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Abstract

In this thesis, we use shrinkage priors to obtain good Bayesian procedures for various statisti-
cal problems. In the first half of the thesis, we mainly use hierarchical priors constructed by
assuming hyperpriors for global hyperparameters in order to prove domination results. In the
second half of the thesis, properties of hyperpriors for local hyperparameters are analytically in-
vestigated in terms of shrinkage and robustness, improved numerical performance of global-local
shrinkage priors is shown in simulation and empirical studies, and some results for Bayesian
robust regression are also obtained.

In Part II of the thesis, we first consider in Chapter 2 the problems of estimating unknown
parameters and predictive densities on the basis of observations of Poisson variables. Then, in
Chapters 3 and 4, similar problems are treated in the negative multinomial case. Finally, in
Chapter 5, we consider the prediction problem on the basis of Chi-squared and normal samples
where the predictive density to be estimated is independent of the location parameter.

In Chapters 6 and 7 of Part III, we introduce classes of heavy-tailed distributions and inves-
tigate shrinkage and tail-robustness properties of corresponding Bayesian methods both analyt-
ically and numerically in the Poisson and normal cases. In Chapter 8 of Part III, the usefulness
of our heavy-tailed distributions is further illustrated in the context of robust regression.
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Chapter 1

Introduction

In this thesis, we take Bayesian shrinkage approaches to statistical inference for various para-
metric models and consider combining observed data with prior information or beliefs to obtain
good estimators, predictive distributions, or, more generally, decisions which are superior to
those based on the direct use of data from some theoretical and/or practical points of view.
Theoretical aspects of classical shrinkage techniques are discussed for several models in Part
IT of the thesis, where Bayesian shrinkage estimators and predictive density estimators are de-
rived and shown to have improved frequentist risk performance. In particular, we study Stein’s
phenomenon and prove that usual procedures are dominated by Bayesian shrinkage procedures
under suitable conditions. Although Stein’s phenomenon has been extensively investigated since
Stein (1956) and many related problems have been considered for nonnormal and predictive mod-
els since Clevenson and Zidek (1975) and Komaki (2001), respectively, important new results are
included in each chapter. Part III of the thesis treats more practical aspects as well. We propose
classes of useful global-local shrinkage priors (Polson and Scott (2012a)) which have desirable
properties in combining observed and prior information in possibly high-dimensional settings.
The local priors are heavy-tailed distributions and the resulting estimators behave in such a way
that small signals are shrunk toward prior means while large signals are kept unshrunk (tail
robustness, Carvalho et al. (2010)). The usefulness of our heavy-tailed distributions is further
illustrated in the context of robust regression.

The contents of Parts II and III can be considered as complementary to each other in terms of
investigating the effects of global and local shrinkage. Let f(z|0), x € X, be a likelihood function
and 7(0|A), @ € O, be a conjugate prior with hyperparameter A € A, where X’ is the sample
space and O is the parameter space. Suppose that Xi,...,X,, are independent observations
from f(x1]01),..., f(zm|Om), 1, ., &m € X, b1,...,0,, € O, and consider using a joint prior
of the form

(01, 0m) ~ m(01|A1y) - 7T (Om| A7),
()\17 o 7)\m) ~ wlocal()\l) . ‘¢106&1(Am)7 Ay~ wglobal(,y)’

where A1, ..., A, and v are local and global hyperparameters with hyperpriors 11°@/(\), ..., 41 (\,,)
and ¢8°P3(y) and satisfy A17,..., Ay € A. In Part II of the thesis, we fix Aj,..., A\, and use
the marginal joint prior of 01, ..., 6, based on ¥8°P# (). On the other hand, in Chapters 6 and
7 of Part III, we first investigate the properties of 11°@\(\y), ... '@ (),.) analytically when ~
is fixed and then investigate the numerical performance of the global-local shrinkage prior when



Al .., Am and y are not fixed.
Part II of the thesis is organized as follows.

e Chapter 2: Bayesian Point Estimators and Predictive Density Estimators Based on Poisson
Observations

In this chapter, we consider the problem of simultaneously estimating parameters of inde-
pendent Poisson distributions in the presence of possibly unbalanced sample sizes under
weighted standardized squared error loss. A class of heterogeneous Bayesian shrinkage es-
timators that utilize the unbalanced nature of sample sizes is proposed. To provide a the-
oretical justification, we first derive a necessary and sufficient condition for an estimator in
the class to be proper Bayes and hence admissible and then obtain sufficient conditions for
minimaxity that are compatible with the admissibility condition. Heterogeneous and ho-
mogeneous shrinkage estimators are compared by simulation. Several estimation methods
are applied to data relating to the standardized mortality ratio. Finally, some extensions
are considered. This chapter is based on Hamura and Kubokawa (2019b, 2020c).

e Chapter 3: Bayesian Shrinkage Estimation of Negative Multinomial Parameter Vectors

The negative multinomial distribution is a multivariate generalization of the negative bi-
nomial distribution. In this chapter, we consider the problem of estimating an unknown
matrix of probabilities on the basis of observations of negative multinomial variables under
the standardized squared error loss. First, a general sufficient condition for a shrinkage
estimator to dominate the UMVU estimator is derived and an empirical Bayes estimator
satisfying the condition is constructed. Next, a hierarchical shrinkage prior is introduced,
an associated Bayes estimator is shown to dominate the UMV U estimator under some con-
ditions, and some remarks about posterior computation are presented. Finally, shrinkage
estimators and the UMVU estimator are compared by simulation. This chapter is based
on Hamura and Kubokawa (2020b).

e Chapter 4: Bayesian Shrinkage Approaches to Unbalanced Problems of Estimation and
Prediction on the Basis of Negative Multinomial Samples

In this chapter, we treat estimation and prediction problems where negative multinomial
variables are observed and in particular consider unbalanced settings. First, the problem
of estimating multiple negative multinomial parameter vectors under the standardized
squared error loss is treated and a new empirical Bayes estimator which dominates the
UMVU estimator under suitable conditions is derived. Second, we consider estimation
of the joint predictive density of several multinomial tables under the Kullback-Leibler
divergence and obtain a sufficient condition under which the Bayesian predictive density
with respect to a hierarchical shrinkage prior dominates the Bayesian predictive density
with respect to the Jeffreys prior. Third, our proposed Bayesian estimator and predictive
density give risk improvements in simulations. Finally, the problem of estimating the joint
predictive density of negative multinomial variables is discussed. This chapter is based on
Hamura (2020).

e Chapter 5: Bayesian Predictive Density Estimation for a Chi-Squared Model Using Infor-
mation from a Normal Observation with Unknown Mean and Variance

In this chapter, we consider the problem of estimating the density function of a Chi-squared
variable on the basis of observations of another Chi-squared variable and a normal variable



under the Kullback-Leibler divergence. We assume that these variables have a common
unknown scale parameter and that the mean of the normal variable is also unknown.
We compare the risk functions of two Bayesian predictive densities: one with respect
to a hierarchical shrinkage prior and the other based on a noninformative prior. The
hierarchical Bayesian predictive density depends on the normal variable while the Bayesian
predictive density based on the noninformative prior does not. Sufficient conditions for
the former to dominate the latter are obtained. These predictive densities are compared
by simulation. This chapter is based on Hamura and Kubokawa (2020d).

Part III of the thesis is organized as follows.

e Chapter 6: On Global-Local Shrinkage Priors for Count Data

Global-local shrinkage prior has been recognized as useful class of priors which can strongly
shrink small signals towards prior means while keeping large signals unshrunk. Although
such priors have been extensively discussed under Gaussian responses, we intensively en-
counter count responses in practice in which the previous knowledge of global-local shrink-
age priors cannot be directly imported. In this chapter, we discuss global-local shrinkage
priors for analyzing sequence of counts. We provide sufficient conditions under which the
posterior mean keeps the observation as it is for very large signals, known as tail robustness
property. Then, we propose tractable priors to meet the derived conditions approximately
or exactly and develop an efficient posterior computation algorithm for Bayesian inference.
The proposed methods are free from tuning parameters, that is, all the hyperparameters
are automatically estimated based on the data. We demonstrate the proposed methods
through simulation and an application to a real dataset. This chapter is based on Hamura,
Irie and Sugasawa (2020a).

e Chapter 7: Shrinkage with Robustness: Log-Adjusted Priors for Sparse Signals

We introduce a new class of distributions named log-adjusted shrinkage priors for the
analysis of sparse signals, which extends the three parameter beta priors by multiplying an
additional log-term to their densities. The proposed prior has density tails that are heavier
than even those of the Cauchy distribution and realizes the tail-robustness of the Bayes
estimator, while keeping the strong shrinkage effect on noises. We verify this property
via the improved posterior mean squared errors in the tail. An integral representation
with latent variables for the new density is available and enables fast and simple Gibbs
samplers for the full posterior analysis. Our log-adjusted prior is significantly different
from existing shrinkage priors with logarithms for allowing its further generalization by
multiple log-terms in the density. The performance of the proposed priors is investigated
through simulation studies and data analysis. This chapter is based on Hamura, Irie and
Sugasawa (2020b).

e Chapter 8: Log-Regularly Varying Scale Mixture of Normals for Robust Regression

Linear regression with the classical normality assumption for the error distribution may
lead to an undesirable posterior inference of regression coefficients due to the potential
outliers. This chapter considers the finite mixture of two components with thin and heavy
tails as the error distribution, which has been routinely employed in applied statistics. For
the heavily-tailed component, we introduce the novel class of distributions; their densities
are log-regularly varying and have heavier tails than those of Cauchy distribution, yet



they are expressed as a scale mixture of normal distributions and enable the efficient
posterior inference by Gibbs sampler. We prove the robustness to outliers of the posterior
distributions under the proposed models with a minimal set of assumptions, which justifies
the use of shrinkage priors with unbounded densities for the high-dimensional coefficient
vector in the presence of outliers. The extensive comparison with the existing methods
via simulation study shows the improved performance of our model in point and interval
estimation, as well as its computational efficiency. Further, we confirm the posterior
robustness of our method in the empirical study with the shrinkage priors for regression
coefficients. This chapter is based on Hamura, Irie and Sugasawa (2020c).

Some concluding remarks are given in Chapter 9. In particular, the results and contribution
of the thesis are summarized.

10



Part 11

Decision-Theoretic Estimation and
Prediction Problems
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Chapter 2

Bayesian Point Estimators and
Predictive Density Estimators Based
on Poisson Observations

2.1 Introduction

Since the work of Clevenson and Zidek (1975), simultaneous estimation of parameters of inde-
pendent Poisson distributions has been studied by many authors including Tsui (1979a), Tsui
and Press (1982), Hwang (1982), and Chang and Shinozaki (2019). However, most of the ex-
isting work either concerns with the case of balanced sample sizes or deals with estimators in
the unbalanced case which do not utilize the fact that the sample sizes are unbalanced. In
this chapter, we consider the estimation problem in the case of unbalanced sample sizes and
construct shrinkage estimators whose shrinkage factors reflect the fact that the sample sizes are
unbalanced.

Suppose that Xi,...,X,, are mutually independent Poisson random variables with means
N1AL, - -+, N Am, respectively, and that X = (A,..., Ay) € (0,00)™ is the unknown parameter
while nq,...,n,, are positive known constants. This situation arises, for example, when for
each ¢ = 1,...,m, the observation X; is the sum of n;(€ N) random sample from the Poisson
distribution with mean );. An example where nq,...,ny, are positive (possibly noninteger)
real numbers is given in Komaki (2015). We treat the problem of estimating A on the basis of
X =(X1,...,Xm).

In the balanced case with ny = --- = n,, = 1, the model becomes equivalent to that
considered by Clevenson and Zidek (1975). When n; = --- = n,, = 1, for the avoidance of
confusion, we use the different notation X, = Xq,... ,)o(m = X,;,. Then, they showed that the
estimator

(1 Bo+m—1

B Zm X"i‘ﬁO‘i‘m—l)(Xl"”’Xm) (211)
i=1“*1

is admissible for 1 < 8y and minimax for m > 2 and 0 < By < m — 1 relative to the loss function

Sty (di = Mi)? /.

12



Using their result, we can readily verify that the estimator

Bo+m—1 X1 Xm
1— )( —) 92.1.2
( Yo Xi+ o +m—1 N, ( )
dominates the ML estimator (X1/n1,..., Xmn/nm) if m > 2 and 0 < 5y < m — 1 under the loss
m ng
—(d; — \i) 2.1.
; y (2.1.3)

However, the estimator given by (2.1.2) is not necessarily a natural shrinkage estimator from a
practical point of view because the shrinkage factor 1 — (8o +m —1)/(3°" Xi + Bo + m — 1)
is common to all the samples irrespective of n = (ni1,...,n,). In many applications, one of
the purposes of using shrinkage estimators is to reduce the instability of ML estimators. In
the present setting, for all 4,5 = 1,...,m such that n; < n;, the ML estimator X;/n; tends
to be more unstable than X;/n; since the variance of X;/n; is approximately n;/n; times the
variance of X;/n; if A; = X;. In addition, for each i = 1,...,m, the sample size n; can be
interpreted as representing the amount of information the observation X; contains about the
unknown parameter \;. Thus, it seems reasonable to use a shrinkage estimator such that it
shrinks the ML estimator X;/n; more toward the origin than X,;/n; for all 4,5 =1,...,m such
that n; < n;. Furthermore, it turns out in Section 2.2 that the estimator given by (2.1.2) with
m > 2 and By > 0 is the Bayes estimator with respect to a perhaps unnatural shrinkage prior
which depends on n and puts less weight on the smaller values of \; than on the smaller values
of \j for all 4,5 = 1,...,m such that n; < n;.
In this chapter, we consider the class of heterogeneous shrinkage estimators

X1

({1—¢1( ) -,{l—gbm(X)}iZ’), (2.1.4)

where the functions ¢1,...,¢n: {0,1,2,...}™ — [0, 1] satisfy that ¢;(x) > ¢;(x) for all x =

(1,...,2m) €{0,1,2,...}™ and i,j = 1,...,m such that z;,z; > 1 and n; < n;. We evaluate
estimators under the weighted standardized squared loss function given by

= ii(di — )2 (2.1.5)

<

i=1
where ¢ = (c1,...,¢m) € (0,00)™ is a vector of weights possibly different form n and where
d=(di,...,dy) denotes a m-dimensional vector. For a discussion of the estimation of normal

means in the presence of unequal weights as well as unequal variances, see Morris (1983).

Hamura and Kubokawa (2019b) constructed shrinkage estimators of the form (2.1.4) by
using a class of improper priors introduced by Komaki (2015). However, they did not prove the
admissibility of the estimators. In this chapter, we introduce a class of priors which includes
both the proper priors of Clevenson and Zidek (1975) and the improper priors of Komaki (2015),
construct proper Bayes estimators of the form (2.1.4), and derive sufficient conditions for the
estimators to be minimax. The results for proper prior distributions are not straightforward
generalizations of those for improper prior distributions. The main contribution of this chapter
is to construct Bayes estimators of the form (2.1.4) which are both admissible and minimax.

13



In Section 2.2, we introduce the class of priors mentioned above, derive a necessary and
sufficient condition for a prior in the class to be proper, and express the corresponding Bayes
estimators explicitly. In Section 2.3, we derive sufficient conditions for minimaxity. In Section
2.4, some Monte Carlo evidence is presented. In Section 2.5, we treat real data. In Section 2.6,
we consider some extensions. All the proofs of the lemmas in Sections 2.2 and 2.3 are given in
the Appendix.

2.2 A Class of Bayes Estimators

We begin by providing a class of priors which includes the priors of both Clevenson and Zidek
(1975) and Komaki (2015). Let

()\) Hm ) )\ Bi—1 /oo w1450 P ( )
- . _ ﬁ 2 — eiu U 2.2.1
BY:Bo0 O N/v)* Joo (w/vo + Doy Ni/vi)Po

fOI' a > O) ﬁ = (/Blw"uﬂm) € (0,00)m, Y= (’Yl,--w’Ym) S (07oo)m) /BO Z 07 a‘nd Yo > 0 By
making the change of variables v’ = u/(3""; Xi/7:), we can write (2.2.1) as

Tast) [T usr o
a,8,~; A) = < AT )/ e ea=1 iy, 2.2.2

The class of priors of Clevenson and Zidek (1975) is expressed as

A 1 &0 u™m—2+Po —uy 0o
Trm—l,j,j;ﬁo,l( )_ (ZZTZI Al)ml/o (U+Zg1 )\i)ﬁoe u, ( . 3)

where j = (1,...,1) € R™, when m > 2 or p > 0. The prior (2.2.3) is proper if 5y > 1, as
shown by Clevenson and Zidek (1975). On the other hand, the class of priors of Komaki (2015)
is described by
Taproa(N) T A0
ING)) (i Ai/i)*

This prior is improper for all values of a;, 3, and ~, which can be verified by, for example, Lemma
2.2.1 below.

The following lemma gives a necessary and sufficient condition for the prior 7, g ~:8y,v, t0

be proper. Let 8. = >, Bi.

Lemma 2.2.1 The prior ma g ~:8,, Satisfies

//(0 | T (NdA < o

if and only if a < B. < a+ fy.

Next we derive an explicit form of the Bayes estimator against the prior 7, g~:5,,,- L0 this
end, we define

a—1 m

[e'¢) U 1

14



for & = (&,...,&m) € [0,00)™ such that Sp + > " & > a. This function is a generalization
of the function given by Komaki (2015) which generalizes the beta function. Indeed, when
Yo="71="""= Ym, We have

K(v,& a7, Bo) = 10" Bla, o + & — a) (2.2.4)

for & =", &. The function K satisfies the following properties. Let e; denote the i-th unit
vector in R, namely the i-th row of the m x m identity matrix, for ¢ =1,..., m.

Lemma 2.2.2 The following relations hold.

(i)
QK(77€7Q;70a ﬁO) = i:K(’Y?&) a+ 1;’707/80 + 1)
m e (2.2.5)
+Z;Z‘K(%€+€z’,0&+1;%,ﬁo)'
i=1 "
(ii) Fori=1,...,m,
K(v,€ +ei,a+ 1,7, Bo) = vl K(v,&, a5, Bo) — K(v,§ + e, a;70, 5o) }- (2.2.6)

For the case of By = 0, the relations (2.2.5) and (2.2.6) are given in Lemma 5 of Komaki (2015).

The following lemma gives some more properties of the function K and is crucial in Section
2.3 when we prove the existence of a heterogeneous shrinkage estimator which is both admissible
and minimax.

Lemma 2.2.3 Suppose that o < o + Y i1 & — 1. Then the following inequalities hold.
(i) Fori=1,...,m,

K(7’£7a+1;70750) K(77E+eiva+1;70750)

> 2.2.7
K(77£ - ei7a;7()aﬂ0) K(’Y,S,Oé;’YO,/BO) ( )
Similarly,
K(77€7a+1;70760)>K(77£7a+1;70a60+1) (228)
K(77£704;’70760 - 1) B K(7>€7a;70160)
(il) Fori=1,...,m,
K(77£+ei7a+2;707/80) > K(’Y,S,Oé+ ]-;’YO?/BO) K(7,£+€i,a+ 1;70760) (2 9 9)
K(77€7a;707ﬂ0) - K(’Yagaa;/70760) K(77€7a;fy07/60)
Similarly,
K(7,£,O&+2;’}/0760+1) > K(W?Saa_‘_ 1;’70750) K(77£>a+ 1;705ﬁ0+ 1) (2 92 10)
K(W)Saa;’YOaBO) B K(Waéva;’)@aﬁo) K(ﬁy’éaa;/y()aﬁ())

15



For v = (v1,...,vp) € R™ and © = (01,...,0m) € R™, we write v o © = (v101, ..., Un0m).
Let No = {0,1,2,...}. For @ = (z1,...,2m) € Ng™ and i = 1,..., m, we define

¢(a,ﬁ77;ﬂ07’70)(w)

B { 1 K(novy,x+8,a45o+1;70,50) if z; + 3; > 1 and Z;'n:l(xj —+ ﬂj> >a+1

n;v; K(novy,z+B—e;,a+B0;v0,50)
1 otherwise.

The following lemma gives an explicit form of the Bayes estimator based on 74 g ~:8,,0-

Lemma 2.2.4 Suppose o < .. Then the estimator /A\(aﬁm’go’%) defined by
@B X -1 . Xm m — 1
(11— gfepmtom ey TE ALy gfepton) (x0TI LY 5 0y)
ni Nm

is the unique Bayes estimator of A on the basis of X against the prior 7, g ~:8,.~, under the loss
function Le given by (2.1.5).

It is worth noting that the Bayes estimator AP0 4o obust in the sense that it does

not depend on c¢. We remark that the estimator with 3 = j shrinks the ML estimator toward
the origin.

Let v = (1/ny,...,1/ny) be the vector whose elements are the reciprocals of the sample
sizes, so that nov = j. Suppose that m > 2. Then the Bayes estimator witha =m—1, 8 = 7,

~ = v, and vy = 1, namely X(m_m’y;ﬂo’l), reduces to (2.1.2) by (2.2.4). Thus, (2.1.2) is the

Bayes estimator against the prior

\ 1 9] umf2+ﬁo “uy
7Tm—17.7'7l/;50,1( ) = (Z;—il ni)\i)m_l /0 (u i Z:’;l ni/\i)ﬁo ¢ -

In the context of shrinkage estimation, however, this choice of prior may be inappropriate since
it depends on n and puts less weight on the smaller values of A; than on the smaller values of
Aj for all 4,7 = 1,...,m such that n; < n;. Indeed, the shrinkage factor of the resulting Bayes
estimator (2.1.2) fails to reflect the fact that the sample size n is unbalanced.

Finally, we propose an estimator of the form (2.1.4) which shrinks the ML estimator X;/n;
more toward the origin than X;/n; for all 4,5 = 1,...,m such that n; < nj. We consider the
case where 3 =+ =j and a <m for j = (1,...,1) € R™. Then the prior is

V= s
Teq 3 A= e “du,
@IFLA T TN S0 (/0 + Sy M)
which is a shrinkage prior symmetric in A,..., A;,. The resulting estimator can be expressed as
(g isfo. .. X . X
)\(a_’) 3:80,70) _ ({1 o gbgﬂé,.?u]ﬁoﬂo)(X)}il’ e {1 _ @%’J’J’BO”YO)(X)}im>, (2212)
ni Nim
where
o 1 Kmz+j,a+Bo+170,80) e ..
¢(a717];ﬂoﬂo)(a}.) — J ni K(nx+j—ei,a+B0i70,80) itz =1 (2.2.13)
! 1 if x; =0
for x = (z1,...,2m) € No™ and @ = 1,...,m. This shrinkage estimator has the following

heterogeneity properties.
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Lemma 2.2.5 Let x = (r1,...,%,) € Ng™ and suppose a < m.
(i) Letie {1,...,m}. Then

O < ¢§a7j7j;50770)($) S 1 (2214)

Equality holds if and only if z; = 0.
(ii) Leti,j € {1,...,m} and suppose x;,x; > 1. Then

¢§a7j7j;ﬂo,70)(w) > ¢§a7j7j;/3oﬁo)(w) if and only if n; < nj. (2.2.15)
(iii) Let i € {1,...,m} and suppose x; > 1. Suppose further that « < m — 2. Then

lim ¢\*73500) () = 0. (2.2.16)
n;—00
In the case where n = j and o+ 1 = m > 2 and 79 = 1, both of the estimators (2.1.2)
and (2.2.12) coincide with the estimator (2.1.1) given by Clevenson and Zidek (1975). However,
we propose the latter as an important generalization of (2.1.1) which satisfies the heterogeneity
properties (2.2.14), (2.2.15), and (2.2.16).

2.3 Saufficient Conditions for Minimaxity
In this section, we derive sufficient conditions for the estimator X(aﬁ,’v;ﬁo,vo) given by (2.2.11)
to be minimax under the loss function L. given by (2.1.5). Since it can be shown that the

~ML N ~
ML estimator A = (A\ME .. AMLY — (X3 /ng,..., X;n/nm) is the constant risk minimax

N 32575 k) . ’\ML
estimator, it suffices to find conditions under which )\(a B:1iflo10) dominates A . Hereafter, we

restrict our attention to the case of @« < m and 3 = 5 and consider the shrinkage estimator

N 7'7 5 ) 1,7 ‘X 1,7 X
XTI _ (1 eI (X)L 1 gganhan) (X)) ) (230
n1 Nm
where
1 K(mov,x+j,0+Bo+170,80)  ip ..
¢(a,j77;50,70)(m) = { i K(n077fc+j—ei,a(ii-ﬁowooﬂoo) if 2; 2 1
! 1 if 2, =0
forx = (z1,...,2p) €Ng™ and i =1,...,m.

The following result, due to Hudson (1978), is used in the proof of Theorem 2.3.1 below.

Lemma 2.3.1 Let h: Ng™ — R and suppose that Ex[|h(X)|] < co. Then for alli=1,...,m,
if h(x) =0 for all x = (x1,...,2m) € No™ such that z; =0, we have

nloa] =l

For simplicity of notation, we let a; = n;y; and C; = (¢;/n;)(1/a;) = c¢i/(ni®y;) for i =
1,...,m and let a = mini<j<y, a;, @ = Maxi<ij<m a;, C' = mini<j<py, C;, C = maxi<ij<m C;, and
C. = Y ", Ci. The following theorem, which will be proved later in this section, gives two

sufficient conditions for the minimaxity of X(a’gmﬂo’%)_
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Theorem 2.3.1 Assume that o < m and that v < a
(i) Suppose that

a+ By < ;(2—1)(50 ) (2.3.2)

Then the estimator )\( 3 ifoie) is minimaz under the loss Le.

(i) Let p = {C(a+ o+ 1) — C}/{C(a + Bo)}. Suppose that 0 < p <1 — (1/2)(a/a) and
that

C.
(o + 280 + )—§+2%—1. (2.3.3)

\Q\ Ql

2,o<ﬁo+m+ )

< (0.3,7;80,70)

Then the estimator A is minimax under the loss L.

Part (i) of Theorem 2.3.1 is a generalization of Theorem 3 of Hamura and Kubokawa (2019b).
They consider the case of 8y = 0. In this case, the prior is improper by Lemma 2.2.1 but

whenever m > 2, there is always a value of a > 0 that satisfies the sufficient condition (2.3.2)

R 0 . .
for the minimaxity of the estimator )\( 3110.8) . On the other hand, when the prior is proper,

assumption (2.3.2) implies m < (2/3)(C./C — 1)(ﬁ0/m +1) < 2(C./C —1). Therefore, there
exist C, ..., Cy, such that the condition (2.3.2) is violated for any choice of a proper prior. We
can also generalize Theorem 4 of Hamura and Kubokawa (2019b) to obtain another sufficient

condition for the case that C(a+ By + 1) < C.: if a/a > 1/2 and a + By < C./C — 1, then

A(a7j77;B0:’YO) . ..
A is minimax under the loss L.

Ift n = Minj<i<, n; and 7 = maxi<;<m n;. Let C) = ci/ni2 for ¢ = 1,...,m and define
C*, C", and C* analogously. Combining Lemmas 2.2.1, 2.2.4, and 2.2.5 and Theorem 2.3.1, we
obtain the following theorem.

Theorem 2.3.2 Suppose that « < m < a+ By and that 9 < n. Suppose further that one of
the following two conditions holds:

(i)
atm<g(G 1) ().
(ii)
C'a+Bo+1)—C*

C*(a+ Bo)

. 1n (C7/C*)(a+2B+1) = Cr/C* +2n/m — 1
<m1n{1—§i, 2(Bo + m + n/7) }

(7.7.760’7)

Then the estimator A given by (2.2.12) is admissible and minimaz under the loss Le.
Furthermore, for all *x = (z1,...,2m) € No™ and i,j € {1,...,m} such that z;,z; > 1, it
satisfies (2.2.14), (2.2.15), and, if « <m — 2, (2.2.16).
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It can be seen that there exists an admissible minimax shrinkage estimator that satisfies
(2.2.14), (2.2.15), and (2.2.16) by, for example, applying part (i) of Theorem 2.3.2 to the case
where (o, B0,7) = (1,m,n) and m is sufficiently large and C*/C" is sufficiently close to 1.
Furthermore, though the details are omitted here, it can be shown from part (i) of Theorem
2.3.2 that there exists a > 0, Bg > 0, and 7y > 0 such that the conclusion of Theorem 2.3.2
holds if 2 < m < (4/3)(C*/C" — 1). This condition reduces to

k

4/ n
2 < <—( ;—1>
=M= z;nlk

1=

with k¥ = 1 when ¢; = n; and with £ = 2 when ¢; = 1. -

In the particular case of n = ¢ = v = j and 79 = 1, the condition for X(%]’]’BO’VO) to be
admissible and minimax given in part (i) of Theorem 2.3.2 is
2m — 1) 2

a<m<a+fy and a+<1_§T ﬁogg(m—l), (2.3.4)

whereas that given in part (ii) of Theorem 2.3.2 is

a+ﬁo+1—m<a+2ﬁg—m+2

<2(m -1 d .
a<m<a+fy<2(m—1) an ot e S Ty

(2.3.5)

Conditions (2.3.4) and (2.3.5) correspond to (2.3.2) and (2.3.3), respectively. The condition
given by Clevenson and Zidek (1975) is

a=m-—1 and 1< 8y<m-—1.

When m > 2 and o = m — 1, condition (2.3.4) is not satisfied for any values of 5y but condition
(2.3.5) becomes

1< by < (m—l)/3.

Thus, although the result of Clevenson and Zidek (1975) is not completely included, Theorem
2.3.1 or 2.3.2, which was derived for estimating A when n is unbalanced, gives the sufficient
condition which is close to that of Clevenson and Zidek (1975) even in the case of balanced
sample sizes.

<(a,3,7:80,70) ~ML
A

Proof of Theorem 2.3.1. Let A = E)\[L¢( yA)] — Ex[Le(A ,A)]. From (2.3.1),

3= [ [ xR0} ()]

Ai \n;

= Ek[i <% H&¢EO‘7]‘,7;50,%)(X)}2 - 2(&)2¢§0¢7j7’7;50770)(X)}

; niX; LUn; n;

1=

+ QCi%¢(a7j77;50770)(X)>} ’

3 (3
(2
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which is, by application of Lemma 2.3.1,

A= Ek[i ( e [{Xz + 1¢l(a,j,‘>’;ﬂo,’yo)(X + ei)}Q

P X;+1 g
X +1\2 P~ X j Y
B 2(%) ¢§.O"J’7’ﬂ0’%)(X + e»} + 2Ci#¢£a71,7750,70)(x))}.
i K

Therefore, we can write the risk difference as A = E)\[I[1(X) — 2[2(X) + 2I5(X)], where

Il(m):ici(g}—l—l){ 1 K(nO’Y,«’BJFJ'+€i,a+ﬂo+1;70,ﬂo)}2
i=1 i z niYi K(n077m+j7a+60;70760) ’
@) = S B UKoy @ 4 et o+ 1, o)
i=1 n; N7 K(no77m+j7a+ﬁo;707B0) ’
0 ife=0

L) ={x~¢ 7 K(movy,z+ja+ b+ 1;7,5)

- . otherwise,
n;niv; K(no~y,x+ 3 — e, a+ Bo;v0, bo)

i=1
for ¢ = (x1,...,2m) € Ng™". We have I;(0) — 215(0) + 213(0) < 0 since

1 K(n077.7 +61‘,C¥+IBO+ 1;707ﬁ0)
ni%Yy; K(nof)/?jaa +60;70750)

€ [0,1].

Thus, it is sufficient to show that I;(x) — 2Ix(x) + 2I3(x) < 0 for all z € Ny \ {0}.
Fix x = (z1,...,zm) € Ng™ \ {0}. Hereafter, for simplicity, we use the abbreviated notation

I = Il(m)a I, = 12(33)1 I3 = I3($),

I=1—2I+2Is,

K(novy,x+j,a+ Bo+ ¢, o)
K(no~v,z+3j,a+ Bo;0, 5)

K(no~vy,xz+j,a+ o+ ¢, 8 +1)
K(novy,x+ j,a+ Bo;, o)

H(c) =

H(0,¢c) =

and .

K(n077$+.7:teha—’_ﬁﬂ—’_c;’ﬂ);/@())
K(n077$+j7a+60;707/60)

forc=0,1,2 and ¢ = 1,...,m when well defined.
For part (i), we have

H(+i,c) =

_ ]
L<CHMY D h6,)
i=1 @i
By part (ii) of Lemma 2.2.2, we obtain
c v +1 N T
L= 22 —H1)-Y C;=—H(i,?2
P TR PR
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and

Is = i foT [H(U - {H(l) - HI({—(Z'l,)O) H

=1
G T T
N %%ga Gtz U [,
z:nZ a; — n; a; a; H(—1,0) ()

Then, from part (i) of Lemma 2.2.3,

m

Ci Tj C; Tg
< e R . .
s ;nzazﬂ ;nzazazHllﬂ() (2.3.6)
Ci Ti mCz'xH-ll s 1
< ——H(1) - = -
Z?’Lz a; i1 n; a; az Cga
Therefore,
I <CH(1 H —92C H
<C (); L H(i 1) =20 H()
- z;+ 1 m
+2;CZ {H(i,2) — H(i 1)H(1)}+zc;%H(l,1)H(1)
= i+l
<CH(1 H(i,1) —2C . H(1
<C (); L H(i1) ~ 20 H()
—I—ZCZ Iz+1{H(z 2)—H(i 1)H(1)}+2€ilH(2 1)H(1)
i=1 7 —ai '

where the second inequality follows since H(i,2) — H(i,1)H(1) > 0 for all i = 1,...,m by part
(ii) of Lemma 2.2.3. By applying part (i) of Lemma 2.2.2, we obtain

I< éH(1){a+/30 - @Hm 1)} —20.H(1 +2CZ

+26{(a+50+1) (1) — @H(o 2) — (o + Bo)H(1) + ﬁOH(O 1)H(1 )}
géﬂu){amo—zﬁ‘)/m )}—20H( )
+ 262 a—iH(i, 1)H(1) +2CH(1)
= {Ca+ fo+2) —2C}H(1) +€§: 2_50/7”111(1 DH(1),
—~ g

where the second inequality follows from the assumption that vy < a and part (ii) of Lemma
2.2.3. Since

m

a+ﬁozz{x’“ﬂ(,) So/m (0,1)}22MH(@1)

a a;
i=1 ¢ o i=1 ¢
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by part (i) of Lemma 2.2.2 and the assumption that 7y < a and since assumption (2.3.2) implies
2 — fp/m > 0, we conclude that

I/H(1) < Cla+ o +2) - 20+ C7 7B°/m(a+ﬂo) <0
+ Bo/m
where the second inequality follows from assumption (2.3.2). This completes the proof of part

(i)-

For part (ii), let i € {1,...,m} be an index such that a; = a. Then we have
L.
I — 2@ < {—H(;, 1) - 2}12. (2.3.7)
a
Note that, by part (ii) and part (i) of Lemma 2.2.2,

Colas + DH(1) = S Cy(ay + 1)alH(i, 2)

i

d
-
-

i=1 i=1
ZiCi(xz“f‘l Zm:xﬂrl H(i,2)
i=1 i=1
:{iC’i(xi—f—l)—C(a-}—ﬁo—}—l)} H(1 )+Cf°H(0 2). (2.3.8)

s
Il
—

Since (1/a)H (3,1) < 1, it follows from (2.3.7) and (2.3.8) that

L —2I < {éH@ 1) - 2}
S — 5
x [{;q(,@ﬁ 1) — Cla+ fo + 1)}H( ) + 72 (0, 2)]
1 1. Bo
{ - JHG) }Zcxz {27 JHG, 1)}0%H(o 2)
+ {2 - 21{(1, 1)}{€(a +Bo+1)— CYH(D). (2.3.9)
Combining (2.3.6) and (2.3.9) gives
1 = 1 B
1< H(i) ;C’imH(l) - {2 -~ HG )}CVEH(O 2)

n {2 - éH(;’, 1)}{6(a 4By +1)— CLH(1) — 220 :“H (i, 1) H (). (2.3.10)

=1
Note that
1

m m
Z; . a .

E C;—H(i,1) > =—H(i,1 E Cix;

£ lai (Z, ) ~Za (Za ) — iLq



and that

i — 1) > 1) — — 1
;_1:01%1{(@, )_C;:1 S H(i.) C?le CH(1)
_ Bo 1
= Cla+ )~ C2UHO.1) = C Y- (i1 (2.3.11)
0 ~ a

by part (i) of Lemma 2.2.2. Then we have

—_

1< -H(@i,1) zm: CuxiH (1) — {2 - %H(;’, 1)}6@17(0, 2)

a Yo

+{2- éH@, DO+ o +1) ~ CYH()

- 2(1 - %g - p) i Ci—H(z VH(1) - 2%%2}1@ 1) i CixiH(1)
= aag P

—m&mew—oﬁH@n—oééiﬂwnﬁﬂw

—{a- iH(z’, 1)}05‘5}1(0, 2) — {Cla+ fo+1) C’.}iH(z’, 1)H(1)
+ 2pC§zH(O, )H(1) + 2p0§; alH(z 1) H(1)
- 2(1 - %g - p) f;CZH( L 1)H(1)

< —{2 - iH(z’, 1)}05‘31{(0, 2) — {Cla+pBy+1)— C’.}iH(i, 1H(1)

Bo

1
2002 10, 1)1 (1) + 2pCm (5, 1) H(1)
70 a
la 1
- 2(1 4 p)C%fH(;', 1)H(1)
2a
since 0 < p < 1—(1/2)(a/a) by assumption and since & # 0. Now since (1/a)H(i,1) < 1 and
since
1 1 1.
Lr0,2)> a0, )80 > Laanaa)
70 Y0 a
by part (ii) of Lemma 2.2.3, it follows that

- {2 ~Lua, 1)}6@1{(0, 2) + 20020 F (0, 1) (1)
a Y0 Y0

< —G@H(o, 1)H(1) + 2pQ@H(0, 1)H (1)
Y0 Y0

< (@202 1@ nHQ), (2:3.12)
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where we have used the fact that C — 2pC > C(1 — 2p) > 0 by assumption. Thus,

I/{iH“’ DH(1)} < ~(C = 200 — {Cla+ fo + 1) = C.} + 2pCm

The right-hand side of the above inequality is not positive by assumption (2.3.3). This completes
the proof of part (ii). O

Remark 2.3.1 The major difference of the setting considered above from that considered by
Hamura and Kubokawa (2019b) is that now the parameter 5y may take on positive values in
(2.3.8), yielding the additional terms in (2.3.9). In the present setting, we need to evaluate the
factor (1/70)H(0,2) appropriately. Indeed, if (2.3.9) is replaced by

I —2I, < —{2 Ly 1)} iCia:iH(l)
=1

{2 2HG ) HT( + 60 +1) - CYH(),

then it leads to a sufficient condition that is incompatible with the condition for propriety given
in Lemma 2.2.1. Note also that the term C(a + 39 + 1) — C. is positive if the prior is proper
satisfying a < m < a+ f3p, while it is nonpositive in the case they consider. Since (1/79)H (0, 2)
can be very small compared to H(1) in general, it is not straightforward to extend their results
to the case of proper priors. We evaluate the third term on the right side of (2.3.10) by using
(2.3.11), and then apply part (ii) of Lemma 2.2.3 to the second term in (2.3.10) in order to
evaluate the secondary terms deriving from the last two terms in (2.3.11). Thus, Lemma 2.2.3
is important for the above proof of the existence of a heterogeneous shrinkage estimator that is
both admissible and minimax.

Remark 2.3.2 In theory, we can obtain a sufficient condition that generalizes part 4 of Theorem
2.5 of Clevenson and Zidek (1975). By part (i) of Lemma 2.2.2, we have

x;+ 1 Bo 1.~
04+50—; L —HG, )+7H(0 1) 2 (@4 mt fo) - H(i, 1),
"z B 1
(a+ B+ 1)H Z )+ 22H(0,2) < (2. +m + Bo)—H(0,2),
izl Yo Yo
where . = Y 7" x; and ¢ € {1,...,m} is an index such that a; = @. Therefore, it follows that
7H(i’1)§g a+ Bo <@ a+ By
a ax.+m+ P~ al+m+fo
and that
1 11 __ - 1 1
~H(0,2) > %7}[(@', H(1) > %Eiff@ 1)H(1).
Y0 a+pPo a a+pBo @
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Hence, (2.3.12) can be replaced by

- {2 — éH(L 1)}0551{(0, 2) + 2pC’§2H(O, 1)H(1)
o a a+fBy —Bo a+ B+ 17
< —[2—min {1, 2 RO O ) H ) max {1,522

+2,¢2 F(0, 1) E (1)
Y0

= —({2C—Cmin{1,2%}} max{l,al—foﬁ_;—l’f} — 2pQ>

X fgﬂ(o, DH(1)
< ([0~ Cmiin {1, 2 LR {1, SR EE0} )
« 2 p (),

a

which leads to a condition generalizing the sufficient condition of Clevenson and Zidek (1975)
for the balanced case.

Remark 2.3.3 The class of proper Bayes minimax estimators will be broadened by replacing
the factor u®~ 150 /(1 + u/vp)™ in (2.2.2) with w4 (u), where v is a proper density on (0, cc).
This class of priors is considered by Ghosh and Parsian (1981) for the balanced case with
B =~ = j. One choice for ¢ is the exponential density ¥ (u) = e~/ for 4 > 0. The details
are omitted.

2.4 Simulation Study

In this section, we investigate through simulation the numerical performance of the risk functions
of the Bayes estimators given in Section 2.2 under the loss function L. given by (2.1.5) with
c=mn or ¢ = j. For the case of ¢ = n, the estimators which we compare are the following five:

~

L
ML: the ML estimator X = (X1/n1,..., Xim/nm),

A(m—l,j,l};2,1)
A

~PB1
PB1: the proper Bayes estimator A = given by (2.1.2) with Gy = 2,

~GBl1 ~(m—1,7,v;0,1)

GB1: the generalized Bayes estimator A =A given by (2.1.2) with Gy =0,
<~PB2 N _17 '7 ';277 . .
PB2: the proper Bayes estimator A = )\(m 9:32:2) given by (2.2.12) with (a, Bo,70) =

(m - 1727ﬁ)7

~GB2 N _17 .7 ';0)7
GB2: the generalized Bayes estimator A = )\(m 9:3:0:)

(m - 1707ﬂ)'

given by (2.2.12) with (a, 8o, 70) =

For the case of ¢ = j, the estimators which we compare are the above five estimators and the
following two:

~PB3
PB3: the proper Bayes estimator A = A

v =vov,and (a, By, ) = (m —1,2,1/7),

—1,3,vov;2,1/n . i .
(m—1,5,vov;2,1/7) given by (2.2.11) with 8 = j,
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~GB3  «~
GB3: the generalized Bayes estimator A =A

~v=vov,and («a, 5y, v) = (m—1,0,1/7).

—1,j,vov;0,1/7m) . i ]
(m—1,j,vor0,1/m) given by (2.2.11) with 8 = j,

The imbalanced cases in @ = (n171, ..., M Ym) and C = (c1/(n1271), - - -, m/ (M Ym)) are
~ ~G
summarized in Table 2.1. We consider the two estimators A and A for ¢ = j in order to

include the case where C = j.

Table 2.1: Imbalanced cases in a and C.

c Y  a C
n v J 7
n  j, n v
Im v o J v
IJm  Jm M VOV
Jm VoV v 7

~PB1
When ¢ = n, the homogeneous proper Bayes estimator A is always admissible and,
by part (ii) of Theorem 2.3.1, minimax. On the other hand, the heterogeneous proper Bayes

~PB2
estimator A is admissible, but the minimaxity is not clear, because Theorem 2.3.1 cannot
~PB2
always be applied when n is unbalanced. However, the conditions for the minimaxity of A

given in Theorem 2.3.1 are somewhat restrictive especially when the sample sizes are unbalanced,

~PB2 ~GB1
and it is worth investigating the performance of A . The generalized Bayes estimators A
~GB2 ~CB3 o . _ ~PB1 ~PB2 ~PB3
A L,and A are similar to the corresponding proper Bayes estimators A~ ;A and A

but whether or not the generalized Bayes estimators are admissible is not clear.

We set m = 30 and (n;, ;) = (n,AM) for i = 1,...,15 and (ng, \;) = (@, A?) for
i = 16,...,30 and we generate random numbers of X for (n,n) = (1,1),(0.5,2), (0.1,10) and
AWM AR = (1,1),(3,3),(1,3),(3,1). For each estimator A, we obtain approximated values
of the risk function Ex[Lyn (X, A)] by simulation with 100,000 replications. The integrals are
calculated via the Monte Carlo simulation with 100, 000 replications. The percentage relative

~ ~ML
improvement in average loss (PRIAL) of an estimator XA over A is defined by

PRIAL = 100{ Ex[Ln(A ", A)] = EAlLa (X A}/ EAlLa(X T, A)].

For the case of ¢ = m, Table 2.2 reports values of the risks of the estimators with values of
~PB1 ~PB2
PRIAL given in parentheses. When (n,7n) = (1,1), the risk valuesof A~ and A are the same

because A=A 2. When (n,m) = (0.5, 2), the risk values of X 22 are smaller than those of
A except when (AW, X)) = (3,1). When (n,7) = (0.1, 10), all risk the values of 222 are

much smaller than those of A , and the improvement of b is significant. In addition, when

(n,m) = (0.1, 10), A P2 has the largest values of PRIAL while A P! has the smallest values of
PRIAL. These results suggest that the heterogeneous shrinkage estimators can enjoy substantial
improvement over the homogeneous shrinkage estimators in the more unbalanced cases. The
risk values of the proper Bayes estimators are almost the same as the corresponding risk values
of their generalized Bayes counterparts.
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Table 2.2: Risks of the estimators ML, PB1, GB1, PB2, and GB2 for ¢ = n. (Values of PRIAL

of PB1, GB1, PG2, and GB2 are given in parentheses.)

(n,7) (A, X)) ML PB1 GB1 PB2 GB2
(1,1) (1,1)  30.01 15.35(48.83) 15.37(48.77) 15.35(48.83) 15.37 (48.77)
(3,3)  29.99 22.83(23.89) 22.82(23.91) 22.83(23.89) 22.82(23.92)
(1,3)  30.00 20.38(32.09) 20.38(32.09) 20.38(32.08) 20.38 (32.08)
(3,1)  30.03 20.37(32.16) 20.37(32.15) 20.37(32.16) 20.37(32.15)
(0.5,2) (1,1)  30.00 17.03(43.21) 17.05(43.17) 15.34 (48.88) 15.35 (48.83)
(3,3)  30.00 23.99(20.03) 23.98(20.06) 22.16(26.14) 22.16 (26.13)
(1,3)  29.98 23.24(22.47) 23.24(22.49) 19.16 (36.09) 19.21 (35.93)
(3,1)  30.00 19.47(35.10) 19.47(35.09) 20.53 (31.57) 20.50 (31.66)
(0.1,10) (1,1)  30.11 25.37(15.73) 25.36(15.75) 15.18 (49.56) 15.19 (49.56)
(3,3)  30.00 28.25(5.85) 28.24(5.87) 18.05(39.85) 18.05(39.84)
(1,3)  29.96 28.22(5.80) 28.21(5.83) 16.23 (45.82) 16.25 (45.77)
(3,1)  29.99 25.37(15.42) 25.36 (15.45) 17.54 (41.53) 17.53 (41.54)

For the case of ¢ = 5, Table 2.3 reports values of the risks of the estimators with values of
~PB1 ~GB1

~GB2
and A

satisfy the condition C

to zero.

Table 2.3: Risks of the estimators ML, PB1, GB1, PB2, GB2, PB3, and GB3 for ¢ = j. (Values

~ML
PRIAL given in parentheses. The performance of the five estimators A, A

;A

~PB3 ~GB3
is almost the same as in the previous case. The estimators A and A, which
--+ = Cpy, have the largest risk values for (n,n) = (0.5,2), (0.1, 10).
In particular, when (n,7) = (0.1, 10), these estimators have the values of PRIAL almost equal

of PRIAL of PB1, GB1, PG2, GB2, PB3, and GB3 are given in parentheses.)

(n,m) (AL, A2) ML PB1 GB1 PB2 GB2 PB3

(1,1) (1,1) 30.01 15.37(48.79) 15.39(48.73) 15.37 (48.79) 15.38(48.74) 15.37 (48.79) 15.38 (48.74)
(3,3) 30.03 22.86(23.89) 22.85(23.91) 22.86(23.88) 22.85(23.90) 22.86(23.88) 22.85(23.90)
(1,3) 30.04 20.38(32.13) 20.38(32.13) 20.38(32.14) 20.38(32.14) 20.38(32.14) 20.38(32.14)
(3,1) 30.04 20.38(32.16) 20.38(32.16) 20.38(32.17) 20.38(32.16) 20.38(32.17) 20.38(32.16)

(0.5,2) (1,1) 37.52  17.76 (52.66) 18.01(51.98) 15.30(59.21) 15.32(59.16) 24.55(34.57) 24.82(33.84)
(3,3) 37.57 27.54(26.70) 27.77(26.08) 24.79 (34.00) 24.81(33.96) 32.99(12.18) 33.07 (11.98)
(1,3) 37.61 25.35(32.60) 25.69 (31.68) 18.44 (50.98) 18.63 (50.46) 32.73(12.98) 32.82(12.73)
(3,1) 37.54 23.55(37.25) 23.62(37.07) 25.10(33.13) 24.91(33.65) 26.86(28.44) 27.03 (27.98)

(0.1,10) (1,1)  151.49 105.39(30.43) 107.62(28.96) 15.06(90.06) 15.07 (90.05) 150.85 (0.43) 150.86 (0.42)
(3,3)  151.62 133.27(12.10) 134.32(11.41) 36.35(76.02) 36.40 (75.99) 151.42(0.13) 151.42(0.13)
(1,3)  152.12 133.46(12.27) 134.54(11.56) 17.90(88.23) 18.09(88.11) 151.93(0.13) 151.93(0.13)
(3,1)  151.37 106.84(29.42) 108.95(28.02) 38.55(74.53) 38.47 (74.59) 150.72(0.43) 150.74 (0.42)

2.5 Application

In this section, several estimation methods considered in the previous sections are applied to data
relating to the standardized mortality ratio (SMR). (For the SMR, see, for example, Clayton and
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Figure 2.1: The ratio ;\fB2 / /A\fBl.

Kaldor (1987).) More specifically, the data consist of actual and expected numbers of deaths of
females from a specific cause in m = 72 districts in a prefecture in Japan during the 5 years from
2008 to 2012. For ¢ = 1,...,m, the actual and expected numbers of deaths in the ¢-th district

are denoted by x; and n;, respectively. Each component of an estimator A = (5\1, coyAm) s a

measure of relative risk in a district calculatedAfr%m the data. PRI
We here consider only the three estimators A = (A&, ... AMIY " = (APBL APBL),
~PB2 - .
and A = (APB2 ... A\PB2) given in Section 2.4. Integrals are calculated via the Monte Carlo

simulation with 100,000 replications. The data and the estimates for all the m = 72 districts

are given in Tables 2.4 and 2.5.
The values of the ratio AFB2/APBL for all 4 = 1,...,m are plotted in Figure 2.1. For i =
1,...,m, the heterogeneous estimator )\fBQ shrinks the ML estimator )\%VIL toward the origin

more than the homogeneous estimator j\fBl if n; < 50 and less than XfBl if n; £ 50.
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Table 2.4: The data and the estimates of relative risk for i =1, ..., 36.

)\%\/IL )\PBl )\PBQ

) T, n; i i

1 49 49.65 0.99 0.97 0.97
2 64 66.60 0.96 0.94 0.95
3 69 63.83 1.08 1.06 1.07
4 79 87.49 0.90 0.89 0.89
) 47 48.60 0.97 0.95 0.95
6 35 42,58 0.82 0.81 0.80
7 66 76.12 0.87 0.85 0.86
8 75 72.67 1.03 1.01 1.02
9 49 55.24 0.89 0.87 0.87
10 54 64.75 0.83 0.82 0.82
11 192 182.16 1.05 1.04 1.05
12 349 269.71 1.29 1.27 1.29
13 48 40.54 1.18 1.16 1.16
14 47 4594 1.02 1.00 1.00
15 62 54.53 1.14 1.12 1.12
16 38 3279 1.16 1.14 1.13
17 31 31.41 0.99 0.97 0.96
18 81 78.79 1.03 1.01 1.02
19 o7 5249 1.09 1.07 1.07
20 62 57.09 1.09 1.07 1.07
21 21 23.03 0.91 0.90 0.88
22 83 67.53 1.23 1.21 1.21
23 116 111.32 1.04 1.02 1.03
24 51 41.87 1.22 1.20 1.19
25 41 36.28 1.13 1.11 1.10
26 21 17.72 1.19 1.16 1.13
27 59 4777 1.24 1.21 1.21
28 13 942 138 1.36 1.26
29 20 11.98 1.67 1.64 1.55
30 22 23.76 093 091 0.89
31 14 15.09 0.93 091 0.87
32 23 13.38 1.72 1.69 1.61
33 14 9.72 144 1.42 1.31
34 5 3.28 1.53 1.50 1.19
35 52 52.79 0.99 0.97 0.97
36 6 7.03 0.85 0.84 0.75
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Table 2.5: The data and the estimates of relative risk for ¢ = 37,...,72.
i wong AML APBI §PB2
37 7 9.78 0.72 0.70 0.65
38 7 7.05 099 0.98 0.88
39 10 12.32 0.81 0.80 0.75
40 41 54.59 0.75 0.74 0.74
41 15 9.24 1.62 1.59 1.47
42 11 9.67 1.14 1.12 1.04
43 15 17.81 0.84 0.83 0.80
44 119 124.74 0.95 0.94 0.95
45 103 89.18 1.16 1.13 1.14
46 25 2495 1.00 0.98 0.97
47 61 55.91 1.09 1.07 1.07
48 83 70.76 1.17 1.15 1.16
49 45 36.92 1.22 1.20 1.19
50 141 127.72 1.10 1.08 1.10
51 151 156.31 0.97 0.95 0.96
52 22 16.53 1.33 1.31 1.26
53 98 83.55 1.17 1.15 1.16
54 37 38.18 0.97 0.95 0.95
55 39 3297 1.18 1.16 1.15
56 29 28.27 1.03 1.01 0.99
57 20 19.84 1.01 0.99 0.96
58 21 25.64 0.82 0.80 0.79
59 72 52.02 1.38 1.36 1.36
60 19 31.88 0.60 0.59 0.58
61 29 2259 1.28 1.26 1.23
62 15 882 1.70 1.67 1.54
63 9 12.31 0.73 0.72 0.68
64 118 111.11 1.06 1.04 1.05
65 52 37.12 1.40 1.38 1.37
66 59 60.27 0.98 0.96 0.96
67 30 29.67 1.01 0.99 0.98
68 155 181.29 0.86 0.84 0.85
69 51 56.42 0.90 0.89 0.89
70 75 89.61 0.84 0.82 0.83
71 75 7853 0.96 0.94 0.94
72 43 34.05 1.26 1.24 1.23
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2.6 Extensions

2.6.1 Empirical Bayes estimators
In addition to the hierarchical Bayes estimators, we can also derive empirical Bayes estimators
satisfying minimaxity. If we set 3 = j in (2.2.2), we have

u@tBo—m—1

) L
i A - Ze— W/ L g ,
7T ,J»“/ﬁoﬁo( ) (X/O 1 _}_u/,m)/jo { 21;[1 ’Yie } u

which is regarded as a mixture distribution. In this subsection, we consider the variable u in the
integration as an unknown hyper-parameter. Then the prior of \; has a gamma density propor-

tional to e~(*/7)i and the resulting subjective Bayes estimator is XB(u) = (AB(w),...,AB (u))
for
UIE R .
ni niyiu~ + 1
Since

/ o /(O,oo)m Ex [i SZXZ} { f[l %e*(“/%)/\i}d)\

m S m
= Z {El/ )\Zfe_(u/%)&‘d)\l} = ’LL_1 Z 51")/1‘
i=1 o i=1
for & = (&1,...,¢m) € (0,00)™, we can estimate u~' by
s > ey (Gi/ni) Xi
ity Givi
. . . . <~B .. . ~EB IEB JEB
which is substituted into A (u) to get the empirical Bayes estimator A = (A7",..., \)°) =

~B ~
A1, where for X = 37" (&;/n;) X,

ses _ Xi X _ &(1 DY Ll (2.6.1)
LM X T Gy () T niYi X + 3251 6
In the case of ¢; = n; and ; = 1/n;, the empirical Bayes estimator is
o X; m
AEBL _ 20 (1 - ) 2.6.2
i s X +m) (2.6.2)
which was given by Clevenson and Zidek (1975) when ny = -+ = n,, = 1. When ¢ = n; and
~v; = 1, the empirical Bayes estimator is
N X; n.
AEB2 _ —’(1 - 7) 2.6.3
¢ n; nX. +n./)’ ( )
where n. = 37", n;. On the other hand, when ¢ = 1, it becomes
. X, ™ 1/n;
AEB3 J(1 S 211/ - ) (2.6.4)
L2 Zj:l Xj/nj + Zj:l 1/n;
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if v, = 1/n; and

N X; m
AEB4 _ 2 (1 - ) 2.6.5
! N, nizgﬁlej/nj—Fm ( )

if v, = 1. It is seen that X?BQ and S\FB‘l are heterogeneous estimators in the sense that they
shrink j\i\/IL more toward the origin when n; is smaller.

In the following, we use the notation max(v;) = maxj<ij<m v; and min(v;) = minj<;<,, v; for
(V1,...,0m) € R™.

Theorem 2.6.1 Suppose that

Qi AN [max{maX(nm) max (&%) + 30 & H { Tim G (g) 2 max (g)}
° n;
=1

min(n;y;) " min(&y;) + 3070 &vi 11 Lmin(niy) Gi n;
(2.6.6)
~EB
Then the empirical estimator X~ is minimazx under the loss L. given by (2.1.5).
In the case of ¢; = ¢; =n; for i = 1,...,m, condition (2.6.6) is
om > ax(nii) { it %y 2}, (2.6.7)
min(n;y;) L min(n;y;)
If in addition v; = 1 for ¢ = 1,...,m, this becomes
2m(n/m) > n./n+ 2, (2.6.8)

where 7 = max(n;) and n = min(n;).

Proof of Theorem 2.6.1. Let @ = max(n;v;) and a = min(n;y;), let b= max(¢;y;),
b = min(¢;), and b. = > 1", &7, and let @ = max(¢;/n;) and e. = Y ;" ¢;/n;. The risk

difference AFB = Ex[Le(A )] — Ex[Le(A A is

+ 0.
i=1
m 2 2 2 b
=m[L [5G (i) G g s )
i—1 niA; n; n;v; X +b. "/ n;v X +0b. N n;yX + 0.

From (2.6.9) and Lemma 2.3.1, it follows that

AP = EA[Z [erzf:l{<XZn:r 1>2<m%X f&m + 5.>2 N 2(Xi7:z‘r 1)2711%55 er.ém +b. }

i=1
' b (b b
yoix— ~+22X7;( b b )H
i nyvX + ¢ + 0. ni \pvX +b nipX 4+ évi 4+ b.
B [Zm: ¢ (Xi+ )i L i 3
= A _ = _ . Ci _ )
= i (nyyi X + v +b.)? ~ niniy X + i+ b,
+ 2 Z —X; _ — ~ ] .
=i (nyX +0)(nivX 4+ v+ b))
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Hence, letting p = max(c;/¢;), the risk difference is evaluated as

AEB <, [P el USSP Nzixi%}

-(aX+b+b) aX +b+b. aX +b+b N nyX+0b
79 _ T T m N .

< B2 pXte L Y Ze)fz(ct/”’)}
La® (X +b/a+b./a)?  GX+b+b aX+b+b S +0b./a
72 — 7 7 =

< By %~ I S N S ~}, (2.6.10)
" X +b/a+b/a  aX+b+b aX+b+b

where the last inequality follows since

pRre Ko X+S(aimfp X+ S (aln)/aln) _
X +b/a+b./a X+b/a X+ avifa X+ G/ (nivi)

From (2.6.10), it is concluded that

AFB < E.Ek[(%ﬁ-i— 26) — L, o« 13 }

:l;.EA[ _ 1~ ] 1:
aX +b+b.aX +0b

Rle ) ) v

which is less than or equal to 0, because 2e. > [max{a/a, (b +
assumption. ]
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2.6.2 Estimation under the Kullback-Leibler loss

We can also evaluate the risk of the Bayes estimator with respect to the prior 7, g~:8,,, given
by (2.2.2) under the loss function

Le(d, ) = icm(i —1-log ) ic( ~ \log ‘j) (2.6.11)

i=1 i=1

which is the loss function considered by Ghosh and Yang (1988) for the balanced case and by
Hamura and Kubokawa (2019b) for the unbalanced case. The Bayes estimator is given by

< (@,8,7:60,70)

X 3@ (1 _ qgga,ﬁ,v;ﬁoﬁo)(x)’ 1 q137(737,6‘:7;ﬁom)(X))

for a < 8., where AP (X1 4 B1)/n1,. .., (X;m + Bm)/nm) is the Bayes estimator against the

improper prior mg(A) = ", A" 7! and where

&(017,37’7?507'70)(X) — 1 K(’I’L OFYvX +/6 + e, a+ BO + 1;’707/80)
! nivi K(n07>X+/3704+50;70750)
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determines the amount of shrinkage for i = 1,...,m. The prior m3 coincides with the Jeffreys
prior when 8 = j/2. A calculation similar to that in the proof of Theorem 2.3.1 shows that the
risk difference between the two estimators is

3B

~(a”@’7;[-}0770)’ A):I o EA[LC(A

Ex[L(A )] = EA[DEBTH (X))

where E(OC’ﬁ?’Y;BOWO)(O) - - Zﬁl ClﬂlK(no7a /6+ei7 a+50+17 Y0, BO)/K(TLO’Y, B) Oé+ﬁ[); Y0, 50)
and

DB gy = _ G2 AiKmoy,@+ B e at fot L fo)
n; Ng7q K(n077x+167a+50;70760)

i=1

m
+Z&$110g{1+ 1 K(n077x+/65a+50+17fy0)50)}
i—1 Uz N7 K(n077m+/g)a+ﬂ0;707B0)

for x = (z1,...,2m) € Ng” \ {0}. Using Lemma 2.2.2 to evaluate the first term on the right

and applying the inequality log(1 + &) < & for £ > 0 to the second term will lead to a sufficient

condition for X(aﬁmﬁo”m) to improve on /N\('B) that is similar to the condition of Theorem 1 of

Hamura and Kubokawa (2019b) and incompatible with the condition for propriety. In contrast,
applying the sharper inequality

52
log(1 +¢) §5—m

for £ > 0 leads to a result applicable to proper Bayes estimators. This sharper inequality is
similar to the inequality of Lemma 3.1 of Dey, Ghosh, and Srinivasan (1987), which is used by
Ghosh and Yang (1988).

Theorem 2.6.2 Let p=2{C(a+ o+ 1) — >, CiBi}/{C(a+ Bo)}. Suppose that one of the
following two conditions holds:
(i)
a+ By < Zczﬂi/af L.
i=1
(i) o <™ B0 <4, 0< 5 < 1, and

p(ﬁﬁiﬁﬁj) <2Zf+
=1

QA

ellle

18

N(azﬁz‘Y;BOy'YO)’A)] < EA[LC(A

Then Ex[Le(X ,A)] for all X € (0,00)™.

2.6.3 Prediction under the Kullback-Leibler divergence

This subsection extends the result of the point estimation in Theorem 2.6.2 to a corresponding

prediction problem. Suppose that Yi,...,Y,, and Z1,...,Z,, are independent Poisson ran-
dom variables with means r1 A1, ..., A, and s1Aq, ..., S;Am, respectively, and suppose that
Aly.voy A > 0 are unknown while 71, ...,7, > 0and sq,..., sy, > 0 are known. Let py (:|A) and
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pz(-|A) be the densities of Y = (Y3,...,Y,,) and Z = (Z4,..., Z,,), respectively. We consider
the problem of predicting the density pz(:|A) of Z, where each predictor p(-;Y') based on Y is
evaluated in terms of the risk function relative to the Kullback-Leibler divergence, given by

A pz(zN)
R(A5) = Ex [Ze%mpzuw log 22 = |

The Bayesian predictive density, denoted by pr, against prior 7 is

belz5Y) = [ p2(=1Opy (VIOr(€)de | [ by (YIEIn(€)de.

Let ]ﬁﬁaﬁmﬁmo and pr, be the Bayesian predictive densities against the priors T, g~;,, and
mg, respectively. We extend Theorem 2.6.2 to the prediction problem by using the result of
Lemma 2.6.1 below, which is a special case of Lemma 1 of Komaki (2015).

Lemma 2.6.1 Let W;(7) be a Poisson random variable with mean t;(T)\; for 7 € [0,1] and
i=1,...,m, where

L+ si/m;
t; =T .
(r) =rig7 (si/r)(1 — 1)
I X(Waﬂrv;ﬁoﬂo) _ S\(Wa,ﬁ,’y;ﬁowo) ~(7T04,13,'7;Bowo) d;\(ﬂﬁ) _ 5\(“5) y(m8)
et (1) = (N (7)o Am (7)) an (1) = (A7), s A (7))

for

5\(”“,5,‘7;[30770)(7_) _ W/Z(T) + Bi K(t(T) °7, W(T) + B + e, a + Po; 70, BO)
! ti(7) K(t(r) oy, W(r) + B, + Bo; 0, Bo)
and NP (1) = {Wi(r)+B:} /ti(7), where t(7) = (t1(7), . .. s tm(7)) and W (7) = (Wi(7),. .., Win(7)).

Then the risk difference between ﬁﬂ'aﬁvﬂo o and pPrg is expressed as

1
~ ~ ¥ "'(71’(17 Y380, ) = ~(7r )
R(A, Preg g g ) — (X Prg) = /0 {Ex[Lyn A7), X)) = Ex[Ly (X7 (1), M) }dr,

where t'(1) = (t1/(7), ..., tw/ (7)) = ((dt1/d7)(7), ..., (dty,/dT)(T)).

Combining Theorem 2.6.2 and Lemma 2.6.1 and noting that {t;(7)/t:(7)}/{ti(7)v:} =
{1/ri = 1/(ri + 8i)}/vi for all i = 1,...,m for all 7 € [0,1], we have the following result,
which gives a sufficient condition under which pr, 5. Boo dominates prg.

Theorem 2.6.3 Let A; = {1/r; —1/(ri+si)}/vi fori=1,...,m and let A = minj<;<;, A; and
A =maxi<ij<m A;. Let 0 =2{A(a+ Bo+1) — > 1%, AiBi}/{A(a+ Bo)}. Suppose that either

a+ﬁ0§2 Aﬁ —1
=1

or

o o< f, v <minj<i<mti(7)y, 0< 0o <1, and

(o o Bty T mincntion
= " maxj<iem ti(T) ) T TA maxi<i<m ti(7)Vi

for all 7 € [0,1].
Then we have R(X,Pr, g _.504,) < B(A, Drg) for all X € (0,00)™.
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2.7 Appendix

All the proofs of the lemmas in Sections 2.2 and 2.3 are given here. For v = (vy,...,vy) € R™
and ¥ = (01,...,0p) € R™, we write the inner product v101 + -+ + Uy Uy, a8 v - V.

Proof of Lemma 2.2.1. Let J = f~--f(0 ooy TauBviBoo (A)dA. From (2.2.2), it follows that

00 u 1480
J = /\ Bi—=1) g=u 2% Xi/Yi g\ dus.
/0 1+u/’7050/ /000 i1 ) }u

By making the change of variables

01, 0m_1,A) = (Al(i)\i>1,...,)\m1(§:)\j>1,§:)\i),
=1 =1 =1

we obtain
oo w—1+5o
A AR e
Aﬁ—m Qzﬂi_l —Au Gi/'yiAm—l Oy - - em_ A
/ /DX(OOO) Zl;[l )e 1 doy---d 1d }du
w1460
:/o {(1+U/’Yo Bo
m m _8.
x [ - O INDBY (D 0;/v)  dby - dbpy_y bdu, (2.7.1)
[ o (o ar) " an o)

where 6, denotes 1 — (014 +60,_1) and D = {(C1,. .., ¢mo1) € (0, D)™ L G4 +Cmo1 < 11
Let ¥ = maxi<ij<m 7 and y = mini<j<m, ;. Then, from (2.7.1),

00 w@1+Po
1< [ et
x//D (geﬁj—l)r(ﬁ.)u—ﬁ- (y/;@)ﬁ‘del---dem_l}du
m oo, a—1+80—p.
,YB{/.../D(EgiBi1>d91...d5m_1}/0 Wdu

the right-hand side of which is finite if o« < 8. < o + [p. Similarly,

o] a—1+p6o—p.
> ﬁz_l u —
J>T(8 / / He d91 .db,, 1}/0 7(1+u/70)/30du 50

if the condition o < 8. < a4+ By does not hold, and the proof is complete. O
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Proof of Lemma 2.2.2. For part (i), we have by integration by parts that

K<77 E? 570, 60)

u® 1 1 00
- [E (1 +u/p)Po ZI;II (1+ u/’yi)leo

P —fo/r |~ il 1 1
_/o Oé(1+u/70+Z1+u/%>(1+U/70)ﬁOZHl(1+U/%~)5idu

i=1

1 i
=0+ a{fZK(’%Eva“‘ 1;70750 + 1) +ZéK(7’£+e“&+ 1;70’60)}.
=1

7

Part (ii) follows since

K(v,§+ e, a+ 17, o)

— /OO u v ﬁ L du
o Ut u/0)® Lt uf L (14 u/y)S
00 w1 1 7 1
_ LS 7> ——du
/0 (1_|_u/70)607 ( 14+ u/vi ]1;[1 (L +u/v)%

=7{K(7,€ a7, o) — K(v,. € + €i, a7, 50)}
for ¢ = 1,...,m. This completes the proof. O
Proof of Lemma 2.2.3. For part (i), let f(u) = u® 1 (14+u/v0) % T[], (14+u/v;) "% for u > 0

and let A = K(v,&, a+1;7, Bo) K (7, €, a; 70, Bo) — K (7, €, a+1;70, Bo+1) K (v, €, a; 0, Bo—1).
Note that

AK:/OOOuf(u)du/OOO f(u)du—/ooo 1Jrz/wf(u)du/OOO (H%)f(u)du
:/0 uf(u)du/o F(u)du
— 7 /OOO (1- H_L/%)f(u)du /OOO (1+ %)f(u)du
- —70{ /OOO f(u)du}2 + 0 /OOO Hi/%f(u)du /OOO (1 + %)f(u)du.

Then it follows from the Cauchy-Schwarz inequality that Ag > 0, which can be rewritten as
(2.2.8). The inequality (2.2.7) can be similarly shown. Next we prove part (ii). From (2.2.8),
we have

0< K(7a£aa+]—;’70aﬁ(]) - K(’)’,E,O[—Fl,ﬁo,ﬁo—}—l)

o K(’Yaéaa;%aﬁO*l) K(’Y)Eaa;’yUaBO)

By adding and subtracting K (v, &, o + 1570, 50)/ K (7, &, @; Y0, Bo), we obtain
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<_K(7a€,04+1;70,/30)< _ K(,€& 257, Bo) )
- K7, & 7. 5) K(v,& ;7,80 — 1)
+LK(’Y £ a+ 257,00+ 1)
v K, & a5, 5)
_K(v.§ a+17,8) 1 K(v,€ a+ 159, bo)
K(v,€&,a;7,60) 70 K(v,&, ;9,60 — 1)
+LK(‘Y £ a+ 257,00+ 1)
v K& a5, 6o)
Ky, & a+17,80) 1 K(v,§,a+ 157,060 + 1)
K(v,& a;7,60) 7  K(v,€ a5, bo)
1 K(v,§ 0+ 257,60 +1)

Yo K(’?’»Eaa;%,ﬁo)

where the second inequality follows from (2.2.8), and thus (2.2.10) follows. The inequality (2.2.9)
can be similarly shown. The proof of Lemma 2.2.3 is complete. O

Proof of Lemma 2.2.4. Let x = (z1,...,2y,) € Ng™. Fori=1,...,m, the posterior mean of
1/X; with respect to the observation X = a and the prior m, g 4.8,,,, denoted E)‘|X[1/)\i]X -
x|, is given by
o0 [_u=1*f +B;—1 = by
fo [(Hu/% 7 f fOoo)m {)\ [T, A Bi—1_,—njA i)e —uy T, /%}d)\]du

fO [(1:11/1;:3060 f fOOO'm{ m )\ Tj+0i =1 o—n;A ) —udi A /’Yj}d)\]du

which can be rewritten as

o0 ua—l+50 m o0 x_;'_ﬁ_l_(sl s ni4u ) ‘
0 iy Lm Joo A it em il dydu

oo yo—1+Bo m 00y mi+Bi—1 —\;(n;+u/v;) .
0 ey e Joo AT em i d)y du
oo _u~1+Po [ U(zj+8;—0ij)

0 (1t+u/v0)P0 L=1 (n;4u/vy;) "3 P2

fOO w1180 " L(z;+8;5)
0 (1+u/’YO)'BO J=1 (nj+u/'yj)zj+6j

:nr(xl+/81_1) K(n077m+/3_ei7a+60;707B0)
' F(xl—i_/B’b) K(n077w+167a+/80;707/80) ’

where 0;; = e;-ej for j =1,...,m, I'(t) = oo for t <0, and K (no~vy,0+8—e;, a+B; Y0, o) = o0
for « > . — 1. Similarly, we have

10(z;+Bi+1) K(noy,z+ B+ e, a+ Boiv, Po)
1y F(ml +51) K(n0’7,$+,3,()4+ﬁ0;’70,ﬁ0) ’

EMNX[\|X = 2] =
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which is finite. Hence, for all d = (dy,...,d;,) € R™, we have
ENX[L.(d, )\)|X =

_ ZCZEMX[
= Z%{EMX [)\—Z X

+ ) cildi® 00 — 2d; + EMNX [\ | X = a)),
ieSe

X =2

:a:} (di_ E)\X[ll

_X:az]>2+Ai}

1

where S = {i € {1,...,m} : EMX[l/)\Z-’X = x| < oo} and 4; = —(E"'X[l/)\i‘X =z|)7 '+
EXNX[\|X = ] for i € S. Therefore, EAX[L.(d,\)| X = ] is finite if and only if d; = 0 for
all i € S¢. Furthermore, in this case, it is minimized if and only if d; = (EMNX[1/\]| X = x])~!
for all i € S. Thus, EXX[L.(d, \)|X = x| is uniquely minimized at

d— Z-’L‘z"’_ﬁz_l K(n07,$+,3,06+ﬁ0;’)/0,,80)
K(no~y,z+ 08— e, a+ Boivo,Bo)

€S

which can be expressed as

(a.8750.20) (93 1 +61 -1 (@B:8070) (o1 T T B — 1

1 .. 1 — 512,550,750

(1 (@) (Lol ()} 7 )

by part (ii) of Lemma 2.2.2. Thus, the desired result is obtained. O

Proof of Lemma 2.2.5. For part (i), suppose z; > 1. Then

niK(n,x+j — 67;,04+50;70,50)

00 oz—i—ﬁo 1 1
_/0 T a7 f:[ (i ufmg) 22

[e's) a—+Bo mn 1
> du
| waom | S

=K(n,z+j,a+ Bo+ 1;70, Bo)-

This shows the desired result. Part (ii) follows immediately from (2.7.2). For part (iii), let
fi(w) = (14 u/o) P [ (X +u/ng)~ (@+1) for u > 0 and let k£ = 0,1. Then we have that

1
(14 u/n;)zitl=k filw) 1+ utPF £ ()

as n; — oo for every u > 0. Since o < m—2, it follows from the dominated convergence theorem
that

0 < yotBo—k

K(n,xz+j —ke;,a+ o+ 1—k;v0,50)

> 1
— a+Bo—k (u)d
f o e
— / utP=E fi(u)du € (0, 00)
0
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as n; — oo, and this completes the proof.

Proof of Lemma 2.3.1. It can be seen that

B[ ]

S h(z + e;) ﬁ (A",

. .|
e x; +1 e z;!
B h(z) 5 (MA)% oo\
e Z lAZ H xj' e VARV
xeNQ™ j=1
h(X)
=n[557]
Mg

which proves Lemma 2.3.1.
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Chapter 3

Bayesian Shrinkage Estimation of
Negative Multinomial Parameter
Vectors

3.1 Introduction

Stein’s phenomenon for the estimation of parameters of discrete distributions has been exten-
sively studied since Clevenson and Zidek (1975) showed that the usual estimator of the mean
vector of independent Poisson distributions is dominated by a Bayesian shrinkage estimator un-
der the standardized squared error loss. For example, Ghosh and Parsian (1981), Tsui (1979b),
Tsui and Press (1982), and Ghosh and Yang (1988) considered different estimators of Poisson
parameters under different loss functions. Estimation for discrete exponential families including
the Poisson and the negative binomial distributions was treated by Tsui (1979a), Hwang (1982),
and Ghosh, Hwang, and Tsui (1983). Tsui (1984), Tsui (1986a), and Tsui (1986b) explored
the robustness of Clevenson—Zidek-type estimators in estimating means when the observations
are not Poisson-distributed. In particular, Tsui (1986b) considered the case of dependent obser-
vations following the negative multinomial distribution, which is a multivariate generalization
of the negative binomial distribution and arises as the joint distribution of the frequencies of
multiple events in inverse sampling. The negative multinomial distribution is also included in
the general classes of discrete distributions of Chou (1991) and Dey and Chung (1992).

However, little attention has been paid to the construction of Bayesian shrinkage estimators
when the underlying distributions are not Poisson. This could be partly because tractable
hierarchical models may not be so widely known in such cases; some difficulties with the beta-
binomial hierarchy are discussed in Example 4.5.3 of Lehmann and Casella (1998). In this
chapter, we consider the Bayesian estimation of multiple negative multinomial parameter vectors.

The m-dimensional negative multinomial distribution with parameters r > 0 and p =
(B1y---sBm)" € Dy = {(B1s--,Pm) " P1,- . Pm > 0, >00 1 B < 1}, denoted by NM,,(r, p),
has probability mass function

D(r+ >0 2) 1 oo
NM,, (x|r,p) = = po | | B 3.1.1
(@l ) = T, o 70 117 10

for & = (v1,...,2m)" € No™ = {0,1,2,...}™, where pp = 1 —p. = 1 — > p; and where r
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corresponds to the number of successes in inverse sampling. Even if 7 is not an integer, the
probability function (3.1.1) is well defined and has the Poisson-gamma mixture representation

r—

NM,,,(z|r, p) :/Ooog *”[H { pZ/pf OF ~Giifio)e] gy, (3.1.2)

The mean and variance of the negative multinomial distribution NM,,(r,p) are rp/po and
rdiag (p)/po + PP’ /Pg. The marginals are negative binomial. If x o NM,, (r™), p) and
X( ) ~ NM,,(r®,p) for ) 2 > 0, then j((l) + 5((2) ~ NM,,(r®) + () p): therefore, r
can also be mterpreted as a sample size. For further properties and applications of the negative
multinomial distribution, see, for example, Sibuya, Yoshimura, and Shimizu (1964) and Tsui
(1986b) and the references therein.

Suppose that X1 = (Xq1,... ,Xm,l)—r, XN = (XN, ,Xm,N)—r are independently
distributed according to NM,, (r,p;),...,NM,,(r,py), respectively, for m, N € N = {1,2,...},
where all the elements of p = (py,...,Pn) = (D115 Pm1) seees PLNs -+ PmN) ) € DY
are assumed to be unknown. For n € {1,..., N}, we consider the problem of estimating the
matrix (pq,...,p,) on the basis of X = (X,...,X ) under the standardized squared error
loss

—piv)?, (3.1.3)

l/].Zl

where d = (d; 1 )1<i<m, 1<v<N € R™ N Here, n = N corresponds to the simultaneous estimation
of all the parameters while n = 1 corresponds to the estimation of p; relating to the first
observation X; by using all the information X. The case of n = N (with m =1 or N = 1)
has been considered in the literature. One motivation for our general framework is to borrow
information from the entire population even when there are nuisance parameters.

As prior distribution for p, we first use the conjugate Dirichlet distribution with density

ﬁD' (P )—ﬁ{ Lo o) “011_[ @i } (3.1.4)
II'm Py |0, @) = F(aO)Hm F POV Div s L.

v=1 v=1

where ag € R, @ = (ay,...,ay)" € (0,00)™, a. =3 " a;,and po, =1—p., =1 3" pi
for v € {1,...,N}. As will be shown later, the UMVU estimator of p is p¥ = (Xiv/(r+X
1))1<i<m,1<v<n, where X., = 3" X, for v € {1,...,N}, and corresponds to the Bayes
estimator with respect to the prior (3.1.4) with ag = —m and a = 7™ and the loss (3.1.3) with
n = N, where 5™ = (1,...,1)T € R™. Also, it will be seen that the Jeffreys prior is (3.1.4)
with ag = —(m —1)/2 and a = ™ /2.

In Section 3.2, we first consider the general class of estimators

()
r+ X, —148X..)/1<i<m, 1<v<N’

PO = (3.1.5)

where 0(X..) is a strictly positive function of X.. = Z]VV:l X, = ZJVVZI >ty Xiw, and derive
a sufficient condition for the shrinkage estimator p9 to dominate the UMVU estimator pV.
Next we construct an empirical Bayes estimator based on the prior (3.1.4) with a = j (™) and
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show that it dominates the UMVU estimator when m is sufficiently large by using the derived
condition.

In Section 3.3, we obtain a shrinkage estimator of the form (X; , /{r+X.,—140(X.)})1<i<m, 1<v<N,
where §(X.) > 0 is some symmetric function of X. = (X.1,...,X. y) ", by introducing a hier-
archical prior for p. In a simple case, this prior becomes

N “me1 1 \a
p~ (,,E[lpo’y> /(;mm) :

where o« > 0. The above expression shows that the prior puts more probability around po1 =
-+ = pon = 1 than the Dirichlet prior p ~ ijvzl po, ™ 1. Our hierarchical Bayes estimator
is shown to dominate the UMVU estimator under some conditions. Also, for sufficiently large
m, we obtain an estimator based on our hierarchical prior which dominates a Bayes estimator

against the Jeffreys prior under the loss

-Z/n(gl’ P) = Z Z (di,u —Piyv — DPiyv IOg d

1,V
=1 i=1 Piv

), (3.1.6)

where d = (d; ) 1<i<m,1<v<n € (0,00)™*N . In addition, it turns out that posterior computation
is quite simple under our hierarchical prior.

Recently, Stoltenberg and Hjort (2019) also considered Bayesian multivariate models for
count variables based on the Poisson likelihood. Hamura and Kubokawa (2019b, 2020c) consid-
ered estimation of Poisson parameters when sample sizes are unbalanced by using and generaliz-
ing the shrinkage prior of Komaki (2015). Interestingly, it is the method for evaluating integrals
in Bayesian predictive probabilities of Poisson variables in the presence of unbalanced sample
sizes, developed by Komaki (2015) and utilized by Hamura and Kubokawa (2019b, 2020c), that
plays a crucial role in obtaining the results in Section 3.3 for our hierarchical Bayes estimators
of negative multinomial parameters in the balanced setting.

The remainder of this chapter is organized as follows. In Sections 3.2 and 3.3, we consider
empirical Bayes and hierarchical Bayes estimators, respectively. In Section 3.4, through simula-
tion, we compare our proposed estimators with the UMVU estimator as well as an alternative
estimator which estimates pq, ..., py independently based on X,..., Xy, respectively. Some
concluding remarks are given in Section 3.5. Proofs are in the Appendix.

3.2 Empirical Bayes Estimation

We first derive a sufficient condition for the shrinkage estimator ﬁ(a) given in (3.1.5) to dominate
the UMVU estimator. Let, for i € {1,...,m} and v € {1,..., N},

Xi,l/

_— 2.1
r+X.,—1 (3.2.1)

Diw =
The right-hand side is defined to be 0 if the denominator is 0. The same remark applies to
(3.2.2) below. Then pY = (ﬁgy)lﬁgm, 1<v<n is the UMVU estimator of p since it is unbiased by
Lemma 3.6.1 in the Appendix and since X is a minimal and complete sufficient statistic. Let
d: Ng — (0,00) and let, fori € {1,...,m} and v € {1,..., N},
) XZ v

p = ()1 %) — : 3.2.2
p (D p)1<i<m,1<v<Ns D; I g Y5 ant (3.2.2)
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The following theorem, together with the other theorems in this chapter, shows that borrowing
information from the independent observations actually is useful in improving risk performance
even if only a subset of the unknown parameters are of interest.

Theorem 3.2.1 Letn € {1,...,N} and assume r > 5/2. Suppose that the function § satisfies
the following conditions for all z € N:

(i) 20(2) < (z+1)0(z+1).
(i) If z > 2, then

e §(z) < 2(m — 3) implies (m —6)d(z) + 2(m — 3)r > 0 and
e §(z) > 2(m — 3) implies n{(m —6)d(z) +2(m — 3)r} > (2 — 1){d(2) — 2(m — 3)}.

Then the shrinkage estimator 13(5) dominates the UMVU estimator f)U under the loss Ly (d,p)
given by (3.1.8).

For example, if §(X..) = ¢o for some constant 0 < ¢g < 2(m — 3), conditions (i) and (ii) are
satisfied provided that m > 6(r + cp)/(2r + o). Also, condition (i) is satisfied if §(X..) =
c1 + c2/X.. for some constants ¢1,ca > 0 when X.. > 1.

Next, we construct an empirical Bayes estimator. Lemma 3.2.1 below states that the shrink-
age estimator 15(5) coincides with a Bayes solution in a simple case. Let 5(a0)(X ) =ag+m.

Lemma 3.2.1 Suppose ag > max{—m,—r}. Then the shrinkage estimator f)(5<a0)) 1s a Bayes
solution with respect to the prior (3.1.4) with a = 5™ under the loss (3.1.3) for every n €

{1,...,N}.

The conditions ag > —m and ag > —r ensure, respectively, that p shrinks toward the
origin and that the posterior distribution is proper. If r > 5/2 and 0 < agp < m— 6, the

5(50))

estimator p(5( V) — = (Xiy/(r4+ao+X., +m—1))i<i<m, 1<v<n is proper Bayes by Lemma 3.2.1
and dominates the UMVU estimator by Theorem 3.2.1.

An empirlcal Bayes estimator is obtained by first assuming ay > 1 and then substitut-

(5(0))

ing for ag in p an estimator based on the marginal likelihood of p under the prior cor-

responding to p(‘s( ). More specifically, when ag > 1, the prior expectation of the mean
E[X.] = N ™ rpi/po, with respect to the Dirichlet prior (3.1.4) with @ = 5™ is
given by
/ { H Diry, (p,|ag, 7™ }dp ZZ / H Dty (p,]ao, 5 ))}dp
N pOV
m' v=1i=1 m V=1
_ Nmr
Cap—1"

Thus, an estimator of ag is obtained as Gy = 1+ Nmr/X.. and our empirical Bayes estimator is

~EB ( Xi,u )
r+X., — 14 0B(X. )/ 1<i<m, 1<v<N’

(agp)
b (pz,]?)1<z<m 1<y<N = p((s ’ )’ao a9 —

(3.2.3)
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where

SB(X.)=1+m+ Nmr/X..

B

when X.. > 1 and §¥B(0) € (1 +m + Nmr, c0).
The following corollary gives a sufficient condition for p*B to dominate the UMVU estimator.

Corollary 3.2.1 Suppose that m > 7 and that r > 5/2. Then P8 is an empirical Bayes
estimator dominating the UMVU estimator p¥ under the loss Ly(d,p) given by (3.1.3) for
everyn € {1,...,N}.

It is worth noting that the condition given in the above corollary is independent of n, which
shows some robustness of the empirical Bayes estimator p*°. Additionally, recall that r, m, and
N can vary independently in our setting. When applying Corollary 3.2.1, we do not have to set
N > m,r, nor do we need to assume r > m.

The UMVU estimator corresponds to ag = —m since limg,—,_p, 13(6(%)) = pY (when r >
m). However, the empirical Bayes estimator pPB was derived under the assumption that ag >
1. Indeed, we have ap > 1 since all the elements of the observations X = (Xq,...,Xy)

are nonnegative. Thus, there is a discrepancy in the support of ag between the usual Bayes
estimator and the empirical Bayes estimator. On the other hand, in the case of hierarchical
Bayes estimation, a mixture of the priors p ~ H,],V:1 Dirp,(p, s, j(m)), s > —m, will be considered
in the next section.

3.3 Hierarchical Bayes Estimation

In this section, we first introduce a shrinkage prior for p and investigate its properties (Section
3.3.1). Next, using the prior, we construct a hierarchical Bayes estimator that dominates the
UMVU estimator under some conditions (Section 3.3.2). Finally, some remarks about posterior
computation are presented (Section 3.3.3).

3.3.1 A hierarchical shrinkage prior

For p = ((p1,1,- -+ Pm1) ooy (PN -5 PmN) 1) € D™ and poy = 1 —pp = 1= 30 piss
ve{l,...,N}, let

00 N m
Taf,9.a0,a(P) = / t“‘le‘ﬁtg(t){ I1 (po,y”“o‘l 11 pi,y‘“‘l) }dt, (3.3.1)
0 v=1 i=1

where a« > 0, f > 0, g: (0,00) — (0,00) is a bounded and smooth function, ay € R, and
a=(a,...,am)" € (0,00)™. When g = g1, where g;: (0,00) — (0,00) is the function defined
by g1(t) =1, t € (0,00), the prior (3.3.1) becomes

Ta,B,91,a0,a(P) = F(Ot){ ﬂ (po,ua‘)*l ﬁpz‘,ya"l) }/ (B - élog Piu

v=1 i=1

)a. (3.3.2)

It can be seen that
m N

N
lim TeBora0a(P) _ I1 <poyyao—1 praﬂ) x [ [ Dirm(p,|ao, a)

a0 F(a) v=1 i=1 v=1
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and that the denominator of (3.3.2) tends to infinity as min{po 1,...,po,n} — 0. Thus, 74 3 g.a0,a(P)
is a shrinkage prior based on the Dirichlet distribution. Furthermore, if m = 1, N > 2, and

(A,0) ~ e=(@=DA where A = S0 log(1/po,s) and 6, = {log(1/po,)}/ SN _ log(1/po),

N — N -
ve{l,...,N—1}, then p~ ([[)_; pop,® 1) /{ > 1log(1/poy)} OC TN—-1,0,g1,a0,1(P)-
Let a. = >, a;. Necessary and sufficient conditions for propriety of the prior and posterior
distributions are as follows:

Lemma 3.3.1
(i) The prior (3.3.1) is proper if and only if either

e ap >0 and [t Ne—le=Blg()dt < oo or
e ap =0, fol to=N=1le=Plg(t)dt < oo, and [;°t~Na~le=Flg(t)dt < oo.

(ii) Under the prior (3.3.1), the posterior distribution of p given the observations X = (x1,...,ZN)
is proper for all x1,...,xy € No™ if and only if either

o r+ag>0, [[FteNeTle=Plg(t)dt < oo or
e r+ag=0, fol tomN=le=Plg(t)dt < oo, and [~ No~te=Flg(t)dt < oo.

When the condition of part (ii) of Lemma 3.3.1 is satisfied, we will simply say that the posterior
is proper. For example, when g = g1 and either a« < Na. or 5 > 0, the prior (3.3.1) is proper if
ag > 0, while the posterior is proper if r +ag > 0. It is also worth noting that even when ag < 0
and the prior is improper, the condition for posterior propriety may still be satisfied.

The prior (3.3.1) is related to shrinkage priors in the Poisson case. Specifically, if m = 1
and A = (A1,...,An) = (log(1/po1),...,log(1/pon)) = O(N)T, where 0V) = (0,...,0)T € RV,
then A\ is approximately distributed as

N

o0 N o
~ a—1_-—pft —Av\t+a _ —X\ai1—1 ~ Va -1 a—1_—t(B+A.) ,
A /0 e g [Ty oo —eynYan (V||1A ; )/0 ol o)t

v=1

(3.3.3)

where \. = Zf/v:l Av. The density (3.3.3) corresponds to the prior considered by Ghosh and
Parsian (1981) when a; = 1, to that considered by Komaki (2004) when 5 =0 and g = g1, and
to that considered by Komaki (2006) when a = ma; — 1, 8 =0, and g(t) = {t/(1 + xt)}¢* for
all t € (0,00) for some ¢ > —may and £ > 0. However, in order to prove the results in the next
subsection, we need to extend the technique of the proof of Theorem 1 of Komaki (2015), who
considered an unbalanced problem.

3.3.2 Dominance results

In order to derive an explicit form of a Bayes solution with respect to the prior (3.3.1), we define

00 N T
K(a,g,0.60.6) = [ et (o 11 el ar (3.3.4)
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for § > 0 and & = (&1,...,&n)" €[0,00)Y and we let 5V = (1,...,1)T € RY. For now, we

consider the case of ag = —m and a = j(m) and assume that either

oo
r>m and / o Nm=1=8tg (1) dt < oo (3.3.5)
1
or

1 o)
r=m, / tN=Le=Ply(t)dt < oo, / teNm=Le=Blg(1)dt < 0. (3.3.6)
0 1

Then, by Lemma 3.3.1, the posterior under the prior p ~ 7_ B9 —m.m) (p) is proper, K (o, 3, g,7—
m,z +mj(N)) < oo for all z € No™, and K(a + 1,8,9,7 — m,z + mj(N)) < oo for all
z e NoV \ {0V},
Define the function §(%9): No» — (0, 00] by
K(a+ 1,,8,g,r—m,z+mj(N))

5(07579) z) = s z GN N.
B = e Bogrr — oz mg ™) ’

Let, for : € {1,...,m} and v € {1,..., N},

Xz' v .
: , it X, >1,
ﬁgiﬂyg) _ r+ X.’V — 14 5(0(,5,9) (X) W =
0, if Xi’,/ =0,
Xi,zz

- 3.3.7
r+ X, — 1+ 0B (X)) (3.3.7)

and let f)(a’ﬁ’g) = (ﬁgijﬁ?g))1§i§m7lgygj\[. Then ﬁ(o"ﬁ’g) is our hierarchical Bayes estimator.

Lemma 3.3.2 Suppose that (3.3.5) or (5.5.6) holds. Then the shrinkage estimator p'*™9) is
a Bayes solution with respect to the prior (3.3.1) with ag = —m and a = j(m) under the loss
(5.1.3) for everyn € {1,...,N}.

The term 6(*#9)(X.) is at once expressed in closed form and symmetric in Xoi,..., XN
Deriving such terms will be less straightforward in the case of empirical Bayes estimation except

for those that are dependent only on X. ..

Let e(yN) denote the vth unit vector in RY, namely the vth column of the N x N identity

matrix, for v € {1,..., N}. The function §(B.9) satisfies the following properties.

Proposition 3.3.1 Let z = (z1,...,2y) € No» and suppose that (3.3.5) or (3.3.6) holds.
(i) We have 0 < §(*59)(z) < oo. Furthermore, 559 (z) = 0o only if z = 0N,
(i) Letv € {1,...,N}. Then 659 (z) > 559 (z 4 e,(,N)).
(iii) Let v € {1,...,N}. Then limysp_seo 659 (2 + kelM) = 0.
(iv) Suppose that r > m, that lim;_0g(t) = g(0) € (0,00), and that « +1 < N. Then
limpy 15k 500 [0 (2 + ki ™) /{(@/N) /log kY] = 1.
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Properties (iii) and (iv) above are in contrast to the fact that lim, ,o 6*B(2) =1 +m > 0.
The following theorem provides a sufficient condition for f)(“ﬁ 9) to dominate pY.

Theorem 3.3.1 Let n € {1,...,N}. Assume that (3.3.5) or (3.3.6) holds. Assume that g is
nonincreasing. Suppose further that

a+ 1 < min{n(m —2),nm/2 + Br}. (3.3.8)

Then f)(a’ﬁ’g) 1s a hierarchical Bayes estimator dominating the UMV U estimator j)U under the
loss Ly (d,p) given by (3.1.3).

There exist a > 0 and § > 0 satisfying assumption (3.3.8) if and only if n(m — 2) > 1. When
r = m and g is nonincreasing, the condition fol ta*Nfle*thg(t)dt < 00 becomes « > N. Even if
r = m, the conditions of Theorem 3.3.1 can be satisfied when m is sufficiently large.

In the remainder of this subsection, we consider the problem of estimating p under the loss
(3.1.6), a weighted version of Stein’s loss, in order to show some robustness of our prior. Since
the risk function of the UMVU estimator pV is not defined under the loss (3.1.6) as well as
under Stein’s loss, we first derive the Jeffreys prior.

Lemma 3.3.3 The Dirichlet prior (3.1.4) with ag = (1 —m)/2 and a = ™ /2 is the Jeffreys
PTIOT.

We note that if Stein’s loss is used instead of the loss (3.1.6), the posterior risk with respect to
the Jeffreys prior is identically infinite when at least one component of the matrix (X,..., X,)
is 0.

Next we show that under the loss (3.1.6), Bayes estimators are obtained as posterior means
of p.

Lemma 3.3.4 Let p ~ 7(p) be a strictly positive prior density and assume that the posterior is
proper, that is, that fDmN { ijvzl NM,,, (x,|r, py)}w(p)dp < oo forall xq,...,zNn € Ng™. Then
the posterior mean of p is a Bayes solution under the loss (3.1.6) for everyn € {1,...,N}.

The posterior under the Dirichlet prior (3.1.4) is proper if and only if 7 4+ ag > 0, in which
case the posterior mean of p is

Xiy+a; )
r+ap+ X, + a./1<i<m,1<v<N’

f)(ao,a) _ (A(CLO,G)

D, )1<i<m,1<v<N = ( (3.3.9)

The posterior under the hierarchical prior (3.3.1) is proper if and only if the condition of part
(ii) of Lemma 3.3.1 is satisfied. In this case, the posterior mean of p is

Xy +a;

i)(avlg:gya()»a) — (A(a,ﬁ,g,ao,a) )
4 ag+ X, + a. + 500900 (x )/ 1<i<m, 1<v<N

iy )1<i<m,1<v<N = (

where (9904 NN (0,00) is the function defined by

. N
51(/0»5:9@0"1)@) _ K(a+1,8,9,7 + aop, z + a.j ™ + e,(, ))7 z e NV,
K (o, 8, 9,7 + ag, z + a g™ + el
for v € {1,...,N}. Some properties of the functions 5£a’5’g’a°’a), v e{l,...,N}, are given in

the following proposition, which corresponds to Proposition 3.3.1.
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Proposition 3.3.2 Let z = (z1,...,2x) € No™ and v € {1,...,N}. Suppose that the condi-
tion of part (ii) of Lemma 3.5.1 is satisfied.

(i) We have 0 < 5(Va’ﬁ’g’a0’a)(z) < 0.
(ii) Let v/ € {1,...,N}. Then 57900 (z) > slebaca) 4 o)y
(i) Let v/ € {1,...,N}. Then limysg_oo 5L g’ao’a)( + /{:el(,],v)) =0.

(iv) Suppose that r + ag > 0, that limt_,o g(t) = g(0) € (0,00), and that « +1 < N. Then
mi 115100 557790 (2 4 k5 ) /{0 V) log k)] = 1.

Theorem 3.3.2 provides a sufficient condition for p(*#9%0®) to dominate p%® under the
loss (3.1.6).

Theorem 3.3.2 Letn € {1,...,N}. Assume that the condition of part (ii) of Lemma 3.3.1 is
satisfied. Assume that g is nonincreasing. Suppose further that ag + a. +1 > 0 and that

a+1<n(—ay—2). (3.3.10)
Then pl*59:90:2) dominates P under the loss Ly(d, p) given by (3.1.6).
In particular, we have the following result for the case of the Jeffreys prior.
Corollary 3.3.1 Letn € {1,...,N}. Assume that either
e 7> (m—1)/2 and [ZtoNele=Plg(t)dt < oo
or
e r=(m—1)/2, a >N, and [[toNo"le Plg(t)dt < cc.
Assume that g is nonincreasing. Suppose further that
a+1<n(m-—>5)/2. (3.3.11)
Then ﬁ(a’ﬂ’g’(l_m)m’j(m)m dominates ﬁ((l_m)/2’j(m)/2) under the loss Ly (d,p) given by (3.1.6).

3.3.3 Posterior computation

In order to approximate the integral

o0 AR
K(Chﬂ?g:f(bg) = /(; ta_le_ﬁtg(t){ 1_[1 M}dt’

we could in principle use i.i.d. gamma variables (when 8 > 0) or rewrite the integral as

K (@, 8,9.60.€) = /01 (755)" e rimag () H T w/wl/_l;i);i))fy)}u o
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and use i.i.d. uniform variables, for example. However, this can be numerically unstable because
the gamma function appears in the integrand. If &€ € No¥, the problem would be alleviated to
some extent by using the relation

N

t+§0+§u (t+&) - (t+&+E&—1)

v=1

I:I

v=1

for all ¢ € (0,0).

When g = g1, a more convenient way to compute the hierarchical Bayes estimators in the
previous subsection is to use MCMC samples since they are functions of posterior expectations.
In order to describe a Gibbs sampler, we introduce a fully conjugate prior. For a > 0, 8 > 0,
ap € R, and (a1,...,ay) = ((a1,1,--- ,amJ)T, el (aLN,...,am,N)T) € (0,00)™N et

N m
m(p,tle, B, a0, a1, ..., ay) =t e Pt H <p07,,t+“°_1 Hpiyyaiv”_l) (3.3.12)
v=1 i=1

and

n(pla, B, a0, a1, ...,ay) = F(a){ ﬁ (po,uaofl ﬁpi,uai’”l) }/(
v=1 i=1

where ¢ € (07 OO) and where D = ((pl,h cee apm,l)Ty ceey (pl,Na s >pm,N)T) S DmN and Pov =
1 =" piyforve{l,...,N}. When a; = --- = ay = a, the prior (3.3.13) becomes the
original prior (3.3.2).

Some basic properties of the priors (3.3.12) and (3.3.13) are summarized in the following
proposition. Let a., = > "  a;, for v € {1,..., N} and let a.. = 25:1 a.,.

1 \a
O’V) . (3.3.13)

Proposition 3.3.3 The priors (3.3.12) and (3.53.13) satisfy the following properties:

(i) The following statements are equivalent:

° fDme(o,oo) (p,tla, B, a0, a1,...,ayn)d(p,t) < co.

° fDmN m(pla, B, ag,a1,...,an)dp < co.
e min{max{ag,« — N}, max{a.. — o, f}} > 0.

(ii) If p ~ 7(p|e, B,a0,a1,...,aN) and (x1,...,ZN)|D ~ ijvzl NM,,,(z,|r,p,), then
pl(xi,...,xN) ~ w(pla, B, 7 + ap,x1 + @1,..., TN + an).

(iii) If (p,t) ~ w(p,t|a, B,ap,a1,...,an), then p ~ w(pla, 5,a0,a1,...,aN).

(IV) If (p)t) ~ W(p,t|0[,5, ap, at, - - .,(IN), then

N
. 1
plt ~ H Dir,, (p, |t + ag,ay), t|p~ Ga( ‘oz B8+ Zlog o, )
v=1 v=1 v
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Part (ii) of Proposition 3.3.3 shows that the prior (3.3.13) is conjugate. Furthermore, part
(iii) of the proposition shows that in order to generate samples of p from the prior (3.3.13),
it is sufficient to sample from the joint prior (3.3.12). Therefore, we describe a Gibbs sam-
pler for (3.3.12) based on part (iv) of the proposition. In order to generate MCMC sam-
ples corresponding to (3.3.12) when it is proper, given a current sample of (p,t), denoted by

(D,t) = ((Piv)1<i<m,1<v<N,t), we generate a new sample as follows:
e sample t* ~ Ga(t‘oz, B+ Z,]jvzl log {1/(1 -y ]51"1,) }),
e sample p* ~ Hivzl Dir,, (p, [t* + ag, a,).

Then samples of p can be used to approximate expectations of functions of p ~ w(p|a, 8, ag, a1, ..., an).
Also, samples of ¢ may be used to approximate §(“%9)(z) and (5£a’5’g’a0’a)(z), ze NN, v e
{1,...,N}, even if g # g.

3.4 Simulation Study

In this section, we investigate through simulation the numerical performance of the risk functions
of the Bayes estimators given in the previous two sections under the standardized squared error
loss given by (3.1.3) with n = N. The estimators which we compare are the following four:

U: the UMVU estimator pU given by (3.2.1),

EBO: the alternative empirical Bayes estimator which estimates pq,...,py independently

based on X 1,. .., X y, respectively, namely p50 = (Xip/(r+ X, +m+mr/X. ,))i<i<m, 1<v<N,

EB: the empirical Bayes estimator p=> given by (3.2.3),
HB: the hierarchical Bayes estimator p''° = p(®191) given by (3.3.7) with (8,9) = (1, 91).

We consider the following cases:
(i) Tet (r,m, N) = (8,7,1), a = 4, and p = p)(1), pV(2), p¥)(3), where

pM)=(1,1,1,1,1,1,1)7/8, pM(2)=(1,1,1,1,2,2,2)" /12, pM(3)=(2,2,2,2,1,1,1)7 /12.

(i) Let (r,m,N) = (8,7,3), a = 14, and p = p(1), p?(2), p'?(3), where

pP (1) =((1,1,1,1,1,1,1)"/8,(1,1,1,1,1,1,1) " /8,(1,1,1,1,1,1,1) T /8),
pP(2)=((1,1,1,1,2,2,2)"/12,(1,1,1,1,1,1,1) T /8,(1,1,1,1,2,2,2) T /12),
pP3)=((1,1,1,1,2,2,2)" /12,(1,1,1,1,1,1,1) 7 /8,(2,2,2,2,1,1,1) " /12).
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(111) Let (’l“, m, N) = (47 3, 7)7 a =6, and p = p(3)(1)’p(3) (2),p(3) (3)7 where

1 1 1 1 1 1 1
pPy=|(1]/4a (1]/a [1]/a |1]/a [2]/a [1]/a [1] /4],

1 1 1 1 1 1 1

1 1 1 1 1 1 1
pP@)=|(1]/6 (1|6 [1|/a [1]|/a |1])/a |1]/6 |1]/6],

2 2 1 1 1 2 2

1 1 1 1 1 2 2
p®¥@)=||(1]/6 (1|6 [1|/a [1]/a [1])/a |2]/6 |2]/6

2 2 1 1 1 1 1

(iv) Let (r,m,N) = (2,1,7), a =6, and p = p¥) (1), p*)(2), p*(3), where

pW) = (1/2,1/2,1/2,1/2,1/2,1/2,1/2), pW(2) = (1/3,1/3,1/2,1/2,1/2,1/3,1/3),
pW(3) = (1/3,1/3,1/2,1/2,1/2,2/3,2/3).

Case (ii) is a case where m > N while Case (iii) is where m < N. Case (i) corresponds
to a single negative multinomial observation while Case (iv) corresponds to multiple negative
binomial observations. Table 3.1 summarizes whether the sufficient conditions for dominance in
Sections 3.2 and 3.3 are applicable.

Table 3.1: Whether or not the conditions for dominance are satisfied by the alternative empirical
Bayes estimator (EBO), the proposed empirical Bayes estimator (EB), and the hierarchical Bayes
estimator with (3,g9) = (1,91) (HB). When one of the conditions is satisfied, + is marked, and
— is marked otherwise.

Case EBO EB HB
(i) + +
(ii) + +

+ + +

iii

(iif)
(iv) - - -

For each estimator p, we obtain approximated values of the risk function E[Ly(p,p)] by
simulation with 1,000 replications. The hierarchical Bayes estimator P8 was computed based
on the Gibbs sampler described in Section 3.3.3 by generating 50, 000 posterior samples after dis-
carding the first 50,000 samples. The percentage relative improvement in average loss (PRIAL)
of an estimator p over pV is defined by

PRIAL = 100{ E[Lx(pV, p)] — E[Ln (D, p)]}/E[LNn®BY, D).

For Case (i), Table 3.2 reports values of the risks of the estimators with values of PRIAL
given in parentheses. Since PPBY and p*P are identical, they have the same values of PRIAL.
Although the dominance of p''® over pV is guaranteed, the difference in risks between the two
estimators is small. It is clear from the values of PRIAL that p*° and p*® are superior to pH>

in this case.
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Table 3.2: Risks of the UMVU estimator (U), the alternative empirical Bayes estimator (EBO),
the proposed empirical Bayes estimator (EB), and the hierarchical Bayes estimator with (3, g) =
(1,91) (HB) for Case (i). Values of PRIAL of EBO, EB, and HB are given in parentheses.

p U EBO EB HB
pM(1) 011 0.10(7.58) 0.10(7.58) 0.10(2.86)
pM(2)  0.15 0.13(11.15) 0.13(11.15) 0.14(4.59)
)(3)  0.07 0.07(4.92) 0.07(4.92) 0.07(1.75)

For Case (ii), Table 3.3 reports values of the risks and PRIAL. In all cases, the risk values
of p¥BY are smaller than those of p''B, and the risk values of p*® are still smaller. These three
estimators have the largest values of PRIAL when p = p(z)(2). Also, it can be seen that in the
balanced case of p = p(2)(1), the risk values of the three estimators are smaller than those of
PV even when the loss is (3.1.3) with n = 1.

Table 3.3: Risks of the UMVU estimator (U), the alternative empirical Bayes estimator (EBO),
the proposed empirical Bayes estimator (EB), and the hierarchical Bayes estimator with (3, g) =
(1,91) (HB) for Case (ii). Values of PRIAL of EBO, EB, and HB are given in parentheses.

P U EBO EB HB
pP (1)  0.32 0.30(7.18) 0.29(7.91) 0.31(3.70)
p?(2)  0.39 0.35(9.65) 0.35(10.61) 0.37 (5.17)
pP(3)  0.32 0.29(9.10) 0.29(9.92) 0.31(4.15)

For Case (iii), Table 3.4 reports values of the risks and PRIAL. Although the empirical Bayes
estimators do not satisfy the condition of Corollary 3.2.1, p™2° is competitive with p"® and p=B
is superior to p'B. Importantly, even if the loss is (3.1.3) with n = 1, p*® has smaller values of
risks than pPB0 when p = p®)(1).

Table 3.4: Risks of the UMVU estimator (U), the alternative empirical Bayes estimator (EBO),
the proposed empirical Bayes estimator (EB), and the hierarchical Bayes estimator with (3, g) =
(1,91) (HB) for Case (iii). Values of PRIAL of EBO, EB, and HB are given in parentheses.

P U EBO EB HB
pBl(1)  1.21 1.16(4.25) 1.10(9.27) 1.14(6.16)
p®(2)  1.44 1.30(9.90) 1.23(14.82) 1.32(8.55)
p®)(3)  1.22 1.15(6.21) 1 08(11 58) 1.14(6.87)

Finally, Table 3.5 reports values of the risks and PRIAL for Case (iv). The estimators prB
and p'B do not satisfy the conditions for dominance but their risk values are smaller than those
of pY. In particular, p''® has large values of PRIAL. In contrast to Case (i), P8 is superior to

PPBY and p*B in the present case where N is much larger than m.
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Table 3.5: Risks of the UMVU estimator (U), the alternative empirical Bayes estimator (EBO),
the proposed empirical Bayes estimator (EB), and the hierarchical Bayes estimator with (3, g) =
(1,91) (HB) for Case (iv). Values of PRIAL of EBO, EB, and HB are given in parentheses.

P U EBO EB HB
p®(1) 1.34 1.38(—3.35) 1.33(0.75) 1.00(24.99)
pW(2)  1.72 1.32(23.43) 1.30(24.39) 1.11(35.47)

)(3)  1.36  1.28(5.78) 1.23(9.62) 0.97(28.42)

3.5 Discussion

In this chapter, we considered the simultaneous estimation of negative multinomial parameter
vectors and in particular derived empirical Bayes and hierarchical Bayes estimators which, under
suitable conditions, dominate the UMVU estimator for the loss (3.1.3). The focus was on
their basic properties in the relatively simple setting of this chapter. There are several related
problems that need to be further addressed and some of which are briefly discussed in this
section.

3.5.1 Inadmissibility of the UMVU estimator

Corollary 3.2.1 shows that the UMVU estimator pU is inadmissible under the loss (3.1.3) for
every n € {1,..., N} whenever m > 7 and r» > 5/2. On the other hand, Theorem 3.3.1 shows
that pU is inadmissible for the loss (3.1.3) if either 7 > m and n(m —2) > 1 or 7 = m and
n(m —2) > N + 1. Thus, if n > 2, the UMVU estimator p" is inadmissible for large m when
r > 5/2 while it is inadmissible for large r when m > 3. It is also interesting to investigate
admissibility of pU for small r and m, which will be studied in a future paper.

3.5.2 Empirical Bayes estimation under the loss (3.1.6)

One empirical Bayes estimator under the loss (3.1.6) would be

ﬁ(ao,a) _ ( Xi,zz + ai~ )
r+ap+ X., +a + 6@0e)(X. )/ 1<i<m, 1<v<N’

where

§laoa) (x. ) = l1—ap+ Nra./X. ., %f X.. >1,
7 O) lf X.y‘ = O

Although the empirical Bayes estimator (3.2.3) performed better than the UMVU estimator
in all of the four cases of Section 3.4, the risk values of the above empirical Bayes estimator
p(@:9) were larger than those of (%) defined in (3.3.9) when we conducted a similar simulation
study, where ag = (1 —m)/2 and @ = 5™ /2 as in Lemma 3.3.3. This might be partly because
5(20:@)(X. ) is too large when X.. > 1, since the loss (3.1.6) penalizes small components of each
estimator. On the other hand, if we set ag = —m and a = j(m) as in Section 3.4, p{%®) performs
well compared with p(ao’ @) in several cases as shown in Table 3.6, which reports values of the
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risks and PRIAL of these two estimators. In Table 3.6, the settings are as in Section 3.4, B
and EB' denote f)(ao’a) and pl20:9) respectively, and the PRIAL of pla0:2) gyer f)(ao’a) is defined
analogously to that considered in Section 3.4.

Table 3.6: Risks of the Bayes estimator $(@%) with ap = —m and @ = ™ (B (B) and the empirical
Bayes estimator p(®® with a9 = —m and a = j™ (EBT) for the four cases of Section 3.4.
Values of PRIAL of EB' are given in parentheses.

P B EBf
pM(1)  0.05  0.05(8.20)
pM(2)  0.06 0.06(11.30)
pM(3) 0.03  0.03(4.86)
p? (1) 0.15  0.14(8.50)
p?(2) 018 0.16(11.78)
p@(3) 0.5 0.13(10.31)
pB(1) 047  0.43(7.48)
p®)1(2)  0.54 0.45(16.31)
pB)(3) 047 0.41(12.74)
p@® (1)  0.27 0.43(—57.03)
p®(2) 046 0.38(18.15)
p™®(3)  0.33 0.37(-12.12)

3.5.3 Extensions to unbalanced models

So far, we have mostly considered symmetric or balanced cases except that n can be smaller
than N and that aq,...,a, might differ in general. More general unbalanced models will also
be important. As an example, suppose that X1 ~ NM,,(r1,p1),..., XN ~ NM,,(rn, py) for
r1,...,7n > 1. Then a straightforward generalization of Theorem 3.2.1 is that (X;,/(r, +
X.» —1))i<i<m, 1<v<n is dominated by (X;,/(r, + X., — 14 0(X..)))1<i<m, 1<v<n under the
loss (3.1.3) if ri,...,7ny >5/2, 20(2) < (2+1)d(z+ 1) for all z € N, and

e (7/1)%0(z) < 2(m — 3) implies {2m — 6 — (7/r)?>m}é(2) + 2(m — 3)r > 0,

e (7/1)%5(z) > 2(m—3) implies n[{2m —6— (7/r)?>m}é(2) +2(m—3)r] > (2 —1){(F/r)?5(2) —
2(m —3)}

for all z € N\ {1}, where r = min{ry,...,rn} and 7 = max{ry,...,rn}.

There are other possible extensions. For example, since the marginal distribution of any set
of components of a negative multinomial random vector is also negative multinomial, it will be
worthwhile to consider the more general case where the lengths of X1,..., X y may not be the
same. Weighted loss functions could be used. Also, we could use more than one function instead
of 6 and replace X.. with some linear combination of components of X. A generalization of the
prior (3.3.1) is obtained by introducing another hyperparameter, v = (y1,...,7n) ' € (0,00)",
and replacing po ' with pg, 7" for t € (0,00) for each v € {1,...,N}.
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3.6 Appendix: Proofs

Let 00" = (0,...,0)" € R™ and 00™N) = 0o T ¢ RMXN | Lt el(»m) be the ith unit vector

in R™, namely the ith column of the m x m identity matrix, for i € {1,...,m}. Let e(m N —

-
¢=3Z(””L)(e,(,N))T € RN for i € {1,...,m} and v € {1,...,N}. Further let 51‘(,]‘) = eg ™) e§ ™ for
» N) _ T (V) ' — (0 Vi
i,j€{l,...,m}and let 6, , =ey, ' e, forv,v €{l,...,N}. For v = (v;,)i<i<m,1<v<N €

Rme Rme

and ¥ = (vl7,,)1§z§m71§,,§N € , we write the inner product ijvzl ot Ui Uiy as
v - 0. The following result is due to Hudson (1978).

Lemma 3.6.1 Let h: Ng™ N — R and suppose that either h(z) > 0 for all = € Ng™ or
E[lh(X)|] < oo. Then for all i € {1,...,m} and all v € {1,...,N}, if h(x) = 0 for all
= (2j)1<j<m,1<v/<N € No™N such that x;, =0, we have

h(X) r+ X. v (m N)
E[ } - E[ Y (X .
Div Xi,l/ + 1 ( + e )
Proof. We have
N
h(X h(x
E{ ]5 )} - Z p(' : H NMy (@, |, p,/)
i,V e=(@1,..@N)EN™ N ze Er: N)7£0 2L
= ) - 2 1] NMou (@ lr.p,)
iy NM v\, H v
x=(x1,...,xn)ENg™*N p’ (:U |T pl’) V=1
r+ X ( N)
- E[ Y (X ,
Xyt 1 (X +e,"")
which proves the desired result. O

Proof of Theorem 3.2.1. Let AlY = E[L,(p,p)] — E[L,(»Y,p)]. For v € {1,...,N}, let

) B I(X..)
o (X) = r+ X, —1+6X.)

so that for every i € {1,...,m},

~(0 ~U
pl(',,,) =D; v pz V¢(5 ( )

Then, by Lemma 3.6.1, we have

AP = B[ (L1060 (00017 206076 (0] + 260,60 ))
v—1i=1 Piv
_ n m X1V+1 ) (m,N) . Xi,u+1 ) (m,N) . )
=F ;;[T—FX (X+6 )} 27“—|—X.’ gb (X—|—e )+2pgu¢y6 (X)}:|
=E Z{IU 210)(X) + 21{)(X)}],
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where

I@(a:) _ >in 33;;,/ + m{ §( Sy S @ + 1) }2’
, T T L T a8 S @+ 1)
1) () = i Tiy & m SN S a4 1) |
, T+ T o+ S i+ §( 25:1 S i+ 1)
Iéé)( ) = 2 im1 Tiw §( S i) |

T T, — Ly 4 S wi,— 1+ 5( Z]jzl > xi,yl)
for @ = (i) 1<icm1<w<n € No™ N for each v € {1,...,N}. Since S0 {1°)(0(™N)) —
212(63( (m.N)y 4 2I(6)( (mN))} < 0, it is sufficient to show that Zﬁzl{lfég(w) - 2[5?3(:1:) +
2I3y( x)} <0 for all x € Ng™ N\ {0(mN)1,

Fix x = (zi1)1<i<m, 1<v<N € NngN\{O ’N)}. For notational simplicity, let z, = Y /" @i,
for v € {1,...,N} and let z = 3" z,. Then for all v € {1,..., N} such that z, # 0, since

z+1 zy+1

i(z) < . iz+1) < . 0(z+1),
we have
() Zy 0(2)
I _
30(@) r4+z,—1r+z,—14+4d(2)
2y (z + 1)o(z+ 1) < 2y +3 0z+1)

<
“rt+a-lart+z, -+ (0 +10)0(z+1) T r+zr+z,+0(z+1)

where the second inequality follows from the assumption that » > 5/2. Therefore,

Z{fl,, ) =200 () + 213 ()} < 1O(x),

1 d(z+1)
10(z) = A0z +1) —2(m —3)} — (m — 6)6(2 + 1) — 2(m — 3)r] ).
@ =3 (s o el + 1) = 20m =3} = (m = 63+ 1) = 2(m = 3)7])
Suppose first that §(z 4+ 1) < 2(m — 3). Then I (x) < 0 by assumption since z 4+ 1 > 2. On

the other hand, if §(z 4+ 1) > 2(m — 3), then, by the covariance inequality,

n

@ (gy < L[ 1 o+ 1)
I ()Sn_gr+zy{r+%+5(z+1)}2}

X

(") 160+ 1) = 20m = 3)} — n{(m — 6)6(= + 1) +2(m — 3)r}

v=1
n

1 dz+1)
; T+ 2, {r+zy+6(z+1)}2}
X [2{0(z+1) —2(m —3)} —n{(m —6)6(z+ 1) +2(m — 3)r}].

The right-hand side of the above inequality is nonpositive by assumption. This completes the
proof. O

IN
S|
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Remark 3.6.1 In the above proof, we have shown that I,(f)(:c) = Zﬁzl{lfég(cc) — 2[2(?)(12) +

v

21:,(3) ()} < 0 for all & € Ng™*N. Conversely, this condition implies that m > 2 + §(c0)/2

Wheyn lim, o d(2) = 0(c0) € (0,00) and lim, o 2{d(2) — 0(z + 1)} = 0, which can be verified
by considering 221 (:Uj(m)j(N)T) for z € Ny and taking the limit as * — oo. (The proof is
omitted.) In particular, in the case of the empirical Bayes estimator pPB. the condition that
Ir(LéEB)(a:) < 0 for all & € Ng™ ¥ implies that m > 5, while it was assumed in Corollary 3.2.1

that m > 7.

Proof of Lemma 3.2.1. Let € = (z;,)1<i<m,1<v<N € Ng™*N and fix i € {1,...,m} and
v € {1,...,N}. The posterior mean of 1/p;, with respect to the observation X = x and the

prior p ~ [[_, Dity(p,/|ao, ™) o [T5_, po,®1 is given by

S (/P { T2y (popr™ 0TI pjr ™) Ydp

fDmN { Hz]/\le (pO,V’TJraO_l H;n=1 pj,l/’xj’”,) }dp
r+ap+x.,+m-—1

= '/*EZ',I/

El/piy| X =] =

) if Tip > 17
o0, if Tip = O,

where z., = Z’anl x;,. Similarly, the posterior mean of p;, is

N _ o
Bl — ] - 2 P s o™ I i)} e

fDmN { H;jj\f:l (pom a0t | i) bdp T a0t T, m

Therefore, for any d € R, the posterior expectation of the loss (d — pi,y)2/ Di» can be expressed
as

El(d = pin)*/pip| X = 2] = d*E[1/piy| X = @] - 2d + Elp;,| X = ],

which is minimized at

d— 1 . Tip
CEl/pi X =2 r+atr,+m-—1
Hence, p®"*) = (Xiv/(r+ao+X., +m—1))i<icm, 1<v<n is a Bayes solution. O
Proof of Lemma 3.3.1. Part (ii) follows immediately from part (i) since the poste-
rior given X = (@x1,...,xy) is proper for all ®1,...,xzxy € Ny if and only if that given

X = (00 ... 00™), namely p ~ 7o 5 4rtag.a(P), is proper. For part (i), let J(®F9.w0a) —
Jp, N Ta.p.g.a0.a(P)dp. Then we have

JlaBgana) _ / LBty () { B (t + ao, a) WV dt,
0

where

m D't + ao) [[}2, T'(a:)
B(t + ap, ) 2/ (156““’11113?“1)% =< TDlt+ag+a)
Drm i=1 00, if t +ap <0,

ift+ap >0,
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for t € (0,00). Therefore, a necessary condition for the prior to be proper is that ay > 0.
Suppose that ag > 0. Then

Jepome {0} = fedanoe) g jlesamna
i=1
where
« a 1 I'(t N
Jl( 7ﬁ7gv Ova) — / ta—le—ﬁtg(t){ ( + ao) } dt
0 I'(t+ao +a.)
and

o o L(t+ap) \N
syrsocon) - [Tt sty { it o) ar

The term Jl(a’ﬁ’g’ao’a) is finite if and only if either ag = 0 and fol te=N=le=Btg(t)dt < oo or
ap > 0 since lim;_,o I'(t + ag)/I'(t + ap + a.) = I'(ap)/I'(ap + a.) when ap > 0 and since I'(t +
0)/T(t+0+a)~t"1/I'(a)ast — 0 when ag = 0. The term Jéa’g’g’ao’a) is finite if and only if
[t Na=le=Ptg()dt < oo since T'(t+ ag)/T'(t+ ag+a.) ~ t~% as t — oo. This completes the
proof of part (i). O

Proof of Lemma 3.3.2. Let x = (xi,V)ISiSmJSVSN S NQmXN and fix 7 € {1, .. .,m} and
ve{l,...,N}. Then it can be verified that the reciprocal of the posterior mean of 1/p;, with
respect to the observation X = @ and the prior p~m, 5 iom) (p) is given by

Tiy ifae,,>1
1 _ r + ':L‘-,l/ _ 1 + 5(a’ﬁ7g)(m.)7 nY )
Ell/pip| X =2] | if 25, = 0,
where z., = Z] 1 %jp and @ = (ZTzl Tid,.--, Z;”:l a:j,N)T. Also, the posterior mean of p;,

is finite since 0 < p;, < 1 and the posterior is proper. Therefore, for any d € R, the posterior
expectation of the loss (d — p;,)?/pi,, can be expressed as

E[(d — pi)?/pi) X = @] = E[1/pi,| X = ] - 24+ Elpi,| X = a]
and is minimized at d = 1/E[1/p; | X = x|. Hence, (P9 is a Bayes solution. O

Proof of Proposition 3.3.1. Part (i) follows from the definition of the function §(®%9). Let,
for ¢ € (0, 00),

1 - t—i—r— )
1) = @ 1 ﬁt

For part (ii), suppose that 6(*%9)(z) < co. Then by the covariance inequality we have

00 0 t 00
5(a,6,g)(z)/5(a,6,g) (z + el(/N)) _ foootfa,ﬁ,g(t)dt/fooo t+7'1+z,, Ja,p,9(t)dt/ fooo Ja,8.9(t)dt > 1
fo fa,ﬁ,g(t)dt fo mfa,ﬁ,g(t)dt/ fo foc,ﬁvg(t)dt
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For part (iii), let £ € N. Then

00 t
5(‘“"8’9)(z " kel(,N)) _ fo (t+r4zp)(tFr+zo+k—1) faﬂ,g(t)dt

3 1 .
fo (t+r+zy)~~-(t+r+zy+k—1)fa”&g(t)dt
Fix € > 0. Then it follows that for each | € {0, 1},
o] l 0o #
fo (t+r+zu)"'(tt+r+zu+k—1)fo‘ﬂ:g(t)dt _ ‘ < fs (t+r+zu)- (t+r+zu+k—1)f0¢ﬁ7g(t)dt

£ #l /2

Jo FEr TR fase () Jo (t+r+z)- (t+T‘+Zu+k nfasaB)dl

cE24rtz)- (24 rtz+k-1) ) [7" ' fapg(t)dt
(€+r+zy)...(€+7‘+zlj+k—1) fE/Qtlfa’ﬁg()dt

T(e/24 7+ 2, + k) /T(e/2+7+2,) [Ztfapg(t)dt
Fle+r+z,+k)/Te+r+2z) fE/Qtlfaﬂg( )dt7

the right-hand side of which converges to zero as k — oo since I'(e /2+7r+2,+k) /T (e+r+2z,+k) ~
1/(e + 7+ 2z, + k)/? as k — oo. Therefore, as k — oo,

c L L 8.0(t)dt
5(0675’9)(2: n ke,(jN)) -~ f()8 (t+7“+zy)...(t1+7“+zy+k—1)f ﬁ:git;dt <e.

fo (t+r+20) - (t+r+z,+k—1) fa,ﬁvg

Since ¢ is arbitrarily chosen, we conclude that limysj_eo 6(*%9) (2 + k:el(,N)) = 0. For part (iv),
let k € N\ {1}. Then

5(aﬁ,g)(z+kj(N)) Jo (log k)t*e~ Py {Hu 1%}&
1/]0gk f ta—le— ﬁt {H M}dt

v=1 T(t+r+z,+k)
2 utepultoskg (L) (1Y r(u/logk+r mEtath) ) g,
f u@—1le—Pu/logk (

v=1 F(u/ log k+r+z,+k)I'(r+2z)

I'(u/log k+r—m F(r—l—z,,-l—k)
logk){ Hl/ 1 I'(u/log k+r+z,+k)T (r+2u) }d

Now for each [ € {0,1} and all u € (0,00), we have that

N
uaHfle*/BU/logkg< u ) 11 I(u/logk +r—m)l(r + 2, + k)
logk/ 12 I'(u/loghk + 1+ 2, + k)L'(r + 2,)

[SuptE(O,oo) {g(t) HJVV:1 %}]uo‘ﬂ_l

COIDL O+ EE - (0 L))
[ SUDPse(0,00) {9(1) I, %Huaﬂq

Hivzl {14 u(log %)/log k}

[supie(o00) {90 TIL ey Hus !

T ILL [+ uinfen quy { (log 2252 /log /]

9
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where the second inequality follows since

(1+u/10gk)x...x(1+M>zH “( 1 +...+;)
r+ 2y, r+z,+k—1 logk \r + z, r+z,+k—-1

U | r—+z,+k
0
log k & T+ 2z,

>1+

for every v € {1,..., N}, and that

N
. _ logk +r—m)I'(r +z, + k)
1 a+l— 1, Bu/logk u/
N\{l}lgllf—mo {u g(logk) 1;[ I(u/loghk +r+ 2z, + k)T (7‘—|—z,,)}
N
L(r—m) -1 ) L(r+z,+k)
=g(0 u™t 1
g ){ H F( +z,,)} Vl;IlN\{l}lgllc—mo I'(u/logk +1r+ 2z, + k)
N
_ L(r—m) pot—1g—Nu
—g(O){I/I;IIF( —i—zy)} € '
Thus,
i 8B (2 + kN [Fute™Nudu o
m —_
N\{l}lak—mo 1/logk fo ue—le=Nudy N’
and the result follows. ]

Proof of Theorem 3.3.1.  First, note that » > m > 3 by assumption. Let AP9
E[Ln(p "9, p)] — E[Ln(pY, p)]. For v € {1,...,N}, let

K(a+1,8,g,7—m,X. +mj™)

¢l(/a,ﬁ,g)(X) =94 K(a,8,9,7 —m, X. + mg(N) - e,(/N))’
0 if X, =0,

if X, > 1,

so that for every i € {1,...,m},

PP = pl, — Yol P9) (X)),

Then, by Lemma 3.6.1, we have

AlB9) = [2:2:(

v=1 =1 Piv

ER Pt i

v=1i=1 T+X7

DHOE PO (X} = 250,269 (X)) + 260,007 (X)) |

Xiv+1 m,N) .
2 ) (a7ﬁvg) 8 ( ? 2 U (avﬁvg) % :|:|
r »)i,y ¢V ( ez,y ) pz,y¢u ( )

= E[I%P9(X) - 21%79 (X)) + 21%79 (X)),
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where

I( ’69)( )— - x.,y—Fm{K(a—Fl”@’g,’r—m’w__|_mj(N)_|_el(jN)>}2
" v=1 T‘FZL’.W K(a,ﬁ,g,r—m,m,_ymj(m) 7
1(5:9) (g )_zn:$‘7,,+mK(a—|—1,ﬂ,g,r_m7m.+mj(N)+el(/N))
2n ) T+J;',V K(O[,ﬁ,g”r‘—m,m__}_mj(]v)) )
n
1089y = N T (B
s (@) ;T”V_1¢ (@),
-
and . = (2.1, 2.8) " = (T @1, i @in) for @ = (25,)1<i<m, 1<y € No™ .

Since I(a’Bg)(O(m’N)) = QI(a’ﬁ’g)(O(m’N)) + 2I§70;L’ﬂ’g)(0(m’N)) < 0, it is sufficient to show that
1009 (@) — 2179 (@) 4+ 21079 (@) < 0 for all @ € Ne™N \ {0},

Fix x = (l‘i’y)lgzgm’lgygj\[ € NngN\{O(m’N)}. For notational simplicity, let z, = Y 1" @i,
forv € {1,...,N} and let 2z = (21,...,2y)" and z = ZZJ,V:1 2. In addition, we use the
abbreviated notation

L=1%"), L=1L%"@), I=L%"), I=IL2L+2,
K(a—l—l,ﬂ,g,r—m x. —l—mj(N) :I:el(,N))

K(a+1,8,9,7r —m,x. —|—mj(N))
K(a, B,g,7 —m, . —i—mj(N))
for I € {0,1,2} and v € {1,...,N}. Also, let, for t € (0,0),

H(l) =

L H(LAv) =

)

N
farpalt) = 12T Pig(e) [ LT =)

HTE+r+2)
so that, for example, K (av, 8,9, — m, @. + mjN = [5° fa,p,¢(t)dt and let, for t € (0,00),
fop.s(t) _ Jape(®)

* t — — o0 *
fa,,ﬁ,g( ) K(a,ﬁ,g,r —m,x. + m](N)) fO fa,ﬁ,g(t/)dt/

For all v € {1,..., N} such that z, # 0, we have that
H(1) _ fooo tfa,p,9(t)dt

AP (@) = s = -
H(0,—v) fo (t+7r+2,—1)fapg(t)dt
_ fooo tfa,ﬂ,g(t)dt f()oo (t tr+z - 1)foz,ﬁ,g(t)dt B fooo tfoa7,8,g(t)dt
fooo fa,ﬂ,g(t)dt (r+2,—1) fooo(t tr+a - 1)fa,5,g(t)dt
_ 1 H(1)
Ttz — 1{H(1) ~ H(0, —y)H(l)}
and that
H) o0 Jo~ tfapq(t)dt
H(0, —z/)/ (1,v) It +r4 2z =0 fr 5 (O)dt [ mmt fh g ()t

I tfopg(t)dt

= trtz,—1 =
f t t:-r-zkzu *75 g(t)dt
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by the covariance inequality. Therefore,

I3<Z ) - H<1,V>H<1>}s2(z”“2{ﬂ<> H(Lv)H(1)}
72 zy+2 _ZmH(Lu)H(D. (3.6.1)
v=1 v

Since

g
Hlv)= [ ———f 5, (t)dt
(1.v) /0 t+r+z,,f0"5’9()

= 1— * g (t)dt = H(1) — H(2
/0 r+zy( t+r+zy)f“’5vg() 7’+zy{ V- HEZv)},

for all v € {1,..., N}, it follows that

I —izﬁmﬂu y)—imﬂ(l)—iwﬂ(z V) (3.6.2)
2 —r+z ’ — (r+z,)? — (r+2,)? T o

Now, by the covariance inequality,
n
2y +m 1 1
T H(2, <7{ 7} y+m)H (2,v). 3.6.3
2 i ap O S e KAy 469
By integration by parts,

N

o > (a+1)/oootfa,5,g(t)dt:/Ooo(aﬂ)t%—ﬁtg(t){yglM}dt
i (e T
[ e e 1T )
el TR 2 o S

N z,4+m

atl -8 Lt +r—m) 1
+ZZ/ e {VHF(t+r+zyf)}t+r—m+k—1dt’

v=1 k=1

where the last equality follows from the assumptions of the theorem since I'(t) ~ ¢! ast — 0
while [TY_{T(t + 7 — m)/T(t + 7 + 2,)} ~ t>N™ as t — oo and since —g'(t) > 0 and
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[t/(t+r—m+k—1) <1lforallte (0,00)and k€ {1,2,...}. Therefore,
> (2 +m)H(2,v)
v=1

n zy+m B N Ft—|— .
—ZZ/ e {Hft—i—:—}—zy

v=1 k=1 v'=1

}t+r+zl, // fap.g(t)
ANy « — N Ft—|—’l“—
<ZZ/ fotle=hty {Hr(t+r+zy }t—|—r +k—1dt// fap.4(t)

v=1 k=1 v'=1
Ft+r+z,, oot

=(a+1H(1) - fH(2) < (a+ H(1) - BH(1 )H(l) (3.6.4)

where the last inequality follows since, by the covariance inequality,

H(2) _/0 t2f ,ﬂg( Ydt > {/OOOthf(j@_q(t)Lizt}2 = {H(1)}2.
Combining (3.6.2), (3.6.3), and (3.6.4) gives

= {(0‘+1)/000 tfap,(t)dt — 3 et Bt

0

Igzzw;ﬂu)— 1{2( +1 o }Zl(zy—i—m)H(Q,y)
"z +m—(a+1)/n 5 -
>; (r+ 2,)2 EZ (r+ 2,)2 WHQ)
"z 4+ m—(a+1)/n ﬁ r+ 2y,
z; ) nz; (TPt H(1,v)H(1) (3.6.5)

since, for all v € {1,..., N},

[e.e] . o T+ZV .
H(l) = /(; tfa,ﬁ,g(t)dt > /0 mtfa’57g(t)dt = (T‘ + ZV)H(]., V).

Finally,

n=3y v m{H 1L)2 < Z f”jzj; H(1,v)H(1). (3.6.6)

v=1

Also, for all v € {1,..., N},

T = [ i a0 < [ g0 =1

t+r+z
Hence, combining (3.6.1), (3.6.5), and (3.6.6), we obtain
"z, +m—4 1)/n B~ T+ 2
1< ————H(1 )—2 H(l) —2— —=H(1,v)H(1
_; ) Z Hz (1) H;MW (1,v)H(1)

n

-z, —m+2a+1)/n— (ﬂ/n)(r—i—zy)
<Z (r+2,)?

H(1L,v)H(1) <0,
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where the second and third inequalities follow from (3.3.8), and this completes the proof. O

Proof of Lemma 3.3.3. Let X = ()0(1, ... ,)O(m)T ~ NM,,(r,p). Then the square root of the
determinant of the information matrix corresponding to this distribution is

\/‘ 3]%(9]?] log NM X\r p ]>1<z,j<m’ N \/‘ Frin 5(’?) ﬁl]>1§i,j§m)

—\IDG) + ¢ /R)i ™5 T | = ID@) + (/)™ DB} (3.67)
=g (T (1 ) opina (5™ 5),

where D(p) = (r/po)diag (1/p1,...,1/pp). This is the desired result. O

Proof of Lemma 3.3.4. Let x = (xiyy)lgigrn—%lSVSN S NQmXN and fix 7 € {1, .. .,m} and
v € {1,...,N}. Since the prior density is strictly positive and the posterior is proper, the
posterior mean of p;,, with respect to the observation X = x, denoted Elp; ,|X = x|, satisfies
Elpi,|X = x] € (0,00). Also, E[p;,, log(1/pi,)|X = @] € (0,00). Therefore, for any d € (0, c0),
the posterior expectation of the loss d — Diy — Diy log(d~/pi,l,) can be expressed as

Eld — pi, — pivlog(d/pi)| X = ]
=d— Elp;,|X = z]logd — E[p; ,|X = x] — E[p;,log(1/piy)| X = x]

and thus is minimized at d = E[p;,|X = x|, which yields the desired result. O

Proof of Proposition 3.3.2.  The proof is similar to that of Proposition 3.3.1. Part (i)
follows from the definition. Let

N

fosganal) =17 o) T] 5

U=

L(t+ 7+ a)
t+r+ap+ 2z +a)

for t € (0,00) so that K(a, 3, 9,7 + ag, z + a.j ™)) = Jo" fa8.g.a0,a(t)dt. Then part (ii) follows
since

00, fa.8.9.0.a(t)
fO tt+r+ao+z,,+a dt

o 0:9:009) () > Lesame®) gy 1
51('%5’%&07@)@ + el(/]/V)) Iy t+r+ao+z rta+o) t—{i—ﬁ;o:?z(:-&-a dt/ [y~ m%dt
o t+r+ao+z a+d) tﬁ“ﬁ;o?z;ra dt/ Jy m%dt
by the covariance inequality. For part (iii), let £ € N. Then
I t fop.9.a9.a(t) 1y

(N) t+r+ao+z,+a.
N) (t+r+ao+z,+a. +(5 ) (t+r+aotz, +a.+6, +k—1)
5(azﬁ7gza07a’)(z + ke(, ) —
v v

o8] 1 faﬁgaoa()dt.
O (t+r+aotz, +a.+00"))(t+r+ao+z, +a. +6(N)+k: 1) tHr+aotzvta.
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Fix £ > 0. Then it follows that for each [ € {0, 1},

fOO tl faﬁgao a(t) dt
O (t4r+ao+z,/+a.+30) ) (t+r+aotz, +a.+3) +h—1) HHrtaotzfa. .
‘ IS tl fop.9.09.at) 1y B
O (t+r+aotz,+a.+6)) - (t+r+aotz, +a.+6 ) +k—1) LT etz ta.
J‘OO t! fa,ﬂ,g,ao,a(t) dt
€ (t+rtaotz, ta 60 ) (thrtaotz, ta.+80 ) +k—1) FHT a0tz Fa.
- f&/? tl Ja,8,9,a0,a(t) dt
O (t4rtao+z,+a+5 ) (t+r+ao0+z,+a. 460 ) +k—1) HHraotzta.
_ (s/2+r+a0+zyf+a.+5£ﬁ?) (e/24 71+ ap+ 2 + a +6( 1) [> tltﬁifocfzﬁl dt
(e+7+ag+z +a+80) @+r+am+%-+a+ﬁ()+k ).F”ﬂgﬁgﬁz%gﬁ
fDL, yg,a ,a(t)
- I'(e/24+r+ag+ 20 +a + 61(,V2 kE)/T(e/2+r+ap+ 2z, +a + 61/’”,) [ tlm,ifoﬁdt
a N 2 fot ap,a t ’
D(e+7+a0+ 2 +a +08y,) +k)/Te+7+a0+ 20 +a +05,) [ eraa g
(N)

the right-hand side of which converges to zero as k — oo since I'(e/2+ 7 +ag+ 2z, +a. +9,,, +

k)/T(e4+r+ao+z,+a. +5( )—I—k) ~1/(e+r4+ag+z,+a. +(5£NV,)+I€)E/2 as k — oo. Therefore,
as k — oo,

f&‘ t foz,ﬁ,g,ao,a(t) dt
O (t+r+aotz,+a.+6")) - (t4r+aotz, +a.+6 ) +k—1) LT Faotzyta.

§(euBr9:00,:0) (2 4 ey <e.

€ 1 fa ,8,9,a0; a(t) dt
0 (t+7"+ao+zu/+a.+5ij\;>,) ((t+r+ao+z,+a. +5<N>+k 1) tArtaotz +a.

Since ¢ is arbitrarily chosen, we conclude that limysg oo (5( B.g,a0,a )( + ke(y{v)) = 0. For part
(iv), let k € N\ {1}. Then

fo (log k { H F(t-H"-‘rao) }dt

§{Pe0:a) (5 4 (V)Y VLDt taotz, Ha+60))+k)

o 1 _ I'(t+r+ao)
1/10gk fO tele 575 {HV =1 L(t+r+ao+tz, /+a0+5<N)/+k } !

I'(u/log k+r+ao)l'(r+ao+z,/+a. +5<N3+k
u/log k+r+a0+zy,+a4+§(N)/+k) T(r4+ao+z, +a. +5(N)/)
(N) +k)

fOOO uo‘e_ﬁu/logkg(@){ H,]/\{:1 o

Y
}du

fooo ue—le—Bu/logk ( ng){ H

I'(u/log k+r+ao)l’ (r+a0+z rta.+d)
v'=1 T'(u/log k+r+ao+z,/+a. +5 +k)F(r+a0+z r+a. +(5(N))
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Now for each [ € {0,1} and all u € (0,00), we have that

vt kg (L ) A T(u/logk + 7+ ao)l(r + ag + 2 + a. + 65) + k)
U e

log k D(u/logk +r+ag + z, + a. +5( V) + k)T (T+GO+ZV’+Q-+5£,NV2)

/ I'(t+r+ao) }] ua+171
V=L D(ttrtaotz,+a+80Y)

I (0 o 2y (i el )

'r+a0+zV/+a.+5l(jA£), r+a0+zy,+a.+5(uj\£),+k—1

[ SupPse(0,00) {9(0) T

I(t+r+ao) }] poti-1

N
[SUPte(Opo) {g(t) H;/:l T(t+r+ao+z /+a‘+6(N)/)

<

r+ao+z,+a.+60) +k

T+ao+zux+a.+(5,£]\:), )/logk}

Hi\f:l {1 + u(log

HN [(t4+r+ao) } a+l—1

[suPe(0.00) {9(8) IT—s T(t+r+ag+z,+a.+3. )

<

)

r4ao+z,+a. +5(N),+k'
<N> )/IOg k/}]
r+ao+z,/+a. +5

Hfj\f:l 1+ winfp en g1} {(log
where the second inequality follows since

<1+ u/logk : ))x---x<1+ u/logk )

r+ag+ 2 +a + 80 rag+ 2+ a0 -k -
R ! +o ! )
T gkt ag oz +a+ 60 rag+ 7 a8 + k-
u T+a0+zyz+a.+5(N)+k
>1+ og ™
log & r+ao+zs+a+9,,
for every v/ € {1,..., N}, and that
i { a+l—1_—Bu/logk ( u )
N\{l}lanllf—wo “ ¢ g log k
N (u/logk+r+ao)F(r+a0+zV/+a.+5l(/],\9+k) }
>< 9
= T(uflogh +7+ag + 2 +a. + 80 + BT +ag + 2 +a. +80))
N
{H L'(r + a) }ua+l—1
(N)
v (r+ao+2z +a+9,,)

N F(r+ag+zl,r+a +05%) + k)

H N\{l}%—“’o C(u/logk+7r+ap+ 2, +a + 5(N) + k)

{ I'(r + ao) }ua+lflefNu
(N) '
s D(r+ap+ 2z +a +<5W,)
Thus,
. 51(/04757971107“) (z + k](N)) fOOO ue—Nuduy o
1m = _
N\{1}3k—00 1/logk fooo we—le—Nudgy N’
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and the result follows. O
The following lemma will be used in the proof of Theorem 3.3.2.

Lemma 3.6.2 Let uy,us > 0. Then

I"(u1 + UQ) I"(ul) U2

F(u1 + UQ) F(ul) T ur +u2

Proof. By Theorem 2.1 of Muldoon (1978), we have

({;1{11:/((3)) — log u} >0 (3.6.8)

for all w > 0. Therefore,

F/(ul + u2) B F/(Ul) > log U1 + u2 u

F(ul + Ug) F(ul) - Ul T our +u2

\%

as desired. O

Although the inequality (3.6.8) is used in the above proof of Lemma 3.6.2, we can prove the
result directly.

Proof of Theorem 3.3.2. The proof is similar to that of Theorem 3.3.1. First, note that
r > 2 and a. > 1 by assumption. Let A%“ﬁ’g’“‘*“) = E[in(ﬁ(“’ﬁ’g’ao’a),p)] — E[in(i)(ao’a),p)].
Forve {1,...,N}, let

K(a+1,8,g,7 +ag, X. +aj®™ + M)
K(Q,B,g,T—FaO,X. +a.7(N))

pfiene) (X) =

so that for every i € {1,...,m},

A(avﬁagva‘ova) — I’)‘(a’(]va) _ ﬁz(?yo’a)¢](ja767g,ao,a) (X)

1,V 1,V

By Lemma 3.6.1, we have

(e ap,a - “ ~lap,a o ap,a 65&767970{070') :
AleBgaoa) E[;; [—pE; Jp{oPgana)(x) +pi,ulog{1 + r—l—ao‘f‘X-,i)j‘L' }H
= B[y 3 [ A ana x)
v=1 1=1

1 K(a+1,ﬁ,gﬂ’+“0’X'+a'j(m)}”
r+a+ X, +ta -1 K(afB,gr+anX. +aj®)

_ E[_Ifi{ﬁ,g,ao,a)(az) +I2(?;£5,g,ao,a)($)]’

—i—ﬁg,,log{l +
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where

I(a,ﬁ,g,ao,a)(a;) B n T.,+a. K(a+ 1,8,9,7+ ag,x. —i—ag(N) +6(N))
1n V:1r+ao+x.,y—|—a‘ K(« ,5,g,r+a0,w.+a.g(m) )
1{©P9:10,0) () :iil g{ 1 K(a+1,ﬁ,g,7“+ao,w.+a.j(N))}
2,n —rte, -1 r+aot+z.,ta -1 K(a,pB, g7 +ax +aj™)
T
and . = (:1: 1y, N)T — (z;nlxll,._. ZT1$Z'N) for x = (xiu)1<i<m 1<v<n € Nome

Since I{ @:fg.00a )(0( ))—i—I( @.f,9.:00,0 )(0( N)) < 0, it is sufficient to show that I( fg’ao’a)( )+
109999) () < 0 for all & € Ne™N \ {0V},
Fix x = (a’:i’y)lgigm’lgl/SN S NomXN \ {O(m’N)}. Let Zy = Z;il Tiv for v S {1, e ,N} and
let z = (z1,...,2y)" and z = Ziv 1 2v. We use the abbreviated notation
I —I( a,B.9,a0,a )(m)’ T —I( a,8,9,a0,a )(:B), f:—jl-i—fz,
K@) = K(a+1,8,9,7 + a0,z +aj™), K(,v)=K(a+1,8,9,7+ a0,z +aj™ +elV),

for 1 € {0,1,2} and v € {1,...,N}. Also, let

N
1 L(t+ 7+ ao)

t) =t te Ply(t

Jou.9.00.a() ¢l )Vl_Il Lt+r+ao+2 +a)
for t € (0, 00).
Clearly,

{1+ 1 f((1)}
7“+zl,—1 r+ag+ 2z, +a. — 1 K(0)

z+ag+a +2 K(1)

Z
1 K(1)
Zr+zy—1r+ao+zu+a -1 K(0)

Z

=1

(3.6.9)
(r+ao + 2z, + a.)? K(0)
by assumption. On the other hand,
i_i 2 +a K(1 I/)_Z zy+a K1) < z, +a. (2,v)
YT tatata K(0) (0 tatata)’K0) “(rtatz+a) K(0)
K1) 1 1 = K(2
Z v ta L) fz - (2 +a) (2,v) (3.6.10)
(rtag+z+a)K0) nid(r+aot+z+a)? K(0)
by the covariance inequality. Furthermore, by integration by parts, we have
g o 2 —9g (t)
(@+DEQD) = | fapgana{B+ = bt
0 g(t)
AR "t+r+ag+z2,+a) T(t+r+ag)
+ 2 t { oFTATE) 0 }
;/0 Jepg.aoa(t) Mt+r+ap+2z,+a) T({t+r+ap)
n
> (zw+a)K(2,v), (3.6.11)
r=1
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where the equality follows since I'(t) ~ t~1 as t — 0 while Hivzl{f‘(t—i—?“ +ao)/T(t+r+ao+2z, +
a.)} ~t7* N ast — co and where the inequality follows from Lemma 3.6.2. Hence, combining
(3.6.9), (3.6.10), and (3.6.11), we obtain

zy+a —(a+1)/n
(r+a0+zy—|—a)
)

- K1) <~ z +a+a+2 K@)
I<- = )+Z(

@ < (r+ao+ 2 +a.)? K(0)
—ag—2— (a4 1)/n K(1)
(r+ao+2z +a)? K0

M: ||M:

v=1

the right-hand side of which is nonpositive by assumption (3.3.10), and the result follows. [

Proof of Proposition 3.3.3. Properties (ii) and (iv) are trivial. Property (iii) follows since
oo
/ W(p7t‘a7ﬁ7a07a’17 o 7aN)dt == ﬂ-(p’a767a07a’17 o 7aN)
0
for p € D,,V. For part (i), note that the integrals are finite only if ag > 0 since otherwise

/mN W(p’Oé, Ba ap, at, - . . 7aN)dp > /DmN ﬂ—a,ﬂ,fh,aoﬁj(m) (p)dp = 09,

where @ = max{max{ai,1,...,am1},...,max{ai n,...,amn}}, by Lemma 3.3.1. Suppose that
ag > 0. Then we have

N m

/ 7(p,tlas By a0, a1, .., ax)d(p,£)/ T [[T(ain)
DN x(0,00)

v=11i=1

1 N oo N
o [(t + ag) o [(t + ag)
= [ “7le 5'5{ }dt—i—/ t*le /ﬂ{ }dt.
/0 anr(tJraOJra.,y) . EI T(t+ao+a.,)

The first term on the right side is finite if and only if ag > 0 or @ > N since I'(t) ~ t~1
as t — 0. The second term on the right side is finite if and only if a.. > a or 8 > 0 since
Hivzl I'(t+ao)/I'(t+ao+a.,) ~t% ast— oco. This completes the proof. O

70



Chapter 4

Bayesian Shrinkage Approaches to
Unbalanced Problems of Estimation
and Prediction on the Basis of
Negative Multinomial Samples

4.1 Introduction

Properties of shrinkage estimators based on count variables have been extensively investigated
within the decision-theoretic framework since the seminal work of Clevenson and Zidek (1975).
For example, as briefly reviewed in Section 1 of Hamura and Kubokawa (2020b), estimation of
Poisson parameters was studied by Ghosh and Parsian (1981), Tsui (1979b), Tsui and Press
(1982), and Ghosh and Yang (1988) in various settings while Tsui (1979a), Hwang (1982), and
Ghosh, Hwang, and Tsui (1983) showed that similar results hold for discrete exponential families.
Extending the result of Tsui (1984) and Tsui (1986a), Tsui (1986b) proved that Clevenson-
Zidek-type estimators dominate the usual estimator in the case of the negagive multinomial
distribution, which is a generalization of the negative binomial distribution and is a special case
of the general distributions of Chou (1991) and Dey and Chung (1992). More recent studies
include Chang and Shinozaki (2019), Stoltenberg and Hjort (2019), and Hamura and Kubokawa
(2019b, 2020b, 2020c). On the other hand, since Komaki (2001), Bayesian predictive densities
with respect to shrinkage priors have been shown to dominate those based on noninformative
priors and parallels between estimation and prediction have been noted in the literature. In
particular, Komaki (2004, 2006, 2015) and Hamura and Kubokawa (2019b) obtained dominance
conditions in the Poisson case.

There are still directions in which these results could be generalized further. First, although
sample sizes will be unbalanced in many practical situations, some of the results are applicable
only to the balanced case. Weights in loss functions may also be unbalanced in practice (see,
for example, Section 7 of Stoltenberg and Hjort (2019)). Second, as pointed out by Hamura
and Kubokawa (2020b), decision-theoretic properties of Bayesian procedures have not been fully
studied for discrete distributions other than the Poisson distribution. Even in the Poisson case,
it was only after the work of Komaki (2015) that many Bayesian shrinkage estimators were
shown to dominate usual estimators in the presence of unbalanced sample sizes (Hamura and
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Kubokawa (2019b, 2020c)). Third, while theoretical properties of Bayesian predictive densities
for Poisson models have been investigated in several papers as mentioned earlier, relatively
few researchers (Komaki (2012), Hamura and Kubokawa (2019a)) have considered predictive
density estimation for other discrete exponential families. In this chapter, we treat these three
issues when considering Bayesian estimators and predictive density estimators based on negative
multinomial observations in unbalanced settings.

In Section 4.2, we consider the problem of estimating negative multinomial parameter vectors
under the standardized squared error loss in the general case where sample sizes, lengths of
observation vectors, and weights in the loss function may all be unbalanced. First, we generalize
Theorem 1 of Hamura and Kubokawa (2020b) to this unbalanced case and also obtain another
general sufficient condition for a general shrinkage estimator to dominate the UMV U estimator.
Then, using the method of maximum likelihood, a new empirical Bayes estimator is derived
which has a simple form as well as improves on the UMVU estimator. Finally, we present
still another dominance condition, which is applicable specifically to empirical Bayes estimators
including those based on the method of moments.

In Section 4.3, we consider the practically important problem of estimating the joint predic-
tive density of several independent multinomial tables under the Kullback-Leibler divergence.
The distribution of any one of them is specified by a set of negative multinomial probability
vectors, with each cell probability given by the product of the corresponding elements of the
vectors. The setting we consider is quite general in that two tables may be related through
a set of common overlapping probability vectors. Two simple special cases are the prediction
problems for independent multinomial vectors and for a single multinomial table. We show
that the Bayesian predictive density with respect to the Jeffreys prior is dominated by that
with respect to a generalization of the shrinkage prior considered by Hamura and Kubokawa
(2020b) under suitable conditions. Whereas Komaki (2012) investigated asymptotic properties
of Bayesian predictive densities for future multinomial observations based on current multino-
mial observations, the sample space is not a finite set in our setting and we investigate finite
sample properties of Bayesian predictive densities. Although Hamura and Kubokawa (2019a)
considered Bayesian predictive densities for a negative binomial model, where a future observa-
tion also is negative binomial and can take on an infinite number of values, they did not treat the
problem of estimating the joint predictive density of multiple negative binomial observations.

In Section 4.4, simple and illustrative simulation studies are performed. In Section 4.4.1, our
proposed empirical Bayes estimator and the UMV U estimator given in Section 4.2 are compared.
In Section 4.4.2, the Bayesian predictive densities given in Section 4.3 are compared.

In Section 4.5, predictive density estimation for the negative multinomial distribution is
discussed. Although no dominance conditions are obtained, generalizing Theorem 2.1 of Hamura
and Kubokawa (2019a), we derive two kinds of identities which relate prediction to estimation in
the negative multinomial case. In particular, the risk function of an arbitrary Bayesian predictive
density under the Kullback-Leibler divergence is expressed using the risk functions of an infinite
number of corresponding Bayes estimators under a weighted version of Stein’s loss.

4.2 Empirical Bayes Point Estimation

Let N ¢ N={1,2,...}, my,...,my € N, and r1,...,7ry > 0. For v = 1,...,N, let p, =
(Pip)iy € D, = {(151,-~-aﬁmu)—r|151»-~-aﬁmu > 0, Z:i’ipz < 1} and let po, = 1 —p., =
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1—>" pip. Let X1,..., Xy be independent negative multinomial variables such that for
each v =1,..., N, the probability mass function of X, is given by

L(ry + > xz V) n
F(rV) Hz 1 le Y

for x, = (z;,);2 € No™, where Ny = {0,1,2,...}. As pointed out by Hamura and Kubokawa
(2020b), my,...,my may be different for example when we consider marginal distributions of
negative multinomial vectors of the same length. For some basic properties of the negative
multinomial distribution, see Sibuya, Yoshimura, and Shimizu (1964) and Tsui (1986b).

Now we assume that all the elements of p = (p,)v=1,..N € D = Dy, X -+ X Dy, are
unknown and consider the problem of estimating p on the basis of the minimal and complete
sufficient statistic X = (X, ),=1,.. v = ((Xi);2)v=1,..~ under the standardized squared loss
function given by

n my

Ln,c(d,p) = Zch p”) (4.2.1)

v=1 =1

for d = ((di7,,)ﬁ”1),,:17,,.71v € R™ x...xR™ wheren € {1,...,N} and ¢ = ((¢in);i4)v=1,..N €
[0,00)™ X -+ X [0 00)™N
Forv=1,...,N,let X » =" X;,. Then the UMVU estimator of pis p” = ((p} V)Zn”l) 1,...Ns
where
~U Xz v

= 4.2.2
pl,l/ TI/ +X.7U _ ( )

fori =1,...,my, for v =1,...,N. (We write 0/0 = 0.) We first derive a general sufficient
condition for the shrinkage estimator

p(®) — ((p(®)ym - (( Xiw )m) 42.3
p ((p’Ll/>’L 1) 17---7N Ty, +X.7V o 1 + (5,/(X7) i=1 V:1,..A,N ( e )
: U N N N
to dominate p-, where 6 = (0,),_;: Ng = (0,00)" and X.. = >, X, = ZV DD
For notational simplicity, let r = minj<,<, 7, and ¥ = maxj<,<,7,. For v = 1,. N let

Cu =y ™ Gy Let c. = minj<,<p ¢, and € = maxi<,<p MaXi<i<m, Ci,. Finally, let Q(m) =
minj <,<y, 6,(z) and 6(z) = maxj<,<p §,(x) for x € Ny and let p = inf e {1} 3(x)/8(z) € [0,1].

Theorem 4.2.1 Assume that r, > 5/2 for allv =1,...,n with c., >0 and that 0 < 3¢ < c..
Suppose that for allv =1,...,n such that c., > 0 and for all x € N, we have

xd,(x) < (x +1)0,(x 4+ 1). (4.2.4)
Suppose further that for all x € N, one of the following two conditions are satisfied:
(i) e c6(x+1) <2(r/F)*(c. — 3¢)p implies

{2(%)2(3 —3¢)p — g}g(x +1)+ 2£(%>2(g —3¢)p>0 and (4.2.5)
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e c(z+1) > 2(r/T)*(c. — 3¢)p implies

n[{z(%)Q(g_ 3¢)p — g}g(a: +1)+ 2z(%)2(g_ 3E)p} > :L’{Eg(x +1)— 2(:)(202 g)Bc)p}.

(i) e ed(x+1) <2(c. —3¢)p implies
2(c. =3¢)p— (c. —re) >0 and (4.2.7)

e ¢5(z+ 1) > 2(c. — 3¢)p implies
n{2(c. — 39)p — (c. — 1) }o(x + 1) > (Zr,, + x) (@(zx+1) - 2(c. — 39)p}. (4.2.8)

v=1

Then the shrinkage estimator f)(‘s) given in (4.2.8) dominates the UMVU estimator pY given by
(4.2.2) under the standardized squared loss (4.2.1).

Part (i) of Theorem 4.2.1 is a generalization of Theorem 1 of Hamura and Kubokawa (2020b),
who further obtained simpler conditions in specific cases. On the other hand, part (ii) is another
result of this chapter. It is worth noting that under the setting of Theorem 4.2.1, there may
exist v =1,...,n such that ¢;, =0 < ¢y, for some i,7' =1,...,m,.

Next, we derive an empirical Bayes estimator based on the method of maximum likelihood.
Consider the conjugate Dirichlet prior distribution

N N ~
. _ Cla,w+my) 4 .-
[T D, 0.5 =[] U T P )

where v € (0,00) and where a, € (0,00) and gme) = (1,...,)T e R™ for v =1,...,N. It
corresponds to the Bayes estimator

(( o ))
ry + X, —1+av+m,/i=1/v=1,.N

of p. On the other hand, since the maximum likelihood estimator and the prior mean of pg, is
ry/(r, + X.,) and a,v/(a,v +m,) for v =1,..., N, a reasonable estimator of v would be

1 Nmr
v'tv
dey'

S—

Thus, we obtain the empirical Bayes estimator
H(@) — Xi,l/

v @ . :

r,+ X, —1+6 (X)) =1 v=1,...,.N

my

(4.2.9)

where @ = (a,))_; and where

N
a . ay My Tyt
58 (X)) =m, + % > —

AT v
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if X.. > 1 while 5 (0) € (0,00) for v =1, ..., N. This estimator was not considered by Hamura
and Kubokawa (2020b). It is of the form (4.2.3) and clearly satisfies condition (4.2.4). Whether
the other conditions hold or not depends on the choice of the hyperparameter a. For example,

o (Wibi<v<n my)(L+ 3y v /2) _ minic,cnmy i a = (my)N
2€M\{1} (maxi<p<p my) (1 4+ S0 _ 7 /2)  MaXi<y<nmy’ =
)= > mini<y<p My + Y, M7y /T _ minicycnmy ifa = 0V
zeN\{1} maxi<,<p My + Zi\f: Mmyry /e MaXi<y<n my,’ ’

min; <,<n (mzx +rud o ml,//:n)

zeN\{1} maxi<,<p (ml, +7r, 2521 m,//ac) ’

where V) = (1,...,1)T e RV.
There are other empirical Bayes estimators. For example, since the prior mean of E[X..] =

e

lexvzl > TuPiw [Poy 8 ZZJ/V:I >igr/(v—1) = szzvzl myry/(v —1) when @, =1 and v > 1
forall v =1,..., N, one estimator of v based on the method of moments would be

| N
1 + X77 ; myTy.
We could also use 1+(Eiv:1 > rl,éi,l,)/ 25:1 Yo X for ((G0) )v=1,..n € (0,00)™ X

-+ % (0,00)™N. More generally, we consider the shrinkage estimator

b _ (b@ymy Xiy " 4.2.10
p (Biy )izt )=t <(r,, + X, —1+by+1/XE) >i:1)l/*1 oo 4210

L

where b = (b)), € (0,00)" and & = (€))L, = (G =18y € ((0,00)™ x -+ x

i, ) i=

(0,00)™V )N and where X)) = Zi\le S éEZ},Xi,Z,/ forv=1,...,N.

Theorem 4.2.2 Under Assumption 4.6.1 given in the Appendiz, the shrinkage estimator f)(i”é)

given in (4.2.10) dominates the UMVU estimator p¥ given by (4.2.2) under the standardized
squared loss (4.2.1).

When X@) = ... = X)) — ¢X.., where ¢ € (0,00), we have the following result.

Corollary 4.2.1 Assume that ¢V = ... = ¢V) = (Ej(ml), .. .,Ej(mN)). Then, under Assump-
©) dominates pU under the loss (4.2.1).

o

tion 4.6.2 given in the Appendiz, f)(

In Corollary 4.2.1, it is not necessarily assumed as in Theorem 4.2.1 that r, > 5/2 for all
v =1,...,n with ¢., > 0. Moreover, for the balanced case with r; > 1, another dominance
condition can be obtained by modifying the proof of Theorem 4.2.2 given in the Appendix. See
Remark 4.6.1 for details.

Finally, in order to estimate p, we could also use the hierarchical shrinkage prior introduced
by Hamura and Kubokawa (2020b) or its generalization. However, since they considered es-
sentially the same hierarchical Bayes estimator and gave important methods of evaluating the
risk function, we do not discuss the approach further. The usefulness of hierarchical Bayes
procedures will be shown in the next section.
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4.3 Hierarchical Bayes Predictive Density Estimation

In this section, we consider predictive density estimation for the multinomial distribution. Let

LeNanddY,. .. d" e {l,...,N}. For A=1,...,L let {V,...,s}) € N be such that

1< Vf’\) < e < uc(l(*}) < N and let IO()‘) = {0,1,...,my§x)} X oo X {0,1,...,my<x>} and
d
WO = {(d;),_ o0 i € No foralli € 1§V and Y, o1 = IV}, Now let 1D, 19 €
Cdp telp
N and let W(l), e w &) be independent multinomial variables such that for A =1,..., L, the
probability mass function of W s given by

) v o wi
Ia(wV|p) = T o 0™l 11 { Hpih,uff)}
il T T ()i e h=

for w® = (wg/\))ie o € W) We consider the problem of estimating the joint probability mass
0

of W .. W) namely f(w|p) = [[i_; Ar(wV|p), w = (w1 1 e W=WD x ... x
W@ on the basis of X given in the previous section under the Kullback-Leibler divergence.
The risk function of a predictive mass f(-; X) is given by

f(Wip)
2L S

K2

where W = (W()‘))A:L,_JJ = ((W'(A))ielé”)’\zlv---vb

As noted in Remark 2.2 of Hamura and Kubokawa (2019a), defining a natural plug-in predic-
tive mass is not necessarily easy. Therefore, in this section, we seek a good Bayesian predictive
mass. As shown by Aitchison (1975), the Bayesian predictive mass f(™)(-; X) associated with a
prior p ~ m(p) is given by

F (w; X) = Ex[f(wp)| X]. (4.3.1)

We first consider the natural conjugate Dirichlet distribution with density

N my
Taga(P) x || (po,y‘“"o’rl Hpi,y‘“*”’l), (4.3.2)
v=1 =1

where ag = (CLO,V)IJ,V:l € RN, a = (au)uzl,...,N = ((ai,u)z‘niul)uzl,.“,N € (Ovoo)ml X X (Ovoo)mNa
and a., = Y " a;y for v =1,..., N. The Jeffreys prior is a special case of the Dirichlet prior.

Lemma 4.3.1 The Dirichlet prior (4.3.2) with ag = ((1—m,)/2)N_, and a = (57 /2),—1.. N
is the Jeffreys prior.

Next we consider the following conjugate shrinkage prior. Let

0o N my
Wa’ﬂv'v:aOua(p) = / ua_le_ﬁu{ H (pO,V'qu'i_aO-,V_l Hpiﬂ/ai’l/_1> }duy (4.3.3)
0 =1

v=1

76



where a > 0, 8> 0, and v = (7,,)"_; € (0,00)". This shrinkage prior is based on that of Section
3 of Hamura and Kubokawa (2020b) and is a slightly simplified version of the one mentioned in
the discussion of their papar.

Under the prior (4.3.2), the posterior distribution of p given X = x is proper for all €
No™! x -+ x Ng™V if and only if 7, + ag, > 0 for all v =1,..., N. Also, this condition implies
that the posterior under (4.3.3) is proper, since we have assumed that 8 # 0 for simplicity.

In order to derive the Bayesian predictive mass with respect to (4.3.2) and that with respect
to (4.3.3) in Proposition 4.3.1, we first rewrite f(w|p). Let S(A\) = {1/9),..., C(l?j } for A =
L. Forv=1,...,N,let A(v)={A € {1,...,L}v € S(\)} and, for A € A(v ) let {AV} =

{he{l,....dV}y = vV} and let, for i = 0,1,...,m,, 1§V (i, v) = {(in)is) € 1§V}, 00 = i}

Lemma 4.3.2 For any w = <(wz§/\))iel(”>)‘:1w:L e W, we have

L N my ()
V= {11 T ™
ZV
)\:1 I(A)w ! v=1i{=0
Let

L
=ll=— 0
=1H I(Mw !

.”)igéA))A:L_,,,L € W. For (i,v) € Ng x {1,..., N} with i < m,, let

siv(w)= >, >
AEA(V) ’L'GI(S/\) (i,v)
for w = ((w’EA))ieI(’\)))‘Zl""’L € W. Using (4.3.1) and Lemma 4.3.2, the following expressions
0

for f(meo.e)(.; X) and f(msv.e0.a)(.; X) are obtained.

Proposition 4.3.1 Suppose that v, + ap, >0 for allv =1,...,N.
(i) The Bayesian predictive mass f(™eo-a)(-; X) is given by

N
I [ (s (w )+ry+a0u)HZ””1F(siu( )+ Xip +a;)
(Z)\GA +TV+CLOV+X +(1 )

N

11 L(ry + aow) [ T(Xiw + ai)

S Dlrytaoy + X +ayw)

(ii) The Bayesian predictive mass f(“avﬁv%aoﬁa)(-; X)) is given by
f(ﬂa,ﬂ,'y,ao,a)(w. X)

N
/Oo a-1 —Bu{ H A %ju + sow(w) + 1y + aow) [T2 T(siw (W) + Xiw + ai) }du
0 L(yu+ Yneaw) IV + 1 +agy + Xy +a.)

= O(w) =1 ~
/Oo ua—le—ﬁu{ H L(yu+ry +agy) H?gl D(Xip + ai) }du
0 F(’YVU—FTV +a0,u +X-,V +a-,u)

v=1
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We now compare the risk functions of f(”aoﬂ)(-; X)) and f(”aﬁv%aoﬂ)(-; X).

Theorem 4.3.1 Assume that r, + ap, > 0 for allv =1,...,N. Assume that r, > 1 for all
v=1,...,N. Suppose that

{W —au 1) <m{ - aﬁil%% AEEA: 1™ —ag, | (4.3.4)

forallz, €N forallv=1,...,N. Then f(”aﬁ"fv%v“)(-; X)) dominates f(”aoﬂ)(-; X).

Corollary 4.3.1 If1 <r, > (m,—1)/2 > Z)\GA(V) 1N forallv =1,...,N, then the Bayesian
predictive mass with respect to the Jeffreys prior, namely f(Teo-a) (-, X) with ag = ((1—m,)/2)Y_,
and a = (j(m”)/2),,:1,_,7N, is inadmissible and dominated by the Bayesian predictive mass
fresya0.e) (. X) with ag = ((1 — my)/2)N_; and a = ( '(m”)/2)yzlw7N for some a > 0, 8 >0,
and v € (0,00)N

4.4 Simulation Studies

4.4.1 Simulation study for the model in Section 4.2

In this section, we investigate through simulation the numerical performance of the risk functions
of point estimators of p under the standardized squared error loss given by (4.2.1). Although
there are a number of conceivable unbalanced settings, for the sake of simplicity, we only consider
some of the most uncomplicated cases. In particular, we set n = N = 2, mqy = mg = 7, and
c= (jm, j(7)) and focus on the effect of 71, 79, and p. As in the Poisson case (see, for example,
Hamura and Kubokawa (2019b, 2020¢)), although the dominance conditions given in Section 4.2
tend to be restrictive and may not be satisfied especially when 71 and ro are highly unbalanced,
our proposed estimator turns out to perform well in such cases also.

We compare the UMVU estimator pY given by (4.2.2) and the empirical Bayes estimator
p@ given in (4.2.9) with a = 7™ namely

EB X 7
P = (( . ).
ry+ Xy =1+ T+T0 /X v=12

Let po(0) = (1,1,1,1,1,1,1)T /8, p(1) = (1,1,1,1,10,10,10) " /44, and p,(2) = (10,10,10,10,1,1,1) " /44.
We consider the following cases:

(i) Let r; =7y =12 and let p; = py = (1 —w)py(0) + wpy(1) for w=0,1/5,...,4/5,1.

(ii) Let r1 =72 =12 and let p; = (1 — w)py(0) + wpy(1) and py = (1 — w)py(0) + wpy(2) for
w=0,1/5,...,4/5,1.

(iii) Let 11 = 8 and 73 = 16 and let p; = py = (1 — w)py(0) +wpy(1) for w =0,1/5,...,4/5,1.

(iv) Let r; = 8 and ro = 16 and let p; = (1 —w)py(0) +wpy(1) and py = (1 —w)py(0) +wpy(2)
forw=0,1/5,...,4/5,1.
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In Cases (i) and (ii), 71 and 79 are balanced. On the other hand, they are highly unbalanced in
Cases (iii) and (iv). The parameter vectors p; and p, are identical for all w =0,1/5,...,4/5,1
in Cases (i) and (iii) and distinct for w = 1/5,...,4/5,1 in Cases (ii) and (iv). We obtain
approximated values of the risk functions of p¥ and p™B by simulation with 100, 000 replications.

The results are illustrated in Figure 4.1. It seems that p*® dominates pV in every case. In
Cases (i) and (iii), both pV and p*® have large values of risks for large w. In Case (ii), the
risk values of pU are almost the same while those of p2 are small for large w. On the other
hand, in Case (iv), where the amount of information from X is much larger than the amount
of information from X, the results are similar to those in Cases (i) and (iii). Overall, the risk
values are smaller in Cases (i) and (ii) than in Cases (iii) and (iv) and larger in Cases (i) and
(iii) than in Cases (ii) and (iv).

4.4.2 Simulation study for the model in Section 4.3

This section corresponds to Section 4.3. As in Section 4.4.1, we focus on simple cases and in par-
ticular consider low-dimensional settings for computational convenience. We set N = 2, m; =
me=3,L=2dY =1,d3% =2, V%l) =1, V£2) =1, V§2) =2, and [V =) = 1. We note that
P, is related to both the vector W and the matrix W®. We investigate through simulation
the numerical performance of the risk functions of f(™0.e)(.; X) given in part (i) of Proposition
4.3.1 and f(”aﬂ’%aoﬂ)(-; X)) given in part (ii) of Proposition 4.3.1; more specifically, we set ag =
(-1,-1)7, a= (j(?’)/Q,j(3)/2), a=1,8=1,and v = (1,1)" and compare the Bayesian pre-
dictive mass with respect to the Jeffreys prior, namely f7(-; X) = f(”(71,71>T,<j(3>/2,,-(3)/2))(,; X),
and the Bayesian predictive mass f1B(.; X) = f(ﬂlvulvl)T»<*11*1)Tv(j<3)/213‘(3>/2>)(-;X). Let p(0) =
(L1L,1)T/4,(1,1,1)7/4), p(1) = ((1,1,2)7 /6, (1,1,2)7/6), and p(2) = ((1,1,2)" /6, (2,2,1) /6).
For each p = p(0),p(1),p(2), we consider the following cases: (I) r1 =y = 5; (II) 7 = 4 and
ro = 6; (IIT) 11 = 6 and o = 4.

We obtain approximated values of the risk functions of f?(-; X) and fHB(-; X) by simulation
with 1,000 replications. The Bayesian predictive mass fJ(-;X ) is computed by generating
2,000 independent posterior samples while fHB(-; X)) is computed based on a Gibbs sampler by
generating 20, 000 approximate posterior samples after discarding the first 10,000 samples. The
percentage relative improvement in average loss (PRIAL) of fHB(.; X)) over f7(-; X) is defined
by

Table 4.1 reports values of the risks of f’ (; X) and f HB (., X') with values of PRIAL given in
parentheses. It can be seen from the values of PRIAL that fHB('; X)) has smaller values of risks
than f7(:; X) in every case. When p = p(0), p(2), PRIAL is smallest in Case (II) and largest
in Case (III). On the other hand, when p = p(1), fHB(-; X)) has the largest and smallest values
of PRIAL in Cases (II) and (III), respectively.

4.5 Discussion

In this chapter, we considered the problems of estimating negative multinomial parameter vectors
and the joint predictive density of multinomial tables on the basis of observations of negative
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Figure 4.1: Risks of the estimators pU and ™2 for w = 0,1/5,...,4/5,1 in Cases (i), (ii), (iii),
and (iv). The black squares and red circles correspond to pY and p¥B, respectively.
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Table 4.1: Risks of f’(-;X) (J) and fHB(;; X) (HB). Values of PRIAL of HB are given in
parentheses.

Case P J HB
(I) p(0) 0.22 0.22(1.13)
(I) p(1) 0.23 0.23(1.08)
(I) p(2) 0.27 0.27(1.40)
(I1) p(0) 0.28 0.27(1.00)
(I1) p(1) 0.32 0.31(2.78)
(I1) p(2) 0.30 0.30(1.35)
(II1) p(0) 0.23 0.23(1.34)
(IIT) p(1) 0.30 0.29(0.52)
(II1) p(2) 0.25 0.24(2.02)

multinomial variables in unbalanced settings. A related problem of mathematical interest is that
of estimating the joint predictive density of future negative multinomial variables on the basis of
the current negative multinomial observations. Although no dominance result has been obtained,
we here derive identities which relate prediction to estimation in the negative multinomial case.

Let s1,...,8, >0andlet Y, = (Y;,):™, v =1,...,n, be independent negative multinomial
variables with mass functions
F(SV + eri,,l Yi V) s i .
9v(y,|p,) = oo™ | | pin?s 4.5.1
V( V’ 1/) F(Sy) H;vll yi,V! v Z1:[1 i,V ( )
Y, = i)y € Ng™, v = 1,...,n, respectively. Consider the problem of estimating the

predictive density g(y|p) = [I;—1 9 (¥,|P), ¥ = (Y, )v=1,..n € Ng™" x -+ x Ng™", on the basis
of X given in Section 4.2 under the Kullback-Leibler divergence. As shown by Aitchison (1975),
the Bayesian predictive mass §(™ (-; X) with respect to a prior p ~ 7(p) is given by
9™ (y; X) = Ex[g(y|p)| X]
- { f[ L(sy + 302 yiv) }fD m(P){ )=y (oo™ T2 pin o) bdp

v=1 F(SV) H;’i”l yi,V! fD TF(p){ H,]/\;l (PO,VT” H;iyl pi,l/Xi’”) }dp ’
(4.5.2)
where s, =y1, = =Ym,, =0if vre {1,...,N}N[n+1,00), and has risk given by
. Yip)
R(p, 3™ :E[l 9(7] 453
Let t1,...,tn: [0,1] — (0,00) be smooth, nondecreasing functions such that for all v =
1,...,N,
r, + 8, ifv<n,
t,(0)=r, and t,(1)= 454
©) ) {T,,, ifv>n+1. ( )
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For each 7 € [0,1], let Z,(7) = (Zi (7)), v =1,..., N, be independent negative multinomial
variables with mass functions

F(tV(T) + Z;iyl Ziv”) Do tu(T) s Di Zi,v
» v | | Lo
Lt (7)) I 2i! P

(zip)i € No™, v = 1,...,N, respectively, and let Z(7) = (Z,(7))y=1,..Nv. Let W,
{ ()i € No™ | Y ab; = k} for v=1,...,N and k € Ny. Let
LXY(d,0) = d — 0 — 0log(d/0) (4.5.5)

for d, 0 € (0,00). The following theorem shows that the risk function of an arbitrary Bayesian
predictive mass can be expressed using the risk functions of the corresponding Bayes estimators
of an infinite number of monomials of the unknown probabilities.

Theorem 4.5.1 Let p ~ w(p) be a prior density. Then the risk of G (-; X) is expressed as

R(p, ™)

zfol{itl,’(ﬂg;

v=1

> H’fl‘w'E LN [ﬁp“’ 2(). ﬁp )] o
w; , B - .

Theorem 3 of Hamura and Kubokawa (2020b) is related to the monomials of degree 1 in the
above expression. In the negative binomial case, the “intrinsic loss” derived by Robert (1996)
is not given by (4.5.5); see Remark 2.2 of Hamura and Kubokawa (2019a) for details.

We also have the following somewhat simpler result. Let

o N my
WM,‘?,ao,a(p) = /0 |: H {pOWWU(U)'HIO,V—l Hp’i,l/ai7u_1}i| dM(U), (456)
i=1

v=1

where M is a measure on (0,00) while ¥ = (5,)"_;: (0,00) — (0,00)Y. Then Corollary 4.5.1
gives an expression for the risk difference between the Bayesian predictive mass with respect to
the prior (4.5.6) and that with respect to the prior (4.3.2).

Corollary 4.5.1 The risk difference between g(”Mﬁ"lo!a)(-; X) and §\"e0e)(-; X) is expressed as

Despite these identities, dominance conditions have not been obtained. It may be worth
noting that log{g(™eo-)(Y; X)/§(™7.a0.e) (Y; X)}, whose expectation is the risk difference, is
a function only of X.,, v =1,...,N, and Y., = >/ Y;,, v = 1,...,n. Inadmissibility of
§(ma0.a) (-; X) could be studied in a future paper.
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4.6 Appendix

4.6.1 Assumptions

Let ¢, = maxi<j<m, ¢ip for v = 1,...,N. Let Q,(,V) = minlggmy EZ(:), E,(/V) = maxi<i<m, 62;,
and C, = @ /&)1 + b, + &)} for v = N. Let A = maxi<y<n @ (Cy +
2), b = minj<,<np bl,, b = maxi<,<n b,,, ¢ = mini<,<n c(yy), and ¢ = = maxi<y<n C (V) and let

Cx = MiNy << N MiNY << N MIN1<i<m, , c;y), and ¢* = max)<,<N maxj <,/ <N Maxi<i<m,, c;V),. Let
A = maxlgygn{éy(?) + 4[)1,5)/(1 + 2[)1,5)}.
Assumption 4.6.1 and Assumption 4.6.2 correspond to Theorem 4.2.2 and Corollary 4.2.1,

respectively.

Assumption 4.6.1

o Hb+1/(Gx +8)} — 2r/7)%(c. — A){b6,E/(b&8)} < 0 implies

g5+ywﬂ+@}—4§f@,-)“fﬁ+b+yww+@}<o and

bcre

o Fb+1/(6x +8)} — 2(/7)(c. — A){be.E/(b¢*E)} > 0 implies

=7 ~ = 2 éé*é
oo+ 1/ + 2} - 2(5) (C'_A)ga*q} 7
+ne{b+1/(G + 8} — 2n<§>2(g - A>§‘f*§ r+b+1/(Gr+8} <0
r bé*e

or

o Fb+1/(Gx+0)} —2(c. — A){be.E/(b¢*E)} < 0 implies

(c. —er) —2(c. — A)= ;SO and

. E{Z +1/(Gx + &)} — 2(c. — A)@@E/(ié*g)} > 0 implies

bé..c

(Enjmx) [E{Z+1/<e*x+é>}—2<g—A>; =

be+é

—l—n(g—iﬁ){z—i- 1/(¢sx+¢)} — 2n(c. — )b

1/(éx+2)} <O.
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Assumption 4.6.2

)

) 7, >1/(1+2b,6) +1and 7, 4+ b, > 1/(1 +2b,¢) + 2 for all v = 1,...,n with ¢, > 0.
(c) c. — A1 > 0.

)

o b+ 1/{e(x+ 1)} — 2(r/7)%(c. — A1)b/b < 0 implies

[r+b+1/{&z+1)} <0 and

SIS

= 2
clb+1/{e@+ 11 -2(5) (e - 4)

o Zb+1/{e(x +1)}] — 2(/7)%(c. — Ay)b/b > 0 implies

(2l 146t + ) - 2(2) (e - a02)

b
+nelb+1/{é(z + 1)} - 2n(§)2(g— Al)Z[r+B+ 1/{&xz+1)}] <0
3 E[Z—i— 1/{é(x+1)}] —2(c. — Al)é/z < 0 implies
_ b
(c. —er) —2(c. — Al)i <0 and

o b+ 1/{¢(x +1)}] — 2(c. — A1)b/b > 0 implies
(Zm —i—x) (a@+ 1/{é(z +1)}] - 2(c. - Al)g)
v=1

+n(e. — )b+ 1/{e(@ + 1)} - 2n(c. — A+ 1/{e(z + 1)}] 0.

SIS

4.6.2 Proofs

Here we prove Theorems 4.2.1, 4.2.2, 4.3.1, and 4.5.1, Lemma 4.3.2, and Corollary 4.5.1. We
use Lemma 4.6.1, which is due to Hudson (1978).

For (i,v),(/,v) e Nx {1,...,N} with ¢ < m, and ¢/ < m,, let §;;,, = 1if i = ¢ and
v = v and = 0 otherwise. Let X. = (X.,)",. Forv =1,...,N, let e(VN) be the vth unit

vector in RY, namely the vth column of the N x N identity matrix. For v = 1,..., N, let
T
00m) = (0,...,0)T €R™. For v,/ =1,...,N, let §&) = ™ .

v,V v

84



Lemma 4.6.1 Let ¢: Ny x -+ x Ng"¥ — R and suppose that either ¢(x) > 0 for all x €
No™ x -+ x NgN or E[|ap( )] < oo. Then for all (i,v) € Nx {1,...,N} with i < m,, if
o(x) =0 for all x = ((xy ) Y )vr=1,..n € Ng™ x -+ x Ng™ such that x;, = 0, we have

p(X)

B|
DPiv

} E[i;(:i(l (X +e;.)l,

where X + €, = (Xy » + 0iit v ) 0 )yi=1,. N -

Proof of Theorem 4.2.1. Let AY) = E[L(p®,p)] — E[Le(pY, p)]. For v =1,...,N, let

(X)) _
: , if X, >1,
PN X )= +X,—1+8,(X.,) v
0, if X, =0,
so that f)g? = ]51-1, Dy qul, ( ) foralli=1,...,m,. Then, by Lemma 4.6.1,

n my AU \2 5 4(0)
Ag(s) _ E|: Z civ (pnl,) {Qbu (X)}p (pz l/) (Zsl/ ( ) + 26@‘7V]5i71/¢1(/5) (X)]}
— i,V

= B[S0 (e o9 (X + €))? ~ 200X + )

’ v + X-,V —1
n
) o [
= B Y {10(X) - 210)(X) + 2153 (X)}]
v=1
where
1(6) (x) _ E?;Ul CivTiy + C.v { (Zy 1 Zz 1 Liw ) }2
L Ty + Z?lyl Tivp ry, + Zi:l Tiy + 5,,(ZV:1 Z;i”l Tiy + 1) ’
719 () — >oih CiapTip + Cp (Z]VV | i i + 1)
2,v (:B) - r, + Zmu T N my s
v i—1 Tiw Ty Y Ty 4 0y (D Yo i + 1)
719 (z) = (Zi:l Ci,ul’w) v ( Zu:l i xi,y)
37 - v v v ’
Y (TV + 221 Liy — 1) {TV + Z;il Ty — 1+ 51/( Zz]/\[:l ZZZI xi,V)}
for x = ((%,u')?i"{)u':l,...,N € Ng™ x --- x Ng™ for each v = 1,...,N. Since ¢ > 0, it follows

that S0 {110 ((00™)),=1,.,x) — 2féf3<<0<mv>>yzl,..,m + 21§f3<<0<mv>>yzl,‘..,m} <0,

Fix x = (i) )v=1,..N € (N0m1 X -+ x NN\ {( ))V:L...,N}' It is sufficient to show
that Zzzl{ll(‘?(as) — 2[2(’3( ) + 2[ ( )} <0. Let @, = > "™ @i, for v =1,...,N and let
x.. = ZJVV:1 x.,. Let ¢, = maxlgzgmy cip forv=1,...,N. Then for all v = 1,...,n such that

Yo cipmiy > 0, since, by (4.2.4), 0, (z..) < {(z..+1)/z. .} (x..+1) < {(z.,+1)/z. , }ou(x. .+
1), we have that

ZZZIE CivTiy (51,(3?.7‘ -+ 1)

(8) () <
I3, () o+, —1{z,/(x,+ D)}, +z., —1)+0,(z.. +1)
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and hence that

5 5 C.y dp(x.. +1
I (@) + 1) (2) < R — x.,y(+ 51}(;. =
+(§V:c- T )5 (z +1)[7 1 1
g 1,v Ly | Ov\L.. . T, + T.yTy =+ T.y + 5,}(1;_7. + 1)
1 1
+ rot+z,—1{x,/(x,+)}r,+x,—1)+6(z.. +1)
< _ C.v (5,/(.%.7. + 1)
T ormptryryta,+ 5,,(:3_,. + 1)
1 1
+er (e +1)| - Ty x,r,+a, 0, (. +1)
1 1

+ ;
ro+a.,—1{z /(e ,+1)}r,+2.,—1)+ 0, (.. +1)
where

1 1 PN /2.,
rvt+x.,—1{z /(z.,+)}r+x.,—1)+0(x.+1) " rp+z,rp+a.,+0 (. +1)

by the assumption that r, > 5/2 for all v =1,...,n with ¢., > 0. Thus, for any v =1,...,n,

(@) — 210 (@) + 21 (@)

., + c.,,,{ Oy(z..+1) }2 3¢, —c. dy(z..+1)
rv+z., lrp+z,+0,(x..+1) Ty + T, Ty x,+0(x. +1)
Oz, FD[(Cx, e )oy(x +1) —2(c, =3 ){r, + ., + 6 (v. . +1)}]

B (ry +z.){r + 2.+ 6 (z.. +1)}2

- Su(x.. + D[(Cx.p +c)p(x.. +1) = 2(c. = 38){r, + z., + 6 (x.. + 1)}]
- (rv + 2 ) {ry + 2., +0,(z. +1)}2

_ ., +g{ o(x... +1) }2 gl 3¢ d(z..+1)
Ttz br,+x, +0(x. 1) ry+a.,ry+a,+0(x. +1)

1y

<

(4.6.1)

by the assumption that 3¢ < c..
For part (i), we have by (4.6.1) that for any v = 1,...,n,
I{)(@) - 204 () + 213 (@)

Nz v

cT. , —i—g{ O(x.. +1) }2 P 3c O(z..+1)

r+z, Lrdz,+68(z.+1) T+x,T+x,+0,. +1)
1 o(z.. +1)

Trtwy{r+z,+ 8w +1))2

% 2. (.. + 1) - 20/7)(c. — 38)p} + e:d(., +1) — 2/ (c. — 3)p{r + (., + 1)},

<

which is nonpositive by (4.2.5) if ¢d(x.. + 1) — 2(r/7)%*(c. — 3¢)p < 0. On the other hand, if
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¢o(x.. + 1) — 2(r/7)%(c. — 3¢)p > 0, then, by the covariance inequality,

Z{ﬂ‘” — 21 (2) + 21) ()}

1 | 3z +1)
_n{;—l-xy{r—i—x,,—k&(aq 1)}2
X [z {(x.. + 1) = 2(r/7)*(c. — 3¢)p} + nc.d(x.. + 1) — 2n(r/7)*(c. — 3¢)p{r + &(x.. + 1)}],

which is nonpositive by (4.2.6). This proves part (i).
For part (ii), it follows from (4.6.1) that for all v =1,...,n,

10)() — 2150) () + 21) ()

1 O(x.. +1) _ - _ -
< L wte)d(r..+1)—2(c. -3 Y wto(x..+1
S e e e T e+ ) =2 Folr 4 3+ D)
< 1 O(x.. +1)

T+, {r, + 2., +0(x.. +1)}2
% [(ry + 2.0){E(.,. + 1) — 2(c. — 3)p} + e — 15— 2(c. — 3o}, + 1],

which is nonpositive by (4.2.7) if ¢d(z.. + 1) — 2(c. —3¢)p < 0. If e6(x.. + 1) — 2(c. — 3¢)p > 0,
then, by the covariance inequality,

Z{a ) (@) — 213 () + 215 (x)}
< %[ .

x [( Z_; v+ w) {@(x.. +1) = 2(c. = 38)p} + n{c. —1¢ — 2(c. = 36)p}o(x.. + 1),

1 O(x.. +1)
Ty + T {rv+z.,+ 3(%.7. +1)}2

which is nonpositive by (4.2.8). This proves part (ii). O
Proof of Theorem 4.2.2. Let A(Cb’é) = E[Lc(f)(i”é),p)] — E[Le(pY,p)]. Forv=1,...,N, let

7 (&™) o (e
S(B,a)()?(a(v))) _ b, + 1/X( ), if )E( ) >0,
’ if X — g,

=

)

so that

U 5(0,8) (&™)
be) . Piyov (X))

ry+ X, — 14609 (X @)
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foralli=1,...,m,. By Lemma 4.6.1, we have

- n om, ~U \275(0,8) (&)1 2
Al(:b,c) _ E[ZZ (Cz,u |: (pz,u) {5'/ ()f: )}

b P e, 4 X, — 14 309 (X @)y
(pU )25£b,c) (X(c(u))> ﬁU Sl(/l;’é) ()"(i(é(u))) )}
-9 i, e 2, v, XE)
Ty + X',l/ — 1 + 5£bvc) (X(é(l’>)) Ty + X _ 1 + 51(/17,0) (X(é(u)))

{by +1/(XED 4 &)y
v iy + Xy + by + 1/(XE) 4 &)
ﬁU 5(1770)()?(&(“)))

n m
- X, +1
:E|: ( (i [

by + 1/ (XE) M)
-2 = po ~(y; ) :| + 2Ci,y
Ty + X+ by + 1/(XED 7))

)

ry+ X, _1+5(bc)( (c(u)))
< p[3 3 (e Kbt /X >>+m -
vl (ry + Xy + by + 1/(XE) 1 3732

by + 1/(X(c( 2) _{_51(11/)) } o Py, 5(8,&)(5((&(1/))) )}
TV+X_7,,+(}V+1/(5((5<V>)+EZ(/V)) i,v

-2

ry Xy — 14309 (X @)

Fix (#i0)")v=1,.;x € No™ x -+ x Ng"V)\ {(00™)),_; _ n} and let 2., = Y™ @4, and
@) = 25:1 Zyi"’ & z;, for v=1,...,N. As in the proof of Theorem 4.2.1, it is sufficient

=1 "/

to show that >7_, L(,b’é) < 0, where

My c() =(v)
162 :Z<Ci Tiy + 1 [ {b, +1/(& +c,, )}
= T+ T, {r, +z. l/+b +1/( ) +Ez(/y))}2
o B UEE )y 2eitia by +1/2) )
ry + @, + by + 1/(3 °<"))+c()) (ry + 2.0 — 1)(ry + 2. — L+ b, + 1/3E))
for v =1,...,n. It can be verified that for all v =1,...,n,
Iy},a)
CGtetes b +1/@EELENE e, b, +1/@E) + 7))
Tt e {r e, £ b+ /@EED T2 v T pay, b +1/< @) +é£”)>
CyT. +1 + ¢, cyx. (b, +1/x
_2 b C< )) ( ) 2 7 b (C(V)

+ § —
Tt T, 4, 4+ b, +1/@E 48 e+ w = D+, — 14+ b, + 1/3E)

Now for all v =1,...,n such that ¢,z., > 0, since

z. <z3 + 1/ = (. + C) by + 1/EE) +E))
D EEDEE LA —Ob D 8+ 1A
”x.,y/{é&)x.,,,(f(‘:“ ENY = Cb (@ + 2 +13/@E + ) =0,

14

Il
Qz\

IN
ol
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it follows that

2,2, (b, + 1/5E))
(ry + 2., —1)(r, + ., — 1+b, +1/5E)

. 2@, +C) b, +1/(3€) + &)
ot wy =1 g, 14 b, + 1/ (EE) + 8V
_ %@y +Cp+1) by + 1/ 1 &)y
B Tv + .y 7“1,+x,,—1+b +1/(z C())—l—c())
2, +C+2) b +1/GEE) +E) (462)
T T, b+ 1/EE) +2Y)) -
by assumption. Therefore, letting x.. = Zivzl x., and noting that c. — A > 0, we have for all
v=1,...,n,
[ < tw ey b+ 1)@ 4 E )}2
CT T e a4 1) &) + e
LGt ey b +1/E D E
Tty b, b+ 1/(EE) 13
1 by +1/(#E) + &)

Tt T (a4 by, + 1/(EE) +E)y2

[y + )by + 1/(3@) 4 E)y

— e, =T (Co+ 2 Hry + 2oy + by + 1/EE £ EN )

1 by +1/(3@) 421y

Tt T fr, b, 4+, +1/( @) 4 &2

% (@ + ) {by + 1/ @ + 8N} = 2c = Ay + 2, +b,+1/GEE + 8]
_Gate {b+ 1 (@, +9)) _,c-A4 b+1/@e.+8
Tt Ty p g, 4 b4 (G, + DY v T, o, b4 1)@, +0)
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which implies that

) - Ewte (b+1/@Ee. +9) L c-A b+ l/(@Fw. 40
I T frda, 4 b+ 1 (G, + D)) T T T e, + b+ 1/ (F. +0)
L1 b+ 1/(Gea.. + )
LT lrqx, +b+1/(G., +8))2
_ = _ 2 bé, & = ~ _
X [(Em.yy +e){b+1/(Cx.. +0)} — 2(%) (c. — A);c £{£+ z.,+b+1/(Cx.. —|—g)}}
) T bé*e
! b+1/(Gx.. +C)
PHTwlrta, +b41/(Ga.. +8)}2
_ = - 2 bés
Xz [e{b+1/(Cex..+0)}—2(=) (c. — A)=—=
< [ <7‘> - bé*é}
= _ 2 bé.C = ~ _
telb+1/(Gm.. +08)} — 2(%) (c.— A+ b+ 1/(Gur., —i—g)}) (4.6.3)
r be+e
and that
[ o v ta)te—or (b+1/(Guz.. + )2 L e—A b+ 1/(Ex.. +0)
o Tyt Ty {ry+2, +b+1/(@a,. +9Y v Tur, oz, + b+ 1/(ET +0)
o1 b+ 1/(Gea.. + )
IR {TV + .+ g + 1/(6*:37 + E)}Q
= = 7 = EN*i T ~ =
x[@vy+mwy+g—aj%+¢ﬂam,+@}—2@,—AECfvy+my+b+1m@m,+gﬂ
be*é
o b+1/(G.. + &)
Tv +Lw {p, 4 a0, +b+1/(E.,. +8)}2
_ = _ l~)~*j
X ((TV +z.,) [E{b +1/(éx.. +¢)} — 2(c. — A);C E]
o bee
= 7 = bN*i T ~ =
+ (=) {b+ 1/, + 8} — 2c. — Az {b+ 1/, + D)} (4.6.4)
be*é

By (4.6.3) and (4.6.4) and by the covariance inequality, we conclude as in the proof of Theorem

42.1 that S"_ 19 <o O
Remark 4.6.1 Suppose that m; = --- = my, that r{ = --- = ry, and that ¢ = (j(m”))yzl,._,,N.

Then, by modifying the above proof, we can show that if r; > 1, the UMVU estimator is domi-
nated by an empirical Bayes estimator for sufficiently large mi, which is related to the problem
of Section 5.1 of Hamura and Kubokawa (2020b). For example, the empirical Bayes estimator
(4.2.9) with @ = §™) corresponds to b = myj™) and & = (L/(Nmar) 2 )=, NN In
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this case,

I(B,a) _ T + my [{ mi1 + Nmyri/(z.. + 1) }2
rm+z, Llry+z,+m +Nmirm/(z.. +1)

m1 + Nmyri/(z.. + 1) } 2z.,(my + Nmqyry/x..)
1+ x.,+my+ Nmir/(z.. + 1) (rm4+z,—-0)r1+z,—1+m +Nmr/z..)

for v =1,...,n. Now suppose that ;1 > 1 and that 1 +mq > 4. Then for all v = 1,...,n such
that z.,, > 1, (4.6.2) can be replaced by

2z.,(m1 + Nmqyry/z..)

(rm+z,—-1)(ri+z,—14+m+Nmiri/x..)
2(z., +1) m1 + Nmyry/z...

r+x, r+z,—1+m+Nmr/z..
2(z., +3) my1 + Nmyri/(z.. + 1)

r+a., ri+x,—14+m+Nmr/z.
< 2., +4) mi+Nmyri/(z..+1)

r4x, r+x,+m+ Nmr/z..’

where the second inequality holds even if x., = x.. since .. > 1. This leads to a dominance
condition which is satisfied when m; is sufficiently large.

Proof of Lemma 4.3.2. We have

d® ()\ L d™ )
A
H I {Ie,.o} =TI I ».0™
(l )Z(AI)EI(X) h=1 A=1 h= 1 ( )Z(Al)el(/\)
N my N my, ()
DONEAWw) 2oy (N, Wy
~III I I e =TIIIrw e
v=11i=0 AeA(v) iEIéA)(i,u) v=11i=0
which is the desired result. O

Proof of Theorem 4.3.1. In this proof, if ¢ is a continuous function from (0, c0) to [0, 00),
we write

N
/OO du(u) = /OO uQ—le_ﬁU{ LP(vu+ry + ag)l(ry + aop + Xow +a.0) }du
0 0 S Pwu+ry + a0y + Xop +a.)0(r + ao)

o o0 N
L C(vou+ry +ap)l(ry +ap, + X +a.,)
w)dp(u) = w)u®te ’8“{ : : : : }du, and
/0 (P( ) IUJ( ) /0 90( ) 1_[1 F(’VVU +ry+aoy + X.7y + a-,u)r(ru + a[),l/)

E[p(U)] = / " p(w)duu)/ / " ()

Let Alefva0a) = Bllog{f(W|p)/fTesraoe)(W; X)}] — Ellog{f(W|p)/fTe0=)(W; X)}].
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Then, by Proposition 4.3.1,

f(ﬁa,ﬁ,—y,ao,a)(W;X)}

f(Teoe) (W; X)
T (U + s0, (W) + 7, + ag,)T AN +r,dag, + X, +ay,
:E[—IOgEU[H{ (o or(W) 0.) T (Xreaw) 0, vt ay)
o5 DU 4+ Xaea) IV + 10+ a0y + X +a)T(s00 (W) + 10 + aoy)

FWﬂﬁHw+%W+Xw+awWUW+%W}H (4.6.5)
C(wU +ry + a0 )T (ry + a0y + Xy +a.,) 11 -

Al@Bv.a0,a) _ E[ — log

Forv=1,...,N,let po, = po, and p1, = p., = Y ;% pi,», for notational convenience. For
> ° ° s (N °
A=1,...,L let WM = {(w%)ie{o,l}dm [i; € Ng  for all 4 € {0,1}4 and E{e{o,l}dm w; =

1}. Let W/(/\)

random variables with mass functions

() = (Wg()\) (j))ie{o 1) j=1,...,i% X=1,..., L, be independent multinomial

d(>\) ~(/\)( )

H { H pzh vy } ’
=@ efopa® =
(ﬁzg/\)('))ge{o 1y € W5 =1,...,0M, X =1,...,L, respectively. For v = 1,...,N, let

fé)‘)(u) = fg’\)(O, v) = {(Eh)dw € {0, 1}d )| o = 0} for A € A(v). Notice that

1)

Z Wi(A)))\GA(V)) (( Z ZW )/\eA )) =1,.,N (4.6.6)

i1 (0w) iclM(v) 7=
Then it follows from (4.6.5) and (4.6.6) that
I (y,U w
(WU + Xea) Eielm (0,) +1 4 aoy)

L(wU + Xreap) IV + 1 + a0y + X +a.y)
) b1y +aoy + X, +ay)

AleBy.a0,0) _ E[ log BV [ ﬁ {
s

2 AeA()
A
ZAEA 'LEI()\)(O V) W( ) + 7+ aO,ll)

F
F

F(’Y U+r,+ao, +X.,+a, )F(Ty+a07y)}]:|
“TOWU + 10 + a0, T(ry + a0 + Xy T a.0)
(7VU+ZA€A(U)Zz€ﬂ>‘) > = '(j) + 1+ aoy)

. _ U

F( Z)\EA(V A +r+aoy ‘I’ X-,l/ + CL.J/)
(& )
(ZAEA(V Zzejﬂ) Zl ( )+ 7y + ao)

(’YVU + 7 +aoy + X~,1/ + a~,1/)r(ry + aO,V) }”
F(wWU 471y, +ao,)T(ry + a0y + X, +a.,) '

(
(

M

X
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Therefore,

Al@Bv.a0,a) _ Z <

(((wé”(j))kw,l}dm)jzl ,,,,, W v i i

Lo d® @™ (j)

I T (T
A== G0dN efoape® A=l

N (N, .
N {F(%U + Z)\EA(I/) Egeﬂoﬂ(y) 23':1 wé )(.7) + 7y + ag)

x E[—lo EU[
° 1/1_[1 F('VVU+Z,\6A )l(/\) +TV+CLO,V+X.7V+U/.7V)
(ZAGA +TV+G’OV+X +CL )
X
N (N,
F(Z)\GA(V) Zzejo‘)(u) Zl w- )(]) + 7 +a07V)

LU +7ry4+ao, + X0+ aw)l“(ry +ao,) }H)
('yl,U + 1y +ag,)l(ry + a0, + X +a.,)

Z p(l) W0 Z pg(l)l)(l)’y(l)

( 1)
1
Z Bioqan DL P i )0
%gn(lm):o (1()1)(1(1)):0
DI TTRPARIED SRY
(L) (L) ‘a d
(1)=0 i1y (D=0
1 1
2o Pipgunun 2 B o B
i awn=o i, =0 ! ¢
1) < 5 (A)
1 gEU [ {F(%/U + ZAeA(V) dejg)‘)(y) Zj:l o (¢, (i ;L )(]))d ) + 1y t+ag y)
— 10
v=1 F(VVU + ZAEA(V) Z(A) + v + aO,l/ + X',V + a~,u)
C(Xaeap) !V +rv+ a0, + Xy +a.,)
X
lW - A )
T(Cnen) Tieitd ) Lot 0N (@ G A + 7 + ao)

F(vU +ry4+a0, + X0+ a.,l,)l“(r,, +aoy) }”
IF'(vwU +ry 4+ ao)L(ry + a0, + X0 +a.,) ’

where §(V) ('Z,il) —1ifi=1% and=0if 4 # i for ;,’zl € {0, 1}d(A> for \=1,..., L. Furthermore,
since

1N 1N

¥ Y SOGE0E - Y Y-

AEAW) 3T () I= AEA(v) j=1
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for all (G ()N 1 s )amtr € (10,1397 5 -5 {0,13%7) ¢ - ({0,134 - x

{0, 1}d<L)) for all v =1,..., N, we can rewrite the risk difference as

1 1
A(a7ﬁ777a07a) — Z ﬁ;gl)(1)7yil e

)
i (=0 iy (=0

D) gy,
i W)

1

Z Py gy 0 > P amy i,

(1) K _
(M aw)=o i) =0

Z Py (1) ) Z Py (4,

(y W ()
(L> HCO R K
(1)=0 0y (W)=0

1

1
Z p%gL)(l(L)),uiL) Z p~(L) 10w (L) E[

- . d(L)
#{B E)=0 (€£> (1(£))=0

tog BV [P (U, (G DN 1o ()] @)

where

N (ot + Cneay Lhor{l = ivtn ()} + 1o + any)

Vl_Il{ Fvwu+k,+r,+a0,+X.,+a.,)
L(ky +7“u+aou+X +a.,)

F(Z)\EA(V le{l i m( )} 47+ ao)

% F(’YVU + 7+ a0y + X-,V =+ a“,l/)r(rl/ + aO,V)]
C(yvu+ry, +ao,)(ry +ao, + X0 +a.,)

for u € (0,00), & = (G (D21 jmr, ao)rmtnr € (0,17 5 {0,1147) 5o x
({0,139 x - x {0, 1}, and k = (k,)N_, € NV

Now fix A* = 1,...,L, h* = 1,...,d*), and j* = 1,...,1). For each (j,h,\) €
N x N x {1,...,L} satisfying j < I, b < d®, and (j,h,A) # (j*,h*,\), fix i0V(j) €
{0,1}. Let v* = 1/}(3:*). For u € (0,00), i € {0,1}, and k € No», let F*(u,i,k) denote
F(u, ((zé )(]))ﬁml)] 1. ,l(>‘>)>\ 1,..L, k) with zgf‘ )(j ) = 1. For each v = 1,..., N, let 5%(:) de-
note 3\ ca) Zl< >{1 i (A)( )} with zg* (5*) =i for i € {0,1}. Finally, fix k = (k,)_; € No»

such that 3 (i) < k, < Z)\EA(V) IN for all v = 1,...,N for any i € {0,1}. Then, by Lemma
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4.6.1,

sz B[~ log BV [F*(U.7, k)]

— E[—log EV[F*(U,0,k)]] + pLV*E[log

= E[ ~log Jo” (. 0, k)dp(u)

EY[F*(U,0,k)]
EU[F*(U,1, k:)]}
Jo© F*(u,0, k)du(U)}

} +151,V*E[10g

Jo~ dp(u) I F*(u, 1, k)dp(u)
_ Jo© F*(u, 0, k)dp(u) X,
= B[ -los I dp(uw) |+ Bl %

" Yorth + Ky +1ux +ag s + X +ax — 1
x 1 F*(u,0,k 2 : :
o8 / u ) kl/* + 7y + ag,p* + X-,V* + Q. px — 1
’YV*u"i_kV* + ryx +aOV*+X-1/* + a. -1
F*(u,1,k) ’ - ’ du(u H
// kus + 1 +agps + X o +a 0 —1 u(w)

dp(u)

In the following, if ¢ is a continuous function from (0, c0) to [0, 00), we write
o oo
~ Vot + ki 1 +agpr + X pr Fas — 1
di(u) = F*(u,1,k ’ : : du(u),
[y = [ g 2R L R R )

(o] o0
- N Yortb + Ky + 7 Fag + X o Fas — 1
w)dpp(u) = w)F (u, 1,k : : : du(u), and
/O p(u)dfi(u) /0 o(u) F*( ) RS GTE— pi(u)

EY _ [ w)dp(u h f(u
BU[p(U)] = /0 () dfi(u)/ /O dji(u)

Then we have

1=0
> df > F*(u,0,k)d X o F* k
= E[ log fooo filu) —log J Ej;f — Jdulw) + : log BV [7*(“ 0 )”
o dpu(u) Jo dpn(u) T+ Xox — 1 F*(U,1,k)
> dji ~ * ky» v v+ X o —1
:E{—log 0 ,u(u)_logEU[F*(U,O,k) + 1y Fag + X 0 +a. }
o dp(u) F*(U,1,k) v=U + ky= +1rpx +app + X pr +a. o — 1
X “(U,0, k)
’ log BV [7” 16.8
et X —1° F*(U,1,k) (4.6.8)
Notice that for all u € (0, c0),
F H T(vou+ 55(0) + 7 + a0 )T(35(1) + 1 + ag)
L(vou+85(1) + 7y 4+ ao,)(55(0) + 7, + aow)
F(fy,,*u + 85.(0) + 7y + ag,<)T(55- (1) + 10 + ag =)
C T+ 85 (1) + e + a0 )U(35(0) + e + ag-)

Y+ 85 (1) 4 7+ ag
55 (1) + 7y + ag -
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since §5.(0) = §5.(1) + 1. It follows that

U

~ TF*(U,0,k) kue + 1 +agx + X o +a.,» — 1
logEU|: ) ) i :|
F*(U,1,k) v+U + kys + 1y +agx + X o +a. - — 1
~ log U Tkys + 1 +ap + X +a - — 1 YU + 552 (1) + 1y« + ag = ]
] 55 (1) + 1y 4+ ag - YorU 4 ks + 1 +ag e + Xopx +a. o — 1
~log BV '{1+ ke —55.(1) + X o +a. - —1}{1_ kye —55.(1) + X e + .« — 1 }]
L 55 (1) + 1y 4 ag - YU + ke + 10 +ag + X +a,+—1
~rr[ k., — 8 . (1 X .V*—l U
—log BV |1+ — (ke = 5. (1) £ X + @ = L } (4.6.9)
L {85.(1) + 1o +app (YU + by + 1y +ag e + X e +a. - — 1)
and that
X o 1 EU[F*(U,O,I{:)]
Ty + Xope — 1 F(U,1, k)
X. ~ YU
= =¥  JogEY {1 + = Y ]
Ty + Xopr — 1 & 55 (1) + 1y + ag -
~ X. Yo U
< log BV [1+ ’ _ v } 4.6.10
=708 Ty + X — 185.(1) + 10 + ag - ( )

where the inequality follows since 0 < X. .« /(r,» + X. ,» —1) < 1 by assumption. By integration
by parts,

o0 0o N
. _ C(vu+ry, +ap, )T(ry +ao, + X, +a. )
a—|—1/ ud u:/ {a—l—luae '8“{ 3 ; ) , }
( ) ; fi(w) 0 ( ) 11 C(yu+ 7y +ao, + X+ a.,)T(r, + ao,)

U+ Ky e+ ag,*x + X-,l/* +a. - —
kus + 1 +agps + X o a0 —1

v=1

X F*(u, 1, k)~ 1}du

N
/oo (ua“e*B“{ H F(vwu+1r, +a0,)T(ry + a0, + X, +a.,) }
0 — F('Yuu +r,+ ao,y + X.W + (I.W)F(T,, =+ CLQ,V)

Vot + ks +Tyx + ag,* + X-,Z/* +a. - — 1

x F*(u,1,k
( ) ks +71u +ag + X o +a o — 1
N
X [B ) v+ + aoy + X+ a) = P(yu+ry + ag,)}
v=1

N

_ Z%{Qp(%u +5(1) +ry+aoy) —V(pu+k,+r+ao, + X, +ay)
v=1

+ ¢(7yu +ry+agy + X-,z/ + a-,u) - w(%/u +ry + aO,l/)}

: o
Yot 4 ks + 1y +ag e + X +a. s — 1

00 N
= /0 (u2 [6 + Z%{w(%u +k,+r,+ao, +Xp+a,)—Y(nwu+5(1)+r,+aou)}
v=1

v Ddﬁ(u).

- Yortt + kyx + 1 + ag,p* + X-,l/* +a. - — 1
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Therefore, by Lemma 7 of Hamura and Kubokawa (2020b),

(o + 1)/ udfi(u) > / u’ 1B+ Yo A (v u + ke + s + ag + Xy t+a,—1)
0 0

— Y+ 8 (1) + 1o + ao,+) Hdi(u)

0 ky*—é**(1)+X.l,*+a.l,*—1 -
> ’LLQ{ + Yy v s ) }d U
o »/0 5 7 YU + kl/* + Ty + a07y* + X.ﬂ/* + CL.J/* -1 M< )

kye =85 (1) + X pr +a.,» — 1
Vorth + ks + 1y +ag e + X o Ha e — 1

> (6+w)/ooo u? dfi(w),

where the third inequality follows since ky« > §5.(0) = §5.(1) + 1, and this implies that

EU[ U? } < (a'i_l)/(/B"’_’YV*) EU[U]
YU + ke + 10 +ags + Xopr +a o — 11 7 ke = 85.(1) + X pr +a. - — 1
(4.6.11)

When X,« > 1, we have, by (4.3.4),

which implies that

(a + 1)/(5 + ryV*) < X'J/* kyx + 1y + ao,p* + X+ + Q. p*x — 1

1-— =
=8 () + X +a,s—1 7 e+ X =1 ke =55 (1) + X e +a,-—1
(4.6.12)

Yo+ A

since ky» > §5.(1) + 1. From (4.6.11) and (4.6.12), it follows that when X,- > 1,

2| % U? }
Yo U + kpr + 1 +ag + X o +a. o — 1
(a+1)/(B+v)
ky* - 5;*(1) + X.J,* + Q. pyx — 1
<fi- R e Ehe Taos t X o 21 poyg),
e+ X =1 ke =55 (1) + X pr+a,-—1

< Yo EU[U]

which can be rewritten as
X~7V* EU[ U :|
rys + Xope — 1 kye —55.(1) + X e + .« — 1

< 27| . (1- - )]
- kue + 1 +agps + X a0 — 1 VorU + kys + 1y +agp + X o +a. o — 1

or

EU[ X.ﬂ,* YuxU ]
Tye + Xy — 185 (1) + 10 + ag -
(ke — 55 (1) 4 Xy + e — 1y U
{55. (1) + 1o + ao (3 U + ke + 10 + a0 + Xopr +a - — 1)1

< EU[ (4.6.13)
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Thus, by (4.6.8), (4.6.9), (4.6.10), and (4.6.13),

Zl:ﬁ;,,*E[— log BV [F*(U, i, k)]] < E| ~ log m]
i=0 0
= E[~log EV[F*(U, 1,k — eX)]). (4.6.14)
Finally, applying (4.6.14) to (4.6.7) sequentially, we obtain
AlaBrana) - 0 -
This completes the proof. O

Proof of Theorem 4.5.1. By (4.5.1), (4.5.2), and (4.5.3),

R(p, ™) = E[log { f[ <p0;v ﬁp%’vvm) H
1 i=1

v=

+ E[ ~log Jo @) { T2 (po™ v T2 pi o 50) }dp] (4.6.15)
Jp 7@ {122 (po™ T2 pin o) dp
where V1, = -+ =Y, , =0if v e {1,...,N}N[n+ 1,00). The first term on the right of
(4.6.15) is
E[log{ 11 (po,us” [1»i" ”) H
=1 1=1
n my P
= (Sl/ log po,, + Z Sv - log p; I/)
v=1 =1 Pow
= Z&/Z%( _p-,yk +p ykzk o logp'u/)
v=1 k=1 =1

n 00 1 k"_ my my my
= Z Sy Z z T { _ prwi + (prwi) Z wj logpijy}. (4.6.16)
: =1 =1 =1
On the other hand, since ¢, is a constant if v € {1,..., N} N [n+ 1,00),

E |: _ log fD W(p){ H,]/VZI (powsl,-f—ry HZ‘ZVI pz’,uyi"/-i_xiﬂ’) }dp}
fD ﬂ(p){ Hrjzvzl (pO,z/r” H;i"l pi’VXi,u) }dp

- /01 {;TE[— log G(r, Z(T))]}dT
e

s, g R0 (7, 2(r)
= /0 E[;tu (7'){ ; m + 10gp0,1/}{*10g G(r,Z(1))} — %(ﬂw}dﬂ
(4.6.17)
where
N my
G(, (i) v=1,..N) = /D 7(p) [};[1 {Po,ut”(T) il_[lpi’l’zw }] dp
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N € Ng™ x -+ x Ng™ and where Z. (1) = > Z; (1) for v =1,...,N

.....

=L {/ |:{ i 10gp0 l/} H {pO,VtV(T) ﬁpi,VZi’V(T) }} dp/G(Ta Z(T)):|
v=1 i=1
IRl I {po 1™ nﬁpi,wzi’"/(f)”dp/(?(ﬂ z(r))]
V=1 =1
k! my . N
gl [ @ () T om0 Tt Y

v=1 k=1" (w;) ™ eW, , + 1= i=1 v'=1

/G, 2(7))] (4.6.18)

Z.u(T) 1
B X ot tlosmn - s Gl Z(n)Y
Z. (1) 1 Z-,u(T) . {Z.J,(T) — k4 1}
N EH 1 k {t(r)+ Z (1) = 1}-- At (1) + Z. (1) — k} + logpo,u}{— log G(r,Z(7))}

-y %p.,VkE[E[_ log G(7, Z(7))|Z.(r) + ke™] — {~log G(r, Z(r))}],
1

T

where Z.(7) = (Z.,(7)))_,. Now, fix k € N. Let W,, v = 1,..., N, be mutually indepen-

v=1
dent multinomial variables such that for each v = 1,..., N, the probability mass function of

W,|Z. (1) is given by

Zo0) T (i)

my
Hz 1’(1)”, i—1 D

for (w;,)™ € Wiz ). Let Wi, v =1,...,N, be independent multinomial variable with
mass functions

L™ w* 'H (p“/>

=1 "' 1
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(wi,)i2y € Wyk, v=1,..., N, respectively. Then, for any v =1,..., N,

E[-log G(t, Z())|Z.(7) + keV)]
= E[-log G(1, (W, + (552"‘7;)1}'—1 N)IZ ()]

geeey

- Y Hmf‘w{ﬁ(pf:v)”?"}E[_logG@,(WV/+5g2( W] ) =) Z.(7)]

(w! )W, Lhi=1 Vit iy AP

- ¥ Hmk'w,{ I (2) "™ VBl 0g 6(r. (2 (7) + 800w .. ) Z.07)

(0], i W, L= e i P
and therefore

E[E[—1log G(r, Z(Tmz ( )+ kelV)]]

o 2 (L) P56t 20+ 200 )

v
T ()2 EWk

Since k is arbitrarily chosen, it follows that
\ 1
E[{ m +10gp(),y}{—10g G(T,Z(T))}]

k=
o0 my
SN R (T Bl ter Gl (Zu () + 08 w2 e )]
kL [T w! paley

k=1 " (w))"™ €W, !
- B (e Bl teg G 2(r))
| J
O
<1 B G(1, (Zo (1) + 68 (W)™ e, )
= 7. il/wl E| -1 ’ T .
ékuyémkﬂi’iﬂwﬂ(gp’ )£ ~oe G 2() |

(4.6.19)
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Finally, combining (4.6.15), (4.6.16), (4.6.17), (4.6.18), and (4.6.19), we obtain

R(p,§'™) = /01 [it/(ﬂi;
k=

v=1 1 (w)eW, i

{ k!
[1i2 wi!
m

my my v
X ( - Hpi,uwi + (Hpi,zzwi) Z Wi 1ngi,1/
=1 i=1 i=1

m G(r,(Z (7) + 650 (wi) ™ )i, m}

v,/

v (Wi)iZh)v=1,... ) L
x B[N ( C(r, Z(7)) : ’H”" )] }]ar
Thus,
R(p, ™)
1, ¢ > 4 il m N me
:/0 {Vz::ltl,/(r);k(wi)mlew kale|E[LKL(EW[HPzV Z(T)},il—lep“, ﬂ}dT

which is the desired result.
Proof of Corollary 4.5.1. By Theorem 4.5.1, we have

R(p’ g(ﬂ'lw,fy,ao,a)) _ R(p’ g(ﬂao’a))
_/1{it’( ) 1 Z LE[LKL<E [ﬁ o
B 0 ‘3 v AT k H?;li w;! TM F,a0,a i:1pz,u

1 (wl):’;yl EWu,k
— LKL (Eﬂ'uo " |:

Z(T)} , iljpi,uwiﬂ }dT.

2] 1[n")

i3 TMs

ws
Div ¢

1

.
Il
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Fix 7 €[0,1],v=1,...,n, and k € N. Then

k! KL . w;
3 1w“E[L (Ewﬁyaoya“ [pi | Z(r
1= ( i
i) = k i=1

)} ) iljpi,uwi>

o] Tr)]
- Y [[f:[pw z(r)

(wz):nyl EWU k

my
TR T | P
i=1 =1

| = Brage [ﬁ pin™| Z(7)
i=1

)|/ Eraga [ﬁ pis"|2(0)] }].
i=1

Note that

k! T w
Z 17 wi! [ Wﬁ,ao,a[HPivV '
=1 i=1

(we) 2 EW, i

2] = Bnay o [ [ 9| 20
=1

= ElBry; 5.00alP"1Z(7)] = Bray P01 Z(7)]]
and that for all (w;);y € Wik,

ﬂ'AI'ya,Ou,|:Hp7IVqu }/ Waoa[Hp“’wz }
I'(%(u) 4t (7) + ao,)
ERLE 0

. dM (u

=1 D () 10 (7) + @0, + 20 (1) + .,V/+5£fi2k>} "
. L' (% (u) + ty (1) + ag,)

/0 {VHIF(%( )+t (7) + a0 + Zo (7 )+a_’y,)}dM(“)

ﬂ C(t, (1) + ag,)

)+aoyl + Zo(7) + a + 6 k)

Tt
ﬂ t, (1) + ag,)

+G/OV/+Z ()+a',l/')

/-

= Bryi5agall-o” |Z(T)]/E7rao,a[p-,u 1Z (7)),
where Z.,/ (1) = Y14 Zi (1) for v/ = 1,..., N. It follow that

Z Hm]i' +E [LKL (EﬂM F.a0.a {sz vz

(wz)l MEWL K =1

my my
- LKL <E7Ta0aa |:le)wa Z(T):| ? leuywz>]

i=1 i=1
= E[LKL(EWM,;,GO,Q [p',Vk|Z(T)]7p-,Vk)
This completes the proof.

my
T):| ) H pi,Vwi>
=1

LBy 9 2] .0
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Chapter 5

Bayesian Predictive Density
Estimation for a Chi-Squared Model
Using Information from a Normal
Observation with Unknown Mean
and Variance

5.1 Introduction

Suppose that X and V are independently distributed according to the normal and Chi-squared
distributions N, (g, (ro/n)I,) and (r4/1)x?(n1) with densities

n/ro)P/? T
plainn) = W oxp (— 2o~ ). € RO, and

(/22 o n/rt

pi(vln) = anl/Q "(n/rp)™/? exp ( - 700)7 v € (0,00),
respectively, for known p € N = {1,2,...} and rg,7),n1 > 0 and unknown g € R? and n €
(0,00). Suppose that for known s,ng > 0, W is an unobservable Chi-squared variable with
distribution (sf,/n)x?(n2) which is independent of (X, V'). We consider the problem of estimating
the density of W, namely

(1/2)m/2 - n/st

p2(wln) = an2/2 Y(n/sp)"/% exp ( - Tow)7 w € (0, 00),
on the basis of the observation of (X, V') under the Kullback-Leibler loss. The risk function of
a predictive density pa(-; X, V) is

L\ (X VW) M
R((p,m), p2) = E () [ 8 5 (W X, V)]

Such a situation arises, for example, if X4,..., Xy, and Y,...,Y y, are independently dis-
tributed as Np(u, (1/n)Ip) and if we want to estimate the predictive density of Zf\fl Y, —
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Y ||?, where Y = (1/N3) Zf\fl Y;, based on the sufficient statistics X = (1/Ny) Ef\;ll X, and
Zf.vzll ||X; — X||>. On the other hand, since r/n and n; can be any positive real numbers,
V may be viewed as a gamma variable. Throughout this chapter, however, we assume that
ro = r{ = sy = 1 for simplicity.

For a prior m(u,n) for the unknown parameters (u,n), the associated Bayesian predictive

density ﬁgﬂ)(-; X,V) is given by

7 (ws, v) = B [py (wln) (X, V) = (a,v)]

™

/2 (X V) [ a2 _n _
= Ty O [ e (= S0) (K1) = @)

The Jeffreys prior for the model where only V is observed is mo(p,n) = n~ !, which corresponds

to the unbiased estimator V/n; of the variance 1/7 in the sense that 1/E;,[n|X,V] =V/n;. As
in Liang and Barron (2004), it can be shown that f)gro)(-; X, V) is uniformly optimal among the
predictive densities which are equivariant with respect to the transformations of Section 2 of Stein
(1964). In particular, for any ag < n1/2, it improves upon ﬁéﬁao)(-; X, V) for ma, (p,m) = n~%0 1
which, when ag = —p/2, coincides with the Jeffreys prior for the present model where both X
and V' are observed. In this chapter, as in Maruyama and Strawderman (2012), we consider the

hierarchical shrinkage prior

1
ol 1) = /0 To.a(K, Y, MY, (5.1.1)
where

Toa(t:7:0) = Np(p|0p, [{(1 = ) /7 }/m] L) (1 — )Pty =e ot

(1 _ ,y)b—p/Z—1,Yp/2—a—1np/2—a—l

_ _n 2
B (27)P/2 exp( 21—7||M||)

forb > 0 and a < p/2. We compare the two predictive densities ﬁgro) (;X,V)and ﬁgﬂb’“) (5 X,V).

In particular, in Section 5.3, we obtain conditions under which ﬁgrb’a) (+; X, V) dominates ﬁgﬂo) (X, V).
An important feature of the problem is that the distribution of X depends on the unknown

location parameter g while the distribution of W does not depend on p. As will be shown later,

ﬁgﬂo)(-; X,V) is a function only of V' but ﬁgrb’“)(-; X, V) does depend on X. Thus, dominance of

]ﬁgﬂb’“)(-; X, V) over ﬁém)(-; X, V) is analogous to the result of Stein (1964) that when estimating
the variance 1/n under the standardized squared error loss, the unbiased estimator V/n; can be
improved upon by using additional information from X.

Although Stein (1964) considered a truncated estimator, it was shown by Brewster and Zidek
(1974) that the unbiased estimator is dominated by a smooth generalized Bayes estimator also.
Kubokawa (1994) showed that these improved estimators can be derived through the unified
method of Integral Expression of Risk Difference (IERD). Maruyama (1998) gave a class of
priors including that of Brewster and Zidek (1974) to improve on the unbiased estimator when
the mean of the normal distribution is equal to zero. Related hierarchical priors have been shown
to be useful in estimating location parameters in the presence of an unknown scale parameter
(Maruyama and Strawderman (2005, 2020a, 2020b)).
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Bayesian predictive densities have been widely studied in the literature since Aitchison (1975)
showed their superiority to plug-in predictive densities. Komaki (2001) proved for a normal
model with unknown mean that the Bayesian predictive density against the uniform prior is
dominated by that against a shrinkage prior as in estimation problems. Parallels between es-
timation and prediction were investigated by George, Liang and Xu (2006, 2012) and Brown,
George and Xu (2008) in terms of minimaxity and admissibility. Kato (2009) and Boisbunon
and Maruyama (2014) considered the case of unknown mean and variance. Prediction for a
2 x 2 Wishart model was considered by Komaki (2009). Prediction for a gamma model when
the scale parameter is restricted to an interval was considered by L’Moudden, Marchand, Kortbi
and Strawderman (2017).

5.2 Bayesian Predictive Densities

In this section, the Bayesian predictive densities with respect to the priors my and m, , given in
Section 5.1 are derived. The choice of the hyperparameter b in m, , is discussed.

We first consider ﬁéﬂo)(-; X, V) for the noninformative prior mo(p,n) = n~1.

Proposition 5.2.1 The Bayesian predictive density ]ﬁgro)(-; X, V) is given by

1 Vn1/2wn2/271
(11/2,12/2) (V + w)(m+na) /2
We note that this predictive density does not depend on X. Moreover, it is identical to the

predictive density with respect to the observation V ~ (1/n)x?(n1) and the prior n ~ n=1. Its
superiority to the corresponding plug-in predictive density is discussed in Aitchison (1975).

On the other hand, ﬁgrb’“)(-; X, V) actually depends on the normal variable X.

~(mo)
X, V) =
p2 (’IU, 7V) B

A(71—b,cl,)

Proposition 5.2.2 The Bayesian predictive density p, "' (-; X,V) for the hierarchical prior
Tha 0 (5.1.1) is given by

wh2/2-1 dry

/1 (1 _ ,y)b—l,yp/Q—a—l
o (V 4w+ 7| X|]2)m1tn2)/2+p/2-a
(n1/2+p/2 —a,ny/2) /1 (1 — )b 1yp/2—a-1

o VA X[Eym/zioa

A(7|—b a)
3 X —
5 X, V) =

dy

Because of the integrals in the above expression, the risk function of ﬁéﬂb’“)(-; X,V) is hard to
evaluate in general.
If we choose b = ny/2, then the integral in the denominator can be simplified to

B(ni/2,p/2 — a)
Vm/2(V + || X||2)p/2a
by Lemma 2 of Boisbunon and Maruyama (2014). This choice corresponds to that in Section

2.1 of Maruyama and Strawderman (2005). On the other hand, in this case, the integral in the
numerator becomes, by Lemma 2 of Boisbunon and Maruyama (2014),

1 1 e IXIP w2
1 — ni1/2—1_p/2—a—1 - d
T oAy R fy 0 ()

(5.2.1)

(5.2.2)
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and involves the hypergeometric function, which shows the greater complexity of the prediction
problem. However, the above integral can be evaluated as in the proof of Lemma A2 of Boisbunon
and Maruyama (2014), which is crucial for our proof of Theorem 5.3.1 for general ns.

There is another case where we can analytically examine the risk function of ﬁgﬂb’“) (X, V).

Suppose that b = 1. Then ﬁgﬂb’“)(-; X, V) becomes, by Lemma 5.5.1 in the Appendix,

1 ,.yp/2—a—1
jse) wr/27! /0 V +w X))
Dy (w; X, V) = B(n1/2+p/2 —a,ny/2) 1 Jp/2=a-1
/g x|z

/IIXQ/(V+w+|X|2) ,Yp/%afl(l _ fy)(n1+n2)/2*1 i
_ 70 (. x. )0 B(p/2 —a, (n1 + n2)/2) 5
p2 <w7 7V) ||X||2/(V+||XH2) ,Yp/Qfafl(l —V)nl/Qfld (5 3)
0 Bp/2—a,ni/2)
Therefore,
im0 s V) = 5 s XV,
xr —00

which shows that we can apply the method of IERD of Kubokawa (1994). In order to prove The-
orem 5.3.2 given later, we use the expression (5.2.3) and apply the argument of Kato (2009). Fi-

nally, it is interesting to note that for a = p/2—1, the Bayesian predictive density ﬁém’”) (:X,V)
can be expressed in closed form as

V4w (n1+n2)/2

n1 + no an/zan/Q_l N <V—i—w+|‘XH2>

nil'(ng/2) (V + w)(mitn2)/2 B} ( Vv )m/2
VX

ﬁém,p/%ﬁ (w; X, V) _

(5.2.4)

That we can obtain this simple predictive density is one of the important features of our pre-
diction problem.

5.3 Dominance Conditions

In this section, we provide sufficient conditions for ﬁgﬂb’a)(-; X,V) to dominate ﬁgﬂo)(g X,V)in
the two cases b = n;/2 and b = 1. In particular, conditions on the other hyperparameter a are
obtained.

We first consider the case b = n1/2. Let

(F(n1/2)T((N1 +12)/2+p/2—a)
I'((n1 +n2)/2)(n1/2 4+ p/2 = a)

p/2—a n2> .
— f 2.
((n1+n2)/2—1’ 2/’ e =

—1,1), if ng < 2,
(c1,c2) =
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Theorem 5.3.1 Suppose that b =n1/2 and a < p/2. If the inequality

Sy ) o34 )

1
1
< /0 (1 — p)(mn)/2p/2-1.2 (5.3.1)

1
p{l (1+clp)("1+n2)/2 }dp

is satisfied, then R((u,n),ﬁéﬂb’“)) < R((u,n),ﬁgm)) for all p € RP and n € (0,00). Equality can
hold only if p = 0,.

The integral appearing in the right-hand side of (5.3.1) is not a big problem. First, we can
numerically calculate the integral since it does not involve the unknown parameters. Second,
the integral can actually be evaluated analytically to obtain simpler sufficient conditions.

Corollary 5.3.1 Assume that b=n1/2 and a < p/2.
(i) If

(g (5 +3)

< © n1+n2+p+2{_ 1
T p/2—a nitngtp {1+ 2¢1/(n1 +ng +p+2)}mtn2)/2 7

then ﬁgrb’“)(-; X,V) dominates ﬁgﬂo)(-; X,V).

(ii) Suppose that either na < 2 and

o) e ) < (M) - u(3)

or ng > 2 and

w(n1+n2+p>_w(@+g> - (n1 +no)eo 9

2 2 2 2 ny+no+pny+ng—2°

Then ﬁéﬂb’a)(-;X,V) dominates ﬁgﬂo)(-;X,V) for any 0 < a < p/2 sufficiently close to
p/2.

When ny = 2, condition (5.3.1) is actually necessary and sufficient for ﬁgr"l/ 2’“)(-; X,V) to
dominate ﬁgro)('; X, V).

Corollary 5.3.2 Assume that b=mn1/2, a < p/2, and ny = 2.

(i) ﬁéﬂb’”)('; X ,V) dominates ﬁ;ﬂo)(-; X,V) if and only if

p/2—a L szl !
"1/24‘17/2§/0(1 2 p<1 [1+{(p/2—a)/(n1/2)}p]n1/2+1)dp' (

5.3.2)

(ii) When ny = 2, ﬁ;ﬂb’“)(-; X, V) dominates ﬁéﬂo)(-; X, V) if and only if 0 < a < p/2.
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Next we consider the case of b = 1.

Theorem 5.3.2 Assume that b = 1, 0 < a < p/2, and n; > 2. Then R((,u,n),ﬁgrb’“)) <

R((Mn),ﬁgﬂo)) for all p € RP and n € (0,00). Equality holds if and only if p = 0, and a = 0.

For the special case of (5.2.4), we can obtain another sufficient condition.

Theorem 5.3.3 Suppose that b = 1 and a = p/2 — 1 for p > 2. Then R((p, n),ﬁgﬂb’“)) <

R((Mn)’ﬁgﬂ)) for all p € RP and n € (0,00). Equality holds if and only if p =2 and p = 0,.

5.4 Simulation Study

In this section, we investigate through simulation the numerical performance of the risk func-
tions of the Bayesian predictive densities p9(-; X,V) = ﬁgwo)(-;X,V) and ﬁgb’a)(-;X,V) =
]ﬁgrb’“)(-;X,V) for b € {n1/2,1} and a € {0,p/2 — 1}. We consider the following cases: (i)
(n1,n2) = (3,3); (ii) (n1,n2) = (3,5); (iii) (n1,n2) = (5,3); (iv) (n1,n2) = (5,5). We set p = 14.
When b = 1, the conditions of Theorem 5.3.2 are satisfied for both « = 0 and a = p/2 — 1.
On the other hand, when b = n;/2, the condition of part (i) of Corollary 5.3.1 is satisfied if
a =p/2 — 1 but not if a = 0, which can be verified numerically.

The risk function of pQ(+; X, V) is a constant independent of the unknown parameters (g, 1)

while that ofﬁgb’a)(-; X, V) depends on (u, ) only through = n||u||?. For @ € {0, 20,40, 60}, we

obtain approximated values of the risk function of ﬁg)’a)(-; X, V) by the Monte Carlo simulation
with 100,000 replications. The integrals are calculated via the Monte Carlo simulation with
10,000 replications.

The results are illustrated in Figure 5.1. The constant risk of ﬁzo(-; X,V) is not the same for
each case. For each b € {n;1/2,1}, the risk values of ﬁéb’p/z_l)(-; X, V) are smaller than those of
ﬁéb’o)(-; X,V) when 6 = 0 but larger when 6 = 60. The risk values of ﬁgnl/Q’O)(-; X,V) are larger
than those of ﬁgl’o)(-; X,V) when 6 = 0 but smaller when 6 = 60; on the other hand, the risk
values of ﬁgm/2’p/2_l)(-; X ,V) are close to those of ﬁgl’p/z_l)(‘; X, V) for all 6 € {0,20,40,60}.
Since by Theorem 5.3.2 the values of the risk functions of pQ(-; X, V) and ﬁg’o)('; X, V)at0=0
coincide, that the blue triangles are not on the horizontal lines when 6 = 0 will be due to Monte
Carlo error. Finally, ﬁém/Q’o)(-; X, V) does not seem to dominate pS(-; X, V) with the value of
a too small, for the black squares lie far above the horizontal lines when 6 = 0.

5.5 Appendix

Useful lemmas are given in Section 5.5.1. Propositions 5.2.1 and 5.2.2, Theorems 5.3.1, 5.3.2,
and 5.3.3, and Corollaries 5.3.1 and 5.3.2 are proved in Section 5.5.2. Let Ny ={0,1,2,...}.

5.5.1 Lemmas

Lemma 5.5.1 For any &1,&2,¢ > 0, it holds that

1 &1—1 1 c/(1+c)
2 — §i—1 &a—1

d = Y 1 1 Y d .
/0 (1 + Cf)/)fl-i-fQ v Cfl A ( ) v
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Figure 5.1: Risks of the predictive densities p9(-; X, V) and ﬁgb’a) (+; X, V) in the following cases:

(i) (n1,mn2) = (3,3); (ii) (n1,n2) = (3,5); (ili) (n1,n2) = (5,3); (iv) (n1,n2) = (5,5). We set
p = 14. The horizontal lines show the constant risk of S (-; X, V). The black squares, red circles,
blue triangles, and green pluses correspond to (b, a) = (n1/2,0), (n1/2,p/2—-1),(1,0), (1,p/2—1),
respectively.
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Proof. We have

o (1+cy)srté o (14 A)a+e ¢t Jo |

which is the desired result. O

Lemma 5.5.2 For any &1,82.1,62,2,¢ > 0, we have

1
£2,2
1 — ~)821-1 §1—1<1_ ¢ ) “d
/0( ) gl Tl ot

[(&) (61 +&2+8) 1 .
14+ {F(§271 + fQ}Q)F(fgl + 51) 1} 1+¢ if 52,2 <1,

<1+ 1 ! )&’2 fEan > 1
21+&2—-11+c¢ ’ Y2 '

> B(&21 +&22,&1) X

Proof. Suppose first that {5 < 1. Then, by Lemma 3 of Boisbunon and Maruyama (2014),
we have for all v € (0,1)

c 2,2 c
1- ) (1o ) - (-2,
(1) TR (1 ) - -

Therefore,

1
&2
1 — ~)821-1 51—1<17 ¢ ) “d
/0( 20) ot Tt ot

> B(§,1 +&22,61) + %H{B(fz,h&) — B(&2,1 +&22,61)}

L&)l (&1 + &+ &) B 1} 1 }
L1+ &) (&2 +&1) 1+ecl

= B(&,1 + &2.2,61) [1 - {

Next suppose that {22 > 1. Then, by Jensen’s inequality, it follows that

1
&,
/(1—7)52’117&1<1— ° fy) iy
0

1+¢

1 (1-— 7)52,1—1751—1 c §2,2
— B(&a1 + &2, / L=ytr=937) @
(€21 + €22, 61) 0BG+ Ea2.61) ( YT 1+ 07) Y

1 (1— 7)52,1+§2,2*1,7§1*1 1 vz
= B(6a1 + 22, / (1+ )
(o1 +&22,80) o B(&1+&2,6) l+cl—»n !
1 fl )§2,2
I14+céi+&a—1

> B(&1 + 52,2751)(1 +

This completes the proof. O

Lemma 5.5.3 For any &1,&,¢ > 0, we have

! P —p)et Pt 1
/0 {log(1+ )} —p =) dp—/o P {1 (1+cp)€1}dp'
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Proof. The hypergeometric function F' satisfies

F(a/,b,;cl;zl) Z [(a' +s)I'(Y + s)I (/)(Z/)S

(@) L)L + 5)s!
B F(Cl) tb —1(1 _t)c’—b’—l
<><d—v>/ TEETTa

fora’ >0, >V >0, and 2’ < 0. Therefore,

! P = p)et ta—pftete 1
Aﬂ%““m} Blane) A U araE

)
1 1 §1—1(1 — )21 112 p)srtée—1 1
:/ </ cp dt)ﬂ (1—p) dp_/ (1-p) {/ §icp ldt}dp
o \Jo l+ecpt B(&1,62) 0 p o (1+cpt)ert
1 1 §1(1 — p)é2— 1 &1+&e—1
:/ { / cp*(1—p) dp— & / lep}dt
o UB(&1,62) 1+ ctp (1+ ctp)srt
1
= PG LG+ &+ i)~ P&+ L L& + &+ Li—et))de =,
& +& Jo
which proves Lemma 5.5.3. ]

Lemma 5.5.4 For any &1, > 0, we have

- &1 —&
V(&) ZZ: (i+&)E+ &)

Proof. Let C =lim;_ (Z;Zl 1/j —log z) Then

w&%w@gz{—&—0+§:(‘zj&” {‘@—C+§:C—Zf@ﬂ

S SRR o S et -
_;;(H_& i+5l)_§(i+§1)(i+§2)’
which shows Lemma 5.5.4. O

Lemma 5.5.5 Let £ > 0 and 1 < &1 < &22. Let, fori e {1,2},

‘ B q fyﬁl—l(l _ /-y)£2,i—1
Filg) = /o B(&1,624) @, a€(01).

(i) Fy~Yw)/F1~Y(w) is nondecreasing in w € (0,1).

(ii) There erist 0 < w < w < 1 such that Fy~ ' (w)/Fy 1 (w) is strictly increasing in w € (w,®).

Proof.  Part () follows from Lemma 2 of Kato (2009). For part (ii), we need only show
that F»~!(w)/F;~(w) is not constant in w € (0,1). Suppose that there exists Cy € R such
that Fy~H(w)/F1~Yw) = Cp for all w € (0,1). Then Cy = limy 1 {F " (w)/F Hw)} = 1.
Therefore, we have that F»~' = F; ! and hence that F, = F;. This is a contradiction. O
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Lemma 5.5.6 Let h € N and & > 1. Then for all 7 > 0,

O IT((h+)N)T(r+E) )=0, if&=1,
orT(M)T((h+1)7+&) | <0, ifé>1.

Proof. By Gauss’s multiplication formula, we have

I'((h+D7)0(r + )
I(m)T((h+ )7 +¢)
D(r+&) (2m)t-CHDI2(h 4 1)1/ [Tig D +i/(h + 1))
T(r)  @m)=CaDI2(h+ 1)+ 2 [T T(r 4 e/(h+ 1) + i/ (h + 1)
h

1 L(r+¢) H I(r+i/(h+1))
C (h+1DED(r 4+ (4 h)/(h+1) L1 (7 + (€410 = 1)/(h + 1))

for all 7 > 0. Therefore, by Lemma 5.5.4,

0 1oy LU+ DI +6)
ar CT(OT((h+ 7 +¢)

SN (R S B o Y G R ).

=1

_ (-1 1 1 h 1
-l ;{(3+T+£)(J+T+iﬂ) hz(j+r+ i)(j+7+f+"‘1)}

for all 7 > 0. Fix j € Ng and 7 > 0. Then, by Jensen’s inequality,

1 _1i 1
(j—|-7-+§)(j—|—7-+%i’i”) hi:l (j+7+h+1)(3+7+€;:i11)
1 1
STt OU T EAn D] Gt Ut E- D/t 1) 1 1/2)

B (=) +7) + (12{(E = 1D/(h+1)+1/2} — €€+ h)/(h+1)
GHr iU+ ETR/h+ DG+ 7T/ +7+E-DJh+1) +1/2)

< 0.

This completes the proof.

5.5.2 Proofs

Proof of Proposition 5.2.1. Since the joint posterior density of (u,n) is proportional to
/2421 oy ( - gV) exp ( - gIIX - uI\Q),

the marginal posterior of 7 is proportional to

A exp (— V) / exp (= 211X — pl?)dp = 2m) 2 exp (- 2V).
Rp

112



Therefore, the posterior mean of ps(w|n) is

(1/2)"22 e to plmtn2)/2=temn (V) 2y

A (w| X, V) =

T(n2/2) 2T eV 2y
L D ) /2){(V + w) /2y )2
- Tm2/2) D(n1/2)/ (V272 ’
which is the desired result. .

Proof of Proposition 5.2.2. Let m,(7) = (1 — )’ 'y%"! for v € (0,1). Then the joint
posterior density of (u,n) is proportional to

1
) e (< gV e { - (50 I+ X - )
| e (725)" exp (= §V) exp { = 5 ({2l + 11X — u?) fa.
Note that
2 e — (1 —)X|?
P+ 11X - 2 = T +AlIX |
- -7

Then the marginal posterior of 7 is proportional to

[ 2 e (- 20)( f o [ B

1
= P2 [ w2 e { = LV )1 X )
0
Therefore, the Bayesian predictive density ﬁgrb’“)('|X , V) is given by

1 e )
p/2 (n1+n2)/2+4p/2—a—1 o Q 2
) (w| X, V) _/0 ,a (7)Y [/0 U exp{ 5 (Vw71 X]| )}dn]dv

(1/2)2/2 2/2-1 /1 /2 /Oo n1/24p/2—a—1 7 2
AT . ~ T A x 1)) Van|d
Fonr " [ maC”2] [ exp{ = 2V +I1X|) fdn|dy
1 I'((n1+mn2)/2+p/2—a)
p/2 1 2 p d
[} et i 1w s R e
- 1 [(n1/2+p/2 —a) ’
p/2 1 p d
/0 ma(1)7 {(1/2)(V 4 4[| X|[2)}ra/2+p/2=a 7
from which the desired result follows. O

Proof of Theorem 5.3.1. Let A = R((u,r]),ﬁ;ﬂnl/“)) — R((p, 77),1390)). By Propositions
5.2.1 and 5.2.2 and by (5.2.1) and (5.2.2), we have

~(mo)
X
A E(X’V’W)[log (71:2 (‘)4/, V) }
Py (W X, V)
(X, V,WV) nit+mn2 p P V—i—W—I—HXHQ
E [log B(“2,2 —a) + (£ —a) 1og VI TXP

L X|? na /2
-1 1 — n1/2-1,_p/2—a—1 1_ H dl.
og/O (1-7) ol ( V+W+HXH27) 7]
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It follows from Lemma 5.5.2 that for all x € RP, v € (0,00), and w € (0, 00),

1 2 na/2
1 — ~)/2-1 p/2*a*1(1_¢ ) 24
/O (1-7) ¥ o wt ! y
ny+mng p vt w 2
(5 ) )
= R I AS T
Therefore,
V+ W+ X2 V4+Ww
A< EZY[(E )1 ~erlog (1 )]
= Eun Gy e st ay e
= EEI(2 ) 10g W VIR oy (14 gV W)
(14.1) 2 EIND nV +nW +|/nX||?

Let k = n1/2,1 =ng/2, m =p/2,and m' = m—a = p/2—a. Let Z ~ Po(#/2) for § = 7||p||* and
let V, W, and T be independently distributed as x?(n1), x?(n2), and x?(p + 272), respectively.

Then since (nV,nW,||\/nX||?) 4 (V,W,T) and since the expectation of the logarithm of a
Chi-squared variable with v > 0 degrees of freedom is log 2 + 1(v/2), it follows that

V+W

A < E9Z [EéT’V’W”Z [m’ log W — colog (1 +c1 m) ’Z”
= EJ[D\(Z) + D2(Z)), (5.5.1)
where
Di(z) =m/{¢(k+1+m+2)—p(k+m+2)}, ze€N,
and

Dy (z2) = EgZ‘Z[_CQ log(1+4 c1pz)|Z = z], =z € Ny,

for a random variable pz such that pz|Z ~ Beta(k + [, m + Z). By Lemma 5.5.3,

1 k+1—-1 m+z—1
P (1= p)
D = — log(1
2(2) 02/0 {Og( +Clp)} B(k‘ +1,m +Z)

o 1 (1 _ p)k+l+m+z—1 L 1 p
- e
0 p (14 c1p)

for all z € Ng. Therefore, by Lemma 5.5.4, lim,_,,{D1(2) + D2(z)} = 0. Fix z € Ny. Then

dp

{Di(z+1)+ D2(z+ 1)} —{Di(2) + Da2(2)}

1 1 1 1— k+l+m+z—1(__ 1
:m,< B )_Cz/ (1-p) ( p){1—7}dp
k+l+m+z k4+m+z 0 p (14 c1p)ktt

!/

Im ! k 1
_ 1— Htmtz—1)y = g,
(k+m—|—z)(k‘+l+m+z)+62/o( ) { (1+C1P)k+l}p

Therefore,

D1(2+1)+D2<2—|—1)le(z)—i-DQ(Z) if and only if f(k—i—m—i—z)zlm’/cQ
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for the function f defined by

1
1
= I 1—p)ti-tdy -~ {4 0,00).
fQ =+ [ 1=nHH1- g e e (0.9
Furthermore, by integration by parts
k+1)c1

C-}—l 1— 1 _ C 1 +1 ( d
C/ { (1+61,0 k+l / C ,0) (1+C1p)k+l+1 P

k+1)c 1 0 k+1)c
- [—(1—p><<1—p>l+1(1<+cfp>),€;+l}o+/o <1—p><5p{<1 P e et Yo

for all ¢ € (0,00) and thus f is an increasing function. Finally, D (0)+ D2(0) < 0 by assumption.
Hence, we conclude that D;(z)+ Da(z) < 0 for all z € Ny with strict inequality for some z € Np.
This completes the proof. O

Proof of Corollary 5.3.1. Let k =n1/2,l=mn2/2, m =p/2, m’ =p/2 — a. We show that

m’ 1 B
Ttk m) = ok m)b < [ (1= ) o), (5:52)
where
LK) (k+1+4+m') )
—1.1), ifl<1,
(c1,0) = (r(k; + DT (k + ) ) !
m :
m,l), if [ > ].,

and where g: (0,1) — [0, 00) is the function defined by
1 1 1 ['ro —1 L (k4 e
D S S, (U A5 U S | 7 B Gl i S 0,1).
9(p) p{ (1—|—c1p)k+l} p/g [6t{(1—|—clpt)k+l}] /0 (1 + cypt) 417" pe0.1)
(5.5.3)

For part (i), since for all p € (0,1)

1 2
, (kL) (K + Der?t
= dt
g'(p) /0 (1 + 1 pt)Eri+2 ’

g is a convex function. Therefore, by Jensen’s inequality,

1 AT ; Bl k] 1 plfl(l . p)k+l+m71
1- m- = B(1
/0( ) g(p)dp (1,k+ +m)/0 BlLk+1+m)

1
B(l’k+l+m)g(—k+l+m+1)

9(p)dp

B / (k+1)c gt
kE4+1+m Jo [L4+{ct/(k+14m+1)}t]rHH
_k—i—l—i—m—i—l{ B 1
k+l+m {1+ /(k+14+m+1)pt]
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the right-hand side of which is greater than or equal to the left-hand side of (5.5.2) by assumption.
To prove part (ii), note that

_glp) a1 k1 .
lim £ = g L[ e dt= (k1) lim
w0 ! mio m o (1+cipt)ktitt (k+ )m}glo m/
0| TMktitm)
— (k4 1) Om =0T (k+ DL (k)" =0 =
Tl —1 fl>1
k+1—1 iti>1,
Yk +1) —p(k), ifl<1,
— D . if [ >1
907 1 1
k+1-1 ’
Then
lim == 1 _ p)kHAm=1,0 v
gy (1-p) g(p)dp
' Gk +1) —p(k), if1<1,
97 1 1
’ k+1-1 '
(k+1)es zb(k:fl)—z/}(k), if1<1,
“halem | isa
S e>3
from which the desired result follows. 0O

Proof of Corollary 5.3.2. Let A and D;(z), D2(z), z € Ny, be defined as in the proof of
Theorem 5.3.1. For part (i), note that equality holds in (5.5.1) when ny = 2. Then if ﬁéﬂnlm’“)
dominates ]figm), we have Al,—g, < 0, which implies D;(0) + D2(0) < 0. This proves the “only
if” part. The “if” part follows from Theorem 5.3.1. For part (ii), note that by (5.5.3), the
right-hand side of (5.3.2) divided by p/2 — a is

1 1
_yna/2+p/2 (n1+2)/m1
/0 (1—p)m/t (/0 T T 50 g} o dt)dp.

Since the above integral is increasing in a, we need only show that equality holds in (5.3.2) when
a = 0. Suppose that n; = 2 and that a = 0. Let m = p/2. Then, by integration by parts,

1 ! _\n1/2 p/21 . 1
a=a )y 0= (1 ) )

1 . m+1 1
=/0 u nf; {1 —|—1mp)2}dp:/o (1_p)m+1{1+1mp+(1+1777,p)2}dp

-
1 +1 1 m 1
1—p)m 1 m+1 1-— 1 1 1
- U L A
o 1+mp m m Jog 1l4+mp m  m Jy m+1
which equals 1/(n1/2 + p/2). Thus, we have proved the desired result. O
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Proof of Theorem 5.3.2. By (5.2.3), we have

R((ps 1), p5™)) = R((pm), 55™) = E

kS
S)

(X, VW) [1 PO WX, V)
O

2 | = A1 +n2) - Agm),
p2 ' (W,X,V)

where, for each n € {ni,ni + na},

An) = Eg,

(X,Un) { B log/|X|2/(Un+X||2) ,yp/z—a—l(l . ,y)n/2_1
0 B(p/2 —a,n/2)

for the random variable U,, whichis V ifn=n; and V+ W if n = ny + no. Let 6, Z, and T be
defined as in the proof of Theorem 5.3.1. Then for n € {n1,n1 + n2}, A(n) can be written as

d’y}

A(n) = E§[D(n; Z)),
where

T/(OntT) yp/2=a=1(] — )
B(p/2 - a, n/2

n/2—1
] d’y‘Z:z}, z € Ny,

D(n; z) = ESTUIZ [ —log /0

for an independent variable U,, ~ x2(n). o
Fix z € Ny. Then for each n € {ni,n1+nsa}, since {T/(U,+T)}(Z = z) ~ Beta(p/2+z,n/2),
it follows that

1 q Ap/2—a—1(1 _ ~\n/2—1 p/24+z—1(1 _ ,\n/2—1
D(n;z) = —/ {log/ 7 (1=v) d’y}q (1=q) dq
0 0 B(p/2_aan/2) B(p/2+zan/2)

_ 1 o w B(p/2 —a,n/2) L Eta gy,
=~ | tore) G R )y

where

B q ,}/p/2—a—1(1 o 7)11/2—1
R@= [ pn

for ¢ € (0,1). Therefore, D(ny + ng; 2) § D(ny;z) if and only if

! Fnl_l(w) zta >
/0 (log w) [1 - C(Z){w} }dpz(w) =0, (5.5.4)
where
C(Z) _ B(p/2 — a7n1/2) B(p/2 — a, (nl + 7”L2)/2)
B(p/2+ z,m1/2)" B(p/2+ z,(n1 + n2)/2)

and where P, is the probability measure with density

B(p/2 —a,(m +n2)/2)
B(p/2+ z,(n1 +n2)/2)

{Fn1+n2_1(w)}z+a> we (O> 1)'
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Since a < p/2 and ny > 2 by assumption, it follows from Lemma 5.5.5 that Fj,, 1, " (w)/Fpn, " (w)
is nondecreasing in w € (0,1) and strictly increasing in w € (w,w) for some 0 < w < w < 1.
Thus, since

/01 - C(z){%_l(“}))}m} dP(w) = 0,

Fn1+n2_1(w

the left-hand side of (5.5.4) is, by the covariance inequality, greater than zero if z + a > 0 and
equal to zero if z + a = 0, from which the desired result follows. U

Proof of Theorem 5.3.3. Let 6 and Z be defined as in the proof of Theorem 5.3.1. Then,
by the proof of Theorem 5.3.2,

) By ) () 55)

_ \n/2—1 P/2+Z-1(1 _ \/2=1  n—n;+ns
H / {1og/0 : (1?31/2) ‘”}q B(p/2(—iZ,(f”L)/2) dq}n:; }
-

‘E

|
Dj

= 5f[[ [hostr - 1 —ayry L U
’ 0 B(p/2+ Z,n/2) n=n
> 1E qp/2+Z 1(1 q)(h+1)(n/2)71 n=ni+nz
_Zlh H/ B(p/2+ Z,n/2) q}n:m }
Therefore,
R((pn). 55" 7) = Ri(m). 55™)

), P
&1, ([ B(p/2+ Z, (h+ 1)(n/2))n=ni+ns
_ZEEGZ [ B(p/2+ Z,n/2) } }

S (Tp/2 4 Z A /2T ((h + 1) (n/2)) =+
=25 [F(p/2+Z+(h+1)(n/2))F(n/2>} }

Logf ()2 09 T(p/2+ Z+7)T((h + 1)r)
’ /mp {7F(p/2+Z+(h+1)T)F(r)}dT}’

n=ni

n=ni

Thus, by Lemma 5.5.6, we have R((w,n),p A(Wl P/ 1)) < R((,u,n),ﬁgm)). Equality holds if and
only if p = 2 and p = 0,,. This completes the proof. U
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Chapter 6

On Global-Local Shrinkage Priors
for Count Data

6.1 Introduction

High-dimensional count data appears in a variety of scientific fields including genetics, epidemi-
ology and social science. It is frequently observed in such data that many of those counts are
very small and nearly zero except for some outliers. For example, in crime statistics where we
divide the area of interest into small sub-regions, the number of occurrences of specific crime is
likely to be small or zero in many sub-regions, while it is still important to detect “hotspots”,
i.e., the regions of the unexplained high crime rate. In this context, the Poisson-gamma model
is obviously inappropriate, for the gamma prior shrinks all the observations uniformly, including
the large signals that should be kept unshrunk, which might result in overlooking such mean-
ingful regions. The desirable prior should account for both small and large signals and realize
the flexible shrinkage effects on Poisson rates.

The prior of this type has been studied as global-local shrinkage prior for the Gaussian ob-
servations. The sparse signals of high-dimensional continuous observations are detected by the
horseshoe prior, which exhibits the aforementioned property of shrinkage, being comparable to
the variable selection (Carvalho et al. (2010)). It is extended to the three-parameter beta distri-
bution for more flexible modeling of sparseness (Armagan et al. (2011)). In hierarchical models,
such priors have been adopted for random effect distributions in small area estimation (Tang et
al. (2018)) or default Bayesian analysis (Bhadra et al. (2016)). For recent developments, see,
for example, Bhadra et al. (2019) and the references therein.

While extensively studied for Gaussian data, the global-local shrinkage priors have not been
fully developed for count data, although Poisson likelihood models with hierarchical structure
are widely used in applications such as disease mapping (see, for example, Wakefield (2006)
and Lawson (2013)). The theory related to the Poisson likelihoods has been well developed
(e.g., Brown et al. (2013) and Yano et al. (2019)), but not necessarily from the viewpoint of
global-local shrinkage. The standard Bayesian models for count data is of Poisson-gamma type;
the gamma prior for the Poisson rate shows the similarity to the global-local shrinkage prior
if one assumes further hierarchical prior on the gamma scale parameters. In this context, the
use of heavy-tailed hierarchical priors has already been practiced (e.g., Zhu et al. (2019)), but
the research on the general, statistical property of such priors has been limited. The theoretical
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properties of the Bayes estimators of those models have been investigated partially by Datta
and Dunson (2016) with the focus on (a generalized version of) the three-parameter beta prior
for the analysis of zero-inflated count data. Our research is also concerned with the global-local
shrinkage for count data, but especially from the rigorous viewpoint of heavy-tail property, which
ensures the large signals are less or not at all affected by the shrinkage effect.

The objective of our research is to consider the effect of the hyperprior on the Bayes estima-
tors (posterior means) of Poisson rates in terms of the robustness property. In doing so, we first
define the concept of tail-robustness for the Bayes estimators mathematically. A robust Bayes
estimator should keep large signals unshrunk, while retaining the strong shrink effect on small
signals towards prior means, which is the tail-robustness we assess by our main theorem. In
Section 6.2, Theorem 6.2.1 and Corollary 6.2.1 give sufficient conditions for the tail-robustness.

Requiring the tail-robustness for the Bayes estimators helps us restrict the class of priors we
should use. The conditions in Theorem 6.2.1 reveal the importance of local shrinkage, or the
individual scale parameter of gamma distribution customized for each Poisson rate, and support
the use of two classes of hyperpriors proposed in Section 6.3: the inverse-gamma prior and
the newly-introduced extremely heavy-tailed prior. The inverse-gamma prior is a well-known
distribution and easy to be integrated into the model. The asymptotic bias for large signals
is shown to be negligible, hence the inverse-gamma prior is “approximately” tail-robust. The
extremely heavily-tailed prior is a new class of probability distributions, whose density function is
derived so as to satisfy the conditions for tail-robustness. In contrast to the inverse-gamma prior,
this prior is exactly tail-robust. Both priors are conditionally conjugate for most of parameters
in the model, which allows the fast and efficient posterior analysis by Gibbs sampler.

In the numerical study, we observe the properties of tail-robustness theoretically guaranteed
for those priors, while the standard Poisson-gamma model suffers from the overly-shrunk Bayes
estimators for outliers. The difference of two proposed priors are empirically confirmed in this
numerical study; the inverse-gamma prior is better in the point estimations for small signals,
having more shrinkage effect toward prior mean, while the extremely heavy-tailed prior is suc-
cessful in quantifying the uncertainty for large counts, as shown in the coverage rates of posterior
credible intervals. Despite this difference, both priors perform almost equally in the analysis of
the actual crime data in Japan by detecting the hotspots of crimes that are overlooked in the
Poisson-gamma models.

The rest of this chapter is organized as follows. In Section 6.2, we consider theoretical argu-
ment regarding tail robustness and derive sufficient conditions for local priors to hold tail robust-
ness. In Section 6.3, we propose two local priors and provide efficient posterior computation algo-
rithms using Gibbs sampling. We also discuss some properties of the implied marginal priors and
posteriors of Poisson rate. Section 6.4 is devoted to the numerical experiments for the extensive
comparison of the proposed priors and other commonly-used priors/estimators under the various
settings. The application to the real data of crimes in Tokyo metropolitan area, Japan, is dis-
cussed in Section 6.5. The step-by-step sampling algorithm, technical details regarding the proofs
of Theorem 6.2.1 and Proposition 6.7.1, motivation of the EH prior, and other computational
issues in the main text are given in the Appendix. Finally, R code implementing the proposed
method is available at GitHub repository (https://github.com/sshonosuke/GLSP-count).
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6.2 Tail-Robustness Under Count Response

6.2.1 Hierarchical models for count data

Our model has the following hierarchical representation; the m observations yi, ..., Y, are con-
ditionally independent and modelled by, for i = 1,...,m,

yilhi ~ Po(midi),  Nilui ~ Ga(a, B/ui), ui ~ m(w;), (6.2.1)

where Po(n; ;) is the Poisson distribution with rate n;\;, and Ga(a, 5/u;) the gamma distribu-
tion with shape a and rate 3/u;, whose (conditional) mean is «/(3/u;). In addition, n; € (0, c0)
is offset and known, (o, 3) € (0,00)? are the hyperparameters, and u; € (0,00) is a local scale
parameter. The offset term, 7;, can be any known constant in general; in practice, it is flexibly
modeled by regression with the log link function, as we examine in Section 6.5. In what follows,
we assume 7); = 1 for simplicity. The two rate parameters of the gamma prior, 5 and u;l, control
the global and local shrinkage effects, respectively. Under this model, the Bayes estimator of
Poisson rate A\; we consider is the posterior mean

~ U
V=Bt y)

:yi_E[Bfui <yi_ O;”) yz}

where the expectation is taken with respect to the marginal posterior of u;, so that the condi-
tional posterior mean of \; shrinks y; toward the prior mean aw;/. Throughout this chapter,
we consider proper priors for w; only. The use of improper priors for u; results in the im-
proper marginal of A;, and the posterior distribution of A; would not successfully reflect the
prior information, failing to shrink the Bayes estimator satisfactory.

).
(6.2.2)

6.2.2 Tail-robustness of the posterior mean

The appropriate choice of prior m(u;) is discussed in terms of the shrinkage effect realized in the
Bayes estimator A;. As stated in the introduction, the estimator should not be shrunk toward
prior mean when the large signal is observed. This property is named as the tail-robustness (e.g.
Carvalho et al. (2010)). The tail-robustness is mathematically defined as the property that

lim |A\; —yi| = 0. (6.2.3)
Yi—>00

This means that the (mean) absolute error loss tends to zero as y; — oo. For fixed u;, the
Bayes estimator (o + y;)/(1+ B/u;) clearly loses the tail-robustness, which motivates the study
of hierarchical prior for u;. Throughout this chapter, our primal interest is in this property
defined in (6.2.3), but we note that there have been other definitions of tail-robustness related
to various loss functions. We discuss in details the difference of tail-robustness concepts in the
Appendix.

To consider the tail-robustness, the next theorem is useful in evaluating the asymptotic bias

limy;, ;00 (A — ¥;) for a variety of priors.
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Theorem 6.2.1 Assume that 7(-) is strictly positive and continuously differentiable. Suppose
that w(-) satisfies the following two conditions:

1
/ lur’ (u)|du < oo, (A1)
0
. ur'(u o
£E= uh_}rgo ) exists in [—oo, 00]. (A2)

Then the asymptotic bias of N is 1+ &, that is,

Y;—> 00
The asymptotic bias of \; under y; — oo can be characterized by the tail behaviour of the
mixing distribution 7(-). This condition is similar to but significantly different from that of
Gaussian response (e.g. Tang et al. (2018)). It is immediate from Theorem 6.2.1 that £ = —1 is
the sufficient condition for the estimator to be tail-robust, which is summarized in the following
corollary.

Corollary 6.2.1 Under the conditions (A1) and

/
lim ° (w)

u—oo m(u)

-1, (A3)

the Bayes estimator N is tail-robust and satisfies ]XZ — il = 0 as y; — .

The crucial assumption in the above corollary is (A3), which describes the desirable tail
behavior of the marginal prior distribution of A;. In fact, (A3) is sufficient for ¢(u) = um(u)
to be slowly varying as u — 00, i.e., limy 00 ¥(ku)/1p(u) = 1 for all k > 0 (e.g., see Seneta (1976),
equation (1.11)). It further implies that, for the marginal prior p(A;) = [;° Ga(Ai|a, 8/ug)m(u;)dus,
we have \ip(A;) ~ Aim(\;) as \; — oo under the regularity condition that justifies the inter-
change of the limit and integral. In other words, under this assumption, the marginal densities
of \; and wu; are asymptotically equivalent in the tail as density functions.

An example of priors that satisfies assumption (A3) is m(u) < 1/u. In many cases, (A3)
requires priors to be of this from; see Section 6.7.5. However, this prior is improper. In other
words, 7(-) have to be as heavy-tailed as improper priors for X to be tail-robust. On the other
hand, (A1) is merely a technical requirement for the proof.

One notable feature of Corollary 6.2.1 is that the sufficient conditions for the tail-robustness,
(Al) and (A3), are independent of the values of hyperparmeters o and 5. This setting about
hyperparameters is a great contrary to other approaches, e.g., Proposition 1 of Datta and Dunson
(2016) where the tail-robustness is discussed for the limiting values of hyperparameters, i.e.,
B8 —o0or f— 0.

6.3 Global-Local Shrinkage Priors for Count Data

6.3.1 Proposed priors

Under the hierarchical model (6.2.1), we propose two families of priors for u;. Each of them is
indexed by a hyperparameter v € (0, 00), which will be estimated in practice.
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The first prior is the inverse gamma (IG) prior given by

o1

—v/ui
r e (6.3.1)

mic(ui;y) =

where v > 0. This is the density of the IG(~,) distribution. It is clearly proper and con-
ditionally conjugate, which simplifies the posterior computation by Markov chain Monte Carlo
methods. From Theorem 6.2.1, it holds that limyiﬁoo(j\i —yi) = —, indicating that the IG prior
approximately satisfies the tail-robustness when ~ is small. The shape and rate parameters are
identical in (6.3.1), so that we have F[1/u;] = 1, and the global parameter 5 can be interpreted
as the marginal rate parameter of the gamma distribution for )\;, i.e., the global shrinkage factor.

Next, we newly introduce a conjugate prior. The extremely heavy-tailed (EH) prior is defined
by the density

_ 1
1w {14 log(1 + uy) }i+

TEH (i3 Y) (6.3.2)
for v > 0. The EH prior can be seen as a modification of the scaled-beta prior; the details on
the connection to the EH prior is discussed in the Appendix. The additional logarithm function
in (6.3.2) contributes to the integrability of the density function. The use of log-term is often
seen in the literature of decision-theoretic statistical theory (for example, see Maruyama and
Strawderman (2020a), Remark 4.1). This prior is proper because

/0 (s )du = [~ {1+ log(1+w)} 1] =1

The notable property of the EH prior is that it satisfies the condition of Corollary 6.2.1;

UWEH/(U§'7): {_ I 1+~ 1 }_>_1
e (u; ) 1+u 14log(l4+u)l+u

as u — 0o. Hence, the EH prior is exactly tail-robust.

The densities and tail-behaviors of the proposed priors are summarized in Table 6.1 together
with those of the Gauss hypergeometric (GH) prior considered in Datta and Dunson (2016).
The GH prior is dependent on the global rate parameter 3, but its density tail (the asymptotic
functional form of density as u; — o0) is independent of § and identical to that of the half-
Cauchy prior (Carvalho et al. (2010)). The density tail of the EH prior is heavier than those
of the GH and IG priors regardless of . This difference originates from the log-term of the EH
density and contributes to the exact tail-robustness of the EH prior.

Density kernel of wu; Density tail as u; — oo
GH(1/2,1/2,7,1/8)  u; ?(1 4 w) (8 + u;)?~! u;
IG(7,7) uy D e=v/wi uy O
EH(7) (1+u) {1 +log(1+ug)} =) it (logu;) ~ )

Table 6.1: Densities of GH, IG and EH priors

Finally, we note the parametrization by x = 1/(1 + u) € (0,1), which also clarifies the
difference of the proposed priors from others. The implied density of the EH prior in the scale of
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Kk is meg (k) = yr /{1 +log(1/k)}1T7. This expression shows that the EH prior can be viewed
as an extension of the improper beta prior, Beta(0,1). The resulting EH prior is proper; the
additional log-term in the density of the EH prior ensures the propriety. Other class of priors,
including the half-Cauchy prior, remain in the class of beta distributions in k-scale and do not
involve the log-term in their densities.

6.3.2 Posterior computation

The computation of the Bayes estimator is based on the Markov chain Monte Carlo method.
Because the proposed priors are mostly conditionally conjugate, sampling from most of the
conditional posterior distributions is straightforward. In this subsection, we mention the essential
strategies of the sampling methods. We provide the detailed step-by-step Gibbs sampling in the
Appendix.

We first discuss the parameters (Aj.y,, @, ), which are common to and always included in
all the models regardless of the choice of prior for u;. Note that we assign prior distributions
for a and f in practice. In this research, we consider the gamma priors; a ~ Ga(aq,bs) and
B ~ Ga(ag,bg). We adopt aq = by = ag = bg = 1 as default choices, which will be used
in the numerical studies in Sections 6.4 and 6.5. When the model is of Poisson-gamma type
and the local parameters u; are fixed, the posterior analysis can be done by sampling the above
parameters. It is noted that the gamma prior for 5 is conditionally conjugate whereas the gamma
prior for « is not. However, using the augmentation technique by Zhou and Carin (2013), we
can derive an efficient Gibbs sampling method as provided in the Appendix.

For the model with the IG prior, the scale parameter u; has a known conditional posterior,
while the conditional posterior of the hyperparameter ~ is difficult to directly sample from.
Although several computationally-sophisticated options are available for the sampling of ~, we
here simply use the random-walk Metropolis-Hastings method with uniform prior v ~ U(eq, &2)
for fixed small €; > 0 and large €2 > 0. We set €1 = 0.001 and e2 = 150 as a default choice.

The new EH prior is not conditionally conjugate for u;, despite its simple closed-form of the
density function in (6.3.2). To develop an efficient sampling algorithm, we introduce a novel
augmentation approach using two positive valued latent variables v; and w;, given by

mEn(ui;Y) = // mEH (Ui, Vi, wi; ¥)dvidw;,
(0,00)2

where

7TEH(’U,Z‘, Vi, Wy, ’y) = Ga(ui\l, vi)Ga(vi|wi, 1)Ga(wi]7, 1)
w) L
=1 i exp{—w; —v;(1+u)).
D)D) P70 v )]
Using the above expression, it is observed that the full conditional distribution of u; is the
generalized inverse Gaussian (GIG) distribution. We can also obtain familiar forms of the
conditional posterior distributions of the other parameters, (v;, w;), where the details are given in
the Appendix. For the shape parameter 7 in the EH prior, we assign gamma prior v ~ Ga(a., by)
which is conditionally conjugate. We use a, = b, = 1 for simplicity as a default choice.
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6.3.3 Marginal prior distributions for \;

In this section, the marginal density of A; is computed to consider its behavior in the limit of
Ai = oo and A; = 0. The tail property of the marginal density is the same as that of the prior
of u;. Information on the behavior of the marginal density of )\; around zero is also important
to understand the amount of shrinkage effect toward zero, which has not been discussed up to
this point in this chapter. In general, the marginal prior distribution for )\; is given by

PO, Bury) = / MAia—le—(ﬁ/umﬂ(ui; )

o Do)
_ BT L st
= I‘(a)/o —at m(Aix;y)de.

We continue the computation of this density for the two classes of priors: mg and mgy.
For the IG prior m(u;;v) = mg(ui;y), we have

(B/7)" A
Bla,y) {1+ (B/v)Aife+”

p(Nija, B,7y) = (6.3.3)

which implies the beta distribution, i.e.,

(B/7)\i
L+ (B/v)N

From (6.3.3), we have p(\;;a,(,7) = O\~ 177) as \; — oo. For sufficiently small v, the
marginal prior of \; can be heavily-tailed, being almost equivalent to A; ! in the tail. This ob-
servation is coherent with the v-dependent asymptotic bias of the Bayes estimator, limyiﬁoo(jxi —
y;) = —. It should also be noted here that, due to the heavy tail of this density, the prior mean
does not exist if v < 1. This can be confirmed by the direct computation or the fact that the
prior mean of u; is not finite under this condition. In this situation, it is difficult to interpret
the prior from the viewpoint that the estimator is shrunk toward the prior mean. For those who
prefer the prior with finite mean, we recommend the modification of the IG prior to IG(y+1,7),
~ > 0, which instead increases the asymptotic bias slightly to —v — 1.
In contrast, the density at the origin depends on the value of . In particular, limy, o p(\i; v, 8,7) =

oo for a < 1, while the limit becomes a positive constant for & = 1 and zero for a > 1. This fact
gives a clue to the interpretation of the choice of, or the posterior inference for, hyperparameter

~ Beta(a, 7).

Q.
For the EH prior, the marginal density is evaluated around zero as follows: For 7(u;;v) =

mEH (Wi ),

By /°° e Ple 1 1
>\i; (et} = 4
P, 8,7) T(a) Jo o 1+ ha {1+ log(1+ Na)} i7"
504,}, /00 e*ﬁ/x
- F(a) 0 x® e
CJla=1)71By fa>1
) oo ifta<1
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as A\; — 0 by the monotone convergence theorem. Thus, limy,_,o p(A\i; @, 3,7) > 0 and increasing
as a — 0, implying the shrinkage of small signals toward the global prior mean. For the tail
property, we have

pQsaf) B [P T 1 log(L4A) 1
lim = [ lim { } }dm
Ai—oo TEH (A Y) I'(a) Jo x® Lai—oo 1+ Az L1+ log(1 + A\x)
e oo ,—fB/x
B / € dr = 1.
0

" T(a) potl

Therefore, p(Ai; o, B,7) ~ mEr(Ni;7) ~ YA t(log ;) ™'~ as \; — oo, which means that the
marginal prior p(\;; «, 8,7) is proper but has a sufficiently heavy tail so that the model can
accommodate large signals. For the computation to verify the result above, see the Appendix.

The marginal distributions of A; with « = 8 = 2 under the proposed IG and EH priors with
v =1 and v = 0.5 as well as the GH prior with v = 1 are visually illustrated in Figure 6.1. It
shows that the IG prior with v = 0.5 has almost the same tail-behavior as the GH prior since
the tail-behavior of the density of u; under the IG prior with v = 1 is equivalent that of GH as
confirmed in Table 6.1. Moreover, the figure reveals that the density tail under the EH prior is
heavier than those under the IG and GH priors, which is consistent with Table 6.1.

g 1 — GH
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Figure 6.1: Left: Marginal densities of \; with a = 8 = 2 under the Gauss hypergeometric prior (GH)
with v = 1, inverse-gamma priors with v = 1 (IG1) and v = 0.5 (IG2), and extremely heavily-tailed
priors with v = 1 (EH1) and v = 0.5 (EH2). The GH and EH densities are evaluated by the Monte Carlo
integration. Right: The marginal densities of the five prior distributions in the tail. The vertical axis is
logarithmic.
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6.3.4 Marginal posterior distributions for \;

We briefly describe the flexibility of the proposed prior distributions compared with the common
gamma prior for \;. Since the conditional posterior distribution of \; given w; is Ga(y; + o, 1 +
B/u;) under the model (6.2.1), the marginal posterior distribution of \; is obtained as the
mixture of the gamma distribution with respect to the marginal posterior distribution of w;.
Note that the use of the gamma prior distribution for A; leads to the posterior distribution
Ga(y; + a,1 + 3). We set « = 8 = 2 and show the marginal posterior density of \; with
several values of y; in Figure 6.2. It is observed that under the moderate signal such as y; = 1,
the posterior distributions of \; are almost the same among the conventional gamma prior and
the proposed global-local shrinkage priors. On the other hand, under large values of y;, the
posterior densities of the proposed methods are significantly different from one based on the
gamma prior, which shows the flexibility of the proposed priors against large signals and is
consistent with tail-robustness property given in Theorem 6.2.1. However, the posterior density
with the conventional gamma prior is not sensitive to large signals, which leads to the over-
shrinkage of estimators. As noted in the previous section, the hyperparameter 7 in the inverse
gamma (IG) distribution is directly related to the asymptotic bias, and Figure 6.2 shows that
the IG prior with the smaller v produces heavier-tailed posterior density functions than that
with the larger ~.

6.4 Simulation Study

We here investigate the finite sample performance of the proposed method together with some
existing methods. We generated the independent sequence of counts from y; ~ Po(\;n;) for
i=1,...,m with m = 200. The adjustment term 7; was generated from U(1,5), and assumed
to be known. For the generating process for \;, we considered the mixture: A\; ~ (1—w)fo+wfi,
where fy and f; denote distributions of moderate and large signals, respectively. Note that w
denotes the proportion of large signals (outliers). For the settings of fy and fi, we adopted the
following four scenarios:

(I

(I1
(111
(IvV

fo=Ga(2,2), fi1=Ga(10,2)
fo=0.75Ga(2,2) +0.256(1), f1 = Ga(10,2)
fo=0.5Ga(2,2) +0.56(1), f1 = Ga(10,2)
fo=1U(0,2), fi=4+]ts],

~— ~— ~— ~—

where U(0,2) is the uniform distribution on [0,2] and t¢3 is the ¢-distribution with 3 degrees of
freedom. In scenarios (II) and (III), the moderate signals are more concentrated around 1 and
have less variation, in comparison to the continuous prior Ga(2,2) in scenario (I). We define the
outlying and non-outlying values of A;’s as those generated from f; and fy, respectively. In each
scenario, we considered two scenarios of w, namely, w = 0.05 and 0.1.

We considered the estimation of A; using the following six priors/methods:

e [G: The proposed method with inverse gamma prior for w;.
e EH: The proposed method with extremely heavy tailed prior for u;.

e GH: Gauss hyper-geometric prior proposed by Datta and Dunson (2016)
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Figure 6.2: Marginal posterior distributions for A; with & = 8 = 2 based on the conventional
gamma prior (PG), the proposed inverse gamma prior with v = 1 (IG1) and v = 0.5 (IG2),
and the proposed extremely heavy-tailed prior with v =1 (EH1) and v = 0.5 (EH2). Each row
corresponds to a difference value of y; € {1,5,10,15}.

129



e PG: Using gamma distribution for A;, known as Poisson-gamma model.

e KW: Nonparametric empirical Bayes method (Kiefer and Wolfowitz (1956); Koenker and
Mizera (2014)).

e ML: Maximum likelihood (non-shrinkage) estimator, i.e., y;.

We assigned prior distributions for the hyperparameters in the two proposed methods, as
illustrated in Section 6.3.2. In the GH method, the hyperparameters were estimated by the
empirical Bayes method recommended in Datta and Dunson (2016), and then 3,000 posterior
samples were generated directly from the posterior distribution of A; with the estimated hyper-
parameters. We assigned gamma priors for the hyperparameters in the PG method, and used
the prior distributions given in Section 6.3.2 for the hyperparameter in the IG and EH methods.
The three methods require the computation by Markov chain Monte Carlo method; for each
dataset, we generated 3,000 posterior samples after discarding 500 samples as a burn-in period.
We computed point estimates of \;, where we used the posterior mean as point estimation in
the first four methods. The performance of these point estimators are evaluated by the mean
squared errors (MSE) and mean absolute percentage error (MAPE) defined as the averaged
values of (A\; —A\;)? and |\; — Aj|/\;, respectively. These measures were calculated separately for
outlying and non-outlying values of the true \;’s. We also computed 95% credible intervals of
A; based on the first four Bayesian methods, and evaluate the performance using the coverage
probability (CP) and average length (AL). We repeated the process for 1,000 times to report
the averages of MSE, MAPE, CP and AL below.

In Table 6.2, we presented the averaged values of the MSEs and MAPESs in all the scenarios.
For non-outlying values, we can see that the PG and KW methods perform quite well while
the proposed IG method is quite comparable. For non-outlying values, the performance of the
three methods, IG, KW and ML are quite comparable and better than the other methods in
MSE. However, it should be noted that the EH performs best in MAPE. These results would
show that the shrinkage effects of the proposed methods successfully realized for small signals.
On the other hand, for outlying values, the point estimates of both PG and KW methods tend
to be worse than ML as predicted theoretically; the PG and KW methods are not tail-robust
in general and are expected to produce over-shrunk estimates. In contrast, the proposed 1G
and EH methods as well as the GH method provides better performance than the PG and KW
methods for outliers, as designed. Among the three methods, the EH method provides the best
performance in all experiments, which is consistent with the tail-robustness property of the EH
method, as discussed in Section 6.3, noting that the IG and GH methods does not necessarily
hold the property.

In Table 6.3, we reported averaged values of the CPs and ALs of 95% credible intervals of
the four Bayesian methods. It is observed that all the method provides reasonable CP for non-
outlying values whereas the CP of the PG method is seriously smaller than the nominal level
for outlying values, which also shows the serious over-shrinkage property of the PG method. On
the other hand, the proposed methods and the GH method show much higher CPs, while the
CP of the EH method is much closer to the nominal level than that of the IG method. It is also
observed that the performance of the EH and GH methods are quite comparable in both CP
and AL.

We checked the performance of the Markov chain Monte Carlo sampling algorithm for the
IG, EH and IG methods under scenario (I) with w = 0.1. The averaged values of the inefficiency
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factors of A1,..., A under the IG, EH and PG methods were 1.17, 4.39 and 1.01, respectively.
It shows that the resulting inefficiency factors seems acceptable, but that of the EH method is
slightly higher than those of the other methods possibly because the number of latent parameters
used in the Gibbs sampling of the EH method is large compared with the other methods. In the
Appendix, we report the additional simulation studies with large sample size, namely, m = 400,
and computation time of the four Bayesian methods.

Table 6.2: Averaged values of mean squared errors (MSE) and mean absolute percentage error
(MAPE) in non-outlying (-n) and outlying (-o) areas under four scenarios with m = 200 and
w € {0.05,0.1}.

Scenario w 1G EH GH PG KW ML
MSE-n 0.24 0.28 0.42 0.25 0.26 0.40
M 0.05 MSE-o 3.30 286 2.80 3.86 3.08 2.84

MAPE-n 0.64 057 0.65 0.63 0.67 0.62
MAPE-o 021 019 019 023 0.21 0.19

MSE-n 026 029 042 028 0.28 0.40

(1) 01 MSE-o 299 27 269 3.01 258 2.73
’ MAPE-n 0.64 058 0.65 0.63 0.67 0.61

MAPE-o 0.20 019 0.19 020 0.19 0.19

MSE-n 0.22 027 043 023 0.23 0.40

(I1) 0.05 MSE-o 3.46 290 280 431 3.06 2.84
' MAPE-n 058 052 0.61 057 0.60 0.58

MAPE-o 022 020 019 024 021 0.19

MSE-n 024 028 043 027 0.24 040

(In) 01 MSE-o 3.06 279 278 313 260 281
' MAPE-n 059 054 062 059 0.62 0.58

MAPE-o 0.20 019 0.19 020 0.19 0.19

MSE-n 0.19 026 043 021 0.18 0.40

(I11) 0.05 MSE-o 3.79  3.03 290 5.02 317 294
' MAPE-n 0.50 0.47 057 050 0.48 0.55

MAPE-o 023 020 019 026 021 0.20

MSE-n 022 028 044 026 0.20 0.41

(1) 01 MSE-o 3.09 278 280 325 254 2.82
' MAPE-n 0.53 050 058 0.53 0.51 0.55

MAPE-o 020 019 0.19 021 019 0.19

MSE-n 0.21 027 040 021 0.20 0.40

(IV) 0.05 MSE-o 238 197 201 271 252 207
' MAPE-n 22.06 14.75 12.49 20.71 24.00 0.63

MAPE-o 025 022 022 027 0.25 0.22

MSE-n 023 028 042 024 0.23 040

(IV) 01 MSE-o 212 195 202 214 2.03 2.07

MAPE-n 279 205 174 259 2.66 0.63
MAPE-o 0.23 022 022 023 021 0.22
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Table 6.3: Coverage probabilities (CP) and average lengths (AL) of 95% credible intervals in
non-outlying (n) and outlying (o) areas under four scenarios with m = 200 and w € {0.05,0.1}.

Scenario  w IG EH GH PG IG EH GH PG
0.05 ™ 96.0 96.2 95.6 96.6 1.93 201 232 1.99

M 0 88.1 91.7 94.3 80.8 5.57 5.81 6.27 4.83
01 n 96.3 96.4 95.7 96.6 201 2.05 233 210

’ 0 90.7 924 94.8 88.7 5.71 5.83 6.25 5.20

0.05 - 96.2 96.3 95.5 96.9 1.90 2.02 2.36 1.98

(1m) 0 87.0 91.7 94.6 77.0 549 5.75 6.23 4.65
01 O 96.4 96.4 95.5 96.8 2.00 2.07 237 2.12

' 0 90.2 92.3 94.8 &7.3 5.71 5.83 6.28 5.12

0.05 ™ 96.7 96.4 954 97.3 1.88 2.04 240 1.97

(111) 0 84.8 90.9 94.1 69.9 5.42 5.73 6.23 4.47
01 O 96.9 96.5 95.3 97.1 1.98 2.09 240 2.12

0 89.8 92.2 94.8 86.0 5.69 5.82 6.27 5.03

0.05 - 93.9 95.6 954 95.2 1.89 2.01 229 1091

(V) 0 84.5 914 943 775 4.35 4.83 5.33 3.80
01 O 94.7 95.8 95.5 95.7 1.99 2.05 233 204

' 0 88.0 91.6 94.6 &5.8 4.51 4.85 5.32 4.13

6.5 Data Analysis

We apply the proposed method to the analysis of crime data by the generalized linear model
with Poisson likelihood and random effects. This model has been adopted for various datasets
in applied statistics; examples include the modeling of areal count data in disease mapping
(Lawson (2013)). In such application, Poisson rate \; (defined below) is not just an adjustment
of areal effects but the parameter of interest as the intrinsic relative risk of region i (e.g. Li et
al. (2010)). Here we incorporate such idea of covariate adjustment into crime risk modeling.

The dataset consists of the numbers of police-recorded crime in Tokyo metropolitan area, pro-
vided by University of Tsukuba and publicly available online (“GIS database of number of police-
recorded crime at O-aza, chome in Tokyo, 2009-2017”, available at https://commons.sk.tsukuba.ac.jp/data
In this study, we focus on the number of violent crimes in m = 2855 local towns in Tokyo
metropolitan area in 2015. For auxiliary information about each town, we adopted area (km?),
population densities in noon and night, density of foreign people, percentage of single-person
household and average duration of residence, which all help adjustment of the crime risk. Let y;
be the observed count of violent crimes, a; be area and x; be the vector of standardized auxiliary
information in the i-th local town. We are interested in the crime risk adjusted by the auxiliary
information and, to this end, we employ the following Poisson regression model:

yil\i ~ Po\imi), i = exp(loga; + ;' §), (6.5.1)

independently for ¢ = 1,...,m, where § is a vector of unknown regression coefficients. Under
the model (6.5.1), the random effect for local town ¢, A;, can be interpreted as adjustment risk
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factor that is not be explained by the auxiliary information. In most local towns, the offset term
explains the variations of crime rates, hence the adjustment risk factor is expected to be small.
Yet, the adjustment risk might be extremely high in some local towns, and we want to detect
such districts. This is precisely where the global-local shrinkage priors fit, for which we employed
the proposed the IG and EH priors for A;. We adopted N(0, 100) as a prior distribution of each
component of §; we found the following result was robust to the choice of prior variance. For
posterior inference, we simply use a Gibbs sampling in which the posterior samples of A1, ..., A
and § are iteratively drawn from their full conditional distributions. Conditional on §, we can
still use the posterior computation algorithm for A; provided in Section 6.3.2. On the other
hand, given \;’s, the full conditional distribution of ¢ is not a familiar form. The detailed
algorithm customized for sampling of § is based on the independent Metropolis-Hasting method
and given in the Appendix. For comparison, we also applied the common gamma distribution
for A\; as considered in Section 6.4, which is again denoted by PG in what follows. Regarding
other methods used in Section 6.4, the GH prior cannot be directly applied in this case since
the specification method for hyperparameters recommended in Datta and Dunson (2016) is
reasonable only when there is no adjustment terms. Similarly, the KW method is not applicable
in this situation. Therefore, we will focus on the comparison of the proposed priors with the
standard Gamma prior. In each Gibbs sampler, we generated 20,000 posterior samples after
discarding 3,000 posterior samples as burn-in.

We first computed posterior means of risk factor \; based on the three methods. The spatial
pattern of the estimates is shown in Figure 6.3. It is observed that the proposed two priors, IG
and EH, produce almost the same estimates. We can confirm that the proposed EH method
provides similar estimates of \; in most areas and successfully detected several local towns whose
risk factors are extremely high. In contrast, such extreme towns are less emphasized, or not
detected at all, by the PG method because the PG method seriously underestimates the true
risk factors. More direct comparisons of estimates based on the purposed methods and the PG
method are presented in Figure 6.4, which indicates the underestimation property of the PG
method more clearly.

We then detected ten local towns with the largest posterior means of )\;. For these towns,
we computed 95% credible intervals of \; based on the three methods, as shown in the left
panel of Figure 6.5. This panel clearly shows the over-shrinkage problem of the PG method in
both point estimation (posterior means) and interval estimation (posterior credible intervals);
the posterior credible intervals computed by the PG method tends to be narrow and further
emphasizes the underestimated results. We also randomly selected another ten local towns with
moderate estimates of \; and gave 95% credible intervals in the right panel of the same figure.
The difference of the three methods is almost negligible for these towns. These observations
exemplify that the proposed methods can avoid the over-shrinkage problem for large signals
while their performance in the other towns are almost the same as the standard PG method.

6.6 Discussion

It should be emphasized again that the global-local shrinkage priors for sequence of counts
developed in this article are based on the new concept of tail-robustness, that is clearly different
from other definitions and non-trivial for many prior densities. We provided sufficient conditions
for this desirable tail-robustness property and, specifically, proposed two tractable global-local

133



Figure 6.3: Posterior means of risk factors \; based on IG, EH and PG methods.
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Figure 6.4: Scatter plot of posterior means of risk factors A; based on IG, EH and PG methods.
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Figure 6.5: 95% credible intervals for areas with highest 10 posterior means (left) and for
randomly selected 10 areas with moderate posterior means (right) of adjusted risk factors.
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shrinkage priors. As illustrated by the simulated and real data examples, the models with these
priors could actually show the tail-robustness as predicted by theory, and are expected to be
applied in the studies of high-dimensional counts.

The settings of our study are critically dependent on the Poisson likelihoods, whose mean
and variance are equal. Conditionally, both prior mean and variance, \;, are controlled by the
common local parameter w; under the gamma prior Ga(a, §/u;), affecting both the baseline
of shrinkage and the amount of shrinkage. This property is not seen in the Gaussian case,
where the local parameter appears in the prior variance only and controls the amount of local
shrinkage, which makes the role of local parameters clear and interpretable. In this sense, the
local parameter in (6.2.1) might be less interpretable, while it is also this setting that enables
us to carry out posterior computation easily and has been studied intensively in the literature
(e.g. Datta and Dunson (2016)). It would be an interesting future research to pursue an
alternative setting for hierarchical modeling of sequence of counts under which the role of the
local parameters is properly restricted and interpretable.

From the viewpoint of methodological research, this chapter is primarily focused on the
point and interval estimation of the Poisson rate. The high-dimensional counts can be cast as
other statistical problems such as multiple testing. The detailed investigation for such directions
would extend the scope of this chapter, but we leave it to a valuable future study.

The newly-introduced EH prior is motivated as the probability distributions that satisfy
the conditions given in Theorem 6.2.1, hence hold tail-robustness. However, the class of priors
that meet those conditions is not limited to that of the EH priors. In theory, the priors with
tail-robustness can be extended to

uﬂlfl 1
(1 + y2ui) " {1+ y3log(1 4 v + ug) 1757

7(u;) o

which is also proper and tail-robust. The hyperparameters (1,72, v3,74,75) increases the flexi-
bility of the model and could improve the EH prior equipped with a single parameter . However,
the posterior inference under this prior is challenging due to the intractable normalizing constant
that involves those hyperparameters. The full-Bayes inference for the hyperparameters is not
as straightforward as that of the EH prior. The inference with fixed hyperparaemters is feasible
by utilizing the same parameter augmentation in Section 6.3.2, but always raises the problem of
hyperparameter tuning. We leave the development of this extension to the future work, which
could be useful in more structured models for count data.

6.7 Appendix

6.7.1 Posterior computation algorithm

We here provide details of the posterior computation algorithm under the proposed two priors,
IG and EH priors, under the hierarchical model (6.2.1). The contents consists of three parts,
algorithms for sampling from the common parameters in (6.2.1), parameters related to the IG
prior and parameters related to the EH prior.

Sampling of the common parameters (A1, a, ).

e The full conditional of \; is Ga(y; +a, m;+ 3/u;) and A1, ..., Ay, are mutually independent.
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e The full conditional of § is Ga(ma + ag, > ;| Ai/u; + bg).

e The sampling of dispersion parameter a can be done in multiple ways. We take the strategy
of Zhou and Carin (2013) by working on the conditional, negative binomial likelihood of
«a by marginalizing A; out. The conditional posterior density of « is proportional to

> —

Y
where 1), () is the prior density of o and s(y;,v;) is the Stirling’s number of the second
kind, and the summation collapses to one if y; = 0. The integer-valued variable v; is

considered a latent parameter that augments the model and allows Gibbs sampler. Thus,
we need to sample from the full conditionals of a and v1.y,.

m

RPN o mo Yi

i=1 i=1lv;=1

iU
B

— The conditional of « is Ga(> " Vi + @a, D ieyq log(1 4+ niu;i/B) + ba).

— If y; = 0, then v; = 0 with probability one. Otherwise, the conditional posterior
probability function of v; is proportional to |s(y;,v;)|a*t, from which we can sample
based on the distributional equation v; = 21:1 d;, where d; (j = 1,...,y;) are
independent random variables distributed as Ber (a/(j — 1 + «)).

Sampling of parameters related to I1G prior

e The full conditional of w; is IG(y + a,y + A\;8) and uq, .. ., u,, are mutually independent.
e The full conditional of v is proportional to

my L 1\ 1
£ = o ([ ) ex (— )I( <y < ).
0) = Ty (H ) p 'VZZ;W e1<v<e

U
i=1 ¢

We sample the candidate of v, denoted 4*, from the distribution of min{ey, max{e1, Z}},
Z ~ N(7,0?), with tuning parameter o > 0, where 7 is the current value of v, and accept
it with probability min{1, f,(7*)/fy(5)}, where we assume that the correction factor based
on the asymmetric proposal density can be ignored.

Sampling parameters related to the EH prior

The latent parameters, (v;, w;), are marginalized out except for the sampling of u; (Partially
collapsed Gibbs sampler, van Dyk and Park (2019)).

e The full conditional of u; is GIG(1 — «, 2v;,26)\;), where GIG(a,b,p) is the generalized
inverse Gaussian distribution with density m(z;a,b,p) o 2P~!exp{—(ax + b/x)/2} for
x> 0.

e The full conditional of (v;|w;) is Ga(l + w;, 1 4+ u;). The conditional posterior of w; with
v; marginalized out is Ga(1l + v, 1 + log(1 + w;)).

e Under gamma prior v ~ Ga(ay,b,), the full conditional of v (with (v;,w;) marginalized
out) is Ga(ay +m, by + > log{1 + log(1 + w;)}).
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6.7.2 Lemmas

In this section, we provide two lemmas which will be used in the proof of Theorem 6.2.1 in the
next section. The following lemma is useful for proving Proposition 6.7.1 as well.

Lemma 6.7.1 Let 0 < M; < My < co. Let ho(-) and hi(-) be nonnegative integrable functions
defined on (Mp,00) and (0, M), respectively, and let 0 < @(-) < 1 be a strictly increasing
function defined on (0,00). Suppose that f]\z ho(u)du > 0. Then
M 0o
lim {e()(u)du/ | {p(u)}ho(u)du = 0.

Y—00 0 MO

Proof. We have

My 00
limsup [ {p(u)}*hi(u)du/ /M {(w)}ho(u)du

y—oo Jo
. p(My) y/Ml OO
< lim sup hi(uw)du ho(u)du
y—r00 {@(MO)} 0 (u)duf Mo (u)
=0
by assumption. O

Lemma 6.7.2 The assumptions of Theorem 6.2.1 imply the following:

* ur'w]
/O (5+u)ad < 00, (6.7.1)

ur(u) ~ lim ur(u) _
Bt AR Brae (6:72)

Proof. We first note that if 7(-) is to be proper, we must have £ € [—o0, 0] since otherwise
7(-) would be eventually increasing so that

/WWWMUZ/mﬂNMu—m

N N
for some N > 0. By (Al) of the main text, we have

! Jur’ (w)| |ur’
/ B+ u)e / d < 00.
If € > —o0, then |un’(u)| = O(m(u)) as u — oo and hence
> Jur'(u)] /°° jur’ (u)]
—du < du < 0o.
/1 (B+u)* 1 pe

On the other hand, if { = —oo, then there exists N > 0 such that 7’(u) < 0 for all w > N and
therefore

M
oo > lim sup/ 7(u)du = lim sup [MW( / {—unr'( }du]
M—o0 JN M—o00

> limsup [~ N /{m M”:MW)AWMMu

M—oo
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by integration by parts. Thus, (6.7.1) follows. To prove (6.7.2), note that for any 0 < § < 1 <
M < oo, we have

[m(u)] M (u)du + " ur (u)du
1 1)

6

by integration by parts. Then, since the right-hand side of the above equation converges as  — 0
and as M — oo, there exist ¢, ¢ € [0,00) such that lim, o ur(u) = ¢y and lim,_, o um(u) = ¢.
If cg > 0or é >0, then u=! = O(m(u)) as u — 0 or as u — oo in contradiction to the assumption
that 7(-) is proper. Thus, ¢o = ¢ = 0 and (6.7.2) follows. O

6.7.3 Proof of Theorem 6.2.1

In this section, we prove Theorem 6.2.1.

Proof of Theorem 6.2.1. We prove the result by using (6.7.1), (6.7.2), and (A2). Since
the posterior density of u; given y; is proportional to W (u;)m(u;), where W(u;) = W (u;y;) =
w¥i /(1 4 u;/B)¥Te, the difference between y; and \; is

Ui — Ni :/ 1 —1—(7):1725 (ug)m(u; duz// W () (u;)dug, (6.7.3)
0 7

which is finite by the propriety of the posterior. By making the change of variables ¢t =
(u;/B)/(1+w;i/B), we have

1 1
5= [ et ) [ atoar
0
where g(t) = g(t;y;) = t¥ (1 —1)* 27 (Bt/(1—t)). Note that, by integration by parts and (6.7.2),

(o + 1)/01tg(t)dt = /Ol(a F1)(1— )il — )_2W(5%)dt
= [ — (1 _ t)a"rltyi"rl(l ) 27T (57)}16:1

1—1
+ / 1 [(1 _pyotlitl(q t)‘%r(ﬁ%t)
; =
AU o gy omn () e

1 1
— (gt 1) /0 (1— t)g(t)dt +2 / to(t)dt

0

+B/ol 1 - t{”/@l E 75)/ (ﬂ%> ba(t)dt,

or

[ = v ansgoae = [ owar 5 [ (5 (o) Jotor
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Then, by making the change of variables u; = t/(1 — t), we obtain

w=tim o ([Loa)” [ T (o) () oo
:—1—/ H (u;)u;m’ uzdul// H (u;)m(u;)dug,

where the integrands are absolutely integrable by (6.7.1) and

H(ug) = H(ui; ) = <1+Ui/5> (1 +wi/B)™

Now, suppose first that & > —oco. Then, for any M > 0,

lyi — A + 1+ ¢ (6.7.4)
S/O ‘5— u;(( )Z) (u; dul// H (ui)m(u;)du; (6.7.5)
_ Jo H(ui)ha (ui)du

Jo H ( i)h ( i)du

fO ug)h (u;)du; fM (i) hy (w;)du;
B fM+1 ( ) wi)du; [y H(ug)ho(us)du;’

where hy(u;) = [ —wm (ul)/w(ul)]k (u;) for k = 0,1. The first term in the fourth line converges
to zero as y; — oo by Lemma 6.7.1. On the other hand,
Yhi(u;)d

limsup  sup fM (1) () i

M—oo y;€{0,1,2,. }fO uz hO uz)duz

~ limsup Sup fM ‘{—uz (u; /7r ‘H wi)ho(u;)du;

M—oo y;€{0,1,2,...} Jor H (ui)ho(ui)du;
(ui) | _

<limsup sup ’5—
M—00 u;e(M,00) )

i (u;)

=0.

= lim

u;—00 ‘ m(u;)

Thus,
I lyi — A + 1+ €] < li I Jo H(w)ha (ui)du
imsup |y; — A\ < lim sup lim sup
fM+1 H(u;)ho(u;)du;

Y;—»00 M—oco  Yy;j—00
(ui)hy (w;)du;
+ lim sup lim sup fM i) P (s ) du
fo (i) ho(w;)du;

M—oo  Yi—o0

<0+0=0.

Next, suppose that £ = —oo. Then for any M > 0, there exists N > 0 such that
—un’(u)/m(u) > M for all u > N. Therefore,

fo uZ uz 7' (u;)du; fN uZ uZ 7' (u;)du;

=N+ 1=
4 + fo 7 (u;)du; fo ul)duz
S fo “z Uz ' (u;)du; fN 7 (u;)du;
- fO 7 (u;)du; fooo H(ul) (u;)duy;
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as y; — oo by Lemma 6.7.1. Thus, since M is arbitrary, we conclude that

lim (S\i—yi):—mzl—#—&.

Y; —» 00

This completes the proof. O

6.7.4 Related tail-robustness properties

We here discuss two related tail-robustness properties of the posterior mean Ai. One variant is
based on the ratio of the estimator and observation and given by

lim 12 =9l _ 0, (6.7.6)
Yi—00 Y;
which we name weak tail-robustness. It is obvious that the strong tail-robustness implies the weak
one. The left-hand-side in (6.7.6) is the mean absolute percentage error (MAPE) loss function,
which is frequently used in practice to evaluate the inferential/predictive performance of the
models for count data. In this sense, the weakly tail-robust estimator A is asymptotically optimal
in MAPE (Section 3.3.2, Berry et al. (2019)). Note that the Bayes estimator (a+y;)/(1+5/u;)
with fixed u; does not satisfy the property (6.7.6).
We provide conditions for weak tail-robustness in the following proposition.

Proposition 6.7.1 Suppose that w(-) is strictly positive. Then, under the model (6.2.1), we
have

Yi—r00 Yi
i.e., the Bayes estimator is weakly tail-robust.

Proof. From (6.7.3), we have

;\i —Yi 5fooo B—i—ui)’lW(ui) (ul)duz o fooo ’U,Z' 6+ui)’1W(ui) (ul)duz
i = - fo () duy + E fo () o (6.7.7)

for y; € {1,2,...}, where

uiyi
(1 4w/ Byt

The second term on the right-hand side of (6.7.7) converges to zero as y; — oo since u; /(8+u;) <
1 for all u; € (0,00). On the other hand, by Lemma 6.7.1,

fO ,8+ul lW(uZ) (ul)duz

Wiu;) = Wiui;yi) =

[T () (6.7.8)
B S B( ﬂ + uZ 1I/V(ul) (u;)du;
- fM 7 (u;)duy;
fo (B —i—uZ 1W uZ (wi)/ [o B( B+uz YW (w7 (u;) du;
Jo W i) (ug)dug/ [y W (ug)m(ug)du;
N I BB+ uZ 1W(uz) (u;)du;
fM 7 (u;)du;
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as y; — oo for every M > 0. Furthermore, uniformly in y;,

0< ivi 5(5; w;) T W (ug ) (ug ) dug < B

—0 as M — oo.

Thus, we have proved the desired result. O

The key implication of this proposition is that, for fixed hyperparameters, the weak tail-
robustness can be achieved for almost all priors for u;. It suggests that the tail-robustness
property in the main document and the weak tail-robustness property look similar but is sub-
stantially different properties.

Another concept of tail-robustness is

) i
lim
yi—oo o + Y

=1. (6.7.9)

The denominator is a part of the Bayes estimator (a + y;)/(1 + 8/u;). This definition requires
that the coefficient w;/(8 + u;), viewed as a shrinkage factor, degenerates at 1 as y; — oo
(Proposition 1, Datta and Dunson (2016)). It is trivial that the Bayes estimator with fixed wu;
does not satisfy the property, but the weak tail-robustness leads to the tail-robustness of this
type. Hence, by Proposition 6.7.1, the use of any strictly positive prior of u; also leads to this
tail-robustness.

6.7.5 Connection to the tail-robustness of three-parameter beta priors

The EH prior emerges in the course of examination of tail-robustness under the scaled-beta or
three-parameter beta (TPB) distributions (Armagan et al. (2011)), known as a flexible class of
priors for scale parameters. The density is given by

uiao—l

T+ Gow/ B0 (1 + g/ By o0

where ag, by, ¢, and 7 are all positive constants. For count data and Poisson likelihood,
Datta and Dunson (2016) considered this prior with ag = by = 1/2 and ¢g = 5. Although the
TPB prior (6.7.10) is flexible, it does not satisfy assumption (A3) in Corollary 6.2.1 and is not
strongly tail-robust for any choice of hyperparameters. Under the prior (6.7.10), by Theorem
1, the asymptotic bias is limyiﬁoo(jxi —y;) = —by < 0, negatively biased and dependent on its
hyperparameter by. Similar to the inverse-gamma prior, the approximate tail-robustness for the
TPB prior is justified by the limiting case of by — 0; with 7o =, a0 =1+, and 8 =¢g =1
in (6.7.10), we obtain

7(ui; ao, bo, $o,Y0) o ( (6.7.10)

v

. ) _
m(ui;7y) o< 0T u) ™ v > -1 (6.7.11)
In return for the tail-robustness in the limit, however, it is inevitable for the prior in (6.7.11)
to be improper. The EH prior can be viewed as the limit v — oo modified by the multiplied

log-term for propriety.
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6.7.6 Evaluation of the marginal of \; with EH prior
We evaluate the limit of the marginal density of A; implied by the EH prior.

. a 0~ ,—B/x . N1+
p()‘laavarY) B / € 1+ N { 1+10g(1+>\1))} ’de
0

mEH(Ai; ) - I'(«) @ 14 XNz U1 +log(l+ Az

To compute the limit at A\; = 0o, note that

i
)\il—r>noo 14+ M\

I+ X { 1+1log(1+ N\) }1+7_ 1

1 +log(1+ A\ix) z

for each x > 0. The result in the main text is verified by the dominated convergence theorem.
To see this, evaluate the integrand for \; > 1 as

1+ N 1+log(l+ A) Y1+ 2 s=1
<= .
1+>\ix{1+10g(1—|—)\ix)} = oxp ((HV)[lOg{l+10g(1+Azs)}] )

S=T

2 Y1 s 1
xeXp{(ljUY)/z ;1+)\¢sl+log(1+)\is)ds}

— ifx>1

1
1 .
xexp{(l—i—’y)/m gds} ifr<1

2 2 I 2 1
A CRIRCEHEES
x—i-xexp{( —i—’y)/xss . —l—va

in which we find the bounding function that is integrable as

> =Bl ) 1
/0 e ;(1+x1+7>dx<oo

IN

IN

for large A; > 1.

6.7.7 Additional simulation results

We here provide additional simulation results under a larger sample size (m = 400), where the
other settings are the same as ones in the main document. The results are shown in Tables 6.4
and 6.5. We can see that the results are not very different from Tables 6.2 and 6.3 in the main
document.

We also assessed the computation time of the proposed methods, IG and EH, and two
existing Bayesian methods, GH and PG. Using scenario (I) given in the main document with
w = 0.1, we evaluated the computation time under m € {200,400}. For each m, 3000 posterior
samples were generated after discarding the first 500 burn-in samples. The computation time is
reported in Table 6.6, where the experiment was performed on a PC with 3.2 GHz 8-Core Intel
Xeon W 8 Core Processor with approximately 32GB RAM. From Table 6.6, we can see that the
computation time of the proposed methods, IG and EH, are quite comparable with that of PG,
and are considerably smaller than that of GH. Moreover, as the number of (local) parameters
in the four models linearly increase with m, their computation time would also linearly increase
with m, which is partly supported by the results in Table 6.6.
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Table 6.4: Averaged values of mean squared errors (MSE) and mean absolute percentage error
(MAPE) in non-outlying (-n) and outlying (-o) areas under four scenarios with m = 400 and
w € {0.05,0.1}.

Scenario w IG EH GH PG KW ML
MSE-n 0.24 027 042 0.25 0.25 0.40
MSE-o 3.29 293 280 3.88 2.88 2385

(0 0-05 MAPE-n 0.64 057 0.65 0.62 0.67 0.61
MAPE-o 0.21 020 0.19 0.23 0.20 0.19

MSE-n 0.26 0.28 0.43 0.28 0.27 0.40

(1) 0.1 MSE-o 3.06 2.85 280 3.02 251 284
MAPE-n 0.65 0.59 0.66 0.63 0.68 0.61

MAPE-o 0.20 0.19 0.19 0.20 0.19 0.19

MSE-n 0.21 0.26 0.43 0.23 0.22 0.40

(1n) 0.05 MSE-o 3.40 292 277 435 285 2.80
’ MAPE-n 0.59 0.53 0.61 0.57 0.60 0.58

MAPE-o 0.21 020 019 024 0.20 0.19

MSE-n 0.23 0.28 043 0.27 024 0.40

(1) 0.1 MSE-o 3.09 2.83 280 3.17 246 283
’ MAPE-n 0.59 054 0.62 0.58 0.61 0.58

MAPE-o 0.20 0.19 0.19 0.20 0.18 0.19

MSE-n 0.19 0.25 0.43 0.21 0.17 0.40

(1) 0.05 MSE-o 3.56 294 276 4.87 284 280
’ MAPE-n 0.50 048 0.58 0.51 0.49 0.55

MAPE-o 0.22 020 0.19 0.26 0.20 0.19

MSE-n 0.21 0.27 044 0.26 0.19 0.40

(111) 0.1 MSE-o 3.14 2.83 280 3.34 241 282
’ MAPE-n 0.52 049 0.58 0.53 0.49 0.55

MAPE-o 0.21 0.19 0.19 0.21 0.18 0.19

MSE-n 0.21 0.26 0.40 0.21 0.20 0.40

(V) 0.05 MSE-o 238 197 2.00 2.67 237 207
' MAPE-n 238 1.656 136 219 2.14 0.63

MAPE-o 0.25 0.22 0.22 0.26 0.24 0.22

MSE-n 0.23 0.27 042 0.24 0.23 040

(V) 0.1 MSE-o 2.09 191 199 210 190 2.04

MAPE-n 242 1.77 145 219 230 0.63
MAPE-o 0.23 0.22 0.22 0.23 0.20 0.22
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Table 6.5: Coverage probabilities (CP) and average lengths (AL) of 95% credible intervals in
non-outlying (n) and outlying (o) areas under four scenarios with m = 400 and w € {0.05,0.1}.

Scenario  w IG EH GH PG IG EH GH PG
0.05 1 95.7 96.3 95.7 96.7 1.91 2.00 2.33 1.99

(1) o) 88.4 91.0 94.5 &0.7 5.61 5.72 6.25 4.81
01 B 96.1 96.5 95.7 96.6 1.99 205 234 210

’ 0 90.6 92.0 94.7 88.3 576 5.78 6.26 5.19

0.05 - 95.8 96.4 955 96.9 1.88 2.02 236 1.98

(1m) 0 87.6 90.9 94.6 764 556 5.67 6.25 4.63
01 O 96.2 96.6 95.5 96.8 1.97 207 237 212

' 0 90.1 91.6 94.7 &86.8 576 5.78 6.29 5.11

0.05 1 96.2 96.5 95.3 97.3 1.85 2.03 240 1.97

(111) 0 85.9 904 94.8 70.9 549 5.64 6.24 4.45
01 n 96.5 96.6 954 97.1 1.95 2.09 240 2.12

0 89.8 91.7 94.8 &5.5 5.73 5.75 6.28 5.00

0.05 n 93.7 95.6 954 95.2 1.88 2.00 2.29 1.92

(V) 0 84.2 90.8 94.5 783 4.31 4.73 5.30 3.79
01 O 94.5 95.8 95.5 95.8 1.98 2.05 2.33 2.03

' 0 88.2 91.7 94.6 &86.5 4.51 4.79 5.33 4.13

Table 6.6: Computation time (seconds) of the four Bayesian methods with m = 200 and m = 400.
In all the methods, 3000 posterior samples were generated after discarding the first 500 samples.

m IG EH GH PG
200 2.00 549 19.24 1.75
400 3.92 11.06 38.18 3.65

Computation Time
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6.7.8 Metropolis-Hastings method for Poisson regression

The estimation of Poisson regression model in Section 6.5 requires the sampling of regression
coefficients 9, in addition to \; and other parameters. The new step of sampling § is added to
the existing MCMC algorithm in Appendix, as described here.

Consider the conditionally independent counts 1, ..., ¥y, that follow

Yi ~ P0<)\i77i>7 ni = exp{wiT‘S}v

where \; is a random, individual effect, x; is the p-vector of covariates and & is the coefficient
vector. If the likelihood has a known offset term a; as y; ~ Po(a;\;n;), then read A; in the
equation above as a;)\;. We are interested in the posterior analysis of (A1.,,d) (and the other
parameters) by Gibbs sampler. For )\;, the gamma prior is conditionally conjugate; if A; ~
Ga(a, B/u;), then the conditional posterior of \; is Ga(a + y;, 8/u; + n;). With offset a;, the
conditional posterior is Ga(a + y;, 8/u; + a;n;). The sampling of the other parameters is not
affected by the introduction of regression and offset terms. In this note, we explain the sampling
of § by MCMC method.

The independent Metropolis-Hastings method can be tailored for the model with conditional
posterior density that is analytically available or, at least, numerically evaluated. For the Poisson
regression model, we assume the normal prior N(pg, 3o) for §. Conditional on Aj.,, and current
6°"4 we generate the candidate 8"¢"V from the proposal distribution, which is defined as the
posterior distribution derived from the approximate likelihood,

5 ~N(8, %),

for some known & and 3. Then, denote eV = exp{z; 6"V} and 79 = exp{z; 6}, and
accept 0"°Y with probability

i=1 PO(yiMmfld) (6|6new7 Y)

and set & = 6™V, Otherwise, set § = §°4,
The approximate normal likelihood is obtained as the Taylor expansion of the log-likelihood
around the mode. The log-likelihood of this model is

Zlog <

= const. + Zyi(mi—ré) — )\iewiT‘s
i=1

) + yilog(mi) — Aimi

The first and second derivatives are

8£(6) _ - :131 :151
95— ; Yi; — A€ S, and 8586T = Z)\ e x|

Then, we obtain 3 as the solution of the first order condition,

aL(d) , m TS
W = 0(17)7 1.e., ;yzmz = ZZ; )\ie Z; (6713)
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where 0% is the p-vector of zeros. The precision is obtained by

2—1 _ 86(62'—
0000

m
=Y nie™ P (6.7.14)
5=8 i1

The computation of 3 needs the numerical solver of the nonlinear equation above. It should be
noted that we do not have to solve this equation exactly, for the solution 3 is used to construct
the approximate, proposal distribution. The sampling from the proposal is justified by the
acceptance-rejection step, no matter what the proposal distribution is used.

In summary, the sampling of & takes the following steps. Conditional on 6°'% and the other
parameters,

(i) Compute 8 and = by Equations (6.7.13) and (6.7.14).

(i) Generate 6"V from the proposal distribution N(u, ¥), where
~—1 ~—1~
E=(E 4% )L =33 6+ ).

(iii) Set & = §"°V with probability given in Equation (6.7.12). Otherwise, set § = §°!4.

147



Chapter 7

Shrinkage with Robustness:
Log-Adjusted Priors for Sparse
Signals

7.1 Introduction

Developing new classes of continuous prior distributions that realize the shrinkage effect of
variable-selection type on location parameters has been an important research topic in the last
few decades, especially in the context of the analysis of high-dimensional datasets to properly
express one’s prior belief on “few large signals among noises”. As pointed out by Carvalho et
al. (2009), we can express such belief explicitly via the parameterization of shrinkage effect in
the Bayes estimator that shrinks the observed signals to zero or baseline. This parametrization
opens the path to crafting the new class of continuous priors that mimic the discrete mixture for
variable selection, namely, the spike-and-slab priors (Ishwaran and Rao (2015)), which is more
desirable in the high-dimensional context than the existing shrinkage priors (e.g. Strawderman
(1971); Berger (1980); Park and Casella (2008)). In addition to shrinking the negligible noises
toward zero, the desirable prior here should also define the Bayes estimator that is robust to
outlying large signals in the sense that such signals are kept unshrunk in the posterior analysis.
This property is typically called tail-robustness (e.g. Carvalho et al. (2010)), and the aim of
this research is to define a new class of shrinkage priors with strong tail-robustness.

The aforementioned parametrization describes both shrinkage effect and tail robustness im-
plicitly assumed in the prior of interest. Suppose we observe y; ~ N(6;,1) independently for
i =1,...,n and the prior is given by 6; ~ N(0,7u;) (and 7 = 1, for simplicity) and u; ~ m(u;).
Then, the Bayes estimator of true signal ; is written as (1 — E[x;|y;])y;, where x; = 1/(1 + u;).
It is this parameter, k;, that controls the amount of shrinkage in the Bayes estimator. In the
presence of sparse signals, the standard choice of priors for x;’s has been the beta distribution
(Armagan et al. (2011); Pérez et al. (2017)), originated from the half-Cauchy distribution (Gel-
man (2006), or horseshoe prior; Carvalho et al. (2009, 2010)) given by 7(k;) oc k271 (1 — ;)27
ki € (0,1), with positive a and b. The appropriate modeling of shrinkage and robustness is then
translated into the choice of extremely small shape parameters (a,b). This preference on the
choice of hyperparameters is, however, against the finding of Bai and Ghosh (2019); in order to
guarantee the desirable posterior concentration for both small and large signals, a can be ex-
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tremely small (a = 1/n) but b must be sufficiently large (b > 1/2), which clarifies the limitation
of the class of beta distributions.

In this research, we consider the extension of beta-type shrinkage priors to strengthen the
prior tail-robustness. Specifically, we propose the following modified version of the beta prior:

m(ki) o K0TH (L — k) (1 — log rg) ~H) (7.1.1)

where v > 0 is a newly introduced hyperparameter. The use of logarithm in the density slightly
“slows down” the divergence of the density as x; | 0 and, in fact, makes the density kernel
above integrable even if b = 0, as shown in Theorem 7.2.1. This distribution allows the stronger
tail-robustness than the beta prior by setting b = 0, while remaining in the class of proper priors.

The use of logarithm term in the density function to define the new class of distributions
has motivated many research on posterior inference. They include the analysis of ultra-sparse
signals (Bhadra et al. (2017)), robust regression (Gagnon et al. (2020)), and admissibility
(Maruyama and Strawderman (2020a)). The shrinkage with robustness— our research goal— has
also been considered in Womack and Yang (2019) as the heavy-tailed extension of the horseshoe
prior. A similar log-adjusted method was employed in Hamura et al. (2020a) for the analysis
of high-dimensional counts. The key difference of our research from the listed literature is the
focus on the robustness of Bayes estimator; we proved the superiority of the proposed prior to
existing ones explicitly via improvement of the mean squared error for large y;, as summarized
in Theorem 7.2.2, and support this theoretical property by the extensive simulation study in
Section 7.3.

Among the variants of probability distributions that involve the log-term, the novel feature
of the prior of our interest is its potential of further generalization, by which one may modify
the proper prior “as robust as possible”. Although the prior in (7.1.1) becomes improper with
v = 0, we can multiply another log-term as

(ki) X /{2’71(1 — k)1 (1 —log ki)t {1 4 log(1 — log ,{i)}—(1+'y) :

which is proper again even if b = 0 as long as v > 0. Notably, we can repeatedly iterate this
process of extension; if v = 0 in the above equation and the density becomes improper, then the
reciprocal of another log-term, 1 + log{1 + log(1 — log x;)}, can be multiplied to the density to
regain the proper prior. It is expected, and verified later in Theorem 7.2.4, that such extension
provides the stronger tail-robustness and makes the choice of = less sensitive to the posterior
analysis. Furthermore, as discussed in Sections 7.4 and 7.5.8, the limit of repeated extensions by
log-terms is the discrete mixture of two point masses, i.e., the spike-and-slab prior, in the sense of
convergence in distribution. This result on the limiting distribution could justify the proposed
prior as the continuous alternative to the ideal, but inefficient or infeasible in computation,
discrete priors of variable selection type.

The Bayes estimator under the proposed priors has no closed form, even if global scale 7 is
fixed, due to the intractable normalizing constant. Yet, the estimator can be evaluated fast by
simulation. The proposed prior density admits the integral representation, or the augmentation
by latent variables that follow gamma-shape Markov processes, by which the full conditional
posteriors of those parameters and latent variables become normal, (inverse) gamma or gener-
alized inverse Gaussian distributions. Sampling from those distributions is trivial, and the full
posterior analysis becomes available by the simple but efficient Gibbs sampler.

The rest of this chapter is organized as follows. In Section 7.2, we define the log-adjusted
shrinkage prior and its extension, and provide the theoretical properties, the improvement of the
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mean squared errors of Bayes estimators, and the Gibbs sampler by augmentation. Simulation
studies and data analysis follow in Section 7.3, with the extensive comparative analysis with the
existing shrinkage priors. We conclude this chapter in Section 7.4 with the further discussion on
the limiting distribution of repeated extensions by multiplying the iterated log-terms for both
shrinkage and robustness.

All proofs and technical details are given in the Appendix.

7.2 Log-Adjusted Shrinkage Priors

7.2.1 The proposed prior and its properties

Suppose we observe an n-dimensional vector (y1,...,yy), that y;|0; ~ N(6;,1) independently for
i=1,...,n. To estimate signals (01, ...,60,) that are potentially sparse, we adopt locally adap-
tive shrinkage priors known as global-local shrinkage priors (Polson and Scott (2012a, 2012b);
Bhadra et al. (2016)) given by

0i|7,u; ~ N(0,7u;) and wu; ~7(u;), fori=1,...,n, (7.2.1)

where both 7 and (u1,...,u,) are all positive. Here, 7 is the global shrinkage parameter that
shrinks all 6;’s toward zero uniformly, while u; is the local scale parameters and customizes the
shrinkage effect for each individual ¢. For simplicity, we assume 7 = 1 to focus our theoretical
development on the priors for local scale parameters. We propose the following modified version
of the scaled beta distribution:

m(ui) = Cla, b,7) " a0 (1 4 u;) =@+ {1 + log(1 +u)} ) (7.2.2)

where C(a, b, ) is a normalizing constant. Note that the class of distributions defined by density
(7.2.2) includes the scaled beta distributions (Armagan et al. (2011)) as the density of v = —1
and positive a and b. The hyperparameters, (a,b,7), determine the functional form of the
density around the origin and in the tails. Shape parameters a and b control shrinkage effect
and tail robustness for Bayes estimators, respectively, and both parameters should be set to
small values in order to achieve the desirable shrinkage and robustness properties. Specifically,
we set a = 1/n, following Bai and Ghosh (2019), to realize the strong shrinkage effect on noises
and set b = 0 to attain the strong tail robustness. Note again that setting b = 0 in the original
scaled beta distribution leads to an improper prior, thereby it cannot be adopted as shrinkage
priors in practice. The new parameter v also affects the tail behavior of the density as b does,
but it would have less impact on posterior analysis. We may either fix v subjectively to a certain
value, such as v = 1, or take the fully Bayesian approach by considering the prior for + as we
discuss in the subsequent section. The new priors for 6; under (7.2.1) with the log-adjusted
scaled beta distribution (7.2.2) is named log-adjusted shrinkage priors. In what follows, we
demonstrate properties of the proposed prior with general hyperparameters, (a,b,v), but the
priors of our interest and recommendation are those with a = 1/n and b = 0.

We first provide important properties of the proposed shrinkage prior for 6; in the theorem
below.

Theorem 7.2.1 The log-adjusted shrinkage prior for 0;, w(6;), satisfies the following properties.

1. 7(0;) is proper if a >0, b >0 and v > 0.
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2. limg,| o 7(0;) = oo for a < 1/2.

3. m(0;) o< |0;] 727 1L(|6;]) under |60;] — oo, where L(-) is a slowly varying function satisfying
limps 00 L(Mu)/L(M) =1 for all u > 0.

It is notable that the prior is proper even if b = 0 from the first property; this is obviously due
to the additional log-term in (7.2.2). The second property is the same as that of the original
beta prior, which indicates that the proposed prior has the density with the spike around the
origin and holds strong shrinkage property. It also means that the additional log-term does
not change the shrinkage property of the original beta-type prior. From the third property, our
proposal of setting b = 0 results in the extremely heavy tailed prior distribution for 6;, whose
tail is heavier than even the Cauchy distribution. Such heavy-tailed properties are essential for
strong-tail robustness, as shown in Theorem 7.2.2.

Figure 7.1 shows the examples of the log-adjusted beta distribution given in (7.1.1), in the
scale of k; = 1/(1 + w;), for different choices of hyperparameter v. When compared with beta
density Beta(1/2,1/2), which is the half-Cauchy distribution in the scale of u; and realizes the
horseshoe prior, the log-adjusted shrinkage densities have steeper spike as k; — 0, reflecting its
tail property introduced by the additional log-term. The shrinkage effect is also affected by this
additional term in the density, but the densities with moderate values of v, such as v = 0.5 or v =
1, show the similar speed of divergence toward k; as the beta density does. These observations
imply that, with the appropriate choice of hyperparaemters, the log-adjusted shrinkage prior
can introduce the strong tail-robustness without losing the horseshoe-type shrinkage effect.

In order to clarify the importance of setting b = 0, we next examine the posterior tail-
robustness under the proposed prior by computing the posterior mean squared error for large y;.
Denote the posterior mean squared error under a prior 7(6;) by MSE, (0;|y:) = Ex[(0; — vi)?|vi].
We evaluate the mean squared error of the proposed class of priors in the following theorem
based on the representation of posterior mean squared error by the marginal likelihood (e.g., see
Polson (1991)).

Theorem 7.2.2 Under the log-adjusted shrinkage priors for 6; with hyperparameters a > 0,b >
0 and v > 0, and under the beta-type prior (a >0, b >0 and v = —1), it holds that

2 1
MSE:(0ily;) =1+ E(l +b)(14+2b) + o <y?> , (7.2.3)

i K3
where y;?0(1/y;%) — 0 as |y;| — oo.

We first note that the above approximation formula of mean squared error is independent of
v, thereby the same formula holds for the original beta-type shrinkage prior for ;. Moreover,
Theorem 7.2.2 shows that the leading term of the posterior mean squared error for large signals
is increasing in b, which clearly suggests that the best choice is b = 0. The proper log-adjusted
shrinkage prior can attain the ideal mean squared error by setting b = 0, outperforming in the
mean squared error the proper beta-type shrinkage prior for which we always have to set b > 0.

The posterior mean squared error for large y; has also been calculated for other shrinkage
priors. Theorem 7 of Bhadra et al. (2017) provided the posterior mean squared error of the
horseshoe+ prior mgsy as

2 1
MSEWH5+(9i‘yi) =1 + 3 <y2> +o0 < ) y

7 yi2
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5 Approximate Densitiesfora =0.5,b =0
—y=01 —vy=05

—_— = —vy=2

1
—— Horseshoe Bg(0.5,0.5)
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00 o1l 02 03 04 05 06 0.7 0.8 09 10

Figure 7.1: The prior density for the shrinkage factor ; given in (7.1.1) under the log-adjusted
shrinkage prior with @ = 1/2 and b = 0. The four densities represent the cases of v = 0.1
(red), 0.5 (blue), 1 (green) and 2 (pink). The density of beta distribution Beta(1/2,1/2) (black)
is equivalent to the half-Cauchy prior in the scale of u; and realizes the horseshoe prior. The
log-adjusted shrinkage priors have the steep increase toward k; = 0 for tail-robustness, while
maintaining its spike around x; = 1 for strong shrinkage if we choose moderate values of ~y, such
asy=05o0r~vy=1
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which is, as |y;| — oo, inevitably larger than the posterior mean squared error of our proposed
prior in (7.2.3) with b = 0.

7.2.2 Posterior computation

Although the Bayes estimator of ; for the log-adjusted shrinkage prior is not analytically avail-
able, there is an efficient yet simple Markov chain Monte Carlo algorithm for posterior com-
putation. The full conditional posteriors of parameters, 6;’s, u;’s and 7, become well-known
distributions after the appropriate augmentation by latent variables described below. The con-
ditional posterior density of hyperparameter v is complex due to the intractable normalizing
constant C'(a,b,~), but the sampling from its distribution is feasible by the accept-reject algo-
rithm. The rest hyperparameters are fixed as a = 1/n and b = 0.
The prior density of u; in (7.2.2) has the following augmented expression:

1 00 oo . v eV w?i+a+b—167wi(1+ui)
i) = = a-1_Y i dw;dv;, 7.2.4
m(uii7) C’(a,b,'y)/o/o YT 49) Titatb (7.24)

where w; and v; are latent variables for data augmentation. Given -, the augmented posterior
distribution is proportional to

n 1 1~ w?i-‘ra-‘rb—le_wi(l_i_ui)
N 7 07:7 1 N 01 0, i) ———— "7‘_ . —V; 7 :
m(r) | INGusl6s N0, 7w )C(a, by) i iC I(vi+a+b)

=1

where 7(7) denotes a prior distribution of 7. We assign an inverse-gamma prior for 7 and set
(1) = 1G(7|c}, df), which leads to conditional conjugacy. It is immediate from the expression
above that all the full conditional distributions are of normal or (inverse) gamma distributions,
so that we can efficiently carry out Gibbs sampling by generating posterior samples from those
distributions. The procedure of Gibbs sampler is summarized as follows:

Algorithm 7.2.1 (Gibbs sampling algorithm) Suppose v is fized. The Gibbs sampler al-
gorithm, or the list of the full conditional distributions of the local and global parameters under
the log-adjusted shrinkage prior, is summarized as follows:

o Generate 7 from 1G(n/2 + ¢f, >0, 02/ (2u;) + df).
o Generate 0; from N(y;/{1+1/(tu;)},1/{1+1/(Tu;)}) fori=1,...,n.

e Generate u; from the generalized inverse Gaussian full conditional distribution p(u;|6;, w;, T)
w; Y2 exp[—{2wiu; + (0:2/7)/ui}/2) fori=1,...,n.

e Generate (v, w;) by the following two steps:

— Generate v; from the conditional distribution marginalized over w;, namely p(v;|0;, T, y;),
which is Ga(1 + 7,1 +1og(1 4+ w;)), fori=1,...,n.

— Generate w; from the full conditional distribution, p(w;|v;, 6;,7,v;), which is Ga(v; +
a+b1l+w) fori=1,...,n.
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We next consider incorporating the estimation of v into the algorithm above. Let C(y) =
C(a,b,7v) be the normalizing constant of 7(u;) in (7.2.2), which is defined by

[ uafl(l_‘_u)f((r#b) 1 (1_K)a71/€bfl
— du = -~ 7  d 2.
ct /0 1+ log(1 1 w)}iF ™ /0 (1= logm)17 " (7:2.5)

where k = 1/(1 +u), a = 1/n and b = 0. Due to this intractable normalizing constant in the
prior, the direct sampling from the full conditional of « is challenging and even infeasible. We
circumvent this problem by constructing upper and lower bounds for the normalizing constant,
which allows for the independent Metropolis-Hastings algorithm by providing the bounds of
the acceptance probability with arbitrary accuracy. This approach is similar to the alternating
series method (Devroye (1981, 2009)) and widely used in, for example, the sampling from the
Polya-gamma distribution (Polson et al. (2013)). Our sampling procedures are briefly sketched
in the following. Details of the bounds of the acceptance probability, w and w, and some remarks
about the sampling procedures are provided in Section 7.5.3.

We use the gamma prior Ga(a], b)) for 7. The proposal distribution is Ga(a],b]), whose
parameters are given by

n
a] =a+na and b] =b}+ Zlog{l +log(1 + u;)}.
i=1

Denote the current state at an iteration of the Markov Chain Monte Carlo algorithm by ~, and
the candidate drawn from the proposal by 7/. The acceptance probability A(y — ') is bounded
below and above by w and w. Both are functions of (a,~,7’, K) and converge to A(y — v/)
as K — oo, where K controls the precision of the approximation and can be set as large as
necessary. The procedure of the independent Metropolis-Hastings sampling is summarized as
follows.

Algorithm 7.2.2 (Sampling from the full conditional of v) The steps for genmerating -y
from its full conditional distribution is summarized as follows: given the current sample -y,

(i) Generate v from the proposal Ga(a],b]).
(ii) Generate U ~ U(0,1).
(iii) Given K, evaluate w and w. Then,
o IfU < w, accept v as the sample of this iteration.

e IfU > w, reject ' and keep v as the sample of this iteration.
e Otherwise (w < U < w), increase K and redo step 3.

7.2.3 Generalization using iterated logarithm

Following the motivation given in the introduction, the log-adjusted shrinkage prior is further
extended to the more general class of distributions. As the (scaled) beta distributions is extended
to the log-adjusted version by the multiplicative log-term, this generalization is naturally realized
by the use of finitely iterated logarithmic functions.
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For z > 1, let fi(z) = f(z) =1+ log(z). Then, the iterated logarithm is defined inductively
by fr+1(z) = f(fr(z)) for L =1,2,.... Define the extended version of the modified scaled beta
priors with parameter v > 0 by

wt o [ 1
R e {H A >} Full+u) ™ (720

where a > 0 and b > 0 are constant (We again recommend ¢ = 1/n and b = 0). The corre-
sponding prior for the shrinkage factor x; = (1 + u;)~! is given by

m(kiiy, L) o k711 — k)@t Ll—I_l ! ! .
v ' ' i fe(Uk) | f(1/ki)t

The prior for 6; induced by this distribution as the scale mixture of normal is named iteratively
log-adjusted shrinkage prior.

When L = 1, this prior is precisely the original log-adjusted shrinkage prior discussed in the
previous subsections. We require that b = 0 for the improvement from the beta-type prior, but
the priors are still proper if only v > 0, as shown in the following theorem. As order L increases,
the tails of the density for 6; becomes heavier, while remaining in the class of proper priors,
from which we expect the stronger tail-robustness of the Bayes estimators.

Theorem 7.2.3 The following properties hold under the iterative log-adjustment.

1. The iteratively log-adjusted shrinkage prior for 6; with finite L holds the same properties
given in Theorem 7.2.1.

2. Suppose that b= 0. Then, for any 0 < e < 1, the prior probability of the log-adjusted beta
distribution for k; falling in the interval (0,¢) tends to 1 as L — oco; namely

€

lim (ki y, L)dr; = 1.

L—oo 0

The first property indicates that the iterative log-adjustments do not change the original prop-
erties of the proposed prior, including integrability, density spike around the origin and heavier
tails. The second statement shows the convergence of the iterated log-adjusted shrinkage prior
to the point mass on k; = 0 in distribution as L — oo. In the limit, the proposed prior does not
shrink the outliers at all. However, losing the shrinkage effect at all is not desirable, and we fix
L at some finite value so that the prior density keeps the steep spike around zero.

Although it is difficult to draw the density functions of the iteratively log-adjusted shrinkage
priors as in Figure 7.1 for the intractable normalizing constant, the newly-multiplied log-terms
can easily be evaluated and shown in Figure 7.2. It is clear in the top figure that function
fr(1 4+ w) is increasing in u, but converges to the constant function as L — oo, which are also
verified in Section 7.5.4. This observation implies that the marginal effect of log-terms being
multiplied to the prior is diminishing as L increases. The bottom figures displays the reciprocal
of the iterative log-terms in the scale of k;, which are actually multiplied to the original log-
adjusted shrinkage prior. The lower densities near x; = 0 moderates the spike and makes the
density integrable, while the iterative log-term is unity around k; = 1 and affects the shrinkage
effect less.

155



)

2000 | LIt

[ |[—— L =100
1750
1.50F
1251

00 02 0.4 06 08 10 12 14 16 18
oo L/ (W)
0.75F
0.50f
0.25-

S I S S T (S S S S S S Y S (S T S S S S IS SO NS IS S WY
00 01 02 03 04 05 06 0.7 08 09

Figure 7.2: The functions fr,(1+w;) (top) and 1/f7(1/k;) (bottom) with L = 1 (red), 2 (blue), 5
(green), 10 (pink) and 100 (light green). It is evident that the repeated application of operation
f makes the function closer to constant. In the bottom figure, the decrease of functions as xk; — 0
moderates the divergence of the prior density around zero and contributes to the integrability

of the iteratively log-adjusted shrinkage priors.
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The posterior mean squared error under the iteratively log-adjusted shrinkage prior can also
be computed in the similar way as in the proof of Theorem 7.2.2.

Theorem 7.2.4 The posterior mean squared error under the iteratively log-adjusted shrinkage
prior satisfies, for b =0,

L-1

1 3a/2 1 1
MSEx (Bifyi) = 1+ yi2/2{1 “yep ; A(+u2/2) AL +y2/2)
1 1 1
U e e b+ o(ﬁ) (7.2.7)

where y;2o(1/y;%) — 0 as |y;| — oo.

Theorem 7.2.4 derives the higher-order terms of y; that is ignored in the mean squared error
under the original log-adjusted shrinkage prior in Theorem 7.2.2, whose leading term is simply
1+2/ yf We summarize our findings on the derived mean squared error in the following three
points. First, this result reveals that the effect of hyperparameters a and ~ is limited to the
higher-order terms, which is consistent with the result of Theorem 7.2.2. In addition, the choice
of hyperparameter ~ is less sensitive to the Bayes estimator if L is large. Secondly, there is no
difference in the mean squared errors under the original and iteratively log-adjusted shrinkage
priors in the order of 2/ yiQ, while both priors are still superior to the beta-type shrinkage priors
in the mean squared error in the tail. Finally, increasing the order L has no negative effect on
the point estimation so long as the posterior mean squared error under large signals is concerned.
In fact, it is difficult to understand whether one increment of L increases or decreases the mean
squared error in this expression; it is determined together with the values of y; and v. We revisit
this issue partially in the simulation studies in Section 7.3.

The posterior computation with the iteratively log-adjusted shrinkage prior is also straight-
forward. The parameter augmentation given in (7.2.4) can be generalized for the new density
of u; in (7.2.6) as, ignoring the normalizing constant,

(w37, L) OC/ ul e MM GS L (4 0:0]7) dti 0.1 (7.2.8)
(0,00)E+1
where t; 0., = (tio, ti1, - .., tir,) and GSp(%i0.1|7) is the joint density of a non-stationary Markov

process defined by

GSL(tiyo;L"}/) = Ga(tioyl +, 1)Ga(ti1‘ti0 +1, 1) X -
X Ga(ti7L_1\ti7L_2 + 1, 1)Ga(tiL|ti,L_1 +a+b, 1).

The density of u; is the shape mixture of density kernel of gamma distribution by a gamma-
shape Markov process. The integral expression above defines latent variables t;;’s and gives the
following tractable full conditional distributions for Gibbs sampler.

Algorithm 7.2.3 (Gibbs sampler for local parameters under ILAS prior) The sampling
steps for local parameters u; and to.r, are summarized as follows:

e The full conditional distribution of u; is GIG(—1/2 + a, 2t;1,,02 /7).
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e The full conditional distribution of to.;, has the compositional form,

Ga(tio|l + 7, fo(1 +u;))Ga(tialtio + 1, fo—1(1 +u;)) x -
x Ga(tir-1ltir—2 + 1, fi(1 +u;))Galty Lltip—1 +a+b,1 +w),

thereby the random samples can be sequentially generated.

The above procedure can be incorporated into Algorithm 7.2.1, which enables us to efficiently
generate posterior samples of ¢;. It is worth noting that ¢; ., K < L —1, are not used to generate
samples of {u;,0;,7}.

The shrinkage priors with logarithm terms in their densities have been studied in various
ways. We considered the prior distributions proposed in Bhadra et al. (2017) and Womack
and Yang (2019) and confirmed that their prior densities could be extended in a similar way by
repeatedly multiplying the additional terms to the density function. However, such iterative op-
eration is extremely complex, compared with the simple recursive construction of the additional
terms in this research, fr4+1(z) =1+ log fr.(z), that defines the log-adjusted shrinkage priors.

7.3 Numerical Study

7.3.1 Simulation study

We illustrate finite-sample performance of the Bayes estimators under the proposed priors and
other shrinkage priors proposed in the recent research in various situations of true sparse signals.
We generated n = 200 observations from y; ~ N(6;,1), where 6; is a true signal. We adopted
the following two scenarios for 6;:

w w
(1) 6 ~ S8(c) + 56

/N

| €

2) + (1 -w)8(0),
(1) 6; ~ %N(c, 1)+ N (—g 1) +(1—w)d(0),

where 0(x) denotes the one-point distribution on x. Weight w controls the sparsity level in the
signals 6;; smaller value of w leads to more sparsity. c is the locations of non-null signals. We
considered six settings of w and ¢ as the combinations of w € {0.1,0.2,0.3} and ¢ € {6, 9}.

For the simulated dataset, we applied three types of proposed priors: the log-adjusted shrink-
age prior with a = 1/n,b = 0 and v = 1 (denoted by LAS), an adaptive version of the log-
adjusted shrinkage prior with a fully Bayesian approach for v (denoted by aLAS), and the
iteratively log-adjusted shrinkage prior with a = 1/n,b = 0,7 =1 and L = 3, denoted by ILAS.
As competitors, we also applied the Horseshoe prior (HS; Carvalho et al. (2010)), normal-beta
prime prior (NBP; Bai and Ghosh (2019)), Dirichlet-Laplace prior (DL; Bhattacharya et al.
(2015)), Horseshoe+ prior (HS+; Bhadra et al. (2017)). To implement the posterior analysis
with the Horseshoe+ and Dirichlet-Laplace priors, we employed R package “NormalBetaPrime”
(Bai and Ghosh (2019, 2020)) with default settings, such as the use of uniform prior on (1/n,1)
for the global scale parameter. For the other models, we adopted 7 ~ C*(0,1/n). In applying all
the priors, we generated 1000 posterior samples after discarding the first 1000 samples as burn-in
period, and computed posterior means of §;. The squared error losses of the posterior means 9},
give by E?:l(é’b — 6;)2, were calculated and averaged over 500 replications of simulations.

The results are reported in Table 7.1. It shows that the methods are comparable when w
is small and the true signals are very sparse. On the other hand, as w increases, the proposed
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priors get appealing compared with the other methods. This result is consistent with Theorems
7.2.2 and 7.2.4 and reflects the fact that the proposed priors have heavier tails to accommodate
large signals. It is also observed that the proposed three methods are almost equally successful
and it is difficult to discuss their superiority. Focusing the comparison on the performance
of LAS and aLLAS, the benefit from estimating the adjustment parameter v could be limited
possibly because of the trade-off between flexibility of data-adaptive selection of v and inflation
of uncertainty arising from estimating ~. Finally, LAS and ILAS perform quite similarly in
every setting, which could be related to the fact that these two priors differ only in the form of
the slowly varying part. It can also be explained by their mean squared errors in the tails that
are exactly the same up to the order of 1/y;2.

Table 7.1: Comparison of averaged values of squared error losses of the posterior mean estimates
of 0; under the fixed log-adjusted shrinkage (LAS) prior, the adaptive LAS prior (aLAS), the
iteratively log-adjusted shrinkage prior (ILAS) of order three (EH-IL), the Horseshoe prior (HS),
the normal-beta prime prior (NBP), the Dirichlet-Laplace prior (DL), and the Horseshoe+ prior
(HS+). The lowest averaged squared error loss for each setting (in rows) is in bold.

c omega LAS alLAS ILAS HS NBP DL HS+

0.1 52.5 55.0 52.5 559 557  62.7 542
6 0.2 90.6 89.9 90.7 96.6 107.6 120.5 102.7
0.3 124.3 121.3 1242 1264 159.5 177.9 150.5
0.1 43.3 479 43.0 494 417 509 414
9 0.2 68.6 715 68.6 877 T76.2 955 T73.7
0.3 92,5 943 92,5 1178 1104 137.5 105.3
0.1 479 51.1 47.6 509 493 56.2 48.2
6 0.2 84.3 84.7 844 922 984 1124 941
0.3 113.5 111.8 113.7 120.5 143.1 164.8 135.7
0.1 43.9 48.6 43.7 492 417 492 41.6
9 0.2 71.6 745 T71.6 886 783 93.6 76.0
0.3 96.0 97.7 96.3 119.0 113.2 136.2 108.6

7.3.2 Example: Prostate cancer data

We demonstrate real-data application of the proposed priors using a popular prostate cancer
dataset in Singh et al. (2002). In this dataset, there are gene expression values for n = 6033
genes for m = 102 subjects, with m; = 50 normal control subjects and mgy = 52 prostate cancer
patients. The goal of this analysis is to identify genes that are significantly different between the
two groups. We first conduct t-test for each gene to compute the test statistics t1,...,t,, and
then transform them to z-scores through z; = ®~1(F% _,(#;)), where ®(-) is the standard normal
distribution function and Fj(-) is the distribution function of ¢-distribution with k degrees of
freedom. For the resulting z-scores, z1, ..., z,, we applied the following model:

zi=0;+¢e;, e ~N(01), i=1,...,n.
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We again compare the same seven priors for 6; as in the previous subsection. Based on 5000
posterior samples after discarding the first 5000 samples, we computed posterior means of 6;.
In Table 7.2, we presented top 10 genes selected by Efron (2010) and their estimated effect size
f; on prostate cancer. The absolute value of each effective size estimate is largest for aLLAS,
because of its strong tail-robustness. However, the estimates of all the seven methods do not
differ drastically from one another.

Table 7.2: The z-scores and the effect size estimates based on posterior means for the top 10
genes selected by Efron under the seven priors.

Gene z-score LAS aLAS ILAS HS NBP DL HS+
610 529 4.87 500 458 489 490 458 4.88
1720 4.83 4.29 4.52 411 4.33 4.36 4.09 4.40
332 447 398 413 368 386 3838 3.62 3.89
364 -4.42 -3.85 -4.09 -3.59 -3.80 -3.90 -3.64 -3.76
914 440 3.78 398 363 3.79 385 3.58 3.30
3940 -4.33 -3.78 -4.00 -3.46 -3.71 -3.76 -3.50 -3.61
4546 -4.29 -3.70 -3.91 -3.37 -3.40 -3.64 -3.36 -3.56
1068 4.25 3.61 386 335 345 3.67 334 3.66
579 4.19 3.61 3.81 333 333 354 327 3.55
4331 -4.14 -3.61 -3.80 -3.28 -3.27 -3.54 -3.14 -3.42

7.4 Discussion

In this research, the repeated multiplication of the log-terms to the density is proven successful
in defining the new class of distributions that are continuous, proper and extremely heavy-tailed.
Although the focus of this research is on tail-robustness, it is also natural to consider the idea
of log-adjustment to define the stronger shrinkage effect. To be precise, the doubly log-adjusted
shrinkage prior, whose density in the scale of k; is given by,

m(ki; B, L) oc k; M1 — k)

L—1 -1 -1 —(1+a) —(1+8)
X{Hfz (i) fz(l_lfi) }fL (;) fL(l_lH)
l:1 1 1 T (3

is of great interest. We proved that, as iteration L increases, for any bounded sequence of
hyperparameters (ar, 1), the prior, 7(k;;ar, B, L), converges in distribution to the point
masses on {x; = 0} and {k; = 1}, i.e., the spike-and-slab prior. For the details of the proof, see
Section 7.5.8. The resemblance to the degenerate prior shown in this result could justify the use
of iteratively log-adjusted priors as the continuous alternative of the degenerate variable-selection
priors. Although the finite-sample properties of Bayes estimators under the prior above is not
developed here, the posterior inference with this prior is feasible by the same augmentation we
proved for the iteratively log-adjusted priors. We believe that the priors with iterated logarithm
is the promising future research in exploring the class of shrinkage priors with logarithms.
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7.5 Appendix

7.5.1 Proof of Theorem 7.2.1

This proof can be obtained as the special case of the proof of Theorem 7.2.3 with L = 1 given
in Section 7.5.5.

7.5.2 Proof of Theorem 7.2.2

We first provide a useful lemma. For details, see, for example, the discussion at the end of
Section 1.2 of Seneta (1976).

Lemma 7.5.1 Let L(u) be a strictly positive and continuously differentiable function of u > 0.
Suppose that

/
lim ul!(u)

U— 00 L(u) =0.

Then the function L(u) is slowly varying as u — oo, that is, limy_oo L(Mv)/L(M) =1 for all
v > 0.

We will suppress the subscript ¢ and write u, 6, and y for u;, 6;, and y;, respectively, for
notational simplicity. Let p(f) and m(y) denote the marginal densities of § and y under the
log-adjusted shrinkage prior 7(u) oc u® (1 + u)~2{1 4 log(1 + u)} 1+, We define S(u) as

u_\ath —(1+7)
S = (=) {1+1og(1 , 75.1
W =(135) {1+leld+u} (7.5.1)
so that 7(u) = C~'u=*"1S(u) with normalizing constant C' = I u~*"1S(u)du. From Lemma
7.5.1, it can be shown that S(-) is a slowly varying function.
We first note that the posterior mean squared error can be written as
1 *m(y)

MSE, (fly) =14+ —— ,
(0ly) ) o

since the second order derivative of m(y) can be expressed as

o e (- 45 o
- /_Z{—l +(0-9)?) \/%exp{ - ‘29)2 Jp(0)dp.

On the other hand, since y|u ~ N(0,1 + u), we have that

y?/2

m(y) = \/12?/0 \/11_‘_7uexp<— 1+u)ﬂ'(u)du

and hence that
*m(y)

1 [ 1 y?/2
y? ___VmpA (1+uﬁﬂ€mp<_’1+u)ﬂwym

y2 00 1
— du.
- \/27r/o (1 + w)5/2 exp( 1—|—u>ﬂ(u) “
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Therefore, by making the change of variables u = (32/2)v, it follows that

1 &*m(y) 2 2I(y,5/2) — I(y,3/2)

m(y) oy* ¢ I(y,1/2) ’

o0 2 2 2
y/2 R p y°/2 y
I(y, k) = S N - Ve \g(Y)a
(. k) /0 {1+(y2/2)v} Y eXp{ 1+(y2/2)v} (2“) Y
for k € {1/2,3/2,5/2}. We here use the following asymptotic evaluation of the integral I(y, k):

(7.5.2)

where

lim I(y,k)/S(y%/2) =T(b+ k), (7.5.3)

lyl—o0
for which the proof is given later. Using this result, (7.5.2) can be approximated as

1 a2m(y)/3_ 2T (b+5/2){1 4+ o(1)} = T'(b+3/2){1 + o(1)}
m(y) oy* Ty? L'(b+1/2){1+o(1)}
~ (14 b)(1 + 2b)

as |y| — oo, which is the desired result.
Finally, we give the proof of (7.5.3). Let M = y?/2 and define hys(v, k) by

fov (v, k) = (1 +MMu>k”b1 P ( 1 +MMU> ?5\1\4;))

Then it holds that I(y, k)/S(y*/2) = [~ has(v, k)dv. Note that

S(Mv) :v“+b< 1+ M )a+b{ 1+1log(1+ M) }1+’Y
S(M) 1+ Mv 1+ log(1 4 Mv) '

Then, for any M > 1 and v > 1, we have

kb 1+ M \atb 1+ 1log(l+ M) 1+ b
I k) < kb1a+b( ) { } < 9a+by,—k—b-1
(v, k) < Y\ Mo 1+ log(1 + Mv) =<

Next, for any M > 1 and v <1,

1+4log(1+ M) { YoM 1 dt}
1+log(l+Mv)  PUJ, T+ Mt1+log(l+ Mt)

Sexp(/l 1 dt)—l/M+1< 2

M+t /) 1/M+v =~ 1/M+v

Then, it follows that, for M > 1 and v < 1,

hy (v, k) =

e—1/(1/M+v) a_1<1/M + 1>a+b{ 1 +log(1+ M) }1+7

(1/M+q;)k‘v 1/M+v 1 +log(1 + Mv)
VUM 2tk

(/M +opFrest 5 M+ o)

et +b+1+4 1
<( sup 7>2a T < o0
ktatbtl

2e(0.00) TETATEFLTY

IN
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noting that the function e~1/# /zk+a+b+14+7 i5 bounded in (0, 00). Therefore, from the dominated
convergence theorem, we have

o

lim har(v, k) = / v * 0 Lexp(—1/v)dv = T'(b + k),

which proves (7.5.3).

7.5.3 Details on sampling from v given in Algorithm 7.2.2

We describe and justify the algorithm of the independent Metropolis-Hastings method for sam-
pling hyperparameter + by evaluating the upper and lower bounds of the intractable normalizing
constant. The normalizing constant of the log-adjusted shrinkage prior, which is dependent on
v, is given by the integral

C(y) = C(a = b= O,fy) = /01 K(_l(l _ H)l/n_ldﬁ = /000 g(x;vy)dz, (7.5.4)

1 —logk)itY

where g(x;7) = (1 —e™*)Y/""1(1 4 2)~1=7 for x > 0; the last integral is obtained by the change
of variables x = e~*. This is bounded above and below by, with any K > 0 and N = K3,

(1 _ 671/K>1/n (1 _ efK)l/nfl

Ul K) = (1/n)e /K + ~(1+ K)Y
Y K21 (14— 1)(K2—1)/N
< KN g( K ’ )
(1= e YK 1 Y K21 14 j(K2-1)/N
Lo K) = aryasiymy T Ky T2 KN o K )

ie., L(v,K) < C(y) < U(y,K) for any (v, K). In addition, these bounds can be as tight as
desired if one increases K'; we prove L(y, K) — C(v) and U(y, K) = C(vy) as K — oo in Lemma
7.5.2 at the end of this section. These bounds are utilized in implementing the independent
Metropolis-Hasting algorithm, where the acceptance probability is dependent on the intractable
normalizing constant and cannot be directly computed, but their upper and lower bounds are
available with arbitrary accuracy.

The prior for v is the gamma distribution, v ~ Ga(ag,b}). Each likelihood 7(u;;7) can
be approximated by v*exp{—~log(1l + log(1 + u;))} with a > 0 so that the gamma prior be-
comes conjugate. The proposal distribution is the posterior distribution with the approximate
likelihoods, or v ~ Ga(vl|a{,b]), where

n
al =aj +na, and b] =bl+ Zlog(l + log(1 + w;)),
i=1

and we set a = 1/n. Denote the current state by 7, and the candidate drawn from the proposal
by +'. The acceptance probability is

Aly = ) = {g(v) }n <fyl>n(1/n>7




which is not evaluated directly due to the intractable constant C'(vy)/C(y'). We bound these
constants to obtain the upper and lower bounds of the acceptance probability. The bounds of
the acceptance probability are defined by

and satisfy
w(y,7, K) < A(y =) <w(y,7, K).

The definitions of w(v,v/, K) and w(y,~’, K) above are used in the sampling algorithm given in
Algorithm 7.2.2.

The bounds, U(vy, K) and L(v, K), are obtained by a straightforward application of the
Riemann approximation, and their properties are verified by the following lemma.

Lemma 7.5.2 Letg(-), g,.(), and gk (), K =1,2,..., be integrable functions defined on (0, 00)
satisfying 0 < g,.(z) < g(x) < gg(z) < oo for all z € (0,00). Assume that g(-) is nonincreasing

on (0,00). Let 0 < x(()K) << a:l(f:)

< oo for K=1,2,... and assume that limg m(()K) =0
. (K) . a0 _ . o
and that im g _, oo z) .~ = oo. Suppose that lim g oo fo 0 Fr(x)dr = limg_ o0 fz(K) Jr(x)dr =0
lK

and that limp o Zg’;ﬂém - mgffi){g(a:(K ) — g(x(K))} =0. Then

Jj—1 J
200 Ii o
K K K
0< / 9, (z)dz + Z(xg ) _ xg_%)g(xg )) + /(K> 9, (x)dz
0 j=1 Tig
< / g(x)dx
0
o Sy )y [
< [ s+ 3@ ol Dol + [ @i <o (755)
Jj=1 T
forall K=1,2,... and
> " S )y w0y [
/0 g(x)dx = KlgnOo { /o 9, (@)dr + ;(l'] —x; )9z ) + /a:l(? QK(:L")dm}

(K) ~

T Ik
1 R (K) _ (K)y ¢ (K) _
_Klgnoo{/o gK(x)d:U—l—Zl(xj —:Uj1)g(:vj1)—|—/(K>gK(x)dx}. (7.5.6)
J:

Proof. The inequalities in (7.5.5) are trivial. We obtain (7.5.6) since
(()K) 3%

Tooo _ K K K
o< [ e+ 3o} = )a(e])
j:
00 Ik
K K K
/(K>gK(£L‘)d$—Z($§ ) _ g %)g(:rg ))
Ll j=1
X, (K K K K g o
=@l — Dol D o+ [ g+ [ a0
Jj=1 Tl



as K — oo by assumption. O

In our problem, where function g is given in (7.5.4), the condition in the lemma,
lr
K K K K
lim 3 (@ — 2l {g(E)) - g(al™)} =0,

K—oo
7j=1

is satisfied. To see this, observe that limg o {maxi<;j<i, (I‘S-K) — a:y_(i)}g(xém) = 0, and that
the grid becomes sufficiently fine when K — oc.
7.5.4 Properties of iterated logarithmic functions

We here give some properties of iterated logarithmic functions related to Figure 7.2 in the
following lemma.

Lemma 7.5.3 Forx > 1,
(i) fr(z) >1
(i

i) f
(iil) fry1(x) < fr(z) (decreasing in L at each point x).
(iv) hm fo(z) =1.

Proof. The first and second properties follow immediately from the definition of fr. The
third property is verified by the inequality z — 1 > log z for z > 1. To prove the last property,
fix x > 1 and write ar, = fr(x). Then this sequence is decreasing and bounded below by 1.
Therefore, it has a limit @ = limy o ar in [1,00). Now, by the definition of fr41, we have
ar+1 =1+ logay. Letting L — oo, we have a = 1 + log a, which shows that a = 1. 0

() is increasing in x.

7.5.5 Proof of Theorem 7.2.3

As in the proof of Theorem 7.2.2, we suppress the subscript ¢. Here we write 7(u) and 7 (k) for
m(u;y, L) and 7(k;y, L) and use p(#) to denote the marginal density of # under this prior. Let

S(u) = (ﬁu)m{ H Tl 1+u }{fL(l—i—lu )y

and let C' = [;"u™""1S(u)du, so that 7(u) = C~'u"*"1S(u). Then S(u) is a slowly varying
function from Lemma 7.5.1. Note that the above definition of S(u) is not identical to that in
Section 7.5.2. Also, let

0 1 1
Ok [{fL(l/ﬂ)}”} - %{ kl;[l fk(l/fi)}{fL(l//f)}1+7'

/Olﬁo(/i)dn =1
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Integrability (the first property in Theorem 7.2.1)
The inequality, k(1 — x)* 'mo(k) < (1 — K)* 'm(k), shows the integrability of 7(x) in (0,1/2),
1/2 1/2
/ (1— k)" Img(k)dr < { sup (1-— K)a_l}/ mo(K)dK < 00
0 xe(0,1/2) 0
and the integrability in (1/2,1),

/1 (1= k)" tmy(k)dr < /1 (1 — k)" 12vdr < .

1/2 1/2

Spike around the origin (the second property in Theorem 7.2.1)

By the monotone convergence theorem,

o0 o~ 1/2+a-1 L-1 1 e—0%/2u
C\/%P(Q) :/0 (1 +u)a+b{ kl;[l fr(1 +u)}{fL(1 +u)}1+7du
1/24a-1 LZ1 o—0%/2u
> /0 a7 {kl;[l fk(Q)}{fL@)}H'Ydu_)OO (7.5.7)

as § — 0 for a < 1/2.

Slowly varying density (the third property in Theorem 7.2.1)
By the change of variables u = (6%/2)v, it follows that

p(g) — mA u71/27b7167(92/2)/u5(u)du

= \C/% (922)1/21) /00 v_l/Z_b_le_l/”S<922v) dv.
0

Now for #?/2 > 1, we have

5((6°/2)v) :va+b{1+92/2}a+b
5(6%/2) 14 (62/2)

o 1+92/2) fL(1462/2) 14y

< 2“+b max{l, 1/UL+'V}

since
1+ 62/2 <11+92/2 2
1+(02/2)v —v 6%2/2 ~w

and since for all k=1,..., L,

fr(1+6%/2)
fe(1+(02/2)v) —
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when v > 1 while

fr(146%/2)
fe(1+(62/2)v)

— oxp { /jﬂ aatlog i1+ (0% /2)t)de )

=v

B =1 1 0%/2
= exp { /tzv Fe(L+ (@2/2)) - L(1+ (62/2)0) 1 + wmndt}

t=1
dt
< exp (/ —) =1/v
t=v t
when v < 1. Thus, by the dominated convergence theorem, we obtain
-1 .92\ -1/2-b
O~ G () (3 )
S(02/2) 27\ 2 2

as |0] — oo, where S(6%/2) is a slowly varying function of |#|. This completes the proof of the
first statement of Theorem 7.2.3.

Convergence to the degenerate distribution (the second property in Theorem 7.2.3)

To prove the second statement of Theorem 7.2.3, we have that

. ‘ . k= lim 1 E: im 71 =
i [ mo(ss L)d Llﬁoo{{ml/m)}v}o ey (7.5.8)

for all 0 < £ < 1. Hence,
1 1
0 = lim sup/ mo(R; L)dR > lim sup/ kmo(k; L)dR = limsup{x(1 — k)mo(k; L)} > 0,
L—oo Jk L—oo Jk L—oo

or, equivalently, limz_,o mo(k; L) = 0, for all k € (0,1). Now, set b = 0. Then, for any 0 < & < 1,
the probability of (g, 1) under the prior 7(k; L) = m(k;7, L) o< (1 — k)% mo(k; L) is

/81 . / "1 ) o L)k ) / "1 )" g L)

1 . N '
1 — 1) o (: L)d inf (1— k)" - L)d
/0 (1 —=r)* "mo(k; L)dr {me(l(?l/z)( K) }/0 mo(k; L)dr

The numerator on the right side converges to zero as L. — oo by the dominated convergence
theorem since my(k; L) < y/eforalle < k < 1 and mo(k; L) — 0. Also, it follows from (7.5.8) that

f1/2 mo(k; L)dk — 1 as L — co. Thus, im0 [ 7(k; L)dk = limp oo {1 — fal m(k; L)dr} = 1,

0
which is the desired result.

7.5.6 Proof of Theorem 7.2.4

As in the previous section, we suppress the subscript i. Let m(u), S(u), and C be as in Section
7.5.5.
The formal proof of Theorem 7.2.4 is completely analogous to that of Theorem 7.2.2 since

302 & 1 14~

y*/2 +; B+ 272 [0+ 922 | Fe(+ 272 i+ 52/2)

=o(1)

167



as |y| — oo. In the following, we informally derive the expression (7.2.7) using integration by
parts.

First, 7(u) is approximated by 7(u) = 7(u)e~%/* for some small € > 0 in the sense that
MSEr(0]y) — 1 ~ MSEz(0]y) — 1. (7.5.9)

Denote by 7(y) the marginal density of y under the prior C~1#(u), where C' = Jo~ 7 (u)du.
Then, as in the proof of Theorem 7.2.2, we have that

) L, m'(y)
MSE: (0)y) = 1 + )

o0 2
m(y) = \C/%/o \/%exp ( — fli)fr(u)du

Now, by integration by parts,

and that

i~ 2
ﬁ/o {(1—?1{u)2 B 1iu}\/11+7uexp(— ] /2>fr(u)du

le
8
—

+
2 2 ~
7= /. 1+uexp<—1y+/u)7r'(u)du.

Therefore, by the change of variables u = (y2/2)v, we obtain

o] 1 2/2 ,
/ exp ( — 7 (u)du
MSEz (0]y) = 1 — 220 V11+“ ( 1+“>

2
1+u < 1—1-/i> (u)du

2 2
el e ()

y? 2 2 '
/ /22/2) exp{ H(ﬂ}ﬁ(yv>dv

Now, if |y| is sufficiently large, it follows that

h

(7.5.10)

9 2
1+(y/22/2)vexp{_1+y(y/22/2)v} z\%exp(—1> (7.5.11)

and that

2 2 2, — 2
f(g) (5~ (5) ()

(7.5.12)



since S(u) is a slowly varying function. Furthermore, since

L-1

ﬁ"(u)_i_ﬂ’(u)__l_i_L_Z 1 1 1
au) w2 w(w) w o u(l+u) — fr(l+u)  fil+u)l+u
(14 7) 1 1 1
Via+w  Al+uwltu
and since fr(1+u), k=1,..., L, are slowly varying functions, it also follows that
P2 11, a 1LZ‘1 1 1 11
T((2/2)0) — y?20 T (2220 &= fl+y2/2) L+ y2/2) 9220
1 1 1 1

—(1+ o — 7.5.13
R R v (7:0:19)

for sufficiently large |y|. Substituting (7.5.11), (7.5.12), and (7.5.13) into (7.5.10) yields

00 1 =1/20=1/v =1 =1 ( (12 /9 = (2 /2)0) N
MSEL(0ly) = 1 22 (200 A 2 bl
Jo S v 2e /vy 1dy
1 1 a 13
12 s P e
I PR RS N
LG+ R+ ) 22
1 1 1 1

+ (1 + s = 7.5.14
( W)fL(1+y2/2) f1(1+y2/2)3/2/22} ( )

since D(1/2 + k) = [° v~ 1/2=k=1e=lvgy for k = 0,1,2. Finally, combining (7.5.9) and (7.5.14
0
yields (7.2.7).

7.5.7 Derivation of the augmentation (7.2.8) and Gibbs sampling given in
Algorithm 7.2.3

Let u >0, ¢g > 0, and ¢1,...,cp > 0. We first note that, for any positive (tg,t1,...,tr),
L

1 1
i U s
. Ga(to‘CO, 1) Ga(t1|t0 +c1, 1) «
Gal(tolco, fr(1 +u)) Ga(ti|to + c1, fr—1(1 +u))
Ga(tL_1|tL_2 +cr-1, 1) Ga(tL|tL_1 +cr, 1) ot
Ga(tL_1|tL_2 +cr-1, fl(l + u)) Ga(tL|tL_1 +cr, 1+ u) ’

(7.5.15)
L+1.

The denominator in the right is in fact the probability density of to., € (0, 00)

/ Ga(to‘C(), fL(l + U)) e Ga(tL|tL_1 +cr,1+ u)dtQ;L =1.
(U,OO)L+1
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From (7.5.15), we obtain

1 ﬁ 1
(1 +u)er L5 {fr(1+ ) }er—r

- / {Galtoleo, 1)Ga(tilto +e1,1) x -+
(O,OO)LJfl
X Ga(tL_lltL_g +cr—1, 1)Ga<tL’tL_1 +cr, 1)€7tLu}dt();L (7.5.16)

Expression (7.5.16) gives the augmentation(7.2.8) by setting ¢cg = 1+, ¢c; = --- = cp—1 = 1,
and ¢, = a+b. Moreover, the full conditional distributions of the latent variables in Algorithm
7.2.3 are obtained from (7.2.8) and (7.5.15).

7.5.8 Properties of doubly log-adjusted shrinkage priors in Section 7.4

In this section, we prove the results stated in the discussion of Section 7.4. For «, 8 > 0, consider
the density of the doubly log-adjusted prior given by

7T(K';OZ757L) OCWO(K;aaL)WO(]-*K;BaL)v K€ (051)7
where

A S Ry
To\R 7 - Ok {fL(1/k)} kK k=1 Jr(1/K) {J(L(l/’{)}H7

as defined in Section 7.5.5 (or, this is the iteratively log-adjusted shrinkage prior with a = 1
and b =0 in (7.2.6)), and let F(k;, 3, L) denote the corresponding distribution function. For
0<e<,let

_ F(ga,8,L)
C1-F(1—¢&o,B3,L)

R(e;a, B, L)

be the ratio of the prior probability of x € (0,¢) to that of x € (1 —¢,1). Proposition 7.5.1
summarizes the fundamental properties of m(x;«, 3, L).

Proposition 7.5.1 The prior w(k; «, B, L) satisfies the following properties.
1. fol 7(k;a, B, L)dk < 00.

2. (a) If 0 < e <1/2, then R(e;, B, L) is increasing in B and decreasing in .
(b) limg_,o R(e; 0, B, L) = 0 and limq—0 R(e; o, f, L) = 0.
(¢) R(e;a, 5, L) ; 1 if and only if a ; 8.

3. For two arbitrary bounded sequences of positive real numbers, oy, and B, L=1,2,..., we
have limy,oo{F(1 — &; a1, 81, L) — F(e;ar, B, L)} =0 if 0 < e < 1/2.
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4. The prior density of u= (1 — k)/Kk can be expressed as
1

m(u; o, B, L) / {Ga(r()]l + a,1)Ga(ry|ro + 1,1) x
u (0,00)E+1
X Ga(rL,1|rL,2 +1, 1)Ga(rL|rL,1, 1)67TLu}d’r‘0;L
X / {Ga(so\l—l—ﬁ,l)Ga(sﬂso—i—1,1) X
(0,00)L+1
x Ga(sp—1|sp—2 + 1,1)Ga(sr|sp—1, 1)6_“/“}(130;,;.
Proof. Let 7o(k;y, L) = mo(k;y, L)/~. Then property 1 follows immediately by
1
/ 7o(k; a, L) (1 — K3 8, L)dk
0
1
§/ 7o(k; min{e, B}, L)7o(1 — Ky min{«, 5}, L)dk
0
1/2
= 2/ 7o(k; min{e, B}, L)7o(1 — k; min{«, 5}, L)dk
0

1/2
< 4/ 7o(k; min{a, 5}, L)dk < oo.
0

For property 2, we start from the proof of 2-(a) and 2-(b) with the focus on 8. Note that
Jo o(k; ., L)o(1 — &; 3, L)dk fos 7o(K; L)fro(l —k; 8, L)dk
fll,a 7o(k; a, L)7o(1 — K3 B, L)dk fo 7o(rk; 8, L)o(1 — ks, L)drk

R(e;a, B,L) =

Then we have

{/E 7o(k; B, L)7o(1 — ks L)dﬁ}QiR(a‘a B,L)
0 T T o
_ /0 Folk: o, L)o(1 — k: B, L) {—log fi(1/(1 — H))}dﬁ/o Fo(k: B, L)Fo(1 — i a, L)dre

~ [ Ao Lyt = 8. Ly | oG 8. L)1~ w2, L) g £ 1/
> [{—log fr(1/(1 —¢))} — {—log fr(1/e)}]
X /0 7o(k; o, L) 7o (1 — /@;B,L)d/@/o 7o(k; B, L)7o(1 — k; y L) dk.

The right-hand side is nonnegative for 0 < ¢ < 1/2. Thus, R(g;«, 3, L) is increasing in /3 for
0 < e <1/2. In addition,

I WO(H; a, L)mo(1 = &; 8, L)drk

Jo mo(k; B, L)mo(1 — k; v, L)dk

5/04 o Jo mo(k; o, L)dk
< { H fe(1/(1 —6))}{fL(1/(1 —e)) 't f% mo(k; B, L)dk

0< R(e;,5,L) =

B o Jo mo(k; o, L)dk B
_{]ka<1/<1—e>>}{fL<1/<1—e))}” el (fa/aE 0
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as g — 0.

To prove 2-(a) and 2-(b) for a, note that R(e;a,3,L) = 1/R(s; 8, , L) for any o, > 0
and any 0 < € < 1. From this fact, it is immediate that R(e;, 3,L) — oo as o — 0 and that
R(e;a, B, L) is decreasing in « for 0 < e < 1/2.

To prove property 2-(c), we first assume 0 < & < 1/2. Because R(g;, ;L) = 1 for any ¢ €
(0,1) by definition and it is increasing in the second «, we have 1 = R(e; o, a; L) < R(e; v, 8, L)
for a < B. Similarly, we have R(e;a, 8, L) < 1 for a > . To extend this result to 1/2 < e < 1,
we first confirm that R(1 — e,«,3,L) > 1 for a < (3, which implies folfs mo(k; o, B, L)dk >

folfe 7o(k; B, a, L)dk. Then, observe that
_ Js mo(ks o, B, L)dk
N foa mo(k; B, o, L)dk
_ 1-— f; mo(k; v, B, L)dk _ 1-— 0175 mo(k; B, o, L)dk o1
1-— fel mo(k; By, L)de 1 — fol_a mo(k; o, B, L)dk

R(e;a,B,L)

The same argument applies to a > (. Thus, we conclude for any 0 < € < 1 that R(e; o, 8, L) z 1
if and only if « § B, which completes the proof of 2-(c).

For the proof of property 3, let Fy(k;7, L) denote the distribution function of the prior
mo(k;7y, L). Select M > 0 large enough so that 0 < ay, < M for all L > 1. Then we have

1> Fy(esan, L) = /0 ol ap, L)k = {fo(1/e)} 0 > {fo(1/} M 51 (7.5.17)
as L — oco. Next,
l1—¢ .
F(l—-eag,pr,L) — F(e;ar, B, L) = / m(k; ar, Br, L)dk = W

where
1—w
IwiaBL) = [ mlsia Dimo(L— ki, Lydx

for w € [0,1] and a, 8 > 0. Now suppose 0 < & < 1/2 and let U be a uniform random variable
on the interval (¢,1 — ). Then it follows from the covariance inequality that
I(e;ap,Br, L
G D)  py(wsar, Lyro(1 ~ U Bz, 1)
Qaj, 1

-1
1
1- U{ kljl fk(l/U)}{fL(l/U)}1+°‘L

:E{

BT 1 1
i 70— Gy oy

ar (51 1
< Bl I 5am oy

XE{”BL{LH1 ) ! ]
UL /A =0) I {fu(1/(1=U))}Htoe

= 1(6, Qay,, L)I(E, 5L7L)a
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where

L1
[1 :YU{ kl;[l fk(ll/U)}{fK(l/lU)}lﬂ}

I(e;y,L)=FE

L 1 1
et ) Sy S o)

for v > 0. Furthermore,

1—¢
~ 1—
(-2 = [ T omi, e < (Rl - 5i9,L) - Fo(ein, L)}
o

for all v > 0. On the other hand, letting

L1 1
h(r;v, L) = 7{ kHl Fe(1/k) } {fL(1/r)

for k € (0,1) and v > 0. Noting that h is increasing in x, we obtain

. -1 ) 1
I(0;ap, B, L) > /0 WO(H;QL,L)»BL{ ]};[1 /1 =2) } o1/ —&))} P dr

Fy(e;ap, L) [17°
= Fo(eian (1 = o5 1) = TUEOLEL [0 ey
I3

Fo(e;ap, L) /1_6 £ Fo(g;ar, L) /1_8
> — —h(k; L)ydk = ———= ; L)d
= 1_ 2 5 K (’ia BLa ) K 1— 92 i 87-(-0(’{'7 BL? ) R
13

= 75 Folesan, L){Fo(1 — & B, L) = Fo(e; Br, L)}

Thus, we conclude by (7.5.17) that

F(l — &, OKL,BL,L) - F(E;O&L,BL,L)

<1 (1 - 5>21 —2e{Fy(1 —e;ar, L) — Fo(e;ar, L)H{Fo(1 —&; 8L, L) — Fo(e; Br, L)}
- 1-2¢ € € FQ(E;aL,L){Fo(l—E;ﬂL,L)—FU(éE;,BL,L)}
(1 £)? Fo(1 —e;ar, L) — Fo(s;ar, L) =0
= Fo(e;ar, L)
as L — oo.

For part 4, note that the unnormalized density of u = (1 — k)/k based on mo(k; av, L)mo(1 —
k;B,L) is

L-1 L-1
%{ H 1 } 1 { H 1 } 1
o UL pa s vy UL oy v e
Then, apply the integral representation in (7.5.16) to the two products of functions of 1+ u and

1+ 1/uwither =0,¢-1=---=c¢1 =1and ¢y € {1+ «,1+ 8} to obtain the desired result.
]
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Chapter 8

Log-Regularly Varying Scale Mixture
of Normals for Robust Regression

8.1 Introduction

The robustness to outliers in linear regression models has been well-studied for its importance,
and the research on theory and methodology for robust statistics has been accumulated in the
past years. Yet, the modeling of error distributions in practice to accommodate outliers has
not advanced significantly from Student’s t-distribution. In modern applied statistics, where
data are enriched by massive observations, the more extreme outliers are expected to arrive,
and the more likely, and significantly, the inference of regression coefficients and scale parameter
is affected by such outliers. Our research aims to contribute to the development of novel error
distributions for outlier-robustness which we believe are still in demand.

In the full posterior inference, the concept of robustness is not limited to the point esti-
mation, but targets the whole posterior distributions of parameters of interest. Also known as
outlier-proneness or outlier-rejection, the posterior robustness defines the property of posterior
distributions that the difference of posteriors with and without outliers diminishes as the values
of outliers become extreme (O’Hagan (1979)). The series of research on posterior robustness has
revealed both the (sufficient) conditions for error distributions to achieve the robustness, and
the specific model that meets such conditions; see the detailed review by O’Hagan and Pericchi
(2012). The recent studies introduced the concept of regularly varying density functions (An-
drade and O’Hagan (2006, 2011)), which was later extended to log-regularly varying functions
(Desgagné (2015); Desgagné and Gagnon (2019)), and provided the robustness conditions for
the partial and whole posteriors of interest to be unaffected by outliers. As an error distribution
whose density function is log-regularly varying, Gagnon et al. (2020) proposed log-Pareto trun-
cated normal (LPTN) distribution, which replaced the thin-tails of normal distribution by those
of heavily-tailed log-Pareto distribution. Despite its desirable property of robustness, the class
of LPTN distributions has hyperparameters that are difficult to tune and/or estimate, such as
the truncation point of Gaussian tail, that could result in the efficiency loss in practice. Another
issue in such distribution is the difficulty in posterior computation; unlike ¢-distribution, direct
sampling from the conditional posteriors is infeasible, and one has to rely on Metroplis-Hastings
algorithm, which may result in the increased computational cost.

We, in contrast, explore a different class of error distributions that have received less at-
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tention in the literature. Following Box and Tiao (1968), we model the error distribution by
the finite mixture of two components; one has thinner tails such as normal distributions, and
the other is extremely heavily-tailed to accommodate potential outliers. While remaining in the
general class of scale mixture of normals (West (1984)), this simple, intuitive approach to the
modeling of outliers contrasts the literature listed above, where the error is modeled by a single,
continuous distribution. The structure of finite mixture helps controlling the effect of outliers on
the posteriors of parameters of interest, while allowing the conditional conjugacy for posterior
computation. For these theoretical and practical utilities, the finite mixture models have been
routinely practiced in applied statistics (see, for example, Carter and Kohn (1994), West (1997),
Frithwirth-Schnatter (2006) and Tak et al. (2019)). In this research, we specifically focus on
this class of error distributions in proving the posterior robustness.

For the heavily-tailed distribution that comprises the finite mixture, Student’s t-distribution
is still regarded thin-tailed for its outlier sensitivity. We propose the use of distributions that has
been utilized in the robust inference for high-dimensional count data (Hamura et al. (2020a)) for
their extremely-heavy tails. This is another scale mixture of normals by the gamma distribution
with the hierarchical structure on shape parameters, which allows the posterior inference by a
simple but efficient Gibbs sampler. The tails of such distributions are heavier than those of
Cauchy distribution; this tail property is consistent with those of other heavily-tailed distribu-
tions considered for posterior robustness, including LPTN distributions.

The finite mixture of the thinly-tailed and heavily-tailed distributions used as the error dis-
tribution in linear models, which we name the extremely heavily-tailed error (EHE) distribution,
is proved to achieve the whole posterior robustness. The wider class of error distributions in-
cluding the EHE distributions is considered, but the error distribution that attains the posterior
robustness is shown to be the proposed EHE distribution only. The posterior robustness real-
ized by the EHE distributions is extensively compared with the other alternatives in simulation
study, showing its competence in point and interval estimations.

Another notable feature of the EHE distributions is that the posterior robustness is guaran-
teed for the variety of priors on regression coefficients and scale parameter. The assumptions for
the posterior robustness do not exclude the unbounded prior densities for regression coefficients.
Such prior distributions include the shrinkage priors for high-dimensional regression, e.g., horse-
shoe priors (Carvalho et al. (2009, 2010)). We illustrate the utility of the robustness with the
shrinkage prior for regression coefficients in the empirical studies for Boston housing dataset
that is suspected to be contaminated with possible outliers. Likewise, in another example of the
famous diabetes data, we confirm that the loss of efficiency by the introduction of heavily-tailed
distribution is minimal even in the absence of outliers.

The rest of this chapter is organized as follows. In Section 8.2, we introduce the new error
distribution and describe its use in linear regression models. We also provide theoretical robust-
ness properties regarding the posterior distribution. The algorithm for posterior computation is
provided in Section 8.3 with the discussion on its computational efficiency. In Section 8.4, we
carry out simulation studies to compare the proposed method with existing ones. In Section 8.5,
we illustrate the proposed method using two famous datasets. Finally, we conclude with further
discussions in Section 8.6.
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8.2 A New Error Distribution for Robust Bayesian Regression

8.2.1 Extremely heavy-tailed error distribution

Let y; be a response variable and x; be an associated p-dimensional vector of covariates, for
i=1,...,n. We consider a linear regression model, y; = ;' 8+ o¢;, where 3 is a p-dimensional
vector of regression coefficients and ¢ is an unknown scale parameter. The error terms, €1, ..., &y,
are directly linked to the posterior robustness; it is well-known that modeling those errors simply
by Gaussian distributions makes the posterior inference very sensitive to outliers.

To achieve the posterior robustness, we introduce a local random variable u; and assume that
the error distribution is conditionally Gaussian, as &;|u; ~ N(0,u;). Under this setting, when an
outlier arrives, then the higher value of local variable explains such outlier and keeps the posterior
distribution of (3, ) unchanged. A typical choice of the distribution of u; is the inverse-gamma
distribution, which leads to the marginal distribution of ¢; being the t-distribution. However,
as shown in Gagnon et al. (2020) and our main theorem, this choice does not hold desirable
robustness properties of the posterior distribution even when the distribution of ¢; is Cauchy
distribution.

The model for the local scale variable u; studied in this research is given by the mixture of
two components as follows;

{uli if Z; = 0
U; =

U4 if Zi = 1

where Pr[z; = 1] = 1 — Pr[z; = 0] = s with mixing probability s € [0,1]. These variables
independently follow different distributions defined below:

uy; ~ Gala,a), ug; ~ H(-57) (8.2.1)

with fixed value a and unknown parameter v > 0. The second, newly-introduced H-distribution
is defined by the proper density,
¥ 1
B = i reea s o “7 %
Preparing two distributions in modeling of the variance structure in the form (8.2.1) is based
on the same modeling philosophy of Box and Tiao (1968); the first component generates non-
outlying errors and the second component is supposed to absorb outlying errors. For non-
outlying part, we set a > 0 to be a large value such that the variance of Ga(a,a) is very small;
the point mass on unity is included in our model as the limit of a — co. In what follows, we
adopt a = 10% as a default choice. In contrast, as the model for outlying errors, the second
component H (-;) is extremely heavily-tailed since H (u;v) ~ v~ !(logu)~'~7 as u — oo, which
is known as log-regularly varying density (Desgagné (2015)). This property is inherited to the
error distribution and plays an important role in the robustness properties of the posterior
distribution.
Under the formulation (8.2.1), the marginal distribution of ¢; is obtained as

fen(e) = (1— 8)/ N(ei; 0, u1;)Ga(uis; a, a)duy; +S/ N(es; 0, u0:) H (ugi;v)dugi, (8.2.2)
0 0

where N(e;;0,u) is the normal density with mean zero and variance u. Both components are
the scale mixtures of normals, and the first component is the normal-gamma distribution in
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general (Griffin and Brown (2010)), but in our application, it is essentially the standard normal
distribution for a > 0 is set to a large value. The second component does not admit any closed-
form expression. To handle with this component in posterior computation, as we see later in
Section 8.3.1, we utilize the augmentation of H-distribution by a couple of gamma-distributed
state variables. By this augmentation, the posterior inference for this model is straightforward.

A notable property of the new error distribution is its extremely heavy tails shown in the
following proposition, with the proof left in the Appendix.

Proposition 8.2.1 The density (8.2.2) satisfies
fen(z) = |z~ (log[a) =17
for large |x| if s > 0.

The above proposition indicates that the density of the EHE distribution is a family of log-
regularly varying functions. In addition, the tails of the EHE density are heavier than those of
Cauchy distribution; fc(z) ~ |z|~2. This property follows that the EHE distribution directly
inherits the heavy tails of the mixing H-distribution in the second component of the density
(8.2.2). In what follows, we call the new error distribution (8.2.2) extremely heavily-tailed error
(EHE) distribution.

The density in (8.2.2) is shown in Figure 8.1 for s = 0.05,0.1 and 0.2, with the standard
normal density. It is observed that the shape of the EHE distribution is very similar to one of
the standard normal distribution around the origin, whereas the tail gets heavier as s increases.
Figure 8.2 shows the cumulative distribution functions (CDFs) of H-distributions and the EHE
distributions to emphasize their tail property. The tails of the proposed EHE distributions are
heavier than those of Cauchy distribution, as seen in the right panel. This fact is also confirmed
via the comparison of CDFs of H- and inverse-gamma distributions in the left panel. Owing to
these properties of the EHE density, we can achieve robustness properties for the entire posterior
distribution as shown in Theorem 8.2.1.

8.2.2 Robustness properties

We here consider theoretical robustness properties of the posterior distribution based on the
proposed EHE distribution. To this end, we consider a wider class of error distributions which
includes the proposed distribution as a special case, defined by replacing H(u;~) in (8.2.2) with

1 1
(1 +w)0 {1 +log(1 + u) P+’

H(u;v,0) = C(0,7) u >0, (8.2.3)
where C(d,7) is a normalizing constant, and § > 0 is an additional shape parameter. Note
that the distribution in (8.2.3) reduces to the proposed distribution in (8.2.2) under § = 0.
This parameter is also related to the decay of the density tail of (8.2.3), that is, H(u;~,b) ~
w9 (logu)~'7. Hence, the tail gets heavier as § decreases, and the EHE distribution with
0 = 0, in fact, has the heaviest tail in this class of distributions. Among this general class in
(8.2.3), we show later in Theorem 8.2.1 that only the proposed error distribution with 6 = 0
attains the robustness property. This theorem also clarifies the difference from t-distributions
with degree of freedom v, the density tails of which is u™~! and lighter than those of the
proposed distribution even when v = 1 (Cauchy tail).
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Figure 8.1: Densities of the proposed error distribution with ¢ = 108, v = 1 and s €
{0.05,0.1,0.2} and the standard normal error distribution. The intractable integral of the second
component is computed by the Monte Carlo integration.

For simplicity, we fix v in what follows, but the same property holds if the support of v
is compact. Let D be the set of the observed data. To discuss the posterior robustness, we
target the unnormalized posterior distribution of (3,0) under the general error distribution
with (8.2.3),

75(8,0|D) = /HaleH{al(yi —x;' B);5,7,0}m(®)ds, (8.2.4)
i=1

where ® = {3,02,s} and 7(®) is a joint prior distribution of ®. Next, to analyze the effect
of outliers explicitly, we assume that each outlier goes to infinity at its own specific rate. More
precisely, the observed value of responses is parametrized by w as y; = y;(w) for some i’s, and
lyi(w)] — o0 as w — oo. Let D* be the set of non-outlying observations; y; is independent
of w for ¢ € D*. The posterior robustness is defined as the diminishing difference of posteriors
conditional on D and D* as w — oco. The formal statement of posterior robustness for our model
is given below. For the detailed proof, see the Appendix.

Theorem 8.2.1 For the unnormalized posterior density given in (8.2.4), it holds that
75(8,0|D) — 75(8,0|D*) as w — oo, (8.2.5)

for any (B,0) € K if and only if § = 0, where K is a compact set.

We note again that the general error distribution with § = 0 is exactly the proposed EHE dis-
tribution, so that the above theorem indicates that the desirable robustness property is achieved
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Figure 8.2: Left: Cumulative distribution functions of scale distributions, H(u;~y) for v €
{0.5,1.0,2.0}, and the inverse gamma distribution with shape and scale 0.5. Right: The empiri-
cal cumulative distributions of the EHE distributions with v = 1 and s = 0.1, 0.5, 0.8 computed
by the Monte Carlo integration, compared with the distribution function of Cauchy distribution.

only under the proposed EHE distribution among the general class of error distributions with
the mixing distribution in (8.2.3).

As clarified in the proof of Theorem 8.2.1, the ratio of the two unnormalized posteriors
converges to the function of o and ¢ if § > 0. The same asymptotic ratio is obtained for
t-distribution with degree-of-freedom §. In other words, the posterior robustness cannot be
attained by the finite mixture with ¢-distribution.

The main theorem shows the uniform convergence of the posterior distribution with outliers
to one without outliers on a compact set. Although this result is proved with almost no assump-
tion other than the model structure, we can also prove other variations of posterior robustness
seen in other literature with appropriate conditions. Examples include the convergence with
normalized constant and convergence in distribution by introducing additional assumptions on
the models and priors. The explicit benefit of the version of posterior robustness in our the-
orem is the minimal set of assumption required for the priors on B and o2, and the posterior
robustness is valid for any proper priors, even if the density is unbounded. In fact, unbounded
density functions are common in some advanced but widely adopted shrinkage priors, such as
the horseshoe priors (Carvalho et al. (2010)). Thus, the theoretical framework of this research
guarantees the posterior robustness for the boarder and important class of statistical problems,
including the high-dimensional regression by shrinkage as an important example.

179



8.3 Posterior Computation

8.3.1 Gibbs sampler by augmentation

An important property of the proposed EHE distribution (8.2.2) is its computational tractability,
that is, we can easily construct a simple Gibbs sampling for posterior inference. Note that
the error distribution contains two unknown parameters, s and ~, and we adopt conditionally
conjugate priors given by s ~ Beta(as,bs) and v ~ Ga(a,,by). The conditionally conjugate
priors can also be found for main parameters, 8 and o2, and we use 3 ~ N(Ag, Bg) and
0~2 ~ Ga(ay, by ). The multivariate normal prior for B can be replaced with the scale mixture
of normals, such as shrinkage priors, which is discussed later in Section 8.3.3.

To derive the tractable conditional posteriors, we need to keep the likelihood conditionally
Gaussian with scale u;. For this purpose, we need to rely on a set of latent variables, z;,ui;
and ug;, to obtain a hierarchical expression of u;. Now, the scale parameter is written as
u; = (1 — z;)u1; + ziug;, where z;,uj; and ug; are mutually independent and distributed as
z; ~ Ber(s), u1; ~ Ga(a,a) and ug; ~ H(ug;;y) as in (8.2.1). The conditional conjugacy for
(8,0?) follows immediately from the Gaussian likelihoods, and the conditional posteriors are
normal and inverse gamma, given wu;.

The full conditional distributions of the other parameters and latent variables in the EHE
distribution are not any well-known distribution, but we can utilize the following integral ex-
pression of density H (ug;;7y) as

H(ug;7y) = // Ga(ugs; 1, v;)Ga(vi; wi, 1) Gal(w;; vy, 1)dvidw;,
(0,00)2

namely, the random variable ug; following the density H (u9;;~y) admits the mixture representa-
tion: we|(vi, w;) ~ Ga(l,v;), vilw; ~ Ga(w;, 1) and w; ~ Ga(7, 1), which enables us to easily
generate samples from the full conditional distribution of (ug;|v, w;) and (v;, w;|ug;).

The latent state (v;, w;) is useful in deriving the conditional posterior of wug;, and one can
derive the Gibbs sampler with latent (v;,w;) as the part of the Markov chain, although (v;, w;)
is totally redundant in posterior sampling of the other parameters. We, instead, marginalize
(vi, w;) out when sampling v, s, u1;’s and z;’s from their conditional posteriors. This modification
of the original Gibbs sampler simplifies the sampling procedure, and even facilitates the mixing,
while targeting the same stationary distribution (Partially collapsed Gibbs sampler, van Dyk
and Park (2019)). The algorithm for posterior sampling is summarized as follows.

Summary of the posterior sampling
- Sample 8 from the full conditional distribution N(BA , B), where
B =B '+02X'DX, A=Bg'Ag+o X DY
with D = diag(u?, ..., u;b).

- Sample 02 from Ga(d,, by), where

(g = Qg + TL/Q, 60’ = by + Z(yz - miTﬁ)2/2ui
=1
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- Sample z; from Bernoulli distribution; the probabilities of z; = 0 and z; = 1 are propor-
tional to (1 — s)N(ys; x; ' B, 0u1;) and sN(y;; x; ' B, 0%us;), respectively.

- The full conditional distributions of s and 7 are given by Beta(as,bs) and Ga(a,b,),
respectively, where a5 = as + Soiiziand by = bs +n — Y.i" %, ay = ay + n and
by =by + > i log{1 +log(1 + ug;)}.

- For each i, independently, sample uy; from GIG(a + 1/2,2a, (y; — =; ' 8)%/0?) if z; = 0
or from Ga(a,a) if z; = 1, where GIG(p,a,b) denotes the generalized Gaussian inverse
distribution with the density of the form, f(z) oc 2P~ exp{—(ax + b/x)/2}.

- For each i, independently, sample (v;, w;) first in a compositional way; sample w; from
Ga(l + 7,1 + log(1 + ug;)) and (vi|w;) as Ga(l + w;, 1 + ug;). Then, sample ug; from
GIG(1/2,2v;, (y; — ;' B)%/0?) if z; = 1 or from Ga(1,v;) if z; = 0.

8.3.2 [Efficiency in computation

A possible reason that the finite mixture has attracted less attention in the past research on
posterior robustness is, as mentioned in Desgagné and Gagnon (2019), the increased number of
latent state variables introduced by augmentation, and the concern for the potential inefficiency
in posterior computation. It is the same concern seen in Bayesian variable selection (George
and McCulloch (1993)); the finite mixture model for the prior on regression coefficients results
in the necessity of stochastic search in the high-dimensional model space, hence causes the slow
convergence of Markov chains and the costly computation. It is clear in the above algorithm,
however, that the use of finite mixture as error distributions is completely different from the
variable selection in terms of the model structure and free from such computational problem.
Unlike the variable selection, the membership of each ¢ to either of the two components in
our model is independent of one another, which facilitates the stochastic search in 2" possible
combination of the model space. This fact also shows that the sampling of (z;, u1,, uo;, vi, w;)
can be done completely in parallel across i’s, hence our algorithm is scaled and computational
feasible for the dataset with extremely large n.

We, again, emphasize that the use of the finite mixture is designed for controlling the effect
of outliers on the other parameters of interest, and we focus on the inference for regression
coefficients and scale parameter, not on the outlier detection. Although this view has already
been clarified, and supported, by the posterior robustness in Theorem 8.2.1, we further discuss
the utility of finite mixture approach by the extensive comparison with other models by the
simulation study in Section 8.4.

8.3.3 Robust Bayesian variable selection with shrinkage priors

When the dimension of z; is moderate or large, it is desirable to select a suitable subset of
x; to achieve efficient estimation. This procedure of variable selection would also be seriously
affected by the possible outliers, by which we may fail to select suitable subsets of covariates.
For a robust Bayesian variable selection procedure, we introduce shrinkage priors for regression
coefficients. Here we rewrite the regression model to explicitly express an intercept term as
yi = a4+ x; B + &, and consider a normal prior a ~ N(0, A,) with fixed hyperparameter
Aq > 0. For the regression coefficients 8, we consider a class of independent priors expressed as
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a scale mixture of normals given by
b 0o
8 =]] /0 N(By; 0, 0° 7€) g(Ex) dé, (8.3.1)
k=1

where g(-) is a mixing distribution, and 72 is an unknown global parameter that controls the
strength of the shrinkage effects. Examples of the mixing distribution g(-) includes the expo-
nential distribution leading to the Laplace prior of 3 (Bayesian Lasso, Park and Casella (2008)),

and the half-Cauchy distribution for §,i/ ? which results in the horseshoe prior (Carvalho et al.
(2009, 2010)). The robustness property of the resulting posterior distributions is guaranteed
for those shrinkage priors; Theorem 8.2.1 does not require any conditions other than the prior
propriety.

In terms of posterior computation, the key property is that the conditional distribution of 5,
given & under (8.3.1) is a normal distribution, so the sampler given in Section 8.3.1 is still valid
with minor modification. Specifically, the sampling steps from the full conditional distributions
of a, B, 0 and &, . .. ,&p are modified or added as follows:

Sample « from N(Aa_léa, ga_l), where
. n . n
Aa = Aa+0722ui717 B, = 072Zui71(yi _wiTIB)'
i=1 i=1

Sample 8 from N(Ag‘lXTDf’, 0225_1), where

Y=Y -aj®™, Az=A"'+X"DX, with A=r2diag(¢y,...,E,).

Sample o~ 2 from Ga(dy, BU), where

(s = Gy + (n + p)/Q’ BO’ = by + Z(yz - ziT6)2/2ui + 6TA_1/6~
=1

Sample &, for each k and 72 from their full conditionals. Their densities are proportional to
N(Bk; 0,027%&,)9(&k) and m(72) [Th_; N(B; 0, 027%E), respectively, where 7(7?%) is a prior
density for 72.

The full conditional distributions of o and 3 are familiar forms owing to the normal mixture
representation of the EHE distribution as well as the shrinkage priors. The sampling of & and
72 depends on the choice of shrinkage priors, but the existing algorithms in the literature can
be directly imported to our method.

In Section 8.5, we adopt the horseshoe prior for regression coefficients with the EHE distribu-
tion for the error terms. We here provide the details of sampling algorithm under the horseshoe
model. The horseshoe prior assumes that /& ~ C7(0,1) independently for k¥ = 1,...,p and
7 ~ C*(0,1), where C*(0,1) is the standard half-Cauchy distribution with probability density
function given by p(z) = 2/7(1 + 22) for z > 0. Note that they admit hierarchical expressions
given by & |\, ~ IG(1/2,1/A) and A\, ~ IG(1/2,1/2) for &, and 72|y ~ IG(1/2,1/v) and
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v ~ 1G(1/2,1/2) for 72. Then, the full conditional distributions of &, and 72 as well as the
latent parameters A\, and v are given by

1 2 1
&l— ~IG (1,+B’f>, \e|— ~IG <1,1+>
Ak 1

27202 L
2- ~1G p+11+lzp:6’% — TG (1,14
T 2 v 202 v ’ =y

8.4 Simulation Studies

We here carry out simulation studies to investigate the performance of the proposed method
together with existing methods. We generated n = 300 observations from the linear regression
model with p = 20 covariates, given by

P
yz‘ZﬂoJrZﬁkxikJrasi, i=1,...,n,
k=1

where By = 0.5, 81 = B4 = 0.3, 87 = 10 = 2, 0 = 0.5 and the other coefficients are set to 0. Here
the vector of covariates (z;1, . .., ;) were generated from a multivariate normal distribution with
zero mean vector and variance-covariance matrix having (k,£)-element equal to (0.2)*~ for
k.l €{1,...,p}. Regarding the error term, we adopted the following contamination structure:

gi~ (1 —=w)N(0,1) + wN(p,1), i=1,...,n,

where w is the contamination ratio and p is the location of outliers. We considered all the
combinations of w € {0,0.05,0.1} and p € {5,10,15,20}, which leads to 9 scenarios in total
since w = 0 with arbitrary p leads to the same structures of ¢;, namely no contamination.

For the simulation dataset, we applied the robust regression methods with the EHE distribu-
tion, the LPTN distribution (Gagnon et al. (2020)), and ¢-distribution with v degrees of freedom.
When using the EHE distribution, we adopted a simple method with setting v = 1 (denoted by
EH), and the adaptive version with v estimated (aEH) by assigning prior distribution. In the
LPTN distribution, we need to specify the tuning parameter p € (2®(1) — 1,1) =~ (0.6827,1),
and adopted two cases, p = 0.9 and p = 0.7, denoted by LP1 and LP2, respectively. Regarding
the t-distribution, we considered v = 1 corresponding to Cauchy distribution (denoted by C),
v =3 (T3) and an adaptive version by assigning a discrete prior for v (denoted by aT). We also
employed the standard normal distribution (denoted by N). We implemented all the methods in
Bayesian ways by assigning prior distributions: 3z ~ N(0,1000) and 0=2 ~ Ga(1,1). Under the
EHE distribution, t-distributions and normal distribution, we generated the posterior samples
of B by Gibbs sampler. On the other hand, we generated posterior samples under the LPTN
distribution by the random-walk Metropolis-Hastings algorithm as adopted in Gagnon et al.
(2020), in which the step sizes were set to 0.05. For each model, we generated 3000 posterior
samples after discarding the first 1000 posterior samples.

Based on the posterior samples, we computed posterior means as well as 95% credible inter-
vals of B; for k = 1,...,p. The performance of the point and interval estimation was assessed
using square root of mean squared errors (RMSE), coverage probabilities (CP) and average
length (AL) based on 500 replications of the simulation, and these values were averaged over
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Bos - -, Bp- In addition, we evaluated the efficiency of the sampling schemes by computing the
average of inefficient factors (IF) of the posterior samples.

In Table 8.1, we reported the values of these performance measures in 9 scenarios. When
w = 0 (no outlier), as predicted, the normal distribution provides the most efficient result in all
measures while the other methods are slightly inefficient. However, the proposed method (EH
and aEH in the table) performs almost in the same way as the normal distribution. This is an
empirical evidence that the efficiency loss of the EHE distribution is very limited owing to the
normal component in the mixture. In the other robust methods, MSEs are slightly higher than
the that of the normal distribution and CPs are smaller than the nominal level.

In the other scenarios, where outliers are incorporated in the data generating process, the
performance of the normal distribution breaks down, and the robustness property is highlighted
in the performance measures of the other models. In particular, the EHE distribution with fixed
v (EH) performs quite stably in both point and interval estimation. The adaptive version (aEH)
also works reasonably well, but the performances is slightly worse at the cost of estimation of
~, thereby the estimation of v may not be beneficial. The LPTN model with p = 0.9 (LP1)
shows reasonable performance, but its CPs tend to be smaller than the nominal level. The other
LPTN model with p = 0.7 (LP2) greatly worsens the accuracy of point estimation, implying
the sensitivity of the choice of hyperparameter p to the posteriors. The other models (C, T
and aT) also suffer from the larger MSE values, which might relate to the lack of posterior
robustness under the ¢-distribution family. The results of interval estimation severely depend on
the degree-of-freedom parameter, as the Cauchy and t¢3-distributions produce too narrow/wide
credible intervals.

In terms of computational efficiency, it is remarkable that the IF values of the EHE methods
are small and comparable with those of the t-distribution methods, which shows the efficiency
of the proposed Gibbs sampling algorithm. On the other hand, the IFs of the LPTN models
are very large due to the use of Metropolis-Hastings algorithm. To obtain the reliable posterior
analysis under the LPTN models, one needs to increase the number of iterations drastically, or
to spend more effort tuning the step-size parameter. The performance of LPTNs is improved
under the simpler settings of less predictors, p = 10, but the overall result of comparison of 8
models remains almost the same. See the Appendix for this additional experiment.

8.5 Real Data Examples

The posterior robustness of the proposed EHE distribution is demonstrated via the analysis of
two real datasets: Boston housing data and diabetes data. The goal of statistical analysis here is
the variable selection with p = 29 and p = 64 predictors in the presence of outliers. Our robust-
ness scheme is a prominent part of such analysis by allowing the use of unbounded prior densities
for strong shrinkage effect— specifically the horseshoe priors we discussed in Section 8.3.3— while
protecting the posteriors from the potential outliers. The former dataset is suspected to be
contaminated by some outliers, where the difference of the proposed EHE distribution and the
traditional ¢-distribution is emphasized. In contrast, the latter dataset is free from extreme
outliers, by which we discuss the possible efficiency loss caused by the use of EHE distributions.

In our examples, we consider robust Bayesian inference using the proposed method with
taking account of variable selection, since the number of covariates is not small in two cases.
Specifically, we employed the horseshoe prior as described in Section 8.3.3. For comparison, we
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Table 8.1: Average values of RMSEs, CPs, ALs and IF's of the proposed extremely-heavy tailed
distribution with v fixed (EH) and estimated (aEH), log-Pareto normal distribution with p = 0.9
(LP1) and p = 0.7 (LP2), Cauchy distribution (C), t-distribution with 3 degrees of freedom (T'3)
and estimated degrees of freedom (aT)), based on 500 replications in 9 combinations of (100w, 1).
All values except for IFs are multiplied by 100.

(100w, 1) EH aEH LPI LP2 C T3 af N

(0, -) 6.25 6.26 661 792 776 6.70 6.48 6.25

(5, 5) 6.99 7.60 7.07 822 804 717 7.42 10.68

(10, 5) 9.09 863 882 946 832 827 9.63 15.73

(5, 10) 6.53 6.77 6.76 8.03 7.85 6.85 7.14 18.56

RMSE (10, 10) 703 754 7.08 827 798 730 9.73 29.20
(5, 15) 6.58 6.74 6.79 815 7.88 6.84 7.00 26.76

(10, 15) 6.99 726 7.02 832 790 7.09 10.07 43.70

(5, 20) 6.50 6.63 6.70 8.02 7.78 6.75 6.90 35.56

(10, 20) 694 7.12 696 829 7.79 694 10.19 58.22

(0, -) 95.0 950 89.6 726 833 933 944 951

(5, 5) 949 927 921 782 895 945 957 915

(10, 5) 93.3 919 916 80.1 905 93.8 944 901

(5, 10) 95.0 943 921 774 90.0 95.6 97.8 90.6

CP (10, 10) 94.8 935 934 787 920 971 982  90.6
(5, 15) 95.1 946 922 762 90.0 956 984  90.6

(10, 15) 94.7 938 932 786 923 97.7 99.2  90.3

(5, 20) 95.0 947 920 76.2 905 959 987  90.3

(10, 20) 946 941 933 780 925 980 99.6 90.3

(0, -) 246 246 23.0 185 246 246 250 246

(5, 5) 276 275 261 217 262 27.7 304 36.3

(10, 5) 31.7 306 31.1 249 281 319 372 442

(5, 10) 25.8 26.0 251 206 26.1 27.8 339 58.6

AL (10, 10) 273 278 274 221 280 326 49.1 773
(5, 15) 25.8 259 251 203 261 279 359 831

(10, 15) 271 273 269 221 279 328 60.1 113.3

(5, 20) 25.6 257 248 202 260 277 372 109.2

(10, 20) 2v.0 2v1 267 21.7 279 329 694 1494

(0, -) 1.01 144 4525 5419 465 211 186 098

(5, 5) 223 5.03 4273 5294 430 196 1.80 0.99

(10, 5) 3.73 536 4053 5192 398 1.8 182 0.98

(5, 10) 1.99 346 43.56 5341 426 190 1.79 098

IF (10, 10) 3.10 5.35 41.73 5269 3.8 170 193 0.98
(5, 15) 1.98 3.13 4358 5352 423 188 1.76 098

(10, 15) 3.13 4.62 4230 5280 3.84 1.66 2.07 0.98

(5, 20) 1.97 293 4384 5350 421 188 1.7 098

(10, 20) 3.11 4.23 4245 5284 3.80 1.65 218 0.98
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also applied Bayesian regression with the normal and t-error distribution, where the degrees of
freedom is also estimated, while using the horseshoe prior for regression coefficients. In these
three model, we assign the same prior distribution as in Section 8.4. Note that the horseshoe
prior can be easily incorporated into the regression models with both normal and ¢-distribution,
and efficient Gibbs sampling methods can be used. On the other hand, it is not straightforward
to incorporate such priors into the robust method with the LPTN distribution, thereby we
omitted it from the comparison. In all the methods, we generated 5000 posterior samples after
discarding the first 2000 posterior samples as burn-in.

8.5.1 Boston housing data

We first consider the famous Boston housing dataset (Harrison and Rubinfeld (1978)). The
response variable is the corrected median value of owner-occupied homes (in 1,000 USD). The
covariates in the original datasets consist of 14 continuous-valued variables about the information
of houses, such as longitude and latitude, and 1 binary covariate. After standardizing the
continuous covariates, we also create squared values of those, which results in p = 29 covariates
in our models. The sample size is n = 506.

To see the presence of outliers, we first applied a simple linear regression model to the dataset
with Gaussian error distribution and compute standardized residuals, which are shown in the left
panel of Figure 8.3. Large residuals in the figure imply the possible outliers in the dataset, which
thereby affects the inference of regression coefficients and makes the analysis by the standard
Gaussian regression model implausible.

In the proposed error distribution, the effect of possible outliers is reflected on the posterior of
s, i.e., mixture proportion of the extremely heavy-tailed distribution. The trace plot of posterior
samples of s under the EHE model is presented in the right panel of Figure 8.3. Since all the
sampled values are bounded away from 0, it suggests that a certain proportion of the heavy-
tailed distribution to take account of the outliers shown in the left panel. Other than the default
prior s ~ Beta(1, 1), we also applied slightly more informative priors, Beta(1,5) and Beta(1,9),
based on the prior belief that s should be small, but the results were almost the same for all the
parameters.

The posterior means and 95% credible intervals of the regression coefficients based on the
three methods are shown in Figure 8.4. It shows that the results of the normal error model
are quite different from those of ¢- and H-distributions. The difference of estimates becomes
visually clear especially for the significant covariates— if we define the significance in the sense
that the 95% credible intervals do not contain zero— as the result of proneness/sensitivity to
the representative outliers observed in Figure 8.3. Comparing the models with the t- and H-
distribution, they select the same set of covariates by significance, but the lengths of posterior
credible intervals in the EHE model are shorter than those in the ¢-distribution model. In
fact, the average interval lengths in the EHE and the t¢-distribution models are 1.01 and 1.13,
showing the efficiency of the EHE model. This finding is consistent with the simulation results
in Section 8.4.

8.5.2 Diabetes data

We next consider another famous dataset known as Diabetes data (Efron et al. (2004)). The
data contains information of 442 individuals and 10 covariates regarding individual information
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Figure 8.3: Standardized residuals (left) and trace plot of s (mixing proportion) in the proposed
EHE distribution (right), obtained form the Boston housing data.

(age and sex) and several medical measures. We consider the same formulation of linear model
as in Efron et al. (2004); the set of predictors consists of the original 10 variables, 10 main
effects, 45 interactions, and 9 squared values, which results in p = 64 predictors in the model.

Similarly to the analysis of Boston housing data, we check the standardized residuals com-
puted under the standard linear regression model, which was presented in the left panel of
Figure 8.5. Few outliers are confirmed in the dataset as most of residuals are included in the
99% interval, which strongly supports the standard normal assumption in this example. In the
main analysis by a regression models with horseshoe prior and three error distributions of nor-
mal, t- and EHE distributions, we generated 5000 posterior samples after discarding the first
2000 posterior samples as burn-in.

The right panel of Figure 8.5 shows the trace plot of posterior samples of s. All the sampled
values are very close to zero, as expected from the residual plot in the left panel of Figure 8.5.
For the small weight s is inferred from the data, the heavy-tailed component of the finite mixture
is regarded “redundant” for this dataset. The same sensitivity analysis on the choice of priors
for s is done as in the previous section, but we find no significant change to the results.

To see the possible inefficiency of using the EHE models for the dataset without outliers,
the posterior means and 95% credible intervals of the regression coefficients are reported in
Figure 8.6. The results of the three models are comparable; the predictors selected by significance
are almost the same under the three models. The only notable difference is that the credible
intervals produced by the t-distribution model is slightly larger than those of the other two
methods. This indicates the loss of efficiency in using the t-distribution method under no
outliers, as also confirmed in the simulation results in Section 8.4. In contrast, the difference
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Figure 8.4: Posterior means and 95% credible intervals of the regression coefficients in the
normal regression with normal distribution error (N), the proposed EHE distribution, and the
t-distribution (T) with estimated degrees of freedom, applied to the Boston housing data.

in the credible intervals of the Gaussian and EHE models is hardly visible in the figure. We
conclude from this finding that the choice of the EHE model is a safe option; even if no outlier
exists, the efficiency loss in estimation is minimal.

8.6 Discussions

While we focused on the inference for the regression coefficients and scale parameter in this
research, it is also of great interest to employ the predictive analysis based on the proposed model.
Because H-distribution, as well as many log-regularly varying distributions, is too heavily-
tailed to have finite moments, the posterior predictive mean under the EHE models do not
exist. In predictive analysis, one needs to consider the posterior predictive medians or other
alternatives for the point prediction. In uncertainty quantification, the second component of the
EHE distribution could have a significant impact on the posterior predictive credible intervals
for its heavy tails. In practice, it is important to monitor the posterior of mixing weight s to
interpret the predictive analysis.

The use of the proposed method is not limited to the linear regression models, but can be
immediately applied to other Gaussian models such as graphical models or state space models.
Even under these highly-structured models, we are able to develop an efficient posterior compu-
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Figure 8.5: Standardized residuals (left) and trace plot of s (mixing proportion) in the proposed
EHE distribution (right), obtained form the Diabetes data.

tation algorithm by utilizing the hierarchical representation of the proposed error distribution.
The similar theoretical robustness properties may also be confirmed for those models.

8.7 Appendix

8.7.1 Lemmas

We provide two lemmas used in the proofs of Proposition 8.2.1 and Theorem 8.2.1.

Lemma 8.7.1 Let o) and 5(-) be continuous, positive, and integrable functions defined on
(0,00). Suppose that limy_o f(u)/a(u) = p € [0,00]. Then

lim h N(z|0,u)B du// (210, w)a(u)du = p.

Z—00 0

Proof. We can assume that p < oo; if p = oo, then we can exchange the definitions of a(-) and
B(+), and this reduces to the case of p = 0. Let 7(-) be either a(-) or 5(-). We can also assume
without loss of generality that u~'/2a(u) and u='/2f(u) are integrable. To see this, observe
that, for any n > 0, there exist € > 0 satisfying

Jo N(110, u)y(u)du
- fo (110, u)y(u)du

0< <n/2
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Figure 8.6: Posterior means and 95% credible intervals of the regression coefficients in the
normal regression with normal distribution error (N), the proposed EHE distribution, and the
t-distribution (T) with estimated degrees of freedom, applied to the Diabetes data.

and, for these 7 and e, there also exists 6 > 0 such that 0 < 1 — e~%/¢ < /2. Hence, for all
z > 1, the covariance inequality implies

Jo N(210, u)y(u)du
Jo© N(20,w)y(u)du

= E[x(0,6)(U2)]

Elexp{(2* —1)/(2U2)} x(0,6) (U>)]
[eXP{(22 - 1)/(2U2)}]

~Jo N0, u)y(u)du

S NGb

where (o) () is the indicator function (x(o¢)(z) = 1 if x € (0,€) and 0 otherwise) and the
density of random variable U is proportional to N(z|0,u)vy(u). Finally, we have

\k SO Mm ) NGIO.upyudu 2 N(|0, )y (u)(L = e¥/*)du
N(z|0, u)~( - N(z|0, u)y(u)du JZEN(2|0, w)y(u)du
f (110, w)y(u)du s/e
—ﬁ 1wu<>m+1‘ew
<,
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which shows the difference of v(u) and e~%/"~(u) is ignorable in u — oo. This result verifies
that, if u='/2y(u) is not integrable, then we can replace v(u) by e=%/%y(u).

Again, assume p < co and both u~/2a(u) and u=/2f(u) are integrable. Let M > 0. Then
we have

z\O w)y(u)du N(z|0, w)y(u)du
s -1 <
(2]0, u)y(u)du fMH N(z[0, u)y(u)du
{61/(M+1) }22/2 fOM u—1/2,y(u)du
L /M St w2y (w)du
— 0

as z — oo since u~'/2y(u) is assumed to be integrable on (0, c0). Therefore,

Jo S N(2|0,w)B(u)d fM (210, u)B(u)du (87.1)
IS N(2|0,u)a(u)d fM (2]0,u)a(u)du o
as z — 0o. Furthermore, uniformly in z,
‘ N(z[0, u)5(u)du ‘ Jar 1B(w)/o(u) — PlN(Zloju)Oé(U)du
N(z]0, u)a(u)du = fM (210, u)a(u)du
< sup blw) _ P‘
u>M a(u)
-0 (8.7.2)
as M — oo by assumption. Combining (8.7.1) and (8.7.2) gives the desired result. O

Lemma 8.7.2 Let M,v > 0. Then we have

1+log(1+ M)

< Lot
1+ log(1 + Mwv) < max{l, v},

(a)

m 1+log(1+M)
M—o0 1+ log(1+ Mv)

(0)

Proof. The inequality in part (a) is trivial when v > 1; the left-hand-side is bounded by 1.
For the case of v < 1, first observe that

1+log(1+ M) ro
T on(L s 30 = P (/v [81& log{1 + log(1 +Mt)}}dt)

X

for all v > 0. Then it is immediate from this expression that

1+log(1+ M) /11 1
< —dt) =
1 +log(1 + Mv) _exp< b t ) Y
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for v < 1. For part (b), we use the same expression to obtain

m 1+log(1+ M)
M—oo 1 +1log(1l+ M/v)

{ 1 / 1 ! M t}
= ex im
P » L+log(l+ Mt)1+ Mt

=1
by the dominated convergence theorem. O
8.7.2 Proof of Proposition 8.2.1
Here we prove Proposition 8.2.1. We show that

lim Jon () =A

o0 ||~ (log |z[)~1=7
fOI' some Constant A > 0 Since

Jo N(z; 0, u)Ga(u; a, a)du
\xHoo Jo T N(a; 0, w) H (us; ) du

by Lemma 8.7.1, we can assume s = 1. Then we have for sufficiently large |z|

fen(z) %0 N(2;0,u) H (us )
2] (log [2]) -1 ‘/o 2L (log [2]) -7

1 1 1 1+
:/ e % 2/(2u) ")/|l" { Og|x‘ } vdu
0 \/27r\f I4+u 14 log(l+u)

:/OO 1 1 iy 0% { log || }”7 y
0 V27U 1+ 220 L1 +log(1 + 22v) ’

where the last equality follows by making the change of variables u = z%v. Now, by part (a) of
Lemma 8.7.2, the integrand is bounded by

1 Leﬂ/(zml{ logle| 14 log(l+2?) }HV
V2 U 1+1log(1+ 22) 1+ log(1+ x2v)
_ y e~ 1/(2v) 1 7/21+’y e—1/(2v)
T Vor w32 <§ Vor o vd/?
ol+y
< / {v*3/2 1(20) 4 y=5/2-1=1/(20)
where the right—hand side is an integrable function of v € (0,00) which does not depend on x.
By part (b) of Lemma 8.7.2, the integrand converges to

max{1,v~ 17}

1+~
max{1, v_l}) =

1 iefl/@v)l{ lim IOg |.’E‘ 1+ log(]_ —+ [L‘Q) }1+’Y _ 7/214-'71)73/2671/(21})
V2 /v lz|—>00 1+ log(1 + 22) 1 4 log(1 + z2v) V2or

as |z| — oo for each v € (0,00). Thus, by the dominated convergence theorem, we obtain

fen(z) = /OO 77/21+’Y 0 3/26=1/(20) gy = ¥ .
|z|—oo |2| 71 (log |x])~1=7 0o \Vor 914y

This complete the proof.
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8.7.3 Proof of Theorem 8.2.1
Let y, =D and y, =D*. Let C={i e {1,...,n}ly; €y} and L={1,...,n} \ K. Let

fi2) = [ NG00 H . d)du
folz) = /OOO N(z]0,u)Ga(u; a, a)du,

and f(z) = sfi(z) + (1 — s) fo(z) for z € R, so that the ratio of p(83,cly,,) to p(B3,0|y;) is
p(B.oly,) _ ply) 7(B,0) [Ty f((yi — =i ' B) /o)

p(B.oly) ~ p(y,) w(B.0) i ((wi — 27 B) /o)
_ ploe) e S0) [ Sl =27 B)/o)/o
oy A )
J((yi — 2.7 B) /o) /o
S .

el yi)

We prove that the right-hand side converges to o2/“l9 uniformly in (8,0) € K as w — oo for

any nonempty compact set K C RP x (0,00). For this purpose, it is sufficient to show that

flyi—=i"B)/o)]o o5
f(wi) e

uniformly in (8,0) € K as w — oo for every i € L. Fixi € L. Let M = sup g o)ex lz; T 8| €
[0,00). Let ¢ = inf(gs)ex 0 € (0,00) and & = sup(g yyex 0 € (0,00). Assume without loss of
generality that w is sufficiently large so that |y;| > 2M + 1.

We first consider the case of s = 1. Then

f(lyi—=i'B)/0)/o _ iy — x;' B)/0)/o
f(yi) fi(yi)
B lfooo N((y; — ;" 8)/c]0,w)H (u; 7, ) du
o fooo N(y;:]0,w)H (u;7,0)du
i — 27 B [ v e VOV H (g — T BP0 o]y, 6)do
— o2yl JoZ v 2e= V@) H ([yi[2v]y, 6)dv ’

where the last equality follows by making the change of variables u = (|y; — ;' 3|/0)?v in the
numerator and by making the change of variables u = |y;|?v in the denominator. Therefore,

f(yi—=i'B)/o)]o 026’ < g2odo v 2TV H |y o]y, 0)G (v)dv
) - Jo v e V@I H [y 2oly, §)dv

where

yi — i Bl H((ly: — i BI/o*)vly,6)

|
G = G P, 0, 757 iy Lg) — ‘ - 1‘
(v) (v; B, 0,7, 6, ys, x;) o2(140) [y H(|y:2v],0)
_ ‘Iyi —wfﬁl( 14 |yil*v >1+5[ 1 +log(1 + |yi[*v) }1”_ ’
B |yl o2 + |y —x; " BPv 1+log{1l+ (lyi — =" B|?/0?)v}
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for v > 0. Note that

ly; — ;" B 1+ |y|?v 149 1+ log(1 + |yi|*v) Ly
< <
L R Bl a7 ) M G e (e Ty RO
where
Fi(o) = 2 —M{ L+ [y }1+5< L+ log(1 + [yi[*v) )HV
! il L2 + (Jyal + M)2v 1+log[l+ {(Jyil + M)2/a? ]/
Fy(v) = !yz-!+M{ 1+ |yi|?v }1+5< 1+ log(1 + |yi|*v) )1“
? lyil - La? 4 (lyil — M)2v 14 log[1 + {(|lys| — M)?/a?}v]
Then
G(v) < |Fi(v) = 1| + [Fa(v) — 1].
Therefore,
)f((yz' —zi'B)/o)/o 025’
[ (i)
52 Jo v 2e VI H(u){|FL(v) — 1] + | Fa(v) — 1|}dv (8.7.3)
- JoZ vl 2e=1/(20) H (v)dv ’ o
where
. H(|yi|*v]v,0)
H(v) = 2 THho)
©) = H(wPh.0)

The right-hand side of (8.7.3) is independent of (3,0). We have that lim, o (|Fi(v) — 1| +
|F2(v) — 1|) = 0 for each v > 0 and that for |y;| > 1,

w267 1/@0) fr () = qu/2< 1+ |yl )1+5{ 1 +log(1 + |w:l?) }Hvefl/(zv)
L+ |yi|?v 1 +log(1 + |yi[*v)

{S 9l+d,,—1/2-1-6 max{1, v—(1+w)}e—1/(2u)

_y - l/2-1-6 ,-1/(20)

as w — 00
for all v > 0 by Lemma 8.7.2. Furthermore,
[F1(v) = 1] + [Fa(v) = 1] <2+ [F1(0)] + [Fa(v)] < 2{1 + Fy(v)}

and, since |y;| > 2M + 1 > M, we have

Fy(v) = il + M{ 1L+ Jyi*v }”5( 1+ log(1 4+ |y:|?v) >1+w
il Lo+ (lul = M)2v S \1+log[l+ {(jyil — M)2/5°}0]
Lty [*v
g{i N W}1+5 (i R (TN )1+v
2 (il = M)? I oL+ {(Jui] — M)2/7%}0

1 149 1+ |yi|%v 14+
2(—+4) [1—1—‘10 H ,
o2 T4 (I — M)2/5% 0

IN

IN
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where
1+ |yil*v ’
L+ {(lyi| = M)? /5% }v

1 12 max{1,(lys|=M)?/(lyi[7)*} 1
(lyil =02 /(ifa)? 1+ [wil ot min{1 (i~ (w2} ¢
< max{1, (Jyi| = M)?/(Jyilo)*} — min{1, (|jys| — M)?/(|yi[o)*}
- min{1, (ly;| — M)?/(|yil7)*}
|(lyil7)? — (il — M)?| (yile)? | (wal =M _ )2
= - < + — <(20)° + (1/9)".
min{(|yi[5)?, (lys| — M)*} = (il = M)*  (|yilo)?
Thus, by the dominated convergence theorem, the right-hand side of (8.7.3) converges to zero

as w — 00.
Next we consider the case of s € (0,1). Then we have

‘ log

pr (1 g hls=a D))
(i~ B)/0))o _ filly =@ B)o)o fillyi— @i B)/7)

f(yi) a f1(yi) _ g folw)
s+ )fl(yi)
Therefore,
T AV T (R AT VoA
f(yi) - f(yi)o®
. fl Yi — zT )/U)
<z® {) filyi)o® 1‘+1}
fO((yz - mlT:@)/U)
s+ (1—ys)
o A3/ 3}y
st(1— )fO(yi)
fi(vi)
By the result for s =1,
fi(— 2.7 B)/0) o AT B )
gSCB)EK‘ f1 (yi)o?d 1‘ = % (BUEK‘ fl(yz) ) -0

as w — 00. On the other hand,

fo((yi — fvaﬁ)/U)

0= e ) L] < : — 1|4 Lo foll i Bo)

s fo(yi) s s fo(yi) s fi((yi _szﬂ)/ )
s+ )fl(yi) +{ )fl(yi)
(8.7.4)
Since limy,_,o Ga(ula,a)/H (u|y,d) =0,
lim fo(2) — lim oSN 2\0 u)Ga(ula, a)du _
s=oo fi(z)  s=oe [7UN(2(0,u)H (uly, 6)du
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by Lemma 8.7.1 and the first term on the right side of (8.7.4) converges to zero as w — 0o. Since
fo(z) = fo(]z|) and fi1(2) = fi(|z|) are nonincreasing functions of |z| and since M < |y;|/2 < |y,
it follows that

fol(yi — " B)/0) < folllyil = M)/7) _ fol(lyil = M)/a) fr((lys| — M) /)
fillyi —=i"B)/0) = filllyil + M)/a)  fi(lysl — M)/7) fr((lyil + M) /<)
< Jo((lyil = M)/7) f1(lyil/(27))
= filllyil = M)/T) fi(lyil/(2/2))
where
‘m fol(lyil = M)/7) _
L (il = 3D fo)
Furthermore,

Alyl/@)  Jo N(lwil /(20)|0, w) H (u; v, 6)du
fillyil/(a/2)) f N(lyil/(2/2)0,u)H (u; 7, 6)du
o JoON(lyill0,v)H (v/(25)%; v, 6)dv
45 [ N(|yill0,v) H (v/(2/2)% v, 0)dv

A5\ 1426
=+ (%)
g

as w — 0o by Lemma 8.7.1 since

H(v/(20)%7,6)  (14+v/(c/2)*\ 14911 +log{l +v/(c/2)?} 147 47\ 2(1+9)
H(v/(a/2)%7,6) { 1+v/(25)2 } { 1+ log{1 +v/(25)2}] - (E)

as v — 0o by Lemma 8.7.2. Thus, we conclude that

‘f —a;'B)/0)/o 25’
f(yi) -7

=0

sup
as w — 00.

8.7.4 Additional experiment in simulation study

The LPTN models are estimated by the random-walk Metropolis-Hastings algorithm, which
requires many iterations in posterior sampling for convergence. While keeping the fairness in
the number of iterations, we conduct another experiment that favors the LPTN models by partly
eliminating the convergence issue in the LPTN models. The additional simulation study is based
on the same settings in Section 8.4, except that the number of predictors is now p = 10.

The results are summarized in Table 8.2. The IFs of the LPTN models are improved, but still
significantly higher than the others. The LPTN model with p = 0.9 improves the accuracy of
point and interval estimations and is now competitive with the proposed models, while the other
LPTN model with p = 0.7 still provides interval estimates with lower coverage probabilities. This
result illustrates the difficulty in tuning the hyperparameters in the class of LPTN distributions,
which contrasts the proposed model with no hyperparameter that is sensitive to the posterior
result.
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Table 8.2: Average values of RMSE, CP and AL of the proposed extremely-heavy tailed dis-
tribution with fixed v (EH) and estimated gamma (aEH), log-Pareto normal distribution with
p = 0.9 (LP1) and p = 0.7 (LP2), Cauchy distribution (C), ¢t-distribution with 3 degrees of
freedom (T3) and estimated degrees of freedom (T'), based on 500 replications in 9 combinations
of (100w, ) with p = 10. All values are multiplied by 100.

(100w, ) EH aEH LP1 LP2 C T3 aT N

(0, -) 6.12 6.14 640 7.68 7.69 6.58 6.36 6.13

(5, 5) 6.75 7.40 676 795 7.78 6.95 731 11.61

(10, 5) 8.63 868 863 9.36 810 831 10.22 18.84

(5, 10) 6.34 6.57 645 7.66 7.63 6.66 6.98 20.63

RMSE (10, 10) 697 749 684 800 790 7.31 1039 35.83
(5, 15) 644 6.60 649 7.76 7.78 6.73 6.99 30.97

(10, 15) 6.77 7.09 6.62 792 7.76 6.90 10.54 53.29

(5, 20) 6.46 6.60 656 7.68 7.80 6.74 6.84 3981

(10, 20) 6.85 7.06 670 8.04 7.81 6.83 1037 70.04

(0, -) 94.8 948 93.0 846 876 92.7 944 948

(5, 5) 949 921 943 860 89.2 942 954 88.1

(10, 5) 934 908 921 8.6 90.2 929 929 859

(5, 10) 95.3 943 946 867 899 958 976 86.4

CP (10, 10) 941 926 946 874 91.1 968 976 86.1
(5, 15) 94.8 937 941 866 839 95.0 98.0 86.3

(10, 15) 94.6 937 947 871 916 976 987  86.6

(5, 20) 944 941 934 864 896 950 984 86.4

(10, 20) 93.8 93.1 942 8.7 905 974 994  86.3

(0, -) 23.8 238 235 225 239 239 242 238

(5, 5) 26.3 263 258 241 252 266 294 35.0

(10, 5) 29.7 293 300 266 271 306 364 43.0

(5, 10) 249 250 251 239 252 267 325 564

AL (10, 10) 26.3 26.7 272 25.0 270 31.3 484 751
(5, 15) 25.0 25.1 251 238 252 269 348 808

(10, 15) 26.1 26.2 266 249 269 31.3 586 109.5

(5, 20) 249 249 249 236 252 26.8 355 105.0

(10, 20) 259 260 264 246 266 31.2 66.7 144.1

(0, -) 1.02 156 2810 40.69 435 2.10 185 0.98

(5, 5) 236 533 2747 3981 4.06 197 183 0.98

(10, 5) 421 591 2777 3883 3.79 1.87 188 098

(5, 10) 217 377 2766 40.14 4.02 1.89 182 0.98

IF (10, 10) 3.53 570 2728 3891 371 1.71 202 0.98
(5, 15) 220 347 2768 40.19 398 189 1.80 0.97

(10, 15) 3.54 5.02 2737 39.38 3.68 1.68 213 097

(5, 20) 216 3.20 27.75 4042 4.01 189 1.80 0.98

(10, 20) 3.51 4.68 2739 39.65 3.63 1.67 222 0.98
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Chapter 9

Conclusion

In Part II of the thesis, we derived Bayesian shrinkage estimators and predictive density esti-
mators and proved that they dominate usual procedures under suitable conditions. We first
considered in Chapter 2 the problem of simultaneously estimating parameters of independent
Poisson distributions in the presence of possibly unbalanced sample sizes. We broadened the
class of shrinkage priors of Komaki (2015) to include the proper priors of Clevenson and Zidek
(1975). By using Lemma 5 of Komaki (2015) to evaluate integrals, we obtained sufficient con-
ditions under which the corresponding Bayes estimators dominate the ML estimator for the
standardized squared error loss and which are applicable to priors not considered in Theorem 1
of Komaki (2015). We compared symmetric priors with asymmetric priors depending on sample
sizes both analytically and through application to real data and saw that the former lead to het-
erogeneous estimators which shrink the ML estimator more toward the origin when sample sizes
are smaller. Next, in Chapter 3, we considered the case of negative multinomial observations.
We showed that empirical Bayes and hierarchical Bayes estimators of negative multinomial prob-
ability vectors dominate the UMVU estimator under suitable conditions. Since the denominator
of each component of the UMVU estimator is not a constant in contrast to the Poisson case,
additional complication arose in examining the risk function of the empirical Bayes estimator.
We found that this complication can be overcome when the row dimension of the observation
matrix is large enough. In order to obtain a generalized Bayes estimator which dominates the
UMVU estimator, we introduced a class of hierarchical shrinkage priors for negative multino-
mial parameters constructed by imitating those for Poisson parameters as used by Clevenson
and Zidek (1975) and Komaki (2015). Although we were mainly concerned with balanced cases,
we utilized the method developed by Komaki (2015), who considered an unbalanced problem.
Part (2) of Lemma 5 of Komaki (2015) has a direct counterpart in our negative multinomial
case. On the other hand, it was an inequality that we used as a counterpart to the equality
in part (1) of that lemma. In chapter 4, we went on to consider the problems of estimating
negative multinomial parameter vectors and the joint predictive density of multinomial tables
on the basis of observations of negative multinomial variables in unbalanced settings. We first
obtained new conditions for empirical Bayes estimators to dominate the UMVU estimator and
then showed that our hierarchical shrinkage priors are useful in deriving improved Bayesian
predictive densities for multinomial observations. Predictive density estimation for the negative
multinomial distribution was also discussed. Finally, in Chapter 5, we considered the predictive
density estimation problem under the Kullback-Leibler divergence which corresponds to the clas-
sical and suggestive result of Stein’s phenomenon for the estimation of a normal variance with
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unknown mean. We provided a class of Bayesian shrinkage predictive densities and showed that
they dominate the minimum risk equivariant predictive density under appropriate conditions.

In Part IIT of the thesis, we considered fully Bayesian posterior inference based on heavy-
tailed distributions. First, in Chapter 6, we discussed global-local shrinkage priors for analyzing
sequence of counts. We showed that the asymptotic bias of a Bayes estimator of a Poisson
rate can be characterized by the tail behavior of the corresponding local prior. We obtained
a general sufficient condition for tail-robustness. Then we proposed priors which satisfy the
sufficient condition approximately or exactly and, in particular, introduced extremely heavy-
tailed priors. Moreover, we introduced a novel augmentation approach using latent variables to
develop an efficient posterior computation algorithm for Bayesian inference. We demonstrated
the proposed methods through simulation and an application to a real dataset and observed the
theoretically guaranteed tail-robustness property. The theoretical results are related to those in
Part II. For example, when we consider the Poisson part in the hierarchical representation of
the negative multinomial distribution as a likelihood, the extremely heavy-tailed priors can be
viewed as special cases of the shrinkage priors for negative multinomial parameters we used in
Part TI. Augmentation approaches using latent gamma variables are also useful in the context
of decision theory. Conversely, Properties (iii) and (iv) of Proposition 3.3.1 are analogous to
the tail-robustness property considered in Chapter 6. Next, in Chapter 7, we broadened the
class of the extremely heavy-tailed priors of Chapter 6 in order to achieve desirable shrinkage
and robustness properties for the case of normal observations. The novel feature of the prior of
our interest is its potential of further generalization, by which one may modify the proper prior
“as robust as possible”. We confirmed that the marginal density of our proposed prior has a
spike around the origin so that our prior has a large shrinkage effect on noises. We proved the
superiority of the proposed prior to existing ones explicitly via improvement of the mean squared
error for a large signal. This theoretical property was supported by extensive simulation studies.
Although our prior has an intractable normalizing constant, we showed that we can sample from
the posterior distribution of a hyperparameter by using the accept-reject algorithm. Finally, in
Chapter 8, we proposed a new approach to robust Bayesian linear regression by introducing the
extremely heavy-tailed error distribution for the noise terms. More specifically, we considered
the finite mixture of two components with thin and heavy tails as the error distribution and, for
the heavily-tailed component, we used the novel class of distributions as considered in Chapters
6 and 7. Since both components are expressed as scale mixtures of normals, we can easily
construct a simple Gibbs sampling for posterior inference. We proved the robustness to outliers
of the posterior distributions under the proposed models. The improved performance of our
model was shown in simulation and empirical studies.

200



Bibliography

Aitchison, J. (1975). Goodness of prediction fit. Biometrika, 62, 547-554.

Andrade, J.A.A. and O’Hagan, A. (2006). Bayesian robustness modeling using regularly
varying distributions. Bayesian Analysis, 1, 169-188.

Andrade, J.A.A. and O’Hagan, A. (2011). Bayesian robustness modelling of location and
scale parameters. Scandinavian Journal of Statistics, 38, 691-711.

Armagan, A., Clyde, M. and Dunson, D.B. (2011). Generalized beta mixtures of Gaus-
sians. In Advances in neural information processing systems, 523-531.

Bai, R. and Ghosh, M. (2019). Large-scale multiple hypothesis testing with the normal-
beta prime prior. Statistics, 53, 1210-1233.

Bai, R. and Ghosh, M. (2020). On the Beta Prime Prior for Scale Parameters in High-
Dimensional Bayesian Regression Models. Statistica Sinica, to appear.

Berger, J. (1980). A robust generalized Bayes estimator and confidence region for a
multivariate normal mean. The Annals of Statistics, 8, 716-76.

Berry, L.R., Helman, P. and West, M. (2019). Probabilistic forecasting of heterogeneous
consumer transaction-sales time series. arXiv preprint arXiv:1808.04698.

Berry, L.R. and West, M. (2019). Bayesian forecasting of many count-valued time series.
Journal of Business and FEconomic Statistics, to appear.

Bhadra, A., Datta, J., Polson, N.G. and Willard, B.T. (2016). Default Bayesian analysis
with global-local shrinkage priors. Biometrika, 103, 955-969.

Bhadra, A., Datta, J., Polson, N.G. and Willard, B.T. (2017). The horseshoe+ estimator
of ultra-sparse signals. Bayesian Analysis, 12, 1105-1131.

Bhadra, A., Datta, J., Polson, N.G. and Willard, B.T. (2019). Lasso Meets Horseshoe:
A Survey. Statistical Science, to appear.

Bhattacharya, A., Pati, D., Pillai, N.S., and Dunson, D.B. (2015). Dirichlet-Laplace
Priors for Optimal Shrinkage. Journal of the American Statistical Association, 110, 1479—
1490.

Boisbunon, A. and Maruyama, Y. (2014). Inadmissibility of the best equivariant predic-
tive density in the unknown variance case. Biometrika, 101, 733-740.

201



[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

Box, G. and Tiao, G.C. (1968). A Bayesian approach to some outlier problems.
Biometrika, 55, 119-129.

Brewster, J.F. and Zidek, J.V. (1974). Improving on equivariant estimators. The Annals
of Statistics, 2, 21-38.

Brown, L.D., George, E.I., and Xu, X. (2008). Admissible predictive density estimation.
The Annals of Statistics, 36, 1156-1170.

Brown, L.D., Greenshtein, E. and Ritov, Y. (2013). The Poisson compound decision
problem revisited. Journal of the American Statistical Association, 108, 741-749.

Carter, C.K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika,
81, 541-553.

Carvalho, C.M., Polson, N.G. and Scott, J.G. (2009). Handling Sparsity via the Horse-
shoe. In AISTATS, Volume 5, pp. 73-80.

Carvalho, C.M., Polson, N.G., and Scott, J.G. (2010). The horseshoe estimator for sparse
signals. Biometrika, 97, 465—-480.

Chang, Y.-T. and Shinozaki, N. (2019). New types of shrinkage estimators of Poisson
means under the normalized squared error loss. Communications in Statistics - Theory
and Methods, 48, 1108-1122.

Chou, J.-P. (1991). Simultaneous estimation in discrete multivariate exponential families.
The Annals of Statistics, 19, 314-328.

Clayton, D. and Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative
risks for use in disease mapping. Biometrics, 43, 671-681.

Clevenson, M.L. and Zidek, J.V. (1975). Simultaneous estimation of the means of inde-
pendent Poisson laws. Journal of the American Statistical Association, 70, 698-705.

Datta, J. and Dunson, D.V. (2016). Bayesian inference on quasi-sparse count data.
Biometrika, 103, 971-983.

Desgagné, A. (2015). Robustness to outliers in location—scale parameter model using
log-regularly varying distributions. The Annals of Statistics, 43, 1568—1595.

Desgagné, A. and Gagnon, P. (2019). Bayesian robustness to outliers in linear regression
and ratio estimation. Brazilian Journal of Probability and Statistics, 33, 205-221.

Devroye, L. (1981). The series method for random variate generation and its applica-
tion to the Kolmogorov-Smirnov distribution. American Journal of Mathematical and
Management Sciences, 1, 359-379.

Devroye, L. (2009). On exact simulation algorithms for some distributions related to
Jacobi theta functions. Statistics € Probability Letters, 79, 2251-2259.

Dey, D. and Chung, Y. (1992). Compound Poisson distributions: Properties and estima-
tion. Communications in Statistics - Theory and Methods, 21, 3097-3121.

202



[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Dey, D.K., Ghosh, M. and Srinivasan, C. (1987). Simultaneous estimation of parameters
under entropy loss. Journal of Statistical Planning and Inference, 15, 347-363.

Efron, B. (2010). The future of indirect evidence. Statistical Science, 25, 145-157.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least Angle regression.
The Annals of Statistics, 32, 407-499.

Frithwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Springer
Science € Business Media, 5, 81-102.

Gagnon, P., Desgagné, A., and Bédard, M. (2020). A new Bayesian approach to robust-
ness against outliers in linear regression. Bayesian Analysis, 15, 389-414.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models
(comment on article by Browne and Draper). Bayesian analysis, 1, 515-534.

George, E.I., Liang, F. and Xu, X. (2006). Improved minimax predictive densities under
Kullback-Leibler loss. The Annals of Statistics, 34, 78-91.

George, E.I., Liang, F. and Xu, X. (2012). From minimax shrinkage estimation to mini-
max shrinkage prediction. Statistical Science, 27, 82-94.

George, E.I. and McCulloch, R.E. (1993). Variable selection via Gibbs sampling. Journal
of the American Statistical Association, 88, 881-889.

Ghosh, M., Hwang, J.T. and Tsui, K.-W. (1983). Construction of improved estimators
in multiparameter estimation for discrete exponential families. The Annals of Statistics,
11, 351-367.

Ghosh, M. and Parsian, A. (1981). Bayes minimax estimation of multiple Poisson param-
eters. Journal of Multivariate Analysis, 11, 280—288.

Ghosh, M. and Yang, M.-C. (1988). Simultaneous estimation of Poisson means under
entropy loss. The Annals of Statistics, 16, 278-291.

Griffin, J.E. and Brown, P.J. (2010). Inference with normal-gamma prior distributions in
regression problems. Bayesian Analysis, 5, 171-188.

Hamura, Y. (2020). Bayesian shrinkage approaches to unbalanced problems of esti-
mation and prediction on the basis of negative multinomial samples. arXiv preprint
arXiw:2010.08141.

Hamura, Y., Irie, K. and Sugasawa, S. (2020a). On global-local shrinkage priors for count
data. R&R for Bayesian Analysis. arXiv preprint arXiv:1907.01333v2.

Hamura, Y., Irie, K. and Sugasawa, S. (2020b). Shrinkage with robustness: log-adjusted
priors for sparse signals. arXiv preprint arXiv:2001.08465v2.

Hamura, Y., Irie, K. and Sugasawa, S. (2020c). Log-regularly varying scale mixture of
normals for robust regression. arXiv preprint arXiv:2005.02800.

203



[49]

[50]

Hamura, Y. and Kubokawa, T. (2019a). Bayesian predictive distribution for a negative
binomial model. Mathematical Methods of Statistics, 28, 1-17.

Hamura, Y. and Kubokawa, T. (2019b). Simultaneous estimation of parameters of Pois-
son distributions with unbalanced sample sizes. Japanese Journal of Statistics and Data
Science, 2, 405-435.

Hamura, Y. and Kubokawa, T. (2020a). Bayesian predictive distribution for a Poisson
model with a parametric restriction. Communications in Statistics - Theory and Methods,
49, 3257-3266.

Hamura, Y. and Kubokawa, T. (2020b). Bayesian shrinkage estimation of negative multi-
nomial parameter vectors. Journal of Multivariate Analysis, 179, 104653.

Hamura, Y. and Kubokawa, T. (2020c). Proper Bayes minimax estimation of parameters
of Poisson distributions in the presence of unbalanced sample sizes. Brazilian Journal of
Probability and Statistics, 34, 728-751.

Hamura, Y. and Kubokawa, T. (2020d). Bayesian predictive density estimation for a
chi-squared model using information from a normal observation with unknown mean and
variance. arXiw preprint arXiv:2006.07052v2.

Harrison, D. and Rubinfeld, D.L. (1978). Hedonic prices and the demand for clean air.
Journal of Environmental Economics & Management, 5, 81-102.

Hudson, H.M. (1978). A natural identity for exponential families with applications in
multiparameter estimation. The Annals of Statistics, 6, 473-484.

Hwang, J.T. (1982). Improving upon standard estimators in discrete exponential families
with applications to Poisson and negative binomial cases. The Annals of Statistics, 10,
857-867.

Ishwaran, H. and Rao, J.S. (2015). Spike and slab variable selection: frequentist and
Bayesian strategies. The Annals of Statistics, 33, 730-773.

Kato, K. (2009). Improved prediction for a multivariate normal distribution with un-
known mean and variance. Annals of the Institute of Statistical Mathematics, 61, 531—
542.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator
in the presence of infinitely many incidental parameters. The Annals of Mathematical
Statistics, 27, 887-906.

Koenker, R. and Mizera, 1. (2014). Convex optimization, shape constraints, compound
decisions, and empirical Bayes rule. Journal of the American Statistical Association, 109,
674-685.

Komaki, F. (2001). A shrinkage predictive distribution for multivariate normal observ-
ables. Biometrika, 88, 859-864.

204



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Komaki, F. (2004). Simultaneous prediction of independent Poisson observables. The
Annals of Statistics, 32, 1744-1769.

Komaki, F. (2006). A class of proper priors for Bayesian simultaneous prediction of
independent Poisson observables. Journal of Multivariate Analysis, 97, 1815-1828.

Komaki, F. (2009). Bayesian predictive densities based on superharmonic priors for the
2-dimensional Wishart model. Journal of Multivariate Analysis, 100, 2137-2154.

Komaki, F. (2012). Asymptotically minimax Bayesian predictive densities for multinomial
models. FElectronic Journal of Statistics, 6, 934-957.

Komaki, F. (2015). Simultaneous prediction for independent Poisson processes with dif-
ferent durations. Journal of Multivariate Analysis, 141, 35-48.

Kubokawa, T. (1994). A unified approach to improving equivariant estimators. The An-
nals of Statistics, 22, 290-299.

Lawson, A.B. (2013). Bayesian disease mapping: hierarchical modeling in spatial epi-
demiology. Chapman and Hall/CRC.

Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd ed. (Springer,
New York, 1998).

Li, H., Graubardn, B.I. and Gail, M.H. (2010). Covariate Adjustment and Ranking Meth-
ods to Identify Regions with High and Low Mortality Rates. Biometrics, 66, 613—-620.

Liang, F. and Barron, A. (2004). Exact minimax strategies for predictive density estima-
tion, data compression, and model selection. IEEE Transactions on Information Theory,
50, 2708-2726.

L’Moudden, A., Marchand, E., Kortbi, O. and Strawderman, W.E. (2017). On Predictive
density estimation for Gamma models with parametric constraints. Journal of Statistical
Planning and Inference, 185, 56—68.

Maruyama, Y. (1998). Minimax estimators of a normal variance. Metrika, 48, 209-214.

Maruyama, Y. and Strawderman W.E. (2005). A new class of generalized Bayes minimax
ridge regression estimators. The Annals of Statistics, 33, 1753—-1770.

Maruyama, Y. and Strawderman W.E. (2012). Bayesian predictive densities for linear
regression models under a-divergence loss: Some results and open problems. In IMS
Collections, Contemporary Developments in Bayesian Analysis and Statistical Decision
Theory: A Festschrift for William E. Strawderman, D. Fourdrinier, E. Marchand & A.
Rukhin, eds., vol. 8. Beachwood, USA: Institute of Mathematical Statistics, 42-56.

Maruyama, Y. and Strawderman W.E. (2020a). Admissible Bayes equivariant estima-
tion of location vectors for spherically symmetric distributions with unknown scale. The
Annals of Statistics, 48, 1052—-1071.

Maruyama, Y. and Strawderman W.E. (2020b). Admissible estimators of a multivariate
normal mean vector when the scale is unknown. arXiv preprint arXiv:2003.08571.

205



[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

Morris, C.N. (1983). Parametric empirical Bayes inference: Theory and applications.
Journal of the American Statistical Association, T8, 47-55.

Muldoon, M.E. (1978). Some monotonicity properties and characterizations of the gamma
function. Aequationes Mathematicae, 18, 54—63.

O’Hagan, A. (1979). On outlier rejection phenomena in Bayes inference. Journal of the
Royal Statistical Society: Series, 41, 358-367.

O’Hagan, A. and Pericchi, L. (2012). Bayesian heavy-tailed models and conflict resolution:
A review. Brazilian Journal of Probability and Statistics, 26, 372—401.

Park, T. and Casella, G. (2008). The bayesian lasso. Journal of the American Statistical
Association, 103, 681-686.

Pérez, M., Pericchi, L.R., and Ramirez, I.C. (2017). The Scaled Beta2 distribution as a
robust prior for scales. Bayesian Analysis, 12, 615-637.

Polson, N.G. (1991). A representation of the posterior mean for a location model.
Biometrika, 78, 426—430.

Polson, N.G. and Scott, J.G. (2012a). Local shrinkage rules, Lévy processes and regular-
ized regression. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 74, 287-311.

Polson, N.G. and Scott, J.G. (2012b). On the half-Cauchy prior for a global scale param-
eter. Bayesian Analysis, 7, 887-902.

Polson, N.G., Scott, J.G., and Windle, J. (2013). Bayesian inference for logistic models
using Pélya—Gamma latent variables. Journal of the American Statistical Association,
108, 1339-1349.

Robert, C.P. (1996). Intrinsic losses. Theory and Decision, 40, 191-214.
Seneta, E. (1976). Regularly varying functions. Springer-Verlag Berlin Heidelberg.

Sibuya, M., Yoshimura, I. and Shimizu, R. (1964). Negative multinomial distribution.
Annals of the Institute of Statistical Mathematics, 16, 409-426.

Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P.,
Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W.,
Golub, T.R., and Sellers, W.R. (2002). Gene expression correlates of clinical prostate
cancer behavior. Cancer Cell, 1, 203—-209.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivari-
ate normal distribution. Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, 1, University of California Press, 197-206.

Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal
distribution with unknown mean. Annals of the Institute of Statistical Mathematics, 16,
155-160.

206



[95]

[96]

[97]

[98]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Stoltenberg, E.A. and Hjort, N.L. (2019). Multivariate estimation of Poisson parameters.
Journal of Multivariate Analysis, 175, 1-19.

Strawderman, W.E. (1971). Proper Bayes minimax estimators of the multivariate normal
mean. The Annals of Statistics, 42, 385—388.

Tak, H., Ellis, J.A and Ghosh, S.K. (2019). Robust and Accurate Inference via a Mixture
of Gaussian and Student’s t Errors. Journal of Computational and Graphical Statistics,
28, 415-426.

Tang, X., Ghosh, M., Ha, N. and Sedransk, J. (2018). Modeling Random Effects Us-
ing Global-Local Shrinkage Priors in Small Area Estimation. Journal of the American
Statistical Association, 113, 1476-1489.

Tsui, K.-W. (1979a). Multiparameter estimation of discrete exponential distributions.
The Canadian Journal of Statistics, 7, 193—-200.

Tsui, K.-W. (1979b). Estimation of Poisson means under weighted squared error loss.
The Canadian Journal of Statistics, 7, 201-204.

Tsui, K.-W. (1984). Robustness of Clevenson-Zidek-type estimators. Journal of the Amer-
ican Statistical Association, 79, 152—-157.

Tsui, K.-W. (1986a). Further developments on the robustness of Clevenson-Zidek-type
means estimators. Journal of the American Statistical Association, 81, 176-180.

Tsui, K.-W. (1986b). Multiparameter estimation for some multivariate discrete distribu-
tions with possibly dependent components. Annals of the Institute of Statistical Mathe-
matics, 38 45-56.

Tsui, K.-W. and Press, S.J. (1982). Simultaneous estimation of several Poisson parame-
ters under K-normalized squared error loss. TheAnnals of Statistics, 10, 93—100.

van Dyk, D.A. and Park, T. (2019). Partially collapsed Gibbs samplers: Theory and
methods Journal of the American Statistical Association, 103, 790-796.

Wakefield, J. (2006). Disease mapping and spatial regression with count data. Oxford
University Press.

West, M. (1984). Outlier models and prior distributions in Bayesian linear regression.
Journal of the Royal Statistical Society: Series B (Methodological), 46, 431-439.

West, M. (1997). Modelling and robustness issues in Bayesian time series analysis (with
discussion). Institute for Mathematical Statistics, 5, 231-252.

Womack, A. and Yang, Z. (2019). Heavy Tailed Horseshoe Priors. arXiv preprint
arXiw:1903.00928.

Yano, K., Kaneko, R. and Komaki, F. (2019). Exact Minimax Predictive Density for
Sparse Count Data. arXiw preprint arXiv:1812.06037.

207



[111] Zhou, M. and Carin, L. (2013). Negative binomial process count and mixture modeling.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 37, 307-320.

[112] Zhu, A., Ibrahim, J.G. and Love, M.I. (2019). Heavy-tailed prior distributions for se-
quence count data: removing the noise and preserving large differences. Bioinformatics,
35, 2084-2092.

208



