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Blind Source Separation

Exploiting Characteristics of Wave Fields

概要

Owing to recent progress in sound field reconstruction for captured sound fields with
many microphones, sound source separation for a huge number of microphones has become
an interesting topic and is, hence, currently actively discussed. In blind source separa-
tion (BSS), which does not require previously obtained knowledge, non-negative matrix
factorization (NMF) has been studied for several decades. Multichannel NMF (MNMF),
an extension of NMF to multiple microphones, has been studied under the assumption of
using 2 to 4 channels, but it has rarely been used for signals stemming from a microphone
array with 32 channels or more, which is common in sound field reproduction. One of the
main difficulties for MNMF is its calculation cost as it scales with O(A3) where the number
of microphones is A. When the spatial covariance matrix (SCM) is updated, an eigenvalue
decomposition is performed, resulting in a high computational cost. A number of BSS
methods with reduced computational complexity have been proposed so far. Meanwhile,
in the field of sound field reproduction, conversion to the spatial frequency domain is of-
ten used to improve calculation efficiency. Furthermore, converting time-frequency (TF)
signals to the spatial frequency domain makes it possible to identify TF bins that are not
required for the sound field reconstruction and that can be excluded from the calculation
process. In this thesis, we will solve the problem of the calculation cost for MNMF by in-
troducing the conversion to the spatial frequency used in sound field reproduction, and at
the same time, we attempt to achieve performance improvements by explicitly exploiting
the characteristics of the wave fields. We propose a unified BSS method using wave field
characteristics through conversion to either (i) a signal representation in the wavenumber
domain obtained by solving the wave equation in a Cartesian coordinate system or (ii) con-
version to a signal representation in the spherical harmonic domain obtained by solving
the wave equation in a spherical coordinate system. Specifically, we propose a method
to reduce the computational complexity from O(A3) to O(A) by diagonalizing the SCM
included in the MNMF model using a spatial frequency transformation matrix to solve
the problem equivalent to the non-negative tensor factorization (NTF). Furthermore, in
consideration of not only the use in 32 channels as used in sound field reproduction but
also generalization in a small number of microphones such as 2–4 channels, a model us-
ing a tridiagonal SCM is proposed and its effectiveness is verified. Finally, we propose a
method that can be used in the important setup of using a spherical microphone array
and verify its effectiveness.

Keywords Blind Source Separation, Spatial Covariance Matrix, Non-negative Matrix
Factorization, Non-negative Tensor Factorization, Wavenumber Domain, Spherical
Harmonic Domain





Abstract

近年の音場再現技術の進歩により、膨大な数のマイクロホンによる音源分離が注目を集め
るようになり、実現のための議論が活発になされている。事前に得た情報を必要としないブラ
インド音源分離 (BSS)では非負行列因子分解 (NMF)による手法が長く研究されてきた。複
数マイクの拡張である多チャネル NMF (MNMF)は、2–4chを仮定した状況を題材に研究さ
れてきたが、音場再現で使用されるような 32ch以上のマイクアレイで得られる信号に用いら
れることはなかった。主な要因の一つに計算コストが挙げられる。MNMFで必要となる計算
コストは、マイクロホンの数が Aのとき O(A3)にも及ぶ。空間相関行列 (SCM)を更新する
場合は、更新式に固有値分解が行われるため、非常にコストが大きい。これまでに計算量を削
減した数々の BSSの手法が提案されてきた。一方で、音場再現の分野では空間周波数領域へ
の変換を、計算効率の向上のために用いられることが多い。また、空間周波数に変換すること
で、音場再現に不必要な空間周波数の特定や、計算からの除外を行うことが可能となる。本研
究では、音場再現で用いられる空間周波数への変換を、MNMFに導入することで、計算コス
トの課題を解決するとともに、波動場の特性を陽に利用することで性能向上を達成することに
挑戦する。以下の章では、デカルト座標系の波動方程式を解くと得られる波数領域における信
号表現への変換、および球座標系の波動方程式を解くと得られる球面調和領域における信号表
現への変換を通じて、波動場特性を利用した統一的な BSS の手法を提案する。具体的には、
まずMNMFのモデルが含む SCMに対して空間周波数変換行列を用いて対角化することで、
非負値テンソル分解 (NTF)と等価な問題を解くことに持ち込み計算量を O(A)に抑える手法
を提案する。次に、音場再現で利用されるような 32chにおける使用だけではなく、2–4ch等
の少ないマイクロホン数における一般化も考慮し、三重対角成分までを使用したモデルの提案
とその有効性を実証する。最後に、球状マイクロホンアレイを用いたユースケースにおいて、
実践的に使用可能な手法を提案し、その有効性を検証する。

Keywords Blind Source Separation, Spatial Covariance Matrix, Non-negative Matrix
Factorization, Non-negative Tensor Factorization, Wavenumber Domain, Spherical
Harmonic Domain
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Chapter 1

Introduction

1.1 Background and Motivation
Owing to recent progress in sound field reconstruction for captured sound fields with
many microphones, sound source separation for a huge number of microphones has be-
come an interesting topic and is, hence, currently actively discussed. In blind source
separation (BSS) *1, which does not require previously obtained knowledge, non-negative
matrix factorization (NMF) has been studied for several decades. Fig. 1.1 shows the re-
lationship between BSS and sound field reconstruction from the early 2000s up to now.
Multichannel NMF (MNMF), an extension of NMF to multiple microphones, has been
studied since the early 2010s under the assumption of using 2 to 4 channels, but it has
rarely been used for signals stemming from a microphone array with 32 channels or more,
which is common in sound field reproduction. One of the main difficulties for MNMF is its
calculation cost as it scales with O(A3) where the number of microphones is A. When the
spatial covariance matrix (SCM) is updated, an eigenvalue decomposition is performed,
resulting in a high computational cost. A number of BSS methods with reduced compu-
tational complexity have been proposed so far.

Meanwhile, in the field of sound field reproduction, conversion to the spatial frequency
domain is often used to improve calculation efficiency. Furthermore, converting time-
frequency (TF) signals to the spatial frequency domain makes it possible to identify TF
bins that are not required for the sound field reconstruction and that can be excluded
from the calculation process. For example, when a spherical microphone array is used as
a recording device, e.g., the 32-channel Eigenmike®, a spherical harmonic (SH) transform
is applied and only a few SH coefficients are often used for reproducing the captured sound
field. This framework is called higher-order ambisonics (HOA) and has become a part of
the Moving Picture Experts Group (MPEG)-H 3D Audio format [1]. Although, BSS and
sound field reconstruction have long been studied assuming multichannel microphones,
there was no work until 2014 that bridges these two independent fields.

In this thesis, we solve the problem of the huge calculation cost for MNMF by intro-
ducing the conversion to the spatial frequency used in sound field reproduction, and at
the same time, we attempt to achieve performance improvements by explicitly exploiting
the characteristics of wave fields. We propose a unified BSS method using wave field
characteristics through conversion to either (i) a signal representation in the wavenum-
ber domain obtained by solving the wave equation in a Cartesian coordinate system or
(ii) conversion to a signal representation in the SH domain obtained by solving the wave
equation in a spherical coordinate system. As a consequence, the following improvements

*1 In this thesis, BSS refers to unsupervised source separation with multi-channel signals without any
knowledge about the sources and the mixing process except the employed microphone geometry.
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Fig. 1.1. Relationship between blind source separation and sound field reproduction.
Contributions of thesis are highlighted in red.

can be expected:

• the improvement of separation performance by converting TF signals to sparse
domains or exploiting the characteristics of wave fields,
• the improvement of computation speed by simplifying the update rules of NMF
parameters achieved by a diagonal or tridiagonal approximation of SCM.

From the following sections, we briefly explain the history of BSS and recent advances in
the MNMF approaches, which helps readers understand our motivation and the underlying
issues of related works.

1.2 Blind Source Separation
Source separation is a key technology that has enabled major breakthroughs in various
fields of audio signal processing, such as automatic speech recognition and music tran-
scription. The techniques for solving the source separation problem can be classified into
two groups: non-blind methods, e.g., beamforming [2, 3] and BSS. The separation quality
can generally be enhanced by incorporating prior knowledge, which is mainly provided
as a property of the target source. For example, the incorporation of a spatial cue has
the potential to improve applications such as Sound Zoom by enabling the extraction
of target sounds that might be located in a certain direction. In the 1990s, a new BSS
technique called independent component analysis (ICA) was developed that automatically
finds the directions of the sources in a mixture, thereby enabling the extraction of a target
source [4, 5]. One limitation of an ICA-based method is that it cannot handle the under-
determined case where the number of sources is higher than the number of microphones A.
Another approach, called the degenerate unmixing estimation technique (DUET) [6, 7, 8],
which is capable of de-mixing from 2ch-stereo signals, requires the sources to be sparse
with respect to the spectrogram bins [9, 10]. In recent years, owing to the advent of deep
learning, non-blind methods based on training spectro-temporal information of audio sig-
nals have been proven to yield notable results [11, 12, 13, 14, 15, 16]. In contrast, BSS,
where training data are not available, still remains a challenging and open problem.
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1.3 Approaches Based on Matrix Factorization
In the last few decades, NMF [17, 18, 19, 20] has become one of the most prevalent
techniques to tackle the underdetermined source separation problem where the number
of sources is greater than or equal to the number of observations. NMF is based on the
idea that a mixture is a composite of a number of object basis elements, each of which
represents an underlying characteristic of the sources. Estimation is carried out by simple
matrix factorization, with all the elements being non-negative. NMF also eliminates
another problem with ICA, namely, that the number of microphones should be greater
than or equal to the number of target sources. A large number of related techniques have
been developed so far [21, 22, 23, 24, 25, 26].

A cost function for NMF estimation has long been investigated by several re-
searchers [17, 27, 28]. In particular, the Itakura–Saito (IS) divergence is known to be an
appropriate cost function for approximation of audio spectra due to its scale-invariant
nature. To complete NMF-based source separation, clustering of the decomposed basis
elements follows the factorization to properly classify them to corresponding sources.

In the last decade, the local Gaussian model has gained much attention as one of the
most promising unsupervised approaches exploiting multichannel coherence. In 2005,
the local Gaussian model was first applied to multichannel source separation [29, 30], in
which the spectrum of each TF bin is modeled as an instantaneous mixture of complex
multivariate Gaussians. To cope with more complex mixing conditions such as convolutive
environments, the model was further extended to incorporate a full-rank model, and
a generalized expectation–maximization (GEM) algorithm was employed to derive the
update rules to obtain the model parameters [31, 32].

Ozerov and Févotte applied a low-rank factorization in this framework for modeling
source amplitudes of TF bins [33]. Their approach can be regarded as the multichannel
extension of NMF [34]. This original approach was limited to a rank-1 matrix, which
was later generalized to the full-rank case so that the algorithm can also be used under
reverberant conditions [35, 36, 37]. The separation quality of MNMF was highlighted in
the literature as outperforming other existing methods, such as l1 -norm minimization [38],
lp-norm minimization [39], and binary clustering [40].

Its huge computational cost and slow convergence were identified as two major problems
to be tackled in the future. In detail, the computational cost explodes with increasing
the number of microphones, A, as O(A3) owing to the multiple matrix inversions during
the parameter [41]. For the convergence of MNMF, GEM-based parameter updates were
shown to be much slower than multiplicative updates by comparison with non-negative
tensor factorization (NTF) [6]. The convergence speed of MNMF was increased by incor-
porating multiplicative updates into the M-step of the source parameter updates [42]. A
different update method was proposed in [43, 44] consisting solely of multiplicative up-
dates with the MM algorithm [45]. While the convergence problem was mitigated by such
means, the authors reported that the separation performance was prone to local minima
resulting from the initialization of the model parameters.

Nikunen and Virtanen developed a DOA-based method to overcome the initialization
problem [46]. The algorithm provides a series of DOA kernels enabling the spatial prop-
erties observed in the multichannel signals to be encoded. A DOA kernel is composed
of outer products of steering vectors. The weights of the DOA kernels are obtained by
multiplicative update rules. In [46], it was reported that the method yielded robust results
even in the case of initializing parameters with random values. To reduce the number of
parameters to be updated, the DOA-based method was further enhanced by splitting a
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DOA kernel into two parts: a fixed kernel consisting of phase covariances and an updatable
kernel consisting of amplitude covariances [47].

1.4 Approaches Based on Tensor Factorization
As a generalized NMF technique, NTF extends the NMF idea to tensors. An n-way
tensor is a generalization of the mathematical concepts of scalar, vector, and matrix (e.g.,
a two-way tensor is a matrix). Specifically, a three-way tensor, which can be regarded as
a collection of multichannel spectrograms, is now being investigated for use in NTF [48,
49, 50, 51, 52, 53, 54]. Extension to the third dimension provides another matrix that
describes the energy distribution of each base component on every channel, which can also
be regarded as spatial information. NTF can also be regarded as a simplified approach
to MNMF because the model extracts the diagonal part of a SCM while discarding the
off-diagonal part that contains information of interchannel phase differences. Since NTF
assumes that the original sources are mixed instantaneously, exploiting only the diagonal
part is often not sufficient to model more realistic mixing conditions. However, thanks
to its low computational cost of order O(A) [6, 53] per TF bin, NTF is being rigorously
investigated for many types of applications [49, 55], and a number of variants have been
proposed [52, 56]. In addition to NTF modeling of the diagonal part, an NMF-based
treatment of off-diagonal elements has recently been proposed [57].

1.5 Incorporation of Prior Knowledge
Taking advantage of prior knowledge for the purpose of enhancing the performance of
NMF has been widely investigated. Smaragdis et al. have attempted to make use of
a user-guided humming for the extraction of melodies in a mixture [58]. Diknen et al.
investigated the Bayesian NMF model assigning different prior distributions for tonal and
percussive signals [59]. Ewert et al. presented an extended approach that uses additional
score information to guide the NMF process [60]. Since NMF which separates a single-
channel signal does not produce any spatial information during the separation process, it
has been difficult to associate a spatial cue until the emergence of MNMF and NTF. The
NTF extension enables the NMF approach to accept a spatial cue [61]. In addition, since
a spatial cue indicates which bins of the tensor spectrogram are important, it is possible
to improve the quality of an approximation to the specific bins of the tensor by giving
more weight to bins where the target is likely to exist and less weight to the others [62].
The text in [62] can be found in Appendix.

1.6 Applications to Source Detection
In source detection problems, some target sound events of a given class need to be identi-
fied in a complex mix. A number of source detection methods based on NMF have been
proposed so far. Weninger et al. incorporate NMF-based sound event detection into a
speech recognition framework to remove non-linguistic events from speech recordings [63].
There are several other sound event detection systems based on NMF, customized for
realistic situations in multi-source environments [64, 65]. When dealing with detection
problems in multichannel signals, NTF presents a significant advantage over NMF after
downmixing, because it fully exploits the lower masking of targets within the individual
channels. An extension to enhance detection results of NMF is to incorporate modeling
of temporal-spectral pattern as a basis, as done with non-negative matrix deconvolu-
tion (NMD, [66, 67, 68]). This approach has been extended to tensors in [69, 70], with a
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different formalism, leading to non-negative tensor deconvolution (NTD).

1.7 Relation to Sound Field Reconstruction
In the field of sound field reconstruction, in which a large number of microphones and
loudspeakers are used, signal representation in the spatial frequency domain is regarded
as an essential technique for reducing computational cost [71, 72]. This transformation
allows essential information to be compressed and computational complexity to be reduced
from order O(A3) to O(A). Koyama et al. proposed a MAP estimation method to derive
both spatial basis components and their weights, given the position of the primary source,
so that spherical waves could be modeled with less spatial aliasing [73]. However, unlike
NMF, the method does not take into account the source properties. In this thesis, we
assume many microphones and loudspeakers are used as shown in Fig. 1.2, and the idea
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of using a spatial transform was applied to MNMF. Fig. 1.3 shows plane waves in a
wavenumber domain, originating from three different directions. It is clear that the plane
waves can be represented with little overlapping of the spectrograms, which is a great
advantage for NMF-based BSS. Furthermore, we can derive an approximated modeling
for SCM in the spatial domain, showing that SCM can be diagonalized and its inverse
is efficiently calculated. This leads to faster implementation of NMF-based multichannel
BSS with a large number of microphones, compared to the conventional MNMF.

1.8 Outline and Notations
The organization of this thesis is given in Fig. 1.4. In Chapter 2, mathematical represen-
tations of a sound field is presented as preliminaries. In Chapter 3, MNMF and its variant
are introduced. In Chapter 4, to tackle the problem of MNMF, we introduce NTF in the
wavenumber domain, which reduces the cost to the order O(A). It transforms microphone
signals into the wavenumber domain, a technique that is commonly used for soundfield
reconstruction. In Chapter 5, we introduce a more robust algorithm approximating the
tridiagonal part of the spatial covariance matrix, which requires a complexity of O(A2)
for the inversion by applying the Thomas algorithm. To remove the ad-hoc integration of
post clustering after the decomposition, we also examine a self-clustering algorithm. In
Chapter 6, we model near-field sources by estimating the model parameters of NTF in
the SH domain assuming that microphone signals can be obtained with a rigid spherical
array and converted to the SH domain. We also examine a masking scheme to exclude
noisy regions in the SH domain from the NTF cost function. Finally, Chapter 7 concludes
this thesis.

The following notations are used throughout this thesis: x denotes a column vector and
X a matrix, where I is the identity matrix. The conjugate operator, trace, determinant,
matrix transpose, conjugate matrix transpose, Moore–Penrose pseudoinverse, Euclidean
vector norm, and Frobenius matrix norm are denoted by (.)∗, tr(.), det(.), (.)T , (.)H ,
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(.)†, ∥.∥, and ∥.∥F , respectively. X ≻ 0, X ⪰ 0 means that X is symmetric and positive
definite / semi-definite. Furthermore, tridiag{X} returns a matrix of the same size as X
that contains the tridiagonal part of X.
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Chapter 2

Physical Fundamentals of Wave Fields

2.1 Wave Equation in Cartesian Coordinate System
In the following, we briefly summarize the wave equation in Cartesian coordinates and its
solution. Interested readers are referred to [74] for more detailed a treatment.

Let p(x, y, z, τ) be the sound pressure that satisfies the acoustic wave equation

∇2p− 1

c2
∂2p

∂τ2
= 0, (2.1)

assuming that the sound pressure has an infinitesimal deviation from its equilibrium value.
In (2.1), c denotes the speed of sound which is, e.g., c = 343 m/s in air and c = 1481 m/s
in water at 20◦. The right side of the equation shows that there is no sound source in
the region when the equation holds. ∇2 denotes the Laplace operator and in Cartesian
coordinates, it is given by,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.2)

A Fourier transform on the wave equation leads to the Helmholtz equation

∇2P + k̄2P = 0, (2.3)

where k̄ = ω/c denotes the wavenumber of the sound, the frequency is given by 2πf = ω,
and P is a function of (x, y, z, ω). The general solution of the Helmholtz equation in three
dimensions is given by,

p(ω) = ρ(ω)ei(k̄xx+k̄yy+k̄zz) (2.4)

where ρ(ω) and i denote an arbitrary constant and the imaginary unit, respectively. This
equation satisfies the above equation in the case of k̄2 = k̄2x + k̄2y + k̄2z . Since k̄ is a
constant, the three wavenumbers are not independent. The coefficients in the wavenumber
domain, P (k̄x, y, z, τ), can be obtained by the Fourier transform in the x axis using the
orthogonality of e−ik̄xx:

P (k̄x, y, z, τ) =

∫ ∞

−∞
p(x, y, z, τ)e−ik̄xxdx. (2.5)

2.2 Wave Equation in Spherical Coordinate System
Let us now consider the wave equation in spherical coordinates. Again, interested readers
are referred to [74] for a more detailed treatment.
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The wave equation including the time dependent term in the spherical coordinate system
is given below:

1

r2
∂

∂r

(
r2
∂p

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+

1

r2 sin2 θ

∂2p

∂ϕ2
− 1

c2
∂2p

∂τ2
= 0. (2.6)

where r, ϕ, and θ denotes the radius, the azimuth, and the elevation, respectively. The
separation of variables p(r, θ, ϕ, τ) = R(r)Θ(θ)Φ(ϕ)T(τ) leads to four ordinary differential
equations:

d2Φ

dϕ2
+m2Φ = 0, (2.7)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ [n(n+ 1)− m2

sin2 θ
]Θ = 0, (2.8)

1

r2
d

dr

(
r2
dR
dr

)
+ k̄2R− n(n+ 1)

r2
R = 0, (2.9)

1

c2
d2T
dτ2

+ k̄2T = 0. (2.10)

The solutions to (2.10) and (2.7) are given, respectively by,

T(ω) = T1e
iωτ + T2e

−iωτ , (2.11)

Φ(ϕ) = Φ1e
imϕ +Φ2e

−imϕ. (2.12)

The orthogonality of the azimuth function can be expressed by the following equation:∫ 2π

0

e−im′ϕeimϕdϕ = 2πδmm′ , (2.13)

where δmm′ denotes the Kronecker delta function defined as

δmm′ =

{
1 (m = m′)

0 (m ̸= m′)
. (2.14)

The solution of (2.8) is obtained by transforming the variables. With η = cos θ (i.e.,−1 ≤
η ≤ 1), the differential equation for Θ is

d

dη

[
(1− η2)dΘ

dη

]
+

[
n(n+ 1)− m2

1− η2

]
Θ = 0. (2.15)

The solution of the above equation is given by Legendre functions of the first and second
kind, and can be written as

Θ(θ) = Θ1Pnm(cos θ) + Θ2Qnm(cos θ). (2.16)

Since the function of the second kind, Qnm, diverges at the pole of η = ±1, this solution
is not adopted (Θ2 = 0). The first kind of the function diverges at cos θ = 1 (i.e., θ = 0)
unless n is limited to an integer. Furthermore, when n is an integer, Pnm(η) = 0 inm > n.

Finally, the solution of the differential equation (2.9) in the radial direction is given by,

R(r) = R1jn(k̄r) + R2yn(k̄r), (2.17)

where jn and yn are spherical Bessel functions of the first and second kind, respectively.
This solution can also be expressed as follows:

R(r) = R3h
(1)
n (k̄r) + R4h

(2)
n (k̄r), (2.18)

where h
(1)
n and h

(2)
n are spherical Hankel functions of the first and second kind, respectively.
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2.3 Signal Representation in Spherical Harmonic Domain
An interior sound field in spherical coordinates can be expressed as a weighted sum of
spherical Bessel functions jn(·) and SH functions, i.e., Ynm(·):

X(k̄, r,Ω) =
∞∑

n=0

n∑
m=−n

αnm(k̄)jn(k̄r)Ynm(Ω), (2.19)

where X(k̄, r,Ω) denotes an arbitrary narrowband sound field at radius r and angle Ω.
The weight of the basis functions αnm(k̄) denotes the interior SH coefficient. The SH
function is defined with Ω = {θ, ϕ} [74] as

Ynm(Ω) ≡

√
2n+ 1

4π

(n−m)!

(n+m)!
Pnm(cos θ)eimϕ, (2.20)

Given a sound field on the boundary of a sphere, the SH coefficient αnm(k̄) can be
obtained by exploiting the orthonormality of the SH function:

αnm(k̄) =
1

jn(k̄Rb)

∫
Ω

X(k̄, Rb,Ω)Y
∗
nm(Ω)dΩ, (2.21)

with ∫
Ω

Ynm(Ω)Y ∗
n′m′(Ω)dΩ = δnn′δmm′ , (2.22)

where Rb denotes the radius of the boundary.

2.4 Evanescent Waves
In the Cartesian coordinate system, the wavenumber k̄ fulfills the relationship that we
introduced in Sec. 2.1, i.e., k̄2 = k̄2x + k̄2y + k̄2z , and the equation can be rearranged in the
following way assuming that k̄ is non-negative:

k̄x =

±
√
k̄2 − k̄2y − k̄2z for k̄2 ≥ k̄2y + k̄2z

±i
√
k̄2y + k̄2z − k̄2 for k̄2y + k̄2z ≥ k̄2

. (2.23)

The first case in the above equation represents propagating waves while the second case
represents evanescent waves. An evanescent wave decays exponentially and this property
can be understood by substituting the second case (2.23) into (2.4), i.e.,

p(ω) = ρ(ω)e∓
√

k̄2
y+k̄2

z−k̄2

ei(k̄yy+k̄zz). (2.24)

The left plot of Fig. 2.1 shows the relationship between propagating waves and evanescent
waves when k̄y = 0 and k̄z = 0. The bold line k̄ = k̄x splits the region into two groups,
i.e., propagating waves and evanescent waves. Evanescent waves, highlighted in Fig. 2.1
as the region below the border line, decay exponentially and, hence, are often prone to
measurement noise of microphones *2.

*2 An evanescent wave is often introduced in the context of loudspeakers and is referring there to
the part of the emitted sound from the loudspeakers that does not reach far, i.e., the evanescent
component of sound. However, the colored region in Fig. 2.1 is also referred to as evanescent waves
in the literature of near-field acoustic holography with microphone arrays, e.g., [74].
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SH Order

Frequency

Evanescent Waves
Wavenumber

Frequency

Propagating Waves

Cartesian Coordinate System

Evanescent Waves

Propagating Waves

Spherical Coordinate System

Fig. 2.1. Relationship between propagating and evanescent waves in the Cartesian (left)
and spherical coordinate systems (right). The wavenumbers of y and z axes are
set to 0 for the left plot.

In the spherical coordinate system, it is known that n = ⌈ek̄Rb/2⌉ can split the region
into two groups owing to the characteristics of the spherical Hankel function [75] as shown
in the right plot of Fig. 2.1. We investigate in Chapter 6 whether the use of the evanescent
region is beneficial for source separation.
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Chapter 3

Multichannel Blind Source Separation

3.1 Local Gaussian Model
This section provides an introduction to the model underlying MNMF and its variant,
DOA-based MNMF [46]. The model assumes that an A-channel vector of a short-time
Fourier transform (STFT) bin for ith source can be modeled as a multivariate complex
Gaussian, i.e.,

sift ∼ NC
(
0,Ri

ft

)
, (3.1)

where sift ∈ CA denotes the spatial image of the ith source in the STFT domain, Ri
ft =

E
[
sifts

i
ft

H
]
∈ CA×A denotes the covariance matrix of the complex Gaussian distribution

NC, f is the frequency bin index that corresponds to k̄, and t is the time frame index.
The spatial image of a mixture of multiple sources xft ∈ CA is represented as a sum of

complex Gaussians, i.e.,

xft =
∑
i

sift ∼ NC (0,Rft) , (3.2)

where Rft ∈ CA×A denotes the SCM. Assuming that the sources are mutually inde-
pendent, the SCM of the mixture Rft is given by the sum of the SCMs of all sources,
i.e.,

Rft = E
[
xftx

H
ft

]
=
∑
i

Ri
ft. (3.3)

The log-likelihood of the spatial image xft for the model parameters φ under the
assumption of the local Gaussian model (3.2) is given by

logP(x|φ) =
∑
ft

logNC

(
xft|0, R̂ft(φ)

)
, (3.4)

where the SCM of the mixture is modeled by R̂ft(φ) and the parameter φ will be defined
later in Secs. 3.2 and 3.3. The maximization of this likelihood can be interpreted as the
minimization of the log-determinant divergence [76] between the empirical SCM, R̃ft =

xftx
H
ft, and the estimated SCM, R̂ft(φ) ∈ CA×A:

C(φ) =
∑
ft

DLD

(
R̃ft|R̂ft(φ)

)
≡
∑
ft

tr
(
R̃ftR̂ft(φ)

−1
)
+ log det

(
R̂ft(φ)

)
, (3.5)
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where C(φ) can be seen as a cost function that we want to minimize with respect to
the model parameters φ. The log-determinant divergence, DLD, is often preferred for
minimizing SCMs owing to its scale-invariant nature [37, 44].

3.2 Multichannel Non-negative Matrix Factorization

In the framework of MNMF proposed in [44] where φ = {Qfk, wfk, hkt}, the SCM R̂ft

is assumed to be a superposition of time-invariant normalized SCMs Qfk ∈ CA×A cou-
pled with a scale value that represents the power spectral density. The scale value is
decomposed into a non-negative frequency weight wfk and a non-negative activation hkt,

R̂ft(φ) =
∑
k

Qfkwfkhkt, (3.6)

where the NMF component index is denoted by k. Even though the performance of
MNMF exceeds that of other multichannel based approaches, such as independent vector
analysis (IVA) [77], it is known to be sensitive to the initialization of the parameters. The
drawback can be mitigated by employing other multichannel methods as an initializer of
MNMF [78]. Another major problem of MNMF is its computational cost because the
complexity increases with the number of microphones, A. In particular, in the case of
MNMF based on the log-determinant divergence (3.5), numerous matrix inversions in the
update rules of wfk and hkt and eigendecompositions in the update of Qfk result in a
very high computational cost of order O(A3) [41].

3.3 MNMF with Fixed DOA Kernels
In the extended approach of MNMF proposed in [46] where φ = {zko, wfk, hkt}, the
time-invariant normalized SCM is further decomposed into a set of fixed DOA kernels
Jfo ∈ CA×A and the corresponding directional weights zko ∈ RK×O

+ ,

R̂ft(φ) =
∑
k

∑
o

Jfozkowfkhkt, (3.7)

where Qfk =
∑

o Jfozko results in the same equation as (3.6) and o denotes the index of
steering directions for the DOA kernels. By using a fixed basis of DOA kernels throughout
the separation process, the stability of the performance is improved even when the pa-
rameters are initialized with random values. Furthermore, there is also a major advantage
in terms of computational cost owing to the elimination of the update of the normalized
SCM Qfk.

Opposed to MNMF, which blindly estimates the normalized SCM, the DOA-based ap-
proach requires that the geometry of the array is known in order to compute the DOA
kernels. In the case of a uniform linear array, the DOA kernel is composed of an outer
product of steering vectors qfo ∈ CA, where each steering vector is represented as a func-
tion of the time delay determined by the steering direction and the microphone distance,
i.e.,

Jfo = qfoq
H
fo, (3.8)

with
qT
fo =

[
1 eiωfτo · · · eiωf (A−1)τo

]
, (3.9)

where ωf denotes the frequency and τo denotes the time delay between each microphone
and the array center.
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Although the overall computational cost is greatly reduced by fixing the DOA kernels,
the presence of the matrix inversions in the updates of zko, wfk, and hkt prevents us from
applying the algorithm to the scenario where a large number of microphones are required,
i.e., where A is large.

3.4 Derivation of Update Rules
To minimize the cost function in (3.5) with (3.7), we employ the majoriza-
tion–minimization (MM) algorithm [45] to reduce the cost monotonically. The
upper bound of the cost function (3.5) together with a model (3.7) can be constructed
by applying two inequalities to the convex part and the concave part, respectively [79].
This yields

C+(φ,Tftko,Uft) =
∑
ft

(∑
ko

tr
(
R̃ftT

H
ftko (Jfo)

−1
Tftko

)
zkowfkhkt

+ log detUft + tr
(
U−1

ft R̂ft

)
−A

)
, (3.10)

whereTftko andUft are auxiliary variable matrices that satisfy
∑

ko Tftko = I,Tftko ⪰ 0,
and Uft ⪰ 0. The equality of the auxiliary function and the cost function holds only when
the auxiliary variables satisfy

Tftko = (Jfozkowfkhkt)
(
R̂ft

)−1

, (3.11a)

Uft = R̂ft. (3.11b)

The partial derivatives with respect to zko, wfk, and hkt are derived by minimizing
the upper bound function C+(φ,Tftko,Uft). The derivatives of C+(φ,Tftko,Uft) with
respect to the model parameters are

∂C+

∂zko
=

∑
ft

(
−
tr
(
R̃ftT

H
ftko (Jfo)

−1
Tftko

)
z2kowfkhkt

+ tr
(
U−1

ft Jfo

)
wfkhkt

)
, (3.12a)

∂C+

∂wfk
=

∑
to

(
−
tr
(
R̃ftT

H
ftko (Jfo)

−1
Tftko

)
zkow2

fkhkt
+ tr

(
U−1

ft Jfo

)
zkohkt

)
, (3.12b)

∂C+

∂hkt
=

∑
fo

(
−
tr
(
R̃ftT

H
ftko (Jfo)

−1
Tftko

)
zkowfkh2kt

+ tr
(
U−1

ft Jfo

)
zkowfk

)
. (3.12c)

The multiplicative update rules for the model parameters zko, wfk, and hkt are obtained
by equating the partial derivatives to zero and can be simplified by substituting (3.11a)
and (3.11b):
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zko ← zko

√√√√√∑ft tr
(
R̂−1

ft R̃ftR̂
−1
ft Jfo

)
wfkhkt∑

ft tr
(
R̂−1

ft Jfo

)
wfkhkt

, (3.13)

wfk ← wfk

√√√√√∑on tr
(
R̂−1

ft R̃ftR̂
−1
ft Jfo

)
zkohkt∑

on tr
(
R̂−1

ft Jfo

)
zkohkt

, (3.14)

hkt ← hkt

√√√√√∑fo tr
(
R̂−1

ft R̃ftR̂
−1
ft Jfo

)
zkowfk∑

fo tr
(
R̂−1

ft Jfo

)
zkowfk

. (3.15)

These formulations are simpler variants of an algorithm proposed by Higuchi and
Kameoka [80]. As can be seen from the update rules, the matrix inversions of the
estimated SCMs, which are of order O(A3), make the algorithm intractable for a large
number of microphones (e.g., 32).
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Chapter 4

Diagonal Spatial Covariance Matrix in

Wavenumber Domain

4.1 Motivation
To overcome the weakness of the high computational cost in MNMF explained in Chap-
ter 3, several authors have attempted to apply different types of orthogonal transforms
to an SCM, enabling the energy of the SCM to be concentrated in the diagonal part.
As a result, a matrix inversion in the update can be replaced with element-wise diagonal
divisions, thus reducing the high computational cost. The authors in [81] leveraged a
steering matrix to convert the SCM into the so-called beamspace domain. The method
was further generalized in the framework called PROJET [82]. There have been several
works on the iterative estimation of the projection matrix by IVA [77], either jointly with
NMF updates [78, 83] or independently followed by the NMF approach [84]. In this chap-
ter, we first propose the use of a fast Fourier transform (FFT) to project signals into the
wavenumber domain and to model only the band elements of an SCM, condition that a
uniform linear array is used as a recording device. The conversion can be achieved more
efficiently than by other projection-based methods while making use of the property that
plane waves can be sparsely represented in the wavenumber domain.

4.2 Model and Derivation of Update Rules

4.2.1 Wavenumber Transform of SCMs

The STFT multichannel signals are converted into the wavenumber domain, where the
underlying probability model is based on the zero-mean complex Gaussian distribution,

FHxft = FH
∑
i

sift ∼ NC
(
0,RSP

ft

)
, (4.1)

with
RSP

ft = FHR̃ftF, (4.2)

where RSP
ft ∈ CA×A denotes the SCM in the wavenumber domain and F ∈ CA×A denotes

the discrete Fourier transform (DFT) matrix.

Given R̂SP
ft = FHR̂ftF, the cost function for the local Gaussian model in (3.5) can then

be modified by replacing the SCM in the TF domain with the matrix in the wavenumber



4.2 Model and Derivation of Update Rules 17

domain,

Csp(φ) =
∑
ft

DLD

(
RSP

ft |R̂SP
ft

)
. (4.3)

Note that Csp(φ) is equivalent to C(φ) in (3.5) as can be seen from

Csp(φ) =
∑
ft

DLD

(
FHR̃ftF|FHR̂ftF

)
=
∑
ft

tr
(
FHR̃ftFF

−1R̂−1
ft F

−H
)

+ log det
(
FHR̂ftF

)
=
∑
ft

tr
(
FHFF−1F−HR̃ftR̂

−1
ft

)
+ log det

(
R̂ft

)
− log det (F) + log det (F)

= C(φ). (4.4)

Since wfk and hkt are not dependent on the channel dimension, the spatial transform of
the estimated SCMs, supposed to be performed in every iteration, can be replaced with
a single spatial transform of the fixed DOA kernels Jfo at the initialization stage,

R̂SP
ft = FHR̂ftF

=
∑
k

∑
o

JSP
fo zkowfkhkt, (4.5)

with
JSP
fo = FHJfoF. (4.6)

4.2.2 Sparseness of SCMs

Fig. 4.1 shows an example of a comparison between an SCM for A = 32 in the TF domain
and the converted matrix in the wavenumber domain. It is clear from the figure that
the SCM in the wavenumber domain has strong peaks in the band elements, whereas the
one in the TF domain has quasi-uniformly distributed values. A comparison for A = 4 is
shown in Fig. 4.2. Again, the SCM in the wavenumber domain exhibits a small number
of strong peaks. To numerically assess the sparseness of the SCMs, we computed the
percentage of elements that are smaller in magnitude than 20% of the maximum element.
For the case of A = 32 (Fig. 4.1), we obtain 6.1% in (a) and 99.5% in (b). Also, for the
case of A = 4 (Fig. 4.2), we obtain 0% in (a) and 81.3% in (b). Thus, even for A = 4,
more than 80% of all SCM elements in the wavenumber domain are smaller than the
threshold whereas it was none in the TF domain. Finally, to observe the effect of room
reverberation on the sparseness of the SCM, we conducted a simulation based on the image
method [85]. The simulated room size is 7.0 m × 12.0 m × 3.0 m and the reverberation
time is 400 ms. The setup is the same as for Figs. 4.1 and 4.2, i.e., the three sources are
placed at the corresponding directions at the radius of 3 m. Fig. 4.3 shows the resultant
wavenumber-domain SCMs obtained in this simulation. In the reverberant scenario, the
sparseness of the SCMs are 91.8% for A = 32 and 68.8% for A = 4. Although the values
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decrease gradually compared with the anechoic case, the sparse nature in the wavenumber
domain still remains. Furthermore, the concentration on the diagonal elements can still be
seen in Fig. 4.3, as in Figs. 4.1 and 4.2. The high power regions in the off-diagonal parts
correspond to the reflections from the walls, and omitting those regions can be considered
as a loss of information in general. However, the evaluations in this chapter proves that
our proposed method is still effective in improving performance in the case of near-field
sources under reverberant conditions.

4.2.3 Wiener Filtering in Wavenumber Domain

Given the estimated model parameters, the STFT coefficients of each source can be re-
covered by a multichannel Wiener filter, i.e., a minimum mean squared error (MMSE)

estimator [86]. Since R̂ft = FR̂SP
ft F

H and Jfo = FJSP
foF

H also hold owing to FFH = I
where I denotes an identity matrix, the MMSE estimator can be given in the wavenumber
domain by

ŝift =

(∑
k∈Ki

∑
o

Jfozkowfkhkt

)(
R̂ft

)−1

xft

=

(∑
k∈Ki

∑
o

FJSP
foF

Hzkowfkhkt

)(
FR̂SP

ft F
H
)−1

xft

= F

(∑
k∈Ki

∑
o

JSP
fo zkowfkhkt

)(
R̂SP

ft

)−1

FHxft, (4.7)

where Ki denotes the set of components that belong to the ith source. The set of NMF
components Ki can be determined by a clustering method, such as LPC-based [87] or
Mel-spectrum-based clustering [88].

4.2.4 Diagonal Approximation

If we assume that FHR̂ftF and FHJfoF are diagonal matrices (see Fig. 4.1), then

FHR̂ftF and FHJftF can be well approximated by considering only their diagonal ele-
ments,

FHR̂ftF ≈ R̂Diag
ft =


γ̂1ft 0 . . . 0
0 γ̂2ft . . . 0
...

...
. . .

...
0 0 . . . γ̂Aft

 , (4.8)

FHJfoF ≈ JDiag
fo =


β1fo 0 . . . 0
0 β2fo . . . 0
...

...
. . .

...
0 0 . . . βAfo

 . (4.9)

Thus, the cost function (4.3) can also be approximated by focusing on the diagonal



4.2 Model and Derivation of Update Rules 19

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

30252015105

5

10

15

20

25

30

(a) |Rft|

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
5

10

15

20

25

30

30252015105

(b) |FHRftF|
Fig. 4.1. SCM of mixed plane waves (2 kHz) originating from π/20, 8π/20, and 14π/20.

The number of microphones, A, is 32. |.| denotes the element-wise absolute
value of the matrix.
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Fig. 4.2. SCM of mixed plane waves (2 kHz) originating from π/20, 8π/20, and 14π/20.

The number of microphones, A, is 4. |.| denotes the element-wise absolute value
of the matrix.
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Fig. 4.3. SCM of three point sources (2 kHz) originating from π/20, 8π/20, and 14π/20,

simulated in the reverberant scenario with the image method (7.0 m × 12.0 m
× 3.0 m, T60 = 400 ms). The number of microphones, A, is 32 for (a), and 4
for (b). |.| denotes the element-wise absolute value of the matrix.
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elements,

Csp(φ) ≈
∑
ft

DLD

(
RSP

ft |R̂
Diag
ft

)

=
∑
ft

DLD

(
RSP

ft |
∑
k

∑
o

JDiag
fo zkowfkhkt

)
. (4.10)

4.2.5 Derivation of Update Rules

The update rules reflecting the approximation can be derived as in 3.4 such that they
only contain the inversions of diagonal matrices, allowing the algorithm to run at a com-
putational cost of order O(A) in each iteration,

zko←zko

√√√√√√√
∑

ft tr

((
R̂Diag

ft

)−1

RSP
ft

(
R̂Diag

ft

)−1

JDiag
fo

)
wfkhkt∑

ft tr

((
R̂Diag

ft

)−1

JDiag
fo

)
wfkhkt

, (4.11a)

wfk←wfk

√√√√√√√
∑

on tr

((
R̂Diag

ft

)−1

RSP
ft

(
R̂Diag

ft

)−1

JDiag
fo

)
zkohkt∑

on tr

((
R̂Diag

ft

)−1

JDiag
fo

)
zkohkt

, (4.11b)

hkt←hkt

√√√√√√√
∑

fo tr

((
R̂Diag

ft

)−1

RSP
ft

(
R̂Diag

ft

)−1

JDiag
fo

)
zkowfk∑

fo tr

((
R̂Diag

ft

)−1

JDiag
fo

)
zkowfk

. (4.11c)

The cost function can also be written in a similar manner to the cost function for NTF
with the IS divergence denoted by DIS, i.e.,

Csp(φ) ≈
∑
aft

DIS (γaft|γ̂aft)

=
∑
aft

DIS

(
γaft|

∑
k

∑
o

βafozkowfkhkt

)
,

(4.12)

under the assumption that FHR̂ftF = diag(γ̂1ft, ..., γ̂aft).
To minimize the cost function in (4.12), we employ the MM algorithm [45] to reduce

the cost monotonically. The auxiliary function can be constructed by applying Jensen’s
inequality to the convex part of the cost function and the tangent line to the concave part:

C+
sp(φ, ηaftko, ψaft) =

∑
aft

(∑
ko

η2aftko
γaft

βafozkowfkhkt
+ logψaft +

γ̂aft − ψaft

ψaft

)
, (4.13)

where ηaftko and ψaft are auxiliary variables that satisfy
∑

ko ηaftko = 1, ηaftko ≥ 0 and
ψaft ≥ 0. The equality of the auxiliary function and the cost function holds only when
the auxiliary variables satisfy
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ηaftko =
βafozkowfkhkt

γ̂aft
, (4.14)

ψaft = γ̂aft. (4.15)

The partial derivatives with respect to zko, wfk, and hkt are derived by minimizing the
auxiliary function:

∂C+
sp

∂zko
=
∑
aft

(
−η2aftko

γaft
βafoz2kowfkhkt

+
βafowfkhkt

ψaft

)
, (4.16)

∂C+
sp

∂wfk
=
∑
ato

(
−η2aftko

γaft
βafozkow2

fkhkt
+
βafozkohkt

ψaft

)
, (4.17)

∂C+
sp

∂hkt
=
∑
afo

(
−η2aftko

γaft
βafozkowfkh2kt

+
βafozkowfk

ψaft

)
. (4.18)

The update rules can be derived by equating the derivative to zero and can be simplified
by substituting (4.14) and (4.15):

zko ← zko

√√√√∑ft

∑
a

γaft

γ̂2
aft
βafowfkhkt∑

ft

∑
a

1
γ̂aft

βafowfkhkt
, (4.19a)

wfk ← wfk

√√√√∑on

∑
a

γaft

γ̂2
aft
βafozkohkt∑

on

∑
a

1
γ̂aft

βafozkohkt
, (4.19b)

hkt ← hkt

√√√√∑fo

∑
a

γaft

γ̂2
aft
βafozkowfk∑

fo

∑
a

1
γ̂aft

βafozkowfk

. (4.19c)

It is clear from the equations that they no longer contain matrix inversions. The
proposed diagonal algorithm is given in Algorithm 1.

4.3 Evaluation
An evaluation was conducted by using the BSS Eval Toolbox, which calculates the source-
to-distortion ratio (SDR), the source-to-interferences ratio (SIR), and the sources-to-
artifacts ratio (SAR) [89]. Algorithm 1 (Diag) was compared with other BSS methods in
two scenarios: anechoic and reverberant. The sound samples from SiSEC (Signal Separa-
tion Evaluation Campaign) database 2008*1 were used in combination with room impulse
responses (RIRs) associated with source positions [90]. The test conditions (Table 4.1)
were the same for both experiments.

*1 http://sisec2008.wiki.irisa.fr/tiki-index.html
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Algorithm 1 Diagonal approximation approach

Require: Mixture xft

Compute R̃ft = xftx
H
ft

Apply spatial transform to R̃ft with (4.2)
Apply spatial transform to Jfo with (4.6)
Extract diagonal part of FHJfoF with (4.9)
Initialize zko, wfk, hkt with randomized values

Compute R̂SP
ft with (4.5)

for ȷ = 0 to MM iteration do
zko ← (4.19a)

Compute R̂SP
ft with (4.5)

wfk ← (4.19b)

Compute R̂SP
ft with (4.5)

hkt ← (4.19c)

Compute R̂SP
ft with (4.5)

end for

Cluster NMF components based on [87, 88]
Apply Wiener filtering with (4.7)

Ensure: Estimates ŝift

Table 4.1. Experimental setup

Number of sources 3
Number of channels A = 32

Sampling rate 16 kHz
STFT frame size 1024
STFT frame shift 512

Number of iterations 100

4.3.1 Anechoic Scenario

For the anechoic scenario, Algorithm 1 (Diag) was compared to IVA [77] and NTF [53].
Multichannel observations for a uniform linear array were created simply by summing
all the sources together with the addition of proper delays in the frequency domain.
Separated signals for IVA were reconstructed by applying the projection back [91]. The
distance between microphones was set to 0.384 m. The number of components for NTF
and Algorithm 1 (Diag) was 18. The angle resolution for DOA kernels was limited to 10◦

in the range 0–180◦ due to computational cost. It should be noted that the approximation
resulting from the extraction of the diagonal elements of SCMs is not correct for a uniform
linear array because an SCM cannot be a circulant matrix. However, the approximation
error can be mitigated by increasing the length of the array [74, 92].

The average improvement in SDR per file (Fig. 4.4) and the average improvement in
SDR per angle between the two nearest sources (Fig. 4.5) show that Algorithm 1 (Diag)
outperformed the other two methods for all three files at all source distances. The results
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Table 4.2. SDR, SIR, and SAR results

DS with oracle DOAs Proposed Method (Diag)
SDR SIR SAR SDR SIR SAR

Hi-hat -12.77 -9.88 24.30 7.43 -0.49 2.72
Snare -3.36 -9.01 10.54 0.68 -7.04 0.70
Bass 3.28 15.93 19.38 16.56 15.13 19.51

Table 4.3. Computation time for 1 iteration [s]

IVA NTF Proposed Method (Diag) DOANMF
0.3 1.2 16.1 1093.4

for different distances show the same tendency as that in [46], namely, that the larger
the source distance is, the better the DOA-based method performs with respect to non
DOA-based methods. In addition, we assume that Algorithm 1 (Diag) has an advan-
tage over NTF due to the sparse representation of propagated waves in the wavenum-
ber domain, where the sources are less superposed. Unfortunately, due to the extreme
computational complexity of MNMF, the comparison for 32 channels could not be com-
pleted in a reasonable amount of time. It took 1024 times longer than it took for Algo-
rithm 1 (Diag) (323/32 = 1024).

4.3.2 Reverberant Scenario

Evaluations for a reverberant scenario were conducted on Algorithm 1 (Diag) and on a
delay-and-sum (DS) beamformer with oracle DOAs. The azimuths of the three sources
were π/20, 8π/20, and 14π/20 radians. An image-source method was used to obtain
reverberant RIRs [93]. The reverberation time, T60, was 0.5 s for a room 7.68 m × 14 m
× 6 m in size. A uniform linear array of microphones was assumed to be in the center of
the room. The distance between microphones was set to 0.046 m. The other parameters
were the same as those in Table 4.1.

The SDR and SIR results (Table 4.2) show that Algorithm 1 (Diag) outperformed the
DS beamformer in the reverberant scenario, even with oracle DOAs for the beamformer.
This is probably due to the fact that Algorithm 1 (Diag) is capable of modeling full-rank
SCMs, even though a circulant matrix is approximated by a large Toeplitz matrix, whereas
the DS beamformer can only steer in a single direction.

4.3.3 Computation Time

The computation time required for 1 iteration for each method is listed in Table 4.3. The
parameter settings for the experiment are the same as those of Sec. 4.3.1. The computation
time was measured by using MATLAB codes. We ran the programs on a Xeon E5-2690
v2 CPU where each core has 3.00 GHz CPU capability. Although there is unexpected
overhead in real implementation, Algorithm 1 (Diag) is still greatly faster than MNMF
with fixed DOA kernels described in Sec. 3.3 (DOANMF), confirming the advantage of
Algorithm 1 (Diag) in computational efficiency.
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Fig. 4.4. Average improvement in SDR per source for hi-hat, snare drums, and bass
guitar.
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Fig. 4.5. Average improvement in SDR per direction, with the x-axis being the angle
between the two nearest sources.

4.4 Conclusion
This chapter describes the use of NTF in the wavenumber domain to reduce the com-
putational cost of BSS for a large number of channels. The technique is based on the
approximation of SCMs, which are transformed into the wavenumber domain in advance.
With this approximation, the cost of running the algorithm is of order O(A), whereas
it is of order O(A3) for MNMF. An evaluation conducted for anechoic and reverberant
scenarios showed that Algorithm 1 (Diag) yielded good separation quality.
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Chapter 5

Banded Spatial Covariance Matrix in

Wavenumber Domain

5.1 Motivation
The diagonal approximation of an SCM in the wavenumber domain was investigated
in Chapter 4, in which only the scenario of using a uniform linear array with a large
number of microphones was evaluated. However, it can be assumed that the performance
gradually degrades as the number of microphones is reduced because the SCM of projected
signals cannot contain sufficient information in the diagonal part when the number of
microphones is small. Evaluating the robustness to such a scenario is one of the focuses
of this chapter. Secondly, to further increase the robustness, we also devised a tridiagonal
approximation approach, where the algorithm not only takes into account the diagonal
part but also exploits the adjacent lower and upper bands of the matrix. It relies on the
assumption that the tridiagonal part contains more spatial information than the diagonal
part. A difficulty exists in the extraction step of the tridiagonal elements because a simple
truncation of off-diagonal elements cannot maintain the positive semi-definitiveness of the
matrix, which is required to ensure the convergence of the iterative update rules. The
inversions of tridiagonal matrices, which appear a few times in the multiplicative updates,
can be efficiently computed by means of the Thomas algorithm [94], which can achieve a
matrix inversion of order O(A2). Finally, we examine the incorporation of self-clustering to
remove the dependency of clustering methods after the decomposition, which was reported
in [95] to yield a quality improvement. The summary of this chapter are as follows:

• an in-depth evaluation of the FFT-based projection method described in Chapter 4
and [96] in the case of a small number of microphones,
• an extension to tridiagonal SCM approximation, where we ensure the positive semi-
definitiveness of the matrix, followed by an efficient inverse calculation based on the
Thomas algorithm, and,
• the incorporation of self-clustering to iteratively group NMF components into sev-
eral source types.

5.2 Model and Derivation of Update Rules

5.2.1 Tridiagonal Approximation

Owing to the finite length of the DFT matrix, the SCM cannot be perfectly diagonalized
and off-diagonal elements cannot be avoided. This “smear” becomes more dominant in
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the case of a uniform linear array because the matrix cannot be regarded as a circulant
matrix for which diagonalization can be perfectly achieved. Different from the method
explained in Chapter 4, where we exploited only the diagonal part, we also make use of
the upper and lower adjacent bands, i.e., the tridiagonal part. The matrix entries outside
the tridiagonal part are not taken into account in the optimization process.

It should be emphasized that simply discarding the off-tridiagonal part does not ensure
the convergence of the multiplicative update rules because setting these entries to zero does
not guarantee the positive semi-definitiveness of the resulting tridiagonal SCM, which is an
essential assumption throughout the update of model parameters in MNMF. To maintain
the positive semi-definitiveness of the matrix during the tridiagonalization process, we
must solve the optimization problem

R̂Tri
ft = argmin

V

∥∥∥R̂SP
ft − tridiag{V}

∥∥∥2
F

subject to tridiag{V} ⪰ 0. (5.1)

The operation tridiag{V} returns a tridiagonal matrix in which elements that are not on
the main diagonal and on the diagonal above/below are set to zero. The optimization prob-
lem (5.1) is a nearest-matrix problem where we solve for the positive semi-definite, tridi-

agonal matrix R̂Tri
ft ∈ CA×A that is nearest to RSP

ft using the Frobenius norm. We solve

the semi-definite programming problem (5.1) by using YALMIP [97] with SeDuMi [98].

Although the optimization (5.1) in order to obtain R̂Tri
ft is costly, it can be replaced with

solving the same problem for the DOA kernel Jfo, which only must be carried out once in
the initialization process as the DOA kernels are fixed throughout the update iterations.

ĴTri
fo = argmin

V

∥∥JSP
fo − tridiag{V}

∥∥2
F

subject to tridiag{V} ⪰ 0. (5.2)

R̂Tri
ft =

∑
k

∑
o

ĴTri
fo zkowfkhkt. (5.3)

Using the approximated tridiagonal SCM, the cost function in (4.3) can be modified to

Csp(φ) ≈
∑
ft

DLD

(
RSP

ft |R̂Tri
ft

)

=
∑
ft

DLD

(
RSP

ft |
∑
k

∑
o

JTri
fo zkowfkhkt

)
.

(5.4)

To minimize the log-determinant divergence between two SCMs, we again employ the MM
algorithm [45] to reduce the cost monotonically.

The multiplicative update rules for the model parameters zko, wfk, and hkt are given
by

zko ← zko

√√√√√√√
∑

ft tr

((
R̂Tri

ft

)−1

RSP
ft

(
R̂Tri

ft

)−1

ĴTri
fo

)
wfkhkt∑

ft tr

((
R̂Tri

ft

)−1

ĴTri
fo

)
wfkhkt

, (5.5a)
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Algorithm 2 Extension to tridiagonal approximation

Require: Mixture xft

Compute R̃ft = xftx
H
ft

Apply spatial transform to R̃ft with (4.2)
Apply spatial transform to Jfo with (4.6)

Obtain tridiagonal approximation ĴTri
fo with (5.2)

Initialize zko, wfk, hkt with randomized values

Compute R̂Tri
ft with (5.3)

for ȷ = 0 to MM iteration do
zko ← (5.5a)

Compute R̂Tri
ft with (5.3)

wfk ← (5.5b)

Compute R̂Tri
ft with (5.3)

hkt ← (5.5c)

Compute R̂Tri
ft with (5.3)

end for

Cluster NMF components based on [87, 88]
Apply Wiener filtering with (4.7)

Ensure: Estimates ŝift

wfk ← wfk

√√√√√√√
∑

on tr

((
R̂Tri

ft

)−1

RSP
ft

(
R̂Tri

ft

)−1

ĴTri
fo

)
zkohkt∑

on tr

((
R̂Tri

ft

)−1

ĴTri
fo

)
zkohkt

, (5.5b)

hkt ← hkt

√√√√√√√
∑

fo tr

((
R̂Tri

ft

)−1

RSP
ft

(
R̂Tri

ft

)−1

ĴTri
fo

)
zkowfk∑

fo tr

((
R̂Tri

ft

)−1

ĴTri
fo

)
zkowfk

. (5.5c)

Even in the case of a huge number of microphones, A, the inversion of the estimated SCM
is not costly when employing the Thomas algorithm [94], which has a computational
complexity of O(A2). The proposed tridiagonal algorithm is given in Algorithm 2.

5.2.2 Extension to Self-Clustering

Inspired by the prior works [44, 53] in which the models have clustering capability, we
extended (4.12) as follows to possess a grouping factor gik:

γ̂aft =
∑
i

∑
k

∑
o

βafoziogikwfkhkt. (5.6)

The update rules are derived in a similar way to in Sec. 4.2.5 and are given by
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Algorithm 3 Extension to self-clustering

Require: Mixture xft

Compute R̃ft = xftx
H
ft

Apply spatial transform to R̃ft with (4.2)
Apply spatial transform to Jfo with (4.6)
Extract diagonal part of FHJfoF with (4.9)
Initialize zio, gik, wfk, hkt with randomized values

Compute R̂SP
ft with (4.5)

for ȷ = 0 to MM iteration do
zio ← (5.7a)

Compute R̂SP
ft with (4.5)

gik ← (5.7b)

Compute R̂SP
ft with (4.5)

wfk ← (5.7c)

Compute R̂SP
ft with (4.5)

hkt ← (5.7d)

Compute R̂SP
ft with (4.5)

end for

Apply Wiener filtering with (4.7)

Ensure: Estimates ŝift

zio ← zio

√√√√∑kft

∑
a

γaft

γ̂2
aft
βafogikwfkhkt∑

kft

∑
a

1
γ̂aft

βafogikwfkhkt
, (5.7a)

gik ← gik

√√√√∑oft

∑
a

γaft

γ̂2
aft
βafoziowfkhkt∑

oft

∑
a

1
γ̂aft

βafoziowfkhkt
, (5.7b)

wfk ← wfk

√√√√∑iot

∑
a

γaft

γ̂2
aft
βafoziogikhkt∑

iot

∑
a

1
γ̂aft

βafoziogikhkt
, (5.7c)

hkt ← hkt

√√√√∑ifo

∑
a

γaft

γ̂2
aft
βafoziogikwfk∑

ifo

∑
a

1
γ̂aft

βafoziogikwfk

. (5.7d)

In [44], it was shown that incorporating self-clustering into the iterations improved their
performance. We compare self-clustering with various other post-clustering approaches in
Sec. 5.3.4 and observe similar behavior for the average performance over all instruments.
Note that the self-clustering extension can also be applied to the tridiagonal case. The
proposed self-clustering extension can be found in Algorithm 3.
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Table 5.1. Experimental setup

Sampling rate 16 kHz
STFT frame size 1024
STFT hop size 512

Source 1
Source 2

Source 3

2.83 cm

𝜃𝜃 𝜃𝜃

(reverberation time: 470 ms)

Fig. 5.1. Relationship between source positions with respect to the center of the micro-
phone array.

5.3 Evaluation

5.3.1 Experimental Conditions

To evaluate the proposed algorithms, Algorithms 1, 2, and 3, we conducted various ex-
periments in the case of a small number of microphones. The experimental conditions are
listed in Table 5.1. As an evaluation metric, we employed the SDR improvement, which
can be computed by subtracting the outputs of BSS Eval Toolbox [89] for the original
mixture from the BSS Eval values of the separations. Furthermore, the SIR improvement
and the SAR are also given for the experiment in Sec. 5.3.2. Please note that we did
not compute SAR improvements as the input SAR is infinity and, therefore, the improve-
ment is not computable. Moreover, we omit the SIR improvement and the SAR for the
other experiments because the tendencies of these metrics are the same as that of the
corresponding SDR improvement, as can be seen in Sec. 5.3.2.

5.3.2 Comparison with Other Methods under Reverberant Conditions

Reverberant room conditions were simulated to compare the proposed method with var-
ious other methods under realistic conditions. To answer the issue addressed in Sec. 5.1
regarding the case of imperfect diagonalization of SCM for small A, the number of micro-
phones was set to A = 4 to observe our proposed method in the case of a small number
of microphones. Note that the case of many microphones was investigated in [96], where
we studied an example with A = 32 microphones and showed the effectiveness of our di-
agonal approximation in this scenario. Three instrument signals of 10 seconds each were
taken from the SiSEC database 2008 for the task of underdetermined speech and music
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mixtures. The angle between adjacent sources and the array center is denoted as θ, as
shown in Fig. 5.1. To create reverberant signals, the RWCP impulse response [99] was
used and convolved with the source signals. The reverberation time of the selected room
response was 470 ms, which corresponds to the reverberation of a standard conference
room. The angle θ was varied from 10 to 30◦ to verify the robustness to angle differences.
To exclude the dependence of random initializations, the average over 10 trials per angle
was computed and the result is labeled as “mean” in Fig. 5.3. The maximum value over 10
trials is also shown to observe the potential of each algorithm and the corresponding bar is
labeled as “max” in Fig. 5.3. The locations of the three sources were rotated three times
to avoid the bias of spatial locations. In addition to the proposed Algorithm 1 (Diag)
and Algorithm 2 (Tridiag) with O = 5 kernels, five different algorithms were evaluated
as baselines: minimum variance distortionless response (MVDR) beamformer, IVA [77],
independent low-rank matrix analysis (ILRMA) [78], full-rank MNMF [44], and MNMF
with fixed DOA kernels (O = 5, 8), described in Sec. 3.3 (DOANMF). For MVDR beam-
former, the DOAs of all three sources as well as the oracle SCM of interferences were fed to
the algorithm as prior knowledge. The cost function for ILRMA, MNMF, and DOANMF
was based on the log-determinant divergence. The number of iterations for all the iterative
methods was set to 100, empirically determined based on the convergence plot shown in
Fig. 5.2. The NMF clustering method in [88] was carried out for MNMF, DOANMF, and
the proposed algorithms. The SDR improvements, SIR improvements, and raw SARs for
the three different angles between the sources are shown in Fig. 5.3. For all three angles,
both the diagonal approach and the tridiagonal approach consistently outperformed the
other methods. A more rigorous comparison between the proposed algorithms is described
in Sec. 5.3.3. For the conventional methods, DOANMF exhibits inferior performance to
MNMF, in contrast to our expectation that a DOA-based method should be robust against
random initializations as reported in [46]. The performance of DOANMF was improved
as the number of DOA kernels was increased from O = 5 to O = 8 (the best-performance
case), but it cannot reach the performance of the proposed methods. Although ILRMA
exhibits superior performance to IVA owing to the NMF-based source model on top of
the IVA spatial model, it did not achieve as good results as our approaches. This is due
to the fact that one of the algorithmic assumptions of ILRMA, i.e., the spatially rank-1
property for each source, does not hold under our simulated reverberant conditions. In
this simulation, the STFT frame size was set to 1024 points, corresponding to a length of
64 ms, which is much shorter than the reverberation time of 470 ms and thus, no valid
time-invariant demixing matrices exist in ILRMA and IVA. For MVDR beamformer, al-
though the above mentioned prior knowledge was given to the system, it does not perform
as good as ILRMA. It is natural to observe such results because MVDR beamformer’s
prior information on the target source is only the direct-wave direction (steering vector)
without taking the reverberant components into account. Thus, in the reverberant con-
dition, the target source component has much leakage. On the other hand, ILRMA can
estimate the optimal separation matrix, which consists of multiple beamformers’ weights
to cancel each of interferences with their reverberant components, resulting in less leakage
(the detailed mechanism has been reported in [100]).

5.3.3 Robustness to Different Angles

To evaluate the effectiveness of adding upper and lower bands to the diagonal elements
in the tridiagonal approach, we further conducted an experiment comparing Algo-
rithm 1 (Diag) and Algorithm 2 (Tridiag) by changing the angle between the sources.
We assume that the tridiagonal approach is more robust against changes to the angle
because it contains additional information in the lower and upper bands. The source
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Fig. 5.2. Convergence curves for DOANMF, the proposed Algorithm 1 (Diag), and Al-
gorithm 2 (Tridiag). The costs for DOANMF, Algorithm 1 (Diag), and Algo-
rithm 2 (Tridiag) are computed by (3.5), (4.10), and (5.4), respectively.

Table 5.2. Maximum SDR improvements among 10 trials for different source angles under
anechoic condition

Approach 10 [deg] 20 [deg] 30 [deg] 40 [deg] 50 [deg] 60 [deg] 70 [deg] 80 [deg] Average over angles
Tridiag 16.50 17.49 17.35 17.65 17.79 18.09 18.67 17.51 17.63
Diag 16.15 16.78 16.29 16.32 17.43 17.45 17.43 16.80 16.83

Table 5.3. Averaged SDR improvements over 10 trials for different source angles under
anechoic condition

Approach 10 [deg] 20 [deg] 30 [deg] 40 [deg] 50 [deg] 60 [deg] 70 [deg] 80 [deg] Average over angles
Tridiag 14.23 13.45 13.58 13.52 10.52 12.87 12.13 8.91 12.40
Diag 13.88 14.16 12.64 7.58 10.41 12.95 11.55 11.71 11.86

angle was varied from 10 to 80◦. To minimize the overlap with the previous experiment,
this experiment was performed under anechoic conditions and the number of DOA
kernels was set to O = 8. Other than the angle variation and the room conditions, the
experimental settings listed in Table 5.1 were retained in this experiment. The SDR
improvements are shown in Tables 5.2 and 5.3. The better result for each angle is
highlighted in bold. In Table 5.2, the maximum SDR improvement among 10 trials with
different initializations is given for each source angle θ. Regardless of the source angle,
the results show consistent improvements upon adding band elements to the diagonal
matrix. In contrast, Table 5.3 did not show the clear superiority of the tridiagonal
approach over the diagonal approach. We assume that the reasons for this are twofold.
First, the Thomas algorithm used in the tridiagonal approach is probably not as stable as
diagonal division [94]. Second, since the tridiagonal approach involves the approximation
of the SCM, the error resulting from the optimization of (5.1) is not negligible.
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Fig. 5.3. SDR improvements, SIR improvements, and SARs under the reverberant con-
ditions shown in Fig. 5.1, where the reverberation time is 470 ms.

5.3.4 Different Clustering Algorithms

To evaluate the self-clustering algorithm for the diagonal approach, we incorporated the
state-of-the-art LPC-based clustering algorithm [87] into Algorithm 1 (Diag). Two other
clustering methods [88] were also compared as baselines. The three clustering algorithms
are denoted as, LPC k-medoid, MFCC k-means, and Mel-NMF. The SDR improvements
for the different sources are shown in Fig. 5.4. On average, we can see that self-clustering
has the best performance among the four clustering algorithms. Note that the SDR im-
provements for each instrument do not show a clear trend in the performance for different
algorithms.

5.3.5 Underdetermined Case with Real Recordings

To take into account data obtained from more realistic acoustic conditions, we recorded
music sources consisting of four musical instruments emitted by four loudspeakers with
box enclosures. Three omni-directional microphones are placed with a distance of 0.45 m.
The four-second long sources of musical instruments were obtained from the songKitamura
dataset*2. Garritan Personal Orchestra 4 was chosen as MIDI source as it is considered
more realistic than the other provided MIDI sources. More details about the dataset can
be found in [101]. Four loudspeakers are placed in a circle with an angle θ clockwise
with respect to the microphone array. The relationship between the musical instruments
and the positions of the loudspeakers are listed in Table 5.4. The rough size of the room

*2 http://d-kitamura.net/dataset.htm



5.3 Evaluation 33

0

5

10

15

20

Hi-hat Snare drum Bass Average

SD
R

 im
pr

ov
em

en
t [

dB
]

MFCC k-means Mel NMF LPC k-medroid Self-clustering

Fig. 5.4. Comparison of SDR improvement for various clustering methods. Three instru-
ment signals (Hi-hat, Snare drum, Bass) obtained from SiSEC database were
used to evaluate clustering methods.
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Fig. 5.5. The bird-view geometry of the common room used for the real data recordings
in Sec. 5.3.5. Three microphones were linearly placed with a distance of 0.45 m
while four loudspeakers were placed in a circle configuration with a radius of
1.12 m.

was 3.5 m × 6.0 m × 3.0 m and the reverberation time was 400 ms. The shape of
the room can be found in Fig. 5.5. We chose four best performing methods in terms of
SDR improvements shown in Sec. 5.3.2, i.e., ILRMA, MNMF, Algorithm 1 (Diag), and
Algorithm 2 (Tridiag). The number of iterations was set to 500 to ensure convergence of
the methods. Table 5.5 shows mean and maximum values of the SDR improvements if
all four methods are run ten times. Algorithm 2 (Tridiag) outperformed the other three
methods in both mean and maximum values. ILRMA does not perform as good as in
Sec. 5.3.2 as it is not designed for such an underdetermined case.
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Table 5.4. Relationship between musical instruments and loudspeaker positions

Musical instrument Oboe Flute Piano Trombone
Loudspeaker position S1 S2 S3 S4

Angle θ [deg] 26.6 63.4 116.6 153.4

Table 5.5. SDR improvements under the conditions shown in Fig. 5.5

Approach Mean Max
ILRMA [78] -1.44 0.47
MNMF [44] 2.65 4.83

Proposed Method (Diag) 3.63 5.17
Proposed Method (Tridiag) 3.90 5.21

Table 5.6. Computation time

Approach Time [s]
MVDR beamformer 2.9

IVA [77] 8.7
MNMF [44] 785.2
ILRMA [78] 22.9
DOANMF 2223.3

Proposed Method (Diag) 68.0
Proposed Method (Tridiag) 1447.7

5.3.6 Computation Time

The computation times for all the methods compared in Sec. 5.3.2 were measured to
investigate the efficiencies of the proposed algorithms. The measurement was carried out
by inserting MATLAB time commands in the space before inputting the STFT signals
and after outputting the separated time-domain signals. We ran the programs on a Xeon
E5-2620 v4 CPU where each core has 2.1 GHz CPU capability. The number of DOA
kernels was set to O = 5 as in Sec. 5.3.2. The results are listed in Table 5.6. MVDR
beamformer, the non-iterative method, has the shortest computation time. By comparing
Algorithm 1 (Diag) of order O(A), Algorithm 2 (Tridiag) of order O(A2), and DOANMF
of order O(A3), the efficiency of the proposed algorithms can be clearly observed. The
speed of Algorithm 2 (Tridiag) can be further improved if a specialized matrix product
that assumes that one of the two matrices is sparse is used instead of a standard matrix
product. We can expect that the difference in efficiency between the algorithms will
be even more significant when the number of microphones, A, is large. The diagonal
approach and ILRMA have similar results because both algorithms are based on diagonal
approximations of SCMs computed in the projected space. ILRMA is faster than the
diagonal approach because the signals are projected to a more compact space, i.e., source
space. In this experiment, the dimension of the projected space for ILRMA is equal to
the number of sources, 3, whereas that for the diagonal approach is equal to the size of
spatial DFT, 4.
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5.4 Conclusion
In this chapter, we devised another extension that makes use of the upper and lower bands
in addition to the diagonal elements to increase the accuracy of the matrix approximation.
The inverse of the tridiagonal matrix can be computed with a computational complexity
of O(A2) by applying the Thomas algorithm. To ensure that the tridiagonal matrix is
positive semi-definite while truncating the off-diagonal elements, a semi-definite problem
was solved. Moreover, the diagonal algorithm discussed in Chapter 4 was further extended
by incorporating the self-clustering framework. The experimental results show that our
two approximations consistently gave better results in terms of SDR improvement than
various unsupervised methods. The computation time measured by MATLAB time com-
mands showed the greater efficiency of the tridiagonal approach than MNMF in the case
of four channels, and we expect that this tendency will become more significant when the
number of microphones is large.
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Chapter 6

Diagonal Spatial Covariance Matrix in

Spherical Harmonic Domain

Please note that the content of Chapter 6 is currently under review as a journal paper.
Hence, this part is omitted in the abridged version.
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Chapter 7

Conclusions

In this thesis, we focused on NMF-based BSS for a large number of microphones to address
the issues of existing methods, e.g., the computational costs of MNMF. To explain the
background and our motivation to work on this topic, we introduced in Chapter 1 several
methods including MNMF, NTF, and variants of them, and showed their application to
source detection. In Chapter 2, we introduced the mathematical representation of sound
fields, which is necessary to understand the concept of converting signals to the spatial
frequency domain. We also introduced in Chapter 3 the model used in the well-known
MNMF model and its variants. We derived in detail the update rules that are obtained
by the MM algorithm as this approach is used throughout this thesis. In Chapter 4–6, we
described the details of our models exploiting the characteristics of wave fields. First, we
applied a DFT transform to multichannel STFT vectors to convert them to the wavenum-
ber domain. By focusing on the diagonal parts of a SCM, the cost function of DOANMF
in the wavenumber domain was simplified to a NTF cost function, which can reduce the
computational cost from O(A3) to O(A). The experiments were performed for the case
of 32 channels, and the approach was proven to be effective in both improving the sep-
aration quality while at the same time reducing the computational complexity. Second,
to generalize our method to the case where a small number of microphones are used, we
attempted devising a method exploiting that the SCM has a tridiagonal structure. The
extension to self-clustering was also examined in this chapter. The evaluations including
captured signals by a real recording were carried out to see the performance of our meth-
ods, and they were shown to outperform other methods, e.g., ILRMA. Third, to examine
the robustness of our approach to spherical arrays, the algorithm was modified to work
in the SH domain. To tackle the problem of boosting the higher-order SH coefficients in
the low frequency regime when the inverse radial function is applied, a masking scheme
was applied as a weighting for the cost function. The model was further simplified by
omitting the frequency dependence, enabling the system to become more efficient. The
experiments showed that our proposed method can deal with various settings.

In summary, we proposed in this thesis a unified theory for multichannel BSS that is
applicable to various arrays generally used in sound field reproductions. The conversion
to the spatial frequency domain enables MNMF-based methods to be simplified in terms
of the computational complexity. It also open doors to exploit the characteristics of wave
fields in BSS, which bridges a gap between two different signal processing fields.
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Appendix

Incorporation of Spatial Cues and

Spatially Weighted NTF

The following text appeared in the journal article [J1].

1 Introduction
In the last few decades, NMF has become one of the most prevalent techniques to tackle
the underdetermined source separation problem where the number of sources is greater
than or equal to the number of observations. NMF is based on the idea that a mixture is
a composite of a number of object basis elements, each of which represents an underlying
characteristic of the sources. Estimation is carried out by simple matrix factorization,
with all the elements being non-negative. Cost function for NMF estimation has long
been investigated by several researchers [17, 27, 28]. In particular, the Itakura–Saito
divergence is known to be an appropriate cost function for approximation of audio spectra
due to its scale-invariant nature. To complete NMF-based source separation, clustering
of the decomposed basis elements follows the factorization to properly classify them to
corresponding sources. A large number of related techniques have been developed so
far [21, 22, 23].

Taking advantage of prior information for the purpose of enhancing the performance of
NMF has been widely investigated. Smaragdis et al. have attempted to make use of a user-
guided humming for the extraction of melodies in a mixture [58]. Diknen et al. investigated
the Bayesian NMF model assigning different prior distributions for tonal and percussive
signals [59]. Ewert et al. presented an extended approach that uses additional score
information to guide the NMF process [60]. Although a number of researches related to the
prior knowledge of TF features have been introduced, it is not yet common to incorporate
a spatial feature (hereafter, spatial cue) in NMF due to its algorithm framework. Since
NMF which separates a single-channel signal does not produce any spatial information
during the separation process, it has been difficult to associate a spatial cue until the
emergence of MNMF.

NTF, known as one of the MNMF techniques, extends the NMF idea to tensors. An
n-way tensor is a generalization of the mathematical concepts of scalar, vector, and matrix
(e.g., a two-way tensor is a matrix). Specifically, a three-way tensor, which can be regarded
as a collection of multichannel spectrograms, is being investigated for use in NTF [49, 51,
52]. Extension to the third dimension provides another matrix that describes the energy
distribution of each basis component on every channel, which can also be regarded as
spatial information. This technique enables the NMF approach to be adapted to easily
accept a spatial cue [61].
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This Appendix proposes a promising method to enhance NTF performance, taking ad-
vantage of a spatial cue given by users or from accompanying images. The enhancement
is mainly achieved by introducing weights on bin-wise NTF cost functions, which differ-
entiates a target component from other components. Since a spatial cue indicates which
bins of the tensor spectrogram are important, it is possible to improve the quality of an
approximation to the specific bins of the tensor by giving more weights to bins where the
target is likely to exist and less weights to the others. Virtanen et al. proposed percep-
tually weighted NMF that provides perceptually motivated weights for each critical band
in each frame in accordance with the loudness perception of the human auditory sys-
tem [26]. Nevertheless, to our knowledge, no research regarding NMF that incorporates
the weighting function for spatially focusing on target component estimation has been
proposed. The evaluation results show that this method is advantageous in terms of sepa-
ration quality over conventional PARAFAC-NTF and other source separation techniques
such as DUET [6, 7, 8].

It should be noted that apart from NTF, there exist other approaches to address the
source separation problem in multichannel audio. Especially, the algorithms based on local
Gaussian models [30] using the SCM for encoding spatial positions of source signals [31]
have been shown to outperform the simpler NTF approach that will be used in the fol-
lowing. A rank-1 convolutive model assuming target sources existed in a non-reverberant
environment has been proposed in [33]. Full-rank unconstrained model with NMF was
further introduced by Arberet et al. to account for reverberant conditions [32, 35]. A
modular framework for these algorithms has been presented in [36, 37]. These models
present a significant improvement in terms of separation quality as compared to the NTF
model. A problem with these models that use the GEM algorithm for optimization is
the significant increase in computational complexity when compared to the NTF model.
Sawada et al. have addressed this problem by introducing multiplicative update rules in
place of the GEM algorithm, but still their optimization requires significantly more com-
putation time compared to single-channel NMF [44]. While we believe that the proposed
weighting scheme can improve performance with other existing multichannel factorization
algorithms, we selected the NTF algorithm for investigation into the effectiveness of our
weighting scheme to limit the computational costs.

2 NTF-based Source Separation

2.1 Non-negative Tensor Factorization

A multichannel audio signal that has been transformed into a set of spectrograms (one
for each of the A channels) can be regarded as a three-way tensor V and approximated

by V̂. V̂ is created as a superposition of K feature tensors, each produced by means of
an outer product of three vectors qk, wk, and hk, respectively representing the channel,

frequency, and time factors of the feature tensor. To adapt the NTF representation V̂ to
the target tensor spectrogram V, the following optimization problem is solved:

min
Q,W,H

∑
a,f,t

ξaftDβ(vaft|v̂aft) + λ(H) s.t. Q,W,H ≥ 0 , (A.1)

with

v̂aft =
∑
k

qakwfkhkt .

Here the matrices Q, W, and H are assembled from the vectors qk, wk, and hk, having
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elements qak, wfk, and hkt. The elements of the tensor V̂ are denoted as vaft where a
indicates the channel index, f the bin index of the spectrogram, and t the time index of
the spectrogram. λ(H) represents additional constraints on matrix H, which are taken
into account during minimization of the cost function. The β-divergence, Dβ , is suitable
for NTF, allowing the separation quality to be changed, subject to the parameter β [102].
When β is equal to 2, 1, or 0, the NTFs are called EUC-NTF, KL-NTF, or IS-NTF,
respectively. ξaft denotes one of the bins of the weighting tensor, G, in bin-wise β-
divergence. It allows controlling the impact of the error observed in the different elements
of V. For standard PARAFAC-NTF, ξaft = 1 for all the bins.

The update rules for training the three matrices are derived from the derivatives of the
cost function:

Q← Q⊙

(
⟨G⊙V ⊙ V̂⊙(β−2),W ◦H⟩{2,3},{1,2}
⟨G⊙ V̂⊙(β−1),W ◦H⟩{2,3},{1,2}

)⊙γ(β)

, (A.2)

W←W ⊙

(
⟨G⊙V ⊙ V̂⊙(β−2),Q ◦H⟩{1,3},{1,2}
⟨G⊙ V̂⊙(β−1),Q ◦H⟩{1,3},{1,2}

)⊙γ(β)

, (A.3)

H← H⊙

(
⟨G⊙V ⊙ V̂⊙(β−2),Q ◦W⟩{1,2},{1,2} +∇−

Hλ(H)

⟨G⊙ V̂⊙(β−1),Q ◦W⟩{1,2},{1,2} +∇+
Hλ(H)

)⊙γ(β)

, (A.4)

where ∇Hλ(H) = ∇+
Hλ(H) − ∇−

Hλ(H), both ⊙ and / denote element-wise calculations,
A ◦ B denotes A × F × K tensor with elements aakbfk when A and B are A × K and
F ×K [53], and ⟨A,B⟩{C},{D} denotes a contracted product [6]. Setting parameter γ to
the proper value guarantees that the cost function decreases monotonically when ξaft = 1
for all the bins and the constraints are zero [28].

2.2 Wiener Filtering

As soon as the approximation of spectrogram V̂ composed of multiple basis elements Q,
W, and H has been completed by NTF, Wiener filtering is followed to extract the target
signal such that

yaft =

∑
k∈Ktar

qakwfkhkt

v̂aft
xaft , (A.5)

where Ktar denotes the collection of bases considered as the target group. xaft and yaft
denote STFT of input audio signal and the separated target signal, respectively. It should
be noted that the more sophisticated method called multichannel Wiener filter employing
spatial covariance matrices is known to give a better performance in more complex mixing
scenario [103, 104].

3 Incorporation of Spatial Cues
We devised two ways of incorporating a spatial cue. Fig. A.1 shows a two-dimensional
representation of a channel matrix, Q, for 2ch-stereo signals. The small arrows represent
the basis elements of the channel matrix. Their positions depend on the values for each
channel: for example, the basis element qk = [0.5, 0.5]T means that the source is coming
from the center, and the basis element qk = [0.9, 0.1]T means that the source is closer to
the left channel. It can be represented more intuitively by the following equation,
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Spatial Cue

Left Right

[idea1] PARAFAC-NTF

Spatial Cue

Left Right

[idea2] fixed-Q NTF

Spatial Cue

Proposed method

Left Right

kq

Leftmost
Source

Rightmost 
Source

Fig. A.1. two-dimensional representation of a channel matrix Q. Three different solutions
incorporating NTF.

←−
Qk = 2 tan−1

(
q1,k
q0,k

)δ

, (A.6)

where δ = 1.0 when magnitude spectrums are used as an input of NTF and δ = 0.5

for power spectrums.
←−
Q denotes the angles of the arrows in radians clockwise from

the horizontal axis in Fig. A.1. The big arrow indicates a spatial cue that is specified
independently from outside. It is totally independent of the positions of the small arrows

at this moment, and it is given in the same format as the elements of
←−
Q , specifically called←−

Q sc. However, it should be noted that these arrows serve only for visualization purposes
and are different from the azimuth angles in the real world.

Idea 1 (Fig. A.1, left) applies standard PARAFAC-NTF to audio signals. Factorization
produces the channel matrix, Q, the elements of which will be linked to the spatial cue
at the end of the process. This may, however, pose a problem when the spatial cue is far
from the basis element candidates (Fig. A.1, left). Interpolation between the two groups
(three arrows on the left and three arrows on the right) in another space might not be
helpful in creating sound in the direction of the spatial cue. However, idea 1 yields good
performance when the spatial cue and the basis element candidates are sufficiently close
to each other. We call idea 1 PARAFAC-NTF (p-NTF).

In idea 2 (Fig. A.1, center), the basis elements of the channel matrix, Q, are evenly
spaced before the start of the NTF process. The directions remain fixed throughout the
process while matrix W and matrix H are trained by means of NTF update rules. The
basis elements located at both sides of the spatial cue are selected as target elements. We
call idea 2 fixed-Q NTF (f-NTF), and each direction is numbered with a direction index,
o, ranging from 0 to O − 1.

Fig. A.2 shows block diagrams of two different solutions. The big difference that can
be observed in this figure is that in p-NTF, the spatial cue cannot be passed to the
NTF process, whereas in f-NTF it is, which allows NTF to take advantage of spatial
information. Two things make idea 2 worth focusing on: the computational efficiency,
since the channel matrix, Q, does not have to be updated thanks to spatial information
provided from a spatial cue; and the potential improvement in quality due to the prior
knowledge provided by the spatial cue.

The next section presents more details and a variant of the f-NTF method that is called
spatial cue (sc-NTF).
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Fig. A.2. Block diagrams of two different solutions. Block diagrams for two different
solutions using NTF.

4 Model and Derivation of Update Rules

4.1 Choice of Divergence

As mentioned in Sec. 2.1, three settings of the β-divergence are commonly used for NMF
and NTF: Euclidean distance (β = 2), KL divergence (β = 1), and Itakura–Saito (IS)
divergence (β = 0). Their differences were investigated by C. Févotte [27]. One important
characteristic of the IS divergence that is not shared with the two other types of divergence
is that the absolute scale of given audio does not affect the total cost of the divergence.
That is, the unnoticeably small spectrogram bins can be approximated as well as the
dominant bins. We assume that IS-NTF is thus more appropriate when a relatively
small signal might come from a direction close to that of the spatial cue. However,
this assumption is probably true only when there is little ambient noise [63]. Thus,
we selected IS-NTF for our initial experiments and used noise-free input signals, such
as commercial music. Another motivation for employing IS divergence comes from a
statistical perspective. It has been shown that the ML estimation of a sum of complex
Gaussian components representing for each spectral bin is equivalent to minimizing IS
divergence between the ideal and estimated power spectrograms [20]. While there are
clear advantages of the IS divergence, IS-NTF suffers from the fact that it is more often
caught in local minima.

The simplest solution to this problem might be to perform a number of training runs
and then select the best results from among them. Another approach to mitigating this
effect is tempering NTF by changing the type of divergence during the iterations [105].
For example, the training could start with EUC-NTF (NTF based on Euclidean distance),
which is relatively robust with regard to local minima, and finish up with IS-NTF, which
produces better results. This would require that developers carefully control β, and more
iterations than usual would probably be needed.

4.2 Initialization of Channel Matrix

The initialization of channel matrix, Q, is based on the understanding of the matrix Q
explained in Section 3.
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Fig. A.3. Histogram of
←−
B of the three-source mixture. Three peaks are observed.

←−
B ft = 2 tan−1

(
v1,ft
v0,ft

)δ

, (A.7)

where v0,ft and v1,ft are the spectrogram bins for the left and right channels, respectively.
This feature concerns the arrows in Fig. A.1 and their relationships to each spectrogram
bin. It is possible to determine the locations of sources with respect to the bins by

searching for the peaks in the histogram of
←−
B (Fig. A.3), which represents the dominant

presence of the sources. The basis elements are preferentially allocated by initializing

channel matrix, Q, based on the histogram of
←−
B : More elements are allocated to directions

where sources are likely to exist, although some are allocated to cover all directions.

Fig. A.3 shows the histogram of
←−
B calculated from a mixture of three audio instruments

placed in different positions. The length of arrows corresponds to a frequency of each
bin. As we can see the arrows in three directions in the histogram, it is highly likely that
sources exist at 50◦ to 60◦, 90◦ to 100◦, and 110◦ to 120◦. However, the allocation of
basis elements to the left of the leftmost peak and to the right of the rightmost peak is
not required since the superposition of the sources never appears outside of these peaks.
It is therefore preferable to allocate basis elements inside the range spanned by the left

and rightmost peaks that exist in the measured histogram of
←−
B , as can be seen in the

right image of Fig. A.1.

4.3 Initialization of Frequency Matrix and Time Matrix

Initialization of frequency matrix, W, and time matrix, H, is simply carried out by taking
advantage of information of the histogram such that

wfk =
1

NGrp(o)A

∑
a

∑
t∈Grp(o)

vaft f, t, k ∈ Grp(o), (A.8)
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hkt =
1

NGrp(o)A

∑
a

∑
f∈Grp(o)

vaft f, t, k ∈ Grp(o), (A.9)

where NGrp(o) denotes the frequency per bin of the histogram, and Grp(o) denotes the
collection of bases allocated to the direction with the index o. Normalization of the
matrices follows for the purpose of concentrating the energy of input tensor V into H.

Qk = Qk/|Qk|1, Wk = Wk/|Wk|1,Hk = |Qk|1|Wk|1Hk, (A.10)

eo =
∑
o

∑
k∈Grp(o)

|Hk|1, (A.11)

where | · |1 denotes the l1-norm, and eo denotes the directional energy associated with the
direction index o.

4.4 Weighting Function

Since the spatial cue indicates which direction should be given preference, and since the

histogram of
←−
B indicates which source is dominant for a given direction, it is possible

to approximate the spectrogram bin associated with the spatial cue more precisely than
other bins. This is easy to accomplish by using the proper weighting tensor, G, in the
cost function:

ξaft = exp

(
−Ψ

O

∣∣∣∣∣
←−
Q sc −

←−
Qk

∆
←−
Q

∣∣∣∣∣
)

f, t, k ∈ Grp(o), (A.12)

where Ψ determines the shape of the exponential function. Fig. A.4 changes the weighting

parameter Ψ and
←−
Qk that creates different shapes while forcing

←−
Q sc to point toward 100◦.

The weighting values of different Ψ when
←−
Qk = 72 are accentuated with markers. When

Ψ equals 0, all the weights for bin-wise cost functions become 1, which boils down the
update rules of sc-NTF described in Sec. 2.1 to those used for PARAFAC-NTF.

4.5 Constraints

The energy for each direction should be estimated by adding all the basis elements in
matrix H over time, equal to the procedure done by (A.11). The estimated energy is
fixed so that it can be used as a reference to constrain the energy distribution of the
estimated tensor. This should reduce the likelihood of being trapped in local minima.
Here, we again use the IS divergence to measure distance. The constraint on energy in a
given direction is

λ(v̂aft) = µ

O−1∑
o=0

DIS

( ∑
aft∈Grp(o)

vaft

∣∣∣∣∣ ∑
aft∈Grp(o)

v̂aft

)
. (A.13)

By taking into account the normalization procedure in (A.10), the equation can be
boiled down to

λ(H) = µ

O−1∑
o=0

DIS

(
eo

∣∣∣∣∣ ∑
k∈Grp(o)

|Hk|1

)
, (A.14)

s.t. Qk = Qk/|Qk|1, Wk = Wk/|Wk|1,Hk = |Qk|1|Wk|1Hk.
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Fig. A.4. Spatial representation of the weighting function, G. The weighting function
controlled its shape by the weighting parameter Ψ. Three different shapes are

shown when
←−
Qsc = 100.

For IS-NTF, the following should hold for the derivative of the constraint:

∇λ(hk) =
µ

eo
−
µ
∑

k∈Grp(o) |Hk|1
(eo)2

. (A.15)

5 Evaluation

5.1 Separation Quality

BSS Eval of MATLAB was used to evaluate the above method. It gives three standard
metrics for source separation: signal-to-distortion ratio (SDR), signal-to-interference ra-
tio (SIR), and signal-to-artifact ratio (SAR) [89]. SDR is a global measure of the quality
of source separation that encompasses the two other metrics, SIR indicates how well the
target source is separated from interference, and SAR indicates how well the target source
retains sound quality after separation. sc-NTF was compared with p-NTF and f-NTF.
2ch-stereo signals were obtained from the ‘Signal Separation Evaluation Campaign’ Web
site (SiSEC 2008 [90]). More specifically, we used development data from the underde-
termined speech and music mixture task. These 2ch-stereo sources contain a number of
instruments placed independently in a two-dimensional field. The ground truth registered

in a similar format as
←−
Q was also obtained from SiSEC 2008. It gives the location of each

instrument.
For f-NTF, after separation is conducted, the basis elements pointing in a direction

close to the ground truth are selected to be separated out. In contrast, p-NTF requires
grouping after training. This difference can be seen in Fig. A.2. Our experiments on two
grouping algorithms, k -means and k -nearest neighbor, to the ground truth showed that
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Fig. A.5. Test results of different shapes of the weighting function. Overall results of
different settings of Ψ is shown, from 0.9 to 7.2.

the latter yielded better results. The number of centroids is determined according to the
number of basis components.

On the other hand, for sc-NTF, the bases are selected beforehand due to the link estab-
lished between the allocated basis elements and the spatial cue. Resynthesis is followed
by Wiener filtering to create the output signals used for evaluation (1,024-point FFT, half
overlap, the number of the basis elements K = 90, and the number of directions O = 18).
Tests were run 10 times to obtain an average, indicated by a bar, and 95% confidence,
indicated by a line on top of the bar. This test was almost exactly the same as the one
described by Févotte et al. in their 2011 paper [53]. The only difference was in the number
of bases: They used K = 9 and we used K = 90 . γ in the cost function was set to 1.
We obtained better results when Ψ = 3.6 for the weighting tensor G and µ = 300 for the
constraint. More details with results using different settings of Ψ can be found in Fig. A.5.

Fig. A.6 shows test results for harmonic sound (nodrums), and Fig. A.7 shows results
for percussive sound (wdrums). Most of the results show that sc-NTF outperforms both
f-NTF and p-NTF. It is important to note that these results were obtained by sacrificing
the accuracy of approximation of sources far from the spatial cue. This can be deduced
from the final value of the cost function. Table A.1 shows the IS divergence per bin for
four methods including sc-NTF without the weighting function G. sc-NTF using the
weighting function produces worse results than p-NTF and sc-NTF without the weighting
function in terms of approximation, due to the lesser weights of the broad range and
the more weights of the relatively narrow target direction. The 95% confidence for both
p-NTF and sc-NTF indicates that local minima were avoided. There is a large variance
only in the results for f-NTF, which means that the proposed method helps to avoid being
trapped in local minima.
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Fig. A.6. Test results for harmonic sound. Dataset nodrums. Mixture of three different
instruments: bass, lead guitar, and second lead guitar.

Table A.1. Comparison of convergence

f-NTF sc-NTF (w/o G) sc-NTF p-NTF
IS divergence per bin 0.19300 0.16759 0.18300 0.16857

Itakura–Saito divergence per bin after 200 iterations.

5.2 Computational Cost

As mentioned earlier, the omission of the calculation of the channel matrix Q should
be a great advantage for sc-NTF. A simple experiment was conducted by measuring the
runtime on an Intel Core i7 (2.80 GHz) processor for three NTF methods implemented
in MATLAB code. It should be noted that the code was not particularly optimized by
incorporating external libraries written in, for instance, C language. Instead, the built-
in functions automatically provided by MATLAB, such as division and log functions,
were used. The conditions of the experiment were the same as those for the quality
evaluation described in Sec. 5.1 (the number of channels A = 2, the number of frequency
bins F = 513, and the number of frames T = 314). Fig. A.8 shows that p-NTF takes
almost four times as much computational power as the other NTF methods. Although
sc-NTF requires initialization involving division, inverse tangents, and calculation of the
histogram, the runtime is only slightly longer than that of f-NTF. Since the size of each
matrix is different due to the required resolution, the computational power needed to
update each matrix is not the same. Each matrix needs at least two contracted products
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Fig. A.7. Test results for percussive sound. Dataset wdrums. Mixture of three different
instruments: hi-hat, drums, and bass.

and single division: 2 × F × T + A ×K for the channel matrix, 2 × A × T + F ×K for
the frequency matrix, and 2 × A × F + T × K for the time matrix. Thus, the results
should depend on the numbers of occurrences of A, F , T , and K. In most cases, A << F
or T , which means that updating will probably take longer for the channel matrix, Q,
than for the other two matrices. Another important point is that the burden of the built-
in functions depends on the features of the LSI used to implement the NTF: Division
generally needs a couple of instructions, but multiplication and addition usually need
only one.

5.3 Comparison with DUET

An evaluation that compares sc-NTF with DUET has been carried out. Since a number
of evolved versions of DUET have been proposed, we employed one of the most straight-
forward extensions of DUET called Multiple Sensor DUET (MENUET) [8]. Although the
framework of MENUET requires the number of sources for the clustering at the end of
the process, it is usually unknown in real world, particularly in applications such as Sound
Zoom. Instead of providing the number of sources, which can be regarded as providing
another piece of prior knowledge, we incorporated a spatial cue in the DUET system so
that the closest centroid to the spatial cue can be extracted as a target centroid. The
number of centroids is set to 18 to fully cover all the azimuths. Fig. A.6 and A.7 show
the comparison results between two different source separation techniques. In particular,
the results of the two guitars give us a deep insight such that MENUET performs better
than sc-NTF when separating such signals that have similar frequency characteristics, on
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Fig. A.8. Comparison of computational cost. Runtime test for the three different NTFs.
The runtime of sc-NTF includes the calculation of initialization, weighting func-
tion, and constraints.

the condition that the two sources are not coming from the same directions. The worse
results of sc-NTF may be attributed to the nature of NTF that greedily exploits not only
spatial information, but also TF information for the approximation of the cost function.
On the other hand, sc-NTF performs better in the case of separating the two percussions
in spite of the close positions of the two instruments. This is due to the capability of NMF
to capture repetitive structures of signals. Computational costs of MENUET can be seen
in Fig. A.8. The number of iterations for clustering in MENUET is 30.

6 Conclusion
We developed a new method of enhancing NTF performance by introducing weights on
the NTF cost function, which is achieved by incorporating a spatial cue into the system.
Two ways of incorporating a spatial cue into an NTF framework were devised. The one
that employs a fixed channel matrix, Q, was further developed to improve the separation

quality. The association of the spatial cue with the histogram of
←−
B clarifies which spec-

trogram bins should be given preference to obtain a better approximation. An evaluation
of separation quality, which was carried out as in previous studies, demonstrated the effec-
tiveness of the weighting tensor, G, and the energy constraints. In addition, the omission
of the calculation of Q was a great advantage in the runtime test. In short, our algorithm
combines the computational cost of f-NTF with the separation quality of p-NTF. sc-NTF
also showed competitive results against the variant of the DUET algorithm.


