serve the need for visualization, 

they are not useful for biological interpretation. The PCoA axes are defined ad hoc and 

do not have biological meanings; the eigenvectors of PCA are interpretable, but their 

high-dimensionality hampers biological interpretation of the data (of note, PCA is 

unsuitable for ecological data including microbial community structure, where linearity 

cannot be assumed). In this regard, the interpretability of trait-based summary is 

valuable. 
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4-3 Remaining problems 

Here, I discuss three remaining problems that have not been addressed in the present 

study, mainly focusing on the limitation of habitat-based analysis and ProkAtlas. 

First of all, a major limitation of this study is that it only focused on 

prokaryotes. Eukaryotic microorganisms are undoubtedly important players in 

ecosystem. Presumably, habitat-based analysis is applicable to eukaryotes, and habitat 

database like ProkAtlas can be constructed by identifying 18S rRNA gene sequences or 

ITS regions (R. Tanaka et al., 2014). A potential problem may be that metagenomic 

datasets contain much less eukaryotic sequences compared with prokaryotic sequences; 

the copy number of 18S rRNA gene is <10% of 16S rRNA gene copy number, even in 

fungi-rich soils (Tkacz et al., 2018). However, this could be solved by computational 

efforts: specifically, collecting large amount of data, part of which have been abandoned 

in the present study (see Section 2-2), would provide sufficient number of sequences. 

Secondly, the environmental categories used in this study may look confused. 

Environmental categories in ProkAtlas (Table 2-1) are not mutually exclusive; for 

example, the three categories “human”, “human_gut”, and “gut” are obviously 

overlapped. In addition to aforementioned hierarchical ontology systems EnvO 

(Thompson et al., 2017) and MIGS/MIMS (Field et al., 2008), recently-developed Latent 

Environment Allocation (LEA) (Higashi et al., 2018) illustrates the relationships between 

environmental categories. On the other hand, the vagueness in environmental categories 

could merit the users of ProkAtlas. As shown in Chapter 3, several environmental 

categories need to be concatenated to draw interpretations from habitat compositions. 

This process is up to each user and the context of the research: for example, when 

comparing saline lakes and freshwater lakes, “freshwater” and “seawater” should be 

separated; on the other hand, these two may be grouped in one when comparing aquatic 

environments and non-aquatic environments. Supposedly, the extent of such flexibility 

is left to the design concept of each database or tool. 

 Thirdly, in the context of trait-based approach, microbial interspecies 

relationship should also be definitely incorporated into microbial community ecology. 

This is even more challenging, because the number of two-species interactions is 

proportional to the square of number of species. Besides in reality, microbes in complex 

community interact between three species or more. In fact, microbial community 

dynamics can be hardly predicted by simply compiling two-species interactions 
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(Friedman et al., 2017; although the authors' argument is opposite). Thus, the patterns of 

interspecies relationship to be considered are numerous, and cannot be exhaustively 

testified. Although a recent work preliminarily proposed methods to systematically 

predict interspecies interactions (DiMucci et al., 2018), their applicability to diverse 

microbes is still questionable. Others have struggled to model multi-species microbial 

ecosystems by simplifying interspecies relationships, typically using co-occurrence 

networks. However, the information obtained from such coarse models is currently very 

limited. In summary, neither of the two approaches, namely [i] compiling two-species 

interactions to multi-species systems, or [ii] modeling multi-species system by 

simplifying interspecies interaction, works well. In this dissertation, I just point out this 

problem for the sake of future studies. 
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