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1. Abstract 

 

本章については、５年以内に雑誌等で刊行予定のため、非公開。 
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2. Abbreviations 

 

Ago1  Argonaute1 

Ago2  Argonaute2 

Ago3  Argonaute3 

apiRNA Artificial piRNA 

Armi  Armitage 

ATP  Adenosine triphosphate 

Aub  Aubergine 

BAP  Brm-associated protein 

Brm  Brahma 

BSA  Bovine serum albumin 

cDNA  Complementary DNA 

ChIP  Chromatin immunoprecipitation 

co-IP  Co-immunoprecipitation 

Ctrl   Control 

DMP  Dimethyl pimelimidate  

DNA  Deoxyribonucleic acid 

DTT  Dithiothreitol 

EDC  1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EDTA  Ethylenediaminetetraacetic acid 

EGFP  Enhanced green fluorescent protein 
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Egg  Eggless 

FBS  Fetal bovine serum 

FPKM Fragments Per Kilobase of exon per Million 

mapped fragments 

Gasz Germ cell specific protein with four Ankyrin 

repeats, a Sterile alpha motif, and a putative 

leucine Zipper 

GFP  Green fluorescent protein 

Gnf1         Germ line transcription factor 1 

GO  Gene ontology 

Gtsf1  Gametocyte-specific factor 1 

H1  Linker histone H1 

H3K9me3 Histone 3 lysine 9 trimethylation 

HEPES 4-(2-Hydroxyethyl)-1 

-piperazineethanesulfonic acid 

HMG  High mobility group 

HMT  Histone methyltransferases 

HP1a  Heterochromatin protein 1 a 

HRP  Horseradish peroxidase 

Hsp70  Heat shock protein 70  

IgG  Immunoglobulin G 

kb  Kilobase pairs 
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KD  Knockdown 

kDa  Kilodaltone 

l(1)G0020 Lethal (1) G0020 

LRR  Leucine-rich repeat 

LTR  Long terminal repeats 

Luc   Luciferase 

Mael  Maelstrom  

MDa  Megadaltone  

miRNA Micro RNA 

mRNA  Messenger RNA 

MS  Mass Spectrometry  

n.i.  Non-immune immunoglobulin 

NP40  Nonyl phenoxypolyethoxylethanol 

Nt  Nucleotide 

Nxf2  Nuclear RNA export factor 2 

Nxt1  NTF2-related export protein 1 

OSC  Ovarian somatic cell 

Panx  Panoramix  

PB  Polybromo 

PBAP  Polybromo-containing BAP 

PBS  Phosphor buffered saline 

PcG  Polycomb group 
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PCR  Polymerase chain reaction 

piRISC  piRNA-induced silencing complex 

piRNA  PIWI-interacting RNA 

PNP  Panx-Nxf2-p15 

Pol           Polymerase 

qRT-PCR Quantitative reverse transcription PCR 

RISC  RNA-induced silencing complex 

RNA  Ribonucleic acid 

RNA-seq RNA sequencing 

RNAi  RNA interference 

RNase  Ribonuclease 

RT  Room temperature 

SDS  Sodium dodecyl sulfate 

Sfmbt        Scm-related gene containing four mbt domains 

siRNA  Small interfering RNA 

Snr1  Snf5-related 1 

SoYb  Sister of Yb 

SWI/SNF Switch/ Sucrose Non-Fermentable 

TE           Transposable element 

T-PBS  0.1% Tween 20 in PBS 

Tj  Traffic jam 
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Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride 

buffer 

TSS  Transcriptional start sites 

UTR  Untranslated region 

Vret  Vreteno 

Wde  Windei 

WT  Wildtype 

Yb  Female sterile (1) Yb 

Zuc  Zucchini 
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3.  Introduction 

 

3.1. Transposon and piRNA 

Transposons are DNA sequences which are capable of 

transposing themselves randomly within their host genomes. 

While the transpositions of transposons have functioned as 

evolutional drivers, they cause mutations in the host genomes 

and threatens individual survival. Especially, in germ cells, which 

have function to transmit genetic information correctly to the 

offsprings, the mechanisms to repress transposons are conserved 

among most of the eukaryotes. 

 Gonad-specific 24-31 nt small non-coding RNAs, 

PIWI-interacting RNAs (piRNAs), protect germline genome from 

invasion of transposons by repressing their expression (1-4). 

Whereas miRNAs and siRNAs are expressed ubiquitously and 

form complexes with AGO subfamily proteins of Argonaute 

proteins, Ago1 and Ago2 respectively, piRNAs form complexes 

with PIWI subfamily proteins and interact with transposon RNAs 

which are complement to the sequences of piRNAs (Fig.3.1.). The 

complexes are referred to as piRNA-induced silencing complexes 

(piRISCs) and repress expression of transposons in various ways 

(1-4). piRNAs are discovered initially in Drosophila melanogaster, 
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and many of milestone findings have been made in this model 

organism. piRNAs also have been found in mammals, such as 

mice (1-3). Loss of piRISC desilences transposons, leading to DNA 

damage in the germline genome, malfunction of gonads and 

infertility (5, 6).  

 

3.2. PIWI proteins in Drosophila 

 Drosophila has three PIWI genes, piwi, aub and ago3, all 

of which are essential in gonadal development (7, 8) (Fig. 3.1.). 

Ovarian germ cells express all these members, whereas ovarian 

follicle cells express Piwi, but not others (9).  

 It is known that Aub-piRISC and Ago3-piRISC function in 

the cytoplasm of ovarian germ cells. Aub forms complex with 

piRNA derived from piRNA precursor via initial Aub-piRNA 

production pathway, called ‘primery pathway’, and cleaves 

mRNAs of transposons using its slicer activity (9, 10). Ago3 forms 

complex with piRNA derived from the remnant of transposon 

mRNA after Aub-piRISC cleavage, to accelerate the 

Aub-piRNA-driven production by cleaving piRNA precursor (9, 

10). The pathway is called ‘ping-pong amplification pathway’ (9, 

10) (Fig. 3.2.). 
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 On the other hand, in both ovarian germ and somatic cells, 

Piwi-piRISC does not cleave mRNAs of transposons in the 

cytoplasm, but is imported into the nucleus and repress 

transcription of transposon (11). Therefore, it is suggested that 

the transposon repression in the nucleus is not 

post-transcriptional repression, but transcriptional repression 

(12-15). 

 

3.3. Overview of Piwi-piRNA pathway 

 First, Piwi-piRNA precursors are transcribed from a 

genomic locus enriched with transposon fragments, which is 

called flamenco piRNA cluster (1-3). The Piwi-piRNA precursors 

are exported to the cytoplasm, processed into piRNA 

intermediates and captured in Yb body, which is a cytoplasmic 

granule containing Yb protein and other piRNA precursors 

(Fig.3.3.). Yb body is thought to have a function to promote 

pre-Piwi-piRISC formation by accumulating piRNA 

intermediates and Piwi proteins (16). Then, Piwi-piRNA 

intermediates translocate with Piwi to mitochondria and are 

processed into 24-31 nucleotide-long mature piRNAs by 

mitochondrial endonuclease Zucchini (Zuc) (17). Finally, 

Piwi-piRISC is imported to the nucleus, and represses 
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transcription of transposons. At present, the relationship between 

this repression mechanism and heterochromatin formation has 

been strongly suggested (12-15) (Fig.3.3.). 

 

3.4. piRNA factors 

For elucidation of molecular mechanism of piRNA 

pathway, in previous studies, RNAi screening were performed to 

identify essential factors for transposon silencing in Drosophila 

ovary (18, 19). These factors are called ‘piRNA factors.’ Especially, 

piRNA factors in ovarian follicle cells are involved in Piwi-piRNA 

pathway. piRNA factors in ovarian follicle cells could be 

categorized in two types: the factors for Piwi-piRNA biogenesis 

and the factors for Piwi-mediated silencing. Actually, by using 

OSC (Ovarian Somatic Cell), which is a cultured cell line derived 

from ovarian follicle cells, both can be classified (18, 19). When 

piRNA factors for biogenesis are depleted in OSCs by RNAi, both 

reduction of Piwi-piRNA and increase of transposon mRNA can be 

observed, but when piRNA factors for silencing are depleted, 

while Piwi-piRNA can be produced, transcription of transposon is 

up-regulated (18). 

Examples of piRNA factors for Piwi-piRNA biogenesis 

include the following: Yb, Armitage, Sister of Yb, Vreteno for 
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capturing piRNA intermediates, Gasz and Zuc for processing 

piRNA intermediates into mature size of piRNAs (16, 17, 21). 

piRNA factors for silencing include the following: Gtsf1/Asterix 

(Gtsf1), Panoramix/Silencio (Panx), Mael, Nxf2, p15/Nxt1, 

Eggless (Egg), Windei (Wde), Heterochromatin protein 1 a (HP1a) 

and linker histone H1 (H1) (12, 22- 32).  

 

3.5.  piRNA factors for transcriptional silencing  

As piRNA factors for silencing include histone 

methyltransferase and heterochromatin proteins, it was 

presumed that Piwi-mediated silencing of transposon 

transcription involves heterochromatin formation.  Actually, the 

concept of small RNA-mediated heterochromatin formation has 

already been proposed in Saccharomyces pombe (33). In 

Saccharomyces pombe, siRNA and Ago1 recognize a nascent 

transcript of centromeric repeats and induce H3K9 methylation 

via a H3K9-specific histone methyltransferase and 

heterochromatin formation (33) (Fig. 3.4.). Based on this model, it 

has been presumed that piRNA and Piwi in Drosophila repress 

transposon transcription in a similar manner and several 

laboratories have begun to provide evidence to support the 

assumption.  
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As mentioned, Piwi-mediated transposon silencing 

requires multiple co-factors, including Gtsf1, Panx, Nxf2, p15, 

Mael, Egg, Wde, H1, and HP1a, (12, 22-32). Previous studies have 

mainly performed knockdown (KD) analyses and the depletion 

phenotypes of these factors in OSC were reported. Depletion of 

these factors impacts on transposon silencing, but the effects are 

different in each case.  

Here, I have further classified these factors from 

phenotypes of their depletion into three groups: (I) Factors whose 

depletion phenotype are similar to Piwi depletion (Gtsf1, Panx, 

Nxf2 and p15), (Ⅱ) Heterochromatin factors (HP1a, H1, Egg and 

Wde) and (Ⅲ) Factor whose depletion phenotype is partly similar 

to Piwi （Mael）. The followings are summaries of what are known 

about the factors in each group. 

 

3.5.1. Gtsf1, Panx, Nxf2 and p15 

In the first place, loss of Piwi leads to transposon 

derepression and reduction in the level of H3K9me3 at target loci 

in OSCs (12). Similar phenotypes can be observed in loss of Gtsf1, 

Panx, Nxf2 and p15, so it can be assumed that these factors are 

indispensable for Piwi-mediated transcriptional silencing of 

transposon (22-25, 28-31) (Fig.3.4 A and B). Particularly, Panx, 
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Nxf2 and p15, form complex called PNP, and are thought to be 

important factors. In previous studies, not only KD analyses but 

also artificial tethering assays using lambda N fusion proteins 

and boxB integrated luciferase reporter have been performed (22, 

23, 28-31) (Fig. 3.4. C). In this assay, it is possible to tether an 

arbitrary protein on nascent RNA by fusing lambda N protein, 

which binds to stem-structured RNA derived from boxB sequence, 

and to observe its silencing effect. Several laboratories have been 

reported that tethering of Panx, Nxf2 or p15, efficiently silence 

ubiquitin-promoter or β-tubulin-promoter-driven luciferase 

reporter and induces H3K9me3 (22,23, 28-31). This finding 

indicates that PNP itself have function to induce transcriptional 

silencing. Interestingly, tethering of Piwi could not silence 

transcription of the reporter (22, 23, 29). This confusing result 

indicates the possibility that Piwi requires recognition of target 

RNA to induce silencing.  In fact, it has been shown that LRR 

domain of Nxf2 interact with target transposon mRNA and is 

necessary for silencing of endogenous transposons (28-31). 

Therefore, it has been proposed that, after Piwi recognized target 

transposon, PNP is recruited by Piwi and reinforces the 

association of Piwi and target transposon mRNA by binding to 

both Piwi and target RNAs (29, 30). From these reasons, PNP is 
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thought to be a core   complex for tethering repression factors to 

nascent RNA and inducing H3K9me3 and transcriptional 

silencing of transposons. 

 

3.5.2. HP1a, H1, Egg and Wde 

Generally, heterochromatin factors also involved are in 

transposon silencing. HP1a is a core component of 

heterochromatin formation. HP1a mediates gene silencing via 

associating with K9-trimethylated histone H3 tail. Histone H1 is 

also involved in stabilization of heterochromatin by interacting 

with linker DNA and histones. Depletion of HP1a or H1 causes 

strong derepression of transposons and collapses heterochromatin 

(26, 27). However, the destruction of heterochromatin can be 

observed not only Piwi-dependent transposons, but also 

Piwi-independent transposons (26, 27). Certainly, HP1a and H1 

play an important role for transposon silencing, but it is inferred 

that the specificity of the target loci is determined by Piwi and 

PNP. 

Egg and Wde are also involved in that repression pathway. 

Drosophila melanogaster has three H3K9-specific histone 

methyltransferases, Su(var)3-9, G9a and Egg. Previous study 

showed that only Egg is involved in transposon silencing but the 
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others are not (23). Depletion of Egg results in transcriptional 

activation of transposon and H3K9 demethylation (23) (Fig. 3.4. 

C). In addition, it has been also reported that depletion of Egg 

cancels reporter silencing, which is induced by artificially 

tethered PNP (22, 23). Recently, our laboratory reported that Wde 

interacts with Egg and support its function by maintaining Egg 

on nucleosomes (32). For these reasons, Egg-dependent H3K9me3 

induction has been considered as a most essential event for 

transcriptional silencing of transposons. However, there is a room 

for reconsideration. It is true that depletion of Egg causes 

transcriptional activation of Piwi-dependent transposons, but the 

activation rate of endogenous transposon is significantly low 

compared to depletion of Piwi (23) (Fig. 3.4. D). Therefore, Piwi 

may silence transposons by unknown mechanism parallel to 

H3K9me3 induction. 

 

3.5.3. Mael 

 Mael was originally identified as a factor that is involved 

in anterior-posterior axis formation of early oocyte (34). Recently, 

Mael is also known to play a crucial role in Piwi-mediated 

transposon silencing (12). Depletion of Mael in OSC resulted in 

accumulation of RNA Pol II at the target loci and derepression of 
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transposons (Fig.3.5. A and B). Mael loss in OSC actually led to 

an increase of chromatin accessibility, but the levels of H3K9me3 

at the loci were fairly maintained (12, 26) (Fig3.5. B). Recently, 

Mael further has been reported to be able to repress canonical 

transcription by RNA Pol II both inside and outside 

dual-stranded piRNA clusters which contain transposon 

remnants capable of providing promoter activity (35). These 

studies suggest that Mael may finally achieve the establishment 

of nucleosome-dense structure which effectively prevents RNA 

Pol II recruitment to maintain the Piwi-mediated transposon 

silencing downstream of, or in parallel to, the Egg-dependent 

H3K9me3 establishment.  

 

3.6. Recent model of Piwi-mediated transcriptional silencing of 

transposons 

 The model currently proposed is as follows. Evidences 

have so far shown that Piwi-mediated transposon silencing is 

divided into four consecutive steps; (1) searching of target RNAs 

by Piwi that occurs in a relatively randomized fashion, (2) 

Piwi-target RNA binding through RNA-RNA base-pairings, (3) 

recruitment of two piRNA factors, PNP and Gtsf1, and (4) 

induction of local heterochromatinization in concert with histone 
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methyltransferases Egg, H1 and HP1. Upon this, RNA Pol II no 

longer has access to the Piwi-target loci, resulting in 

transcriptional silencing (22-25, 28-32) (Fig. 3.6.).   

 

3.7. SWI/SNF in Drosophila melanogaster 

 SWI/SNF is known to be an approximately 2 MDa active 

chromatin remodeling complex consists of ATP-dependent DNA 

helicase and several factors. SWI/SNF contributes to 

tissue-specific development and differentiation by promoting 

nucleosome accessibility to support recruitment of transcriptional 

factors and RNA PolⅡ(35) (Fig. 3.7. A). In Drosophila, Brahma 

(Brm) is an ATP-dependent DNA helicase of the Brm (SWI/SNF) 

chromatin remodeling complex (37-43). The Brm chromatin 

remodeling complex is known to act as a positive regulator of 

homeotic genes and other genes including those related to 

oogenesis (39,44). The Brm complex consists of seven core 

proteins and accessory factors and is divided further into the BAP 

and PBAP complexes depending on the accessory proteins. The 

BAP complex contains Osa absent in the PBAP complex, while 

the PBAP complex contains Polybromo and some other accessory 

proteins absent in the BAP complex (37-43) (Fig. 3.7. B). The 

specificity of the two complexes to their target loci are speculated 
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to be determined by the accessory proteins. The two complexes 

have been suggested to function in different biological processes, 

but the differences are not yet fully understood. 
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Figure 3.1. RNA silencing  

Schematics show mechanism of small RNA-mediated gene 

silencing and classification of Argonaute family proteins and 

small RNAs in Drosophila melanogaster. 
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Figure 3.2. piRNA-mediated transposon silencing in Drosophila 

melanogaster 

 In germ cells of Drosophila ovary, all PIWI proteins are 

expressed. Aub and Ago3 functions in the cytoplasm, But Piwi in 

the nucleus. Piwi is also expressed in somatic cells surrounding 

the germ cells and represses transcription of transposons. 

Drawing of ovary is modified from Handler et al., 2011(44).   

 

 

RISC

Piwi Aub Ago3

ArgonauteSmall RNA

Target RNA

Gene Silencing

Argonaute
AGO subfamily(Ubiquitous)

PIWI subfamily(Germline specific)

piRNA

miRNA siRNA

Small RNA
miRNA(micro RNA)

siRNA(small-interfering RNA)

piRNA(PIWI-interacting RNA)

Ago1 Ago2

Transposon

piRNA precursors piRNA precursors

Primary　processing

TGS TGS

PTGS

Piwi Ping-pong

Transposon

Cytoplasm

Nucleus

Primary　
processing

Phasing

 &  Phasing

Germ Soma

Piwi

Aub Ago3

Aub

Aub

Ago3

Piwi

Piwi

Figure 3.1.

Figure 3.2.



 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Overview of Piwi-piRNA pathway in OSC  

Schematic shows overview of Piwi-piRNA pathway. piRNA 

precursor is transcribed from flamenco cluster and exported to 

the cytoplasm. In the cytoplasm, it is captured in Yb body and 

binds to Piwi proteins and finally processed on mitochondria. 

Piwi-piRISC is imported to the nucleus, and repress transcription 

of transposons.  
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Figure 3.4. Panx induces Egg-dependent transcriptional 

repression 

These figures are modified from Sienski, 2015 (23). CG9754 

represents Panx. (A) Scatter plots showing the similarity of 

transposon types desilenced by Piwi KD and Panx KD. (B) Piwi 

KD and Panx KD induce demethylation of H3K9me3 at 

transposon loci. (C) Artificial tethering of Panx repress reporter 

gene, and the repression is Egg-dependent. SetDB1 represents 

Egg. (D) Egg KD causes derepression of transposons targeted by 

Piwi, but the rate of the derepression is relatively low compared 

to Piwi KD. 
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Figure 3.5. Mael KD causes activation of transposons, but little 

effect on H3K9me3 level. These figures are modified from Sienski, 

2012 (12). (A) Scatter plots showing the similarity of transposon 

types desilenced by Piwi KD and Mael KD. (B) Density plot 

showing RNA Pol ll levels and H3K9me3 levels in indicated KD 

OSCs. 
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Figure 3.6. Recent model of Piwi-piRISC-mediated transposon 

silencing 

Considering the previous studies, this model can be established. 

At first, Piwi-piRISC recognizes nascent transcript of transposon. 

Then, it recruits several factors, such as PNP, and induce 

heterochromatin formation and transcriptional repression. 

However, function of Mael is difficult to be interpreted from this 

model.  
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Figure 3.7 SWI/SNF in Drosophila melanogaster  

(A) Schematic showing mechanism of transcriptional activation 

by SWI/SNF. (B) Protein components of BAP and PBAP. 
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4. The aim of this study 

 

 piRNA-mediated transposon silencing is a conserved 

mechanism that protects genome of reproductive cells. Especially, 

the silencing mechanism in the nucleus is important because it 

fundamentally prevents transposon expression before 

transcription. Therefore, elucidation of the mechanism is an 

urgent task. 

 In addition, although Mael is an essential factor for 

piRNA-mediated silencing and conserved among species, the 

function is largely unknown. Therefore, revealing the function of 

Mael in Drosophila melanogaster can be an important clue to 

clarify the function of Mael function in other species. 

 The model of Piwi-mediated silencing has been established 

based on KD analyses of Piwi and other cofactors. As depletion of 

these factors cause transcriptional activation of transposons and 

H3K9me3 demethylation, it has been concluded that Piwi and 

cofactors might recruit H3K9me3-specific histone 

methyltransferase and induce heterochromatin formation. 

Moreover, previous study shows that tethering of the cofactors 

enables inducing H3K9me3 and heterochromatin formation, so it 

is certain that the establishment of H3K9me3 plays an important 
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role in the Piwi-mediated transposon silencing (12, 22-25, 28-31). 

However, it is controversial whether induction of H3K9me3 is 

sufficient for transcriptional silencing, because it is difficult in a 

conventional model to interpret the Mael depletion phenotype, 

which shows transcriptional activation of transposon but no 

decrease in H3K9me3 level (12). 

For these motivations, in this study, I aim to clarify a role 

of Mael in Piwi-mediated transcriptional transposon silencing 

and to propose a novel model that is consistent with previous 

studies. 
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8. Conclusion 

 

Most of previous studies have been performed analyses on the 

factors whose depletion cause derepression of Piwi-dependent 

transposons, based on the idea that Piwi-piRISCs catalyze 

‘induction of repression machinery’. Consequently, little has been 

clarified about what the molecular entity of transcriptional 

machinery of the transposons that is the target of Piwi-piRISCs is. 

In this study, I revealed that most of Piwi-dependent transposons 

are regulated by Brm, SWI/SNF component. This is the first to 

show the character of Piwi-dependent transposon transcription. 

 Furthermore, analyses using artificial piRNA system elucidated 

Piwi silences Brm-dependent transcription by decreasing the 

binding of Brm to the target loci. Interestingly, the silencing was 

independent of Egg and occurred before H3K9me3 accumulation. 

In addition, tethering analyses using lambda N-boxB system 

showed that Mael has capability of downregulateing 

Brm-dependent transcription. From these results, I propose a 

model that Piwi-piRISC repress binding of SWI/SNF to the target 

transposon loci and repress its transcription via Mael, before 

H3K9me3 induction. The model is consistent to the other 

previous studies and provides a novel insight that Piwi-piRISCs 
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regulate transposons, not only by ‘induction of repression 

machinery’ but also by ‘inhibition of activation machinery’. 
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