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Chapter 1

Introduction

1.1 Background

Angular momentum, as a basic property to describe the rotation of light, can be separated

into spin angular momentum (SAM) associated with the polarization of light and orbital

angular momentum (OAM) determined by the spatial degrees of freedom of light [1–3].

The SAM was first explicitly considered by Poynting and experimentally demonstrated

by Beth in 1936 [4, 5]. However, it was a long time before the idea of the OAM of light

was pioneered by Allen et al. in 1992 [6]. They discovered that a light beam with a

helical phase front carries OAM. From then on, the study of optical angular momentum

has developed into a flourishing field of research, leading to a rich variety of research and

applications [7–11].

The interaction of angular momentum between light and matter gives rise to a va-

riety of striking optical phenomena and has been attracting extensive attention due to

the physical significance in optics. Especially, with the development of plasmonics and

nanotechnology, these studies have been greatly promoted in recent years because of the

strong interaction between light and plasmonic structures. Therefore, in this dissertation,

we carry out our work based on the three interesting phenomena in the interaction of

angular momentum between light and matter.
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■ Optical spin-orbit interaction

Figure 1.1: Schematic illustration of spin-orbit interaction of light

When light interacts with matter, there is a transformation between the spin and orbital

parts of the angular momentum carried by the light as shown in Figure 1.1. This spin-obit

interaction of light is highly related to the polarization and spatial degrees of freedom of

light, which plays a crucial role in the manipulation and control of light. Most of the

spin-orbit interaction phenomena appear at subwavelength scales [12–14]. Therefore, nu-

merous spin-orbit interaction effects can be observed in the research fields of nano-optics,

photonics, and plasmonics [15–19]. The description of the polarization and spatial prop-

erties of light at subwavelength scales provides a new viewpoint for the physical insight

at subwavelength scales. Moreover, the interaction between spin and orbital degrees of

freedom makes it possible for optical nano-devices to have novel functionalities. In the

past three decades, with the rapid development of nano-optics, photonics, and plasmon-

ics, the spin-orbit interaction of light has been attracting rapidly growing interest due to

its promising potential in many practical applications, such as the optical manipulation of

nanoparticles and molecules [20,21], subwavelength optical probing [22], and generation

of vortex beams [23, 24].

■ Optical torque

Optical torque induced by the angular momentum transfer in light-matter interaction en-

ables a particle to rotate (as shown in Figure 1.2) through both the absorption and scatter-

ing [25–27]. It provides a rotational mechanical degree of freedom to manipulate objects.

Particularly, the localized surface plasmon resonances (LSPRs) in noble metal nanostruc-

tures can significantly enhance the absorption and scattering in light-matter interaction,

enabling these structures to overcome the Brownian motion and the other fluctuations
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Figure 1.2: Schematic illustration of optical torque

for the manipulation. The magnitude of the optical torque is strongly dependent on the

LSPR properties of the plasmonic structures [27]. It has been reported that the optical

torque on individual plasmonic nanoparticle can reach hundreds of pN · nm [28], which is

sufficient to propel nanomachines and to address single-molecule processes in biological

matter. Therefore, optically driven plasmonic nanostructures establish an extremely in-

teresting platform for nanomechanical engineering and sensing applications. Over many

decades, optical torque has been attracting widespread attention owing to its crucial role

in optical manipulations, with a variety of applications in atomic and molecular physics,

nanotechnology, and biology [29–33].

■ Chiroptical response

Chiral objects are those objects which cannot be superimposed with their mirror im-

age [34, 35]. Chirality is very common in our daily life as well as microscopically down

to molecular levels, reflecting a fundamental property of materials. Many biomolecules,

such as amino acids, nucleotides, and sugars, are inherently chiral. Chiral material can

manifest a chiroptical response via the different absorption of left- and right-handed cir-

Figure 1.3: Schematic illustration of the chiroptical response
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cularly polarized light as shown in Figure 1.3. It can be evaluated by the dissymmetry

factor (g factor) defined as [36, 37]

gabs =
Al

abs − Ar
abs

Al
abs + Ar

abs

, , (1.1)

where Al
abs and Ar

abs are the absorption cross sections for left- and right-handed circularly

polarized light, respectively. The chiroptical phenomenon is of great significance in fun-

damental research and successfully applied in many different fields [38–40]. However,

this chiroptical response is inherently weak for most natural chiral materials due to the

small size of molecules [41, 42], which limits its further studies and applications. Re-

cently, with the advancement of nanotechnology, the progress in plasmonics provides an

effective route for the g factor enhancement. It is now possible to artificially create chiral

plasmonic nanostructures or metasurfaces, which have been attracting widely scientific

interest because they can strongly interact with circularly polarized light [43–48].

1.2 Motivation and objectives of this study

As mentioned above, in recent years, the rapid development of plasmonics and nano-

optics has extremely facilitated the study of the interaction of angular momentum be-

tween light and matter with numerous applications. However, in such a large research

field, there are still many research topics that have not been studied. In this dissertation,

based on the three interesting phenomena introduced above in the interaction of angular

momentum between light and plasmonic nanostructures, we study the urgent issues in

each phenomenon to improve the insights into the physics of light-matter interaction and

to expand the applications.

■Quantification of the optical spin-orbit transformation in light-matter interaction

The spin-orbit interaction of light has been attracting rapidly growing interest due to its

promising potential in nano-optics, photonics, and plasmonics [15–24]. Therefore, it is of

great significance to find a method that can separately analyze the SAM and OAM in the

interaction between light and matter. As shown in Figure 1.1, when a circularly polarized
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light carrying SAM interacts with a nanosphere, the scattered light from the nanosphere

possesses OAM. In this case, because the nanosphere is a very simple nanoparticle illumi-

nated by a simply structured incident light, the transformation between SAM and OAM

can be easily analyzed based on the model of rotating dipole scattering [49,50]. However,

when we consider a complex-shaped nanoparticle or incident light, the quantification of

the spin-orbit transformation would be very difficult because it is difficult to find an effec-

tive model to evaluate the angular momentum, especially the OAM, in the field. In other

words, thus far, there is no general way to quantify the optical spin-orbit transformation

in light-matter interaction.

In this topic, therefore, our objective is to find a method that can realize the quantifica-

tion of the spin-orbit transformation, which will greatly benefit the design and analysis of

a spin-orbit interaction system. To realize this, we should know the changes of the SAM

and OAM in the light-matter interaction. These are induced by the transfers of SAM and

OAM between light and matter, which can be clearly described by their continuity equa-

tions. It is worth pointing out that the total angular momentum, as the sum of the SAM

and the OAM, is a conserved quantity. The continuity equation for total angular momen-

tum is a well-known continuity equation, which explicates the transfer of total angular

momentum between light and matter. Consequently, in order to realize our objective, we

should find the continuity equation for SAM or OAM.

■ Optical torque between twisted metal nanorods induced by plasmon coupling

As introduced in the background part, many remarkable achievements have been made in

the study of optical torque, however, these studies mainly focus on an individual nanopar-

ticle. Few works are trying to study the optical torque in a multi-particle system. When

two nanoparticles are close to each other, plasmon coupling occurs due to the strong inter-

action between them, resulting in an appearance of two plasmon coupling modes different

from individual constituents and a drastically enhanced near field in the narrow gap sepa-

rating them [51–53]. In some previous studies, it has been reported that the plasmon cou-

pling can produce a large interaction optical force on each nanoparticle [54–56], which

plays a significant role in the optical arrangement. Intuitively, interaction optical torque

is also very important in the optical arrangement because it provides another mechanical
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degree of freedom for the manipulation of particles. Therefore, it is indispensable to study

the interaction optical torque in a plasmon coupling system.

In this topic, our objective is to study the interaction optical toque induced by the

plasmon coupling. Here, our study is based on a dimer of twisted metal nanorods be-

cause it is the simplest dimer system that can easily observe the plasmon coupling modes,

which can simplify the analysis of the physical mechanism. In this dimer, we investigate

the plasmon coupling between the nanorods depending on its configuration which is de-

termined by the gap size and twisted angle between the two nanorods. Then, we study

the interaction optical torque between the nanorods and the relation with the plasmon

coupling.

■ Enhancement of g factor of twisted metal nanorods by plasmon coupling

Chiral plasmonic structures with large g factor have shown promising potential for detect-

ing and sensing applications [48,57,58], negative refraction materials [59–61], and optical

elements with strong chiroptical effects [45,46]. Therefore, the study of the enhancement

of g factor will be of great significance to improve the insights into controllable chirality

of nanostructure and to expand its applications. However, in the previous studies, almost

all the studies of the g factor enhancement are limited to the geometry design of the struc-

ture. Inspired by the results in the second topic concerning the SAM in the interaction

between light and the twisted metal nanorods, it implies that the plasmon coupling be-

tween the twisted nanorods results in a strong chiroptical response of the structure. This

may provide a new route for the g factor enhancement.

In this topic, therefore, our objective is to experimentally demonstrate that the plasmon

coupling can enhance the g factor of the twisted nanorods. Firstly, we try to fabricate

the twisted nanorods structures with different gap sizes and twisted angles. Then, we

experimentally characterize the plasmon coupling and g factor of the twisted nanorods

structure depending on the gap size and twisted angle. The relation between the plasmon

coupling and g factor will be discussed to show a new perspective for the study of g factor

enhancement.
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1.3 Synopses of this dissertation

This dissertation is composed of six chapters.

In Chapter 2, we review two fundamentals of this dissertation: angular momentum of

light and localized surface plasmon.

In Chapter 3, by introducing the quantity of optical chirality density, the continuity

equation for spin angular momentum is derived, providing a method to realize the quan-

tification of the optical spin-orbit transformation in light-matter interaction

In Chapter 4, based on the structure of twisted gold nanorods, we investigate the

optical torques on the twisted nanorods induced by the plasmon coupling between them.

The rotational behaviors of the nanorod at different plasmon modes induced by the optical

torques are analyzed.

In Chapter 5, inspired by the results in Chapter 4, we experimentally demonstrate that

plasmon coupling can enhance the g factor of the dimer of twisted nanorods. The relation

between the plasmon coupling and g factor is discussed.

In Chapter 6, we summarize our works and describe the prospects.
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Chapter 2

Fundamentals: angular momentum of

light and localized surface plasmon

2.1 Introduction

In this chapter, we summarize the fundamental facts and phenomena that form the basis

of this study. In Section 2.2, we briefly review the concept of optical angular momentum.

Starting with Maxwell’s equations, we look at the conservation laws for energy, linear mo-

mentum, and angular momentum in a system of a charged particle in an electromagnetic

field. Then, we discuss the theoretical derivation of separating the angular momentum

into spin and orbit parts. In Section 2.3, we introduce the second essential knowledge in

our study, that is, the localized surface plasmon in metal nanoparticles. The basic physics

of localized surface plasmon is described by exploring the resonance condition in the

interaction between metal nanoparticles and an electromagnetic field.

2.2 Angular momentum of light

2.2.1 Maxwell’s equations and conservation laws

We start from Maxwell’s equations to describe the properties of electric and magnetic

fields and how they relate to each other in the following form [1]:
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∇ ·D = ρ, (2.1)

∇ ·B = 0, (2.2)

∇ × E = ∂B
∂t
, (2.3)

∇ ×H = ∂D
∂t
+ j, (2.4)

where E is the electric field, D is the electric displacement, H is the magnetic field, B is

the magnetic induction, ρ and j are the external charge density and current density. The

electromagnetic properties of a medium are further linked together via the polarization P

and magnetization M by

D = ε0E +P, (2.5)

H = µ−1
0 B −M, (2.6)

where ε0 and µ0 are the dielectric permittivity and magnetic permeability of vacuum,

respectively. Eq. (2.1)∼Eq. (2.6) builds the foundation of the classical electromagnetic

theory. These equations provide a complete description of the classical dynamics of inter-

acting charged particles and electromagnetic fields by combining with the Lorentz force

equation and Newton’s second law of motion.

In an isotropic, linear, and non-magnetic medium (typically considered in this disser-

tation), we can define the following relation

D = ε0εrE = εE, (2.7)

B = µ0µrH = µH, (2.8)

where εr is the dielectric constant or relative permittivity, ε is the dielectric permittivity,

µr = 1 is the relative magnetic permeability of the non-magnetic medium, and µ is the

magnetic permeability. In this case, the relation between P and E can be described by

P = ε0χE, where χ is the dielectric susceptibility.

In the following, we will discuss the mechanical interaction between light and a
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charged particle. In relation to an electromagnetic field in vacuum, we regard the par-

ticle with volume V enclosed by a surface S as a distribution of charges with density

ρ(r, t) and currents with density j(r, t). For more details, please refer to Refs [1, 2]

■ Poynting’s theorem

We first consider the conservation of energy which is often called Poynting’s theorem.

The rate of work done on the charged particle by the field can be expressed as
∫

V j ·

E dV , which describes a conversion of electromagnetic energy into mechanical or thermal

energy. This must correspond to a rate of the decrease of energy in the electromagnetic

field. Therefore, by using Maxwell’s equations, we can get the Poynting’s theorem in

integral form as ∫
V
(∂U
∂t
+ ∇ · S) dV = −

∫
V
j · E dV, (2.9)

U =
1
2
(E ·D +B ·H), (2.10)

S = E ×H, (2.11)

where U is the energy density of the electromagnetic field. The vector S can be regarded

as the energy flux density, which is often called the Poynting vector. Eq. (2.9) can be

rewritten into the form of a differential continuity equation for energy,

∂U
∂t
+ ∇ · S = −j · E, (2.12)

which is the most elementary continuity equation that explicates the exchange of energy

between the field and sources (charges and currents).

■ Conservation of linear momentum

Similarly, we can consider the conservation of linear momentum. Based on the Lorentz

force equation and Newton’s second law of motion, the total Lorentz force on the charged

particle can be expressed as

d
dt

Pmech =

∫
V
(ρE + j ×B) dV, (2.13)

17



where Pmech is the mechanical linear momentum of the particle. By using Maxwell’s

equations in vacuum, we can obtain the symmetric form of Eq. (2.13):

d
dt

Pmech =

∫
V
ε0[(∇ · E)E + c2

0(∇ ·B)B − E × (∇ × E) − c2
0B × (∇ ×B)] dV

−
∫

V
ε0
∂

∂t
(E ×B) dV,

(2.14)

where c0 = 1/√ε0µ0 is the light speed in vacuum. The integrand of the second term on

the right-handed side of Eq. (2.14) can be regarded as the time derivative of the linear

momentum density of the field, which can be related to the Poynting vector: ε0(E ×B) =

S/c2
0 . Therefore, this integral term can be rewritten as∫

V
ε0
∂

∂t
(E ×B) dV =

d
dt

∫
V

S
c2

0
dV =

d
dt

P f ield . (2.15)

Furthermore, in the first integral term on the right-handed side of Eq. (2.14), the electric

field and magnetic field terms are found as

(∇ · E)E − E × (∇ × E) = (∇ · E)E + (E · ∇)E − 1
2
∇(E · E)

= ∇ · [E ⊗ E − 1
2
(E · E)I],

(2.16)

(∇ ·B)B −B × (∇ ×B) = (∇ ·B)B + (B · ∇)B − 1
2
∇(B ·B)

= ∇ · [B ⊗ B − 1
2
(B ·B)I],

(2.17)

where ⊗ denotes the operation of the dyadic product. I is the unit dyadic. We can therefore

rewrite Eq. (2.14) into

d
dt
(Pmech + P f ield) =

∫
V
∇ · TM dV, (2.18)

where

TM = ε0[E ⊗ E + c2
0B ⊗ B − 1

2
(E · E + c2

0B ·B)I] (2.19)

is called Maxwell stress tensor. Eq. (2.18) explicitly describes the conservation of the

total linear momentum. Similar to the energy flux density, −TM can be regarded as the

flux density of linear momentum.
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By using Gauss’ theorem, the volume integral of the divergence of TM can be substi-

tuted with an integral of its flux over a closed surface. This gives

d
dt
(Pmech + P f ield) =

∮
S

TM · ndS, (2.20)

where n is the outward normal unit vector to the closed surface S. The right-hand side of

Eq (2.20) corresponds to the flux of linear momentum that enters the surface S. Therefore,

the time-averaged optical force on the particle can be obtained by

f =
∮

S
TM · n dS, (2.21)

where TM is the time-averaged Maxwell stress tensor. Besides, Eq (2.18) can also be

written into a differential form, that is, the continuity equation for linear momentum,

∂

∂t
(S
c2

0
) − ∇ · TM = −(ρE + j ×B), (2.22)

which describes the exchange of linear momentum between the field and sources.

■ Conservation of angular momentum

The conservation of angular momentum can be analyzed in the same way as we have

processed energy and linear momentum. One can define an angular momentum with the

cross product of the position vector r and linear momentum P, thus the change rate of the

mechanical angular momentum Jmech can be written as

d
dt

Jmech =
d
dt
(r × Pmech) =

∫
V

r × (ρE + j ×B) dV . (2.23)

Therefore, the conservation law for angular momentum is given by

d
dt
(Jmech + J f ield) =

∮
S
(r × TM) · n dS, (2.24)

where

J f ield =

∫
V

r × S
c2

0
dV (2.25)
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is the angular momentum of the field. The right-hand side of Eq (2.24) represents the flux

of angular momentum that enters the surface S. The differential continuity equation for

angular momentum can also be written as

∂

∂t
(r × S

c2
0
) − ∇ · (r × TM) = −r × (ρE + j ×B), (2.26)

depicting the exchange of angular momentum between the field and sources.

Finally, the same as the optical force obtained by Eq (2.21), we can also get the time-

averaged optical torque on the charged particle:

τtotal =

∮
S
(r × TM) · n dS. (2.27)

Eq. (2.27) and (2.21) are quite general equations because the continuity equations, i.e., Eq.

(2.26) and Eq. (2.22), are exact consequences of Maxwell’s equations. Additionally, the

integral surface S is an arbitrary closed surface containing the particle, hence Eq. (2.27)

and (2.21) can be applied to particles of any size, shape, and composition in the presence

of arbitrarily structured optical fields, as long as Maxwell’s equations are available.

In Eq (2.27), we use the subscript “total” because the conservation law Eq (2.24)

and the continuity equation Eq (2.26) we discussed above are valid for the total angular

momentum. It involves both the spin angular momentum and orbital angular momen-

tum, which will be expounded in Subsection 2.2.2. Therefore, the optical torque obtained

based on the Maxwell stress tensor, i.e., Eq (2.27), is the total optical torque, including

the contributions from the transfers of spin angular momentum and orbital angular mo-

mentum. The separation of the contributions from the transfers of spin and orbital angular

momenta to the total optical torque will be presented in Chapter 3.

2.2.2 Spin and orbital angular momentum

We obtained Eq (2.25) as the expression for the angular momentum of an electromagnetic

field. In the following, we will introduce the separation of angular momentum into the

spin and orbital parts. Considering a transverse electromagnetic field in a source-free

space, it is convenient to replace the electric and magnetic fields by introducing two vector
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potentials, A and C, defined as the following relations [3, 4]:

B = ∇ ×A = − 1
c2

0

∂C
∂t
, (2.28)

E = −∇ × C = −∂A
∂t

. (2.29)

Thus, Eq (2.25) can be rewritten as

J f ield =
ε0
2

∫
V

r × [E × (∇ ×A) +B × (∇ × C)] dV . (2.30)

By employing the vector identity,

a × (∇ × b) =
∑

j=x,y,z

a j(∇)b j − (a · ∇)b, (2.31)

Eq (2.30) becomes

J f ield =
ε0
2

∫
V

∑
j=x,y,z

E j(r × ∇)A j dV − ε0
2

∫
V

r × (E · ∇)A dV

+
ε0
2

∫
V

∑
j=x,y,z

B j(r × ∇)Cj dV − ε0
2

∫
V

r × (B · ∇)C dV .
(2.32)

Since we only consider a transverse electromagnetic field in a source-free space, ∇·E = 0

and ∇ ·B = 0, we can use the following relations

−r × (E · ∇)A = E ×A, (2.33)

−r × (B · ∇)C = B × C. (2.34)

Hence, we can separate the angular momentum into two parts as

L =
ε0
2

∫
V
(
∑

j=x,y,z

E j(r × ∇)A j +
∑

j=x,y,z

B j(r × ∇)Cj) dV, (2.35)

Σ =
ε0
2

∫
V
(E ×A +B × C) dV . (2.36)

We can see L is related to the position vector r, corresponding to the orbital angular mo-

mentum. However, Σ depends on the vectorial nature of the field (polarization), therefore
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it can be associated with the spin angular momentum.

Considering a monochromatic transverse electromagnetic field, E(r, t) = Re[E(r)e−iωt]

and B(r, t) = Re[B(r)e−iωt], we have the relation between the vector potentials and elec-

tromagnetic fields as E = iωA, B = iωC/c2
0 , whereω is the angular frequency of the field.

A and C are given by A(r, t) = Re[A(r)e−iωt] and C(r, t) = Re[C(r)e−iωt], respectively.

Accordingly, we can obtain the averaged spin (σ) and orbital (l) angular momentum den-

sities in a form that is useful in many practical cases:

l =
1

4ω

{
ε0

∑
j=x,y,z

Im[E∗
j (r × ∇)E j] +

1
µ0

∑
j=x,y,z

Im[B∗
j (r × ∇)B j]

}
, (2.37)

σ =
1

4ω
{ε0Im[E∗ × E] + 1

µ0
Im[B∗ × B]}. (2.38)

2.3 Localized surface plasmon

Surface plasmons are the collective oscillations of electron plasma at the interface be-

tween two materials with different signs of the real part of permittivity (e.g. the interface

between a metal and a dielectric). The excitation of surface plasmon at a metal-dielectric

interface, including both the charge motion and its produced electromagnetic field, can be

divided into two categories: surface plasmon polariton (SPP) and localized surface plas-

mon (LSP) [5–8].

SPPs are electromagnetic excitations that propagate along an interface between metal

and dielectric as shown in Figure 2.1(a), which are induced by the coupling of the elec-

tromagnetic fields and the oscillations of free electrons on a metal surface [9, 10]. For

the excitation of SPP, the SPP resonance condition can not satisified by the electromag-

netic field in the air because the dispersion curves of air and SPP do not intersect at any

value of propagation constant except for the origin as shown in Figure 2.1(b). However,

we can find an intersection between the dispersion curves of SPP and a proper dielectric

medium. In this aspect, dielectric prisms are usually used to excite an SPP on a metal

surface. And, another method to generate SPP is by using a grating structure to realize

the phase matching. Interested readers are referred to Refs [6–8].
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Figure 2.1: (a) Schematic illustration of SPPs. (b) Dispersion curve for air, dielectric
medium, and SPP with an air-metal interface: ω is the angular frequency of light or SPP.
c0 is the speed of light in vacuum. kx is the propagation constant of SPP. n is the refractive
index of the dielectric medium.

Figure 2.2: (a) Schematic illustration of LSPs. (b) Field enhancement distribution near
the surface of a nanosphere with a diameter of 100 nm. (c) Extinction, absorption, and
scattering cross sections of a nanosphere with a diameter of 100 nm.
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On the other hand, LSPs are non-propagating excitation of the free electron at the

closed surface of a nanometer-sized structure. In response to an external electromagnetic

field, a collective oscillation of free electrons can be induced in the metal nanoparticle as

shown in Figure 2.2. In this case, a restoring force on the oscillating electrons can be pro-

duced due to the curved surface of the nanoparticle, resulting in a resonance of the plas-

mon mode, which is called localized surface plasmon resonance (LSPR). Importantly, this

resonance can be directly excited by the illumination of an external electromagnetic field.

The excitation of LSPR gives rise to an intense field near the nanoparticle surface and

enhances the optical cross section in absorption and scattering as shown in Figures 2.2(b)

and 2.2(c) [11–13], which highly depends on the shape, size, and surrounding environ-

ment. These properties of LSPs lead to their various applications in the enhancement and

manipulation of light-matter interaction in physics, chemistry, and biology [14–22].

In our study, the strong interaction between light and plasmonic nanostructures in-

duced by the excitation of LSPs is employed to investigate the three important phenom-

ena of the interaction of angular momentum between light and matter. Therefore, in this

section, we will introduce the basic physics of LSPs.

2.3.1 Optical response of a metal nanosphere

It should be pointed out that the quasi-static approximation can be applied when a particle

of size much smaller than the wavelength of light interacts with an electromagnetic field.

In this case, it can be approximated as a particle in an electrostatic field because the phase

of the time-harmonic oscillating electromagnetic field can be regarded as a constant over

the particle. With this approximation, we can be obtained the spatial field distribution

from the solution of the Laplace equation for the potential, ∇2Φ = 0 [1]. Then, the time

dependence can be directly added to the solution to describe the interaction of the particle

with the time-varying field (without considering the spatial retardation effects).

Here, as shown in Figure 2.3, we consider a homogeneous isotropic metal nanosphere

with a radius of a placed in a uniform electrostatic field E = E0ẑ. The dielectric permit-

tivity of the metal nanosphere is denoted by a complex number depending on the angular

frequency, ε(ω). The nanosphere is surrounded by an isotropic lossless medium with a

dielectric constant of εm.

24



Figure 2.3: Schematic illustration of a metal nanosphere in an electrostatic field.

From the solution of the Laplace equation in a spherical coordinate and considering

azimuthal symmetry in our system, we have the general solution of the potentials for the

field distribution: [1]

Φ(r, θ) =
∞∑

l=0
[Alr l + Blr−(l+1)]Pl(cosθ), (2.39)

where θ is the angle between the position vector r and the z-axis. Pl(cosθ) is the Legendre

polynomials of order l. The coefficients Al and Bl can be determined from the boundary

conditions. Considering that the potential should not be divergent at the origin, we can

define the potential inside the nanosphere as

Φin(r, θ) =
∞∑

l=0
Alr l Pl(cosθ), (2.40)

and the potential outside the nanosphere as

Φout(r, θ) =
∞∑

l=0
[Blr l + Clr−(l+1)]Pl(cosθ). (2.41)

Now, let’s consider the boundary conditions. When r → ∞, Φout = E0cosθ should be

satisfied, so that we can get B1 = −E0 and Bl = 0 (l , 1). Besides, at the boundary r = a,

we have the boundary conditions for the tangential and normal components of electric

and displacement fields as following

−1
a
∂Φin

∂θ

����
r=a
= −1

a
∂Φout

∂θ

����
r=a
, (2.42)

−ε ∂Φin

∂r

����
r=a
= −εm

∂Φout

∂r

����
r=a
, (2.43)
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respectively. Therefore, by solving these two equations, we can obtained the final solution

for the potentials as

Φin = − 3εm

ε + 2εm
E0rcosθ, (2.44)

Φout = −E0rcosθ +
ε − εm

ε + 2εm
E0a3 cosθ

r2 . (2.45)

To understand Eq. (2.45), we now introduce a dipole moment p and Eq (2.45) can be

rewrite as

Φout = −E0rcosθ +
p · r

4πεmr3 , (2.46)

p = 4πεma3 ε − εm

ε + 2εm
E. (2.47)

We can see the first term on the right-hand side of Eq (2.46) is related to the applied field.

However, it is worth noting that the second term is associated with the dipole moment

inside the nanosphere induced by the applied field, which is proportional to the magnitude

of E. Therefore, we can define the polarizability of the nanosphere as

α = 4πεma3 ε − εm

ε + 2εm
. (2.48)

Obviously, we can find a resonant enhancement when the relation

Re[ε] = 2εm, (2.49)

is satisfied. Eq. (2.49) is called the Frohlich condition. What is more, the resonance is

known as LSPR in an oscillating field.

We have described the optical response of a metal nanosphere in an electrostatic field.

As we mentioned above, this description as an induced dipole moment is also valid in

the quasi-static regime. Considering a time-harmonic electric field, E(r, t) = E0e−iωt , the

induced oscillating dipole moment can still be written as p = αE0e−iωt with the α defined

as Eq. (2.48).
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2.3.2 Oscillating electric dipole

We have seen that the interaction of a metal nanosphere with an oscillating electromag-

netic field can be described by the induced oscillating dipole. Next, we will continue to

discuss the properties of the oscillating dipole.

■ Electric dipole radiation

We consider an electric dipole induced by a time-harmonic electromagnetic field Ei(t) =

Eie−iωt in vacuum, which has the same time dependence as pd(t) = pde−iωt , where ω is

the angular frequency. Here, pd is given by

pd = α(ω)Eie−iωt, (2.50)

where α is the complex electric polarizability depending on the angular frequency.

Consequently, the oscillating electric dipole can produce a radiation field. Here, we

consider that a dipole is along the polar axis s at the origin of a spherical coordinate,

which can be expressed as

pd = pdŝ. (2.51)

Therefore, the radiation field can be written as

Ed =
pdk3

0
4πε0

eik0r

k0r

{
2cosθ

[
1

(k0r)2
− i

k0r

]
r̂ + sinθ

[
1

(k0r)2
− i

k0r
− 1

]
θ̂

}
, (2.52)

where k0 is the wavenumber in vacuum, r̂ is the radial unit vector, r is the radial distance,

θ̂ is the polar unit vector, θ is the polar angle, and ϕ is the azimuthal angle. In the far field

(k0r ≫ 1), the radiation field becomes an outwards propagating spherical wave, which

can be expressed as

Ed, f ar = −
pdk3

0
4πε0

eik0r

k0r
sinθθ̂. (2.53)

■ Cross sections

We now consider the cross sections of an electric dipole pd induced by an incident elec-

tromagnetic field Ei in vacuum. The absorption cross section σabs is defined as the ratio
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of the absorption rate of energy to the power density of the incident field. The scattering

cross section σsca multiplied by the power density of the incident field is equivalent to

the rate of the energy removed via the scattering field in all directions. The sum of the

scattering cross section and absorption cross section is referred to as the extinction cross

section σext = σabs + σsca.

We first consider the extinction cross section of the electric dipole. The intensity of

the incident electromagnetic field is given by

Ii =
1
2

c0ε0 |Ei |2. (2.54)

The total power removed by the dipole is equal to the rate of the work done on the dipole

by the incident field, which can be expressed as

Pext =
1
2

∫
V

Re[jd · E∗
i ] dV, (2.55)

where jd is the current density induced by the oscillating electric dipole. Here, jd can be

written as

jd = −iωpdδ(r − rd), (2.56)

where rd is the position vector of the dipole. Therefore, Eq. (2.55) becomes

Pext =
ω

2
Im[pd · E∗

i ]. (2.57)

Hence, the extinction cross section can be expressed as

σext =
Pext

Ii
=

k0
ε0

Im[α]. (2.58)

Then, in order to calculate the work done on the dipole by the scattered field at the

location of the dipole for the scattering cross section, only the scattered field parallel to

the dipole need to be considered, which is given by

Ed · ŝ =
pdk3

0
4πε0

eik0r

k0r

{
2cos2θ

[
1

(k0r)2
− i

k0r

]
+ sin2θ

[
1

(k0r)2
− i

k0r
− 1

]}
. (2.59)
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At the location of the dipole (k0r ≪ 1), we can use the Taylor series expansion, i.e.,

eik0r ≈ 1 + ik0r − 1
2 (k0r)2 − i

6 (k0r)3, and rewrite Eq. (2.59) into

Ed · ŝ =
pdk3

0
4πε0

1
(k0r)3

[
(3cos2θ − 1) + 1

2
(cos2θ + 1)(k0r)2 + 2i

3
(k0r)3

]
. (2.60)

Therefore, the work done on the dipole by the scattered field can be expressed as

Psca = −ω
2

Im[pd · E∗
d(rd)] =

ωk3
0 |pd |2

12πε0
. (2.61)

Hence, the scattering cross section can be written as

σsca =
Psca

Ii
=

k4
0

6πε2
0
|α |2. (2.62)

Finally, we can also obtain the absorption cross section by

σabs = σext − σsca =
k0
ε0

Im[α] −
k4

0

6πε2
0
|α |2. (2.63)
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Chapter 3

Quantification of the optical spin-orbit

transformation in light-matter

interaction

3.1 Introduction

When light carrying angular momentum interacts with matter, an exchange can occur be-

tween the spin and orbital parts of the angular momentum. In recent years, this spin-orbit

interaction of light has been attracting rapidly growing interest due to its promising poten-

tial in nano-optics, photonics, and plasmonics [1–5]. Therefore, it is of great significance

to find a method that can quantify the transformation between spin angular momentum

(SAM) and orbital angular momentum (OAM) in the light-matter interaction. The trans-

fer of angular momentum between light and matter enables an optical torque that acts on

the matter [6–8]. Optical torque has gained considerable attention owing to the crucial

role it plays in optical manipulation, especially leading to a variety of applications in na-

noelectromechanical systems [9, 10], biological science [11, 12], and chemistry [13]. In

the analysis of the transfer of angular momenta between light and matter, as we discussed

in Chapter 2, the Maxwell stress tensor (MST) method has been extensively used to cal-

culate the optical torque on the matter, which can be derived from the continuity equation

for angular momentum. Optical torque arises both from the transfers of the SAM and

OAM of light [6–8]. Therefore, the study of the respective contributions of SAM and
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OAM to the optical torque, that is, the separate characterization of the SAM transfer and

OAM transfer will greatly facilitate the quantification of the optical spin-orbit transfor-

mation. However, the MST method cannot separate them because it is restricted to the

optical toque resulting from the total angular momentum.

In this chapter, we propose an approach to quantifing the optical spin-orbit transforma-

tion in the interaction between light and matter by separately characterizing the transfer

of SAM from that of OAM. We start by introducing another important quantity of elec-

tromagnetic field, i.e., optical chirality density. In analogy with the MST method, we then

obtain the continuity equation for SAM from the flux of optical chirality density, which

provides a method to separate the contributions of the SAM and OAM to the total optical

torque. Finally, we apply this method to some examples with the electromagnetic fields

calculated by the finite element method to verify the correctness of our equation and show

an application of the analysis of spin-orbit transformation in light-matter interaction by

combining with the MST method.

3.2 Optical chirality density

In 1964, Lipkin gave evidence of ten new independent conservation laws to characterize

the physical states of an electromagnetic field in vacuum [14]. Initially, only mathemat-

ical aspects of these new extensive quantities were analyzed, lacking specific physical

interpretation assigned to these quantities. Seeing electromagnetic field properties can be

described by many conserved quantities, such as energy, linear momentum, and angular

momentum, it is widely believed that every conserved quantity is physically significant.

Therefore, researchers have put a lot of effort into searching for the physical meaning of

these quantities [15–19].

Several years ago, the research on the interaction between chiral molecules and elec-

tromagnetic field has restarted a considerable interest in Lipkin’s zilches. In order to en-

hance the optical enantioselectivity of an electromagnetic field, Tang and Cohen proposed

and demonstrated the use of “superchiral” electromagnetic fields that yield ultra-dichroic

interactions with chiral molecules [19, 20]. They introduced the 00-zilch as a measure of

the local density of the chirality of the electromagnetic field. They named it as optical
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chirality density. Recently, this quantity has been widely studied and employed in the

chirality characterization of molecules and electromagnetic fields [21–25]. The optical

chirality density in a medium with electric permittivity ε and magnetic permeability µ

can be expressed as [26]

C =
ε

2
E · ∇ × E + 1

2µ
B · ∇ ×B, (3.1)

where E and B are the time-dependent electric field and magnetic induction, respectively.

While many studies on optical chirality have been published, it is definitely surprising

that its physical aspects or relation to well-known quantities have not been well described.

Even though the continuity equation was proposed and discussed by many researchers, it

is still unable to be clearly depicted with the consideration of source terms (charges and

currents).

We will now reveal the relation between the SAM and optical chirality of an electro-

magnetic field in a general source-added space, which is an important relation to find the

continuity equation for SAM. In an electromagnetic field, the conserved quantities should

satisfy their continuity equations, indicating their exchange between the field and sources.

As introduced in Chapter 2 (Section 2.2), Poynting’s theorem is the most elementary con-

tinuity equation, which explicates the energy transfer between field and sources. In the

following, we restrict our discussion to a homogeneous, isotropic, lossless medium. In

relation to an electromagnetic field, we regard a particle as a distribution of charges with

density ρ(r, t) and currents with density j(r, t). The continuity equation for optical chi-

rality is given in analogy with the Poynting’s theorem. By taking the time derivative of

Eq. (3.1) and using Maxwell’s equations, we get [19, 26]

∂C
∂t
+ ∇ · F = −1

2
[j · (∇ × E) + E · (∇ × j)], (3.2)

where

F = 1
2µ

[E × (∇ ×B) −B × (∇ × E)] (3.3)

is the chirality flux density. Eq. (3.2) and Eq. (3.3) have been widely used for charac-

terizing the optical chirality density. Considering a monochromatic field in a source-free
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space (j = 0), E(r, t) = Re[E(r)e−iωt] and B(r, t) = Re[B(r)e−iωt], some studies have

shown that F is proportional to the SAM density of light, one of the well-known impor-

tant physical quantities, which is defined as Eq. (2.38).

By using Maxwell’s equations, F can be written as

F = R + 1
2
E × j, (3.4)

R = 1
2
(εE × ∂E

∂t
+

1
µ
B × ∂B

∂t
). (3.5)

R, the first term on the right-hand side in Eq. (3.4), can be expressed as

R = ω
4
{εIm[E∗ × E] + 1

µ
Im[B∗ × B]} (3.6)

in a monochromatic field, which is proportional to the definition of SAM density, i.e.,

Eq. (2.38). The second term on the right-hand side in Eq. (3.4) is related to the sources.

We note that the current density j can be considered as ∂Pc/∂t, where Pc is the polariza-

tion that induces the current. The term (E×j)/2 can be written as (E×∂Pc/∂t)/2, which

shows the same intrinsic physics as that of Eq. (3.5). Therefore, in a monochromatic field,

the quantity

F
ω2 =

1
2ω2 (εE × ∂E

∂t
+

1
µ
B × ∂B

∂t
+ E × j) (3.7)

can be regarded as the SAM density of the total field, including the contribution from the

first two terms by the light field and the last term by the current.

3.3 Optical chirality and optical helicity

We have seen that the optical chirality density is typically associated with the SAM den-

sity. At the same time, it is known that optical helicity is also a conserved quantity in

electromagnetic theory that describes the angular momentum associated with circular po-

larization. In this section, we will show the relation between the optical chirality and

optical helicity.

Optical helicity density has its natural expression in terms of magnetic and electric
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vector potentials. Therefore, we now introduce the uniquely defined potentials by the

relations

B = ∇ ×A, (3.8)

E = −∇ × C, (3.9)

under the condition that the vector potentials are purely transverse, so that ∇ ·A = 0 and

∇ · C = 0. The optical helicity density of electromagnetic field is defined by [16]

H =
ε

2c
(c2A ·B − C · E), (3.10)

where c is the light speed in the medium.

We now consider a monochromatic field in a source-free space, E(r, t) = Re[E(r)e−iωt],

B(r, t) = Re[B(r)e−iωt], and j = 0, we have the relation between the vector potentials

and electromagnetic fields as E = iωA, B = iωC/c2, where A and C are given by

A(r, t) = Re[A(r)e−iωt] and C(r, t) = Re[C(r)e−iωt], respectively. For the optical helicity

density, Eq. (3.10), this gives the result

Hmon =
cε
2ω

Im[E · B∗]. (3.11)

Meanwhile, for the optical chirality density, Eq. (3.1) can be rewritten as

Cmon =
εω

2
Im[E · B∗]. (3.12)

Thus, the relation between the optical chirality density and optical helicity density is

greatly simplified in the case of monochromatic fields in a source-free space: Hmon =

cCmon/ω2. Note that the optical helicity is a conserved quantity, it should obey its conti-

nuity equation just like the optical chirality does. Due to the proportional relation between

the optical chirality density and optical helicity density, it is obvious that the chirality flux

density and helicity flux density follows the same proportional relation with factor c/ω2.

Moreover, the expression for the chirality flux density in the special case of monochro-

matic fields in a source-free region is proportional to the SAM density of light. Therefore,
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in this case, both the chirality flux density and helicity flux density are proportional to the

SAM density of light, which is related to the local degree of circular polarization.

3.4 Continuity equation for spin angular momentum

In the preceding sections, we have revealed the relation between the SAM density of the

field and the chirality flux density. We now turn our attention to the angular momentum

transfer in light-matter interaction. The angular momentum transfer can induce an op-

tical torque acting on the matter. It is worth mentioning that light possesses both SAM

and OAM. Both can interact with matter to produce optical torques acting on the matter.

Consequently, the optical torque calculated by the MST method, i.e., Eq. (2.27), includes

both the contribution from the SAM transfer and OAM transfer. In other words, the MST

method has not been able to characterize the SAM transfer and OAM transfer separately

thus far.

As we discussed in Eq. (3.7), F/ω2 is the SAM density of the field, which is related

to the chirality flux density. This relation is similar to that the linear momentum density

of the field can be denoted by the energy flux density, S/c2, which has been discussed in

Chapter 2 (Section 2.2). Accordingly, in analogy with the continuity equation for linear

momentum, by taking the time derivative of F/ω2 and applying Maxwell’s equations, we

obtain the exact continuity equation for SAM:

∂

∂t
( F
ω2 ) − ∇ · TS = − c2

2ω2 [ρ(∇ × E) + j × (∇ ×B) + (∇ × j) ×B], (3.13)

TS =
εc2

2ω2 {[E ⊗ (∇ × E) + (∇ × E) ⊗ E]

+ c2[B ⊗ (∇ ×B) + (∇ ×B) ⊗ B]} − c2

ω2 CI.
(3.14)

The symmetric tensor TS resembles the MST TM . −TS represents the flux density of

SAM. The terms on the right-hand side of Eq. (3.13) account for the loss rate of the

SAM density of the field. Eq. (3.13) indicates the SAM transfer between the light and

matter. As the same as the continuity equations for energy Eq. (2.12), linear momentum

Eq. (2.22), and total angular momentum Eq. (2.26), Eq. (3.13) is also an exact conse-

quence of Maxwell’s equations, which holds instantaneously for each position without
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any averaging. Note that Eq. (2.26) describes the total angular momentum transfer in

light-matter interaction and it is a conserved quantity, consequently, the OAM transfer can

be obtained by combining Eq. (2.26) and Eq. (3.13). This makes it possible to separately

characterize the SAM transfer and OAM transfer. As a result of the SAM transfer and

OAM transfer, the optical torques originated from them can be produced on the matter,

which we call the spin-transfer torque and orbit-transfer torque, respectively. Thus, the

terms on the right-hand side of Eq. (3.13) can be regarded as the spin-transfer torque den-

sity on the particle. Based on the flux density of SAM, we can obtain the time-averaged

spin-transfer torque:

τspin =

∮
S

TS · n dS, (3.15)

where TS is the time-averaged TS.

Furthermore, Eq. (3.15) is a general equation as the same as Eq. (2.27), hence Eq. (3.15)

can also be applied to particles of any size, shape, and composition in the presence of ar-

bitrarily structured optical fields. Therefore, the orbit-transfer torque can be obtained by

subtracting the spin-transfer torque, i.e., Eq. (3.15), from the total optical torque, i.e.,

Eq. (2.27). This may help to study the rotational states of nanoparticles and molecules in

some opto-mechanical systems.

Up to this point, we have shown the continuity equation for optical chirality and men-

tioned the continuity equation for optical helicity, as well as their fluxes. Based on the

Noether’s theorem, they must be associated with symmetries of the electromagnetic ac-

tion. A requirement for the continuity equations to be true is that these quantities are

defined to respect the dual electric-magnetic symmetry, which implies that they are in-

variant under a duality rotation:

E → E ′
= Ecosθ + cBsinθ, (3.16)

cB → cB′
= −Esinθ + cBcosθ, (3.17)

for any angle θ. Interested readers are referred to Ref [27–29].

39



3.5 Verification and application

In this section, we will apply Eq. (3.15) and Eq. (2.27) to several examples (A, B, C). A

and B are given as an applicability verification and C is an application of our method to

analyze the angular momentum transfer between light and matter. The electromagnetic

fields were calculated using the finite element method (Simulation software: COMSOL

Multiphysics). All the following results were obtained with air as the medium, and the

circularly and linearly polarized light used in A and C were plane waves. We chose

plasmonic gold nanostructures as samples due to the strong interaction between them

and light. In A and B, the plasmonic structures were nanorods. Since the transverse

plasmon modes of the nanorods with the dimensions we used are negligible relative to

their longitudinal plasmon modes, the nanorods can be treated as “needle” particles and

the scattered light from them is linearly polarized without SAM or OAM. Therefore,

there is no spin-orbit transformation in the interaction between the light and nanorods in

the examples. This makes it much easier to analyze the physical mechanism of the spin-

and orbit-transfer torque based on the incident light.

■ Verification

A. Gold nanorod illuminated by circularly or linearly polarized light. A circularly po-

larized light intrinsically has a SAM of ±ℏ per photon depending on the field rotation

direction. On the other hand, a linearly polarized light has no angular momenta because

it is given by the sum of the circularly polarized lights with different signs for SAM. Fig-

ure 3.1(a) schematically shows the geometric model. A nanorod lying along the y-axis is

illuminated by a plane wave with an incident angle of φ in the xz plane. For the circularly

polarized incident light, the optical torque arises from the absorption of the SAM carried

by the incident light and the scattering of the incident light with the radiation of the lin-

early polarized light, i.e., the extinction of the incident SAM. On the other hand, for the

linearly polarized incident light without any angular momenta, the optical torque is pro-

duced by the generation of SAM in the interference field between the scattered light and

the incident light. In both cases, only SAM transfer exists. Therefore, the spin-transfer

torque (τspin) calculated by Eq. (3.15) should be equal to the total optical torque (τtotal)
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calculated by Eq. (2.27), as shown in Figure 3.1(b). We can see that each component of

the spin-transfer torque and that of the total optical torque are equal to each other, which

is consistent with the analysis of the physical mechanism.

Figure 3.1: (a) Geometric model of a gold nanorod (length: 120 nm, diameter: 40 nm)
illuminated by circularly or linearly polarized light. (b) Wavelength dependence of optical
torques τtotal and τspin calculated by Eq. (2.27) and Eq. (3.15), respectively, with right
circularly (top) and linearly (bottom) polarized light incident at an angle of φ = 30◦. The
polarization direction of the linearly polarized light is at an angle of 45◦ with respect to
the longitudinal axis of the nanorod. τtotal i and τspin i(i=x, y, z) represent the different
components of the optical torque.

B. Gold nanorod illuminated by a Laguerre Gaussian (LG) beam. The properties of an

LG beam can be quantified by its azimuthal mode index l = 0,±1,±2, · · · , radial mode in-

dex p = 0,1,2, · · · , and the handedness of circular polarization denoted by s = ±1 [30,31].

l describes the phase distribution around the azimuthal direction of the beam, whereas p

decides the number of nodes along the radial direction. Moreover, l and s give rise to an

OAM of lℏ and a SAM of sℏ per photon, respectively. Here, for simplicity, we confine

our discussion to l = 1, p = 0, that is, a single-ringed beam with an OAM of ℏ per photon.

For an LG beam with l = 1, the spin-transfer torque can be added to, or subtracted from

the orbit-transfer torque to obtain the total optical torque [32].

As shown in Figure 3.2(a), a nanorod lies along the y-axis at the center of the incident

LG beam propagating along the z-axis from the negative to the positive direction. Here,

we only focus on the z-component of the torques on the nanorod since the torques are

negligible for the other components. (i) l = 1, s = 1. The scattered light from the nanorod

is linearly polarized without SAM or OAM. Therefore, optical torque is produced by
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Figure 3.2: (a) Geometric model of a gold nanorod (length: 400 nm, diameter: 40 nm)
illuminated by LG beam. (b-d) Wavelength dependence of optical torques τtotal and τspin
with the incident light of LG beam with different modes: (b) l = 1, s = 1, (c) l = 1,
s = −1, and (d) l = 1, y-pol..

the extinction of the incident angular momentum. As each photon has SAM and OAM

with the same magnitude and sign, the spin-transfer torque (τspin) and the orbit-transfer

torque (τtotal − τspin) should be equal to each other. As shown in Figure 3.2(b), we can

see the results of τspin obtained by Eq. (3.15) and τtotal obtained by Eq. (2.27) show a

good agreement with our analysis. (ii) l = 1, s = −1. The optical torque is produced by

the same mechanism as that in (i). The incident light has a negative SAM, producing a

spin-transfer torque which has a direction different from that in (i). Therefore, the same

magnitude but different signs of SAM and OAM produce the optical torques with the

same magnitude but opposite directions, resulting in a total optical torque of zero. How-

ever, the spin-transfer torque can still be calculated by Eq. (3.15). This is also supported

by the results in Figure 3.2(c). (iii) l = 1, y-pol.. In this case, only OAM transfer occurs

between the nanorod and the light field, inducing an orbit-transfer torque on the nanorod.
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Thus, the spin-transfer torque should be zero via the calculation of Eq. (3.15), while the

total optical torque is equal to the orbit-transfer torque with a non-zero value, as shown in

Figure 3.2(c).

All the above calculation results are consistent with those of previous studies and the

analysis of physical mechanisms, indicating that Eq. (3.15) is effective for calculating the

spin-transfer torque separately from the orbit-transfer torque. Furthermore, by combin-

ing with Eq. (2.27), it provides the potential to separately quantify the SAM transfer and

OAM transfer in the interaction between light and matter. In order to obtain a physical

insight into such quantification, we consider the following example.

■ Application

C. Gold nanosphere illuminated by circularly polarized light. The geometric model is

shown in Figure 3.3(a). A nanosphere is illuminated by a right circularly polarized light

propagating along the z-axis from the positive to the negative direction. Interestingly,

even though it’s an incident light without OAM, the spin-transfer torque (τspin z) is not

equal to the total optical torque (τtotal z), as shown in Figure 3.3(b). Thus, the OAM along

the z-axis should be generated by the interaction between the nanosphere and circularly

polarized light. This generation of OAM produced a recoil orbit-transfer torque on the

nanosphere. Considering this in Eq. (3.13), the terms on the right-hand side, that is,

spin-transfer torque density, include the part that contributes to the generation of OAM

due to the spin-orbit interaction, which leads to the difference between the spin-transfer

torque and total optical torque in Figure 3.3(b). To confirm the OAM generation, we

calculated the phase distribution of the scattered light around the nanosphere as shown in

Figures 3.3(d) and 3.3(f). We can observe the phase gradient around the nanosphere in

the plane parallel to the xy-plane, which shows the OAM along the z-axis in the scattering

field. Additionally, some previous studies have also shown the OAM in the scattering

field around the nanosphere illuminated by a circularly polarized light [33–36], which

is consistent with our result. These findings may imply that all directions around the

nanoparticle should be considered to analyze the OAM of a scattering field. Besides,

as the spin-transfer torque and orbit-transfer torque are produced by the extinction of

the incident SAM and the generation of OAM, respectively, our method to separately
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Figure 3.3: (a) Geometric model of a gold nanosphere (diameter: 100 nm) illuminated
by right circularly polarized light. (b) Wavelength dependence of optical torques τtotal
and τspin. Electric field (c, e) and phase distribution (d, f) of the scattered light from the
nanosphere illuminated by circularly polarized light in the far field at different viewpoints.
The red arrows in (c) and (e) show the instantaneous polarization states at different po-
sitions on the far-field surface. The rainbow colors in (c) and (e) show the normalized
amplitude of the electric field in different directions of the scattered light. The wavelight
colors in (d) and (f) show the phase distribution on the far-field surface. The phase is
defined as the phase of the φ component of the electric field in the spherical coordinate
system (r, θ, φ) transformed from the Cartesian coordinate system (x,y, z) in the figure.
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calculate them could be used to quantitatively characterize the transformation efficiency

from SAM to OAM with the ratio of the orbit-transfer torque to spin-transfer torque. This

quantitative analysis method for the spin-orbit transformation provides a new route to

understand and design the spin-orbit interaction systems.

3.6 Summary

In summary, we have presented an approach to quantifing the spin-orbit transformation in

the interaction between light and matter based on the separate calculation of spin-transfer

torque and orbit-transfer torque. By extending the proportional relation between the chi-

rality flux density and SAM density to sources-added space, we have derived the continu-

ity equation for SAM in analogy with the continuity equation for linear momentum. The

derived equation provides a method to separately calculate the spin-transfer torque and

orbit-transfer torque by combining with the MST method related to the continuity equa-

tion for total angular momentum. This method makes it possible to realize the separate

characterization of SAM transfer and OAM transfer between light and matter. What is

more, this is a general method that can be applied to any size, shape, and constituent of

matter in the presence of arbitrarily structured optical fields. In fact, we revealed that the

scattered light of a nanosphere illuminated by circularly polarized light has OAM as well

as SAM. The transformation capability from SAM to OAM can also be evaluated based

on our method. The separation of spin-transfer torque and orbit-transfer torque may play

a significant role in analyzing and designing a spin-orbit interaction system, which can be

applied to many fundamental processes such as optical manipulation of nanoparticles and

molecules, subwavelength optical probing, and generation of vortex beams. Our approach

to separating the SAM transfer and OAM transfer will provide a better understanding of

the fundamentals of the physics of the interaction between light and matter.
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Chapter 4

Optical torque between twisted metal

nanorods induced by plasmon coupling

4.1 Introduction

In Chapter 3, we have proposed a quantitative analysis method for the optical spin-orbit

transformation in light-matter interaction. This method is based on the transfer of angular

momentum between light and matter, which produces optical torque on the matter. Here,

we continue the discussion of optical torque.

Optical torque is a measure of how much a force acting on an object causes that object

to rotate. Compared with the optical force, it provides a rotational mechanical degree

of freedom to manipulate objects. The optical torque can be produced via absorption

and scattering processes in light-matter interaction [1–4]. Figure 4.1(a) describes that

a particle absorbs the spin angular momentum carried by incident circularly polarized

Figure 4.1: Schematic illustration of optical torque produced via absorption (a) and scat-
tering (b).
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light to produce the optical torque. However, in Figure 4.1(b), the incident light is a lin-

early polarized light without angular momentum. In this case, due to the interference

between the scattered light from the plasmonic metal nanorod and incident light, angular

momentum can be generated and results in a recoil optical torque on the nanorod. There-

fore, owing to the important role of optical torque in optical manipulation, it has been

attracting widespread attention with a variety of applications in physics, chemistry, and

biology [5–10].

In recent years, with the development of plasmonics and nanotechnology, plasmonic

nanostructures have significantly furthered these studies due to the excitation of localized

surface plasmon resonance (LSPR). As introduced in Chapter 2, the excitation of LSPR

gives rise to an intense near field on the nanoparticle surface and enhances the optical

cross section in absorption and scattering [11–13]. Furthermore, the plasmonic character-

istics strongly depend not only on the nanoparticle size and shape but also on the configu-

rations of the particles, e.g., their separation, orientation, and so on [14–17]. In particular,

when two nanoparticles are close to each other, their plasmon coupling occurs owing to

the strong interactions as shown in Figure 4.2 [15–17], resulting in an appearance of two

plasmon modes different from individual constituents. The plasmon resonances and the

near-field enhancement effects of these hybridized modes are significantly changed by the

nanoparticle configurations [18–22]. In other words, we can efficiently control the plas-

mon characteristics through the configurations with the plasmon coupling. The plasmon

coupling between nanoparticles drastically enhances the electromagnetic (EM) field in the

narrow gap separating them. Over many decades, extensive investigations on the basis of

plasmon coupling have been carried out, promoting the applications of plasmonics, such

as surface-enhanced fluorescence [23, 24], surface-enhanced Raman scattering [25, 26],

chemical sensors, and biosensors [27, 28], and high harmonic generation [29, 30].

In some previous studies, it has been reported that the strong interaction between

plasmonic nanoparticles induced by plasmon coupling can produce an interaction optical

force between the nanoparticles as shown in Figure 4.2 [31, 32]. This interaction opti-

cal force provides a possible approach for assembly control of the nanoparticles [33–35],

which plays a crucial role in optical arrangement with a variety of applications, such as

contactless control of plasmonic properties, e.g., plasmon resonance control and field en-
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hancement, and high-precision plasmonic nanodevices. However, it is easy to imagine

that interaction optical torque can also play a significant role in the optical arrangement

because it provides a rotational mechanical degree of freedom to manipulate particles.

However, it is certainly surprising that few works are trying to systematically study the

interaction optical torque.

Figure 4.2: Schematic illustration of the interaction optical force induced by plasmon
coupling between two nanorods.

Therefore, in this chapter, we study the interaction optical torque induced by plasmon

coupling in a dimer of twisted metal nanorods. We start with the plasmon coupling in the

dimer which can be explained by the theory of plasmon hybridization. We then discuss

the optical torque in the twisted nanorods system. We study the direct relation between

the optical torque and plasmon coupling between the twisted metal nanorods. The results

indicate that the behaviors of the interaction optical torque at hybridized modes are differ-

ent from that of an isolated nanorod, which depends not only on the gap size but also on

the twisted angle between the nanorods. This interaction optical torque implements the

rotations to mutually perpendicular and parallel arrangements of nanorods with the light

excitations of different hybridized modes. Thus, the interaction optical torque induced by

the plasmon coupling would play an important role to control the plasmonic characteris-

tics and functions. We also analyze the interaction spin- and orbit-transfer torque between

53



the two nanorods based on the analysis method proposed in Chapter 3, which leads to the

topic we will discuss in Chapter 5.

4.2 Simulation method

Figure 4.3: Schematic illustration of twisted gold nanorods with gap size d, twisted angle
θ, and definitions of the geometrical parameters: L = 165 nm, W = 50 nm, H = 40 nm.

In order to simply excite and observe the plasmon hybridized modes, we chose a dimer of

twisted nanorods as shown in Figure 4.3. The two nanorods are separated by gap size d,

and they are twisted by angle θ. The dimer was comprised of twisted gold nanorods with

definitions of the geometrical parameters: L = 165 nm, W = 50 nm, H = 40 nm. The long

axis of Rod 1 was fixed along the y-axis. Conversely, Rod 2 was rotatable for changing the

twisted angle. The dimer was irradiated by a y-polarized plane wave to propagate along

the z-axis from the positive to the negative direction. We chose the linearly polarized light

without any intrinsic angular momentum, which simplifies the analysis of the physical

mechanism on the optical torque. The refractive index of the surrounding medium was

1.45.

The optical torque on the nanorods was calculated based on the Maxwell stress ten-

sor (MST) method introduced in Chapter 2 and the equation proposed in Chapter 3, i.e.,

Eq. (2.27) and Eq. (3.15), with the EM field simulated by using the finite element method

(COMSOL Multiphysics). Another approach based on the dipole approximation is also

presented to qualitatively study the physics of optical torque in the dimer. Here, we dis-

cuss the optical torque only along the z-axis because the torques along the x-and y-axes
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are negligibly small.

The plasmon coupling was characterized by the extinction cross section which is the

sum of absorption and scattering cross sections. In our simulation, the scattering cross

section is defined as

σsc =
1
I0

∮
S
S · n dS, (4.1)

where S is the Poynting vector, I0 is the incident intensity, S is an arbitrary closed surface

surrounding the dimer, n is the outward normal unit vector to its surface. The absorption

cross section is defined as

σabs =
1
I0

∫
V

Q dV, (4.2)

where Q is the power loss density in the dimer and the integral is taken over its volume V.

Therefore, the extinction cross section can be obtained by

σext = σsc + σabs, (4.3)

4.3 Plasmon coupling between twisted nanorods

4.3.1 Plasmon spectra of twisted nanorods

In the dimer of twisted nanorod, the gap size d and twisted angle θ are two crucial parame-

ters to determine its configuration. Therefore, we calculated both the gap size dependence

and twisted angle dependence of the plasmon coupling between the two nanorods. Fig-

ure 4.4(a) shows the plasmon resonance spectra of an isolated nanorod and its dimer at

a twisted angle of π/6 with different gap sizes. As the gap size decreases, the resonance

peak of individual nanorods, i.e., the isolated nanorod, starts to split and shifts to short

and long wavelengths due to the plasmon coupling between the nanorods in short and

long wavelength ranges, respectively. We can also observe similar spectral behavior in

the twisted angle dependence for the dimer with a gap size of 15 nm, as shown in Fig-

ure 4.4(b). As the twisted angle increases and decreases, the separation between two

resonance peaks decreases and increases, respectively. At the twisted angle of π/2, the

dimer exhibits only one resonance peak with a small shift from the resonance peak of the

isolated nanorod, in other words, the interaction between the two nanorods with a twisted
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Figure 4.4: Plasmon resonance spectra of an isolated nanorod and its dimer: (a) gap size
dependence (θ = π/6) and (b) twisted angle dependence (d = 15 nm).

angle of π/2 is not strong enough to induce plasmon coupling between them. These re-

sults indicate that the plasmon coupling between twisted nanorods can be controlled by

not only the gap size but also the twisted angle and increases with the decreases of gap

size and twisted angle.

4.3.2 Plasmon hybridization of twisted nanorods

To understand the plasmon coupling between the twisted nanorods, it can be described

as an elegant physical picture which is plasmon hybridization in analogy with molecular

orbital theory [15-19]. Each nanorod can be approximated as a dipole with energy U.

When two nanorods are close to each other, plasmon hybridization occurs, generating

two new plasmon modes: anti-bonding mode and bonding mode as shown in Figure 4.5.

These two hybridized modes are corresponding to a higher energy U+ and a lower energy

U− respectively, which are produced by splitting from the degenerate energy level U. For

the anti-bonding mode, two dipoles are arranged in a parallel manner, i.e., in phase. The

charges with the same sign at the edges of nanorods result in a higher energy mode due to

the charge repulsion. In this case, the dipole moments add up constructively. It is therefore

referred to as a bright plasmon mode that shows a large cross section (see Figure 4.4).
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Figure 4.5: Plasmon hybridization diagram in nanorod dimer with twisted angle θ. The
polarization direction of the incident light is along the longitudinal axis of the bottom
nanorod.

However, for the bonding mode, the dipoles are in an anti-parallel alignment that shows

opposite charges at the edges of the nanorods, reducing the charge repulsion and leading to

a lower energy. In this case, the destructive superposition of the dipole moment produces

a dark plasmon mode that exhibits a small cross section (see Figure 4.4) with a strong

enhanced near field. In the dimer of twisted nanorods (Figure 4.5), the decrease of the

twisted angle, as well as the gap size, would relieve the charge repulsion for bonding

mode but inverse for anti-bonding mode, resulting in the LSPR redshift and blueshift at

bonding mode and anti-bonding mode, respectively. Additionally, at the twisted angle

of π/2, the charge repulsion between two nanorods vanishes away due to the orthogonal

dipoles, so that plasmon hybridization (coupling) does not occur.

4.4 Optical torque on the twisted nanorods

4.4.1 Optical torque calculated by the Maxwell stress tensor method

In this section, we will discuss the optical torque on the twisted nanorods based on the

MST method and the relation with the plasmon coupling. Figure 4.6 shows the optical
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Figure 4.6: Optical torque acting on (a, c) the whole dimer and (b, d) on each nanorod:
(a, b) gap size dependence (θ = π/6) and (c, d) twisted angle dependence (d = 15 nm).
The dashed lines show the peak wavelengths at the redshifted resonance. The insets in (d)
show the rotation directions of Rod 2 at the anti-bonding mode and bonding mode.
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torque applied to the twisted nanorods. The behaviors of the optical torque strongly de-

pend on the gap size and the twisted angle between the nanorods. The magnitude of the

torque on the whole dimer at the resonance wavelength is similar to that on the isolated

nanorod, even in the case of the strong plasmon coupling between the nanorods, i.e., small

gap size and twisted angle. However, the optical torque on each nanorod in the dimer can

be remarkably enhanced by the plasmon coupling, leading to more than 4.2 times as large

as that on the isolated nanorod. It should be noted that the extinction cross section at the

redshifted plasmon resonance (bonding mode) is much smaller than that at the blueshifted

plasmon resonance (anti-bonding mode) in Figure 4.4, whereas the magnitude of the opti-

cal torque at the redshifted resonance is much larger than that at the blueshifted resonance

in Figures 4.6(b) and 4.6(d).

Let us discuss the spectral shape and the mechanism of the optical torques on the

twisted nanorods. When a linearly polarized field E illuminates an isolated nanorod, the

time-averaged optical torque on the induced dipole moment p of the nanorod can be sim-

ply expressed as [36, 37]

τi =
1
2

Re[p × E∗], (4.4)

where ∗ denotes the operation of conjugation. This optical torque is produced by the

generation of the angular momentum owing to the interference between scattered light

from the oscillating dipole moment p and the incident light field E. For longer and shorter

wavelengths of the incident light than the wavelength at plasmon resonance peak of iso-

lated nanorod in Figure 4.4, the nanorod experiences the negative and positive torque,

respectively, as shown in Figure 4.6 (a) (also see Figure 4.10 in Subsection 4.4.2), be-

cause the phase difference between the dipole moment p and the incident light E changes

from 0 to π around the resonance peak. At the resonance peak, the total angular momen-

tum of the interference field keeps zero, hence, there is no optical torque on the nanorod.

In addition, when the incident field is polarized parallel or perpendicular to the long axis

of the nanorod, i.e., θ = 0, π/2, the optical torque disappears because of no generation of

the angular momentum. In the case of the twisted nanorod dimer, the optical torque in

Figures 4.6(a) and 4.6(c) arises from two different mechanisms. One of them is due to the

angular momentum in the interference field between the scattered light and the incident

light, which is similar to that for the isolated nanorod. The other one is due to the different
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absorption cross section of the left-handed and the right-handed circularly polarized light

with positive and negative spin angular momentums, respectively, because of the chirality

of the dimer (θ , 0, π/2), which is highly associated with the plasmon coupling in the

dimer. At the anti-bonding mode, the optical torque induced by the former is dominant

because it is a bright mode with a large scattering cross section, resulting in the spectral

behavior similar to that of the isolated nanorod. However, at the bonding mode, the op-

tical torque induced by the latter is dominant because it is a dark mode with much small

scattering cross section comparing with that at anti-bonding mode while the difference

between the absorption cross sections of the left-handed and the right-handed circularly

polarized light shows a very large chirality of the dimer as shown in Figure 4.7. There-

fore, its spectral shape is similar to the absorption cross section.

Figure 4.7: Absorption and scattering cross sections of the twisted gold nanorods dimer
with gap size and twisted angle of 15 nm and π/6, respectively, for the illumination of
left- and right-handed circularly polarized light.

For each nanorod in the dimer, the optical torque is determined by the scattered field

from the other nanorod together with the incident light. In Figures 4.6(b) and 4.6(d),

the directions of optical torque on the two nanorods are opposite while their magnitudes

are close to each other. In other words, each nanorod dominantly experiences an optical

torque due to the angular momentum of the EM field arising from the interaction between

the two nanorod-plasmons, i.e., interaction optical torque. Therefore, the sign of the opti-

cal torque on the nanorods should be decided by the phase difference between the dipole

moments of the two nanorods. For the anti-bonding mode, the two dipoles are in phase,
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producing a negative torque on Rod 1 and a positive torque on Rod 2. Conversely, for

the bonding mode, the dipoles are out of phase. The optical torques on Rod 1 and Rod

2 are positive and negative, respectively. Moreover, because the scattering loss at the

bonding mode is much smaller than that at the anti-bonding mode, the near field between

two nanorods can be much more strongly enhanced at the bonding mode than at the anti-

bonding mode, as shown in Figure 4.8. This results in a much larger magnitude of the

interaction optical torque at the bonding mode than at the anti-bonding mode even though

the extinction cross section at the bonding mode is smaller than that at the anti-bonding

mode. Additionally, in the case of the two nanorods parallel and perpendicular to each

other, i.e., θ = 0, π/2, the EM field does not possess the angular momentum, resulting in

no optical torque on the nanorods.

Figure 4.8: Distributions of the field (intensity) enhancement at the gap center plane
between the two nanorods at (a) anti-bonding mode (λ = 1000 nm) and (b) bonding mode
(λ = 1200 nm), respectively, with the gap size of 15 nm and twisted angle of π/6.

4.4.2 Optical torque calculated by the dipole approximation method

In the preceding subsection, we have discussed the optical torque on the twisted nanorods

calculated by the MST method using the finite element method. Here, we introduce an-

other approach based on the dipole approximation to confirm the spectral behavior of the

optical torque on each nanorod. The dipole approximation method is a widely utilized

method to calculate the optical torque. A nanorod can be approximated as a dipole with

dipole moment p, which is decided by the polarizability α of the nanorod. The induced

dipole moment p of the nanorod illuminated by an arbitrary monochromatic incident elec-
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tric field E can be expressed as p = α · E.

Figure 4.9: (a) Plasmon resonance spectra of an isolated gold nanorod at longitudinal
mode and transverse mode. (b) Longitudinal polarizability of the gold nanorod calcu-
lated by the finite element method. The definitions of the geometrical parameters of the
nanorod: L = 165 nm, W = 50 nm, H = 40 nm

Since the transverse plasmon modes of the nanorods with the dimensions we used

are negligible relative to their longitudinal plasmon modes as shown in Figure 4.9(a), the

transverse polarizability of the nanorod is negligible and we only consider the longitudi-

nal polarizability αl . Figure 4.9(b) shows the real part and imaginary part of αl . Hence,

with the incident field of y-polarized plane wave E to propagate along the z-axis from the

positive to the negative direction as shown in Figure 4.3, the time-averaged optical torque

on an isolated nanorod rotated with an angle of θ can be obtained by [36, 37]

τi =
1
2

Re[p × E∗] = −1
4

Re[αl]sin2θ |E|2ez, (4.5)

where ez is the unit vector along the z-axis. Eq. (4.5) shows a good agreement with the

results calculated by the MST method as shown in Figure 4.10. According to Eq. (4.5),

the direction of optical torque is decided by the sign of the real part of αl . Under the

situation of 0 < θ < π/2, Re[αl] is positive in the longer wavelength region than the

resonance peak wavelength. The phase difference between the dipole moment p and the

incident electric field E is in the range of 0 to π/2. The optical torque is negative. In the

short wavelength region, Re[αl] is negative, that is, the phase difference between p and E

is in the range of π/2 to π. The optical torque is positive. Additionally, when the phase
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difference between p and E is π/2, i.e., Re[αl] = 0, the optical torque is 0.

Figure 4.10: Optical torque on an isolated nanorod with different rotation angles. The
solid line and triangle with different colors represent the torques calculated by the dipole
approximation method and MST method, respectively.

In order to calculate the optical torque acting on each nanorod in the dimer of twisted

nanorods, we need to calculate the electric field on each nanorod. Base on the dipole

radiation introduced in Subsection 2.3.2, each component of the electric field on each

nanorod can be expressed as

E1 =

©«
− A+A2exp[ik(d+H)]

1−A2cos2θ
sinθcosθEy

exp[ik(d+H)]+Acos2θ

1−A2cos2θ
Ey

0

ª®®®®¬
, (4.6)

E2 =

©«
0

1+Aexp[ik(d+H)]
1−A2cos2θ

Ey

0

ª®®®®¬
, (4.7)

A =
αlexp[ik(d + H)]

4πε(d + H) [k2 +
ik(d + H) − 1

(d + H)2
], (4.8)

where θ is the twisted angle of the dimer, k is the wavenumber, ε is the permittivity of the

surrounding medium, d is the gap size in the dimer, H is the height of the nanorods, and
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Ey is the y component of the incident light. Thus, the optical torques on Rod 1 and Rod 2

can be expressed as

τ1 =
1
4

Re[αl
(A + A2exp[ik(d + H)])∗(exp[ik(d + H)] + Acos2θ)

|1 − A2cos2θ |2
]sin2θ |E|2ez, (4.9)

τ2 =
1
4

Re[αl](
|1 + Aexp[ik(d + H)]|2

|1 − A2cos2θ |2
]sin2θ |E|2ez, (4.10)

where ∗ denotes the operation of conjugation.

Figure 4.11: Twisted angle dependence of optical torques on (a) Rod 1 and (b) Rod 2
calculated by the dipole approximation method as a function of wavelength. The gap size
was fixed as 40 nm .

Though the dipole approximation method can not perfectly describe the plasmon cou-

pling between the twisted nanorods, it is a helpful method to qualitatively reveal the

physics of the interaction optical torque between the twisted nanorods. Figure 4.11 shows

the twisted angle dependence of the optical torques on the Rod 1 and Rod 2 calculated

by Eqs. (4.9) and (4.10), respectively. The shapes of the curves show a similar tendency

with the results calculated by the MST method in Figure 4.6(d). For the optical torque

on Rod 2, we can see the enhancement of optical torque arises from the enhancement of

the electric field that illuminates on the nanorods by comparing Eqs. (4.10) and (4.5). In

the redshifted resonance region (bonding mode), because the real part of polarizability

changes slowly, as shown in Figure 4.9(b), the enhancement of the electric field dom-

inates the change of the optical torque, which is associated with the plasmon coupling

resonance. Thus, the peak of optical torque is corresponding to that of the plasmon
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coupling resonance. In the blueshifted resonance region (anti-bonding mode), the real

part of polarizability varies drastically, determining the variation tendency of the optical

torque. At the peak wavelength of the plasmon resonance of an individual nanorod, we

can find the optical torque is 0 in Figure 4.11(b) because the real part of polarizability is

0. However, the dipole approximation method cannot completely describe the plasmon-

coupling-determined characteristics of the near field in the dimer, such as the polarization

state distribution in the near field. Therefore, the optical torque shows slight changes from

that in Figure 4.6(d) (τ2). For the optical torque on Rod 1, we can see the electric field on

Rod 1 is not a linearly polarized light as described by Eq. (4.6). In this case, the optical

torque calculated by Eq. (4.9) is decided by not only the real part of polarizability but also

the imaginary part of polarizability. Hence, in the blueshifted resonance region, the spec-

tral behavior of optical torque is different from that of the optical torque on Rod 2. On the

other hand, in the redshifted resonance region, it is similar to the optical torque on Rod

2 because the enhancement of the electric field dominates the variation of optical torque.

The peak of optical torque is in accordance with that of plasmon coupling resonance as

well.

4.4.3 Optical arrangement in practical application

Having investigated the optical torque on the twisted nanorods, we further explore the

optical arrangement of the twisted nanorods in a practical application induced by the

interaction optical torque. As shown in the inset of Figure 4.6(d), the optical torques on

Rod 2 show different signs at the anti-bonding mode and bonding mode, leading to an

anti-clockwise rotation and a clockwise rotation at the anti-bonding mode and bonding

mode, respectively. As the Rod 1 is fixed along the y-axis, the rotations of Rod 2 at

the anti-bonding mode and bonding mode result in mutually perpendicular and parallel

arrangements of the nanorods, i.e., θ = π/2 and 0, respectively.

Considering this optical arrangement dependent on the incident light wavelength in

a practical application, the rotational potential energy induced by the torque on the Rod

2 should be large enough to overcome the Brownian motion energy, which should be

considered in dealing with optical trapping and manipulation. The average energy of the

Brownian motion associated with each degree of freedom can be expressed as kBT/2 in a
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system at thermodynamic equilibrium, where kB is the Boltzmann constant, and T is the

absolute temperature. Interested readers in the detail of Brownian motion are referred to

Ref [38]. In this system, the temperature T will increase due to the light absorption of the

nanorods which depends on their configurations. To simplify the discussion, we keep T

at 300 K. We define the rotational potential energy as

UP =

∫ θ

θ0

τ dθ, (4.11)

where θ0 is the starting angle of the integral.

Figure 4.12: (a) Calculated optical torque on Rod 2 at the anti-bonding mode (λ = 930
nm) and bonding mode (λ = 1200 nm). (b) Rotational potentials in units of kBT (T = 300
K) for Rod 2 as a function of the twisted angle at the anti-bonding mode (λ = 930 nm)
and bonding mode (λ = 1200 nm). The gap size between the twisted nanorods was fixed
as 15 nm. The brown line shows the Brownian motion energy kBT/2.

Here, we chose a wavelength of 930 nm at the anti-bonding mode and 1200 nm at

the bonding mode. Figure 4.12(a) shows the optical torques on Rod 2 depending on the

twisted angle at the anti-bonding mode and bonding mode. Based on the data of optical

torque in Figure 4.12(a) and Eq. (4.11), we can obtain the rotational potentials for Rod 2

depending on the twisted angle at anti-bonding mode and bonding mode as shown in Fig-

ure 4.12(b). θ0 is π/2 and 0 for the anti-bonding mode and bonding mode, respectively.

The minimum values of potential energy identify the equilibrium positions of Rod 2 at

the different plasmon modes. Due to the Brownian motion, the final angle of Rod 2 can

not keep an exact value, which fluctuates around the angle determined by the minimum
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Figure 4.13: Schematic diagram for the calculation of angle fluctuation.

value of potential energy. To obtain the angle fluctuation, we compare the average energy

of the Brownian motion with the potential energy and get two values of angle (ψ ± ∆ψ)

as shown in Figure 4.13. In the range of ψ −∆ψ to ψ +∆ψ, the potential energy is unable

to overcome the Brownian motion. Therefore, ±∆ψ is regarded as the angle fluctuation.

For an incident intensity of 10 mW/µm2, the potential depths are more than 160 times

as large as the Brownian motion energy kBT/2. These potential wells enable the perpen-

dicular and parallel alignments of the nanorods with angle fluctuations of ∼ ±4.2◦ and

∼ ±4.4◦, respectively.

We have discussed the different arrangements at different plasmon modes under the

irradiation of y-polarized light. However, this can only be realized in two ways: perpen-

dicular and parallel to each other by changing the incident wavelength. It can not produce

the arrangements of the twisted nanorods in any other direction. To realize the full angle

control of the arrangement, we introduce a new variable parameter, which is the polariza-

tion state of incident light as shown in Figure 4.14(a). By treating the optical torque and

potential energy in the same way as we have introduced above, we can obtain the final

equilibrium angle of Rod 2 under the irradiation of linearly polarized incident light with

different polarization directions as shown in Figure 4.14(b). We can see, at the bonding

mode, it can only realize the arrangement in a small angle range. Rod 2 is bound to the

angle near the long axis of Rod 1 due to the strong enhanced interaction optical torque

at the bonding mode comparing with the optical torque produced by the incident light.
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However, at the anti-bonding mode, the final equilibrium angle of Rod 2 can be adjusted

in a full angle range by changing the incident polarization state. In this case, the inter-

action optical torque can not be strongly enhanced, keeping a comparable magnitude to

that of the optical torque produced by incident light. Thus, the balance between them can

realize the full angle management of the arrangement. This provides an effective method

to dynamically control the configuration of the nanorods.

Figure 4.14: (a) Schematic diagram for twisted nanorods illuminated by linearly polar-
ized light propagating along the z-axis from the positive to the negative direction. The
polarization state is determined by the angle ϕ. (b) The final equilibrium angle θ of Rod
2 depending on the polarization angle ϕ of the incident light at the anti-bonding mode (λ
= 930 nm) and bonding mode (λ = 1200 nm).

Figure 4.15: Concept of the experiment for optical arrangement.
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To achieve such optical arrangements in a practical application, we propose a con-

cept of the experiment as shown in Figure 4.15. Firstly, we can fabricate a nanorod array

embedded in a transparent substrate, e.g., silicon dioxide, by etching trenches in the sub-

strate. By controlling the depth of the trenches and the thickness of metal evaporated

into the trenches, we can get a nanorod array a few nanometers below the surface of the

substrate. The roughness of the surface can also be controlled within a few nanometers.

Such fabrication has been realized by electron beam lithography and reactive ion etching

in some previous studies already [39, 40]. This will also be introduced in detail and re-

alized in Chapter 5. Then, we put nanorods dispersed in a solvent on the nanorod array.

The dispersed nanorods would be aligned by controlling the wavelength and polarization

state of the incident light.

4.4.4 Spin- and orbit-transfer torques between twisted nanorods

We now turn our attention to the origin of the interaction optical torque with regard to

the transfers of spin and orbital angular momenta based on the analysis method proposed

in Chapter 3. We calculated the spin- and orbit-transfer torques on each nanorod in the

dimer as shown in Figure 4.16. Even though the incident light was linearly polarized

light without any angular momenta, the interaction between two nanorods can generate

spin and orbital angular momenta in the near field between them and produce interaction

spin- and orbit-transfer torques on each nanorod. This indicates that spin-orbit interaction

occurs in the narrow gap between the twisted nanorods. As the same as the total optical

torque on each nanorod, the spin- and orbit-transfer torques also depend not only on the

gap size but also on the twisted angle. From Figures 4.16(b) and 4.16(c), we can see

the plasmon coupling between the twisted nanorod can enhance the interaction spin- and

orbit-transfer torques and the enhancements increase with the decrease of the gap size due

to the increase of plasmon coupling between the twisted nanorods. Comparing the total

optical torque, spin-transfer torque, and orbit-transfer torque, we can find that the spin-

transfer torque is the main contribution to the total optical torque at the bonding mode.

However, at the anti-bonding mode, the spin-transfer torque and orbit-transfer torque pro-

vide almost equal contributions.

Additionally, we can see the spin-transfer torque is very large at the bonding mode
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Figure 4.16: Gap size dependence of (a) total optical torque, (b) spin-transfer torque, and
(c) orbit-transfer torque on each nanorod with the twisted angle fixed as π/6. Twisted
angle dependence of (d) total optical torque, (e) spin-transfer torque, and (f) orbit-transfer
torque on each nanorod with the gap size fixed as 15 nm
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comparing with the orbit-transfer torque. When the gap size and twisted angle are small,

in other words, in the range of strong plasmon coupling, the spin-transfer torque at the

bonding mode is also larger than that at the anti-bonding mode. As introduced in Chap-

ter 3, the spin-transfer torque is produced by the interaction of spin angular momentum

between light and matter. This means the strong plasmon coupling can result in a strong

interaction of spin angular momentum. Moreover, the interaction of spin angular momen-

tum between light and matter can be related to the absorptions of the left- and right-handed

circularly polarized light which induces the chiroptical response. Therefore, the results

of spin-transfer torque on the twisted nanorods imply that the strong plasmon coupling

can lead to a large chiroptical response of the twisted nanorods at the bonding mode.

This may provide a new strategy for the enhancement of the chiroptical response of chiral

plasmonic structures, which will be discussed in detail in Chapter 5.

4.5 Summary

In summary, we have presented a study of the interaction optical torque between twisted

metal nanorods induced by plasmon coupling. Firstly, we have explained the physical

description of plasmon coupling in the dimer using the theory of plasmon hybridiza-

tion, which depends not only on the gap size but also on the twisted angle between the

nanorods. This twisted angle dependence of plasmon coupling provides a new dimension

to tune the plasmon coupling. Then, we have demonstrated the interaction optical torque

is highly associated with the plasmon coupling by comparing the optical torques on the

nanorods with the plasmon resonance spectra. At the same time, the dipole approxima-

tion method has also been applied to analyzed and confirmed the spectral behavior of the

optical torque on each nanorod. The physical mechanism of the interaction optical torque

can be clearly explained based on the plasmon-coupling-induced dipole moments in the

nanorods. The optical torque behaviors are decided by the relative phase between the

coupled dipole moments of the two nanorods. In order to show how one can apply our

findings to practical experiments and applications, we have obtained the rotational poten-

tial energy by using the calculated optical torques on Rod 2 in comparison with the Brow-

nian motion energy. When the two-coupled dipoles are in phase and out of phase, i.e.,
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hybridized anti-bonding and bonding modes, their rotations lead to mutually perpendicu-

lar and parallel arrangements, respectively. Such arrangements can be extended to a full

angle control by changing the polarization state of the incident light. In addition, we have

discussed the experimental realization for the optical arrangement. The optical arrange-

ments depending on the hybridized modes with the different wavelength excitations and

the polarization states of the incident light will realize the dynamical contactless control

of the plasmonic characteristics and functions, e.g., the EM field enhancement, plasmon

resonance, and chirality, through the nanoparticle configurations with the plasmon cou-

pling. Our findings will open a new route to all-optical active plasmonic and metamaterial

devices, such as high-precision plasmonic nanodevices and nanomachines.
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Chapter 5

Enhancement of g factor of twisted

metal nanorods by plasmon coupling

5.1 Introduction

In Chapter 3, we have discussed the interaction of spin angular momentum separately

from that of orbital angular momentum between light and matter via the produced spin-

transfer torque and orbit-transfer torque. Whereafter, we have described the optical torque

on the twisted nanorods in Chapter 4. It clearly shows the interaction optical torque,

specifically the interaction spin-transfer torque, can be strongly enhanced by the plasmon

coupling, which implies that the plasmon coupling can enhance the chiroptical response

of the twisted nanorods.

As introduced in Chapter 1, the chiroptical response is induced by the different ab-

sorption of left- and right-handed circularly polarized light. It is quantflied by the g fac-

tor, i.e., Eq. (1.1), within the range from −2 to +2. However, the chiroptical response

of most natural chiral materials is typically weak with a very small value of g factor:

< 10−3. Therefore, it is very difficult to detect the chiroptical response, which makes

the study of this phenomenon tough and limits its further applications. In recent years,

chiral plasmonic nanostructures have attracted widely scientific interest because they can

strongly interact with circularly polarized light as well as with chiral molecules and can

be designed to mimic the properties of chiral molecules [1–5]. The excitation of localized

surface plasmon resonance (LSPR) of plasmonic nanostructure gives rise to an intense
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field near the surface of the nanostructure and enhances the optical cross section in ab-

sorption [6]. Hence, the g factor of the chiral plasmonic nanostructure can be several

orders of magnitude larger than that of natural material. For example, the Nam group

fabricated a helicoid nanoparticles with a high g factor of 0.31 through a multi-chirality-

evolution step synthesis method [7, 8]. With the development of nanotechnology, chiral

plasmonic structures with large g factor have shown promising potential for detecting and

sensing applications [9–11], negative refraction materials [12–14], and optical elements

with strong chiroptical effects [15, 16]. Therefore, the study of the enhancement of g

factor will be of great significance to improve the insights into controllable chirality of

nanostructure and to expand its application. However, in the previous studies, almost all

the studies of the g factor enhancement are limited to the geometry design of the structure.

The characteristics of a plasmonic system are determined by the shape and size of the

individual nanoparticles, and the configuration of the nanoparticles, such as the distance

between them and their orientations [17–20]. When two nanoparticles are close enough to

each other, the plasmon modes of the individual particles hybridize to generate two new

hybridized plasmon modes due to the coupling between them. At these hybridized modes,

the plasmon functions, especially the enhancement of near-field, vary significantly with

the nanoparticle configurations [21–23]. Intuitively, the configuration of nanoparticles in

a chiral plasmonic system should be crucial in mediating its chiroptical response.

In this chapter, we investigate the chiroptical response based on the dimer of twisted

metal nanorods. The dimer of twisted nanorods, one of the simplest 3D chiral plasmonic

structures, has been widely used to study the chiroptical response [24–27]. However,

these studies only considered the chiroptical response with very weak plasmon coupling

between the nanorods or the circular differential scattering, which could not characterize

the chiroptical response at the hybridized modes. Here, we concentrate on the chiropti-

cal response of twisted nanorods at the hybridized bonding mode induced by the strong

plasmon coupling, which depends on its configuration. We study the effects of the con-

figuration parameters, e.g., gap size and twisted angle, in the dimer on its chiroptical

response. As a proof of concept, we realize the fabrication of twisted gold nanorods with

different gap sizes and twisted angles utilizing electron-beam (EB) lithography. We ex-

perimentally observe the hybridized modes induced by the plasmon coupling between
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the twisted nanorods, which depends not only on the gap size but also on the twisted

angle. We find that the chiroptical response can be enhanced by the plasmon coupling

between the two nanorods and observe a very high g factor at the bonding mode due to

the plasmon-coupling-induced strong near-field enhancement. We believe that the study

of chiroptical response with the consideration of the plasmon coupling in the plasmonic

structure provides an efficient route for designing chiral metamaterial with a highly en-

hanced chiroptical response.

5.2 Fabrication of twisted nanorods

In this section, we will introduce the fabrication processes of the twisted gold nanorods.

We realized the fabrication of the twisted nanorods structures with different gap sizes

and twisted angles embedded in silicon dioxide (SiO2) using the top-down technique of

EB lithography combined with layer-by-layer stacking. Figure 5.1(b) shows the scanning

electron microscope (SEM) images of fabricated twisted gold nanorods structures with

different twisted angles.

Figure 5.1: (a) Schematic illustration of the dimer of twisted gold nanorods with gap size
d and twisted angle θ. (b) SEM images of the fabricated twisted nanorods structures with
different twisted angles: π/12, π/4, and 5π/12. Scale bar: 200 nm.
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The fabrication can be divided into two steps: bottom layer fabrication and top layer

fabrication, which mainly includes eight processes: substrate cleaning, sputtering, spin

coating of resist, EB lithography, development, etching, evaporation, and lift-off. Next,

we will introduce these processes in detail.

5.2.1 Bottom layer fabrication

Figure 5.2 describes the fabrication processes for the bottom layer fabrication. It includes

the following steps.

Figure 5.2: Fabrication processes to realize the bottom layer of the twisted nanorods
structure.

B1. Substrate cleaning

Before sputtering a dielectric layer on a substrate, we need to clean the substrate by

using an ultrasonic cleaner to remove the dust on the substrate. Table 5.1 shows the

specific conditions for substrate cleaning.
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Table 5.1: Conditions for substrate cleaning

Acetone 3 min

Ethanol 3 min

Distilled water 3 min

Baking 110◦C × 1 min

B2. SiO2 sputtering

Sputtering refers to a process for thin film deposition. In order to ensure that the

structure is surrounded by a homogenous medium, we deposited a 500 nm SiO2 layer on

the substrate (Ulvac SIH-450, Takeda super clean room, the University of Tokyo) as a

dielectric layer.

B3. Spin coating

Resist is an electron-sensitive film on the surface of the sample. The solubility of

the resist can be changed by the electron beam in the EB lithography process, enabling

selective removal of either the exposed or non-exposed areas of the resist by immersing it

in a developer. In our fabrication, we chose ZEP520A-7 as the resist. ZEP520A-7 is a high

performance positive resist which will be removed in the beam exposure area. However,

when EB lithography performs on insulating substrates, negative charge buildup can occur

on the substrate surface causing beam deflection and thus pattern distortion. We solved

this problem by spin coating Espacer (300Z) after the spin coating of resist. Espacer

(300Z) is a kind of conductive polymer which can be simply applied by spin coating and

simply removed by rinsing with water. Table 5.2 shows the specific conditions in the spin

coating process.

Table 5.2: Conditions for spin coating

ZEP520A-7 300 rpm × 5 sec → 5000 rpm × 90 sec

Baking 120◦C× 2 min

Espacer 1500 rpm × 60 sec

B4. EB lithography

EB lithography is a direct writing lithographic process that pattern is formed in a resist

83



layer by scanning with an electron beam. In our fabrication, we used the JEOL JBX-

6300FS (Arakawa Lab., Institute of Industrial Science, the University of Tokyo) system

for EB lithography. The pattern was written at a dose of 475 µC/cm2 at an accelerating

voltage of 100 kV.

B5. Development

After exposure in the EB lithography process, the designed pattern exists as a latent

image in the resist layer. The exposed areas are chemically different from the non-exposed

areas. The purpose of the development is to remove the exposed area (in the case of posi-

tive resists) of the resist by immersing it in a developer, resulting in the designed pattern in

the resist layer. In our fabrication, the sample was developed in a developer (ZED-N50:

n-Amyl acetate) for 20 sec and rinsed twice in ZED-B (Methyl isobutyl ketone 89% +

Isopropyl alcohol 11%) for 5 sec.

B6. SiO2 etching

SiO2 etching is a process to make trenches in the SiO2 layer. In this process, the

designed pattern was transferred to the SiO2 layer by inductively coupled plasma reactive

ion etching (ICP-RIE Ulvac CE-300I, Takeda super clean room, the University of Tokyo)

using the gas of CHF3 to etch off 45 nm of SiO2.

B7. EB evaporation

EB evaporation is a physical vapor deposition technique whereby a focused electron

beam to heat source material (e.g. pellets of Au) and evaporates it within a vacuum envi-

ronment. In our fabrication, a 2-nm titanium adhesion layer and 40 nm gold were sequen-

tially deposited onto the sample (ULVAC EX-300, Arakawa Lab., Institute of Industrial

Science, the University of Tokyo).

B8. Lift-off

Lift-off is a process for the removal of the resist layer in a solvent. The metal on the

top of the resist will be removed along with the lift-off of the resist. Thus, the metal will

only be deposited at sites that are not protected by the resist layer. In our case, the resist

layer was removed by a remover (ZDMAC: Dimethylacetamide) on a hot plate at 80◦C.

After these processes, we finished the bottom layer fabrication. It is important to

note that the surface of the sample after the bottom layer fabrication should be very flat,
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Figure 5.3: (a) AFM image of the sample after the bottom layer fabrication. (b) The
surface profile to measure the flatness at the blue dashed line.

otherwise, we cannot fabricate the top layer well and it will be very difficult to control

the gap size between the two layers. To obtain a flat surface, we should optimize the

conditions in the etching and evaporation processes. In our fabrication, we made 45-nm-

deep trenches in the SiO2 layer in the etching process. A 2-nm titanium adhesion layer

and a 40 nm gold layer was then deposited onto the sample using an EB evaporator. After

the lift-off process, the gold nanorods were embedded in the trenches etched in the SiO2

layer. Figure 5.3 shows the atomic force microscope (AFM) image of the sample after the

bottom layer fabrication and corresponding surface profile to measure the flatness at the

blue dashed line. We can see the peak to the valley of the surface is within about 7 nm

and the peak of the surface to the top side of the nanorods is within 3 nm. This makes it

is possible to control the gap size between the twisted nanorods within a very small error

range.

5.2.2 Top layer fabrication

Figure 5.4 shows the fabrication processes for the top layer fabrication. In this step,

we need to carefully consider the control of gap size and twisted angle between the two

nanorods in the dimer.

T1. SiO2 sputtering

After the bottom layer fabrication, we continued to sputter a 100 nm SiO2 layer on the
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Figure 5.4: Fabrication processes to realize the top layer of the twisted nanorods structure.

sample as a dielectric layer for the top layer fabrication. This process can also facilitate

the flattening of the sample surface.

T2. SiO2 etching

In this etching process, the thickness of etched SiO2 from the surface of the sample can

be control by changing the etching time, so as to realize the control of gap size between

the two layers.

T3. Spin coating

The same conditions as that in process B3.

T4. EB lithography

In this second EB lithography process, the twisted angle between the twisted nanorods

can be controlled by designing the input pattern for the EB writing.
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T5. Development, T6. SiO2 etching, T7. EB evaporation, and T8. Lift-off

The same conditions as that in bottom layer fabrication.

T9. SiO2 sputtering

We sputtered a 500 nm SiO2 layer on the sample surface to cover the twisted nanorod

structure to ensure that the structure is surrounded by a homogenous medium.

After the above processes, we finally realized the fabrication of twisted nanorods

structure with different gap sizes and twisted angles.

5.3 Results and discussion

In this section, we will discuss the experimental results of the plasmon coupling and

chiroptical response of the fabricated twisted gold nanorods. Figure 5.5 shows the ex-

perimental setup to collect the spectra. The incident light in our system was switchable

among linearly, left- and right-handed circularly polarized light using a combination of a

linear polarizer and a quarter-waveplate.

Figure 5.5: Schematic of the experimental setup for spectra collection.
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5.3.1 Plasmon coupling between twisted nanorods

We start by considering the experimental results of the plasmon coupling between the

twisted gold nanorods. The plasmon coupling was characterized by the extinction spec-

trum with y-polarized light (see the direction in Figure 5.1). The extinction spectrum can

be obtained by [28]

Aext =
Ib(λ) − Im(λ)

Ib(λ)
, (5.1)

where Im(λ) and Ib(λ) are the spectra of the transmitted white light through substrates

with and without nanostructures, respectively.

Figure 5.6: Experimental and simulation results of extinction spectra of an isolated
nanorod and its dimers. (a) Gap size dependence (θ = π/6) and (c) twisted angle de-
pendence (d =15 nm) of extinction spectra recorded with incident y-polarized light. Pan-
els (b) and (d) show the corresponding calculated spectra for the dimer comprised of gold
nanorods with length× width× height dimension of 165 nm × 50 nm × 40 nm. Illustra-
tion of plasmon modes: (e) anti-bonding mode with in-phase dipoles in short wavelength
range and (f) bonding mode with anti-phase dipoles in the long wavelength range.

In the dimer of twisted nanorods, the plasmon coupling is highly associated with its

configuration, which is decided by the gap size d and twisted angle θ. Therefore, we

experimentally characterized the plasmon coupling between the two nanorods with dif-

ferent gap sizes and twisted angles, as shown in Figure 5.6(a) and 5.6(c). In addition,

these results were confirmed numerically in panels (b) and (d) using the finite element

method (COMSOL Multiphysics). Based on these results, we can clearly observe the
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plasmon coupling between the twisted nanorods. When two nanorods are close to each

other, the resonance peak of isolated nanorod splits into two peaks due to the plasmon

coupling between the two nanorods. With the decreases of the gap size and twisted an-

gle, the two resonance peaks in short and long wavelength ranges shift to shorter and

longer wavelengths than that of the resonance peak of the isolated nanorod, respectively.

This indicates that the plasmon coupling increases with the decreases of the gap size and

twisted angle. Therefore, we experimentally demonstrated that the plasmon coupling be-

tween the twisted nanorods depends not only on the gap size but also on the twisted angle.

This is the first experimental demonstration for the twisted angle dependence of plasmon

coupling, which provides a new dimension to tune the plasmon coupling.

A detailed explanation of the plasmon coupling between the twisted nanorods has

been discussed in Chapter 4 (Subsection 4.3.2). The plasmon coupling between the two

nanorods can be described by the theory of plasmon hybridization. In the dimer of twisted

nanorods, the in-phase dipole coupling results in an anti-bonding mode as shown in Fig-

ure 5.6(e), which is a bright mode with a large cross section in the short wavelength

range. However, the anti-phase dipole coupling leads to a bonding mode as shown in

Figure 5.6(f), which is a dark mode with a small cross section but strongly enhanced near

field in the long wavelength range.

5.3.2 g factor of twisted nanorods

We now turn our attention to the results of the g factor. For the characterization of the

chiroptical response, we need to measure the g factor defined as Eq. (1.1). However, in

contrast to the extinction spectrum, our setup does not allow measuring the absorption

spectrum which is used in Eq. (1.1). It is known that the sum of the absorption cross sec-

tion and the scattering cross section is referred to as the extinction cross section. Here, we

focus on the chiroptical response at the bonding mode, which is a dark mode. The circu-

lar differential absorption is dominant compared with the circular differential scattering.

Thus, in order to characterize the g factor, we define the quantity gext as

gext =
Al

ext − Ar
ext

Al
ext + Ar

ext
, (5.2)
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where Al
ext and Ar

ext are the extinction spectrum for left- and right-handed circularly po-

larized light, respectively. Figure 5.7 shows the calculated gextand gabs by using the finite

element method with the designed parameters. Here, we put attention to the g factor at

the hybridized bonding-mode, where the spectra of gextand gabs show a similar shape and

the same tendency.

Figure 5.7: (a, c) Gap size dependence and (b, d) twisted angle dependence of gext and
gabs of twisted gold nanorods calculated using the finite element method (COMSOL Mul-
tiphysics) with the definitions of geometrical parameters: L = 165 nm, W = 50 nm, H =
40 nm.

Therefore, we first collected the extinction spectra of the dimer of twisted nanorods

with incident left- and right-handed circularly polarized light as shown in Figure 5.8. The

measured results were then substituted into Eq. (5.2) to calculate the g factor.
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Figure 5.8: Measured extinction spectra recorded with incident left- and right-handed
circularly polarized light of the dimer of twisted gold nanorods with different gap sizes
and the twisted angles.
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Figure 5.9 shows the experimental results of the g factor with different gap sizes and

twisted angles. We can see that the g factor of the twisted nanorods is highly associated

with both the gap size and twisted angle between the two nanorods. Besides, we can

observe the opposite sign of g factor for the bonding mode and anti-bonding mode. At

the bonding mode, the g factor exhibits a very large value. When the twisted angle is

determined, the g factor increases with the decrease of gap size. For the twisted angle

dependence, it also shows the same spectral behavior as that of the simulation results in

Figure 5.7(b). These experimental results show a very good agreement with the simulation

results in Figure 5.7.

Figure 5.9: Experimental results of g factor of twisted gold nanorods with different (a)
gap sizes with the fixed twisted angles of π/6 and (b) twisted angles with the fixed gap
size of 15 nm.

The experimental value of the g factor reaches up to 1.03. This is orders of magni-

tude larger than that for most molecule system with g factor smaller than 10−3. For a

chiral molecule, the chiroptical response stems from the helical motion of displacement

currents, which is induced by the interaction with circularly polarized light that causes

the electron clouds of the molecule to move along helical paths. However, in the dimer of

twisted gold nanorods, the interaction can excite real currents in the nanorods as well as

the displacement currents between the nanorods. Compared to a molecule, the real cur-

rents and displacement currents in plasmonic structures are much stronger because of the

massive free electrons in the metal nanoparticles. Hence, in a word, the strong chiroptical

response of chiral plasmonic structures stems from the large dipole moments and currents
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produced by the LSPR excitation.

Considering the g factor of the dimer of twisted nanorods, it is worth pointing out that

the anti-bonding mode and bonding mode can be thought of as corresponding to different

handedness. Meanwhile, circularly polarized light possesses the electromagnetic field

with different handedness. Such an electromagnetic field can interact with the twisted

nanorods by exciting plasmon modes. Therefore, the interaction between the nanorods

in the dimer at different plasmon modes excited by left- and right-handedness circularly

polarized light exhibits different strength due to the handedness matching (see Figure 5.8),

resulting in the chiroptical response with the g factors of opposite sign at the two plasmon

modes, as shown in Figures 5.9 as well as in Figures 5.7. Moreover, as we mentioned, the

bonding mode is a dark plasmon mode, while the anti-bonding mode is a bright plasmon

mode. The near-field enhancement at the bonding mode is much stronger than that at the

anti-bonding mode, which leads to the larger g factor at the bonding mode than at the

anti-bonding mode.

Compared with the previous studies on the chiroptical response of plasmonic struc-

tures, the strong plasmon coupling plays an important role in our work. We implemented

the twisted nanorods structure with a small enough gap size to study the chiroptical re-

sponse at the plasmon-coupling-induced hybridized mode. Owing to the plasmon cou-

pling, the excited flow of real currents together with displacement currents in the structure

can be strongly enhanced, resulting in the enhancement of chiroptical response. There-

fore, we can obtain a much larger g factor than that in previous studies. For example, the

Nam group realized a helicoid nanoparticles with a g factor of 0.31 [7].

5.3.3 g factor and plasmon coupling

In order to clear the direct relation between the g factor and the plasmon coupling in

the dimer of twisted nanorod, we summarized the experimental results, as shown in Fig-

ure 5.10. It describes the maximum value of g factor we can obtain depending on the

strength of plasmon coupling between the twisted nanorods. Here, the strength of the

plasmon coupling was characterized by the separation between the resonance peaks of

the bonding mode and anti-bonding mode. Based on the theory of plasmon hybridization,

the bigger the separation, the stronger the plasmon coupling. For the gap size dependence
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Figure 5.10: Summarized experimental results for the maximum value of g factor with
different (a) gap sizes with the fixed twisted angle of π/6 and (b) twisted angles with the
fixed gap size fixed of 15 nm, depending on the strength of plasmon coupling between the
twisted nanorods. The strength of plasmon coupling is characterized by the separation
between the resonance peaks of the bonding mode and anti-bonding mode.

(Figure 5.10(a)), when the twisted angle is determined, the plasmon coupling increases

with the decrease of gap size. Accordingly, the maximum value of the g factor also in-

creases. However, for the twisted angle dependence (Figure 5.10(b)), as the twisted angle

decreases, the plasmon coupling increases when the gap size is determined. The maxi-

mum value of the g factor in our experiment was obtained at the twisted angle of π/6,

while the strongest plasmon coupling was at the angle of π/12.

Figure 5.11: Schematic illustration of two dipoles produced by the twisted nanorods with
center-to-center separation r12.

To explain this, we first consider the g factor of twisted nanorods without plasmon

coupling. In this case, the g factor can be related to the interaction strength and rota-
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tional strength of the two dipoles produced by the two nanorods [29, 30]. For the twisted

nanorods as shown in Figures 5.11, the interaction strength V12 and rotational strength R12

can be simply expressed as

V12 ∝ 1
r3
12

p1 · p2 =
1

r3
12

p1p2cosθ, (5.3)

R12 ∝ ±r12 · (p1 × p2) = r12p1p2sinθ. (5.4)

where p1 and p2 are the dipole moments of the two nanorods, r12 is the vector joining

the centers of the two nanorods. The sign of R12 changes between the anti-bonding mode

and bonding mode. As a result, the difference between the absorption of left- and right-

handed circularly polarized lights is proportional to the product of V12 and R12. Therefore,

the g factor of the twisted nanorod can be simplified to be proportional to sinθcosθ. This

means that, without considering the plasmon coupling, the g factor of twisted nanorods

has a maximum value at the twisted angle of π/4. Then, when the two nanorods are close

to each other, plasmon coupling occurs. The plasmon coupling enhancement should be

considered for the g factor. As we discussed in Subsection 5.3.1, the plasmon coupling

increases with the decreases of gap size and twisted angle. Thus, the maximum value of

g factor of the twisted nanorods increases with the decrease of gap size, and the twisted

angle for the maximum value of g factor shifts from π/4 to a smaller angle.

Figure 5.12: Optimization of g factor calculated using the finite element method (COM-
SOL Multiphysics). The red dashed line shows the twisted angle to obtain the maximum
value of g factor at different gap sizes.
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Figures 5.12 shows the optimization of g factor, which describes the maximum value

of g factor at different gap sizes and twisted angles. The red dashed line shows the twisted

angle to obtain the maximum value of g factor at different gap sizes. We can see that the

maximum value of g factor increases with the decrease of gap size due to the increase of

plasmon coupling. Besides, the twisted angle to obtain the maximum value of g factor

shifts from π/4 to a smaller angle. These results also support the aforementioned anal-

ysis, which indicates that the plasmon coupling should be carefully considered for the

enhancement of g factor.

5.4 Summary

In summary, we have studied the chiroptical response of the dimer of twisted nanorods

concerning the plasmon coupling between the two nanorods. Firstly, we successfully

fabricated the twisted gold nanorods structures with different gap sizes and twisted an-

gles. Then, we experimentally characterized the plasmon coupling and g factor of the

structures. We clearly observed the plasmon coupling between the twisted nanorods and

demonstrated that the plasmon coupling highly depends not only on the gap size but also

on the twisted angle between the nanorods. The demonstration of twisted angle depen-

dence of plasmon coupling provides a new dimension to tune the plasmon coupling. What

is more, due to the near-field enhancement induced by the plasmon coupling, the dimer

of twisted nanorods shows a very strong chiroptical response with a large g factor at the

hybridized bonding mode, which indicates that the plasmon coupling can enhance the g

factor of chiral plasmonic structures and should be carefully considered for the enhance-

ment of g factor. This designable chiroptical response depending on the configuration of

the structure will pave the road for new metamaterials with modulated g factor distribu-

tion. We believe that the study of g factor at the hybridized plasmon mode provides a new

perspective for the study of chirality and is generally applicable to other chiral plasmonic

metamaterials for practical applications.
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Chapter 6

Summary

In this dissertation, based on the three interesting phenomena in the interaction of angular

momentum between light and plasmonic nanostructures: optical spin-orbit interaction,

optical torque, and chiroptical response, we investigated the urgent issues in each phe-

nomenon to improve the insights into the physics of light-matter interaction and to expand

the further applications. In this chapter, we will summarize the results and describe the

prospects.

■Quantification of the optical spin-orbit transformation in light-matter interaction

We proposed a quantitative analysis method for the optical spin-orbit transformation in

light-matter interaction, which is is a general method that can be applied to any size,

shape, and constituent of matter in the presence of arbitrarily structured optical fields. We

introduced a physical quantity called optical chirality density and reveal its relation with

the spin angular momentum of the field. Based on this relation, we derived the continuity

equation for spin angular momentum in analogy with the continuity equation for linear

momentum. By combining with the continuity equation for total angular momentum, the

transfers of spin and orbital angular momenta can be treated independently by consid-

ering the optical torques originated from them, which we called the spin-transfer torque

and orbit-transfer torque. The separation of spin-transfer torque and orbit-transfer torque

provides a quantitative analysis method for the optical spin-orbit transformation, which

plays a significant role in analyzing and designing a spin-orbit interaction system.

We believe that the discovered results provide non-trivial insight into our understand-
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ing of light-matter interactions. This new understanding of light-matter interaction will

open a new avenue for the control of rotational states of nanoparticles and molecules, or

the generation of light with specific states of spin angular momentum or orbital angular

momentum.

■ Optical torque between twisted metal nanorods induced by plasmon coupling

We presented a systematic study of the interaction optical torque between twisted nanorods

induced by plasmon coupling. We built a physical model of the dimer of twisted gold

nanorods and start with the discussion of plasmon coupling between the twisted nanorods.

The plasmon resonance spectra of the dimer indicate that the plasmon coupling depends

not only on the gap size but also on the twisted angle. Then, we analyzed the interaction

optical torque between the twisted nanorods with considering the plasmon coupling with

them. The results show that the interaction optical torque can be enhanced by the plas-

mon coupling and can lead to mutually perpendicular and parallel arrangements of the

two nanorods with the excitations of plasmon-coupling-induced anti-bonding mode and

bonding mode, respectively. Additionally, such arrangements can be extended to a full

angle control by changing the polarization state of the incident light. Besides, the discus-

sion of spin- and orbit-transfer torques predicts that the strong plasmon coupling can lead

to a large chiroptical response of the twisted nanorods at the bonding mode.

The twisted angle dependence of the plasmon coupling provides a new dimension to

tune the plasmon coupling. Therefore, the optical arrangement depending on the wave-

length and polarization state of the incident light makes it possible to control the plas-

monic characteristics and functions dynamically and contactlessly. This shows a vast

potential for the all-optical active plasmonic and metamaterial devices. For example, the

precise arrangement of nanoparticles can be applied to make high-precision plasmonic

nanodevices. Nanomachines are also possible that can switch conformations or functions

with different incident light.

■ Enhancement of g factor of twisted metal nanorods by plasmon coupling

We experimentally demonstrated that the plasmon coupling can enhance the g factor of the

dimer of twisted gold nanorods. Inspired by the result in the second topic, we fabricated
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the structures of twisted gold nanorods with different gap sizes and twisted angles. The

plasmon coupling and g factor were characterized to study the relation between them. We

experimentally demonstrated that the plasmon coupling depends not only on the gap size

but also on the twisted angle. The g factor at the hybridized bonding mode exhibits a

large value (∼ 1.03) due to the plasmon-coupling-induced strong near-field enhancement.

The experimental results show a good agreement with the theoretical predictions. It was

found that the plasmon coupling should be carefully considered to obtain a large g factor

in a chiral plasmonic system.

We believe that the study of g factor enhancement concerning the plasmon coupling

provides a new efficient route for the study of chiral plasmonic structures. We anticipate

that our study will aid in the design of chiral plasmonic structures for use in metamaterial

applications. For example, the metamaterials with large chiroptical effect can be applied

to the optical elements. For the chirality detection of molecular, the detection signal can

be strongly enhanced by the plasmonic structures with a large g factor. Strong chirality of

chiral metamaterials can also realize the negative refractive index.
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