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Abstract

In this thesis, we study the quadrupolar phases in quantum spin systems. The spin

quadrupolar phases in the absence of the dipolar order are also known as spin nematic

phases, in analogy with the nematic phase in the liquid crystals. The spin nematic phase

has been intensively studied since 2000’s. A typical platform realizing the spin nematic or-

der is the spin-1 bilinear-biquadratic model, where the biquadratic interaction, (Si · Sj)
2,

written in terms of spin-1 operator, Si, is a main source for generating the quadrupole mo-

ments on the spin-1 sites. However, the system with large biquadratic interaction is elusive

in reality, since the biquadratic interaction is generated from the higher-order exchange

processes of electrons than the Heisenberg interactions, so that the former is often much

smaller than the latter and gives way to magnetic orderings. In spin-1/2 systems, more

realistic situations realizing the spin nematic phases have been proposed. In the vicinity

of the ferromagnetic phase, the bound two-magnons condense, generate the quadrupole

moments on bonds, and form the spin nematic phase. There, the kinetic motion of the

single-magnons, which destabilizes the nematic order and contributes to the magnetic or-

der, is suppressed by the competing antiferromagnetic and/or ring-exchange interactions.

Actually, some experiments have reported the possible realization of spin nematic phases

in spin-1/2 frustrated ferromagnets.

Unlike the usual magnetic orders, the quadrupolar moment does not directly couple

to the magnetic field, which makes the spin nematic order a sort of “hidden order”. Many

theoretical proposals for probing the spin nematic phase have been given, while so far they

are not fully successfully applied to experimental measurements. Moreover, the actual

search of spin nematics in materials has been done in a high magnetic field with the aim

to detect the two-magnon bound state. This restricts the search for the spin nematics

to the limited numbers of materials with small enough magnetic interactions to access

the fully-saturated state. The present study aims to add some clue for experimentally

detecting the spin nematic phase in a handy way, and to offer another platform which

allows us to find the quadrupolar phase with ease.

Firstly, we investigate the magnetic field effect on the thermodynamic properties of

spin-1 nematic phase in two-dimension. We find the characteristic field-dependence of

the peak in the specific heat that indicates the paramagnetic-to-ferroquadrupolar phase

transition temperature; the transition temperature once slightly increases in an applied

magnetic field, and decreases in a larger field. This reentrant behavior is the entropic

effect which can be understood in analogy with the Pomeranchuk effect in 3He, and may

serve as a smoking gun for experiments.

Secondly, we discuss the ground states of the spin-1 dimer-based triangular lattice

forming a bilayer to understand the nature of the ruthenium dimer materials Ba3MRu2O9,
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where M is the divalent cation. In Ba3MRu2O9, a pair of Ru5+-ions placed face to face

form a dimer, and the dimers form a two-dimensional triangular lattice structure. In this

family of materials, the spin-liquid-like nonmagnetic phase was recently found next to the

gapped singlet phase. There appeared a theoretical proposal that the antiferroquadrupo-

lar spin nematic phase is realized next to the singlet phase in the spin-1/2 dimer-based

triangular lattice. However, the size of the spin the ruthenium ions host is large, possibly

S = 1, and the spin-1/2 dimer system may not give a proper description. Motivated by

these studies, we examined the spin-1 dimers, and find that several types of spin quadrupo-

lar phases formed by triplet dimers widely appear thanks to the larger degrees of freedom

than spin-1/2. We classify these quadrupolar phases by the internal degrees of freedom of

dimers, the staggered spin moment and vector-chirality, and argue that one of them next to

the singlet phase might correspond to the intriguing nonmagnetic phase in Ba3MRu2O9.

In addition, we give a theoretical support on the reason why the dimer structure has

an advantage for designing the materials with spin nematic phases. As mentioned earlier,

the major driving force of the spin nematics is the large biquadratic interaction between

triplets. By the perturbation calculation starting from the Mott insulating electronic state,

we reexamine this interaction, finding that the dimer structure actually has a route to have

a large biquadratic interaction comparable to the Heisenberg one, when some particular

geometry of the electronic hopping between dimers is considered.

Our study on spin dimers also provides some clue to unify the theoretical description

of spin-1 and spin-1/2 based nematics; we find that the low-energy physics of both the

spin-1 dimer and spin-1/2 dimer based systems are described on an equal footing, since

both are mapped to the same spin-1 hard-core bosonic model. From this finding, we set

our future perspective to describe a variety of quadrupolar/spin-nematic phases — spin

nematics of spin-1 quantum spin system, spin-1/2 system on a low-dimensional lattices

near the ferromagnetic phase or at high fields, and the dimer system — using the common

local operators, which is the set of four internal degrees of freedom of spin-1/2 dimer. In

this thesis, we investigate the spin-1/2 two-leg ladder system in a high field as a first step,

and show how the two-magnon bound state can be redescribed using the dimer-based

formulation which we adopted previously for both the spin-1 and spin-1/2 based dimer

systems without the magnetic field.
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Chapter 1

Introduction

In this Chapter, we overview the previous studies on the multipolar orders, particularly

the spin quadrupolar order known as spin nematic orders, and outline the motivation and

purpose of this thesis.

1.1 Quadrupolar order in quantum spin systems

Electrons have a variety of degrees of freedom, such as the charges, orbitals, and spins,

and there are multipole moments corresponding to those degrees of freedom, which widely

appear in the symmetry-broken phases in the condensed matters. For the charges, the

ferroelectricity appears when the electric dipoles are ordered and break the spatial inver-

sion symmetry [4]. When the orbital degrees of freedom is regarded as the pseudospin,

the orbital ordering, where electrons occupy the same kinds of orbitals of all ions with

orbital degeneracy, is the dipolar order of pseudospins [5, 6]. Higher-rank multipoles, e.g.,

the electric quadrupoles and the magnetic octupoles, appear in the heavy-fermion sys-

tems [7]. Moreover, the quantum mechanical framework of the multipole operators for

the multiple atoms or orbitals has been developed [8–12], which is actually applied to the

characterization of emergent phenomena in materials [13].

In quantum spin systems, the quadrupolar ordering of the spins without magnetic

order has been discussed for years, which is called spin nematic order. The possibility

of the quadrupolar ordering of spins was first discussed by Blume and Hsieh using the

spin-1 model with the Heisenberg interactions Si · Sj and the biquadratic interactions

(Si · Sj)
2 (the bilinear-biquadratic model which we see in detail below), where Si =

t
(
Sx
i Sy

i Sz
i

)
is the spin-1 operator [14]. From the mean-field approach, they proposed

that the quadrupolar orderings are realized if the biquadratic interactions are sufficiently

large. Chen and Levy analyzed the bilinear-biquadratic model with the molecular field

approximation [15]. Andreev and Grishchuk termed this quadrupolar order spin nematics,

and they extended the concept of the quadrupolar order to the spin-1/2 systems where

the quadrupolar moments are defined by two spin-1/2’s [16].

Spin nematics owes its name to the nematic order of the liquid crystals. When the

liquid crystal molecules, which have elliptical shapes, align without the positional order

where the positions of the liquid crystals are fixed, the nematic order is realized. For the

quantum spins, the spin quadrupolar moments do not have a specific direction, and when
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the quadrupolar moments align, the spin nematic order, the spin version of the nematic

order, is realized 1.

1.2 Spin nematic phases in the spin-1 systems

To write a part of this section and the next section (Sec. 1.3), we partly referred to Ref. [17].

1.2.1 Order parameter

The order parameter of the spin nematic phases or the spin quadrupolar phases is the spin

quadrupolar moment which is the rank-2 symmetric traceless tensor and is defined as

Qαβ
i = Sα

i S
β
i + Sβ

i S
α
i − 2

3
S (S + 1) δαβ , (1.1)

where α, β = x, y, z, and δαβ is the Kronecker’s delta 2. When Si is the spin-1/2 operator,

the quadrupolar operator Qαβ
i is always zero, which can be derived by the anticommutation

relation of the spin-1/2 operators given as Sα
i S

β
i + Sβ

i S
α
i = 1

2Iδαβ , where I is the identity

operator. Therefore, the quadrupolar moment defined on-site (Eq. (1.1)) is meaningful

only for S ≥ 1, and the quadrupolar order is typically discussed in spin-1 systems.

Since Qαβ
i is the rank-2 symmetric traceless tensor, the number of linearly independent

components in Qαβ is five. Conventionally, the five components are chosen as 3

Qi =


Qx2−y2

i

Q3z2−r2

i

Qxy
i

Qyz
i

Qzx
i

 =



(Sx
i )

2 − (Sy
i )

2

1√
3

[
3 (Sz

i )
2 − S (S + 1)

]
Sx
i S

y
i + Sy

i S
x
i

Sy
i S

z
i + Sz

i S
y
i

Sz
i S

x
i + Sx

i S
z
i


, (1.3)

which is a similar form to the electronic wave-function of the d-orbital.

In the light of the symmetry breaking, the spin nematic order partially breaks the SU(2)

symmetry 4. For the spin nematic order, the rotational symmetry of spins is broken, but

the time-reversal symmetry is kept since the magnetic (dipolar) order is lost. We can

confirm it in a one-site system; let us consider the spin-1 state given as

|ψi⟩ =
∑

α=x,y,z

di,α |α⟩ . (1.4)

1Unlike the nematic order in the liquid crystals, where the positional order is not present, the positions
of the spin quadrupolar moments are fixed on sites if we consider the lattice systems.

2δαβ =

{
1 (α = β)

0 (α ̸= β)
.

3Using Qαβ
i , Qx2−y2

i and Q3z2−r2

i are expressed as

Qx2−y2

i =
1

2
(Qxx

i −Qyy
i ) , Q3z2−r2

i =
1

2
√
3
(2Qzz

i −Qxx
i −Qyy

i ) . (1.2)

4Or O(2) symmetry for the spin nematics in the spin-1/2 systems in a magnetic field.
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(a) (b)

Figure 1.1: (a) Schematic picture of the quadrupolar state ⟨S⟩ = 0 (left) and the spin-
component distribution (right) when d = t

(
1 0 0

)
. (b) Same as (a) for the magnetic

state ⟨S⟩ ̸= 0. The arrow in the spin-component distribution denotes the magnetization
along the z-axis.

Here, di,α is the complex coefficient and |α⟩ is the time-reversal invariant basis states given

as [17–19]

|x⟩ = i√
2
(|+1⟩ − |−1⟩) , |y⟩ = 1√

2
(|+1⟩+ |−1⟩) , |z⟩ = −i |0⟩ , (1.5)

where |n⟩ (n = 0,±1) denotes the spin-1 state with Sz = n. The vector representation of

di,α, di =
t
(
di,x di,y di,z

)
, is called d-vector. Using the d-vector, the expectation value

of the spin and quadrupolar moments are given as

⟨Si⟩ = ⟨ψi|Si|ψi⟩ = −i

d∗ydz − d∗zdy
d∗zdx − d∗xdz
d∗xdy − d∗ydx

 , (1.6)

⟨Qi⟩ = ⟨ψi|Qi|ψi⟩ = −



|di,x|2 − |di,y|2
1√
3

(
2 |di,z|2 − |di,x|2 − |di,y|2

)
(
d∗i,xdi,y + d∗i,ydi,x

)(
d∗i,ydi,z + d∗i,zdi,y

)(
d∗i,zdi,x + d∗i,xdi,z

)


. (1.7)

When d has only the real components, |ψi⟩ is time-reversal invariant, and ⟨Si⟩ becomes

zero, while ⟨Qi⟩ have nonzero components, which expresses the spin nematic state as

shown in Fig. 1.1(a). Once d has an imaginary component, |ψi⟩ breaks the time-reversal

symmetry, and ⟨Si⟩ takes nonzero values at the same time, which is the magnetic state

(see Fig. 1.1(b)).

1.2.2 A canonical model: bilinear-biquadratic model

As was already discussed in the first stage of the studies on the spin nematics [14, 15], one

of the main origins of the spin nematic phases are the biquadratic exchange interactions

(Si · Sj)
2. This can be understood by the fact that for i ̸= j the biquadratic interactions
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(Si · Sj)
2 can be rewritten using the quadrupolar operator as [17, 19] 5

(Si · Sj)
2 =

1

2
Qi ·Qj −

1

2
Si · Sj +

1

3
S2 (S + 1)2 . (1.9)

To discuss the spin nematic phases in spin-1 systems, the spin-1 bilinear-biquadratic

(BLBQ) model [14, 15];

HBLBQ =
∑
⟨i,j⟩

[
JSi · Sj +K (Si · Sj)

2
]

(1.10)

is very often used 6. In this model, the Heisenberg (bilinear) interactions, Si · Sj , which

usually lead to the magnetic orderings, and the biquadratic interactions, (Si · Sj)
2, which

break the magnetic orderings and induce the quadrupolar (nematic) orderings, compete

with each other. We can see the competition between the magnetic and quadrupolar

orderings more explicitly by rewriting the Hamiltonian (Eq. (1.10)) using Eq. (1.9) as

HBLBQ =
∑
⟨i,j⟩

[(
J − K

2

)
Si · Sj +

K

2
Qi ·Qj +

K

3
S2 (S + 1)2

]
. (1.11)

One can naively expect that the quadrupolar phase is realized when

∣∣∣∣J − K

2

∣∣∣∣ < ∣∣∣∣K2
∣∣∣∣, or

|J | < |K|, and many analytical and numerical studies on the BLBQ models have shown

that the quadrupolar phases do appear when |J | ≲ |K|. In order to discuss how the

magnetic properties are modified by the parameters J and K, frequently the parameters

are rewritten as J = cos θ and K = sin θ with −π < θ ≤ π 7, and the BLBQ Hamiltonian

is rewritten as

HBLBQ =
∑
⟨i,j⟩

[
cos θSi · Sj + sin θ (Si · Sj)

2
]

(1.12)

(see e.g., the phase diagrams in Figs. 1.2, 1.5(a)).

One-dimensional systems

Chubukov draw the ground state phase diagram of the BLBQ model on the one-

dimensional chain by the bosonization technique [21], where he found a gapped dimerized

phase with quadrupolar correlations in addition to the Haldane phase with a spin gap, a

gapless trimerized phase, and a ferromagnetic phase. It then became controversial whether

the non-dimerized spin nematic ordered phase exists between the dimerized phase induced

by the Berry phase and the ferromagnetic phase. The spin nematic ordered phase is the

condensate of director d, and its coupling with the Z2 gauge field defined along the closed

5When i = j, Eq. (1.9) does not hold, and instead

Qi ·Qi =
4

3
S2 (S + 1)2 − S (S + 1) (1.8)

holds.
6Here,

∑
⟨i,j⟩ is the summation over a certain pair of spins i and j. In most cases, the nearest-neighbor

pairs are adopted.
7Or equivalently 0 ≤ θ < 2π depending on the articles.
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Figure 1.2: Phase diagram of the spin-1 bilinear-biquadratic model on the one-dimensional
chain. Figure is taken from Ref. [20] (©2014 American Physical Society).

time loop gives an appropriate effective model for the quantum dynamics of d describing

the disorders of the spin nematics. It was proposed that the dimerization occurs because

the Berry phase associated with the gauge field leads to dimerization when the nematic

order is disordered by condensing the Z2 disclinations [22, 23]. This phenomenon is in

analogy with antiferromagnetic Heisenberg chain with the half-integer (S = 1/2) and inte-

ger spins (S = 1), where the presence of the Berry phase makes the excitations those in the

former gapless and in the latter gapped. Hu and coworkers examined this effect in more

detail [20]; from the low-energy effective theory, they found that the spin nematic order

in the mean-field picture melts by the large quantum fluctuation and transforms to the

gapped state and that the dimerization occurs by the Berry phase effect. They confirmed

the dimerization by the density-matrix renormalization group calculations and concluded

that the non-dimerized spin nematic phase does not exist. The dimerized phase with

dominant quadrupolar correlations continues up to the boundary with the ferromagnetic

phase. This dimerized phase with nematic correlations is one of the symmetry-protected

topological phases consisting of the quadrupoles [24].

Although the non-dimerized spin nematic phase is not realized in the BLBQ models on

the single chain, Läuchli, Schmidt, and Trebst showed that the spin nematic phase appears

on the weakly-coupling two-leg ladder, where both of the interactions on the rungs and

legs are described by the BLBQ interactions [25].

Two- and Three-dimensional systems

Papanicolaou studied the ground states of the BLBQ models by the semiclassical 1/N -

expansion approach which may give a reasonably accurate description of the three-

dimensional model and pointed out the possibility of the quadrupolar ordering [27].

K. Tanaka, A. Tanaka, and Idogaki gave a rigorous proof that the BLBQ model on the

cubic lattice has the ferro-quadrupolar long-range ordered ground state when 2.664J <

K ≤ 2J < 0 8 [28]. Harada and Kawashima performed the quantum Monte Carlo simu-

lations and obtained the ground state properties of the model on the cubic lattice by the

extrapolation of the order parameters of the finite-temperature to zero temperature [26].

They further performed the quantum Monte Carlo simulations on the square and cubic

8The notation is changed from the original article [28] to match the above BLBQ Hamiltonian
(Eq. (1.10)).



6 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.3: Studies on the spin-1 bilinear-biquadratic model in Eq. (1.12) by the quantum
Monte Carlo approach. (a) Order parameter q of the ground state for the square lattice.
(b) Phase diagram of at finite-temperature in the cubic lattice. Figures are taken from
Ref. [26] (©2002 American Physical Society).

lattices when the biquadratic interaction parameter K is negative [26]; they identified the

nematic order parameter in the square lattice at zero temperature as shown in Fig.1.3(a),

confirming the mean-field argument [14] and semiclassical theory [27]. However, in two

dimensions, the observed broad peak at the temperature that roughly corresponds to the

development of the quadrupole moment is concluded not as a sign of the typical phase

transition. By contrast, the nematic phase of the cubic lattice is robust at finite temper-

ature (see Fig. 1.3(b)), which is identified by the size scaling analysis.

The ferroquadrupolar phase on the bipartite lattices is thus well established, while

the antiferroquadrupolar phase needed to be examined in more detail. This is because

the ground states are massively degenerate “semi-ordered” states when the variational or

semiclassical methods are applied [27]. Tóth and coworkers examined by the numerical di-

agonalizations the region where the semi-ordered (SO) state is realized in the semiclassical

approach [27] (See Fig. 1.4(a)), and obtained the results which suggest the semi-ordered

phase is the three-sublattice antiferroquadrupolar phase in the fully-quantum picture [30].

Then, the studies by the series expansion [31] and the infinite projected entangled pair

states methods [29] also indicated the presence of the three-sublattice antiferroquadrupo-

lar phase on the square lattice. Figure 1.4(b) shows the details, where the SO region is

divided into several phases when the quantum treatment is given.

The three-sublattice antiferroquadrupolar phase can be more naturally realized on a

triangular lattice. Such studies were rather developed motivated by the triangular lat-

tice compound NiGa2S4 [32]. Tsunetsugu and Arikawa studied the antiferroquadrupolar

phase of the BLBQ model on the triangular lattice by the mean-field approximation and

the bosonization method [33, 34]. They investigated the bosonic excitation from the anti-

ferroquadrupolar ground states, and obtained the static and dynamical spin correlations,

finding a gapless excitation which has a linear dispersion around the Γ-point. This ex-

citation leads to the non-zero spin susceptibility even at T = 0 and the specific heat

proportional to T 2 at low temperature. Parallelly, Läuchli, Mila, and Penc also exam-

ined the ground state and the excitation of the BLBQ model on the triangular lattice by
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(a) (b)

Figure 1.4: Phase diagram of the spin-1 bilinear-biquadratic model on the square lattice by
(a) the semiclassical approach by Papanicolaou [27] and (b) the infinite projected entangled
pair states approach by Niesen and Corboz [29]. Figures are taken from Ref. [29] (©2017
I. Niesen and P. Corboz, under the Creative Commons Attribution 4.0 International (CC
BY 4.0) License).

the variational method and the numerical diagonalization (Fig. 1.5(a)) [19]. They found

that the ferroquadrupolar phase appears when −3π/4 < θ ≲ −0.11π, and the antifer-

roquadrupolar phase is realized when π/4 < θ < π/2. They observed the finite spin

susceptibility at T = 0 and the T 2 scaling of the specific heat found in Ref. [33] also in the

ferroquadrupolar phase. In their ground-state phase diagram in a magnetic field based on

the analytical and variational approaches, the 2/3-plateau region appears in the magneti-

zation process in the antiferroquadrupolar phase (Fig. 1.5(b)). Bhattacharjee, Shenoy and

Senthil argued by the more simple mean-field approach that instead of the noncollinear

antiferroquadrupolar phase proposed by Tsunetsugu and Arikawa, the ferroquadrupolar

phase appears for NiGa2S4 when the biquadratic interaction is large [35]. While this result

seems to be rather unrealistic compared to the previous ones, if one considers the effect of

the uniaxial anisotropy along the z-axis, the large easy-plane anisotropy favors the ferro-

quadrupolar order, as indicated by the cluster mean-field approach by Moreno-Cardoner et

al. [36].

We briefly mention other lattices in two and three dimensions. For the kagome lattice,

the ferroquadrupolar and antiferroquadrupolar ground states appear similarly to the case

on the square and triangular lattices [37, 38]. However, the parameter range where the

antiferroquadrupolar phase is realized is narrower. On the honeycomb lattice, the BLBQ

model has the ground state with ferroquadrupolar order similar to the case on other types

of lattices. The semiclassical analysis predicted the existence of the antiferroquadrupolar

phase on the honeycomb lattice, but the tensor renormalization group calculation showed

that the antiferroquadrupolar phase is not realized, and instead the plaquette valence-bond

solid phase appears [39]. On the pyrochlore lattice, it was proposed that the biquadratic

interactions can become large due to large electron-phonon couplings in some chromium

spinel materials ACr2O4 (A = Zn,Cd,Hg) with Cr3+ carrying S = 3/2 [40–44], which

indicates that the magnetic properties of ACr2O4 can be well described by the BLBQ
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(a) (b)

Figure 1.5: (a) Ground state phase diagram of the spin-1 bilinear-biquadratic model on
the triangular lattice without magnetic field, where J = cos θ and K = sin θ. The inner
circle represents the results of the variational calculations, and the outer circle describes
the results of the numerical diagonalizations. FM, AFM, FQ, and AFQ denote the fer-
romagnetic, antiferromagnetic, ferroquadrupolar spin nematic, and antiferroquadrupolar
spin nematic phases, respectively. (b) Ground state phase diagram in a magnetic field.
Figures are taken from Ref. [19] (©2006 American Physical Society).

model [45]. The classical analog of the quantum spin nematic phase, the collinear spin

state characterized not by the magnetic moments but by the quadrupolar moments, was

discussed using the bilinear-biquadratic model with classical spins [46]. Takata, Momoi,

and Oshikawa examined the ground state of the spin-3/2 BLBQ model on the pyrochlore

lattice and showed that the spin nematic phase exists in a high field region [47].

Thermodynamic properties

As mentioned previously (see Fig. 1.3), Harada and Kawashima studied the finite-

temperature properties of the BLBQ model on the square and cubic lattices without

magnetic field by the quantum Monte Carlo simulations [26]. They suggested that there

are no finite-temperature phase transitions including the Kosterlitz–Thouless type ones

in the ferroquadrupolar region on the square lattice. They also demonstrated that the

finite-temperature phase transition to the ferroquadrupolar phase occurs on the cubic

lattice.

On the triangular lattice, Stoudenmire, Trebst, and Balents studied the finite-

temperature properties of the ferroquadrupolar phase without magnetic field by the semi-

classical approximation with classical Monte Carlo simulations [49]. Their phase diagram

and the specific heat are shown in Figs. 1.6(a) and 1.6(b). The possible finite tempera-

ture phase transitions between the paramagnetic–ferroquadrupolar and ferroquadrupolar–

antiferromagnetic phases or a crossover is marked by the peaks in the specific heat. In

the present thesis, we adopt this method to the same BLBQ model and discuss the effect

of the finite magnetic field. There, we discuss shortly in Sec. 2.2.4.2 that since the system

is in two dimensions, the ferroquadrupolar phase is realized not by a simple symmetry
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(a) (b)

(c) (d)

Figure 1.6: Thermodynamic properties of the spin-1 BLBQ model on the triangular lattice.
(a) The phase diagram and (b) the temperature dependence of the specific heat at K/J =
1.5 by the semiclassical approximation by Stoudenmire et al. (c), (d) Specific heat Cv and
uniform susceptibility χu calculated by the quantum Monte Carlo simulation. (c) Results
for J = 0 by Kaul. (d) Results by Völl and Wessel. The peak position of (c) differs by a
factor of 3 from (d), possibly because the factor of K and J is mistaken in the former (see
Ref. [48]). Figures (a), (b) are taken from Ref. [49] (©2009 American Physical Society).
Figures (c) and (d) are taken from Refs. [50] (©2012 American Physical Society) and [48]
(©2015 American Physical Society), respectively.
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breaking transition. Kaul pointed out that the ferro-biquadratic model 9, whose ground

state is the ferroquadrupolar order, can avoid the negative sign problem, and studied the

finite-temperature properties by the quantum Monte Carlo simulations [50]. His results

on the specific heat and susceptibility are shown in Fig. 1.6(c). Völl and Wessel further

performed the quantum Monte Carlo simulations in the region where the ground states are

the ferroquadrupolar and ferromagnetic order and obtained the thermodynamic properties

and the dynamical structure factors of spin and quadrupoles [48] as in Fig. 1.6(d). They

explicitly showed that the specific heat in the ferroquadrupolar phase at low-temperature

is proportional to T 2, which is in agreement with the previous study by the linear flavor-

wave theory [19], while the specific heat is linear in T in the ferromagnetic phase. Also,

the dispersion relations estimated from the dynamical structure factors were consistent

with the results of the flavor-wave calculations.

Field-theoretical approach

Ivanov and Kolezhuk developed the low-energy effective field theory of the spin-1 BLBQ

model on the one- and two-dimensional systems [18]. They showed that the low-energy

dynamics of the BLBQ model with 5π/4 ≲ θ can be described by the RP 2 non-linear

sigma model.

1.3 Spin nematic phases in the spin-1/2 systems

1.3.1 Quadrupolar and higher-rank multipolar orders

Spin nematic phases appear also in the spin-1/2 systems. As we mentioned above,

quadrupolar operators defined on-site is always zero in the spin-1/2 systems. However,

the quadrupolar moments can be defined on-bond which connects the two spin-1/2’s as

Qαβ
i1i2

= sαi1s
β
i2
+ sβi1s

α
i2 −

2

3
(si1 · si2) δαβ , (1.13)

and the spin nematic order appears as the order of these on-bond spin quadrupolar mo-

ments. The possibility of this bond-nematic phase was pointed out by Andreev and Gr-

ishchuk [16].

A representative example realizing the spin nematic phase in spin-1/2 systems is the

ferromagnetic J1–J2 Heiseberg model on the square lattice [51–55]. Motivated by the

experiments on the square lattice compounds with ferromagnetic nearest-neighbor inter-

actions and antiferromagnetic next-nearest-neighbor interactions in Pb2VO(PO4)2 [56]

and (CuCl)LaNb2O7 [57], Shannon, Momoi, and Sindzingre studied the spin-1/2 J1–J2–

K square lattice, where the nearest-neighbor ferromagnetic Heisenberg interactions J1,

and the next-nearest-neighbor antiferromagnetic interactions J2 and/or the ring-exchange

interactions K compete with each other in an applied magnetic field h (Fig. 1.7) [51]. They

showed that the spin nematic phase with the d-wave type quadrupolar order appears in

the vicinity of the fully-polarized ferromagnetic phase. When the interactions between J1
and J2 and/or K are frustrated, the kinetic motion of the single magnons with ∆Sz = −1,

which contribute to the dipolar magnetic orders when condensed, is suppressed, and the

9J = 0 and K = −1, or θ = −π/2 in the BLBQ model (Eq. (1.10)).



1.3. SPIN NEMATIC PHASES IN THE SPIN-1/2 SYSTEMS 11

(a) (b)

Figure 1.7: (a) Schematic phase diagram of the square lattice on the plane of J2/ |J1| or
K/ |J1| and h/ |J1|. The insets show the energy spectra of the high-spin states expressing
the phase transitions into the spin nematic phase. (b) Energy spectrum of the frustrated
square lattice of 36 spins with J1 = −1, J2 = 0.4 and K = 0, where the spin nematic
phase is realized. The inset shows that the temperature dependence of the specific heat
for the square lattice of 16 and 20 spins with the same parameters as those of the main
panel. Figures are taken from Ref. [51] (©2006 American Physical Society).

two-magnon bound state with ∆Sz = −2 has lower energy than that of the single magnons.

Then, when the Bose–Einstein condensation of the magnon pair occurs, the spin nematic

phase is realized. As a result, the lowest excitation is ∆S = 2, and the low-lying states in

the energy spectrum which constitute the ground state have a period-2 structure, namely,

only the states with even-Stot appear as the tower of states (Fig. 1.5). Ueda and Totsuka

studied the same J1–J2 model without K on the square lattice by modifying the interac-

tions to the strongly coupled plaquette unit with J1 and J2 and the weaker interactions,

λJ1 and λJ2, between these plaquettes [52]. By extending the bond-operator mean-field

theory to the plaquette unit, and by dealing with λ perturbatively, they compared the exci-

tation energies of triplet and quintet to see which will close the gap first. When J1/J2 ∼ −2

the quintet and the singlet condense where one may expect the condensation of bound

magnons interpreted as spin nematic order. Shindou and Momoi developed a mean-field

theory using slave-bosons, and proposed that the spin nematic phase is expressed as the

resonating valence-bond states of triplets [53].

The study on the spin nematic order is also motivated by the 3He on graphite, where

the gapless spin-liquid-like behavior was observed [59, 60]. Momoi and Shannon performed

the instability analysis of the ferromagnetic phase and the classical Monte Carlo simula-

tions on the spin-1/2 model with multiple spin exchange interactions on the triangular

lattice [61]. They found that when the four-spin interactions are introduced, the spin

nematic state with the condensation of bound two-magnon is realized at the instability

of the ferromagnetic phase. Their classical Monte Carlo simulation also indicated the

rapid decrease of the spin correlations and the enhancement of the nematic correlations

at low temperatures. Momoi, Sindzingre and Shannon studied the ground state of the
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(a) (b) (c)

Figure 1.8: (a) Phase diagram obtained by the magnon instability analysis from the fully
polarized ferromagnetic phase in the saturation field on the plane of J5 and J4. The model
parameters are J = −2 and J6 = 2J5. The wave vectors and the spatial symmetries of
the n-magnon states are denoted. The inset is the first Brillouin zone, where Γ-, K-, and
W -points are defined. (b) Low-energy spectrum of the multiple spin exchange model with
36 spins. The parameters are set as J = −2, J4 = 0.5, and J5 = J6 = 0. (c) Energy
spectrum of the multiple spin exchange model with 36 spins near the fully-polarized state
of S = 18. The parameters are set as J = −2, J4 = 1, and J5 = 1

2J6 = 0.3. Γ1, Γ2, and
Γ3 are given as Γ1 ≡ (R2π/3 = 1, Rπ = 1, σ = 1), Γ2 ≡ (R2π/3 = 1, Rπ = 1, σ = −1),
and Γ3 ≡ (R2π/3 = j, j2, Rπ = 1), respectively. Figures are taken from Ref. [58] (©2012
American Physical Society).

spin-1/2 model on the triangular lattice with two-spin interactions and four-spin exchange

interactions in a magnetic field aiming to describe the 3He on graphite. They show that

the spin triatic order, the octupolar order of spins, is realized between the fully polarized

ferromagnetic phase and the canted antiferromagnetic phase. In the spin triatic phase, the

condensation of bound three-magnon occurs similarly to the condensation of the bound

two-magnon in the spin quadrupolar phase [62]. Momoi, Sindzingre, and Kubo showed

that the solid 3He thin film forming the triangular lattice, where each 3He nucleus carries

spin-1/2, exhibits the spin nematic phase [58], by the multiple-spin exchange interactions.

The spin nematic phases have been realized near the saturation field also in one-

dimensional systems as the quadrupolar quasi-long-range order since the long-range or-

derings are suppressed by the quantum fluctuations [63–69]. Kecke, Momoi and Furusaki

studied the J1–J2 chain, where the nearest-neighbor interaction J1 and the next-nearest-

neighbor interaction J2 compete [64]. They constructed the n-magnon excited state by

applying s− to the fully-polarized ferromagnetic state, and calculated their energy dis-

persions, finding that the lowest-lying excitations are almost always the multi-magnon

ones with momentum π. Hikihara, Kecke, Momoi, and Furusaki examined the ground

states of the J1–J2 chain with J1 < 0 and J2 > 0 in a magnetic field using the numeri-

cal methods and the field-theoretical approach [66]. Similar calculations were performed

by Sudan, Lüscher, and Läuchli [67]. Zhitomirsky and Tsunetsugu constructed the two-

magnon states from the full saturation, and gave an analytical treatment to describe the

spin nematic order in a high field [68]. They predicted that the spin nematic order is
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realized in a high-field region of LiCuVO4, which was later confirmed (see Fig. 1.13). The

investigation aiming at a high-field region of LiCuVO4 was performed also by Ueda and

Totsuka [70], and Sato, Hikihara and Momoi [71].

Another example where the spin nematic phase is realized in the one-dimensional

system is the two-leg ladder. Hikihara and Yamamoto studied the Heisenberg model with

ring-exchanges in a magnetic field on the two-leg ladder, and showed that the quasi-long-

range order of the magnon-pairing is realized next to the fully-polarized ferromagnetic

phase [72].

The studies on spin nematics are also performed on the Shastry–Sutherland lattice [73],

the orthogonal dimer system which probably describes SrCu2(BO3)2 [74]. Momoi and

Totsuka [75] started from the limit of the decoupled dimers, and performed the pertur-

bation calculation of the inter-dimer interactions, deriving the effective hard-core boson

model where the singlet is the vacuum and the triplet with Sz = +1 is the bosonic parti-

cle [76]. They showed that the strong geometrical frustration of the Shastry–Sutherland

lattice strongly suppresses the hopping of a single triplet, and instead the bound state of

triplet itinerates by the correlated hopping processes. The two-triplet bound states were

confirmed by several studies [77–79]. Wang and Batista examined the low-energy excita-

tion and the dynamics by the variational method, and found two kinds of spin nematic

phases [80]. One is the antiferroquadrupolar spin nematic phase which was already found

in Ref. [75], and the other is the plaquette spin nematic phase which they newly found.

1.3.2 Vector-chiral orders: p-type nematics

So far, the spin nematic phases as the order of quadrupolar moments of spins, the rank-2

symmetric tensor, have been discussed. The rank-2 tensor operators can be constructed

by spin operators also in an antisymmetric form, namely, the vector-chiral operator,

pi = si1 × si2 =

s
y
i1
szi2 − szi1s

y
i2

szi1s
x
i2
− sxi1s

z
i2

sxi1s
y
i2
− syi1s

x
i2

 , (1.14)

can be considered as another rank-2 tensor. When the magnetic order is suppressed and

the vector-chiral correlation, ⟨pi · pj⟩, develops, the vector-chiral order is realized. This

vector-chiral order is sometimes called the spin nematic order. To distinguish the order of

the quadrupolar moments and that of the vector-chiral operator, the former is called n-

type nematic order and the latter is called p-type nematic order [16] 10. The vector-chiral

order is elusive in much the same way as the n-type nematic order. In Refs. [66, 67], in

addition to the quasi-long-range orderings of the quadrupolar and higher-rank multipolar

moments, the long-range orderings of vector-chirality, si1 × si2 , are observed.

The vector-chiral ordering is actually found in two-dimensional model. Läuchli and

coworkers showed that this p-type vector chiral order is realized on the square lattice

where the antiferromagnetic Heisenberg interactions and the ring-exchange interactions

compete with each other [81]. Their phase diagram and the results of the Anderson tower

analysis are shown in Fig. 1.9. The distinct difference of the p-type nematic order from

10Usually, the order of si1 × si2 is simply called the vector-chiral order, and the word “spin-nematic”
is reserved for the quadrupolar order.
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(a) (b) (c)

Figure 1.9: (a) Schematic phase diagram of the Hamiltonian with the Heisenberg interac-
tions J = cos θ and the ring-exchange interactions K = sin θ on the square lattice. (b), (c)
Results of the numerical diagonalization on the square lattice with 40 spins. (b) Spatial
vector-chirality correlations. The bold black bond is the reference bond, and the width of
the lines on each bond is proportional to the absolute value of the correlation. (c) Energy
spectrum of the Hamiltonian of 32 spins with K/J = 1.5, in the p-type spin nematic
phase. The inset is the result of the finite-size scaling of the spin gap, which suggests that
the spin gap becomes zero in the N → +∞ thermodynamic limit. Figures are taken from
Ref. [81] (©2005 American Physical Society).

the n-type one is that it is not located next to the fully polarized or ferromagnetic phases,

and that the low-energy excitation is not characterized by the multi-magnon bound state.

In fact, the tower of states in Fig. 1.9(c) consists of ∆S = 1 series of states, since there

is a vector-chiral long-range order of magnetic moments that can contribute to the single

magnon excitations.

Another proposal realizing the p-type nematics in the two-dimensional system was

given by Chandra and Coleman [82], utilizing the spiral spin structure. Also, Gor’kov and

Sokol parallelly reached the similar result as Chandra and Coleman [83].

1.4 Spin nematic phases in dimer systems

So far most of the spin nematic phases are found next to the ferromagnetic phase or in

the strong magnetic field near the saturation 11. However, recently, there have been some

studies showing that the spin nematic phases appear even without a magnetic field by

utilizing the dimer structure 12.

Totsuka, Lecheminant and Capponi examined the spin-1/2 Hamiltonian with Heisen-

berg interactions J and ring-exchange interactions K4 on the two-leg ladder shown in

Fig. 1.10 [84]. Regarding the pair of two spins on each rung as the dimer, they map the

two-leg ladder onto the spin-1 hard-core boson chain where the dimer singlet state is the

vacuum of boson and the dimer triplet state is the boson carrying the spin-1 [85]. They

analyzed the hard-core boson model and draw a mean-field ground-state phase diagram

11The spin-1 systems can be regarded as a sort of the ferromagnetic system, where two electron spins
ferromagnetically align by the Hund’s coupling inside each magnetic ion.

12The Shastry–Sutherland lattice can be regarded as the dimer system, but the spin nematic phases on
the lattice are realized in a magnetic field.



1.4. SPIN NEMATIC PHASES IN DIMER SYSTEMS 15

(a) (b)

Figure 1.10: (a) Two-leg ladder. The square below denotes the ring-exchange interactions
P4, which moves the spins counterclockwise. (b) Mean-field phase diagram of the hard-
core boson model varying the parameters J = cos θ and K4 = sin θ. Figures are taken
from Ref. [84] (©2012 American Physical Society).

in Fig. 1.10(b), and further examined how the quantum fluctuation effect melts the mean-

field phases. Notice that although the mean-field approximation generates a fictitious

long-range order with distinct order parameters in the antiferromagnetic and chiral types

of phases, denoted as NAF-dominant and chirality-dominant ones in this phase diagram,

they give the power-low decaying correlations in reality, particular of one-dimension by

the strong quantum fluctuation. In the analysis, they noticed that the phases can be

systematically classified from two aspects; the magnetic properties of the spin-1 bosons,

and the internal degrees of freedom of the dimer bosons. The former is whether the spin-1

makes the magnetic states or the nonmagnetic, quadrupolar states. In the latter aspect,

the internal degrees of freedom given as

qi =
1

2
(si1 − si2) , pi = si1 × si2 , (1.15)

are the order parameters. We adopt this classification in the present thesis.

Yokoyama and Hotta studied the ground states of two-dimensional bilayer triangu-

lar lattice that consists of dimers antiferromagnetically coupled spin-1/2’s [86]. They

mapped the spin dimer model onto the spin-1 hard-core boson model in a way similar

to Ref. [84], and examined the hard-core boson model through the instability analysis

and the numerical diagonalization. They showed that two spin nematic ordered phases,

the three-sublattice antiferroquadrupolar order where the triplet bosons fully occupy the

dimers, and the quadrupolar order with kagome structure, are realized by introducing the

two-types of ring-exchange interactions between two neighboring dimers (Fig. 1.11). In

contrast to the previous cases realizing the ferroquadrupolar spin nematic phase next to

the ferromagnetic phase, the antiferroquadrupolar spin nemtatic phase appears next to the

singlet phase and not related to the ferromagnetic or magnetically polarized phases here.

These phases appear because the ring exchange interaction that cyclically permutates the

inter-dimer spins in the cross geometry, denoted as KT in Fig. 1.11(a), is transformed

to the strong biquadratic interaction between the two spin-1’s occupying the neighboring
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(a) (b)

Figure 1.11: (a) Spin-1/2 dimer triangular lattice forming a bilayer. (b) Phase diagram
on the plane of KR and KT fixing the parameters to be J = 1, J ′ = 2KR and J ′′ = 0.
Figures are taken from Ref. [86] (©2018 American Physical Society).

dimers carried by the triplet bosons. The mechanism of generating a large biquadratic

interaction by the ring exchange interactions is studied in Chap. 4.

The dimer system with ferromagnetically coupled spin-1/2’s shown schematically in

Fig. 1.12(a) was studied by Hikihara, Misawa and Momoi, using the mean-field, analytical,

and many-variables Monte Carlo approaches [87]. In their case, the strong ferromagnetic

interactions work inside the dimers, and as in the previous cases, spin nematic phase

appears next to the ferromagnetic phase. In this phase, they showed that the inter-dimer

Heisenberg interactions, J∥ and J×, are converted to the biquadratic interaction at the

second order perturbation from the strongly coupled limit of isolated ferromagnetic dimers

(fully triplet product state) even without the ring-exchange interactions.

In the context of where and how the quadrupolar moments emerge, it can be said

that these spin-dimer systems interpolate the picture of the spin-1 systems and the spin-

1/2 systems. In these spin-dimer systems, the quadrupolar moments are defined on the

strongly coupled dimer bond consisting of two spins-1/2’s, which resembles the non-dimer

spin-1/2 systems such as the ferromagnetic J1–J2 Heisenberg model on the square lattice,

where the quadrupolar moments are defined on-bond. On the other hand, if we regard the

dimer as a unit of the lattice, namely “site”, the quadrupolar moments are well-defined as

an on-“site”-operator, similarly to the spin-1 systems where the quadrupolar moments are

defined on each site. This quadrupolar picture is distinctively different from the non-dimer

spin-1/2 systems, where the spin-1/2 on each site can contribute to the several quadrupolar

moments on different bonds to which it is connected, namely, the quadrupolar moments

are not spatially distinguished or well-separated.
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(a) (b)

(c)

Figure 1.12: (a) Two-dimensional spin-1/2 ferromagnetic (Jd < 0) dimer lattice forming a
bilayer. (b), (c) Results of many-variables Monte Carlo calculations on the square lattice
for Jd = −8, J∥ = −1 and J4 = 0. (b) J× dependence of the energy densities of the
ferromagnetic (FM), ferroquadrupolar spin nematic (SNf), and C-type antiferromagnetic
(AFM) phases. (c) J× dependence of the squared values of the local total-spin moment,
T 2, and those of the normalized quadrupolar moment, 3Q2/4. Figures are taken from
Ref. [87] (©2019 American Physical Society).
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1.5 Developments of the experimental probes toward detec-

tion of the spin nematic phases

The spin nematics are one of the “hidden” orders since they are often invisible to local

magnetic probes like neutron scattering or magnetic resonances. In fact, the nematic

order parameter does not couple directly to the magnetic field so that it only shows

featureless paramagnetic-like responses to the static magnetic field. For these reasons,

most of the studies so far have focused on the dynamical properties, such as nuclear

magnetic resonance, inelastic neutron scattering, or the electron spin resonances. Here,

we introduce some of the theoretical proposals and the experimental reports related to

spin nematics.

Nuclear magnetic resonances

Sato, Momoi, and Furusaki proposed that the relaxation rate in nuclear magnetic res-

onances (NMR), 1/T1, can capture the quasi-long-range multipolar correlation of the

Tomonaga–Luttinger liquid (TLL) phase [88]. From the effective field theory, they found

that the temperature dependences of 1/T1 in a magnetic field differs between the standard

antiferromagnetic TLL phase and the multipolar TLL phase. For the former they find

1/T1 ∼ T 2K−1 + T 1/(2K)−1, where K is the TLL parameter, and regardless of the value of

K, 1/T1 diverges when T → 0. By contrast, in the latter phase, the spin-1/2 ferromagnetic

J1–J2 chain shows 1/T1 ∼ T 2K−1, and in a high-field region with 1/2 < K it decays as the

temperature is lowered. They also calculated the dynamical spin structure factors in the

p-th multipolar phase, i.e. p-magnon bound state 13, at zero-temperature. They found

that the gapless modes which mainly contribute to the longitudinal component, Szz(k, ω),

appear at k = ±π (1− 2M) /p, where M is the magnetization, and the transverse compo-

nent, S+−(k, ω), is gapped. This is in sharp contrast to the antiferromagnetic TLL phase,

where S+−(k, ω) is gapless.

Sato, Hikihara, and Momoi investigated the magnetic field and temperature depen-

dences of 1/T1 in the quadrupolar TLL phase on the ferromagnetic J1–J2 chain [89].

They derived the analytical formula of 1/T1 at finite-temperature by the field-theoretical

approach, which includes some temperature-independent parameters. They evaluated

the values of those parameters from the numerical calculations at zero temperature, and

obtained the temperature dependence of 1/T1 in an explicit form, showing that in the

quadrupolar TLL phase 1/T1 nonmonotonically varies with field at low-temperature; it

first decreases since the TLL parameter increases and then increases near the saturation

field as the TLL velocity approaches zero. They performed a similar calculation in the

octupolar TLL phase in the same model [90].

Smerald and Shannon developed the continuum theory of the 1/T1 focusing on the

quadrupolar fluctuations [91]. They showed that the sharp but non-divergent cusp ap-

pears in the temperature dependence of the 1/T1 at the partially-polarized paramagnetic–

antiferroquadrupolar phase transition, which is different from the divergent behavior of

1/T1 at the antiferromagnetic phase transition.

13For example, p = 2 for the quadrupolar phase, where two magnons are bound.
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Inelastic neutron scattering

To understand the spin nematics from the excitation spectrum, Smerald and coworkers

focused on the inelastic neutron scattering [92, 93]. They developed the continuum field

theory, and calculated the anticipated inelastic neutron scattering spectra in the spin

nematic phases.

Electron spin resonances

Furuya proposed that the electron spin resonance (ESR) can be a useful tool for detecting

the quadrupolar TLL phase in the one-dimensional frustrated ferromagnetic chain [94]. He

disclosed how the linewidth of the ESR spectra depends on the magnetic-field-angle θ; in

the usual TLL phase with quasi-long range antiferromagnetic order, the linewidth varies

with the period of π, while in the quadrupolar TLL phase the period of π/2 is observed.

Furuya and Momoi extended the approach in Ref. [94] to the two-dimensional models,

and showed that the ferroquadrupolar long-range order can be detected by the frequency

shift of the electron paramagnetic resonance (EPR) peak in the ESR spectrum [95]. For

the antiferroquadrupolar long-range ordered case, the frequency shift is no longer useful,

but it can be captured instead by the additional peaks to the EPR peak, which originate

from the excitations of the bounded two-magnon and the single magnon with the finite

wave-vector.

Magnetocaloric effects

Schmidt, Thalmeier, and Shannon studied the magnetocaloric effect on the ferromagnetic

J1–J2 Heisenberg model on the square lattice [96]. They showed that between the canted

antiferromagnetic phase and the ferromagnetic phase, there is another phase which is

characterized by the two-magnon instability, which is consistent with the previous proposal

on the spin nematic order on the model [51]. They found that the magnetocaloric effect is

enhanced near the saturation field due to the large degeneracy in low-energy excitations,

which is a characteristic of the frustrated system, and predicted that the sign of the

magnetocaloric effect changes from positive to negative at the subcritical field when the

system is magnetically ordered.

Other recent proposals

Michaud, Vernay, and Mila developed the theoretical framework of inelastic light scattering

in spin-1 magnets using the two-orbital Hubbard model [97], and proposed that the Raman

scattering can be utilized for tracing a quadrupolar order.

Sato and Morisaku proposed that the laser or electromagnetic waves have the po-

tential to detect the spin nematic order [98]. They showed that the two-magnon bound

state is excited through the two-photon absorption process by the strong THz laser. The

magnon pair carries the angular momentum 2ℏ, and in the excitation spectrum, they can

be distinguished from the single-magnon, whose excitations occur through the one-photon

absorption process with angular momentum ℏ.
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(a) (b)

Figure 1.13: Results of the 51V NMR measurements of LiCuVO4 at T = 1.3 K in various
magnetic fields of (a) H ∥ c and (b) H ∥ b, where the peak intensity is normalized. The
black triangles denote the peak positions of the NMR spectra, which indicates that the
peak moves towards the fully-polarized state. The NMR spectra are differently colored on
the basis of the magnetic properties; gray, light red, and blue regions correspond to the
spin-density wave, spin nematic, and fully-polarized states, respectively. The region where
the internal local magnetic field, Hint, is changed by a magnetic field but its distribution is
unchanged is sandwiched by the dash-dotted red lines. Figures are taken from Ref. [101]
(©2017 American Physical Society).

1.6 Experimental proposals

Candidate materials which realize the spin-nematic phase have been proposed, most of

which have J1–J2 chain or J1–J2 square lattice structures with J1 < 0 and J2 > 0.

Examples of the former are LiCuVO4 [99–101], NaCuMoO4(OH) [102], A2Cu2Mo3O12

(A = Rb,Cs) [103, 104], and PbCuSO4(OH)2 [105, 106], and those of the lat-

ter is (CuCl)LaNb2O7 [57], Cu3V2O7(OH)2 · 2H2O [107, 108], AA′VO(PO4)2 (AA′ =

Pb2,BaCd,BaZn, SrZn) [56, 109, 110]. Below, we pick up three representative examples

whose possibility of the spin nematic phases has been intensively investigated.

LiCuVO4

One of the first candidate materials with spin nematic phase is LiCuVO4. In LiCuVO4,

Cu2+-ions carry the spin-1/2, and form the quasi-one-dimensional J1–J2 chain structure

with ferromagnetic J1 = −1.6 meV, antiferromagnetic J2 = 3.8 meV, and ferromagnetic

interchain J = −0.4 meV interactions [99]. Svistov et al. measured the magnetization at

low-temperature in a high field and observed another phase between the phase with the

collinear structure of modulated spins at intermediate field region and the fully-polarized

phase in a saturation field [100]. Combining the preceding theoretical proposal of the

realization of the spin nematic phase in LiCuVO4 [68], they suggested the phase found is

the spin nematic phase. Orlova et al. investigated the magnetic properties in a high-field

using the 51V NMR and the magnetization measurements [101]. As shown in Fig.1.13,

they found the high-field region next to the saturated phase, where the width of the

NMR spectrum does not change, similarly to the fully-polarized ferromagnetic phase.
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(a) (b)

Figure 1.14: Results of the NMR measurements of Cu3V2O7(OH)2 · 2H2O. (a) NMR
spectra in various magnitudes of the magnetic field measured at 0.3–0.4 K. The magnetic
field is applied perpendicular to ab-plane. (b) Local spin polarization in various magnetic
fields. Figures are taken from Ref. [113] (©2017 American Physical Society),

They identified the region as the spin nematic phase because the spin nematic phase

has a homogeneous magnetization and no transverse magnetic order and thus the width

of the NMR lines is unchanged. A recent study on the magnetocaloric effect and the

magnetoacoustic measurement also indicated that the existence of the spin nematic phase

in a high field [111]. Hirobe et al. measured the spin Seebeck effect in a low-field region of

LiCuVO4, and found that the effect is suppressed as the magnetic field is increased, which

they ascribed to the development of magnon-pair correlation [112].

Cu3V2O7(OH)2 · 2H2O

A candidate of spin nematic material in two dimensions is volborthite

Cu3V2O7(OH)2 · 2H2O, which has spin-1/2 carried by Cu2+. The material takes

the deformed kagome lattice structure, and there are two types of Cu2+-ions whose local

environments are different [107, 108]. It was proposed later that this system should

be understood as the coupled frustrated chains, where ferromagnetic J1–J2 Heisenberg

chains are connected by the antiferromagnetic Heisenberg interactions, rather than the

kagome lattice with spatial anisotropy [115]. This is because the density functional

theory calculation shows that Cu2+-ions in different environments host different orbitals,

3d3z2−r2 and 3dx2−y2 , respectively. However, this type of orbital orderings is unlikely to

occur; the succeeding experiment showed that all Cu ions are in the dx2−y2 orbital at

low-temperature [116]. In addition, there is an experimental ambiguity in that a wide

1/3-plateau observed at 28 T ≲ B ≲ 74 T at 1.4 K for the single crystal [117] was

not observed for the polycrystalline samples [118, 119], and thus further investigation

on the description of this material was needed. The coupled frustrated chain model

may not properly explain all these issues. A more recent study examined the material
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Figure 1.15: Results of the magnetocaloric effect measurements of Cu3V2O7(OH)2 · 2H2O.
Figure is taken from Ref. [114] (©2019 Y. Kohama, H. Ishikawa, A. Matsuo, K.
Kindo, N. Shannon, and Z. Hiroi, under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND 4.0)).
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by the density functional theory based on the structural data of the single crystal and

proposed that Cu3V2O7(OH)2 · 2H2O in a low field should be regarded as the coupled

trimers rather than as the coupled frustrated chains [120]. There, each trimer takes

total-S = 1/2 state, and the trimers form the (effective) spin-1/2 square lattice which

has the nearest-neighbor ferromagnetic Heisenberg interactions and two kinds of next-

nearest-neighbor antiferromagnetic Heisenberg interactions as the dominant couplings.

Based on the analysis of the coupled trimer model, the absence of the 1/3-plateau in the

powder samples was explained, and the existence of the spin nematic phase just below

the 1/3-plateau was suggested, which was naively expected in Ref. [117]. Yoshida et al.

performed the 51V NMR measurement [113] (see Fig. 1.14). They observed in the vicinity

of the 1/3-plateau region the NMR spectrum similar to the one inside the plateau, which

implies the spin nematic phase, as was seen in LiCuVO4 [101]. They also found that

the g-factor estimated in the plateau region takes about two or three times larger values

than that in the paramagnetic region [121], which indicates the bound multimagnon

excitations. Kohama and coworkers measured the magnetocaloric effect and the specific

heat in a magnetic field and gave a clue that there is a thermodynamic phase just before

reaching the 1/3-plateau phase [114] (see Fig. 1.15). Combining those thermodynamic

results with the previous NMR measurements [113, 117], they indicated that the phase

next to the 1/3-plateau phase is the spin nematic phase.

BaCdVO(PO4)2

Another candidate realizing the spin nematic phase on the spin-1/2 J1–J2 square lat-

tice is BaCdVO(PO4)2. The series of vanadium phosphates, AA′VO(PO4)2, where V
4+

ion carries spin-1/2, are the examples of the spin-1/2 J1–J2 square lattice compound

with ferromagnetic J1 and antiferromagnetic J2 interactions [109, 110]. Among them,

BaCdVO(PO4)2 has a rather small J2 interaction. The crystal structure of this material

was studied by Meyer and the collaborators [124]. The magnetic susceptibility and the

specific heat were investigated by Nath et al. using the polycrystalline sample [109], and

the interaction parameters are estimated as J1 ≃ −3.6 K and J2 ≃ 3.2 K. The magnetic

and thermodynamic investigations using the single-crystal sample was performed by Po-

varov and coworkers [122]. Although BaCdVO(PO4)2 undergoes the antiferromagnetic

phase transition at TN ≃ 1 K without magnetic field [109], they pointed out that be-

low 0.15 K an additional quantum phase to the antiferromagnetic phase appear near the

saturation field from the measurement of the specific heat and magnetocaloric effect, im-

plying the existence of the high-field spin nematic phase (see Fig. 1.16(a)). Skoulatos et al.

performed the neutron scattering and the ac magnetic susceptibility measurements [123].

Both measurements suggested that the spin moments are mostly fluctuating in a zero

field, and the unpolarized components of the spin moments fluctuate from 3.8 T to 4.5 T

which is the saturation field, which suggests the realization of the spin nematic phase (see

Fig. 1.16(b)).

Ba3MRu2O9

Although it has not been discussed in the context of spin nematics, we introduce

Ba3MRu2O9 with divalent cation M , since it motivates us to study the spin-1 dimer



24 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.16: Experimental results of BaCdVO(PO4)2. (a) (left) Temperature dependence
of the specific heat in various magnetic fields. (right) Magnetic field dependence of the
specific heat at a variety of temperatures. The arrows in µ0H = 4.5 T data in the left
column and in T = 0.1 K data in the right column express the additional contribution
to the specific heat, which indicates the existence of the quantum phase in a high-field at
low-temperature. (b) Temperature-magnetic field phase diagram. Figures (a) and (b) are
taken from Refs. [122] (©2019 American Physical Society) and [123] (©2019 American
Physical Society), respectively.
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(a) (b)

(c) (d)

Figure 1.17: Experimental data of Ba3MRu2O9. (a) Crystal structure. (b) Temperature
dependence of the specific heat and resistivity of M = Zn. (c) Magnetic susceptibilities
of M = Zn1−xCox (left) and M = Zn1−yCay (right). (d) Néel transition temperature
with respect to the length of a-axis, or the inter-dimer distance. AF, QSL, SG represent
the Néel-antiferromagnetic, (possible) quantum spin-liquid, and spin gapped phases, re-
spectively. Figures are reproduced with permission from Ref. [125] (©2017 The Physical
Society of Japan).
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system in Chapter 3. In a series of Ba3MRu2O9 compounds [125–132], where M =

Ca,Co,Ni,Cu,Zn, Sr, two RuO6 octahedra form a dimer by face-sharing, and the dimers

construct a two-dimensional triangular lattice as shown in Fig. 1.17(a). Along the inter-

layer (c-axis) direction, the Ru5+ ions and M ions align as Ru–Ru–M–Ru–Ru–· · · with

the dimerized Ru ions on top of each other and M ions out of face, whereas the inter-layer

interactions between the Ru-dimer layer and theM layer do not largely affect the magnetic

properties. Actually, whenM is the magnetic ion such as Co, Ni, and Cu, the conductivity

measurements suggested that the electrons can move in two-dimensional plane formed by

Ru dimers [129] and the M ions are isolated.

In this series of materials, intriguing magnetic ground states have been reported ex-

perimentally. When M = Zn, the specific heat has no anomaly down to 2 K, and the

magnetic susceptibility takes featureless structure down to 37 mK, which is much lower

temperature than the energy of the intra-dimer interactions J ∼ 150–200 K [125, 126]

(see Figs. 1.17(b), 1.17(c)). For the M = Co,Ni, and Cu compounds, the inter-dimer

distances, the a-axis lengths, are shorter than that of M = Zn, and the antiferromagnetic

phase transitions at TN ∼ 100 K are observed [128, 130], which are determined mainly

by the inter-dimer interactions and do not largely change depending on the magnetic

ions [130]. In the M = Ca or Sr compounds, the inter-dimer distances are longer than

that of M = Zn, and the typical nonmagnetic singlet state is identified [127]. The mag-

netic ground states in various kinds of M are summarized in Fig. 1.17(d). The difference

of the magnetic properties seems to be only in the difference of inter-dimer distances; the

nontrivial nonmagnetic phase in M = Zn with intermediate inter-dimer distance appears

between the antiferromagnetic phase and the gapped singlet phase.
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1.7 Motivations and purpose

Although the physics of the spin nematics itself has been well established, there are re-

maining issues. First, despite many theoretical proposals and experimental efforts, the

observation of the spin nematic order has been challenging, because the quadrupole mo-

ment does not directly couple to the magnetic field unlike the magnetic orders. Second,

the spin nematic order is also quite elusive in theoretical models in reality. In spin-1

systems, a large biquadratic interaction is needed to suppress the magnetic order and

to enhance the quadrupolar order. However, the biquadratic interaction is often much

smaller than the Heisenberg interaction; for example, in the Mott insulators where the

quantum magnets are realized, the typical biquadratic interaction is generated from the

higher order perturbation processes from the strong coupling limit, while the Heisenberg

interaction is from the lower order processes. Therefore, the realization of the materials

with large biquadratic interactions is not easy in this case. In spin-1/2 systems, more real-

istic situations than those in the spin-1 systems have been proposed such as the frustrated

J1–J2 models with ferromagnetic J1 and antiferromagnetic J2 interactions. However, it is

not so frequent that ferromagnetic interactions are dominant in the materials. Although

some candidate materials have been proposed as we introduced in this Chapter, most of

them focus on the case at high fields where the magnetization almost saturates. This kind

of experiment is possible only for materials with small magnetic interactions because the

saturation field scales with J . From the theoretical point of view, the spin-1 nematics and

the spin-1/2-based nematics have been separately discussed in most of the cases since they

do not share the common description of the quadrupolar order parameters when defined in

terms of the original spin-1 or spin-1/2; the canonical description of the on-site quadrupo-

lar order in spin-1 systems and the conventional two-magnon bound state description in

spin-1/2 systems are seemingly disconnected.

In the present thesis, we examine these issues from several different aspects. We start

from the canonical spin-1 bilinear-biquadratic Hamiltonian and disclose the characteristic

thermodynamic properties of the ferroquadrupolar spin nematic phase, which was over-

looked in the previous studies on spin-1 nematics. We then construct the spin-dimer model

where each dimer consists of a pair of spin-1’s interacting antiferromagnetically to under-

stand the properties of Ba3MRu2O9. Another reason why we choose such a dimer model

is that they can become a real platform for spin nematics or quadrupolar orderings; we

find that the standard antiferromagnetic interactions might be useful to generate a variety

of phases without the aid of the ferromagnetic interactions, explicit biquadratic interac-

tions, or the high magnetic field. The large internal degrees of freedom of dimers shall

play a crucial role. The dimer description helps us to clarify how the effective interactions

that can play a similar role as the spin-1 biquadratic interaction can develop. Based on

this consideration, we finally study the conventional high field two-magnon bound state

based on the dimer description, with the perspective that the two-magnon bound state

description of spin nematics in the spin-1/2 system and the canonical spin-1 nematics can

be unified based on the language of dimers.
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Organization of this thesis

This thesis is organized as follows. In Chapter 2, we study the magnetic field effect on the

thermodynamic properties of the spin-1 nematics using the spin-1 BLBQ model. Perform-

ing the numerical simulation combining the semiclassical approximation and the classical

Monte Carlo method, we find the small field-reentrant behavior of the ferroquadrupolar

phase transition; the transition temperature from the paramagnetic phase to the ferro-

quadrupolar phase once increases in an applied magnetic field, and decreases in a larger

magnetic field. We attribute this reentrant behavior to the entropic effect, which origi-

nates from the different robustness against the magnetic field between the paramagnetic

and ferroquadrupolar phases.

We study the ground states of the spin-1 dimer triangular lattice forming a bilayer in

Chapter 3. We show that the low-energy manifold of the system can be described by the

spin-1 hard-core boson model, where the triplet and singlet dimers are regarded as the

boson with spin-1 and the vacuum, respectively. Performing the numerical diagonalization,

we find the multiple quadrupolar phases consisting of triplet dimers, which we classify by

the internal degrees of freedom of dimers. We discuss the possible correspondence of the

spin-1 dimer system to Ba3MRu2O9, where the nontrivial nonmagnetic ground states are

found next to the singlet phase.

In Chapter 4, we evaluate the spin-1 Heisenberg and biquadratic interactions from a

microscopic view. Performing the perturbation calculations in the strong coupling region,

we show that the biquadratic interaction can take a large value in the spin dimer structure.

We describe the spin nematic phase in spin-1/2 systems in a high magnetic field us-

ing the dimer-basis in Chapter 5. We investigate the two-leg ladder system as a one-

dimensional realization of the dimer, and discuss how the two-magnon bound state is

explained in terms of the dimers.

Chapter 6 is devoted to the summary of this thesis.
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Chapter 2

Magnetic field effect on the

finite-temperature properties of

spin-1 nematic phases

In this Chapter, we discuss the magnetic field effects on the finite-temperature properties

of the spin nematic phases. Using the spin-1 bilinear-biquadratic model, a canonical model

for discussing the spin nematics, we numerically examine how the finite-temperature prop-

erties of the spin nematic phase change by a magnetic field. We find a slight field-reentrant

behavior in the ferroquadrupolar phase transition, namely, the transition temperature

from the high-temperature paramagnetic phase to the ferro-nematic phase first increases

by a small magnetic field, and then decreases by a larger magnetic field, which can be

identified by the shift of the peak position of the specific heat. The mechanism of this

field-reentrant behavior is the entropy effect. When a small magnetic field is applied, the

entropy of the paramagnetic phase at high temperature region decreases, whereas that

of the ferroquadrupolar phase is kept by changing the form of the quadrupolar moment.

This reentrant behavior will give a fingerprint of the ferroquadrupolar phases, whereas it

is not seen in the antiferroquadrupolar phase transition.

2.1 Model and Method

2.1.1 Model

We consider the spin-1 bilinear-biquadratic (BLBQ) model on the triangular and square

lattices in a magnetic field,

H =
∑
⟨i,j⟩

[
JŜi · Ŝj +K

(
Ŝi · Ŝj

)2]
− h

N∑
i=1

Ŝz
i . (2.1)

Here, Ŝi is the spin-1 operator of site-i 1. The spin-1 bilinear (Heisenberg) and biquadratic

interactions, and the magnetic field along the z-axis are denoted as J , K, and h, respec-

1In this Chapter, we explicitly use •̂ to express the quantum mechanical operators unlike Chapter 3,
because we perform the one-body approximation, and quantum mechanical operators and the expectation
values calculated by the 1-body approximated wave-functions should be distinguished.
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PROPERTIES OF SPIN-1 NEMATIC PHASES

tively 2, with J and K normalized as J2 + K2 = 1. The summation is taken over the

nearest-neighbor pairs of sites, ⟨i, j⟩, and the number of sites is denoted as N .

Hereafter, we treat this system in a one-body semiclassical picture, and thus we briefly

review the semiclassical ground states of the spin-1 BLBQ model (see also Chap. 1). For

the triangular lattice, the ground state of the spin-1 BLBQ model has the ferroquadrupolar

order when K/J < tan−1(−2) with 0 < J , or K < J ≤ 0 [17, 19]. For the square lattice,

the ferroquadrupolar phase is realized for K < J < 0 [30]. These variational results are

qualitatively in good agreement with the results by the fully quantum approaches. When

the external magnetic field is applied parallel to the z-axis, the ferroquadrupolar phase

starts to have a magnetic moment in the z-direction, whereas the quadrupolar moment in

the xy-plane remains robust. The ferroquadrupolar phase is replaced by the ferromagnetic

phase with saturated magnetic moment at h = z(J − K), where z is the coordination

number 3.

2.1.2 Semiclassical SU(3) approximation with Monte Carlo simulation

We here adopt the semiclassical SU(3) approximation with classical Monte Carlo simula-

tion (sSU(3)-MC), proposed by Stoudenmire, Trebst, and Balents [49]. This method is the

extension of the product-state variational approach given successfully for the description

of the spin nematic ground state to finite-temperature.

Below we explain the procedure of the sSU(3)-MC method following Ref. [49]. First,

we approximate the many-body wave function, |Ψ⟩, by the product-state of the one-body

state in each site, {|ψi⟩}i=1,··· ,N , as

|Ψ⟩ =
N⊗
i=1

|ψi⟩ , |ψi⟩ =
∑

α=x,y,z

di,α |α⟩ . (2.2)

Here |α⟩ (α = x, y, z) is the time-reversal invariant basis states of spin-1 given by Eq. (1.5),

and di,α is the complex coefficients normalized as
∑

α=x,y,z |di,α|
2 = 1. Using this ap-

proximate many-body wave function (Eq. (2.2)), the expectation values of the energy is

calculated as

EsSU(3) = ⟨Ψ|H|Ψ⟩

=
∑
⟨i,j⟩

[
J |d∗

i · dj |2 + (K − J) |di · dj |2 + 1
]
+ ih

N∑
i=1

(d∗
i × di)

z , (2.3)

where di = t
(
di,x di,y di,z

)
. Then, the set of the coefficients {di,α}i=1,··· ,N is up-

dated by the typical classical Monte Carlo samplings following the canonical ensemble of

exp(−βEsSU(3)). Here β is the inverse temperature; β = 1/(kBT ), where kB is the Boltz-

mann constant 4. Details of the classical Monte Carlo simulations are written in Sec. 2.1.3.

2In this Chapter, we denote the biquadratic interaction not as B but as K, because B might be
confused with the magnetic field.

3For the square and triangular lattices, z = 4 and 6, respectively.
4Hereafter we set kB = 1.
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The expectation value of the spin moment, Si, can be expressed using di as

Si =
〈
ψi

∣∣∣ Ŝi

∣∣∣ψi

〉
= −i

d∗i,ydi,z − d∗i,zdi,y
d∗i,zdi,x − d∗i,xdi,z
d∗i,xdi,y − d∗i,ydi,x

 . (2.4)

As given in Chap. 1, the quadrupolar operator is defined as

Q̂αβ
i = Ŝα

i Ŝ
β
i + Ŝβ

i Ŝ
α
i − 2

3
S (S + 1) δαβ , (2.5)

and its vector representation is given as

Q̂i =


Q̂x2−y2

i

Q̂3z2−r2

i

Q̂xy
i

Q̂yz
i

Q̂zx
i

 =



(
Ŝx
i

)2
−
(
Ŝy
i

)2
1√
3

[
3
(
Ŝz
i

)2
− S(S + 1)

]
Ŝx
i Ŝ

y
i + Ŝy

i Ŝ
x
i

Ŝy
i Ŝ

z
i + Ŝz

i Ŝ
y
i

Ŝz
i Ŝ

x
i + Ŝx

i Ŝ
z
i


. (2.6)

Then, the expectation value of the quadrupolar moment is calculated as

Qi =
〈
ψi

∣∣∣ Q̂i

∣∣∣ψi

〉
= −



|di,x|2 − |di,y|2
1√
3

(
2 |di,z|2 − |di,x|2 − |di,y|2

)
(
d∗i,xdi,y + d∗i,ydi,x

)(
d∗i,ydi,z + d∗i,zdi,y

)(
d∗i,zdi,x + d∗i,xdi,z

)


. (2.7)

We remark two points on this sSU(3)-MC method. Firstly, this method is equivalent

to the approximation leaving the leading terms of the cumulant expansion of the partition

function [49];

Z = Tre−βH

=

∫ N∏
i=1

dΩdi ⟨Ψ|e−βH|Ψ⟩

≈
∫ N∏

i=1

dΩdie
−β⟨Ψ|H|Ψ⟩

=

∫ N∏
i=1

dΩdie
−βEsSU(3) , (2.8)

where

dΩdi = (2π)2
∏

α=x,y,z

d (Re di,α) d (Im di,α) δ

( ∑
α=x,y,z

|di,α|2 − 1

)
, (2.9)
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where δ(x) is the Dirac’s delta. This may imply that the sSU(3)-MC is merely the mean-

field treatment. However, this method has an advantage over both of the usual mean-

field calculations at finite temperature and the classical approximation on spin moments.

The usual mean-field calculations naturally assume the spatially uniform orientation of

the expectation values of spin moments, while the sSU(3)-MC allows the difference of

the wave function |ψi⟩ or di among all sites within the ensemble averages, which can

incorporate the spatial fluctuation effect. Also, the sSU(3)-MC can take in some amount

of the quantum fluctuation effect other than the quantum condensation effect. In the MC

sampling process, the stochastic MC average can take the inter-site quantum entanglement

into account. In particular, when the long-range order of the ground state is well described

by the product state of the unit which is locally entangled, which also applies to the present

case [17, 19, 30], it is impossible to distinguish the thermal and quantum fluctuations, and

this sSU(3)-MC treatment will give a good approximation. Similarly, the sSU(3)-MC has

an advantage over the simple classical approximation, where the spins are treated as a

unit vector [133]. The sSU(3)-MC correctly describes the quantum mechanical effect of

the biquadratic interaction
(
Ŝi · Ŝj

)2
which suppresses the spin moments and favors the

quadrupolar moments, while the biquadratic term classically treated favors the collinear

ordering of spins [49], which is different from the quantum quadrupolar order.

Secondly, through the sSU(3)-MC approximation, we formally simulate the classical

system with complex unit vectors (Eq. (2.3)), and we do not include the quantum con-

densation effect at low-temperature. In fact, as we see in Sec. 2.2.2, the present descrip-

tion fails to reproduce the lowest temperature properties of the original model; the true

quantum low-energy excitation is dominated by the three kinds of the energy branches

represented by the three species of Schwinger bosons, which leads to the T 2-contribution

to the specific heat [17, 19, 33, 35]. However, the excitations described by our approach

give the constant specific heat originating from the law of equipartition of energy from the

four classical degrees of freedom. Despite these inconsistencies, we believe that our theory

captures the behavior of the model at around the phase transition point since it is already

far away from T = 0; there, the thermal fluctuation will mask these quantum condensation

effect and instead the collective behavior of the spins and quadrupoles becomes essential.

Actually, the previous quantum Monte Carlo simulation indicates that the temperature

dependence of the specific heat is off the T 2-behavior around T ∼ Tc/2 [48].

2.1.3 Basics of the Markov chain Monte Carlo simulations

Here we briefly review the basic concept of the Markov chain Monte Carlo simulations

for the calculation of the physical quantities of the (classical) many-body systems at fi-

nite temperature. To write this section (particularly Sec. 2.1.3.1), we partly referred to

Refs. [134–136].



2.1. MODEL AND METHOD 33

2.1.3.1 Markov-chain Monte Carlo sampling

The finite-temperature expectation values of the physical operator, O, is given as 5

⟨O⟩ =
dimH∑
n=1

pn ⟨Ψn|O|Ψn⟩ , pn =
e−βEn

Z
, Z =

∑
n

e−βEn , (2.10)

where dimH is the dimension of the Hilbert space, Z is the partition function, and En

and |Ψn⟩ are the eigenenergy and eigenstate of n-th state, respectively 6. However, in

the many-body systems which we want to deal with, dimH exponentially increases to

the number of sites, and practically it is too difficult to perform the above calculation of

the expectation values for large systems. Therefore, we take the Monte Carlo sampling

following the canonical ensemble e−βEn as

⟨O⟩ ≃ 1

NMC

NMC∑
nMC=1

OnMC , (2.11)

where OnMC the physical quantity of nMC-th state generated following the canonical en-

semble, and NMC is the number of the generated states.

To properly generate the states in the Monte Carlo sampling following the canonical

ensemble, the Markov process, where the transition probability to the new state is de-

termined only by the present state, is utilized, which is called the Markov-chain Monte

Carlo (MCMC) method [137]. In the MCMC process, regardless of the initial state, the

distribution converges to the stationary (canonical) distribution if the samplings satisfy

the following conditions 7;

• Ergodicity

In the Markov process, each state can be changed into all the other states by the

finite number of times of transition processes.

• Balance condition

The following equation, i.e., balance condition, should hold;∑
n′ ̸=n

(pnwn→n′ − pn′wn′→n) = 0, (2.12)

where wn→n′ is the transition probability from the n-th state to the n′-th state. This

is derived from the Master equation for the stationary distributions.

Practically, the detailed balance condition,

pnwn→n′ = pn′wn′→n, ∀n, n′ (2.13)

5For simplicity, here we consider the system with the discrete variables. When one consider the system
with the continuous variables x, one should replace the summation

∑
n by the integral

∫
dx appropriately.

6As we only consider the classical systems here, all operators can be treated as c-number.
7To be more precise, the aperiodicity should also be satisfied, but this condition can be included into

the ergodicity conditions.
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is used instead of the balance condition (Eq. (2.12)). Since it assumes that all of the

summands in the balance condition are zero, the detailed balance condition is a suffi-

cient condition of the balance condition 8. To achieve the detailed balance condition, the

Metropolis method 9 [137],

wn→n′ = min
{
1, e−β∆E

}
, (2.14)

or the heat bath method,

wn→n′ =
e−β∆E

1 + e−β∆E
, (2.15)

where ∆E = En′ − En, are typically used 10.

The susceptibilities are calculated as follows; the specific heat, C(T ), is given as 11

C(T ) =
∂

∂T
⟨E⟩ = − ∂β

∂T

∂

∂β

(
∂

∂β
lnZ

)
=

⟨E2⟩ − ⟨E⟩2

kBT 2
, (2.16)

and the magnetic susceptibility is calculated as

χ(T ) =
∂

∂h
⟨Sz⟩ = β

∂2

∂(βh)2
lnZ =

〈
(Sz)2

〉
− ⟨Sz⟩2

kBT
. (2.17)

We also calculate the susceptibility of α-component of spin separately as

χα(T ) =

〈
(Sα)2

〉
− ⟨Sα⟩2

kBT
. (2.18)

where Sα is the averaged value of the α-component of the spin,

Sα =
1

N

N∑
i=1

Sα
i . (2.19)

2.1.3.2 Exchange Monte Carlo method

To accelerate the convergence to the equilibrium in the MCMC process, we utilize the

exchange Monte Carlo method [139]. Exchange MC is one of the extended ensemble

methods and originally introduced to resolve the problem in the spin glass systems where

8Thus, the detailed balance condition sometimes makes the MC sampling slower. In fact, acceleration
of the Monte Carlo samplings by breaking the detailed balance conditions have also been proposed [138].

9In the Metropolis method, a new configuration with lower energy than the present configuration is
always accepted, and one with higher energy is accepted with probability e−β∆E .

10In our explanation here, one may consider that we assume that the new states are always randomly
selected, and the Metropolis method and the heat bath method only differ in the transition probability.
However, to be more precise, the difference between the Metropolis method and the heat bath method is
not simply in the choice of the transition probability. The Monte Carlo update consists of two processes,
the proposal and the acceptance of the new states. In the Metropolis method, the new states are (uniform)
randomly proposed, and whether one accepts or rejects those states are executed following the probability
of the distribution. By contrast, in the heat bath method, the new states are proposed following the
probability of the distribution, and the proposed states are always accepted.

11This is a kind of the fluctuation–response relation.
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the states generated in the MC simulations are frequently trapped in the metastable states

and do not reach the equilibrium states. In the exchange MC method, the exchanges of

the configurations among multiple replicas are incorporated into the MCMC process of

the usual update of the configurations.

Below we describe the procedure of the exchange MC method following Ref. [139].

We prepare M noninteracting replicas which share the common Hamiltonian. Then, the

partition function of the whole system consisting of M -replicas is given as

Ztot =

M∏
m=1

Zm, Zm =
∑
nm

e−βmEm,nm , (2.20)

where βm and Zm (m = 1–M) are the inverse temperature and partition function of

the m-th replica, respectively, and Em,nm is the energy of the nm-th state of the m-th

replica 12. When the information of the baths {β1, · · · , βM} is given, the probability of

finding the set of states {Em,nm , βm} is given as

P ({Em,nm , βm}) =
M∏

m=1

p(Em,nm , βm), p(Em,nm , βm) =
1

Zm
e−βmEm,nm . (2.21)

Exchanges of two states of the replicas m and m′ are performed following the detailed

balance conditions 13,

P (E1,n1 , β1
(1)

; · · · ;Em,nm , βm
(m)

; · · · ;Em′,nm′ , βm′

(m′)

; · · · ;EM,nM
, βM

(M)

)W (Em,nm , βm|Em′,nm′ , βm′)

= P (E1, β1
(1)

; · · · ;Em′,nm′ , βm
(m)

; · · · ;Em,nm , βm′

(m′)

; · · · ;EM,nM
, βM

(M)

)W (Em′,nm′ , βm|Em,nm , βm′),

(2.22)

whereW (Em,nm , βm|Em′,nm′ , βm′) is the probability of exchanging the nm-th state in m-th

replica and nm′-th state in m′-th replica, so the ratio of W (Em,nm , βm|Em′,nm′ , βm′) and

W (Em′,nm′ , βm|Em,nm , βm′) satisfies

W (Em,nm , βm|Em′ , βm′)

W (Em′,nm′ , βm|Em′,nm′ , βm)

=
P (E1,n1 , β1; · · · ;Em′,nm′ , βm; · · · ;Em,nm , βm′ ; · · · ;EM,nM

, βM )

P (E1,n1 , β1; · · · ;Em,nm , βm; · · · ;Em′,nm′ , βm′ ; · · · ;EM,nM
, βM )

=
e
−βmEm′,nm′−βm′Em,nm

e
−βmEm,nm−βm′Em′,nm′

= e−∆, (2.23)

12Although we distinguish the energies by the index m, Em,nm only depends on nm and is independent
of m, since all M noninteracting replicas share the common Hamiltonian.

13This construction does not satisfy the detailed balance conditions in each step in the exact meaning.
Nevertheless, this method is faster than the method exactly satisfying the detailed balance conditions Also,
when one regards two MCSs as one set of MCS, the detailed balance condition is again satisfied.
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where

∆ = (βm′ − βm)
(
Em,nm − Em′,nm′

)
. (2.24)

Therefore, to satisfy the detailed balance condition in the exchange of the replicas, we

should set the transition probability as

W (Em,nm , βm|Em′,nm′ , βm′) = min
{
1, e−∆

}
=

{
1 (∆ < 0)

e−∆ (0 ≤ ∆)
, (2.25)

if we apply the Metropolis update. The procedure of MCMC simulation with replica

exchange is summarized as follows;

1. Set initial configurations of each replica.

2. Local update in each replica independently and parallelly.

3. Exchange trials of configurations of two replicas following the detailed balance con-

ditions 14.

4. Go to 2.

2.2 Magnetic field effect on the finite-temperature proper-

ties of the ferroquadrupolar phase

We perform the sSU(3)-MC calculation, where each Monte Carlo step (MCS) consists of

the N -times single spin update by the Metropolis method and the succeeding replica ex-

change trials between neighboring two replicas by the Metropolis method. Starting with

independent initial configurations, we perform multiple runs (typically O(101), depending

on the system size) and calculate the averages by the jackknife resampling. Each run in-

cludes 106–107 MCS for the equilibration and the measurements of the physical quantities,

respectively. The intervals of the temperatures between replicas are set to be equal, and

the number of replicas is 30–50, which depends on the system size. The details on the

single spin update and the jackknife resampling are given in Appendix A.

2.2.1 Phase diagram and susceptibilities

We discuss the physical properties of the ferroquadrupolar phase at finite-temperature. In

Fig. 2.2(a), we show the phase diagram on the plane of T and h for the triangular lattice

with (J,K) = (0,−1), where the ground state is the ferroquadrupolar order [17, 19]. The

system size is L × L with L = 12–36 (see Fig. 2.1), and we take the periodic boundary

condition. The transition temperature, Tc, is determined by the peak position of the

specific heat. We show the temperature dependence of the specific heat C(T )/N for

various values of the magnetic field in Fig. 2.2(b). When a small magnetic field, h ≲ 1, is

14In the exchange trials, any pairs of replicas can be exchanged, but typically the neighboring replicas
are exchanged to increase the exchange probability. Actually, exchanges between the neighboring pairs are
performed in the original paper [139].
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Figure 2.1: Triangular lattice with L× L sites.

(a) (b)

Figure 2.2: Results of the sSU(3)-MC calculations in the spin-1 BLBQ model on the
triangular lattice with (J,K) = (0,−1). (a) Phase diagram on the plane of h and T .
Squares, circles, and triangles denote the temperatures where the specific heat have a
peak, which are estimated by the Gaussian kernel approximation in the L = 12, 24, and
36 samples, respectively. (b) Temperature dependence of the specific heat C/N for various
magnitudes of the magnetic field h. Open and filled symbols represent the results in the
L = 12 and 36 samples, respectively. Figures are taken from Ref. [1] (Copyright ©2020,
American Physical Society).
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Figure 2.3: Temperature dependence of the magnetic susceptibilities of (a) the perpendic-
ular and (b) parallel components in the spin-1 BLBQ model on the triangular lattice with
(J,K) = (0,−1) and various magnitudes of the magnetic field h. Open and filled symbols
denote the results in the L = 12 and 36 samples, respectively. The inset in (b) shows
the temperature dependence of the magnetization density in L = 12 samples. Figures are
taken from Ref. [1] (Copyright ©2020, American Physical Society).

applied, the peak of the specific heat moves to higher temperature, and then shifts toward

the lower temperature in a larger magnetic field. In Fig. 2.2(b), the results for L = 12

and 36 are shown together, showing that Tc becomes slightly lower and the peak intensity

becomes stronger as the system becomes larger. However, the system size dependence is

small.

In Figs. 2.3(a) and 2.3(b), we show the temperature dependence of the spin sus-

ceptibilities of the perpendicular and parallel components to the magnetic field, χ⊥ =

(χx(T ) + χy(T )) /2, and χz, respectively. We confirm that the susceptibility of the paral-

lel component, χz, starts to show a peak structure around Tc in an applied magnetic field,

which suggests that the magnetic moment parallel to the z-axis develops by a magnetic

field. By contrast, the susceptibility of the perpendicular component, χ⊥, is almost flat

and does not show a clear peak, while a tiny structure can be seen around Tc in a high field

region. We show the temperature dependence of the magnetization density, ⟨Sz⟩, in the

inset of Fig. 2.3(b). The magnetization density does not change much around the tran-

sition temperature, and that in the ferroquadrupolar phase is consistent with the known

result for the ground state, m = h/ [z (J −K)] = h/6 [17–19].

2.2.2 Entropic effect

2.2.2.1 Low-temperature properties

The semiclassical SU(3) Hamiltonian is formally a classical one which describes the inter-

actions between the complex unit vectors di which represents the one-body wave function

on site-i. Similarly to the case of the classical XY models [140, 141], the low-temperature
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thermodynamic quantities of the semiclassical SU(3) Hamiltonian can be evaluated by

starting from the ground states and considering the low-energy harmonic branches which

appears by taking the thermal fluctuation into consideration.

The complex d-vector on each site, di, can be separated into the real and imaginary

parts as di = ui + ivi, where ui,vi ∈ R3. ui and vi satisfy the normalization condition of

the d-vector, |ui|2 + |vi|2 = 1, and the overall phase can be fixed such that ui and vi are

always orthogonal, ui · vi = 0 [16–18]. For the ground states, regardless of the presence

or absence of the magnetic field, and the lattice geometry, ui and vi can be chosen to be

site-independent as ui = u0 and vi = v0
15, and are determined analytically. The lowest

energy excitation by the thermal fluctuation can be expressed by varying these vectors of

the ground states as

ui = u0 + δui, vi = v0 + δvi. (2.26)

Below we particularly discuss only the case where (J,K) = (0,−1) on the triangular lattice

without a magnetic field for simplicity, while we argue later that the results do not change

qualitatively even when the magnetic field and/or the bilinear (Heisenberg) terms. When

(J,K) = (0,−1), The ground state has the ferroquadrupolar order, and u0 and v0 can be

chosen as

u0 =

1

0

0

 , v0 = 0. (2.27)

Then, the above local constraints on site-i are rewritten as{
2δuxi + (δui)

2 + (δvi)
2 = 0 (normalization)

δvxi + δui · δvi = 0 (overall phase fixing)
. (2.28)

Then, the energy evaluated by the product state of the one-body wave functions can be

rewritten up to O(δ2) as

EsSU(3)

=−
∑
⟨i,j⟩

[
(ui · uj − vi · vj)

2 + (ui · vj + vi · uj)
2 + 1

]
=− zN +

∑
⟨i,j⟩

∑
α=y,z

[(
(δuαi )

2 + (δvαi )
2
)
+
((
δuαj

)2
+
(
δvαj
)2)− 2

(
δuαi δu

α
j − δvαi δv

α
j

)]
.

(2.29)

Here, the terms including δuxi and δvxi are dropped using the constraints. Performing the

Fourier transform given as

δuk =
1√
N

N∑
i=1

e−ik·riδui, δvk =
1√
N

N∑
i=1

e−ik·riδvi, (2.30)

15This also holds for the case with antiferroic orderings with multiple sublattices, where there are as
many numbers of u0 and v0 as the numbers of sublattices.
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the energy EsSU(3) can be diagonalized as

EsSU(3) = E0 +
∑
k

Ek, (2.31)

where

E0 = −zN, (2.32)

Ek =
∑
α=y,z

[
(−γk + z) δuαkδu

α
−k + (γk + z) δvαkδv

α
−k

]
, (2.33)

γk = 2

[
cos kx + cos

(
kx +

√
3ky

2

)
+ cos

(
kx −

√
3ky

2

)]
. (2.34)

Performing the Gaussian integral, the partition function is given as 16

Z ≃
∫

e−βEsSU(3)

∏
k

d(δuyk)d(δu
z
k)d(δv

y
k)d(δv

z
k) ≃ e−βE0

∏
k

[
π2

β2
(det Ek)−

1
2

]
, (2.35)

where

det Ek =


−γk + z

−γk + z

γk + z

γk + z

 . (2.36)

Then, the statistical mechanical average of the energy density, e(T, h = 0), is

e(T, h = 0) =
1

N

(
− ∂

∂β
lnZ

)
=
E0

N
+ 2kBT, (2.37)

and the specific heat in the low-temperature region, c(T, h = 0), is

c(T, h = 0) =
∂

∂T
e(T, h = 0) = 2kB. (2.38)

We have assumed so far the case h = 0 and J = 0 with a ferroquadrupolar ground state

on the triangular lattice. However, this result is nothing but a law of equipartition of

energy, so that only the number of low-energy modes is responsible for the results, and

the same conclusion on e(T, h) and c(T, h) holds even when the magnetic field h or the

Heisenberg interaction J are introduced as far as the ground states remain ordered, and

only the detailed forms of E0 and Ek are modified. The results do not depend on the

lattice geometry as far as it is in two-dimension, e.g., when we consider the same model

on the square lattice.

2.2.2.2 Calculation of the entropy

The sSU(3)-MC calculation we performed is given for 0.2 ≲ T . To evaluate the thermody-

namic entropy from the results of the calculation, we need to extrapolate these numerical

16Here, ≃ means that the difference of the constant multiplications is allowed.
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Figure 2.4: Temperature dependence of the energy density of the spin-1 BLBQ model on
the triangular lattice with (J,K) = (0,−1) in various values of the magnetic field in the
L = 24 samples. Symbols represent the results of the sSU(3)-simulations, and the lines at
lower temperature denote the energy densities evaluated by fitting the sSU(3)-MC results.
Figures are taken from Ref. [1] (Copyright ©2020, American Physical Society).

results down to zero temperature. Based on the estimation above, the energy in the

low-temperature region can be expressed as

e(T, h) = e(0, h) + 2kBT + α(h)T γ(h), (2.39)

where e(0, h) is the ground state energy of EsSU(3) given in Refs. [17, 19, 30], and α(h)T γ(h)

with γ(h) > 1 is the correction term for expressing the higher-temperature region. The

actual values of α(h) and γ(h) are evaluated by fitting the calculated energy data. The

results of the fitting are shown in Fig. 2.4. Then, the specific heat density is given as

c(T, h) =
∂

∂T
e(T, h) = 2kB + α(h)γ(h)T γ(h)−1, (2.40)

and the entropy density is calculated as

s(T, h) =

∫ T

0

c(T ′, h)

T ′ dT =

∫ T

0

2kB
T ′ dT

′ +
α(h)γ(h)

γ(h)− 1
T γ(h)−1. (2.41)

The first term,

∫ T

0

2kB
T ′ dT

′, diverges, which is the artifact of the classical treatment of

the low-energy modes. In fact, the original spin-1 BLBQ Hamiltonian is known to exhibit

T 2 scaling of the specific heat at sufficiently low temperatures, which originates from

the excitation of three-colored Schwinger bosons [19, 33, 48, 50]. This kind of quantum

condensation effect is not taken into consideration in EsSU(3), and instead the classical

divergent term appears as an artifact. However, because it contributes to all of the cases

as common constant shift where the above discussion holds regardless of the values of h and

J , this term no longer plays an important role in discussing the higher temperature region

where we are focusing. Thus we drop this diverging term, and deal with the following
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Figure 2.5: Temperature dependence of (a) the entropy density s̃(T, h) and (b) the energy
density e(T, h) in the spin-1 BLBQ model on the L = 24 triangular lattice with (J,K) =
(0,−1) and various magnitudes of the magnetic field h. The shaded area in (a) shows the
region where the reentrant occurs in the L = 24 samples. Figures are taken from Ref. [1]
(Copyright ©2020, American Physical Society).

values 17;

s̃(T, h) = s(T, h)−
∫ T

0

2kB
T ′ dT

′. (2.42)

In Fig. 2.5(a), we show the temperature dependence of s̃(T, h) in a small magnetic

field in the L = 24 sample, and together the temperature dependence of the energy

density, e(T, h) of the L = 24 sample in Fig. 2.5(b). In the ferroquadrupolar phase at

lower temperature, the entropy density s̃(T, h) remains almost unchanged or shows a

slight increase in a magnetic field, whereas s̃(T, h) in the paramagnetic phase at higher

temperature decreases when the magnetic field is applied. By contrast, the energy density

decreases by a nearly constant values with h common to both the paramagnetic and

ferroquadrupolar phases, which is confirmed by the paramagnetic response to the magnetic

field in both phases (see the inset of Fig. 2.3(b)). Thus, when we consider the Helmholtz

free energy, f(T, h) = e(T, h)−T s̃(T, h), the ferroquadrupolar phase becomes more stable

in a small magnetic field region than the paramagnetic phase by the entropic effect, and

the reentrant behavior occurs.

2.2.3 Magnetic field dependence of the quadrupolar moments

To see how the microscopic properties are affected by the magnetic field, we investigate

the magnetic field dependence of the quadrupolar moments. At T = 0, the d-vector of

the ferroquadrupolar ground state consists only of the real component and freely fluctuate

17We note that this expression is a formal one in the exact meaning since the second term in the right
hand side diverges.
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(a) (b)

Figure 2.6: (a) Schematic picture of the d-vectors in the ferroquadrupolar ground states
at h = 0 (left) and h ̸= 0 (right). At h = 0, the real d-vector can point to an arbitrary
direction. At h ̸= 0, the d-vector fluctuates inside xy-plane. (b) Distribution of the spin-
component for the ferroquadrupolar ground states in various values of the magnetic field.
Figure (b) is taken from Ref. [1] (Copyright ©2020, American Physical Society).

(see the left panel of Fig. 2.6(a)). When the magnetic field along the z-axis is applied to

the ferroquadrupolar ground state, the d-vector lies inside the xy-plane as shown in the

right panel of Fig. 2.6(b) 18, namely, the (semiclassical) ground state has di,z = 0 and is

expressed as

|Ψ⟩ =
N⊗
i=1

|di⟩ , |di⟩ = dx |x⟩+ dy |y⟩ . (2.43)

This is because the Zeeman term is proportional to
(
d∗i,xdi,y − d∗i,ydi,x

)
, and couples to x-

and y-components of the d-vector, but not to the z-components [17, 19]. To gain the energy

by the Zeeman term, the system tries to maximally develop di,x and di,y, and resultantly

suppresses di,z. The di,x and di,y components acquire the imaginary components, and

the spin-component distribution in the z < 0 space shrinks and that in the z > 0 space

expands (see Fig. 2.6(b)), which reflects the emergent finite magnetic moment along the

z-axis (z > 0).

For the quadrupolar moments, we can see the different behavior of each component of

Qi, whose formula is given in Eq. (2.7), against a magnetic field at T = 0, namely, Qxy
i

and Qx2−y2

i can have nonzero values, whereas Qyz
i and Qzx

i become zero due to di,z = 0.

Therefore, we can prepare two types of the mean squared quadrupolar moments, Q̄2
in and

¯Q2
out, whose expressions are given as

Q̄2
in =

1

2

[(
Qx2−y2

)2
+ (Qxy)2

]
, (2.44)

18Here, the ‘plane’ is C2, spanned by the two complex component vectors. When only the real compo-
nents are used, this xy-plane is equivalent to R4, and the ‘plane’ means the ‘hyperplane.’
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Figure 2.7: Temperature dependence of (a) Q̄2
in (Eq. (2.44)) and (b) ¯Q2

out (Eq. (2.45)) for

the triangular lattice with L = 12. The inset in (b) is the enlarged picture of small ¯Q2
out.

Figures are taken from Ref. [1] (Copyright ©2020, American Physical Society).

¯Q2
out =

1

2

[
(Qyz)2 + (Qzx)2

]
, (2.45)

where Qαβ is the averaged value of the quadrupolar moment such as

Qxy =
1

N

N∑
i=1

Qxy
i . (2.46)

By definition, Q̄2
in ̸= 0 and ¯Q2

out = 0 hold in the ferroquadrupolar ground states in a

magnetic field.

In Figs. 2.7(a) and 2.7(b), we show the temperature dependence of Q̄2
in and ¯Q2

out in

various magnitudes of the magnetic field. Without a magnetic field, all components in

Qi, and thus Q̄2
in and ¯Q2

out are equivalent, and their behaviors at finite-temperature are

almost the same. When a magnetic field is applied, Q̄2
in once increases and then decreases

in a larger field at 1 ≲ h. In contrast, ¯Q2
out at finite-temperature, which has a small

but finite value thanks to the thermal fluctuation which gives a finite di,z monotonically

decreases by applying a magnetic field. At 1 ≲ h, ¯Q2
out almost becomes zero even at finite-

temperature. These temperature dependencies of the quadrupolar moments suggest the

crossover phenomenon from the low magnetic field region at h ≲ 1 to the high magnetic

field region at 1 ≲ h. In a low field, Q̄2
in can develop by selecting the xy-plane, while all

quadrupolar fluctuations start to be suppressed by applying a larger magnetic field. In

Fig. 2.8, we show the spin-component distribution at finite-temperature with and without

magnetic field. At T = 0.2 with h = 1, the distribution taking a gourd-shape, which is to

be contrasted to that at T = 0.5 with h = 1, suggests the development of the fluctuation

in xy-plane with finite magnetic moment along the z-axis. In a larger field of h = 4, both

of the distributions at high and low temperature regions have similar forms.

To identify that the reentrant behavior of the specific heat by the magnetic field is
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Figure 2.8: Distribution of the spin-component for the ferroquadrupolar phase at finite-
temperature in various values of the magnetic field. Figure is taken from Ref. [1] (Copyright
©2020, American Physical Society).
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Figure 2.9: (a) Temperature dependence of
∂Q̄2

in

∂T
in various magnetic fields on the L = 36

triangular lattice estimated by the Gaussian kernel approximation. (b) The magnetic field

dependence of the peak temperature of
∂Q̄2

in

∂T
on the L = 36 triangular lattice.
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Figure 2.10: Temperature dependence of the squared quadrupolar moment, Q2, in various
magnitudes of the magnetic field in the L = 24 triangular lattice (error bars are not
shown).

due to the development of the quadrupolar moments, we estimate the temperature deriva-

tive of the in-plane components of the mean squared quadrupolar moments,
∂Q̄2

in

∂T
19. In

Fig. 2.9(a), we show the temperature dependence of
∂Q̄2

in

∂T
on the triangular lattice with

L = 36 in various magnitudes of the magnetic field, estimated by the Gaussian kernel

approximation. When a small magnetic field is applied, the bottom positions of
∂Q̄2

in

∂T
,

where the quadrupolar moments most largely develop, moves toward the higher temper-

ature. Then, the bottom positions go down to the low temperature at larger magnetic

fields. Figure 2.9(b) shows the magnetic field dependence of the bottom positions of
∂Q̄2

in

∂T
in the L = 36 samples, which is similar to the T–h phase diagram in Fig. 2.2(a). This

result is consistent with the reentrant behavior captured by the peak positions of the spe-

cific heat, which ensures that the reentrant behavior can be ascribed to the development

of the quadrupolar moments.

In a low field, the entropy in the ferroquadrupolar phase is almost unchanged as shown

in Fig. 2.5, while the in-plane and out-of-plane components of the quadrupolar moments

changes by applying a magnetic field (see Fig. 2.7. To check the relation between the

entropy and the quadrupolar moments, we evaluate the squared quadrupolar moment,

Q2 =
(
Qx2−y2

)2
+
(
Q3z2−r2

)2
+ (Qxy)2 + (Qyz)2 + (Qzx)2 . (2.47)

In Fig. 2.10, we show the temperature dependence of Q2 when changing the magnetic field

in the L = 24 samples. We find that Q2 is almost unchanged in a low field, h ≲ 1.5, which

19Here, we first calculate the average of Q2
in, and then calculate the derivative of the average.
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Figure 2.11: Square lattice with L× L sites.

will directly connect to the constant entropy against a low field 20. Therefore, one can say

that the whole value of the entropy is determined by the sum of each component rather

than only the in-plane components, Q̄2
in. Nevertheless, the contribution from Q̄2

in to the

fluctuation, or the entropy, also becomes larger when Q̄2
in becomes larger by applying a

small field.

2.2.4 Discussions and remarks

2.2.4.1 Independence of the lattice geometry

Here we show that the lattice geometry does not have a qualitative impact on the ther-

modynamic properties of the ferroquadrupolar phases, which indicates that this entropic

effect is not due to the geometrical frustration effect. In addition to the calculation on the

triangular lattice discussed above, we also performed the sSU(3)-MC simulation on the

L × L square lattice with L = 8–32 (see Fig. 2.11). The parameters are set as K/J = 2

with J,K < 0, namely (J,K) = (−1/
√
5,−2/

√
5), where the semiclassical ground state

has the ferroquadrupolar order [30]. In Fig. 2.12(a), we show the phase diagram on the

plane of h and T , which indicates the small reentrant behavior by applying the magnetic

field at h ≲ 0.25. The temperature dependence of the specific heat C(T )/N in the L = 32

sample in various magnitudes of the magnetic field is shown in Fig. 2.12(b), which shows

that the peak position first shifts toward the higher temperature and then goes toward

the lower temperature by a larger magnetic field.

In the same manner with the case of the triangular lattice, we estimate the energy

density e(T, h) at lower temperature by fitting the sSU(3)-MC data, and the entropy

density s̃(T, h). In Fig. 2.13(a), we show the energy density e(T, h).

In Figs. 2.14(a) and 2.14(b), we show the temperature dependence of the spin sus-

ceptibility perpendicular and parallel to the magnetic field along the z-axis, χ⊥ and χz,

respectively. The temperature dependence of the mean squared quadrupolar moments,

Q̄2
in and ¯Q2

out, are shown in Figs. 2.14(c) and 2.14(d), respectively. One can confirm that

these results are qualitatively the same as the ones in the triangular lattice (see Figs. 2.3,

20Note that other effects than the quadrupolar moments will become stronger in a larger magnetic field
as h ∼ 3.0, where Q2 deviates from the one in a lower field.
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(a) (b)

Figure 2.12: Results of the sSU(3)-MC simulation in the spin-1 BLBQ model on the
square lattice with K/J = 2 and J,K < 0. (a) Phase diagram on the plane of h and T .
Squares, circles, and triangles represent the peak positions of the specific heat estimated
by the Gaussian kernel approximation in the L = 8, 16, and 32 samples, respectively. (b)
Temperature dependence of the specific heat of the L = 32 samples in various values of
the magnetic field. Figures are taken from Ref. [1] (Copyright ©2020, American Physical
Society).

2.7).

We show the temperature dependence of the temperature derivative of Q̄2
in,

∂Q̄2
in

∂T
,

with and without the magnetic field in Fig. 2.15(a), and the bottom position of
∂Q̄2

in

∂T
in

Fig. 2.15(b). Similarly to the case of the triangular lattice, the bottom positions of
∂Q̄2

in

∂T
shows the small reentrant behavior.

In Fig. 2.16, we show the temperature dependence of Q2 when changing the magnetic

field on the L = 32 square lattice. As in the triangular lattice, Q2 does not change much

in a low field region, h ≲ 0.5, which would lead to the (almost) constant entropy in the

ferroquadrupolar phase at low temperature.

2.2.4.2 Properties of the ferroquadrupolar phase transition

Both of the original quantum Hamiltonian and the semiclassical Hamiltonian have the

continuous symmetry, and the Mermin–Wagner theorem prohibits the finite-temperature

phase transition that breaks the continuous symmetry [142]. However, the specific heat

has a peak structure at Tc, which is also seen in the QMC calculations [48, 50]. This

implies that the correlations actually develop, and topological phase transition like the

Berezinskii–Kosterlitz–Thouless (BKT) transition [143–145] occurs. Actually, the exci-

tation generating the topological defects with half-vortex and anti-(half)vortex was dis-

cussed in the low-dimensional spin-1 BLBQ models [18], and Pohle et al. numerically

studied its dynamics and thermodynamics semiclassically and observed the generation of
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Figure 2.13: Results of the sSU(3)-MC calculation on the square lattice with L = 32. The
parameters of the spin-1 BLBQ model are set as K/J = 2 and J,K < 0. (a) Energy
density e(T, h). (b) Energy density e(T, h) from T = 0. Lines in the lower temperature
is the energy estimated by fitting the sSU(3)-MC data shown with symbols. (c) Entropy
density s̃(T, h). Figures are taken from Ref. [1] (Copyright ©2020, American Physical
Society).
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Figure 2.14: Results of the sSU(3)-MC calculation on the square lattice with K/J = 2 and
J,K < 0, in the L = 32 sample. (a), (b) Temperature dependence of the spin susceptibility
(a) perpendicular to the magnetic field, χ⊥ and (b) parallel to the magnetic field, χz. The
inset in (b) is the temperature dependence of the magnetization density, ⟨Sz⟩. (c), (d)
Temperature dependence of the mean squared quadrupolar moment. (c) Q̄2

in and (d) ¯Q2
out.

The inset in (d) is the enlarged view of small ¯Q2
out region. Figures are taken from Ref. [1]

(Copyright ©2020, American Physical Society).
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Figure 2.15: (a) Temperature dependence of
∂Q̄2

in

∂T
in various magnetic fields on the L = 32

square lattice estimated by the Gaussian kernel approximation. (b) The magnetic field

dependence of the peak temperature of
∂Q̄2

in
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on the L = 32 square lattice.
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Figure 2.16: Temperature dependence of the squared quadrupolar moment, Q2, in various
magnitudes of the magnetic field in the L = 32 square lattice (error bars are not shown).
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the pair of half-vortex–anti-vortex in the ferroquadrupolar phase transition without mag-

netic field [146]. Similar half-vortex–antivortex structure is observed also on the antiferroic

SU(3)-point in the spin-1 BLBQ model on the triangular lattice [147]. In that case, the

transition temperature of the topological phase transition is generally slightly lower than

that of the peak position of the specific heat. On the other hand, the absence of the BKT

transition was suggested by the quantum Monte Carlo simulation for the ferroquadrupolar

region of the spin-1 BLBQ model on the square lattice without a magnetic field, where

they did not observe the algebraic decay of the correlation functions, which is characteris-

tic of the topological phase below the BKT transition temperature. We consider that the

system has the SU(2) symmetry without magnetic field, and to be exact the BKT phase

transition does not occur. However, according to the homotopy group analysis [148], the

generation of the topological defects consisting of the nematic directors itself is still allowed

like the generation of the Z2 vortex in the classical Heisenberg model on the triangular

lattice [149, 150], where the correlation functions decay exponentially. In the simulation

in the spin-1 ferroquadrupolar region, this type of topological phase transition, which is

slightly different from the exact BKT transition, may occur. In a magnetic field, the sym-

metry of the system is broken down to O(2), and then the topological phase transition

with the pair of half-vortex–anti-vortex, which now can be called the BKT transition,

occurs.

In the actual materials, even when well described by the two-dimensional model, there

are small but finite inter-layer interactions which connect the two-dimensional layers.

Then, the finite-temperature phase transition to the ferroquadrupolar phase, and resultant

field-reentrant behavior will be observed.

2.2.4.3 Correspondence to other entropic effects—Pomeranchuk effect in 3He

The field-reentrant behavior found in the ferroquadrupolar phase transition in the spin-

1 BLBQ model is due to entropic effect, and one can find the correspondence to other

entropic phenomena. The most representative one will be the Pomeranchuk effect in
3He [151, 152]. In 3He, the liquid phase can be identified as the Fermi liquid with T -

linear entropy, and the solid phase is regarded as the assembly of the spin-1/2 nuclei with

weak interactions, and its entropy is constant unless the contribution of phonons becomes

nonnegligible at higher temperature. Then, unlike the typical materials, where the solid

phase has a smaller entropy than the liquid phase, the entropy of the solid phase, Ssolid,

becomes larger than that of the liquid phase, Sliquid, in the low-temperature region. From

the Clausius–Clapeyron equation along the first-order transition lines between the solid

and liquid phases given as (
dP

dT

)
=
Sliquid − Ssolid
Vliquid − Vsolid

, (2.48)

where Vliquid and Vsolid are the volumes of the liquid and solid phases of 3He, respec-

tively, the coexistence curve of the solid and liquid phases have a negative slope shown

in Fig. 2.17(a) 21. As a result, one can cool the system by applying a pressure, which is

known as the Pomeranchuk effect.

21For the volume, Vsolid < Vliquid holds.
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Figure 2.17: Correspondence between the Pomeranchuk effect in 3He and the reentrant
behavior in spin-1 ferro-nematics. (a) Pressure–temperature phase diagram of 3He. Figure
is taken from Ref. [151] (Copyright ©1997, American Physical Society). (b) Schematic
(−h)–T phase diagram in spin-1 ferro-nematics. The negative slope at T ≲ 0.3 K in (a)
where the entropy of the solid phase is larger than that of the liquid phase corresponds
to the negative slope in the (−h)–T phase diagram in (b) where the reentrant behavior is
observed.

Table 2.1: Correspondence between 3He and spin-1 nematics.
3He spin-1 nematics

solid paramagnet
liquid ferroquadrupole
P · V −h · ⟨Sz⟩
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If we make correspondence between the enthalpy term, +PV , in 3He, and the Zeeman

term, −h ⟨Sz⟩, in our spin-1 system, the Pomeranchuk effect can explain our reentrant

behavior. The negative slope of the coexistece curve in 3He corresponds to the negative

slope in the reentrant region of the ferroquadrupolar–paramagnetic phase boundary in

the (−h)–T phase diagram of the spin-1 BLBQ model, although the former is the first-

order phase transition and the latter is possibly of second-order. Here, the decrease in

entropy per unit, volume in 3He and spin in spin-1 nematics, essentially works to raise

the temperature. The correspondence between these two phenomena are summarized in

Table 2.1.

The entropic phenomena similar to the Pomeranchuk effects can also be seen in other

situations. The similar field-reentrant behavior in the phase transition between the UUD

phase of the triangular lattice and the paramagnetic phase has been observed in the classi-

cal [153, 154] and quantum [155] magnets on the triangular lattice. In the quantum magnet

Cs2CuBr4, for example, the quantum fluctuation effect in a frustrated geometry similarly

works in a similar manner as the quantum fluctuation of the quadrupolar moments in

the spin-1 ferro-nematics. Also, in YbInCu4, a Kondo lattice compound, the Fermi liquid

phase at low temperature with larger volume has a smaller entropy than the local moment

phase at high temperature, and it was proposed that the first-order isostructural phase

transition from the local moment phase to the Fermi liquid phase can cool the system

similarly to the Pomeranchuk effect [156–158].

2.2.4.4 Antiferroquadrupolar phase on the triangular lattice

We briefly discuss the magnetic field effect on the finite-temperature properties of the anti-

ferroquadrupolar phase on the triangular lattice. Semiclassically, the antiferroquadrupolar

ground state is realized at 0 < J < K on the triangular lattice [17, 19, 33, 34]. In the

antiferroquadrupolar phase without magnetic field, the three-sublattice structure given as

|Ψ⟩ =
N/3⊗
i=1

(|di,A⟩ ⊗ |di,B⟩ ⊗ |di,C⟩) (2.49)

is formed, where iγ represents the lattice site with the index of the γ-sublattice (γ =

A,B,C), and |di,A⟩ = |x⟩, |di,B⟩ = |y⟩, and |di,C⟩ = |z⟩, for example 22 [17, 19, 33, 34].

When the magnetic field is applied at T = 0, two of three sublattices, |diA⟩ = |x⟩ and

|diB⟩ = |y⟩, acquire the magnetization along the z-axis with the complex coefficients in the

d-vector and fluctuate inside the xy-plane similarly to the case of the ferroquadrupolar

phase in an applied field, whereas |diC⟩ = |z⟩ is unchanged.
We perform the sSU(3)-MC calculation on the triangular lattice with K/J = 2 and

J,K > 0, or (J,K) = (1/
√
5, 2/

√
5), where the variational ground state is the antifer-

roquadrupolar order [17, 19, 33, 34]. The system size is L × L with L = 12 to 36 (see

Fig. 2.1). We show the temperature–magnetic field phase diagram in a low-field region

in Fig. 2.18(a). In contrast to the case of the ferroquadrupolar phase, Tc monotonically

decreases as the magnetic field is applied. We can see the shift of Tc more clearly by the

22The word ‘for example’ means that other choices such as (|di,A⟩ , |di,B⟩ , |di,C⟩) = (|x⟩ , |z⟩ , |y⟩) are
allowed.
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(a) (b)

Figure 2.18: Results of the sSU(3)-MC simulation for the antiferroquadrupolar phase
on the triangular lattice. The parameters are set as K/J = 2 with J,K > 0, namely
(J,K) = (1/

√
5, 2/

√
5). (a) Phase diagram on the plane of h and T . (b) Temperature

dependence of the specific heat C(T )/N in several values of the magnetic field with L = 12
(open) and 36 (filled). Figures are taken from Ref. [1] (Copyright ©2020, American
Physical Society).

temperature dependence of the specific heat shown in Fig. 2.18(b). In the ferroquadrupo-

lar phase, d-vectors freely fluctuate without magnetic field, and an applied magnetic field

favors the fluctuation inside xy-plane. By contrast, in the antiferroquadrupolar phase,

the d-vectors in A- and B-sublattices are always fixed inside the xy-plane regardless of

the absence or presence of the (low) magnetic field. Then, one could ascribe the absence

of the reentrant behavior to the pinning of the relative positions of the d-vectors among

different sublattices. Therefore, we find that the reentrant behavior is characteristic of the

ferroquadrupolar phase.

2.3 Summary of this Chapter

In this chapter, we found the characteristic field dependence of the ferroquadrupolar phase

transition in the spin-1 bilinear-biquadratic model. Using the semiclassical SU(3) approx-

imation combined with the classical Monte Carlo simulation, we numerically examined

the magnetic field effect on the finite-temperature properties of the spin nematic phases

in the spin-1 bilinear-biquadratic models. For the ferroquadrupolar phase, the peak po-

sition of the specific heat, which indicates the transition to the ferroquadrupolar phase,

once moves toward the higher temperature, and then toward the lower temperature in a

higher magnetic field. This small reentrant behavior by a magnetic field is ascribed to

the entropic effect, which results from the different robustness between the paramagnetic

and ferromagnetic phases against the magnetic field. In the paramagnetic phase at high

temperature, the spins align when a magnetic field is applied, and the entropy rapidly

decreases. By contrast, in the ferroquadrupolar phase at low temperature, the quadrupo-

lar fluctuations remain when the spin moment is induced in a magnetic field, by making



56
CHAPTER 2. MAGNETIC FIELD EFFECT ON THE FINITE-TEMPERATURE

PROPERTIES OF SPIN-1 NEMATIC PHASES

use of the in-plane fluctuation perpendicular to the magnetic field, where the entropy is

retained. We also confirmed that this reentrant behavior is not due to geometrical frus-

tration effect, and does not occur in a low-field region in the antiferroquadrupolar phase

transition. We consider that measuring the field dependence of the specific heat with the

featureless magnetic susceptibility may give a thermodynamic clue to detect the spin-1

ferroquadrupolar phase in experiments.
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Chapter 3

Multiple quadrupolar phases in

the spin-1 dimer triangular lattice

In this Chapter, we show that several kinds of the quadrupolar phases appear in the

bilayer triangular lattice consisting of antiferromagnetic spin-1 dimers. We derive the

low-energy effective model of the spin-1 dimer triangular lattice in terms of the spin-1

hard-core bosons. In a dimer unit, the spin quintet state at high energy is excluded from

the basis, and the remaining triplet and singlet states are represented by the hard-core

boson with spin-1 and the vacuum, respectively, and the intra-dimer and inter-dimer mag-

netic interactions are transformed into several types of the interactions and kinetic terms

of bosons. By numerically analyzing the effective model, we find three different classes of

the quadrupolar phases of spin-1 bosons in addition to the trivial ferromagnetic/antiferro-

magnetic orderings. After clarifying the details of the phase diagrams, we finally discuss

the possible relevance of our findings to Ba3MRu2O9, where M is the divalent cation.

3.1 Overview

We deal with a lattice model whose unit is a dimer consisting of two spin-1’s. The dimers

align parallelly and form a bilayer triangular lattice as shown in Fig. 3.1. The following

Hamiltonian is considered;

H = Hintra +Hinter, (3.1)

Hintra =
N∑
i=1

[
JSi1 · Si2 +B (Si1 · Si2)

2
]
, (3.2)

Hinter =
∑
⟨i,j⟩

∑
γ=1,2

[
J ′Siγ · Sjγ + J ′′Siγ · Sjγ̄

]
, (3.3)

where Siγ denotes the spin-1 operator of the γ-th site on the i-th dimer, and N denotes

the number of dimers. The summation ⟨i, j⟩ is taken over the nearest-neighbor dimer

pairs, and for the site indices γ, we take 1̄ = 2 and 2̄ = 1. We consider the intra-dimer

bilinear (Heisenberg) and biquadratic interactions, J and B, respectively, with J,B > 0,

and the inter-dimer Heisenberg interactions, J ′ and J ′′.

Here, we describe the outline of the present Chapter. In Sec. 3.2, using the perturba-
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Figure 3.1: Bilayer triangular lattice consisting of spin-1 dimers. Figure is taken from
Ref. [2] (Copyright ©2020, American Physical Society).

tion calculations, we transform the original spin Hamiltonian in Eq. (3.1) to the effective

Hamiltonian of spin-1 hard-core bosons. Then the effective Hamiltonian is analyzed by

the numerical diagonalization method on a finite-size cluster. The magnetic properties of

the effective model are described in terms of the spin-1 operators, S.

After disclosing the overall features of the model, we analyze the low-lying states,

namely, Anderson tower of states in Sec. 3.3. There, we find that a series of the order

parameters based on the spin-1 bosons, S, is not enough to classify several different types

of the quadrupolar orderings we found in the phase diagram. We then go back to the

original spin model and additionally introduce the operators, q and p, on a dimer bond

other than S.

In Sec. 3.4, we discuss the difference among the aforementioned quadrupolar phases

classified in Sec. 3.3. Possible relevance to the Ru-dimer materials Ba3MRu2O9 is dis-

cussed in Sec. 3.5, and the summary of this Chapter is given in Sec. 3.6.

3.2 Effective spin-1 hard-core bosonic model

3.2.1 Derivation of the effective Hamiltonian of spin-1 bosons

3.2.1.1 Low-energy states of spin-1 dimers

First we consider an isolated spin-1 dimer whose local Hamiltonian is Hintra (1dimer) =

JSi1 · Si2 + B (Si1 · Si2)
2. The energy eigenstates are classified into singlet (|s⟩), triplet

(|t⟩), quintet (|q⟩) 1. The eigenenergies of these three multiplets |α⟩ (α = s, t, q), e(α), are

given as

e(s) = −2J + 4B,

e(t) = −J +B,

e(q) = J +B. (3.4)

The B/J dependence of these energy eigenvalues are shown in Fig. 3.2(a). When B/J

is small, the singlet is the ground state. When 1/3 < B/J , the ground state is replaced

1Quintets are also called quintuplets.
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Figure 3.2: (a) B/J dependence of the energy eigenvalues of Hintra of one spin-1 dimer.
s, t, and q are the singlet, triplet, and quintet states, respectively. (b) B/J dependence of
the energy eigenvalues of Hintra of two disconnected spin-1 dimers, namely, J ′ = J ′′ = 0.
(α, β) (α, β = s, t, q) denotes the eigenstates of the pair of two-dimers. Figures are taken
from Ref. [2] (Copyright ©2020, American Physical Society).

by the triplet. The quintet states remain as high-energy excited states in the parameter

region we consider.

In the perturbation calculation, we start from the limit of decoupled dimers, namely,

Hinter = 0. There, the ground state is the product state of singlet on each dimer when

B/J < 1/3, and the product state of triplet when 1/3 < B/J . We introduce the inter-

dimer interactions as a perturbation, Hinter ̸= 0, up to second order with respect to J ′/J

and J ′′/J , and then the effective interactions between two neighboring dimers mainly

appear. Therefore, we need to justify the exclusion of quintets for the pairs of isolated

two dimers, whose states are labeled as α- and β-multiplets (α, β = s, t, q). Their energies

E(α, β) are

E(s, s) = −4J + 8B,

E(s, t) = −3J + 5B,

E(s, q) = −J + 5B,

E(t, t) = −2J + 2B,

E(t, q) = 2B,

E(q, q) = 2J + 2B, (3.5)

and B/J dependence of E(α, β) is shown in Fig. 3.2(b). When B/J < 2/3, the two-dimer

states including quintets have larger energies than the states without quintets. Based

on the reasonable assumption that B/J is not so large, the effective Hamiltonian for the

low-energy manifold of states including only singlets and triplets can be constructed.

In the second-order perturbation processes between two neighboring dimers, the inter-

mediate high-energy states have at least one quintet, as we can see from the examples of

the second-order perturbation processes shown in Fig. 3.3. Figure 3.3(a) shows the pro-

cesses where the two-dimer state |s, t0⟩ goes back to the same state via the excited states

including the quintets, |t0, q0⟩, |t+1, q−1⟩, and |t−1, q+1⟩. Here, |s⟩ is the singlet state, and

|tµ⟩ and |qµ⟩ are the triplet and quintet states with Sz = µ, respectively. In Fig. 3.3(b), we
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(a) (b)

Figure 3.3: Examples of the second-order perturbation processes. (a) Processes where
|s, t0⟩ goes back to the same state. (b) Processes where two triplets with Sz = +1 and
Sz = −1 are exchanged, which contribute to the biquadratic interactions between two
triplet dimers, (Si · Sj). Figures are taken from Ref. [2] (Copyright ©2020, American
Physical Society).

show the processes where two triplet dimer state with Sz = +1 and Sz = −1, |t+1, t−1⟩,
is transformed into |t−1, t+1⟩ through the excited states, |s, q0⟩, |q0, s⟩, and |q0, q0⟩. The

details of the perturbation calculations are written in Appendix B. The low-energy basis

consisting of singlet and triplet states can be described in terms of the spin-1 hard-core

bosons. The singlet state corresponds to the vacuum, and the triplet states correspond

to the hard-core bosons with spin-1 with the constraint of no double occupancy on a

dimer. This type of treatment is equivalent to the bond-operator approach which was first

developed for the spin-1/2 dimer systems [159, 160] and later extended to spin-1 dimer

systems [161, 162] and also to general spin-S dimer systems [163]. For the bond-operator

representation, we choose here the time-reversal invariant form of the basis states {|ti,α⟩}
(α = x, y, z) given as

|ti,x⟩ =
i

2
(|+1, 0⟩ − |0,+1⟩ − |0,−1⟩+ |−1, 0⟩) ,

|ti,y⟩ =
1

2
(|+1, 0⟩ − |0,+1⟩+ |0,−1⟩ − |−1, 0⟩) ,

|ti,z⟩ = − i√
2
(|+1,−1⟩ − |−1,+1⟩) . (3.6)

Here, the dimer states written on the right hand side, |µ1, µ2⟩, denote the ones with Sz
i1
=

µ1 and Sz
i2
= µ2. Detailed information on the bond-operator approach and the expression

of the original spin operators Siγ with the bosonic operators are given in Appendix B.

3.2.1.2 Effective model

The triplet state with α-component, |ti,α⟩, which is equivalent to the state where the spin-

1 boson with α-component occupies the dimer, is described as b†i,α |0⟩. Here |0⟩ is the

vacuum expressing the singlet state and b†i,α is the creation operator of the spin-1 boson

with α-component. The second order perturbation calculation in J ′/J and J ′′/J gives the

effective Hamiltonian described the above bosonic operator, Heff, as,

Heff = E0 +Hµ +Ht +HP +HV +HJ +HB +H3body, (3.7)
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Hµ = −µ
N∑
i=1

ni, (3.8)

Ht = t
∑
⟨i,j⟩

∑
α=x,y,z

(
b†i,αbj,α + h.c.

)
, (3.9)

HP = P
∑
⟨i,j⟩

∑
α=x,y,z

(
b†i,αb

†
j,α + h.c.

)
, (3.10)

HV = V
∑
⟨i,j⟩

ninj , (3.11)

HJ = J
∑
⟨i,j⟩

Si · Sjninj , (3.12)

HB = B
∑
⟨i,j⟩

(Si · Sj)
2 ninj . (3.13)

Here,

ni =
∑

α=x,y,z

b†i,αbi,α (3.14)

is the number operator, and the hard-core condition, ni = 0 or 1 is imposed on the number

operator. The operator Si is the spin-1 operator of i-th boson, where

Sα
i = −i

∑
β,γ

εαβγb
†
i,βbi,γ , (3.15)

and εαβγ is the Levi–Civita symbol. We note that this spin-1 operator of i-th boson, Si,

is different from the spin-1 operator defined on the original bilayer spin model, Siγ . This

effective Hamiltonian has the SU(2) symmetry of the triplet bosons [84–86], which is kept

as far as the magnetic field or some anisotropic interactions are not introduced [164] 2.

The parameters appearing in the effective Hamiltonian Heff are obtained by the per-

turbation calculations, and are expressed using the parameters of the original Hamiltonian

H as

E0 = (−2J + 4B)N, (3.16)

µ = −J + 3B +
20z

27 (J −B)

(
J ′ − J ′′)2 , (3.17)

t =
4

3

(
J ′ − J ′′) , (3.18)

P = −4

3

(
J ′ − J ′′) , (3.19)

V =

[
40

27 (J −B)
− 8

9 (J + 3B)
− 2

9J

] (
J ′ − J ′′)2 , (3.20)

J =
1

2

(
J ′ + J ′′)+ [− 4

3 (J + 3B)
+

1

12J

] (
J ′ − J ′′)2 , (3.21)

2In other words, it is different from the magnon-BEC in a magnetic field, where the SU(2) symmetry
is broken.
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B =

[
− 4

9 (J + 3B)
− 1

144J

] (
J ′ − J ′′)2 . (3.22)

Here, z is the coordination number. The terms with µ, t, P and J contains the terms

derived from the zeroth- and first-order perturbation processes, while the ones with V and

B include only the terms originating from the second-order perturbation processes.

We note that the whole effective Hamiltonian of the second order perturbation also

includes the 3-dimer interaction term, H3body. We compared the ground state energies of

the original Hamiltonian, H (Eq. (3.1)), and of the effective Hamiltonian, Heff (Eq. (3.7))

with and without H3body, using a small cluster. Then we find that this H3body term does

not play an important role, and thus hereafter we discard H3body for simplicity. Detailed

information on the evaluation of this H3body term is given in Appendix B. Furthermore,

we see shortly that the other terms derived in the second order perturbation processes in

Eq. (3.7) do not change the majority of the phases diagram, which allows us to discuss

only the roles of t, P , and J .

3.2.1.3 Numerical diagonalization of the Hamiltonian

We analyze this effective model using the numerical diagonalization method 3. In the nu-

merical diagonalization, the Hamiltonian of the quantum many-body system is expressed

with certain many-body basis states {|Φi⟩}i=1,··· ,dimH as

H =

dimH∑
i,j=1

|Φi⟩ ⟨Φi|H|Φj⟩ ⟨Φj |

=
(
|Φ1⟩ · · · |ΦdimH ⟩

) ⟨Φ1|H|Φ1⟩ · · · ⟨Φ1|H|ΦdimH ⟩
...

. . .
...

⟨ΦdimH |H|Φ1⟩ · · · ⟨ΦdimH |H|ΦdimH ⟩


 ⟨Φ1|

· · ·
⟨ΦdimH |

 ,

(3.23)

and the Hamiltonian matrix,

H =

 ⟨Φ1|H|Φ1⟩ · · · ⟨Φ1|H|ΦdimH ⟩
...

. . .
...

⟨ΦdimH |H|Φ1⟩ · · · ⟨ΦdimH |H|ΦdimH ⟩

 , (3.24)

is numerically diagonalized. The j-th eigenvalue of H, Ej , is the j-th energy eigenvalue.

Using the corresponding eigenvectors of Ej ,

 cj,1
...

cj,dimH

, the j-th eigenstate is expressed

as |Ψj⟩ =
∑dimH

i=1 cj,i |Φi⟩ 4. The expectation value of physical quantities O for j-th

3The word ‘exact’ diagonalization is generally used, but the meaning of ‘exact’ here is ‘numerically
exact’.

4The number of indices i can often be reduced from dimH by the block diagonalization using the
conserved quantities such as Sz

tot.
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eigenstate |Ψj⟩, ⟨O⟩j , is calculated as 5

⟨O⟩j = ⟨Ψj |O|Ψj⟩ . (3.25)

To diagonalize the Hamiltonian matrix, we used the Lanczos method [165] to obtain the

information of the ground states, and the thick-restart Lanczos method [166, 167] to

obtain the low-energy excited states 6. The details of these algorithms are explained in

Appendix C.

3.2.1.4 Physical quantities

In analyzing the ground state properties of the effective model Heff, we calculate the

following physical quantities using the numerical diagonalization method. The boson

density per dimer denoted as

⟨nt⟩ =
1

N

N∑
i=1

⟨ni⟩ , (3.26)

and the structure factor of the boson density given as

N(k) =
1

N

N∑
i,j=1

⟨ninj⟩ eik·(ri−rj). (3.27)

The magnetic properties of the effective model is analyzed by the spin and quadrupolar

structure factors of spin-1 bosons,

S(k) = 1

N

N∑
i,j=1

⟨Si · Sjninj⟩ eik·(ri−rj), (3.28)

Q(k) =
1

N

N∑
i,j=1

⟨Qi ·Qjninj⟩ eik·(ri−rj), (3.29)

whereQi is the five-component vector representation of the quadrupolar operator of spin-1

bosons, whose explicit form is given in terms of Si as

Qi =


Qx2−y2

i

Q3z2−r2

i

Qxy
i

Qyz
i

Qzx
i

 =



(Sx
i )

2 − (Sy
i )

2

1√
3

[
3 (Sz

i )
2 − S (S + 1)

]
Sx
i S

y
i + Sy

i Sx
i

Sy
i Sz

i + Sz
i S

y
i

Sz
i Sx

i + Sx
i Sz

i


. (3.30)

In a system where the spin-1 operator is defined on each site such as the spin-1 BLBQ

model, the quadrupolar operator Qi is the “on-site” operator. By contrast, in a system

which has a spin-1/2 on each site, the quadrupolar operator is the “on-bond” operator, in

need of constructing a spin-1 from two spin-1/2’s [16, 51]. In our spin-1 dimer system, each

5We implicitly assume that the eigenvectors |Ψ⟩ are normalized, ∥|Ψ⟩∥ = 1.
6We also performed the full-diagonalization when the size of the matrix is small.
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dimer has two spin-1 operators, Si1 and Si2 , and the spin-1 operator expressing the triplet

states, Si, is defined on a dimer bond, whose constituents are the two spin-1 operators,

Si1 and Si2 . Therefore, one can also set the “on-bond” type spin-1 quadrupolar operator

on dimer bonds as

Qαβ
i12

= Sα
i1S

β
i2
+ Sβ

i1
Sα
i2 −

2

3
(Si1 · Si2) δαβ , (3.31)

just like the spin-1/2 cases. Then, one finds that Qi and Qi12 are equivalent for the triplet

states, namely,

⟨tα|Qµν
i12

|tβ⟩ = ⟨tα|Qµν
i |tβ⟩ (3.32)

holds for α, β, µ, ν = x, y, z. In the same way, when the “on-bond” type spin-1 operator is

defined on dimer bonds as

Sα
i12 = Sα

i1 + Sα
i2 , (3.33)

Si and Si12 equivalently work for the triplet states, namely,

⟨tα|Sµ
i12

|tβ⟩ = ⟨tα|Sµ
i |tβ⟩ , (3.34)

holds for α, β, µ = x, y, z.

In our effective Hamiltonian, the number of spin-1 bosons per dimer can vary from

0 to 1, unlike the spin-1 BLBQ models where the spin-1 operator always exists on every

site [19]. The spin-1 BLBQ model can be regarded as the limiting case with ⟨nt⟩ = 1 in our

bosonic model, because these two models have the same definitions of the spin (Eq. (3.15))

and quadrupolar operators (Eq. (3.30)). Thus, we can utilize the analysis performed in

the spin-1 BLBQ models for our bosonic model. There are the SU(3) points in the spin-1

BLBQ models. At these points, the three components of the spin-1 operator Si given in

Eq. (3.15) and the five components of the quadrupolar operator Qi defined in Eq. (3.30)

form the eight elements of the SU(3) Lie algebra. It is known that the quantum phase

transitions between the magnetic and the spin quadrupolar (nematic) phases occur. In

the numerical calculations, these transitions are characterized by the point where the spin

and quadrupolar structure factors, S(k) and Q̄(k) =
3

5
Q(k) (Eqs. (3.28), (3.29)) take the

same values. Therefore we make use of this normalized quadrupolar structure factor Q̄(k)

so as to determine the quantum phase transitions between the magnetic and quadrupolar

phases of spin-1 bosons.

3.2.2 Results of the S = 1 bosonic model

3.2.2.1 Ground state phase diagram

We perform the numerical diagonalization of Heff on the N = 12 triangular lattice 7, where

we take the periodic boundary condition. The lattice geometry is shown in Fig. 3.4(a),

and the first Brillouin zone of the triangular lattice is given in Fig. 3.4(b). The primitive

7The coordination number z is 6.
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(a) (b)

Figure 3.4: (a) The geometry of the N = 12 triangular lattice. Bold lines represent the
12-site cluster, and dotted lines connect the sites under the periodic boundary condition.
The vectors a1 and a2 are the primitive vectors of the triangular lattice. (b) The first
Brillouin zone of the triangular lattice in the reciprocal space. Dots denote the wave
numbers we consider in the calculation for the N = 12 triangular lattice. The vectors b1
and b2 are the reciprocal lattice vectors corresponding to a1 and a2, respectively.

vectors, a1 and a2, are given as

a1 =

(
1

0

)
, a2 =

 1

2√
3

2

 , (3.35)

and the corresponding reciprocal lattice vectors, b1 and b2, are given as 8

b1 =

 2π

− 2π√
3

 , b2 =

 0
4π√
3

 . (3.36)

The characteristic points in the reciprocal space, Γ-, K-, and M-points are given as

Γ = (0, 0) , K =

(
4π

3
, 0

)
, M =

(
π,

π√
3

)
. (3.37)

The phase diagrams varying J ′/J and J ′′/J are shown in Fig. 3.5(a) for the fixed value

of B/J = 0.2 and Fig. 3.5(b) for B/J = 0.4. When J ′ ∼ J ′′ > 0, the antiferromagnetic

(AFM) phases appear owing to the antiferromagnetic interactions J > 0 between the

spin-1 bosons. The AFM phases are divided into the solid and Bose–Einstein Condensate

(BEC) phases by the boson density, ⟨nt⟩ ≈ 1 (AFM-solid) and ⟨nt⟩ ≲ 0.9 (AFM-BEC).

When J ′ ∼ J ′′ < 0, the ferromagnetic (FM) phases, FM-solid with ⟨nt⟩ ∼ 1 and FM-BEC

with ⟨nt⟩ ≲ 0.9, are stabilized owing to the ferromagnetic interactions J < 0 between the

spin-1 bosons. When J ′−J ′′ < 0 or J ′−J ′′ > 0, two different kinds of the ferroquadrupolar

(FQ) phases of spin-1 bosons, FQ-BEC and FQ-p-BEC phases, are realized over a wide

parameter region. Throughout the phase diagrams both at B/J = 0.2 and B/J = 0.4,

we do not find a spatial structure of the bosonic numbers, namely, the structure factors

of the boson density N(k) take the maximum values at Γ-point, which suggests that the

bosons uniformly distribute over the system, and that the translational symmetry breaking

8The vectors ai and bj satisfy ai · bj = 2πδi,j .
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Figure 3.5: Ground-state phase diagrams of the spin-1 dimer triangular lattice at (a)
B/J = 0.2 and (b) 0.4 on the plane of J ′/J and J ′′/J , determined by the analysis of
the results of the numerical diagonalization of the low-energy effective model of the spin-1
bosons with N = 12. Filled and open circles denote the first- and second-order phase tran-
sitions, respectively, and the phase transitions between FM-BEC and FQ-p-BEC phases
is weakly first-order. FM, AFM, FQ denote the ferromagnetic, antiferromagnetic, and
ferroquadrupolar phases, respectively. ⟨nt⟩ ≈ 1 and ⟨nt⟩ ≲ 0.9 correspond to the solid
and BEC phases of bosons, respectively. The boson (triplet) density is expressed by the
colors in the phase diagrams. The spin nematic (SN) phase is enclosed in the small J ′/J ,
J ′′/J region marked with the red square in (b). (c) Phase diagram on the plane of J ′/J
and B/J at J ′ = J ′′. The horizontal lines with the value of B/J fixed correspond to
the J ′ = J ′′ diagonal lines of the phase diagrams in (a) and (b). Figures are taken from
Ref. [2] (Copyright ©2020, American Physical Society).
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long-range orderings of bosonic degrees of freedom, or the particle orderings, do not occur.

We determine the phase boundaries on the basis of the particle-number and magnetic

properties. As for the former, the phases are separated by whether the bosons (almost)

fully occupy the dimers, ⟨nt⟩ ≈ 1, and form a system equivalent to the quantum spin-1

system (solid), or the bosons are partially occupied, ⟨nt⟩ ≲ 0.9, and form a BEC state. As

for the magnetic properties, the phases are classified by what types of correlations develop,

which is identified by S(k) and Q(k). The values of S(k) and Q(k) are dependent on the

bosonic density, ⟨nt⟩, but the spatial modulations of spin and quadrupolar correlations are

the purely magnetic ones, because ⟨nt⟩ is almost uniform in space as we mentioned above.

The existence of the long-range orders is examined in Sec. 3.3.

3.2.2.2 J ′ = J ′′ line

We start from J ′ = J ′′ = 0, where the ground state is the product state of the isolated

dimers. As we see from the parameters shown in Eqs. (3.9), (3.10), (3.11), (3.13), the

parameters t, P , V , and B are the linear or quadratic functions of (J ′ − J ′′). Therefore,

these parameters exactly become zero along the J ′ = J ′′ line, namely, the inter-dimer

interactions, Hinter, cancel out due to the frustration effect except for the Heisenberg

interaction between spin-1 bosons, J .

At B/J = 0.2, the singlet product state, or ⟨nt⟩ = 0, is the ground state when J ′ = J ′′.

We evaluate the end point of these singlet ground states in the following procedure. Along

the J ′ = J ′′ line, the effective Hamiltonian of spin-1 bosons (Eq. (3.7)) is reduced to the

following one;

HJ ′=J ′′ = −µ
N∑
i=1

ni + J
∑
⟨i,j⟩

Si · Sjninj , (3.38)

with µ = −J+3B and J = J ′. The second term in the right hand side, J
∑

⟨i,j⟩ Si·Sjninj ,

works as effective attractive interactions between spin-1 bosons because this term gains the

magnetic interaction energy when two neighboring dimers are occupied by spin-1 bosons.

Then, we can confirm a first-order phase transition between FM/AFM-solid phase with

⟨nt⟩ = 1 and singlet phase with ⟨nt⟩ = 0. We obtain the phase boundary by comparing

the energies of two phases, E1(N) and E0(N), where the following relationship holds;

E1(N) = E0(N)− µN + 3Nebond. (3.39)

Here, ebond is the energy per bond evaluated from the ground state of the spin-1 Heisenberg

model, J
∑

⟨i,j⟩ Si · Sj , on the N = 12 triangular lattice (see Fig. 3.4(a)). We show the

resultant phase diagram on the plane of J ′/J = J ′′/J and B/J in Fig. 3.5(c). The ⟨nt⟩ = 0

singlet phase shown as the straight line in Fig. 3.5(a) shrinks toward smaller |J ′| value as

the biquadratic interaction B/J increases, and the line disappears at B/J = 1/3. When

1/3 < B/J , the FM/AFM solid phase with ⟨nt⟩ = 1 appears on the whole J ′ = J ′′ line.

The singlet state in the phase diagram at B/J = 0.2 (Fig. 3.5(a)) is realized not only

on the J ′ = J ′′ line, but spans over a finite range of |J ′ − J ′′|. It is confirmed by the

instability analysis discussed in Sec. 3.4.
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3.2.2.3 Ferromagnetic and antiferromagnetic phases

At B/J = 0.2, the FM and AFM phases spread from the endpoints of the singlet phase

appearing at J ′ ≃ J ′′ which we discussed right above. Figure 3.6 shows the total energy

density eall, and the partial energy densities, et, eP , eJ , and eB, the triplet density ⟨nt⟩, and
the structure factors of spins and quadrupoles at Γ-, K-, and M-points in the reciprocal

space. Here, eX corresponds to the contribution from HX in Eq. (3.7), e.g., et is the

contribution from Ht (Eq. (3.9)). We change the value of J ′/J with the fixed values of

J ′′/J = −0.2 and +0.1. When J ′′/J = −0.2, a jump in the physical quantities is observed

at the transition point around J ′/J = −0.1 from the FM-solid phase to the FQ-p-BEC

phase. The FM-solid phase gains a large amount of energy from eJ compared to other

phases, which suggests that the Heisenberg interactions J play a dominant role to stabilize

the FM-solid phase (see Fig. 3.6(a)). Actually, in this phase, the spin structure factor S(k)
has a peak at the Γ-point, whereas S(k) in the other points and Q(k) remain small, which

is shown in Fig. 3.6(c). In the FM-solid phase, the bosons are fully occupied, i.e., ⟨nt⟩ = 1.

When we change the parameter J ′/J keeping J ′′/J = +0.1 constant, the boson density

⟨nt⟩ ≲ 0.55 does not change much and the BEC state is realized. The phase transitions

along this J ′′/J = +0.1 line are second-order. When 0.3 ≲ J ′/J , the spin structure factor

S(k) at the K-point begins to overwhelm the quadrupolar structure factor Q(k) at the Γ-

point. Following the treatment given in Ref. [19] (see Sec. 3.2.1.4 for details), we identify

this phase as the AFM-BEC phase. According to the analysis, the phase boundaries

shown in Fig. 3.5 are separated into first- and second-order phase transitions, denoted by

the filled and open circles, respectively 9.

3.2.2.4 Ferroquadrupolar phases

We confirmed two kinds of quadrupolar phases in the phase diagram, FQ-BEC in J ′ < J ′′

region and FQ-p-BEC in J ′ > J ′′. As shown in Figs. 3.6(e) and 3.6(f), both of the boson

density ⟨nt⟩ and the quadrupolar structure factor Q(k) decrease down to zero at the phase

boundary where the singlet phase is realized, which indicates that the phase transition

is of second-order. In the FQ-p-BEC phase, another order parameter starts to increase,

which is Q(k = K).

In Figs. 3.7, we show the two-point correlations of quadrupolar moments between

site-1 and site-j, ⟨Q1 ·Qj⟩ for both of FQ-BEC and FQ-p-BEC phases. In the FQ-

BEC phase, the quadrupolar correlation almost uniformly develops in space, while in

the FQ-p-BEC phase, the quadrupolar correlations between the nearest-neighbor sites

are suppressed and those between the next-nearest-neighbor sites ferroically develops,

namely, the quadrupolar correlation develops in the period of twice the lattice spacing.

This three-sublattice-like configuration of the quadrupolar moments is reflected in the

peak of the quadrupolar structure factor Q(k) at the K-point. We also show the two-

point correlations of boson densities between site-1 and site-j, ⟨n1nj⟩ in Fig. 3.7, which

suggests that the bosons almost uniformly distribute in space. Thus it is indicated that the

three-sublattice-like structure of Q seen in FQ-p-BEC phase is not due to the spatially-

modulated distribution of bosons, but is realized purely by the correlation effect of the

9There are also some boundaries regarded as the weak first-order phase transitions.
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Figure 3.6: J ′/J dependence of the physical quantities at B/J = 0.2. (a)-(c) Results at
J ′′/J = −0.2. (d)–(f) Results at J ′′/J = +0.1. (a), (d) Total energy density eall, and the
energy densities of some terms in the effective model, et, eP , eJ , and eB. (b), (e) Boson
density ⟨nt⟩. (c), (f) Spin (Eq. (3.28)) and quadrupolar (Eq. (3.29)) structure factors at
Γ-, K-, and M-points in the reciprocal space. For the quadrupolar structure factors, the
normalized value Q̄(k) = 3

5Q(k) is shown to compare the spin and quadrupolar structure
factors. Figures are taken from Ref. [2] (Copyright ©2020, American Physical Society).



70
CHAPTER 3. MULTIPLE QUADRUPOLAR PHASES IN THE SPIN-1 DIMER

TRIANGULAR LATTICE

site-1

(FQ-BEC) (FQ- -BEC)

(a) (b)

(c) (d)

Figure 3.7: Two-point correlations between site-1 and site-j at (J ′/J, J ′′/J) = (−0.2, 0.2)
in FQ-BEC phase and at (J ′/J, J ′′/J) = (0.2,−0.2) in FQ-p-BEC phase for B/J = 0.2.
(a), (b) the quadrupolar correlations ⟨Q1 ·Qj⟩. (c), (d) the boson density correlations
⟨n1nj⟩. The areas of the circles are proportional to the absolute values of the correlations,
|⟨Q1 ·Qj⟩|, or |⟨n1nj⟩|. Blue and red circles appeared in (a) and (b) denote the signs of
the quadrupolar correlations ⟨Q1 ·Qj⟩, negative and positive, respectively. Figures are
taken from Ref. [2] (Copyright ©2020, American Physical Society).
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spin degrees of freedom, Si. There, the nearest-neighbor correlations of the quadrupolar

moments are suppressed, whereas the next-nearest-neighbor ones are ferroic.

3.2.2.5 Case of B/J = 0.4

Next we discuss the case B/J = 0.4, where the chemical potential µ becomes positive. As

we discussed above, the singlet phase appearing at B/J = 0.2 no longer exists, and when

the inter-dimer Heisenberg interactions, J ′ and J ′′, are introduced, the product state of the

triplet dimer at J ′ = J ′′ = 0 transforms into the phases we discussed above. In Fig. 3.8,

we show the J ′/J dependence of the energy densities, boson density, and the spin and

quadrupolar structure factors, which is to be compared with Fig. 3.6 for B/J = 0.2 case.

We observe the first-order phase transitions between the FM-solid and the FQ phases. In

the FQ-BEC phase, the boson density is stable around ⟨nt⟩ ≈ 0.55, indicating that the

overall nature of the BEC phase does not qualitatively change by B/J . We note that the

smaller J ′ and J ′′ region at B/J = 0.4 includes the spin nematic phase, which should be

distinguished from both of the FQ-BEC phase and the FQ-p-BEC phases (see Sec. 3.3 in

detail).

3.2.2.6 Order of perturbation

The interaction parameters in the effective bosonic model (Eqs. (3.16)–(3.22) contains the

zeroth-, first- and second-order perturbation terms. When we discard the second-order

perturbation terms, V and B disappear. In order to see how much the second-order terms

qualitatively contribute to the ground state phase diagram, we additionally perform the

numerical diagonalization limiting the interaction parameters up to the first order in J ′/J

and J ′′/J on the N = 12 triangular lattice. The resultant phase diagram on the plane of

J ′/J and J ′′/J at B/J = 0.2 and 0.4 are shown in Figs. 3.9(a) and 3.9(b), respectively.

These phase diagrams are qualitatively identical to the ones in Fig. 3.5, which indicates

that the second-order perturbation terms such as V and B do not play a significant role in

the phase diagrams. It is also suggested that the second-order terms involving three-sites,

H3body, neglected for simplicity, do not seem to change the phase diagram qualitatively.

3.3 Long-range orders and classifications of multiple

quadrupolar phases

So far, using the spin-1 bosonic language, we have discussed the magnetic properties of

the spin-1 dimer triangular lattice based on the results of the numerical diagonalization

of the effective model on the N = 12 triangular lattice. As the numerical diagonalization

is performed on the small finite size cluster, one should carefully examine the finite-size

effect and the existence of the symmetry-breaking long-range orders. However, in the

present case, the finite-size effect is expected to be negligible. This is because, in the

previous study on the same effective model in Ref. [86] which is exactly equivalent to

the spin-1/2 dimer model on the same lattice as ours, the finite-size effect turned out

to be almost negligible; the phase boundaries obtained by the results of the numerical

diagonalization with N = 12 and those obtained by the analytical results for arbitrary
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Figure 3.8: J ′/J dependence of the physical quantities at B/J = 0.4. (a)-(c) Results at
J ′′/J = −0.1. (d)–(f) Results at J ′′/J = +0.2. (a), (d) Total energy density eall, and the
energy densities of some terms in the effective model, et, eP , eJ , and eB. (b), (e) Boson
density ⟨nt⟩. (c), (f) Spin (Eq. (3.28)) and quadrupolar (Eq. (3.29)) structure factors at
Γ-, K-, and M-points in the reciprocal space. For the quadrupolar structure factors, the
normalized value Q̄(k) = 3

5Q(k) is shown to compare the spin and quadrupolar structure
factors. Figures are taken from Ref. [2] (Copyright ©2020, American Physical Society).
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(a) (b)

Figure 3.9: Phase diagrams of the effective model on the plane of J ′/J and J ′′/J ,
whose interaction parameters are limited up to the first order in J ′/J and J ′′/J at (a)
B/J = 0.2 and (b) B/J = 0.4. The phase diagrams are obtained by analyzing the results
of the numerical diagonalization on the N = 12 triangular lattice. Figures are taken from
Ref. [2] (Copyright ©2020, American Physical Society).

N quantitatively agree well. Therefore, here we only need to discuss whether there is

a true symmetry-breaking long-range order in each phase appearing in Sec. 3.2. For

this purpose, we performed the Anderson tower analysis [168], calculating the low-energy

excitation spectra by the thick-restart Lanczos method [166, 167].

3.3.1 Basics of the Anderson tower analysis

Before we discuss the long-range orders in our spin-1 dimer triangular lattice, we briefly

review the Anderson tower analysis. The Anderson tower analysis [168] 10 is one of the

unbiased tool for detecting the long-range orders in the ground states of the quantum

many-body systems from the calculations of the finite-size clusters. In their energy spectra,

the low-lying states or the quasi-degenerate joint states (QDJS) can appear as the lowest-

energy levels which scale as a linear function of Stot(Stot + 1). The QDJS imply the

existence of the long-range order breaking the continuous symmetry 11 [168, 170–174],

where the slope collapses in proportional to 1/N , where N is the system size.

In the numerical analysis, the Anderson tower analysis was introduced to show the

long-range orderings in the ground state of the spin-1/2 antiferromagnetic Heisenberg

model on the triangular lattice [170, 171], and later applied to demonstrate the absence of

the long-range orderings of the ground state of the spin-1/2 antiferromagnetic Heisenberg

model on the kagome lattice [175]. When the energy spectrum forms the low-lying states,

the symmetries of the low-lying states are examined to determine the possible symmetry

breaking in the ground-states. The QDJS consists of the energy eigenstates with specific

10This is also called as ‘tower-of states analysis’, etc.
11As we describe the QDJS as a function of Stot(Stot + 1), hereafter we implicitly assume the spin

systems and the continuous symmetry broken is SU(2). However, the Anderson tower analysis can be
applied also to SU(N) systems. Then, Stot(Stot + 1), the Casimir operator in SU(2) group, is replaced by
the Casimir operator of SU(N) systems. For example, see Ref. [169] for the SU(4) symmetric case.
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(a) (b) (c)

Figure 3.10: Low-energy spectra with respect to S(S + 1) in the (a) FQ-BEC, (b) FQ-p-
BEC, and (c) AFM-solid phases for the N = 12 cluster. Filled circles and triangles denote
the eigenstates whose momenta are characterized by the Γ- and K-points in the reciprocal
space, and the momenta of the eigenstates with open circles are not determined in our
calculations. The eigenstates on the solid lines in (a) and (c) will collapse and construct
the degenerate ground states in the N → +∞ thermodynamic limit, which indicates the
long-range orders. Figures are taken from Ref. [2] (Copyright ©2020, American Physical
Society).

spatial symmetries such as the translational symmetry and the reflection symmetry re-

flecting the symmetry-breaking long-range orders. For example, when the 120◦ Néel order

is realized on the triangular lattice, the sublattice spins form a biaxial rotator which is

characterized by the spin component perpendicular to the rotating plane, and there appear

2Stot + 1 states in each Stot-sector
12.

3.3.2 Anderson tower analysis in the spin-1 dimer triangular lattice and

classification of multiple phases

3.3.2.1 Internal degrees of freedom of the FQ phases

In Figs. 3.10(a)–(c), we show the low-energy spectra in the FQ-BEC, FQ-p-BEC, and

AFM-solid phases, respectively. For the cases of the FQ-BEC (Fig. 3.10(a)) and the

AFM-BEC (Fig. 3.10(c)) phases, we confirm the clear QDJS depicted by the solid lines.

In Fig. 3.10(a), the QDJS consist of all Stot-sectors, Stot = 0, 1, 2, 3, · · · , where each Stot
sector has only one state with Γ-point, which characterizes the U(1) uniaxial rotator type

excitation. This low-lying state is clearly different from the one known for the spin-1

ferroquadrupolar (ferro-nematic) ordered phase, where the QDJS is constructed only by

the even Stot-sectors with Γ-points [17] (cf. see Fig. 3.13(a)). This implies that the

quadrupolar moment Qi is insufficient for the classification of the multiple quadrupolar

phases of spin-1 bosons appearing in the dimer systems. In fact, the quadrupolar moment

12The trivial degeneracy for each Stot is not considered.
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Table 3.1: Classification of multiple phases using the order parameters q, p, S, and Q,
and the types of boson distributions, solid (S) or liquid (L). FQ-BEC phase corresponds to
the F-nematic phase in Ref. [84]. Table is reproduced from TABLE I in Ref. [2] (Copyright
©2020, American Physical Society).

Phases ⟨q⟩ ⟨p⟩ ⟨S⟩ ⟨Q⟩ Boson

SN (n-nematic) 0 0 0 ̸= 0 S
Chiral (p-nematic) 0 ̸= 0 0 ̸= 0 L

FM 0 (S) or ̸= 0 (L) 0 ̸= 0 ̸= 0 S or L
AFM 0 (S) or ̸= 0 (L) ̸= 0 ̸= 0 ̸= 0 S or L

FQ-BEC ̸= 0 0 0 ̸= 0 L

Qαβ
i defined on a dimer bond can be decomposed as

Qαβ
i = −

{
3

4

[(
qαi q

β
i + pαi p

β
i

)
+
(
qβi q

α
i + pβi p

α
i

)]
− 2

3
δαβ

}
ni, (3.40)

where qi and pi are the internal degrees of freedom of a dimer [84], namely, the staggered

spin operator of the two spins and the vector-chiral spin operator,

qi =
1

2
(Si1 − Si2) , pi = Si1 × Si2 . (3.41)

These two operators are related to the annihilation and creation operators of spin-1 bosons

in our model as bi,α ∝ qαi − ipαi , and b
†
i,α ∝ qαi +ipαi , respectively

13. When at least ⟨qi⟩ ̸= 0

or ⟨pi⟩ ̸= 0 holds, we obtain ⟨Qi⟩ ̸= 0, while the inverse is not always fulfilled. The

structure factors of these operators are set as

N (k) =
1

N

N∑
i,j=1

⟨qi · qj⟩ eik·(ri−rj), (3.44)

C(k) = 1

N

N∑
i,j=1

⟨pi · pj⟩ eik·(ri−rj), (3.45)

respectively.

We give the classification of the quadrupolar phases of spin-1 bosons in terms of these

internal degrees of freedom in Table 3.1. The conventional spin nematic (SN) phase seen

in the spin-1 BLBQ models has ⟨Qi⟩ ̸= 0 with other magnetic order parameters vanishing,

and takes place only when the distribution of the (single) boson is a solid and the boson

13To be precise,

bi,α ≃ i

√
3

2
√
2
(qαi − ipαi ) , b†i,α ≃ −i

√
3

2
√
2
(qαi + ipαi ) (3.42)

hold. Here, ≃ means that this formula is derived under the approximation neglecting the quintet states.
Equivalently,

qαi ≃ i

√
2√
3

(
b†i,α − bi,α

)
, pαi ≃

√
2√
3

(
b†i,α + bi,α

)
(3.43)

hold.
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cannot move around. Here, the quadrupolar order ⟨Qi⟩ ̸= 0 is generated neither by

⟨qi⟩ ̸= 0 nor by ⟨pi⟩ ̸= 0, but is generated by ⟨qαi q
β
i ⟩ ̸= 0 or ⟨Sα

i S
β
i ⟩ ̸= 0 14. When

⟨pi⟩ ̸= 0 and ⟨qi⟩ = ⟨Si⟩ ̸= 0, the vector-chiral degrees of freedom condenses, and form

a nematic order where all kinds of the magnetic orderings are suppressed. This vector-

chiral ordered phase is often called p-nematic phase, which is distinguished from the SN

phase (n-nematic phase). In the SN (n-nematic) phase, the Anderson tower of states are

formed only by the multiple Stot-sectors in units of multi-bosons. In that case, only the

bound multi-boson states are allowed as the quasiparticles [17, 51, 62]. By contrast, in

the vector-chiral (p-nematic) phase, the standard single-magnon excitations are allowed,

and the low-lying states consist of all of the Stot-sectors [81].

The typical magnetic phases, the FM and AFM phases, are supported by ⟨Si⟩ ̸= 0 15.

In the FQ-BEC phase, ⟨qi⟩ ̸= 0 and ⟨pi⟩ = 0, where the spin moments induced on the two

spins on dimers always take an antiparallel state, and keep the dimer unit nonmagnetic,

namely, ⟨Si⟩ = 0. The spin moments form a ferromagnetic long-range order inside each

two-dimensional layer.

Based on the above classification, the FQ-BEC phase can be regarded as the F-nematic

phase found in the spin-1/2 two-leg ladder [84], where the ferroic ordering of the staggered

spin moments ⟨qi · qj⟩ > 0 is realized, and the SU(2) symmetry is broken down to U(1).

In Fig. 3.11, we show the triplet density ⟨nt⟩ and the structure factors when J ′/J is varied

from the FQ-BEC (J ′/J ≲ 0.15), the FQ-p-BEC (0.15 ≲ J ′/J ≲ 0.25), to the AFM-BEC

(0.25 ≲ J ′/J) phases. The FQ-BEC phase is characterized by the enhancement of N (k)

at the Γ-point. In the FQ-p-BEC phase, not only N (k) at the K-point but also C(k) at

the Γ-point take large values. When the phase changes from the FQ-p-BEC phase into

the AFM-BEC phase, C(k) decreases.
We show the tower of states in the FQ-p-BEC phase in Fig. 3.10(b), which exhibits an

intriguing structure. If we take in all the states below the upper dotted line as the low-lying

states, the structure of the low-lying states is consistent with the biaxial rotator, indicating

the 120◦ Néel ordering. However, the low-lying excitetd states here are not well separated

from the states with higher energies. By contrast, in the AFM-solid phase, we can confirm

the clear tower of states structure with (2Stot+1) degenerate states shown in Fig. 3.10(c),

suggesting the 120◦ Néel order of S = 1 moments. It may be expected that a sort of 120◦

Néel ordering of qi-moment compatible with the geometry of the triangular lattice, which

is similar to the FQ-BEC phase (see Table 3.1). There, the 120◦ long-range order of Siµ

inside each layer is realized, and each dimer is kept nonmagnetic. This state corresponds

to the NAF phase in the spin-1/2 two-leg ladder sytstem in Ref. [84]. Alternatively, we

can also focus only on the lowest energy eigenstates in each Stot-sector on the lower broken

line. Then, the Stot = 0, 3, 6, · · · states at the Γ-point and the Stot = 1, 2, 4, 5, · · · states

at the K-point imply the p-type nematic property, which is similar to the p-type nematic

14We implicitly assume α ̸= β here.
15To be more precise, in the AFM phase, ⟨Si⟩ = 0, but the space-modulated spin moment

Sq =
1

N

N∑
i=1

eiq·riSi (3.46)

takes a nonzero value. The modulated spin moment is merely the linear combination of Si, and we include
it into ⟨Si⟩ = 0 in a broader sense.



3.3. LONG-RANGE ORDERS AND CLASSIFICATIONS OF MULTIPLE
QUADRUPOLAR PHASES 77

(a) (b)

Figure 3.11: J ′/J dependence of (a) the triplet density, and (b) the structure factors at the
Γ-, K-, and M-points. N (k) (Eq. (3.44)) and C(k) (Eq. (3.45)) that provide the detailed
information on teh magnetic properties of the spins Siγ inside the dimers are also shown.
J ′/J is changed from the FQ-BEC (J ′/J ≲ 0.15), the FQ-p-BEC (0.15 ≲ J ′/J ≲ 0.25), to
the AFM-BEC (0.25 ≲ J ′/J) phases. Figures are taken from Ref. [2] (Copyright ©2020,
American Physical Society).
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Figure 3.12: Schematic pictures of the (a) FM, (b) AFM, (c) FQ-BEC, (d) FQ-p-BEC,
and (e) SN phases. The black arrow on each site denotes the spin moment carried by the
site-iγ , and the red arrow and blue ellipses represent the spin and quadrupolar moments
of the i-th dimer, respectively.

order in the spin-1/2 system on the square lattice, where even Stot-sector has k = (0, 0)

momentum and odd Stot-sector has the (π, π)-momentum [81] 16. As shown in Fig. 3.11,

both of qi and pi have large correlations, which is consistent with the tower of states

structure which contains both of the 120◦ Néel antiferromagnetic and the vector-chiral

properties. One possible scenario is that the 120◦ Néel ordering is realized in each layer,

but the spin moments do not fully align between the layers. However, when we consider

the fact that the 120◦ Néel antiferromagnetic order in the spin-1/2 Heisenberg model on

the triangular lattice is somewhat subtle because of the small magnetic moments [176],

such type of the ordering might be unstable as a symmetry-breaking long-range order in

our system where the active local spin moments are likely to be small. Then, the 120◦

Néel order of q will be hindered by the intra-dimer quantum fluctuations, where either a

pure vector-chiral ordering or a more exotic spin liquid state might be realized.

In Fig. 3.12, we summarize the multiple phases by showing their schematic pictures.

3.3.2.2 Spin nematic phase at the small J ′/J and J ′′/J region

Besides these two FQ phases, FQ-BEC and FQ-p-BEC, we confirm a conventional ferro-

quadrupolar spin nematic (SN) phase at 1/3 ≲ B/J in a small J ′/J and J ′′/J region,

which can only be found by the tower of states analysis. We show in Fig. 3.13(a) the

low-lying states consisting of even Stot-sector, which suggests the ferroquadrupolar SN

phase on the triangular lattice breaking the SU(2) symmetry [17]. The phase boundary

between the SN phase and the FQ-BEC phase is determined by the level crossing of the

16Here we discuss the low-lying states utilizing the similarity to the ones in Ref. [81]. To more clearly
discuss the existence of the p-type property, more detailed symmetry analysis of the low-lying states might
be needed.
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Figure 3.13: (a) Low-energy excitation spectrum plotted against S(S+1) at J ′/J = 0.01,
J ′′/J = −0.01, and B/J = 0.4. (b) Phase diagram in the small J ′/J and J ′′/J region
at B/J = 0.4, which enlarges the region marked with the red square at the center of
Fig. 3.5(b). The phase boundaries are determined both by the crossing of Stot = 1 and
2 states (filled circle), and by the structure factor (open circle). J ′/J dependence of the
physical quantities for J ′′/J = 0.01 in this phase diagram is shown in Fig. 3.14. Figures
are taken from Ref. [2] (Copyright ©2020, American Physical Society).

Stot = 1 and 2 lowest excited states. We show the structure factors in Fig. 3.14(b). The

quadrupolar structure factor Q(k) at the Γ-point increases without the increase of N (k)

at the Γ-point inside the SN phase, and in the FQ-BEC phase at J ′/J ≲ −0.015, N (k)

at the Γ-point has a large value and Q(k) at the Γ-point decreases. The triplet density

⟨nt⟩ in the SN phase is ⟨nt⟩ ∼ 1, which is in agreement with the SN phase in the spin-1

BLBQ model. When B/J takes a large value, the spin-1 dimer state which has the lowest

energy is the triplet, replacing the singlet state at small B/J , and as a result, the spin-1

bosons fully occupy the sites and the small inter-dimer interactions J ′ and J ′′ play a role

of exchanging the spin-1 bosons and realizing the SN phase.

We show the physical quantities when the interdimer interactions J ′/J , J ′′/J are small

at B/J = 0.4. The J ′/J dependence of the low-energy excited states at J ′′/J = 0.01 is

shown in Fig. 3.14(a); in its inset, the spin gaps of ∆S = 1 and ∆S = 2 are given. When

we change J ′/J , the energy levels of the excited states with Stot = 1 and Stot = 2 cross

at J ′/J ∼ −0.01, which implies the quantum phase transition from the FQ-BEC phase to

the spin nematic (SN) phase. We can confirm the phase transition also in the variation of

the structure factors given in Fig. 3.14(b), where N (k) at the Γ-point decreases and Q(k)

at the Γ-point increases at J ′/J ∼ −0.01.

As we increase J ′/J , the excited state with Stot = 1 again has a lower energy than the

excited state with Stot = 2. This indicates that the quantum phase transition from the

SN phase to the AFN phase occurs, where Q(k) at the Γ-point has a smaller value, and

S(k) at the K-point become larger.

In Fig. 3.14(c), we show the partial ground-state energy of several terms in the effective

model. When the ground state is the FQ-BEC phase at J ′/J ≲ −0.01, the hoppings, et,

and the pair-creation/annihilation of bosons, eP , play an important role in realizing the

phase. When −0.01 ≲ J ′/J ≲ 0, the ground state turns into the SN phase, where the pair-

fluctuation effect of P is still significant. Here, the pair-creation and annihilation term
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Figure 3.14: Results at B/J = 0.4 with fixed J ′′/J = 0.01. (a) Low-energy excited states
of Stot = 0, 1, 2 sectors with respect to J ′/J . The level crossing of the lowest excited states
with Stot = 1 and 2, which is extracted from the main panel, are seen more clearly in the
inset. When J ′ ∼ −0.01, the Stot = 2 state is the lowest excited state, which signals the
spin nematic orderings typically found in the spin-1 BLBQ models. (b) Spin (Eq. (3.28)),
quadrupolar (Eq. (3.29)), and staggered spin (Eq. (3.44)) structure factors at the Γ-, K-,
and M-points. (c) The partial energy from some terms in the effective Hamiltonian, et,
eP , eJ , and eB. (d) Boson density ⟨nt⟩. Figures are taken from Ref. [2] with the legend
in (c) modified from the capital letters (E∗) to the small letters (e∗) (Copyright ©2020,
American Physical Society).
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generates the effective biquadratic interactions between the neighboring spin-1 bosons,

whereas the explicit biquadratic interaction term HB in the effective Hamiltonian does

not much contribute to the formation of the SN, which can be confirmed by the fact that

eB is almost zero in the SN phase. In the AFM phase, the Heisenberg interaction term,

HJ , largely gains the energy. In Fig. 3.14(d), we show the J ′/J dependence of the boson

density, ⟨nt⟩, where ⟨nt⟩ increases to ⟨nt⟩ ∼ 1 around the transition from the FQ-BEC to

the SN phases.

3.4 Discussions

3.4.1 Origins of the quadrupolar moments on dimers

As we can see in Figs. 3.6 and 3.8, the pair-creation and annihilation term, HP , in our

effective Hamiltonian of spin-1 bosons, plays a dominant role in the FQ-BEC and FQ-p-

BEC phases. In order to elucidate how HP works, we set the interaction parameters as

J ′′ = −J ′ so as to eliminate the Heisenberg term, HJ . Then, the effective Hamiltonian

up to the first-order perturbation in J ′/J and J ′′/J is reduced to

Hquad = Hµ +Ht +HP

= −µ
N∑
i=1

ni +
∑
⟨i,j⟩

∑
α=x,y,z

[(
tb†i,αbj,α + Pb†i,αb

†
j,α

)
+ h.c.

]
. (3.47)

Performing the Fourier transform as

b†i,α =
1√
N

∑
k

eik·rib†k,α, (3.48)

the Hamiltonian is rewritten as

Hquad =
1

2

∑
k

∑
α=x,y,z

[
(tηk − µ)

(
b†k,αbk,α + bk,αb

†
k,α

)
+Pηk

(
b†k,αb

†
−k,α + b−k,αbk,α

)]
+ const., (3.49)

where ηk is given as

ηk = 2

[
cos kx + cos

(
kx +

√
3ky

2

)
+ cos

(
kx −

√
3ky

2

)]
. (3.50)

Using the Bogoliubov transformation given as(
βk,α
β†−k,α

)
=

(
cosh θ sinh θ

sinh θ cosh θ

)(
bk,α
b†−k,α

)
(3.51)

with

tanh 2θ =
Pηk

tηk − µ
, (3.52)
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Figure 3.15: Energy bands of the eigenstates of the Hamiltonian (Eq. (3.47)) at B/J = 0.2
when (a) J ′ − J ′′ < 0 and (b) J ′ − J ′′ > 0. The parameters in the quadratic Hamiltonian,
µ, t, and P , whose original forms are given in Eqs. (3.17), (3.18), (3.19), are used at the
first-order level. Figures are taken from Ref. [2] (Copyright ©2020, American Physical
Society).

the Hamiltonian Hquad is diagonalized as [177]

Hquad =
∑
k

∑
α=x,y,z

εk

(
β†k,αβk,α + βk,αβ

†
k,α

)
+ const., (3.53)

where the particle-hole symmetric energy bands, εk, are given as

εk = ±1

2

√
(tηk − µ)2 − (Pηk)

2. (3.54)

We show in Figs. 3.15(a) and 3.15(b) the energy bands εk/J at B/J = 0.2 for J ′−J ′′ < 0

and J ′−J ′′ > 0, respectively. When the bottom of the energy band reaches the zero level,

the instability occurs. Then the βk-bosons of the corresponding wave number condenses

and construct a BEC phase. This instability takes place when we increase J ′ = −J ′′

only up to |J ′ − J ′′| /J ∼ 0.05, which is compatible with the results of the numerical

diagonalization that the product state of singlet dimers immediately replaced by the FQ

phases along the J ′ = −J ′′ line. The energy band εk takes the minimum values at the

Γ-point for J ′ − J ′′ < 0, while it is minimized at the K-point when J ′ − J ′′ > 0. The

former case corresponds to the uniform FQ ordering of FQ-BEC phase, and the latter

well describes the three-sublattice-like configuration of the quadrupolar moments in the

FQ-p-BEC phase (see Fig. 3.7(b)).

3.4.2 Classification of “spin-nematic” phases

Conventionally, we identify a standard SN phase in the spin-1 system by the absence of the

local sublattice spin ordering and the developments of the quadrupolar ordering. As we

mention in Chapter 1, the spin-1 BLBQmodel hosts the SN phase when |J | ≲ |B|, in which

case the magnetic order is suppressed. The tower of states consists of Stot = 0, 2, 4, · · · ,
suggesting that the bound two-magnon pairs spontaneously break the SU(2) symmetry in

the thermodynamic limit.

The condensation of the bound two-magnon in spin-1/2 systems is another series of

the spin nematics [51, 68]. The bound two- or multi-magnons can move around, which
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is expressed by the quadrupolar order parameter as ⟨b†i,↓b
†
j,↓⟩ = ⟨s−i s

−
j ⟩ = Qei2θ ̸= 0 17.

Near the fully-saturated ferromagnetic phase, the two-magnon pair instability can occur;

the adjacent bosons with Sz = +1 and Sz = −1 fluctuate in pair or exchange, and form

a quadrupolar moments and consequently the Sz = −1 boson moves in space. This is

equivalent to the BEC of spin-2 bosons in cold atoms consisting of S = 0 and 2 sectors [178].

For particular models where the Stot = 1 sector is excluded from the low-energy manifold,

this type of spin nematic phase can be realized without magnetic field, which is identified

by the tower of states reflecting the bound multi-bosons like the spin-1 systems [51, 58, 62].

The aforementioned two kinds of n-nematic order is possible only when the spin-1

bosons are bound by the large quantum fluctuations, basically in a strong magnetic field

or with the strong ferromagnetic interactions 18.

The other class of the spin nematic phase known so far is the p-type spin nematic phase

found in the spin-1/2 systems [16, 66, 67, 81]. The vector-chiral moment pi = Si1 × Si2

(Eq. (3.41)), condenses and generates a spin nematic order, with the sublattice magnetic

moments suppressed. Then, the vector-chiral order breaks the SU(2) symmetry down to

the U(1) symmetry forming a uniaxial rotator, and the tower of states is formed by one

state of each Stot-sector, which suggests the BEC by a one-magnon instability.

In the one-dimensional and two-dimensional dimer systems, the quadrupolar moment

lives on a dimer bond. When we vary the model parameters, we can tune the boson

density from zero to one. When the bosons are fully occupied, ⟨nt⟩ = 1, the situation is

the same as the one of the spin-1 systems, and the SN phase of the spin-1 type appears.

When ⟨nt⟩ < 1, the quadrupolar ordering of spin-1 bosons, the FQ-BEC phase or F-

nematic phase, appears. In the FQ phases, an isolated magnon condenses owing to the

hopping and pair-creation/annihilation terms of bosons, and the SU(2) symmetry is broken

down to U(1), which is similar to the spinor-BEC in cold atoms [179], and shares the

common property with the p-type nematic phase. As the S = 1 dimer always remains

nonmagnetic, it could be considered as a sort of “nematic” order in terms of the S = 1

boson. When we separately focus on the upper and lower layers carrying the spin moments

in the bilayer lattice, a ferromagnetic sublattice long-range order is realized in each layer,

while the overall spin moments in units of a dimer is killed by the quantum flctuations

inside the dimers. This kind of ordering is probably a different phase from the inter-

layer antiferromagnetic and the intralayer ferromagnetic orderings derived by the mean-

field analysis, where the large spin moments are present in the spin-1/2 ferromagnetic

dimers [87].

We discussed in Sec. 3.3 the FQ-p-BEC phase, where the large vector-chiral correla-

tion and the 120◦ intralayer magnetic correlation develop, while keeping the dimer unit

nonmagnetic. There are two possible scenarios; in a mean-field treatment, these two cor-

relations are incompatible, while our approach fully taking in the quantum many-body

effect may provide a new possibility that these two kinds of orders coexist. The other is

the absence of the local spin moments, so that the p-type vector-chiral order may be sta-

bilized. Within our present study, the low-energy excited states are not clearly separated

17Here, the fully saturated ferromagnetic state is regarded as the vacuum, and the boson operator b†i,↓
creates a magnon with Sz = −1. θ is the relative phase between two magnons.

18Either the inter-site interactions (mainly in spin-1/2 systems) or the intra-site Hund’s couplings
(mainly in spin-1 systems) is possible.
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into those of the biaxial or uniaxial rotators, namely, whether the SU(2) symmetry is fully

broken or broken only down to U(1).

3.4.3 Exchange processes of S = 1 moments

1
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(a)

(b)
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Figure 3.16: Three types of the fluctuations which contribute to the stabilization of the
spin nematic phase. The spin-1/2 and spin-1 are denoted by the single and double ar-
rows, respectively. (a) In the spin-1/2 dimer systems, the ring-exchange interactions
which changes the spin configurations (1, 2, 3, 4) ↔ (2, 3, 4, 1) in the upper panel (see
Refs. [3, 86]). The interaction (J ′′si · sj)2, where si is the spin-1/2 operator, appears in
the second order perturbation process (see Refs. [87, 180]), and plays a similar role. (b)
Fluctuation between two rigid spin-1’s, where Si is the spin-1 operator, by the biquadratic
interaction (Si · Sj)

2. (c) In the spin-1 dimer system, the pair-creation/annihilation terms
(P ) (Eq. (3.10)) mainly work, which are generated by the first-order term in J ′ and J ′′.
Figures are taken from Ref. [2] (Copyright ©2020, American Physical Society).

Previous studies on the spin-1/2 dimer systems showed that the origin of the spin ne-

matic phases in the spin-1/2 dimer systems is the ring-exchange interactions between

the neighboring dimers, which permutate the four spin-1/2’s along the twisted path,

(1, 2, 3, 4) → (2, 3, 4, 1) [3, 86] (see Fig. 3.16(a)). In the situation, when the two spin-1/2’s

on a dimer form an S = 1 triplet, the ring-exchange interactions along the twisted path

exchanges two spin-1’s on the neighboring dimers of
(
Sz
i ,Sz

j

)
= (+1,−1) with (−1,+1).

This exchange process works in the same manner as the biquadratic interactions between
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two spin-1’s, B (Si · Sj)
2, and when all of the dimers in the system take the triplet S = 1

states, the system is equivalent to the spin-1 bilinear biquadratic model formed by the

triplet.

In the spin-1/2 ferromagnetic dimer model [87], it is demonstrated that the inter-dimer

Heisenberg interactions J ′ and J ′ (J∥ and J× in their notation, respectively) operated

twice through the second-order perturbation process play an essential role to generate the

spin nematic order. As we show in the schematic picture in Fig. 3.16(a), this second-

order process plays a similar role to the ring-exchange interactions, and contributes to the

effective biquadratic interactions between triplet dimers [87, 180]. In this case, they need

large J ′ and J ′′ couplings since the spin nematic order realized there needs to overwhelm

the stable ferromagnetic phase.

In our spin-1 dimer system, the pair-creation and annihilation effect (Eq. (3.10)) creates

an off-diagonal condensation of two spin-1 pair with Sz = +1 and Sz = −1 through the

processes shown in Fig. 3.16(c). When this pair fluctuation is operated twice, the same

effect as the biquadratic interaction between spin-1 bosons takes place. The advantageous

point of this process is that this effect is a first-order process in the inter-dimer interactions,

and will be generated more easily than the biquadratic interaction B itself or the ring-

exchange interactions.

Although in Refs. [87, 180], they did not discuss it in terms of spin-1 bosons, we

can also regard the second-order perturbation term in J ′ and J ′′ in the spin-1/2 dimer

systems that gives the effective biquadratic interactions between triplets as the pair-

creation/annihilation process of bosons. Nevertheless, the pair-creation and annihilation

effect in our spin-1 dimer system should be stronger than that in the spin-1/2 dimer sys-

tems, which is indicated by the construction of triplet state in a spin-1 dimer (Eq. (3.6)),

which consists of twice as many terms as the one consisting of two spin-1/2’s 19. This

indicates that the entanglement between two S = 1 dimers could be more easily increased.

We consider that this should be an origin of various quadrupolar phases in our spin-1

dimer system.

3.5 Possible relevance to Ru-dimer materials

Here, we discuss the possible relevance to the actual dimer compounds Ba3MRu2O9 in-

troduced in Sec. 1.6. We expect that the Ru5+ ion will carry S = 1 for some reasons. The

ruthenium ion Ru5+ takes 4d3 configuration on t2g orbitals with high spin state due to

strong Hund’s couplings, and in fact the band structure calculation of M = Co indicates

that the possibility of the “low-spin” state with S = 1/2 proposed in Ref. [181] is ex-

cluded [182]. This probably imply that the Ru ion takes S = 3/2 moment owing to the 4d3

configuration, and indeed there has been an attempt to understand the magnetic suscepti-

bility ofM = Ca by S = 3/2 model with the biquadratic interaction [183]. Meanwhile, the

experimental results suggest that the magnetic moments are suppressed, and take smaller

19In a spin-1/2 dimer, the triplet states are given as

|tx⟩ =
i√
2
(|↑, ↑⟩ − |↓, ↓⟩) , |ty⟩ =

1√
2
(|↑, ↑⟩+ |↓, ↓⟩) , |tz⟩ = − i√

2
(|↑, ↓⟩+ |↓, ↑⟩) , (3.55)

where |↑⟩ and |↓⟩ are the eigenstates of sz with sz = +1/2 and −1/2, where s is the spin-1/2 operator.
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values, for example, 1.0–1.5 µB for M = Ni, and 1.16–1.44 µB for M = Cu [128, 130]. It

is expected that the three-fold degenerate t2g orbitals are split into two-fold degenerate eg
orbitals and an a1g orbital, and the a1g orbitals of Ru

5+ ions in a dimer strongly hybridize,

so that the one singlet is formed in a dimer and reduces the magnetic moment of Ru5+ to

S = 1 effectively. Even if the spin moments of Ru5+ are more likely to be S = 3/2 than

S = 1, only the septet states with Stot = 3 are added in the highest energy levels, and our

treatment in the low-energy manifold holds.

The Heisenberg interactions J , J ′, and J ′′ are usually antiferromagnetic, and we can

naively consider that the longer inter-dimer distance gives the smaller inter-dimer inter-

actions, J ′ and J ′′. In the phase diagram at B/J = 0.2, if we make the inter-dimer

interactions stronger starting from the center with J ′ = J ′′ = 0 toward the upper right

direction, the ground state of the spin-1 dimer triangular lattice changes from the singlet,

the FQ-p-BEC, to the AFM phases. This is consistent with the results in experiments,

(Ca, Sr) → (Zn) → (Co,Ni,Cu). When we assume that the ground state of the M = Zn

compound corresponds to the FQ-p-BEC phase, it can be suspected that the absence of

the phase transition and the suppression of the magnetic order down to lowest temper-

ature might be compatible with the ambiguous structure of the low-lying states in this

phase which cannot be simply ascribed to any type of the symmetry-breaking long-range

orderings known so far.

3.6 Summary of this Chapter

In this Chapter, we found a variety of quadrupolar phases formed by triplet dimers in

a spin-1 dimer triangular lattice forming a bilayer. When the dimers are decoupled,

the dimer takes the singlet state at small B/J and the triplet state at large B/J . We

perturbatively took in the inter-dimer Heisenberg exchange interactions, J ′ and J ′′ up

to the second order, and derived a low-energy effective model described by the hard-core

bosons, where the dimer singlet is the vacuum and the dimer triplet is the boson with spin-

1. The dominant part of the effective Hamiltonian of bosons is constructed by the hoppings

of bosons, t, and the pair-creations and annihilations of bosons, P , in addition to the

chemical potential of bosons, µ, and the Heisenberg exchange interactions between spin-1

bosons, J . The dimer bosons are introduced to the system by µ, and the t-term plays a

role to form a BEC structure. The ferromagnetic and antiferromagnetic phases are realized

owing to the Heisenberg interaction J with J < 0 and J > 0, respectively. When t and

P are large at J ′ ∼ −J ′′, the ferroquadrupolar-BEC (FQ-BEC) and FQ-p-BEC phases

appear, where the quadrupolar moments on a dimer condense, which has a similarity

to the anisotropic superfluidity in cold atoms [179]. In addition, when 1/3 ≲ B/J , we

observed the typical spin-1 nematic phase, which is the same as the one found in the spin-1

bilinear-biquadratic models, in a small inter-dimer interaction region, because almost all

dimers are occupied by the spin-1 bosons which are exchanged by the pair-fluctuation

effect of P . Finally we discussed the possible correspondence to the spin dimer material

Ba3MRu2O9, where the nontrivial nonmagnetic behavior in M = Zn may correspond

to our FQ-p-BEC phase with the 120◦-correlation of the spin moments and the p-type

vector-chiral correlation.
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Chapter 4

Microscopic evaluation of the

spin-1 biquadratic interactions by

the perturbation calculation

In this Chapter, related to the Chapter 3, we discuss the microscopic origin of the spin-1

biquadratic interaction, which induces the spin nematic orders. By decomposing the two

spin-1 into two pairs of electrons with spin-1/2, we perform the perturbation calculation

up to the fourth order from the strong coupling limit. We deal with two cases, the four-

site–one-orbital system aiming at the spin-1/2 dimer system, and the two-site–two-orbital

system which models the degenerate eg orbital in the transition metal ions. In the former

case, we find that only the ring-exchange process at the fourth-order perturbation along

the twisted exchange path contributes to the biquadratic interaction, and it can give as

large a biquadratic interaction as the Heisenberg interaction. By contrast, in the latter

case, we find the biquadratic interaction is small.

4.1 Overview

In the spin-1 systems, a main source of the spin nematic order is the spin-1 biquadratic

interaction [19, 33]. When the biquadratic interaction becomes large and breaks the mag-

netic order, the ferroquadrupolar or antiferroquadrupolar spin nematic order is realized.

Here we microscopically evaluate the biquadratic interaction by splitting the spin-1 into

two electrons with spin-1/2. The biquadratic interaction is a product of four spin oper-

ators, and naively it is derived from the fourth-order perturbation calculation from the

strong coupling limit in the electronic system.

We perform the perturbation calculations up to the fourth-order for the two cases

shown in Fig. 4.1, the four-site–one-orbital system in Sec. 4.2 and the two-site–two-orbital

system in Sec. 4.3 1. We discuss the difference between the two cases and other possible

schemes to have a larger biquadratic interaction in Sec. 4.4. Sec. 4.5 is the summary of

this Chapter.

1We note that a part of the contents in Sec. 4.2 is briefly mentioned in Ref. [184].
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(a) (b)

dimer dimer

1

2

3

4

site site

Figure 4.1: Schematic pictures of the lattice geometries that we deal with. (a) Four-
site–one-orbital system. The site-1 and 2 on the left and the site-3 and 4 on the right
respectively form the dimers. (b) Two-site–two-orbital system. Each site has two degen-
erate orbitals α and β. Figure is drawn referring to Ref. [3].

4.2 Four-site–one-orbital system

4.2.1 Setup and fourth-order perturbation calculation

In the first case, we consider the single-orbital Hubbard model on the four-site system

with half-filling,

H = −
∑
⟨i,j⟩,σ

tij

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓, (4.1)

where c†i,σ/ci,σ represents the creation/annihilation operator of an electron with spin-σ

(σ =↑, ↓) on site-i, and niσ = c†i,σci,σ denotes the number operator. The transfer integrals

tij in the first term are set as t13 = t24 = t, t14 = t23 = t′, and t12 = t34 = t′′ as shown in

Fig. 4.1(a). The on-site Coulomb repulsion is denoted as U .

In the strong coupling limit U → +∞, each site has one electron, and the low-energy

manifold of states are described by four localized spin-1/2’s. From this limit, we in-

troduce perturbatively the effect of electron hoppings, tij . Performing the perturbation

calculation up to the fourth order in terms of tij/U by the Schrieffer–Wolff canonical

transformation [185, 186], we obtain the effective Hamiltonian of the localized spin-1/2’s,

Heff. The effective Hamiltonian is divided into two terms by the order of the perturbation

as

Heff = H(2)
eff +H(4)

eff , (4.2)

where H(n) is the term from the n-th order perturbation. We note that the third-order

perturbation terms cancel out and do not contribute to the effective Hamiltonian.

As is well known, the second-order perturbation processes give the Heisenberg inter-

3When one sees Fig. 2(a) in Ref. [3], one may consider that two of three (2b4s) processes are the
‘disconnected’ processes, but all three (2b4s) processes should be regarded as the ‘disconnected’ processes.
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1b2s

2b3s

2b4s (disconnected)

4b4s

1

2

3

4

Figure 4.2: Perturbation processes at the fourth order classified by the numbers of bonds
and sites involved in the processes. Bold lines denote the bonds where the electrons hop.
Figure is drawn referring to Ref. [3] 3.

action,

H(2)
eff =

∑
⟨i,j⟩

Jijsi · sj , Jij =
4 (tij)

2

U
. (4.3)

The effective Hamiltonian derived at the fourth-order, H(4)
eff , can be categorized into

four kinds as follows;

H(4)
eff = H(1b2s)

eff +H(2b3s)
eff +H(2b4s)

eff +H(4b4s)
eff . (4.4)

Here, we classify the perturbation processes at the fourth-order by the numbers of bonds

and sites contributing to the processes, namely, H(mbns)
eff consists of the perturbation pro-

cesses where the m-bonds and n-sites are involved. For example, in the process (1b2s),

one bond (1b) and the two sites at the edges of the bond (2s) contribute to the perturba-

tion process. The schematic pictures of these four kinds of the fourth-order perturbation

processes are shown in Fig. 4.2. The (4b4s) process, where four bonds and all sites are

involved in the fourth-order processes, gives the effective interactions including the four-

body interactions called the ring-exchange interactions, which are expressed as

H(4b4s)
eff = −1

5
KC

∑
(i<j)∈a,b,c,d

si · sj

+ 4KC
∑

[a−b−c−d]

[(sa · sb) (sc · sd) + (sa · sd) (sb · sc)− (sa · sc) (sb · sd)] ,

(4.5)

KC =
20tabtbctcdtda

U3
. (4.6)

Here, C is the closed loop formed by four-sites as a–b–c–d–a. The similar fourth-order per-
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1

2

3

4

Figure 4.3: Schematic picture of the projection of the spin-1/2 system onto the spin-1
system by pairing two spin-1/2’s.

turbation calculations have been performed in several previous studies [187–190], and

also in Ref. [191]. The ring-exchange interactions from the (4b4s) processes can be

classified into three kinds by the choice of C, which are depicted in Fig. 4.2. When

(a, b, c, d) = (1, 2, 4, 3), the standard ring-exchange process appears, which we denote as R

here. When we choose (a, b, c, d) = (1, 2, 3, 4), the process denoted as R′ is given, and the

case of (a, b, c, d) = (1, 3, 2, 4) is denoted as T 4.

4.2.2 Projection onto the triplet subspace

We next transform this effective Hamiltonian Heff which is described by the spin-1/2

operators into the one expressed in terms of the spin-1 operators. This transformation

can be achieved by the projection of the effective Hamiltonian Heff onto the space spanned

by the triplet states consisting of neighboring two spin-1/2’s as

H̃eff = P1HeffP1, (4.7)

where P1 is the projection operator onto the triplet states. Then, there appear two kinds

of the interactions between two spin-1’s, the Heisenberg (bilinear) interaction, J , and the

biquadratic interaction, B. These interactions consist of the contributions from the terms

of the effective spin-1/2 Hamiltonian, H(2)
eff and H(nbms)

eff as

J = J2 +
∑
n,m

J
(nbms)
4 , B =

∑
n,m

B
(nbms)
4 . (4.8)

Here, the contribution from H(2)
eff is denoted as J2, and that from H(nbms)

eff is expressed as

J
(nbms)
4 or B

(nbms)
4 . For the Heisenberg interaction, J , each contribution is expressed as

J2 =
2
(
t2 + (t′)2

)
U

, (4.9)

J
(1b2s+2b3s)
4 =

−8t4 − 8 (t′)4 + 4t2 (t′′)2 + 4 (t′)2 (t′′)2

U3
, (4.10)

J
(R)
4 = −KR

5
= −4t2 (t′′)2

U3
, (4.11)

4The coupling constants described as KR, KR′ , and KT correspond to h1, h2, and h3 in Ref. [190],
respectively.
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J
(R′)
4 = −KR′

5
= −4 (t′)2 (t′′)2

U3
, (4.12)

J
(T)
4 =

4KT

5
=

16t2 (t′)2

U3
. (4.13)

Note that the (4b4s) processes are further divided into R, R′, and T. The biquadratic

interaction appears only from the process-T, which is given as

B
(T)
4 = 2KT =

40t2 (t′)2

U3
. (4.14)

We can see the reason why only the T-process contributes to the biquadratic interac-

tion, and R- and R′-processes do not, in terms of the process of spin flips. The matrix

representations of the Heisenberg and the biquadratic interactions in the Sz
tot = 0 subspace

are given as

Si · Sj =
(
|+1,−1⟩ |0, 0⟩ |−1,+1⟩

)−1 1 0

1 0 1

0 1 −1


⟨+1,−1|

⟨0, 0|
⟨−1,+1|

 , (4.15)

(Si · Sj)
2 =

(
|+1,−1⟩ |0, 0⟩ |−1,+1⟩

) 2 −1 1

−1 2 −1

1 −1 2


⟨+1,−1|

⟨0, 0|
⟨−1,+1|

 , (4.16)

respectively. Here, |Sz
1 ,Sz

2 ⟩ = |+1,−1⟩, |0, 0⟩, and |−1,+1⟩, where |Sz
1 ,Sz

2 ⟩ is the two

spin-1 state with Sz
1 and Sz

2 . are chosen as the three basis states. Then, one can see that

⟨+1,−1 |Si · Sj | −1,+1⟩ = ⟨−1,+1 |Si · Sj |+1,−1⟩ = 0, (4.17)〈
+1,−1

∣∣∣ (Si · Sj)
2
∣∣∣−1,+1

〉
=
〈
−1,+1

∣∣∣ (Si · Sj)
2
∣∣∣+1,−1

〉
= 1 ̸= 0, (4.18)

hold. This means that the biquadratic interaction exchanges |+1,−1⟩ and |−1,+1⟩,
whereas the Heisenberg interaction cannot. Here we go back to the perturbation processes

by decomposing two spin-1’s with Sz = +1 and Sz = −1 into spin-1/2’s as |+1⟩ = |↑, ↑⟩
and |−1⟩ = |↓, ↓⟩, where |↑⟩ and |↓⟩ are the spin-1/2 state with sz = +1/2 and −1/2,

respectively. In Fig. 4.4(a), we show an example of the process-T, where two spin-1’s

with Sz = +1 and Sz = −1 are exchanged through this process, which means that the

process-T can contribute to the biquadratic interaction between spin-1’s. By contrast, the

process-R and R′ only change the |Sz
1 ,Sz

2 ⟩ = |+1,−1⟩ state into the |0, 0⟩ state as shown

in Fig. 4.4(b), and cannot generate the spin-1 biquadratic interaction. If one wants to ex-

change |+1⟩ and |−1⟩ through the perturbation process, one needs to move two electrons

with up spin on the site-1 and 2 on the left side to the site-3 and 4 on the right side, and

those with down spin on the site-3 and 4 to the site-1 and 2. In process-T, electrons hop

only between the left and right sides and do not hop between the two sites on either left

or right. In contrast, electrons hop between two-sites on left/right sides in process-R and

R′, which disturbs the exchanges of |+1⟩ and |−1⟩. One might consider that the (2b4s)

processes shown in Fig. 4.4(c) can also exchange |+1⟩ and |−1⟩ and contribute to the

biquadratic interactions. However, the (2b4s) processes consist of two independent pro-
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(a) 4b4s-T

(b) 4b4s-R

(c) 2b4s (disconnected)

Figure 4.4: (a) An example of the electron hoppings in the (4b4s)-T process that exchanges
Sz = +1 and Sz = −1 spin-1’s, which contributes to the biquadratic interaction between
two spin-1’s. (b) An example of the electron hoppings in the (4b4s)-R process which
only transforms (Sz

1 ,Sz
2 ) = (+1,−1) into (0, 0), not reaching (−1,+1). (c) An example of

the electron hoppings in the disconnected (2b4s) process which exchanges Sz = +1 and
Sz = −1 spins. However, the two kinds of the processes shown above and below cancels
out with each other and do not generate the biquadratic interaction when U ′ = 0. Figures
(a) and (c) are drawn on the basis of Ref. [3].

cesses at the second order, which we express as “disconnected processes”, and they cancel

out overall. This cancellation is reasonable, since if it does not occur, one could create

numbers of interactions between two pairs of electron spins chosen arbitrarily no matter

how far apart they were. We show the t/U dependence of the Heisenberg interaction J

and the biquadratic interaction B, and B/J in Fig. 4.5(a), which indicates that the values

of B and J become the same order at U/t ≲ 5, which is not too unrealistic.

We note that the projection given in Eq. (4.7) is equivalent to leaving the interactions

only between spin-1 bosons in the spin-1 hard-core boson description of the spin-1/2 dimer

systems [84–86]. The spin-1 hard-core boson Hamiltonian transformed from the spin-1/2

dimer Hamiltonian is given as

H = −µ
N∑
i=1

ni + t
∑
⟨i,j⟩

∑
α=x,y,z

(
b†i,αbj,α + h.c.

)
+ P

∑
⟨i,j⟩

∑
α=x,y,z

(
b†i,αb

†
j,α + h.c.

)
+ V

∑
⟨i,j⟩

ninj
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(a) (b)

Figure 4.5: (a) The Heisenberg interaction J and the biquadratic interactions B as a
function of t/U (Eq. (4.8)) at U ′ = 0, 1, 2. The parameters are set as t = t′ = t′′ = 1.
(b) The contribution to J and B from various types of the perturbation processes as a
function of U/t. Figures are taken from Ref. [3] (©2018 The Physical Society of Japan
(J. Phys. Soc. Jpn. 87, 023702.)).

+
∑
⟨i,j⟩

[
JSi · Sj +B (Si · Sj)

2
]
ninj , (4.19)

and we focus only on the last term 5. The other terms are included in either of

P1Heff (1− P1), (1− P1)HeffP1, and (1− P1)Heff (1− P1).

4.2.3 An extension: intradimer Coulomb interaction

We consider a naive extension of this four-site–one-orbital case. We add to the Hubbard

Hamiltonian the intra-dimer Coulomb interaction given as

HI = U ′ (n1n2 + n3n4) . (4.20)

Then, two disconnected paths in the (2b4s) process get connected, and the biquadratic

interactions from (2b4s) are generated as

B
(2b4s;U ′)
4 =

4
(
t4 + (t′)4

)
U2

(
2

U
− 1

U − U ′ −
1

U + U ′

)
. (4.21)

Also, some terms already appearing when U ′ = 0 are modified by introducing the finite-U ′

as

J
(T)
4 =

16t2 (t′)2

U2 (U − U ′)
, (4.22)

5To be more precise, the V term is also left after the projection, but this term does not contribute
to the magnetic interaction. Also, the µ term is generated from the difference of the energy between the
singlet and triplet states, which appears using both of P1HeffP1 and (1− P1)Heff (1− P1).
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B
(T)
4 = t2

(
t′
)2 [ 32

U2 (U − U ′)
+

8

U2 (U + U ′)

]
, (4.23)

J
(2b3s;U ′)
4 = 16t2

(
t′
)2 [− 1

U3
+

1

U2 (U − U ′)

]
. (4.24)

The evaluation of J and B for the case of U ′ ̸= 0 are also shown in Fig. 4.5(a), and the

contribution from each perturbation process to J and B at U ′ = 1 is shown in Fig. 4.5(b).

When U ′ ̸= 0 is introduced, the value of B/J is almost unchanged at large U region, while

it is slightly suppressed at smaller U .

4.3 Two-site–two-orbital system

4.3.1 Setup

We consider the two-orbital Hubbard Hamiltonian also known as the Kanamori Hamilto-

nian [192, 193] with half-filling on two-site system as shown in Fig. 4.1(b),

H = −
∑
⟨i,j⟩

∑
µ,ν=α,β

tµνij

(
c†i,µ,σcj,ν,σ + h.c.

)
+ U

∑
i

∑
µ=α,β

ni,µ,↑ni,µ,↓

+ U ′
∑
i

(ni,α,↑ni,β,↓ + ni,α,↓ni,β,↑) +
∑
i

∑
σ

(
U ′ − JH

)
ni,α,σni,β,σ

+
∑
i

JH

(
c†i,α,↑ci,β,↑c

†
i,β,↓ci,α,↓ + c†i,α,↓ci,β,↓c

†
i,β,↑ci,α,↑

)
+
∑
i

Jp

(
c†i,α,↑ci,β,↑c

†
i,α,↓ci,β,↓ + c†i,β,↓ci,α,↓c

†
i,β,↑ci,α,↑

)
. (4.25)

Here, c†i,µ,σ (ci,µ,σ) is the creation (annihilation) operator of an electron with spin-σ on

µ-orbital (µ = α, β) of site-i, and ni,µ,σ = c†i,µ,σci,µ,σ is the number operator. The transfer

integral between the µ-orbital of site-i and the ν-orbital of site-j is described as tµνij . Here,

tαα12 = tββ12 = t and tαβ12 = tβα12 = t′. The two degenerate orbitals in each site, α and β,

are orthogonal 6, and the t′′-path in Sec. 4.2 disappears. When two electrons occupy the

same orbital on one site, they feel the intra-orbital Coulomb interaction, U . Two electrons

on the different orbitals on the same site gains the energy of the inter-orbital Coulomb

interaction U . In each site, there is the Hund’s coupling, JH , which favors the formation of

the triplet states by two electron spins on the different orbitals, and the pair-hopping effect,

Jp. When the crystal has the rotational symmetry, the relations given as U = U ′ + 2JH
and JH = Jp hold [194].

4.3.2 Fourth-order perturbation calculation

Similarly to Sec. 4.2, we perform the fourth-order perturbation calculation from the strong

coupling limit of tµνij = 0. However, the situation becomes more complicated than that

in Sec. 4.2. In the case of the spin-1/2 dimer, the low-energy manifold of states only

consists of the states where each site (orbital) is occupied by one electron. By contrast,

6Even when they are not orthogonal, we can take the linear combinations of the two orbitals such that
they become orthogonal.
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Figure 4.6: (a) Energy eigenvalues and eigenstates categorized by the number of electrons
in each site. The low-energy states {|m⟩} consist of the (2 + 2)-electron states, and the
(4 + 0)- and (1 + 3)-electron states are the excited states {|l⟩}. (b) An example of the
perturbation process of (4b4s)-T (see Fig. 4.4(a)). Owing to the Hund’s coupling, several
states hybridize through the perturbation process. Figures are taken from Ref. [3] (©2018
The Physical Society of Japan (J. Phys. Soc. Jpn. 87, 023702.)).
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in the present case, the states where two electrons occupy the same orbital in both sites

such as |i, j⟩ = |↑α↓α, ↑β↓β⟩ should also be regarded as the low-energy states, because

the intra-orbital Coulomb interaction U and the inter-orbital Coulomb interaction U ′ are

different by 2JH , which are usually much smaller than U and U ′ 7. From this perspective,

we denote the states where ni and nj electrons occupy the site-i and j respectively as

“(ni + nj)-electron state”. All of the states are categorized into either of the (2 + 2)-,

(3 + 1)-, (1 + 3)-, (4 + 0)-, and (0 + 4)-electron states. The (2 + 2)-electron states are the

low-energy states, and the other states are the excited states. We show the classification

of the (ni + nj)-electron states with their energies in Fig. 4.6(a). As the JH and Jp terms

hybridize the sz-basis states, some of the states are described by the linear combinations

of the multiple sz-basis states. In the hybridization by JH and Jp, the spins effectively

flip and hop inside the sites, which generates the additional paths to the perturbation

processes of the electron hoppings between two sites as shown in Fig. 4.6(b).

After performing the perturbation calculation up to the fourth order and obtaining

the effective Hamiltonian, Heff, we project Heff onto the subspace spanned by the two-site

states where both sites take the triplet states as H̃eff = P1HeffP1 in a similar manner to

the case of two spin-1/2 dimers. Then, the Heisenberg and biquadratic interactions J

and B are obtained. The contribution to the spin-1 Heisenberg interaction appears at the

second order, which is given as

J2 =
2
(
t2 + (t′)2

)
U + JH

. (4.26)

The fourth-order perturbation terms generate the Heisenberg and biquadratic interactions.

The contribution of each path to the Heisenberg interaction is given as

J
(T)
4 = t2

(
t′
)2 [− 12

(U + JH)2 (U − 2JH − Jp)
− 4

(U − 2JH − Jp) (U + JH)

]
, (4.27)

J
(2b4s)
4 =

t4 + (t′)4

2

[
− 8

(U + JH)3
+

6

(U + JH)2 (U − JH)
+

2

(U + JH) (U − JH)2

]
,

(4.28)

J
(1b2s)
4 =

t4 + (t′)4

2

[
− 8

(U + JH)3
− 6

(U + JH)2 (U − JH)
− 2

(U + JH) (U − JH)2

]
,

(4.29)

J
(2b3s)
4 = t2

(
t′
)2 [− 16

(U + JH)3
− 12

(U + JH)2 (U − 2JH − Jp)

− 4

(U + JH) (U − 2JH − Jp)
2

]
, (4.30)

In contrast to the spin-1/2 dimer system, the biquadratic interaction is generated from

7The perturbation calculation regarding these states where two electrons feel the intra-orbital Coulomb
interaction in each site as the excited states was performed in Ref. [195].
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the several paths in this case, and the contributions are given as

B
(T)
4 = t2

(
t′
)2 [− 12

(U + JH)2 (U − 4JH − Jp)
− 4

(U − 4JH − Jp)
2 (U + JH)

+
4

(U + JH)2 (U − JH)
− 12

(U + JH)2 (U − 2JH − Jp)

− 4

(U − 2JH − Jp)
2 (U + JH)

]
, (4.31)

B
(2b4s)
4 =

t4 + (t′)4

2

[
4

(U + JH)3
+

6

(U + JH)2 (U − 5JH + 2Jp)

+
6

(U + JH)2 (U − 5JH − 2Jp)
+

2

(U + JH) (U − 5JH + 2Jp)
2

+
2

(U + JH) (U − 5JH − 2Jp)
2 +

2

(U + JH)2 (U − JH)

+
2

(U + JH) (U − JH)2
+

3

(U + JH)2 (U − 3JH)

+
1

(U + JH) (U − 3JH)2

]
, (4.32)

B
(1b2s)
4 =

t4 + (t′)4

2

[
4

(U + JH)3
− 6

(U + JH)2 (U − JH)
− 2

(U + JH) (U − JH)2

+
3

(U + JH)2 (U − 3JH)
+

1

(U + JH) (U − 3JH)2

]
, (4.33)

B
(2b3s)
4 = t2

(
t′
)2 [ 8

(U + JH)3
− 6

(U + JH)2 (U − 3JH)
− 2

(U + JH) (U − 3JH)2

− 12

(U + JH)2 (U − 2JH − JP )
− 4

(U + JH) (U − 2JH − Jp)
2

+
12

(U + JH)2 (U − 4JH − Jp)
+

4

(U + JH) (U − 4JH − Jp)
2

]
. (4.34)

We show in Fig. 4.7(a) the JH/t dependence of J and B. We can confirm that the

contribution to the Heisenberg interaction from the fourth-order perturbation term, J4, is

ferromagnetic and partially cancels the antiferromagnetic contribution of the second-order

term, J2. The contribution to the Heisenberg interaction from each term is estimated in

Fig. 4.7(b). For the biquadratic interaction, the contribution mainly comes from two paths,

(2b4s) and (4b4s)-T as shown in Fig. 4.7(b). The former gives the positive biquadratic

coupling, and the latter gives the negative one. The coupling constant B is positive on a

whole, whose value becomes small because of the cancellation of the contributions from

(2b4s) and (4b4s)-T. As a result, the value of B/J becomes smaller in contrast to the case

of the spin-1/2 dimers. We note that even when we take the JH → 0 limit in this case, the

result does not match the one in Sec. 4.2 with U ′ → U . This is because only the present

case properly deals with low-energy manifold in the U ′ ∼ U region by constructing the

low-energy states by all of the (2 + 2)-electron states.
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0

0. 5

(a) (b)

Figure 4.7: (a) The evaluation of the Heisenberg and biquadratic interactions, J and B.
The parameters are set as t = t′ = 1, Jp = 0, and U = 6. (b) The contribution to the
Heisenberg and biquadratic interactions from each process. Figures are taken from Ref. [3]
(©2018 The Physical Society of Japan (J. Phys. Soc. Jpn. 87, 023702.)).

site site

(a) (b)

Figure 4.8: (a) Schematic picture of the three-orbital system with two degenerate orbitals
and one orbital with a higher energy by ∆ (drawn referring to Ref. [3]). (b) Typical
fourth-order perturbation process via the excited states drawn referring to Ref. [196].

4.4 Discussion

We have performed the fourth-order perturbation calculations for the two cases so far, the

four-site–one-orbital system which aims at the spin-1/2 dimers (Sec. 4.2), and the two-

site–two-orbital system mimicking the eg-orbital in the transition metal ions (Sec. 4.3).

As a result, the former case will give the comparable value of B to J , while B is much

smaller than J for the latter case. Then, when we just construct the spin-1 systems

by the two-orbital Mott insulator and deal with the magnetic interactions with purely

electronic origin, the biquadratic interaction does not become large enough to realize the

spin nematic phases.

One possible way to overcome this issue in Sec. 4.3 was proposed by Mila and

Zhang [196]. They additionally considered one quasi-degenerate orbital in each site which

takes a higher energy by the crystal field splitting, ∆, which seems to be realized when

the three-fold degenerate t2g-orbitals in the crystal field with octahedral symmetry split
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Figure 4.9: The schematic picture of the dimer covering of the ferromagnetic J1–J2 square
lattice.

into the doubly-degenerate eg orbitals and the a1g orbital by the trigonal distortion. They

showed that the second-order perturbation processes through the orbital with higher en-

ergy gives the ferromagnetic Heisenberg interaction, which suppresses the antiferromag-

netic one. At the fourth order, the perturbation proceesses similar to (4b4s)-T path,

where one of the two degenerate orbital and the orbital with higher energy are involved

and the hoppings t and tex are used as shown in Fig. 4.8(b), appears. Then, they found

that the biquadratic interaction generated by the fourth order processes takes a relatively

larger value, although they did not take all of the possible perturbation processes into

consideration.

Also, we have only treated the Heisenberg and biquadratic interactions of the purely

electronic origin, while there are some other sources of the biquadratic interactions. The

most representative one might be the electron-phonon interactions, which in fact can

generate the large biquadratic interactions in the spinels [40, 41, 45], although the situation

will become far complicated.

On the other hand, in the spin-1/2 dimer system, the biquadratic interaction can

take a large value, and the spin nematic order will be realized once the dimers take the

triplet state. To generate the triplet state, the ferromagnetic interactions inside the dimers

are needed. One way to make the system ferromagnetic is applying a strong magnetic

field [51, 58, 66, 72]. Another way is utilizing the superexchange processes via the ligand

ions. When two transition metal ions and the ligand ion in between are placed forming 90◦,

the superexchange interaction between two magnetic ions are ferromagnetic according to

the Kanamori–Goodenough rule [197, 198]. This situation is similar to the aforementioned

scheme given by Mila and Zhang [196].

In the spin-1/2 systems, it has been proposed that the spin nematic order is realized

in the ferromagnetic J1–J2 models [51, 64, 66, 67]. The origin of the spin nematic order

appearing there is ascribed to the frustration effect which suppresses the kinetic motion of

the single-magnons. Meanwhile, based on our perturbation calculations, we could under-

stand its microscopic origin as follows; we can break the system into the pieces of dimers

similarly to the lattices where the dimers are well-defined [84–87] (see Fig. 4.9), and then

the J1 and J2 exchange interactions will work as the (4b4s)-T process between two dimer

bonds, which generates the effective biquadratic interaction. As each dimer bond favors

the triplet dimer state by the ferromagnetic J1, the effective biquadratic interactions create

the spin nematic order.
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4.5 Summary of this Chapter

In this Chapter, we microscopically evaluated the spin-1 Heisenberg (bilinear) and bi-

quadratic interactions. We separate the two spin-1’s into the two pairs of electrons, each

of which carries the spin-1/2, and performed the perturbation calculations in the four

electron systems up to the fourth order from the strong coupling limit. We dealt with

two cases, the four-site–one-orbital system and the two-site–two-orbital system. For the

former case, which aims at the spin-1/2 dimer system, we found that the biquadratic in-

teraction is generated only by the ring-exchange processes at the fourth-order where all

four electrons cyclically hop along the twisted paths. The biquadratic interaction in this

case can take a large value, which will lead to the possible design of the spin nematic

order by making use of the dimer structure. By contrast, for the latter case aiming at the

degenerate eg orbitals in the transition metal ions, the biquadratic exchange is suppressed

when we only treat the two-orbital system and the electronic origin.



(The contents in Chapter 5 (p. 101–p. 114) will be published as a journal article, and are undisclosed.)

（Chapter 5の内容は，雑誌論文として今後刊行する準備中であるため，非公表とする．）
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Chapter 6

Summary

In this thesis, we discussed the quadrupolar phases in quantum spin systems from several

viewpoints, aiming at finding another clue to probe the spin nematic phase, and offering

a platform to realize the quadrupolar phases without difficulties.

First, we investigated the magnetic field effect on the finite-temperature properties

of spin-1 nematic phases using the bilinear-biquadratic model, a canonical model of spin

nematics. Combining the semiclassical approximation and the classical Monte Carlo sim-

ulation, we found that the characteristic field dependence of the specific heat in ferro-

quadrupolar phase transition, which will add a thermodynamic hint for detecting spin-1

ferro-nematics in experiments. The peak of the specific heat which implies the phase tran-

sition from the paramagnetic phase at high temperature to the ferroquadrupolar phase

first goes up in an applied magnetic field, and then decreases in a larger field. The reen-

trant behavior is ascribed to the entropic effect owing to the quantum fluctuation effect of

the quadrupolar moments. Both the paramagnetic and ferroquadrupolar phases respond

to the magnetic field paramagnetically, which causes the constant shift of the energy by

the Zeeman term in both phases. However, when the system acquires the magnetization,

spins align and easily loses its entropy in the paramagnetic phase, whereas the quadrupo-

lar phase keeps its entropy by fluctuating inside the plane perpendicular to the magnetic

field, which relatively stabilizes the ferroquadrupolar phase.

Next, we studied the ground-state properties of the bilayer triangular lattice formed

that consists of spin-1 dimers. Our direct motivation was understanding the nontrivial

nonmagnetic phase in the vicinity of the singlet phase with finite gap in Ba3MRu2O9,

where M is the divalent cation. We derived the effective Hamiltonian in a spin-1 hard-

core boson language which describes the low-energy properties of the original spin-1 dimer

system. There, the triplet dimer states are identified as the spin-1 bosons, and the singlet

state is the vacuum of the boson. By the numerical diagonalization of the effective model,

we found three kinds of the quadrupolar phases formed by the spin-1 bosons. These

quadrupolar phases are supported by the pair-creation and annihilation effect of bosons,

which generates the effective biquadratic interactions between spin-1 bosons. We further

classified these quadrupolar phases by the internal degrees of freedom of dimers, and one

of the three phases turned out to be the spin nematic phase which is the same as the one

found in the spin-1 bilinear-biquadratic model. Another quadrupolar phase next to the

singlet phase may explain Ba3MRu2O9.
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Additionally, we discussed why the spin dimer system is a suitable platform to realize

the spin nematic phases. We took in the effect of electron hopping perturbatively from

the Mott insulating limit, and derived the biquadratic interaction between triplet dimers.

We found that the large biquadratic interaction between triplets can have a comparable

value to the Heisenberg interaction when we adopt the dimer structure, which should be

contrasted to the typical spin-1 systems with small biquadratic interactions. So far, it

has been considered that realizing the spin nematic phases in usual spin-1 materials is

difficult. Therefore, investigating the finite-temperature properties or the observables in

the spin-1 nematic phases has not been directly connected to the experimental observation

of the spin nematic phases in the spin-1 systems, while the investigation itself is important.

Our results suggested that the spin-1 nematic phases can be realized in the spin dimer

materials, which will allow us to utilize the finite-temperature properties of the spin-1

nematics. Our results on the magnetic field effect on the spin-1 nematic phases in the

bilinear-biquadratic model can also be exploited when we deal with the spin-1 nematics

in the dimer systems.

We also gave a hint for discussing the spin nematics in the spin-1 and spin-1/2 systems

in a unified description; mapping the spin dimer system to the hard-core boson model

allows us to deal with the low-energy properties of the spin-1 dimer and the spin-1/2

dimer systems equivalently. Based on this, we finally described the spin-1/2 system in

the terms of the spin dimers, and examined the two-leg ladder system as an example to

explain how the two-magnon bound states near the saturation are redescribed using the

dimer-basis. As a future prospect, various kinds of spin quadrupolar or nematic phases

in different systems will be united in terms of the dimer-basis with internal degrees of

freedom.
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Appendix A

Details on the Monte Carlo

simulation

In this Appendix, we note the details on the numerical methods used in the Monte Carlo

simulations.

A.1 Details on the random sampling

Since the d-vector has three complex, or six real components, we need to randomly choose

one point from the five-dimensional unit hypersphere in updating d. For the random

sampling from the unit hypersphere, we randomly choose six real numbers ri (i = 1–6)

following the standard distribution 1, and then normalize it [199], namely,

r′i =
ri√√√√ 6∑
i=1

r2i

. (A.1)

We adopt r′i as the six real components of the d-vector with |d| = 1.

To generate random variables following the standard distribution, we utilize the Box–

Muller method [200]. Let x and y be the uniform random numbers in an open section

(0, 1). Then, z1 and z2 defined as

z1 =
√
−2 lnx cos (2πy), z2 =

√
−2 lnx sin (2πy), (A.2)

are the random numbers independently following the standard distribution.

A.2 Jackknife resampling

To calculate the averages and error bars in the Monte Carlo simulations, we use the

jackknife resampling method. Here we write down the process of the jackknife resampling

method (see e.g., Ref. [201]).

1The standard distribution is the normal distribution whose average is 0 and variance is 1.
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Let the number of the samples n and the data set {xi}i=1,··· ,n. We calculate n kinds

of averages, where i-th sample xi is excluded in the i-th average, x̄(i). The explicit form

of x̄(i) is given as

x̄(i) =
1

n− 1

n∑
j=1,j ̸=i

xj . (A.3)

Then, the whole average x̄ is given by 2

x̄ =
1

n

n∑
i=1

x̄(i), (A.4)

and the jackknife variance σ2 is given by

σ2 = (n− 1)
1

n

n∑
i=1

(x̄(i)− x̄)2 . (A.5)

2The average in the jackknife resampling x̄ is obviously equal to the simple average
1

n

n∑
i=1

xi.
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Appendix B

Appendix on the analysis of spin-1

dimer triangular lattice

In this Appendix, we note the details on Chapter 3.

B.1 Details on the perturbation calculation

Here we denote the quasi-degenerate perturbation theory, which is used for calculating

the effective Hamiltonian. This method discussed below is based on the Schrieffer–Wolff

transformation [185, 186], the diagonalization of the Hamiltonian matrix by the unitary

transformation, but the unitary transformation is cut off by some order in the unitary

matrix.

The details of the calculations of the inter-dimer Hamiltonian Hinter and the matrix

elements for the perturbation calculation in the spin-1 dimer system are also given.

B.1.1 Quasi-degenerate perturbation theory

In this section, we explain the quasi-degenerate perturbation theory referring to Ref. [186].

B.1.1.1 Overview

Taking some basis {|n⟩}, the Hamiltonian H can be represented in the matrix form H.

The unitary-transformed Hamiltonian of H, H̃, using the anti-Hermitian matrix, S, can

be expanded as follows (cf. Baker–Campbell–Hausdorff theorem);

H̃ = e−SHe+S

= H + [H,S] +
1

2!
[[H,S] , S] + · · · . (B.1)

When the basis {|n⟩} is separated into two parts, the low-energy part denoted as {|m⟩}
and the high-energy part denoted as {|l⟩}, the Hamiltonian matrix H can be separated

into three parts as

H = H0 +H1 +H2. (B.2)
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Figure B.1: Schematic view of the Hamiltonian matrices.

Here, H0 is the diagonal matrix, andH1 andH2 is the block-diagonal and block-offdiagonal

matrices, respectively. As H0 is diagonal for {|n⟩}, H0 is regarded as the unperturbed

Hamiltonian, and H1 and H2, which are offdiagonal matrices for {|n⟩}, is the perturba-

tion Hamiltonian. The schematic picture of these Hamiltonian matrices are expressed in

Fig. B.1. Then, the unitary-transformed Hamiltonian H̃, can be separated into block-

diagonal part, H̃diag and the block-offdiagonal part, H̃offdiag. H̃diag and H̃offdiag are ex-

pressed as

H̃diag = (H0 +H1) + [H2, S] +
1

2!
[[H0 +H1, S] , S] +

1

3!
[[[H2, S] , S] , S] + · · · , (B.3)

H̃offdiag = H2 + [H0 +H1, S] +
1

2!
[[H2, S] , S] +

1

3!
[[[H0 +H1, S] , S] , S] + · · · , (B.4)

respectively. Assuming that the anti-Hermitian matrix S is expanded as

S = S(1) + S(2) + S(3) + · · · , (B.5)

where S(n) is the n-th order of the perturbation Hamiltonian, H1 and/or H2, H̃diag and

H̃offdiag can be rearranged by the order of perturbation. The expressions up to 2nd order

are as follows;

• H̃diag

0th: H0, 1st: H1, 2nd:
1

2

[[
H0, S

(1)
]
, S(1)

]
.

• H̃offdiag

1st: H2 +
[
H0, S

(1)
]
, 2nd:

[
H0, S

(2)
]
+
[
H1, S

(1)
]
.

The block-diagonalization of the Hamiltonian matrix, namely, setting H̃offdiag zero up to

a certain order, corresponds to the calculation of the effective Hamiltonian to the order.

B.1.1.2 Effective Hamiltonian up to 2nd order

We write down the matrix elements of the effective Hamiltonian up to the 2nd order. At

1st order, the Hamiltonian H1 becomes the effective Hamiltonian of the 1st order as it is;

⟨m|H(1)|m′⟩ = ⟨m|H1|m′⟩ (B.6)
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At the 2nd order, 1st order term of H̃offdiag should be zero;

H2 +
[
H0, S

(1)
]
= 0, (B.7)

and using this relation, the matrix elements of the effective Hamiltonian are calculated as

⟨m|H(2)|m′⟩ = −1

2

∑
l

(
⟨m|H2|l⟩ ⟨l|H2|m′⟩

εl − εm
+

⟨m|H2|l⟩ ⟨l|H2|m′⟩
εl − εm′

)
. (B.8)

By setting H̃offdiag to be zero at each order, the effective Hamiltonian at the higher-order

can be calculated succeedingly.

B.1.2 Details on the derivation of the effective Hamiltonian

Here we write down the matrix elements in the calculation of the effective Hamiltonian.

B.1.2.1 Calculation of the inter-dimer interactions

Combining the above equations, the inter-dimer interactions can be systematically calcu-

lated. For example, Si1 · Sj1 , which is a part of J ′-term, for Sz
tot = 0 sector is calculated

as follows;

Si1 · Sj1 |s, s⟩

=
1

2

(
S+
i1
|s⟩ ⊗ S−

j1
|s⟩+ S−

i1
|s⟩ ⊗ S+

j1
|s⟩
)
+ Sz

i1 |s⟩ ⊗ Sz
j1 |s⟩

=
1

2

[(
− 2√

3
|t+1⟩

)(
2√
3
|t−1⟩

)
+

(
2√
3
|t−1⟩

)(
− 2√

3
|t+1⟩

)]
+

(√
2√
3
|t0⟩

)(√
2√
3
|t0⟩

)
= − 2

3
|t+1, t−1⟩ −

2

3
|t−1, t+1⟩+

2

3
|t0, t0⟩ , (B.9)

Si1 · Sj1 |s, t0⟩

=
1

2

(
S+
i1
|s⟩ ⊗ S−

j1
|t0⟩+ S−

i1
|s⟩ ⊗ S+

j1
|t0⟩
)
+ Sz

i1 |s⟩ ⊗ Sz
j1 |t0⟩

=
1

2

[(
− 2√

3
|t+1⟩

)(
1√
2
(|t−1⟩+ |q−1⟩)

)
+

(
2√
3
|t−1⟩

)(
1√
2
(|t+1⟩ − |q+1⟩)

)]
+

(√
2√
3
|t0⟩

)(
1√
3

(√
2 |s⟩+ |q0⟩

))
= − 1√

6
|t+1, t−1⟩ −

1√
6
|t+1, q−1⟩+

1√
6
|t−1, t+1⟩ −

1√
6
|t−1, q+1⟩

+
2

3
|t0, s⟩+

√
2

3
|t0, q0⟩ , (B.10)

Si1 · Sj1 |t0, s⟩

=
1

2

(
S+
i1
|t0⟩ ⊗ S−

j1
|s⟩+ S−

i1
|t0⟩ ⊗ S+

j1
|s⟩
)
+ Sz

i1 |t0⟩ ⊗ Sz
j1 |s⟩

=
1

2

[(
1√
2
(|t+1⟩ − |q+1⟩)

)(
2√
3
|t−1⟩

)
+

(
1√
2
(|t−1⟩+ |q−1⟩)

)(
− 2√

3
|t+1⟩

)]
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+

(
1√
3

(√
2 |s⟩+ |q0⟩

))(√
2√
3
|t0⟩

)
=

1√
6
|t+1, t−1⟩ −

1√
6
|q+1, t−1⟩ −

1√
6
|t−1, t+1⟩ −

1√
6
|q−1, t+1⟩

+
2

3
|s, t0⟩+

√
2

3
|q0, t0⟩ , (B.11)

Si1 · Sj1 |t0, t0⟩

=
1

2

(
S+
i1
|t0⟩ ⊗ S−

j1
|t0⟩+ S−

i1
|t0⟩ ⊗ S+

j1
|t0⟩
)
+ Sz

i1 |t0⟩ ⊗ Sz
j1 |t0⟩

=
1

2

[(
1√
2
(|t+1⟩ − |q+1⟩)

)(
1√
2
(|t−1⟩+ |q−1⟩)

)
+

(
1√
2
(|t−1⟩+ |q−1⟩)

)(
1√
2
(|t+1⟩ − |q+1⟩)

)]
+

(
1√
3

(√
2 |s⟩+ |q0⟩

))( 1√
3

(√
2 |s⟩+ |q0⟩

))
=

1

4
|t+1, t−1⟩+

1

4
|t+1, q−1⟩ −

1

4
|q+1, t−1⟩ −

1

4
|q+1, q−1⟩

+
1

4
|t−1, t+1⟩ −

1

4
|t−1, q+1⟩+

1

4
|q−1, t+1⟩ −

1

4
|q−1, q+1⟩

+
2

3
|s, s⟩+

√
2

3
|s, q0⟩+

√
2

3
|q0, s⟩+

1

3
|q0, q0⟩ , (B.12)

Si1 · Sj1 |t+1, t−1⟩

=
1

2

(
S+
i1
|t+1⟩ ⊗ S−

j1
|t−1⟩+ S−

i1
|t+1⟩ ⊗ S+

j1
|t−1⟩

)
+ Sz

i1 |t+1⟩ ⊗ Sz
j1 |t−1⟩

=
1

2

[
(− |q+2⟩) (|q−2⟩) +

(
− 2√

3
|s⟩+ 1√

2
|t0⟩+

1√
6
|q0⟩
)(

2√
3
|s⟩+ 1√

2
|t0⟩ −

1√
6
|q0⟩
)]

+

(
1

2
(|t+1⟩+ |q+1⟩)

)(
1

2
(− |t−1⟩+ |q−1⟩)

)
= − 1

2
|q+2, q−2⟩ −

2

3
|s, s⟩ − 1√

6
|s, t0⟩+

1

3
√
2
|s, q0⟩

+
1√
6
|t0, s⟩+

1

4
|t0, t0⟩ −

1

4
√
3
|t0, q0⟩

+
1

3
√
2
|q0, s⟩+

1

4
√
3
|q0, t0⟩ −

1

12
|q0, q0⟩

− 1

4
|t+1, t−1⟩+

1

4
|t+1, q−1⟩ −

1

4
|q+1, t−1⟩+

1

4
|q+1, q−1⟩ , (B.13)

Si1 · Sj1 |t−1, t+1⟩

=
1

2

(
S+
i1
|t−1⟩ ⊗ S−

j1
|t+1⟩+ S−

i1
|t−1⟩ ⊗ S+

j1
|t+1⟩

)
+ Sz

i1 |t−1⟩ ⊗ Sz
j1 |t+1⟩

=
1

2

[(
2√
3
|s⟩+ 1√

2
|t0⟩ −

1√
6
|q0⟩
)(

− 2√
3
|s⟩+ 1√

2
|t0⟩+

1√
6
|q0⟩
)
+ (|q−2⟩) (− |q+2⟩)

]
+

(
1

2
(− |t−1⟩+ |q−1⟩)

)(
1

2
(|t+1⟩+ |q+1⟩)

)
= − 2

3
|s, s⟩+ 1√

6
|s, t0⟩+

1

3
√
2
|s, q0⟩ −

1√
6
|t0, s⟩+

1

4
|t0, t0⟩+

1

4
√
3
|t0, q0⟩
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+
1

3
√
2
|q0, s⟩ −

1

4
√
3
|q0, t0⟩ −

1

12
|q0, q0⟩ −

1

2
|q−2, q+2⟩

− 1

4
|t−1, t+1⟩ −

1

4
|t−1, q+1⟩+

1

4
|q−1, t+1⟩+

1

4
|q−1, q+1⟩ . (B.14)

B.1.2.2 Matrix elements

The matrix elements of the inter-dimer Hamiltonian projected onto the low-energy man-

ifold of states consisting only of singlets and triplets, which correspond to ⟨m|H1|m′⟩ in

the above formulation, are given as follows (Sz
tot = 0 sector as an example);

|s, s⟩ |s, t0⟩ |t0, s⟩ |t0, t0⟩ |t+1, t−1⟩ |t−1, t+1⟩

0 0 0
4

3
(J ′ − J ′′) −4

3
(J ′ − J ′′) −4

3
(J ′ − J ′′)

0 0
4

3
(J ′ − J ′′) 0 0 0

0
4

3
(J ′ − J ′′) 0 0 0 0

4

3
(J ′ − J ′′) 0 0 0

1

2
(J ′ + J ′′)

1

2
(J ′ + J ′′)

−4

3
(J ′ − J ′′) 0 0

1

2
(J ′ + J ′′) −1

2
(J ′ + J ′′) 0

−4

3
(J ′ − J ′′) 0 0

1

2
(J ′ + J ′′) 0 −1

2
(J ′ + J ′′)

.

(B.15)

Also the ones which connect the low-energy states and the excited states including the

quintet states, which correspond to ⟨m|H2|l⟩ and ⟨l|H2|m′⟩ in the aforementioned formu-
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lation, are expressed as follows (Sz
tot = 0 sector as an example);

|s, s⟩ |s, t0⟩ |t0, s⟩ |t0, t0⟩ |t+1, t−1⟩ |t−1, t+1⟩

⟨s, q0| 0 0 0
2
√
2

3

√
2

3

√
2

3

⟨q0, s| 0 0 0
2
√
2

3

√
2

3

√
2

3

⟨t0, q0| 0
2
√
2

3
0 0 0 0

⟨q0, t0| 0 0
2
√
2

3
0 0 0

⟨t+1, q−1| 0 − 2√
6

0 0 0 0

⟨q−1, t+1| 0 0 − 2√
6

0 0 0

⟨t−1, q+1| 0 − 2√
6

0 0 0 0

⟨q+1, t−1| 0 0 − 2√
6

0 0 0

⟨q0, q0| 0 0 0
2

3
−1

6
−1

6

⟨q+1, q−1| 0 0 0 −1

2

1

2
0

⟨q−1, q+1| 0 0 0 −1

2
0

1

2
⟨q+2, q−2| 0 0 0 0 −1 0

⟨q−2, q+2| 0 0 0 0 0 −1

×
(
J ′ − J ′′) . (B.16)

We note that the Hamiltonian conserves total-Sz, and Sz
tot = +3,+4 states in the two-

dimer system do not need to be considered within our calculations.

B.2 Bond-operator approach to spin-1 dimer systems keep-

ing the time-reversal symmetry

Here we show the bond-operator approach of the spin-1 dimer systems. Although the

bond-operator approach for a spin-1 dimer was constructed already in Refs. [161–163], the

approach there breaks the time-reversal symmetry. We modify those approaches to the

time-reversal invariant form. First, we write down the multiplet states of spin-1 dimers

keeping the time-reversal symmetry. Using the time-reversal invariant basis states of a

spin-1 given in Eq. (1.5), the singlet, triplet and quintet states of a single spin-1 dimer is

written as

|s⟩ = 1√
3
(|x, x⟩+ |y, y⟩+ |z, z⟩) , (B.17)

|tα⟩ = − 1√
2

∑
β,γ

εαβγ |β, γ⟩ , (B.18)

|qαβ⟩ = − 1√
2
(|α, β⟩+ |β, α⟩) +

(√
2− 1

)
δαβ |α, α⟩ , (B.19)
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respectively, where α, β, γ = x, y, z. We can construct 10 states from the above expres-

sions 1. However, only nine states of those are the linearly independent because there are

only nine states in {|α, β⟩}. Here, |s⟩ and |qαα⟩ are linearly dependent, and we construct

two linearly independent quintet states, |q3α2−r2⟩ and |qβ2−γ2⟩, as the linear combinations

of three |qαα⟩ states. The forms of |q3α2−r2⟩ and |qβ2−γ2⟩ are given as, for instance,

|q3z2−r2⟩ =
1√
6
(2 |qzz⟩ − |qxx⟩ − |qyy⟩) = − 1√

6
(2 |z, z⟩ − |x, x⟩ − |y, y⟩) ,

|qx2−y2⟩ =
1√
2
(|qxx⟩ − |qyy⟩) = − 1√

2
(|x, x⟩ − |y, y⟩) . (B.20)

In the above case, we take (α, β, γ) = (z, x, y). Besides |tα⟩ and |qαβ⟩, we use |s⟩, |q3α2−r2⟩,
and |qβ2−γ2⟩, as a basis states for the bond-operator expression of Sα

iµ
, namely, we properly

choose the basis states |q3α2−r2⟩, and |qβ2−γ2⟩ depending on the component of the spin

operator, α 2.

We regarded the singlet state as a vacuum in the main text, while in the bond-operator

approach here, we redefine the vacuum as the state where there are not any multiplets.

Then, we do not use bi,α and b†i,α, and instead we use si/s
†
i and ti,α/t

†
i,α as the anni-

hilation/creation operators of the singlet state and the triplet state with α-component,

respectively, and qi,α/q
†
i,α as the ones of the quintet state with α-component 3. The bond-

operator form of the spin-1 operators Sα
iµ

(µ = 1, 2) of the i-th dimer is written in the

following form;

Sα
i1 = i

√
2√
3

(
t†i,αsi − s†i ti,α

)
− i

2

∑
β,γ

εαβγt
†
i,βti,γ −

i√
3

(
q†
i,3α2−r2

ti,α − t†i,αqi,3α2−r2

)
− i

2

∑
β ̸=α

(
q†i,αβti,β − t†i,βqi,αβ

)
− i

2

∑
β,γ

εαβγq
†
i,αβqi,γα

− i

2

∑
β,γ

εαβγ

(
q†
i,β2−γ2qi,βγ − q†i,βγqi,β2−γ2

)
, (B.24)

Sα
i2 = −i

√
2√
3

(
t†i,αsi − s†i ti,α

)
− i

2

∑
β,γ

εαβγt
†
i,βti,γ +

i√
3

(
q†
i,3α2−r2

ti,α − t†i,αqi,3α2−r2

)
+

i

2

∑
β ̸=α

(
q†i,αβti,β − t†i,βqi,αβ

)
− i

2

∑
β,γ

εαβγq
†
i,αβqi,γα

− i

2

∑
β,γ

εαβγ

(
q†
i,β2−γ2qi,βγ − q†i,βγqi,β2−γ2

)
. (B.25)

110 states: |s⟩, |tx⟩, |ty⟩, |tz⟩, |qxx⟩, |qyy⟩, |qzz⟩, |qxy⟩, |qyz⟩, |qzx⟩. By construction, |qαβ⟩ = |qβα⟩
holds.

2In an explicit form, we use |q3x2−r2⟩ and |qy2−z2⟩ for Sx
iµ , |q3y2−r2⟩ and |qz2−x2⟩ for Sy

iµ
, and |q3z2−r2⟩

and |qx2−y2⟩ for Sz
iµ , respectively.

3For example, when we set the vacuum as |0⟩,

s†i |0⟩ = |s⟩ , si |s⟩ = |0⟩ , (B.21)

t†i,x |0⟩ = |ti,x⟩ , ti,x |ti,x⟩ = |0⟩ , (B.22)

q†i,xy |0⟩ = |qi,xy⟩ , qi,xy |qi,xy⟩ = |0⟩ , (B.23)

hold.
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Figure B.2: (a), (b) Examples of the second-order perturbation processes among three
dimers. (a) Process of the ‘correlated hopping’, and (b) pair-creation of spin-1 bosons.
Dotted ellipses represent the pair of dimers where the perturbation term Hinter operates. s,
t, and q denote the singlet, triplet, and quintet states of the spin-1 dimer, respectively. (c)
B/J dependence of the Hintra of the three isolated spin-1 dimers. (α, β, γ) (α, β, γ = s, t, q)
expresses the state where α, β-, and γ-multiplets exist. Figures are taken from Ref. [2]
(Copyright ©2020, American Physical Society).

B.3 Effect of the three-dimer interactions

In the main text, we discarded the three-dimer interactions H3body. Here we evaluate the

effects of these three-dimer interactions.

First, we mention some details on the H3body, whose origin is the second-order pertur-

bation processes involving the three dimers. In Figs. B.2(a) and (b), we give two instances

of these second-order processes, where s, t, and q represent the singlet, triplet, and quin-

tet states, respectively. The Process in Fig. B.2(a) is similar to the correlated hoppings

appearing in the Heisenberg model on the Shastry–Sutherland lattice [75, 76]. The one in

Fig. B.2(b) shows the pair-creation of spin-1 bosons (triplets).

When we deal with these perturbation processes over three dimers, we see the validity of

expressing the low-energy states only by the singlet and triplet states. We show the energy

diagram of the three isolated spin-1 dimers (J ′ = J ′′ = 0), E(α, β, γ) with α, β, γ = s, t, q,

in Fig. B.2(c). We find that at B/J = 0 the (s, s, q) and (t, t, t) states are degenerate,

while these two states are well separated in introducing a small B/J > 0.

Then, we compare the energies of the ground states of the effective Hamiltonian Heff

(Eq. (3.7)) with and without the three-dimer term H3body, and those of the original spin-1

dimer HamiltonianH (Eq. (3.1)). We performed the numerical diagonalization on the nine-

dimer triangular lattice under the periodic boundary condition. The results at B/J = 0.2

are shown in Fig. B.3(a) and (b), and those at B/J = 0.4 are shown in Fig. B.3(c) and
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(d). The inter-dimer interaction parameters are fixed as (J ′ + J ′′)/J = +0.2 and −0.2.

We see that the energies of Heff with H3body do not always take closer values to those of H
than those of Heff without H3body though Heff with H3body fully incorporate the effect of

the second-order perturbation terms. We found that the energies are in good agreement

with each other when |J ′/J | , |J ′′/J | ≲ 0.2. When either J ′/J or J ′′/J takes a large value,

the effective model might not qualitatively reproduce the original model. This would be

because the three-dimer interactions which appear at the higher order perturbation terms

in J ′/J and J ′′/J may cancel out the ones appearing at the second order.

As we mentioned in the main text, the overall structure of the phase diagram is de-

termined by the terms up to the first order, and the second-order perturbation terms do

not qualitatively affect on the ground state properties. Therefore, even when H3body = 0,

the results are not largely changed. The benefit of dealing with the Hamiltonian Heff in

a simpler form is that it exactly corresponds to the spin-1 boson model derived from the

spin-1/2 dimer models [84, 86], and thus the two kinds of the models with different spin

quantum numbers can be treated on an equal footing.
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Figure B.3: J ′/J dependence of the energies of the ground states of the effective boson
model Heff with (open square) and without (open circle) the three-dimer interactions
H3body, and of the original spin model H (filled triangle) on the nine-dimer triangular
lattice under the periodic boundary condition at (B/J, (J ′ + J ′′) /J) = (a) (0.2, +0.2), (b)
(0.2, -0.2), (c) (0.4, +0.2), and (d) (0.4, -0.2). Figures are taken from Ref. [2] (Copyright
©2020, American Physical Society).
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Appendix C

Details on the numerical

diagonalizations

In this Appendix, we note the details on the numerical diagonalization methods used in

this thesis, the Lanczos method and the thick-restart Lanczos method.

C.1 Lanczos method

To write this section, we partly referred to Refs. [135, 202].

C.1.1 Overview

Lanczos method [165] is the Arnordi method for the Hermite matrices [202]. The Arnordi

method is the application to the Krylov subspace of the Rayleigh–Ritz method, a method

calculating the approximated eigenvalues and eigenvectors of a matrix, A. The Krylov

subspace is spanned by the vectors calculated by multiplying A to some initial vector, v,

namely,
{
v, Av, A2v, · · ·

}
.

C.1.2 Algorithm

Let the initial vector u0, and we calculate {αi}i=1,··· ,m and {βi}j=1,··· ,m−1 as follows;

v = Au0, (C.1)

αi =
tui−1v, (C.2)

βi = ∥v − αiui−1 − βi−1ui−2∥ , (C.3)

ui =
1

βi
(v − αiui−1 − βi−1ui−2) . (C.4)
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Then, the tridiagonal matrix consisting of {αi}i=1,··· ,m and {βi}j=1,··· ,m−1,

Tm =



α1 β1 0 · · · 0

β1 α1 β2
. . .

...

0 β2
. . .

. . . 0
...

. . .
. . .

. . . βm−1

0 · · · 0 βm−1 αm


, (C.5)

is diagonalized. This iteration process is repeated until the eigenvalues of Tm converge.

Then, the eigenvalues of {ei}i=1,··· ,m, gives the eigenvalues of the original matrix. Using

the eigenvector of Tm corresponding to ei, yi, the eigenvectors of the original matrix, wi,

is given by calculating the Ritz vector,

wi =
(
u0 u1 · · · um−1

)
yi. (C.6)

It should be noted that the eigenvalues and eigenvectors found in this standard Lanczos

method are usually correct only for a few smallest (or largest) eigenvalues.

C.1.3 Remarks

In the iteration process of the Lanczos method, theoretically, the Lanczos vectors {ui}i=0,···
are orthonormalized. Practically, however, the orthogonality of the Lanczos vectors some-

times breaks down, and we need to reorthonormalize the Lanczos vectors using some

methods such as the Gram–Schmidt reorthonormalization.

The standard Gram–Schmidt reorthonormalization correctly gives a set of the or-

thonormalized vectors in theory (Algorithm 1). However, numerically, the conventional

Gram–Schmidt reorthonormalization sometimes does not work well due to the round-off

errors. Thus, in practice, the modified Gram–Schmidt orthonormalization method (Algo-

rithm 2) is applied to reorthonormalize the vectors [202]. Algorithms 1 and 2 are cited

from Ref. [202].

Algorithm 1 Algorithm of the standard Gram–Schmidt reorthonormalization.

for i = 1, n do
vi = ai

for j = 1, i− 1 do
vi = vi −

(
tai ej

)
ej

end for
ei =

vi

∥vi∥
end for

C.2 Thick-restart Lanczos method

C.2.1 Overview

The thick-restart Lanczos method is an algorithm to calculate the multiple eigenvalues

and eigenvectors of the real symmetric matrices proposed by Wu and Simon [166, 167].
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Algorithm 2 Algorithm of the modified Gram–Schmidt reorthonormalization.

for i = 1, n do

ei =
vi

∥vi∥
for j = i+ 1, n do

vj = vj −
(
tvj ei

)
ei

end for
end for

Instead of using one vector in the usual Lanczos method (Sec. C.1), this method uses a

set of multiple vectors, which ensures the accuracy of the multiple eigenvalues and the

eigenstates. Also, the iteration process is cut off at some numbers, and the generated

vectors are reused as the set of the initial vectors in the next iteration process.

The thick-restart Lanczos method is mathematically equivalent to the implicitly restart

Lanczos method [167].

C.2.2 Algorithm

We write the algorithm of the thick-restart Lanczos method following Ref. [167]. Let the

number of vectors in the restart, or the numbers of eigenvalues and eigenvectors we want,

k, and the largest number of iterations, or the number of the linearly independent vectors

in the Krylov subspace, m.

C.2.2.1 First step

First we perform the standard Lanczos method. Let the initial vector u0, and we calculate

{αi}i=1,··· ,m and {βj}j=1,··· ,m−1. Here we keep all of the Lanczos vectors {uk}k=0,··· ,m
and perform the modified Gram–Schmidt reorthonormalization. Then, we construct the

tridiagonal matrix Tm using the sets of {αi}i=1,··· ,m and {βj}j=1,··· ,m−1 as

Tm =



α1 β1 0 · · · 0

β1 α1 β2
. . .

...

0 β2
. . .

. . . 0
...

. . .
. . .

. . . βm−1

0 · · · 0 βm−1 αm


, (C.7)

and diagonalize Tm. The eigenvalues of Tm is written as ei, and the eigenvector corre-

sponding to ei is written as yi. m× k matrix using yi is defined as Y =
(
y1 · · · yk

)
.

C.2.2.2 Restart

Next we restart the Lanczos calculations. The quantities in the restart process is dis-

tinguished from those in the first step by using •̂. We keep k-pairs of eigenvalues and

eigenvectors {(ei,yi)}i=1,··· ,k, and calculate the set of the approximated eigenvectors of A,
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{ûi}i=0,··· ,k−1 as

ûi =
(
u0 · · · um−1

)
yi+1. (C.8)

Then, k-th vector, ûk, is set as

ûk = um, (C.9)

and k + 2-th vector, ûk+1, is calculated as

v = Aûk (= Auk) , (C.10)

α̂k+1 =
tûkv

(
= tukAuk

)
, (C.11)

β̂k+1 =

∥∥∥∥∥v − α̂k+1ûk −
k−1∑
i=0

βi+1ûi

∥∥∥∥∥ , (C.12)

ûk+1 =
1

β̂k+1

(
v − α̂k+1ûk −

k−1∑
i=0

βi+1ûi

)
. (C.13)

Notice that there is a difference from the standard Lanczos method in the calculation of

ûk+1. Then we perform the same iteration as the standard Lanczos method, namely, we

calculate

v = Aûi−1, (C.14)

α̂i =
tûi−1v

(
= tûi−1Aûi−1

)
, (C.15)

β̂i =
∥∥∥v − α̂iûi−1 − β̂i−1ûi−2

∥∥∥ , (C.16)

ûi =
1

β̂i

(
v − α̂iûi−1 − β̂i−1ûi−2

)
, (C.17)

for i = k + 2, k + 3, · · · . However, we diagonalize not the tridiagonalized matrix but T̂k+i

given by

T̂k+i =



T̂k βms 0m · · · · · · · · · 0m
βm

ts α̂k+1 β̂k+1 0 · · · · · · 0
t0m β̂k+1 α̂k+2 β̂k+2 0 · · · 0
... 0 β̂k+2

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . 0

...
...

. . .
. . .

. . .
. . . β̂k+i−1

t0m 0 · · · · · · 0 β̂k+i−1 α̂k+i


. (C.18)
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Here, T̂k, 0m, and s are given as

T̂k := tY TmY =


e1 0 · · · 0

0 e2
. . .

...
...

. . .
. . . 0

0 · · · 0 ek

 ,

0m :=

0
...

0


m,

s := tY


0
...

0

1


m =


ty1
...

tyk



0
...

0

1

 =

y1m...
ykm

 , (C.19)

respectively. To unify the notations, we introduce α̂i and β̂i (i = 1, · · · , k) as

α̂i = ei, β̂i = βmyim, (C.20)

and then T̂k+i is rewritten as

T̂k+i =



α̂1 0 · · · 0 β̂1 0 · · · 0

0 α̂2
. . .

... β̂2 0 · · · 0
...

. . .
. . . 0

...
...

. . .
...

0 · · · 0 α̂k β̂k 0
. . . 0

β̂1 β̂2 · · · β̂k α̂k+1 β̂k+1
. . .

...

0 · · · · · · 0 β̂k+1
. . .

. . . 0
...

. . .
. . .

...
. . .

. . .
. . . β̂k+i−1

0 · · · · · · 0 · · · 0 β̂k+i−1 α̂k+i


. (C.21)

We diagonalize T̂k+i, and obtain the eigenvalues and eigenvectors.

When we perform the restart again, Tm is replaced by T̂m, and perform the same cal-

culation written above. When the eigenvalues are converged for Tl, the set of eigenvectors

of the original matrix, {wi}i=1,··· ,k, is calculated using the Lanczos vectors {ûi}i=0,··· ,l−1

and the eigenvectors of T̂l, {yi}i=1,··· ,k,(
w1 · · · wk

)
=
(
û0 û1 · · · ûl−1

)(
y1 · · · yk

)
. (C.22)

C.2.3 Remarks

Similarly to the standard Lanczos method, the reorthonormalization of the Lanczos vec-

tors are sometimes needed because of the round-off errors, and the way of the reorthonor-

malization affects the calculation results in the thick-restart Lanczos method. According

to Ref. [167], “full reorthonormalization”, in which all of the Lanczos vectors are re-
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orthonormalized, correctly gives all the eigenvalues and the eigenvectors. Also, in “partial

reorthonormalization”, where a part of the Lanczos vectors are reorthonormalized, only

the eigenvalues are correctly calculated. In our calculation, “full reorthonormalization” is

performed.
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