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Abstract

In this thesis we study the entropy of the Janus interface in a 4d N = 2
superconformal field theory (SCFT). The Janus interface is a co-dimension
one defect across which a coupling constant changes its value. We show that
the entropy of the Janus interface in a 4d N = 2 SCFT can be written by
a specific linear combination of analytically continued Kähler potentials on
moduli space called Calabi’s diastasis.

First we give a definition of an interface entropy as a contribution from an
interface to an entanglement entropy across a spherical entangling surface.
Then we derive the relation between the interface entropy and the sphere par-
tition function via the conformal map introduced by Casini, Huerta, Meyers.
Finally we evaluate the entropy of the Janus interface by using this relation
and SUSY localization to show that it can be written by Calabi’s diastasis.
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Chapter 1

Introduction

Quantum field theories (QFTs) are very fundamental and important sub-
jects in theoretical physics because they describe wide phenomena; particle
physics, condensed matter physics, cosmology and so on. Morever QFTs
themselves exhibit rich and fascinating structure. The main purpose of this
thesis is to study a QFT non-perturbatively by using non-local objects called
defects. In this chapter we briefly explain basic backgrounds to give moti-
vations to the subjects of this thesis. Then we summarize main results and
explain the organization of this thesis.

1.1 Background and motivation

1.1.1 Defects

What we mainly focus on in this paper are non-local objects in QFTs which
are so called defects. Defects have many applications and thus are very
important. We list some of them.

• The expectation value of a defect can be used as an order parameter
of a phase transition. For example, a dimension one defect in quantum
chromodynamics (QCD) called the Wilson loop is used to diagnose
confinement.

• By inserting a defect into a QFT, we can extract data in the ambient
QFT (bulk) via relations between data in the bulk and defect, e.g. [1].
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8 CHAPTER 1. INTRODUCTION

• In a realistic setting in a laboratory, materials have boundaries and/or
interfaces. This can be understood theoretically as co-dimension one
defects in a QFT.

• Open string theory is formulated by a conformal field theories (CFT)
on a world-sheet with a boundary.

In this paper we particularly focus on a co-dimension one defect, an interface.

1.1.2 Interface entropy

We particularly focus on an entropy associated to an interface which we call
an interface entropy. Here we explain the motivation to study this quantity
on a general background. A motivation to study the entropy for a specific
interface (the Janus interface) will be explained in the next subsection. One
of motivations to study an interface entropy is that it is conjectured to be a
C-function in a CFT with an interface which we call an interface CFT or an
ICFT [2]. Let me explain this point.

What is a C-function? Suppose that we have a conformal field thoery
(CFT) at a ultraviolet (UV) fixed point, then flow to an infrared (IR) fixed
point along with a renormalization group (RG) flow. A function which de-
creases monotonically along with a RG flow is called a C-function. If we can
find a C-function, we can get nontrivial constraints on IR quantities from UV
quantities. Furthermore this function characterizes the number of degrees of
freedom since the value of this function at the UV theory where many modes
fluctuate is bigger than the value at the IR theory where only few modes
fluctuate.

We have some examples of such functions in CFTs without an interface.
In two dimensions such a function was first constructed by [3] from a partic-
ular linear combination of two point functions of the stress-energy tensor. It
reduces to the coefficient of the Weyl anomaly or the c-central charge at fixed
points. In four dimensions the a-coefficient of the Weyl anomaly is shown to
be a weak version 1 of C-function by [4]. In three dimensions it was proposed
that the free energy which is the log of a partition function on a sphere is a
C-function [5, 6]. This statement was later proved by [7].

1This means that the value of the function at an UV fixed point is bigger than that at
an IR fixed point, not necessarily decreases along RG flows.
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Then a natural question is whether we can find a C-function in ICFT.
One of candidates is an entropy of an interface which we call an interface
entropy [2]. So if this statement is proved we can use an interface entropy to
classify/constraint theories with an interface. This motivates us to study an
interface entropy.

1.1.3 Janus interface and its entropy

In the latter half of this thesis we focus on a specific interface, called the
Janus interface [8, 9]. The direct motivation of our research is the fascinating
relation [10] between the entropy of the Janus interface in a 2d N = (2, 2)
superconformal field theory (SCFT) and the geometric quantity on the space
of CFTs called Calabi’s diastasis [11].

Let us consider the space of CFTs S called the conformal manifold or the
moduli space which is parametrized by moduli parameters τ I 2. The Janus
interface is an interface across which moduli parameters change their values.
The author of the paper [10] showed that the entropy of the Janus interface
in a 2d N = (2, 2) SCFT can be written by a specific linear combination of
analytically continued Kähler potentials on moduli space:

SI ∝ [K(τ+, τ+) +K(τ−, τ−)−K(τ+, τ−)−K(τ−, τ+)] =: D. (1.1)

Calabi named this quantity D diastasis [11] which is an ancient Greek word
meaning “distance”. It reduces to a geodesic distance defined from the
Zamolodchikov metric on the moduli space [11], but does not satisfy the
axiom of distance, e.g. the triangle inequality [10]. The relation (1.1) in a 2d
N = (2, 2) SCFT was further confirmed by holography in [12], super-Weyl
anomaly in [13], and supersymmetric localization in [14].

Then a natural question is whether the relation [15] holds for other cases.
It was conjectured [16] that the relation (1.1) also holds in 4d N = 2 SCFTs 3

from a holographic consideration. The main purpose of this thesis is to give
a proof of this claim via supersymmetric localization based on our paper [15].

2The precise definition of the conformal manifold will be given in Section 2.3.1.
3The half-BPS superconformal Janus interface in a 4d N = 2 SCFT was studied in the

previous works [17, 18, 19, 20, 21].
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1.2 Summary of this thesis

Now let us summarize an outline of the proof [15] of the claim (1.1) in 4d
N = 2 SCFTs.

• We first define an interface entropy as a contribution to an entangle-
ment entropy from an interface.

• We then derive the relation between an entropy of a conformal and
superconformal interface and the partition function on a sphere by the
conformal map introduced by [22].

• We evaluate the sphere partition function in the presence of the Janus
interface in a 4d N = 2 SCFT via supersymmetric localization.

• Finally we combine this result and the above relation to show that the
Janus interface entropy can be written by Calabi’s diastasis.

The organization of this thesis is as follows. In Chapter 3 we define an in-
terface entropy by using an entanglement entropy, and derive the relations
between the interface entropy and partition functions in the presence of a
conformal/superconformal interface. The results in Chapter 3 hold for gen-
eral conformal/superconformal interfaces.

We focus on the Janus interface in 4d N = 2 SCFTs after Chapter 4.
In Chapter 4 we give an off-shell construction of the Janus interface. In
Chapter 5 we compute the sphere partition function via supersymmetric
localization technique. By combining this result and the result in Chapter 3
we show that an interface entropy of the Janus interface in 4d N = 2 SCFTs
can be written as Calabi’s diastasis.

We give a brief review on CFT and SCFT in Chapter 2. Each chapter also
has a brief review on relevant topics. Notations, conventions and technical
issues are summarized in Appendix.



Chapter 2

Conformal and superconformal
field theory

In this chapter we give a very brief review on conformal field theories (CFTs)
and superconformal field theories (SCFTs). The main purpose is to explain
symmetry and general structure of correlation functions and partition func-
tions.

2.1 Conformal Field Theory

2.1.1 Conformal symmetry and conformal algebra

First let us explain about conformal field theories in general dimensions with
Lorentzian signature 1. We use a convention in which ηµν = (−1,+1, · · · ,+1).
The conformal transformation is a transformation which preserves a metric
up to a factor,

g′µν(x
′) = Ω(x)gµν(x). (2.1)

Under infinitesimal coordinate transformations xµ → xµ + ϵµ(x), the metric
transforms as

gµν → gµν − ∂µϵν − ∂νϵµ. (2.2)

Imposing the above metric transformation to be a conformal transforma-
tion (2.1), we have the following condition on ϵ:

∂µϵν + ∂νϵµ =
2

d
∂ρϵ

ρgµν . (2.3)

1For more detail on CFTs, see for example [23, 24].

11
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This equation is called the conformal Killing equation. Let us focus on the
solution for d ≥ 3 2. The general solutions for (2.3) are given by

ϵµ = aµ + λµνxν + λDx
µ +

(
x2λµK − 2xµxνλKν

)
, (2.4)

where aµ, λµν , λD, λ
µ
K are real parameters. We explain the transformations

caused by each terms.

• The first term corresponds to translations x′µ = xµ + aµ where aµ are
d real parameters.

• The second term corresponds to rotations x′µ = λµνxν where λµν is
real and antisymmetric tensor λµν = −λνµ which has 1

2
d(d − 1) real

parameters.

• The third term corresponds to dilatations x′µ = λDx
µ where λD is a

real parameter.

• The forth term corresponds to special conformal transformations x′µ =
x2λµK − 2xµxνλKν where λµK are d real parameters.

Thus in total the solutions (2.4) are parametrized by d+ 1
2
d(d− 1)+ 1+ d =

1
2
(d+ 1)(d+ 2) real parameters. We denote the corresponding generators by
Pµ,Mµν , D,Kµ to write conformal transformations as

δC(ϵ) = aµ +
1

2
λµνMµν + λDD + λµKKµ. (2.5)

The commutators of these generators are given by

[Mµν ,M
ρσ] = ηµρMσν − ηνρMσµ − ηµσMρν + ηνσMρµ, (2.6)

[Pµ,Mνρ] = 2ηµ[νPρ], [Kµ,Mνρ] = 2ηµ[νKρ], (2.7)

[Pµ, Kν ] = 2 (ηµνD +Mµν) , (2.8)

[D,Pµ] = Pµ, [D,Kµ] = Kµ, (2.9)

and the other commutators vanish 3. The group generated by them are called
the conformal group, which is equivalent to SO(d, 2). If we perform Wick
rotation and consider the Euclidean signature, then the resulting conformal
group is SO(d+ 1, 1).

2In d = 2 finite conformal symmetry is enhanced to infinite symmetry called Virasoro
symmetry.

3We define a[µbν] :=
1
2 (aµbν − aνbµ).
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2.1.2 Primary and descendant operator

Instead of demonstrating a whole story about a representation of conformal
group in this thesis, we quickly summarize the conclusion. A representation
is specified by an operator O(x) called a primary operator which satisfies the
following conditions:

[D,O(0)] = ∆O(0) , (2.10)

[Mµν ,O(0)] = SµνO(0) , (2.11)

[Kµ,O(0)] = 0 , (2.12)

where ∆ is called a conformal dimension or a Weyl wight, and Sµν is a repre-
sentation matrix of Lorentz group satisfying the commutation relation (2.6).
The other operator in this representation can be obtained by acting the op-
erator Pµ on the primary operator. They are called descendants.

2.1.3 Correlation function in conformal field thoery

Quantum field theories (QFTs) which are invariant under conformal trans-
formations are called conformal field theories (CFTs). Correlation functions
in CFTs are highly constrained by the conformal symmetry. As a result, n-
point functions with n = 1, 2, 3 of primary operators are completely fixed up
to constant factors. Let us explain this point. First, all one point functions
vanish on Rd. Next, the two point function of real scalar primary operators
O with conformal dimension ∆ on Rd is determined as

⟨O(x)O(y)⟩ = k

|x− y|2∆
, (2.13)

where k is a constant which can be normalized as k = 1 in an unitary
CFT. Furthermore, the three point function of primary operators Oi with
dimension ∆i (i = 1, 2, 3) is given by

⟨O1(x1)O2(x2)O3(x3)⟩

=
c123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2
, (2.14)

where c123 is a dynamical coefficient called an OPE (operator product ex-
pansion) coefficient. Higher points functions can be determined by two and
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three point functions, i.e. spectrum and OPE coefficients in principle by
using OPE. Thus these data are called CFT data 4.

2.1.4 Trace anomaly

A CFT is a scale invariant theory by definition. This means that the trace
of a stress-energy tensor Tµν vanishes in classical levels:

⟨Tµµ⟩ = 0, (classical). (2.15)

However, this does not hold in quantum levels for generic CFTs in even
dimensions. This fact is called the trace anomaly or the Weyl anomaly or
the conformal anomaly. They can be written as

⟨Tµµ⟩ = −2(−)d/2AEd +
∑
n

BnIn, (2.16)

where In are the independent Weyl invariants with a Weyl weight −d, and
Ed is the d-dimensional Euler density. The first and the other terms are
called the A-type and the B-type anomaly, respectively. The coefficient A
in two dimensions is proportional to the c-central charge and the coefficient
in four dimensions is proportional to the a-central charge. They are very
fundamental quantities in CFTs to characterize them partly because they
have monotonic properties under RG flows in four and two dimensions, as
explained in Introduction. They also appear the universal part of sphere
partition functions as we will explain in Section 2.3.2 and an entanglement
entropy as we will explain in Section 3.1.3. Note that in odd dimensions we
do not have Weyl anomaly.

2.2 Supersymmetry and superconformal field

theory

2.2.1 Supersymmetry

The supersymmetry (SUSY) is symmetry which exchanges bosons and fermions.
It is an extension of the Poincaré group whose generators we denote by Pµ

4As we will explain later, in a CFT with an interface one point functions can have
non-trivial values, so we have to include coefficients of one point functions to CFT data
in this case.
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and Mµν . Representations of the SUSY algebra depend on spacetime di-
mensions. In this thesis we mostly focus on the 4d N = 2 SUSY, so we
here explain the SUSY in d = 4. We use the conventions and notations
in [25] which are summarized in Appendix A. The SUSY transformations are
generated by chiral generators Qi

α, Qiα, (i = 1, . . . ,N ):

Qi = PLQi, Qi = PRQ
i, (2.17)

where PL/R = 1
2
(1±γ∗) are chiral projection operators. The Weyl conjugation

of Qi, Q
i which are denoted by Qi, Q

i
are also chiral:

Qi = QiPL, Q
i
= Q

i
PR. (2.18)

They satisfy the following commutation relations 5:

{Qiα, Q
jβ} = −1

2
δji (PLγµ)α

βP µ, {Qi
α, Q

β

j }, = −1

2
δij(PRγµ)α

βP µ, (2.19)

{Qiα, Q
β

j } = 0, {Qi
α, Q

jβ} = 0 (2.20)

[M[µν], Qiα], = −i
1

2
(γµν)α

βQiβ, [M[µν], Q
i
α] = −i

1

2
(γµν)α

βQi
β, (2.21)

[Pµ, Qiα] = 0, [Pµ, Q
i
α] = 0. (2.22)

In terms of these generators, general SUSY transformations can be written
as

δQ(ϵ) = ϵiQi + ϵiQ
i, (2.23)

where ϵi, ϵ
i are left/right handed SUSY parameters:

ϵi = PLϵi, ϵi = PRϵ
i. (2.24)

There is the symmetry which mixes N -supercharges. This symmetry is
called the R-symmetry.

2.2.2 Superconformal symmetry

A superconformal group contains conformal symmetry andR-symmetry as its
bosonic subgroup. It also contains the symmetry generated by spinor genera-
tors Qi, Qi that are superpartners of translation generators Pµ and Si, Si that

5We can have more general algebras by including the so-called central charge which we
do not refer to.
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are superpartners of specialconformal generators Kµ. The former is called
the Poincaré SUSY and the latter is called the special superconformal sym-
metry. Explicitly, the superconformal group in four dimensions is SU(2, 2|N )
for N = 1, 2, 3 whose bosonic subgroup is SO(4, 2)×SU(N )R ×U(1)R. The
first factor is the conformal symmetry in four dimensions, and the rest factors
are R-symmetry as indicated in subscripts. For N = 4 case the superconfor-
mal group is PSU(2, 2|4).

The Poincaré SUSY transformations are generated by δQ(ϵ) (2.23) while
the special superconformal transformations are generated by

δS(η) = ηiSi + ηiS
i, (2.25)

where ηi, ηi are right/left handed SUSY parameters:

ηi = PRη
i, ηi = PLηi. (2.26)

CFTs which admit superconformal symmetry are called superconformal field
thoeries (SCFTs).

2.3 Sphere partition function

2.3.1 Conformal manifold

Consider a d-dimensional CFT and deform it by a set of operators {OI}nI=1.
If we have a Lagrangian description this means that we add

1

πd/2

∫
ddxτ IOI(x) (2.27)

to an original Lagrangian where τ I are parameters. If we do not have a
Lagrangian description we insert

exp

[
1

πd/2

∫
ddxτ IOI(x)

]
(2.28)

to correlation functions. If operators OI have a conformal dimension d, then
this operators are called marginal operators and the corresponding deforma-
tion is called a marginal deformation. Furthermore, if the deformed theory
is again conformal in all order in perturbation theory with respect to τ I then
the operators are called exactly marginal operators and the deformation is
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called an exactly marginal deformation. In this case, we have a family of
CFTs parametrized by τ I which we call the conformal manifold or the mod-
uli space S. The parameters τ I are called moduli parameters or exactly
marginal couplings. It is known that the conformal manifold S admits the
Riemannian metric called the Zamolodchikov metric [3].

2.3.2 Divergent structure of sphere partition function

In this subsection we explain the general structure of partition functions of
CFTs on a d-dimensional sphere. Since a sphere has a finite volume, there
are no IR divergences, but there are still UV divergences. So we introduce an
UV cut-off ΛUV to regularize the partition function. Then sphere partition
function has the following structure for even d 6:

logZ[Sd] = A1(τ)(rΛUV )
2n + A2(τ)(rΛUV )

2n−2 + · · ·+ An(τ)(rΛUV )
2

+ A(τ) log(rΛUV ) + F2n(τ), (2.29)

where d = 2n and r is a radius of the sphere. On the other hand, for odd d
it has the following structure:

logZ[Sd] = B1(τ)(rΛUV )
2n+1 +B2(τ)(rΛUV )

2n−1 + · · ·+Bn(τ)(rΛUV )

+ F2n+1(τ). (2.30)

The power law divergences correspond to the counterterms which are explic-
itly written as

Λ2n−2k+2
UV

∫
d2nx

√
gAk(τ)R

k−1 (2.31)

for even d and

Λ2n−2k+3
UV

∫
d2n+1x

√
gBk(τ)R

k−1 (2.32)

for odd d. So these divergent terms are ambiguous and can be removed in
the continuum limit.

For even d one can show that the coefficient in front of the log divergent
term does not depend on the exactly marginal parameter τ and is propor-
tional to the Weyl anomaly coefficient. On the other hand, the finite term

6Without loss of generality we consider a single moduli parameter τ and omit indices.
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F2n(τ) is ambiguous and can be removed by local conterterms∫
d2nx

√
gF2n(τ)E2n. (2.33)

As we will explain in the next subsecion, when we treat a supersymmetric
theory the situation can be different.

For odd d one can also show that the finite term F2n+1(τ) is unambiguous
and does not depend on the exactly marginal parameter τ .

To recap, the universal term in the log of the sphere partition function is
the log divergent term for even d and the constant term for odd d.

2.3.3 Supsersymmetric partition function

When we consider SCFTs the structure of sphere partition functions can be
different [26]. In this case we often regularize a partition function with a
part of SUSY preserved. In the absence of supersymmetry, we consider dif-
feomorphism invariant counterterms. On the other hand, in SUSY preserving
scheme we consider SUSY invariant and diffeomorphism invariant countert-
erms given by supergravity. Thus the allowed counterterms become more
restricted. As a result, a finite term F2n(τ) for even d which is ambiguous in
non-SUSY cases can be unambiguous. Indeed, for a 2d N = (2, 2) SCFT and
a 4dN = 2 SCFT it gives Kähler potentials on moduli space [27, 28, 26, 29] 7:

ZSUSY[S2](τ, τ) = e−K(τ,τ), ZSUSY[S4](τ, τ) = eK(τ,τ)/12. (2.34)

The 2d result was first conjectured in [27] and later proved by [28] via the
SUSY localization technique 8 9. The authors of [26] further gave a new proof
of this claim by using supersymmetric Ward identity which does not depend
on a Lagrangian description nor SUSY localization. The 4d result was first
derived in [26] via SUSY localization and further proved by supersymmetric
Ward identity in [29].

A choice of SUSY preserving regularization schemes corresponds to the
choice of Kähler potentials on the conformal manifold. In other words, chang-

7For a 4d N = 1 and a 2d N = (1, 1) SCFT, the finite terms are ambiguous and thus
not physical quantity [26].

8SUSY localization will be reviewed in Section 5.1.
9Here we focus only on the constant term in (2.29). Thus these equalities hold up to

moduli independent factors due to the Weyl anomaly.
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ing a regularization scheme causes the the Kähler transformations

K(τ, τ) → K(τ, τ) + F(τ) + F(τ), (2.35)

where F(·) and F(·) are a holomorphic and an anti-holomorphic function,
respectively. This means that the sphere partition function is not actually
a function but a section. This difference can be explained by supergrav-
ity counterterms [26, 29]. We will explain this point more explicitly in the
presence of the Janus interface in Section 5.2.4.





Chapter 3

Interface entropy

In this chapter we study an entropy of a general conformal/superconformal
interface. Although we explained motivations to study an interface entropy
in Chapter 1, here we want to recap points. One motivation to study an
interface entropy is that it is conjectured to be a C-function in a CFT with an
interface (ICFT) [2]. If this statement is true, then an interface entropy can
be used to classify/constraints data in ICFTs. Thus it is very important to
compute an interface entropy nonperturbatively for examining its property.
The second motivation that is more directly related to this thesis is to study
the relation between an entropy of the Janus interface and Calabi’s diastasis.
This topic will be explained in Chapter 4 and Chapter 5.

Let us summarize contents covered in this chapter. The goal of this
chapter is to derive the relation between a sphere partition function and an
interface entropy in the presence of a conformal/superconformal interface
which are given in (3.36) and (3.42). The main tool to derive these relations
is a conformal map introduced in the paper [22] which we call the CHM
map. So we first review in Section 3.1 the CHM map and the derivation
of the relation between a sphere partition function and an entanglement
entropy across a spherical entangling surface in the absence of an interface
according to [22]. Next we introduce a conformal interface and define its
entropy. Then we apply the CHM map to derive the similar relation in the
presence of a conformal interface in Section 3.2. In Section 3.3 we further
derive the similar relation for a half-BPS superconformal interface in a SCFT
after defining it. In an intermediate step we make an assumption. We also
discuss this assumption is quite natural in terms of the supersymmetric Rényi
entropy.

21
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3.1 Entanglement entropy and sphere parti-

tion function in CFT

In this section we review the results [22] in general CFTs without an interface
to apply them to CFTs with an interface.

3.1.1 CHM map

First we explain the original map which transforms the Minkowski space
R1,d−1 into the static patch of the de Sitter space. We parametrize the d-
dimensional Minkowski space by (t, r,Ωd−2) where Ωd−2 parametrize Sd−2.
The metric is given by

ds2 = −dt2 + dr2 + r2dΩ2
d−2. (3.1)

Next we consider the conformal transformation (r, t,Ωd−2) → (θ, τ,Ωd−2)

t = R
cos θ sinh(τ/R)

1 + cos θ cosh(τ/R)
, (3.2)

r = R
sin θ

1 + cos θ cosh(τ/R)
, (3.3)

where R is a constant and 0 ≤ θ ≤ π/2. We call this transformation as the
(Lorentzian version of) CHM map [22]. Under this map, the metric (3.1)
transforms as

ds2 = Ω2
(
− cos2 θdτ 2 +R2dθ2 + sin2 θdΩ2

d−2

)
, (3.4)

where a conformal factor Ω is given by

Ω =
1

1 + cos θ cosh(τ/R)
. (3.5)

The new coordinates (θ, τ,Ωd−2) are the static patch of the de Sitter space
with a radius R. This fact can be seen more transparently when we write
the metric (3.4) by (r̂ = R sin θ, τ,Ωd−2) as

ds2 = −
(
1− r̂2

R2

)
dτ 2 +

dr̂2

1− r̂2/R2
+ r̂2d2Ωd−2. (3.6)
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The surface r̂ = 1 corresponds to a cosmological horizon.
On the other hand, if we start with the Euclidean flat space Rd instead

of Minkowski space in which the metric can be obtained by performing Wick
rotation t→ it in (3.1) as

ds2 = dt2 + dr2 + r2dΩ2
d−2. (3.7)

In this case, the (Euclidean version of) CHM map is given by

t = R
cos θ sin(τ/R)

1 + cos θ cos(τ/R)
, (3.8)

r = R
sin θ

1 + cos θ cos(τ/R)
, (3.9)

and the metric after this transformation is

ds2 = Ω2
(
cos2 θdτ 2 +R2dθ2 + sin2 θdΩ2

d−2

)
= Ω2ds2Sd , (3.10)

where a conformal factor Ω is given by

Ω =
1

1 + cos θ cos(τ/R)
, (3.11)

and 0 ≤ θ ≤ π/2. So in this case we finally have a d-dimensional sphere Sd.

3.1.2 Original derivation of the relation

By using the CHM map, the author of the paper [22] derived the relation
between entanglement entropy with a spherical entangling surface and the
sphere partition function. We review their results here to apply them to an
ICFT later.

We start with the Lorentzian flat space R1,d−1, and take Σ := Sd−2 on a
constant time slice as an entangling surface. See Figure 3.1. We denote inside
and outside of Σ as V and Ṽ respectively. Then by tracing out the degree
of freedom in Ṽ we obtain a reduced density matrix ρ. An entanglement
entropy SE across Σ is given by the von Neumann entropy

SE := −trV [ρ ln ρ] , (3.12)

where a trace is taken for the degree of freedom in V . Note that an entangle-
ment entropy in a continuum quantum field theory has UV divergent which
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Figure 3.1: Entanglement entropy without an interface

we should regulate properly. We will explain this point in Section We will
explain how to regularize UV divergent in Section 3.1.3.

Next, we use the CHM map (3.2). After this transformation, the modular
flow induced by ρis inside the causal development of V is mapped to the time
translation τ → τ+2πRs in de Sitter space 1. Then one can show that states
in the static de Sitter space is thermal at a temperature T = 1/(2πR) and
the density matrix is given by

ρ =
e−βHτ

tre−βHτ
, (3.13)

where Hτ is a operator generating the translation in τ -direction. Thus the
entanglement entropy (3.12) can be written as

SE = βE + lnZ[dSd], (3.14)

where β := 2πR, E := tr(ρHτ ), and Z := tre−βHτ .
As explained in the next subsection, we are interested in the universal

part of an entanglement entropy SE which is a log divergent term for even
d and a constant term for odd d. Since the energy term E is given by an
integral of the one point function of the energy momentum tensor, it gives
a finite result for even d and 0 for odd d, see Section 2.1.4. Therefore we
do not need to consider this term for our purpose. Thus all we need is the

1The causal development of V is a set of points such that all causal curves through
them intersect V .
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second term in (3.14) which becomes lnZ[Sd] after Wick rotation. Therefore
we can finally write the entanglement entropy across a spherical entangling
surface by free energy W := − lnZ[Sd] as

SE = −W = lnZ[Sd]. (3.15)

3.1.3 UV divergence

Let us mention about UV divergence. In general, an entanglement entropy
in a continuum QFT has the following UV structure:

SE = (power low divergences) +

{
ad log(rΛUV ) + fd (d : even)

fd (d : odd)
. (3.16)

The log divergent term in even dimensions and the constant term in odd
dimensions are known to be universal, i.e. independent of UV regularization
schemes.

On the other hand, the log of the sphere partition function also has the
same divergence structure as (2.29) and (2.30). Then the precise version of
the equation (3.15) is that

SE|log = lnZ[Sd]|log, (d : even), (3.17)

SE|const = lnZ[Sd]|const, (d : odd). (3.18)

3.1.4 Another derivation

In the previous section, we derive the relation (3.15) between the free energy
and entanglement entropy. Here we introduce another equivalent derivation
via replica methods according to [2]. Here we assume that we are in even di-
mensions and using dimensional regularization to avoid an extra care about
the conformal anomaly in intermediate steps. It is automatically incorpo-
rated into a pole in even dimensions.

We first introduce the quantity called the Rényi Entropy Sn which is
parametrized by a real parameter n called the Rény parameter as

Sn :=
1

1− n
ln trV ρ

n. (3.19)
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This quantity reduces to an entanglement entropy (3.12) by taking n → 1
limit:

lim
n→1

Sn = SE. (3.20)

In the replica trick we identify the Rényi entropy Sn with the partition func-
tion on a branched cover of the original manifold M which we denote by
Mn

2. With a proper normalization, this can be stated as

trV ρ
n =

Z[Mn]

Z[M]n
. (3.21)

In this case M = Rd. We use the Euclidean version of the CHM map (3.8).
The metric is conformally equivalent to the one of sphere, ds2Rd = Ω2ds2Sd via
the CHM map. Moreover, the n-fold cover of Rd is mapped to Sd

n as

ds2Rd
n
= Ω2ds2Sdn , (3.22)

where
ds2Sdn = cos2 θdτ 2 +R2n2dθ2 + sin2 θdΩ2

d−2. (3.23)

So the partition functions on each manifolds are related as

Z[Rd
n] = Z[Sd

n], Z[Rd] = Z[Sd] (3.24)

Note that we do not need care about the conformal anomaly in this step
since we use the dimensional regularization.

Thus we can obtain the Rényi entropy via

Sn =
1

1− n
ln trV ρ

n = ln
Z[Sd

n]

Z[Sd]n
. (3.25)

To obtain the entanglement entropy, we evaluate the above equation around
n = 1.

SE = lim
n→1

1

1− n

(
lnZ[Sd

n]− lnZ[Sd]
)
+ lnZ[Sd] (3.26)

The first term around n = 1 can be written as

lnZ[Sd
n]− lnZ[Sd] = −1

2

∫
Sd
δgµν ⟨T µν⟩Sd +O

(
(n− 1)2

)
, (3.27)

2More precisely Mn is made as follows. First we prepare n-th copies of M. Then we
cut and glue them at entangling surfaces.
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where δgµν is a deviation of the S4
n metric from S4 up to O(n − 1). In

the absence of the conformal anomaly, the one point function of the energy
momentum tensor on sphere is proportional to that on flat space as

⟨T µν⟩Sd = (Weyl factor)2 ⟨T µν⟩Rd = 0. (3.28)

So we show that the first term in (3.26) vanishes to have SE = lnZ[Sd]. This
is exactly the same result in the previous subsection.

3.2 Entropy of a conformal interface

In this section we define a conformal interface and its entropy. Then we derive
the relation between a sphere partition function and an interface entropy by
generalizing the results reviewed in the previous section.

3.2.1 Conformal interface

We consider non-local objects in QFTs that are called defects. Let us consider
a CFT in d-dimensional flat space Rd and insert a co-dimesion p defect.
We are interested in defects which preserve a part of conformal symmetry
SO(d+ 1, 1). We call defects which preserve the maximal subgroup SO(p+
1, 1)×SO(q) as conformal defects and CFTs with defects as defect conformal
field theories (DCFTs). In particular co-dimension one defects are denoted as
interfaces, domain-walls, and boundaries. An interface preserving SO(d, 1) ⊂
SO(d + 1, 1) is called as a conformal interface and a CFT with a conformal
interface as an interface CFT (ICFT).

Although the full conformal invariance is violated by inserted defects, the
correlation functions in DCFTs or ICFTs are strongly constrained by the
remaining conformal symmetry. For example, one can show that one point
functions in an ICFT of an operator with nonzero spin vanish [30]. On the
other hand, the one point function of scalar operators O with a conformal
dimension ∆O is given by

⟨O(y)⟩(ICFT) =
aO

|y⊥|∆O
, (3.29)

where we introduce Cartesian coordinate yµ and y⊥ is a coordinate perpen-
dicular to the interface. The nontrivial coefficient aO which vanish in a CFT
without an interface is also dynamical data in an ICFT.
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Figure 3.2: Entanglement entropy with an interface

3.2.2 Entropy of conformal interface

Let us explain setup depicted in Figure 3.2. We start with a flat space Rd

and parametrize it by Cartesian coordinates (y0, y1, · · · , yd−1) 3. A planar
interface I is placed at yd−1 = 0. This preserves SO(d, 1) and therefore is a
conformal interface. Two different CFTs live in both sides of the interface,
and we denote it by CFT+ and CFT−, respectively.

Then we define an entropy associated to this interface. Frist we take Σ :=
Sd−2 as an entangling surface. Then we have an entanglement entropy in the
presence of an interface by (3.12) which we denote as S

(ICFT)
E . We also have an

entanglement entropy across the same surface Σ in the absence of an interface
for a CFT+ and CFT−. We denote them by S

(CFT±)
E . Then a definition of an

interface entropy SI is given as a contribution to an entanglement entropy
from an interface:

SI := S
(ICFT)
E − 1

2

(
S
(CFT+)
E + S

(CFT−)
E

)
. (3.30)

In the absence of an interface we can use the result reviewed in Section 3.1:

S
(CFT±)
E = lnZ(CFT±)[Sd]. (3.31)

3From now on we denote Cartesian coordinates in a flat space by yµ to distinguish
them from stereographic coordinates on a sphere denoted by xµ which will be introduced
in the next chapter.
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In the presence of an interface, we again use the CHM map to map Rd

to Sd after the Wick rotation. By this map, a planar interface is mapped
to spherical surface at an equator of Sd. Similar as in a CFT without an
interface, an entanglement entropy with an interface can be written as

S
(ICFT)
E = lim

n→1

1

1− n

(
lnZ(ICFT)[Sd

n]− lnZ(ICFT)[Sd]
)
+ lnZ(ICFT)[Sd] (3.32)

via the CHM map. The first term around n = 1 can be written as

lnZ(ICFT)[Sd
n]− lnZ(ICFT)[Sd] = −1

2

∫
Sd
δgµν ⟨T µν⟩(ICFT)

Sd +O
(
(n− 1)2

)
.

(3.33)

As we explained in 3.2.1, one point functions of operators with nonzero spins
vanish due to the remaining conformal symmetry. So we can drop the first
term since the one point function on a sphere is proportional to it on a flat
space:

⟨T µν⟩(ICFT)

Sd = (Weyl factor)2 ⟨T µν⟩(ICFT)

Rd = 0. (3.34)

So we can again show that the first term in (3.32) vanishes and thus

S
(ICFT)
E = lnZ(ICFT)[Sd]. (3.35)

Then by combining the relations (3.31) and (3.31) with the definition of an
interface entropy (3.30) we have 4

SI = ln

[
Z(ICFT)[Sd]

(Z(CFT+)[Sd]Z(CFT−)[Sd])
1/2

]
. (3.36)

3.2.3 UV divergence

Let us here mention about UV divergence in the interface entropy. As ex-
plained in Section 3.1.3, each terms in (3.30) have UV divergence. We focus
on the even d case which will be used later. In this case, the entanglement
entropy has the structure given in (3.16). Thus the interface entropy has the

4This result is the special case of the result in [2] where they considered more general
conformal defects.
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structure as 5

SI = (power low divergence) + fI
d . (3.37)

We explained that the constant terms in an entanglement entropy are am-
biguous and thus not physical. However, their difference fI

d is considered to
be universal 6. So the formula (3.36) should be understood as the equality
between finite contributions.

3.3 Entropy of a half-BPS superconformal in-

terface

In this section, we define a half-BPS superconformal interface in a SCFT and
derive the similar formula as (3.36) for a superconformal interface. We focus
on CFTs with specific dimensions and SUSY, 4d N = 2 SCFTs.

3.3.1 Half-BPS superconformal interface

Let us consider a N = 2 superconformal field theory on a flat space. The
superconformal algebra is SU(2, 2|2) whose bosonic subgroup is SO(4, 2) ×
SU(2)R × U(1)R as explained in Section 2.2.2. We are interested in an in-
terface which maximally preserves a part of SU(2, 2|2) symmetry. Such an
interface is called a half-BPS superconformal interface.

As explained in Section 2.2.2, the full symmetry SU(2, 2|2) is generated
by Qi, Qi and S

i, Si as

δQ = ϵiQi + ϵiQ
i, δS = ηiSi + ηiS

i. (3.38)

A half-BPS superconformal interface is invariant under transformations by
parameters satisfying

ϵi = ρijγ
3ϵj, ηi = −ρijγ3ηj, (3.39)

5The log divergence has subtleties. This term arises from the conformal anomaly. The
conformal anomaly in the presence of an interface has the contribution from bulk and the
interface. One can show that the bulk contribution cancels out in (3.36), while we do not
have a proof for vanishing of the contribution from the interface. However, holographic
examples in [2] and Section 5.4 provide non-trivial evidences.

6For example the author of the paper [31] showed that this part is independent of the
choice of UV regularization schemes by explicit calculation. This fact can be seen also in
Section 5.4.
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where ρij satisfies ρij = ρji, ρijρ
jk = δki with ρij := (ρij)

∗. In other words, the
preserved symmetry is generated by the following specific linear combination
of supercharges:

Qi − ρijγ3Q
j, Si + ρijγ3S

j. (3.40)

The resulting symmetry is the 3d N = 2 superconformal algebra denoted
as OSp(2|4)sc 7.

3.3.2 Entropy of a supefconformal interface

Now we want to derive similar relation as (3.36) for a half-BPS superconfor-
mal interface I.

In this case, there are deferences from the previous argument. First, fields
in SCFTs can couple to fields in a supergravity multiplet other than a metric.
This makes a partition function of a SCFT a functional of a supergravity
multiplet rather than a functional of a metric.

Second, we use a regularization scheme preserving the conformal sym-
metry in the previous derivation. In supersymmetric case, we have another
choice; a regularization scheme which preserve a part of supersymmetry 8.
We denote a partition function on a spacetime manifold M in a SCFT in
the presence of a half-BPS superconformal interface I as ZI

SUSY[M]. As we
will see later in Chapter 5 it can be complex in general. If we simply replace
Z(ICFT)[Sd] in (3.36) with ZI

SUSY[Sd], the resulting entropy becomes complex.
So we here make the following assumption:

Z(ICFT)[S4] =
∣∣ZI

SUSY[S4]
∣∣ . (3.41)

Then we obtain a relation between a SUSY partition function and an interface
entropy for a half-BPS interface I as

SI = log

[ ∣∣ZI
SUSY[S4]

∣∣
(Z

(CFT+)
SUSY [S4]Z

(CFT−)
SUSY [S4])1/2

]
, (3.42)

where Z
(CFT±)
SUSY [S4] is a partition function for CFT± computed in a SUSY

7We write the letter “sc” to distinguish the 3d N = 2 superconformal algebra from
4d N = 2 massive SUSY algebra which we will denote OSp(2|4)m. We will explain their
correspondence later.

8One example is SUSY localization which is reviewed in Section 5.1.



32 CHAPTER 3. INTERFACE ENTROPY

preserving scheme. Unfortunately we do not have a proof for the assump-
tion (3.41), but we have some evidences for it 9.

• The assumption (3.41) is equivalent to an assumption that an entan-

glement entropy with an interface S
(ICFT)
E can be derived from the su-

persymmetric Rényi entropy. See the next subsection.

• The results obtained in holographic calculation are consistent with the
formula (3.42). See Section 5.4.

• In two dimensional case, we can give a proof of similar relation (C.8)
by using boundary super-Weyl anomaly. See Appendix C.

3.3.3 Supersymmetric Rényi entropy

Now we want to explain that the assumption (3.41) is natural in terms of
the supersymmetric Rényi entropy. First let us define the supersymmetric
Rényi entropy [33]. As we explained before, fields in SCFTs can couple to
the supergravity background. Similar as the Rényi entropy, we consider the
n-fold cover of a supergravity background on S4 which has singularity at
n = 1. To define a supersymmetric Rényi entropy, we resolve this singularity
and denote the resulting background as S̃4

n. The metric of the resolved n-fold
cover S̃4

n is given by

ds2S̃dn
= (f(θ))2 dθ2 + n2 sin2 θdτ 2 + cos2 θdΩ2

2, (3.43)

where we set R = 1 and a smooth function f(θ) satisfies

f(θ → 0) = n, f(θ ≫ δ) = 1, (3.44)

for a small parameter δ ≪ 1. Then the supersymmetric Rényi entropy in the
presence of a half-BPS interface I denoted by SI

SUSY n is given by

SI
SUSY n :=

1

1− n
Re log

ZI
SUSY[S̃4

n](
ZI

SUSY[S4]
)n . (3.45)

9In d = 3, it is usual to define the free energy by taking the absolute value of the
partition function as F = − log

∣∣ZSUSY[S3]
∣∣. See for example [6, 32].
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Now we assume that an entanglement entropy with an interface can be
derived from the supersymmetric Rényi entropy:

S
(ICFT)
E = lim

n→1
SI
SUSY n . (3.46)

Below we want to show that the formula (3.42) can be derived from this
assumption and therefore the assumption (3.46) is equivalent to the assump-
tion (3.41).

By substituting the equation (3.45) to the definition of an interface en-
tropy (3.30), we have

S
(ICFT)
E = log

∣∣ZI
SUSY[S4]

∣∣− ∂n Re log ZI
SUSY[S̃4

n]
∣∣∣
n=1

. (3.47)

Let us proof that the second term in (3.47) vanish. The background Weyl
mutiplet

W = (gµν , ψµ
i, Vµ i

j, Aµ, D, χ
i, T±

µν) . (3.48)

couples to the supercurrent multiplet J which contains a stress-energy ten-
sor 10:

J = (Tµν , S
i
µ, j

ij
µ , jµ, J, j

i, j±µν) . (3.49)

Then the partition function ZI
SUSY[S̃4

n] on the branched sphere is expanded
around n = 1 as

− Re logZI
SUSY[S̃4

n] + Re logZI
SUSY[S4]

=

∫
S4
d4x

√
g
〈1
2
δgµνT

µν + δψµ
iSµ

i + δψµiS
µi + δVµ

ijjµij + δAµj
µ

+ δD J + δχi ji + δχi j
i + δT+µνj+µν + δT−µνj−µν

〉(ICFT)

S4
+O((n− 1)2) .

(3.50)

As in Section 3.2 contributions from operators with nonzero spins vanish.
Thus we look into the one point function ⟨J ⟩(ICFT)

S4 . For this purpose, let us
consider the SUSY transformation of ji in the flat space:

δji = −1

2
(/∂J)ϵi +

1

2
jµi

jγµϵj +
i

2
jµγ

µϵi + j−µνγ
µνεijϵ

j, (3.51)

10The explicit form of the supercurrent multiplet for a vector multiplet is given in
Appendix A.6.
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where constant SUSY parameters ϵi, ϵi satisfy the half-BPS condition (3.39).
Then we take vacuum expectation values of both sides. Again one point func-
tions of operators with nonzero spins vanish. We also know that ⟨ δji ⟩(ICFT)

R4 =
0 from the Ward identities. Thus for constant ϵi, ϵi satisfying the condi-
tion (3.39) we have

0 = ∂µ ⟨ J ⟩(ICFT)

R4 γµϵi . (3.52)

On the other hand, we know that the operator J has the Weyl weight 2 and
thus 11

⟨ J(y) ⟩(ICFT)

R4 =
aJ

|y3|2
, (3.53)

where aJ is a constant. Substituting this equation into (3.52), we show that

aJ = 0. So we conclude that ⟨ J ⟩(ICFT)

S4 = 0 by the similar argument as (3.34).
Thus we show that the second term in (3.47) vanish and therefore

S
(ICFT)
E = log

∣∣ZI
SUSY[S4]

∣∣ . (3.54)

By comparing this result and (3.35) we reach the assumption (3.41). Con-
versely, if we assume (3.41) we obtain (3.54) which is same as the supersym-
metric Rényi entropy (3.45), thus we arrive at the assumption (3.46). So we
conclude that the assumption (3.45) isequivalent to the assumption (3.41).

11Remind that this form is determined by the remaining conformal symmetry. See
Seciton 3.2.1.



Chapter 4

Construction of the Janus
interface

So far we have considered general conformal/superconformal interfaces. From
now on, we consider a specific interface called the Janus interface. The goal
of the latter half is to show the relation between the Janus interface in 4d
N = 2 SCFTs and a specific linear combination of analytically continued
Kähler potentials on the moduli space called Calabi’s diastasis.

In this Chapter we explain a construction of the Janus interface. In
Section 4.1, we explain an off-shell construction of the Janus interface in the
flat space. We introduce a crucial ingredient, the coupling multiplet whose
bottom component is a position dependent coupling τ(x). We will check
the resulting interface is indeed a half-BPS superconformal interface. In
Section 4.2 we construct the Janus interface on the four sphere and discuss
the relation to the Janus interface in the flat space. In Section 4.3, we
explicitly construct the Janus interface in a 4d N = 2 gauge theory which
will be used in the computation in the next chapter.

4.1 Off-shell Construction of Janus interface

in flat space

First we explain an off-shell construction of the Janus interface in flat space 1.
We denote Cartesian coordinates in flat space as yµ, (µ = 0, 1, 2, 3) and place

1The similar method was used in [34, 35, 36, 14, 37] for various defects.
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the Janus interface orthogonal to the y3-direction, see Figure 3.2. As we
explained in Introduction, the Janus interface is an interface across which an
exactly marginal coupling τ changes its values. To construct such an object
we promote a coupling constant τ to a position-depending coupling field τ(y).
Further, to construct a half-BPS interface we promote the coupling field τ(y)
to the bottom component of a N = 2 chiral multiplet

T = (τ,Ψ
(τ)
i , B

(τ)
ij , F

(τ)−
µν , Λ

(τ)
i , C(τ)). (4.1)

We denote this multiplet by a coupling multiplet. As we will see soon later,
by solving symmetry preserving conditions we can write all components in
T in terms of τ(y). We also have the anti-chiral counterpart of T which we
denote as T . The components of T are given by

T = (τ , Ψ(τ)i, B(τ)ij, F (τ)+
µν , Λ(τ)i, C(τ)), (4.2)

where we take τ to be the complex conjugate of τ : τ = τ ∗.
Now we consider symmetry preserving conditions on T . First, to pre-

serve a part of Lorentz symmetry we set F
(τ)±
µν = 0. Next, to preserve the

half of supersymmetry, we impose that fermionic components in T , T and
their SUSY variation vanish. Using the SUSY transformations of a chiral
multiplet 2, the conditions are written as

δΨ
(τ)
i = (∂3τ)γ

3ϵi +
1

2
B

(τ)
ij ϵ

j = 0 , (4.3)

δΛ
(τ)
i = −1

2
∂3B

(τ)
ij ε

jkγ3ϵk +
1

2
C(τ)εijϵ

j = 0 , (4.4)

δΨ(τ)i = (∂3τ)γ
3ϵi +

1

2
B(τ)ijϵj = 0 , (4.5)

δΛ(τ)i = −1

2
∂3B

(τ)ijεjkγ
3ϵk +

1

2
C(τ)εijϵj = 0 , (4.6)

where ϵi, ϵi are constant SUSY parameters. By solving these equations, we
have

B
(τ)
ij = −2ρij ∂3τ , C(τ) = −2e+2iα ∂23τ , (4.7)

B(τ)ij = −2ρij ∂3τ C(τ) = −2e−2iα ∂23τ , (4.8)

2See appendix A.3.2.



4.1. CONSTRUCTION IN FLAT SPACE 37

for fields in the coupling multiplet and

ϵi = ρijγ
3ϵj, (4.9)

for SUSY parameters. These solutions are parametrized by matrices ρij, ρ
ij

given as
ρij = eiα n⃗ · τ⃗ij , ρij = e−iα n⃗ · τ⃗ ij , (4.10)

where α is a real parameter and n⃗ is a three-dimensional unit vector. The
condition on SUSY parameters is equivalent to the first condition in (3.39).
So we construct an interface which preserves the half of the supersymme-
try. We further confirm that this interface is also invariant under special
superconformal transformations generated by SUSY parameters satisfying
the second condition in (3.39) when taking a step function profile in the next
subsection.

Note that the auxiliary fields satisfy reality conditions even for generic
τ(y):

B(τ)ij = (B
(τ)
ij )∗, C

(τ)
= (C(τ))∗. (4.11)

This situation is different from the Janus interface on S4 which we will con-
struct in Section 4.2.

4.1.1 Step function profile

So far we have considered an interface for a general profile τ(y). We now
consider a step function profile:

τ(y3) =

{
τ+ for y3 > 0 ,

τ− for y3 < 0 .
(4.12)

In this case, the derivatives of τ(x) are given by a delta function as

∂3τ = ∆τ δ(y3), ∂23τ = ∆τ δ′(y3). (4.13)

So by substituting these expressions into (4.7) and (4.8), we can obtain the
auxiliary fields for a step function profile as

B
(τ)
ij = −2ρij∆τ δ(y

3) , C(τ) = −2e+2iα∆τ δ′(y3) ,

B(τ)ij = −2ρij∆τ δ(y3) , C(τ) = −2e−2iα∆τ δ′(y3) ,
(4.14)
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where ∆τ := τ+ − τ−.
Now we show that the Janus interface for a step function profile is in-

variant under special superconformal transformations. The special super-
conformal transformations δη are obtained by substitute ϵi → yµγµη

i in
transformation rules in Appendix A.3.1. Then the special superconformal
transformation of Ψ

(τ)
i automatically vanishes: δηΨ

(τ)
i = 0. On the other

hand, the special superconformal transformation of Λ
(τ)
i is given by

δηΛ
(τ)
i = −1

2
∂3B

(τ)
ij ε

jkyµγ3γµηk +
1

2
C(τ)εijy

µγµη
j −B

(τ)
ij ε

jkηk (4.15)

= 2∆τ ∂3(y
3δ(y3))ρij ε

jkηk

−∆τ e2iα δ′(y3)
(
y3 +

2∑
a=0

yaγaγ
3
)
εijρ

jk(ηk + ρklγ
3ηl) . (4.16)

The first term in the final expression vanishes as a distribution, while the
second term vanishes for SUSY parameters satisfying the condition (3.39).

Thus we conclude that δηΨ
(τ)
i = δηΛ

(τ)
i = 0 for a step function profile. Simi-

larly, we can show that δηΨ
(τ)i = δηΛ

(τ)i = 0. So in a step function limit, the
Janus interface becomes a half-BPS superconformal interface which preserves
the subalgebra OSp(2|4)sc of the 4d N = 2 superconformal algebra.

4.2 Off-shell construction of Janus interface

in S4

In this section we explain an off-shell construction of the Janus interface on
S4. Reality properties of auxiliary fields are different from them in flat space.
We also explore the relation between the Janus interface on flat space and
S4.

4.2.1 Massive subalgebra on S4

In Section 3.3.1 we explained that a half-BPS superconformal interface in a
4d N = 2 preserves the subalgebra OSp(2|4)sc ⊂ SU(2, 2|2) which is a 3d
N = 2 superconformal algebra. Here we explain another relevant subalgebra
of SU(2, 2|2), a 4d N = 2 massive subalgebra which we denote as OSp(2|4)m.
We will evaluate sphere partition function with this symmetry preserved.
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The massive subalgebra OSp(2|4)m is generated by Killing spinors satis-
fying

∇mϵ
i =

i

2r
κijϵj, ∇mϵi =

i

2r
κijϵ

j, (4.17)

with
κij = e−iβ(n⃗ · τ⃗)ij, κij = e+iβ(n⃗ · τ⃗)ij. (4.18)

We can diagonalize the equations (4.17) as

∇mχ
i =

i

2r
γmχ

i, (4.19)

by introducing spinors χi defined by

χi = eiβ
(
ϵi + κijϵj

)
. (4.20)

The above equation can be solved for ϵi and ϵi as

ϵi = e−
i
2
βPLχ

i, ϵi = e
i
2
β(n⃗ · τ⃗)ijPRχ

j. (4.21)

Now we introduce the stereographic coordinates xµ in which the metric
is given by 3

gµν = f(x)2 δµν , f(x) =
1

1 + x2

4r2

, (4.22)

where x :=
√
xµxµ. Then solutions of (4.19) in the stereographic coordinates

are given as

χj =
√
f

(
1 +

i

2r
xµΓ

µ

)
χj
0 , (4.23)

where χj
0 are constant spinors. By substituting this solution into (4.21), we

finally obtain

ϵi = e−
i
2
β
√
f

(
PLχ

i
0 +

i

2r
xµΓ

µPRχ
i
0

)
, (4.24)

ϵi = e
i
2
β
√
f n⃗ · τ⃗ij

(
PRχ

j
0 +

i

2r
xµΓ

µPLχ
j
0

)
. (4.25)

3Although we use the same notation, this is different from the function f(·) in (3.43).
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We further restrict the symmetry by imposing PLχ
i
0 = 0 without loss of

generality 4. The resulting symmetry is OSp(2|2)m [29].

4.2.2 Construction

Next, we consider a construction of the Janus interface in S4. The reality
condition in this case is different from the one in flat space.

Same as in the construction in flat space, we introduce a chiral cou-
pling multiplet T = (τ,Ψ

(τ)
i , B

(τ)
ij , F

(τ)−
µν , Λ

(τ)
i , C(τ)) and an anti-chiral cou-

pling multiplet T = (τ , Ψ(τ)i, B(τ)ij, F
(τ)+
µν , Λ(τ)i, C(τ)). Next, we impose

that F
(τ)+
ab = F

(τ)−
ab = 0 to preserve a part of Lorentz symmetry. We also

impose that fermionic components in the chiral/antichiral coupling multiplet
and their SUSY variations vanish to preserve a part of supersymmetry. The
SUSY invariant conditions for the chiral coupling multiplet are written as

δΨ
(τ)
i = ( /∇τ) ϵi +

1

2
B

(τ)
ij ϵj = 0 , (4.27)

δΛ
(τ)
i = −1

2
/∇B(τ)

ij ε
jkϵk +

1

2
C(τ)εijϵ

j −B
(τ)
ij ε

jkηk = 0 . (4.28)

By solving the above equations for the auxiliary fields B
(τ)
ij and C(τ), we have

B
(τ)
ij =

4ieiβ r

xf(x)
τ ′(x)n⃗ · τ⃗ij , (4.29)

C(τ) =
8e2iβr2

x2f(x)2

(
τ ′′(x)− 1

x
τ ′(x)

)
. (4.30)

Similarly, conditions for an anti-chiral coupling multiplet can be written as

δΨi = ( /∇τ) ϵi + 1

2
B(τ)ij ϵj = 0 , (4.31)

δΛi = −1

2
/∇B(τ) ijεjkϵ

k +
1

2
C(τ)εijϵj −B(τ)ijεjkη

k = 0 . (4.32)

4Imposing this condition corresponds to choosing a special point (north pole). If we do
not impose this condition, the solution of the equation

ϵj ∝ PLχ
j = 0 (4.26)

gives a special point, i.e. north pole. This is a system of four equations for four unknowns
xµ, and thus at least generically has a solution.
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Solving the conditions (4.31) and (4.32) for B(τ)ij and C
(τ)

leads to

B(τ)ij = − i e−iβ x

rf(x)
τ ′(x)n⃗ · τ⃗ ij , (4.33)

C
(τ)

=
e−2iβ x2

2r2f(x)2

(
τ ′′(x) +

3

x
τ ′(x)

)
. (4.34)

Note that the conditions for the anti-chiral coupling multiplet (4.31)-(4.32)
are formally related to those for the chiral coupling multiplet (4.27)-(4.28) by
charge conjugation in Minkowski signature, but the resulting auxiliary fields
do not satisfy the reality condition as (4.11) for a generic profile τ(x).

To discuss reality properties of auxiliary fields and a relation between the
Janus interface in flat space and S4, we introduce another coordinate θ which
is related to stereographic coordinates by

x = 2r tan
θ

2
. (4.35)

In this coordinate, the auxiliary fields (4.29)-(4.30) and (4.33)-(4.34) can be
rewritten as

B
(τ)
ij =

2 i eiβ

r
cot(θ/2)

dτ

dθ
n⃗ · τ⃗ij , (4.36)

B(τ)ij = −2 i e−iβ

r
tan(θ/2)

dτ

dθ
n⃗ · τ⃗ ij , (4.37)

C(τ) =
e2iβ

r2
cos(θ/2)

sin3(θ/2)

[
(cos θ − 2)

dτ

dθ
+ sin θ

d2τ

dθ2

]
, (4.38)

C(τ) =
e−2iβ

r2
sin(θ/2)

cos3(θ/2)

[
(cos θ + 2)

dτ

dθ
+ sin θ

d2τ

dθ2

]
. (4.39)

As noted before, these auxiliary fields do not satisfy reality conditions (4.11):

B(τ)ij ̸= (B
(τ)
ij )∗, C

(τ) ̸= (C(τ))∗. (4.40)

However, if we take a step function profile

τ(θ) =

{
τ+ for 0 ≤ θ < π

2
,

τ− for π
2
< θ ≤ π ,

(4.41)
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then they satisfy the reality conditions (4.11) as in a flat space. Indeed, the
auxiliary fields in θ coordinates for a step function profile are given by

B
(τ)
ij = −2 i eiβ

r
n⃗ · τ⃗ij ∆τ δ

(
θ − π

2

)
,

C(τ) = −2 e2iβ

r2
∆τ δ′

(
θ − π

2

)
,

B(τ)ij =
2 i e−iβ

r
n⃗ · τ⃗ ij ∆τ δ

(
θ − π

2

)
,

C(τ) = −2 e−2iβ

r2
∆τ δ′

(
θ − π

2

)
,

(4.42)

which satisfy the reality conditions.
Furthermore we can show that these auxiliary fields in S4 are related to

them in a flat space (4.14) by the Weyl transformation and identification
eiβ = −ieiα. See appendix B for more details.

4.3 Janus interface in gauge theory

In this section, we introduce the Janus interface in a 4d N = 2 gauge theory
by using the construction explained in the previous section. The main tool
is N = 2 supergravity which is reviewed in Appendix A.

A generalN = 2 supersymmetric gauge theory contains a vector multiplet
for a gauge group G and a matter hypermultiplet. We take an appropriate
representation for a hypermultiplet to make the theory superconformal. Since
the Janus interface couples to a hypermultiplet indirectly we mostly focus on
a vector multiplet. We will refer to this point later.

We consider a single gauge factor with a complexified coupling constant

τ =
ϑ

2π
+

4π i

g2YM

(4.43)

without loss of generality. The action of a vector multiplet V = (X,Ωi, Aµ, Yij)
in the flat space is given as

Iflatvector =

∫
d4xTr

[
1

g2YM

(
4DµX DµX − 1

2
εik εjl Yij Ykl

+ 2Ωi /DΩi +
1

2
FµνF

µν
)
+ i

ϑ

16π2
FµνF̃

µν

]
,

(4.44)
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where Tr[•] is a normalized inner product of Lie algebra and Dµ are covariant
derivatives and F̃µν = 1

2
εµν

ρσFρσ is a dual field strength. For more details on
notations and conventions, see Appendix A.3.

The action of a vector multiplet in S4 with a radius r can be obtained by
performing Weyl transformation on the flat space action (4.44),

Ivector =

∫
d4x

√
gTr

[
1

g2YM

(
4DµX DµX +

8

r2
XX − 1

2
εik εjl Yij Ykl

+ 2Ωi /DΩi +
1

2
FµνF

µν
)
+ i

ϑ

16π2
FµνF̃

µν

]
,

(4.45)

where
√
g =

√
− det(gµν). For this action to be positive semi-difinite, we

demand that

(Y I
ij)

∗ = −Y Iij , (4.46)

as in [38, 39]. Note that this condition is different from the physical reality
condition in Minkowski signature.

Next we explain how to write down this action via supersupace formalism.
The vector multiplet V can be embedded into the chiral multiplet with a Weyl
weight w = 1 which we denote by A(V) as

A|A(V) = X,

Ψi|A(V) = Ωi ,

Bij|A(V) = Yij ,

F−
ab|A(V) =

1

2

(
Fab − F̃ab

)
,

Λi|A(V) = −εij /DΩj ,

C|A(V) =

(
−2DµD

µ +
4

r2

)
X .

(4.47)

Then we can obtain the squared chiral multiplet A(V)2 via tensor calculus
which is explained in Appendix A.4. By integrating the top components of
A(V)2 and its antichiral counterpart, we finally obtain the action

Ivector =
1

8π i

∫
d4x

√
gTr

[
τ C|A(V)2 − τ C|A(V)2

]
(4.48)
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which is equivalent to (4.45).
Now we want to couple the gauge theory to the Janus interface defined

by the coupling multiplet T . The hypermultiplet does not have a explicit
coupling with τ , so its interaction with the Janus interface enters indirectly
via the coupling with the vector multiplet. Thus we can concentrate on the
vector multiplet. To couple the Janus interface and the vector multiplet we
obtain the product chiral multiplet T A(V)2 from T and A(V)2 via tensor
calculus. Then integrating out the top component of A(V)2 and its antichiral
counterpart gives the action in the presence of the Janus interface as

IJanus =
1

8π i

∫
d4x

√
gTr

[
C|T A(V)2 − C|T A(V)2

]
. (4.49)

Note that if we take τ(x) as a constant function, then this action reduces to
the action in the absence of the Janus interface (4.45).



Chapter 5

SUSY localization and Janus
interface entropy

In this chapter we calculate the sphere partition function in the presence of
the Janus interface via SUSY localization. By combining this result and the
formula (3.42) we show that the entropy of the Janus interface in a 4d N = 2
SCFT is proportional to Calabi’s diastasis. We also have a result for the
Janus interface in a 4d N = 4 super-Yang-Mills (SYM) via the AdS/CFT
correspondence which gives a non-trivial check of our fourmula (3.42).

The organization of this chapter is as follows. In Section 5.1 we review the
main tool for our calculation, SUSY localization. In Section 5.2 we evaluate
the partition function in the presence of the Janus interface by using SUSY
localization. By substituting this result into the formula (3.42), we obtain
the relation between entropy of the Janus interface and Calabi’s diastasis in
Section 5.3. In Section 5.4 we give another calculation via the AdS/CFT
correspondence.

5.1 SUSY Localization

In general to perform a path integral exactly is very hard. However, in some
supersymmetric QFTs we can use a technique called the SUSY localization
to perform a path integral. Let us explain this technique in this section.

Consider a supersymmetric quantum field theory with an action Iphys.
Assume that the action is invariant under SUSY transformation: δIphys = 0.

45
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The partition function is defined by

Z =

∫
[dΦ]e−Iphys[Φ], (5.1)

where we formally denote fields in this theory by Φ. Then we deform the
original action as

Z(t) =

∫
[dΦ]e−Iphys−tδV , (5.2)

where t is a real deformation parameter and δV is the SUSY variation of a
functional V . We can show that Z(t) does not depend on t. So instead of
evaluating the original path integral Z = Z(0), we can evaluate it in t → ∞
limit:

Z(0) = Z(t) = lim
t→∞

Z(t). (5.3)

By taking t → ∞ we can reduce infinite dimensional integrals reduce to finite
dimensional ones. This technique is called the SUSY localization.

Let us explain the result in a 4d N = 2 gauge theory [39]. SUSY local-
ization reduces a path integral to the discrete sum over saddle points of δV .
There are smooth saddle points and point-like (anti)instanton configurations
localized at a north pole (x = 0) and a south pole (x = ∞). Smooth saddle
points are parametrized by a continuous variable a ∈ LieG, while point-like
(anti)instanton configurations are parametrized by two integers k, k. The
resulting integral has the form

Z =

∫
[da]e−Icl(a)Z1-loop(a)Zinst(a, q)Zinst(a, q), (5.4)

where

Zinst(a, q) =
∑
k

qkZk(a), Zinst(a, q) =
∑
k

qkZk(a), (5.5)

and q = e2πiτ , q = e−2πiτ . The first factor in (5.4) e−Icl(a) is an action eval-
uated at a saddle point which we denote as the classical action. The factor
Z1-loop(a) is a contribution from fluctuations around the localization locus.
Note that this factor is determined only by δV . Finally Zinst are contributions
from instanton/anti-instanton configurations.
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5.2 Janus partition function

In this section we compute the partition function in the presence of the Janus
interface via SUSY localization. The result for the partition function in the
absence of the Janus interface is reviewed in the previous section. Now let
us consider effects by introducing the Janus interface. Since the one-loop
determinant depends only on δV , it is not affected by introducing the Janus
interface. So we can focus on the classical action and the instanton partition
function.

5.2.1 Classical action

Let us evaluate the classical action in the presence of the Janus interface. We
denote the vector multiplet evaluated on the localization locus by Vcl. The
values of fields in Vcl are given by

A|A(Vcl) = X , (5.6)

Bij|A(Vcl) = −2 i eiβX

r
n⃗ · τ⃗ij , (5.7)

C|A(Vcl) =
4 e2iβ X

r2
, (5.8)

where the value of scalar component X is a constant. From this multiplet,
we can compute the squared chiral multiplet A(Vcl)

2 via tensor calculus as

A|A(Vcl)2 = X2 , (5.9)

Bij|A(Vcl)2 = −4 i eiβ X2

r
n⃗ · τ⃗ij , (5.10)

C|A(Vcl)2 =
12 e2iβ X2

r2
. (5.11)

Then we can couple them to the Janus interface as explained in Section 4.3
to evaluate the classical action. The top component of T A(Vcl)

2 is given by

C|T A(Vcl)2 =
12 e2iβ X2 τ(x)

r2
+X2C(τ) +

2 i eiβ X2

r
n⃗ · τ⃗ ij B

(τ)
ij (5.12)

= e2iβX2

[
12

r2
τ(x) + q(1)(x) τ ′(x) + q(2)(x) τ ′′(x)

]
, (5.13)
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where

q(1)(x) = − 8 r2

x3f(x)2
− 16

xf(x)
, q(2) =

8 r2

x2f(x)2
. (5.14)

Thus the chiral part of the classical action is evaluated as∫
d4x

√
g C|T A(Vcl)2 = 2π2

∫ ∞

0

dxx3 f 4C|T A(Vcl)2 (5.15)

= 32π2 e2iβ X2 r2 τ(0) . (5.16)

The important point is that the final result only depends on the value of τ(x)
at a north pole x = 0.

On the other hand, the anti-chiral multiplet from Vcl is given as

A|A(Vcl)
= X , (5.17)

Bij|A(Vcl)
= −2 i e−iβ X

r
n⃗ · τ⃗ ij , (5.18)

C|A(Vcl)
=

4 e−2iβ X

r2
. (5.19)

By using tensor calculus we obtain∫
d4x

√
g C|T A(Vcl)2

= 32π2e−2iβ X
2
r2 τ(∞) . (5.20)

This is again written only by the value of the coupling field τ(x) at a south
pole.

The auxiliary fields in the chiral and anti-chiral multiplet from a same
vector multiplet are given by a same auxiliary field Y⃗ as

Bij = Y⃗ · τ⃗ij, Bij = Y⃗ · τ⃗ ij. (5.21)

So by comparing (5.10) and (5.18) we can write X,X as

X =
1

2
e−iβ a , X =

1

2
eiβ a, (5.22)

with a real constant a. The normalization for a is chosen to be consistent
with [39].
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Finally the classical action is given by a sum of the chiral term (5.16) and
the antichiral term (5.20) with the relation (5.22):

I
(Janus)
cl = −i π r2 (τ+ − τ−) Tr a

2 , (5.23)

where τ+ := τ(0) and τ− := τ(∞). This classical action in the presence of the
Janus interface can be obtained by analytically continuing moduli parameters
(τ, τ) → (τ+, τ−) in the classical action in the absence of the Janus interface:

I
(Janus)
cl = Icl(τ+, τ−) . (5.24)

5.2.2 Instanton and anti-instanton parition functions

Next we consider the instanton partition function. The instanton/anti-
instanton partition functions in the absence of the Janus interface are given
by (5.5). Remind that they arise from the contribution from instantons lo-
calized at a south and north pole. So an effect by introducing the Janus
interface is to modify the parameters q, q to the values of them at each poles:
q → q+ = e2πiτ+ and q → q− = e−2πiτ− . So the instanton partition function
in the presence of the Janus interface are given by Zinst(a, q+)Zinst(a, q−).
This result is also obtained by analytically continuing (τ, τ) → (τ+, τ−) in
the result without the Janus interface similar as the classical action (5.24).

5.2.3 Partition function with the Janus interface

In summary the classical action and the instanton partition functions are
obtained by an analytic continuation (τ, τ) → (τ+, τ−) in the results without
the Janus interface, while the one-loop determinant is same as one in the
absence of the Janus interface. Thus the resulting partition function on S4

in the presence of the Janus interface can be obtained by the same analytic
continuation. On the other hand, the partition function of a 4d N = 2 SCFT
on S4 can be written by the Kähler potential on moduli space:

ZSUSY[S4](τ, τ) = eK(τ,τ)/12 , (5.25)

as explained in Section 2.3.3. So by analytically continuing this expression
we finally obtain the partition function with the Janus interface on S4 as

ZI
SUSY[S4] = eK(τ+,τ−)/12 . (5.26)
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5.2.4 Supergravity conterterm and Kähler ambiguity

As explained in Section 2.3.3, different UV regularization schemes cause the
Kähler transformations

K(τ, τ) → K(τ, τ) + F(τ) + F(τ), (5.27)

and they are explained by supergravity counterterms [26, 29] in the absence
of the Janus interface. In this subsection we evaluate the supergravity coun-
terterm which causes Kähler transformations in the presence of the Janus
interface.

We can put a 4d N = 2 SCFT on S4 by coupling it to an off-shell Poincaré
supergravity. An off-shell Poincaré supergravity can be obtained by gauge
fixing an off-shell conformal supergravity using the so called compensating
vector multiplet. We construct a SUSY invariant supergravity counterterm
from the compensating vector multiplet according to [29]. The compensating
vector multiplet on S4 which we denote by Vc is given by

X|Vc = µe−iβ , Yij|Vc = −2 iµ

r
(n⃗ · τ⃗)ij , Ωi|Vc = F−

µν |Vc = 0 , (5.28)

X|Vc = µe+iβ , Y ij|Vc = −2 iµ

r
(n⃗ · τ⃗)ij , Ωi|Vc = F+

µν |Vc = 0 , (5.29)

where µ > 0 is an arbitrary mass scale. This vector multiplet can be em-
bedded into the anti-chiral multiplet Φ := A(Vc) with Weyl weight one. We
can further construct a chiral multiplet T(log Φ) with Weyl weight two from
Φ. The definition of T(log Φ) is given in Appendix A.5. In this case its
components are evaluated as

A|T(log Φ) =
2 e−2iβ

r2
, (5.30)

Bij|T(log Φ) = −8 i e−iβ

r3
(n⃗ · τ⃗)ij, (5.31)

C|T(log Φ) =
24

r4
. (5.32)

Next we compute the chiral multiplet F(T ) for an arbitrary holomor-
phic function F(·) via the tensor calculus explained in Appendix A.4. Its
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components are evaluated as

A|F(T ) = F(τ) , (5.33)

Bij|F(T ) =
dF(τ)

dx

i r eiβ

xf(x)
(n⃗ · τ⃗)ij , (5.34)

C|F(T ) =
8 r2 e2iβ

x2f 2

(
d2F(τ)

dx2
− 1

x

dF(τ)

dx

)
. (5.35)

According to [29] we compute the SUSY invariant counterterm from the
top component of F(T )T(log Φ). Note that the components of F(T ) are
obtained by replacing τ with F(τ) in those of T given in (4.30). Similarly

the components of T(log Φ) are obtained by replacing X2 with 2e−2iβ

r2
in those

of A(Vcl)
2 given in (5.9), (5.10), and (5.11). Therefore the top component of

F(T )T(log Φ) can be obtained from C|T A(Vcl)2 given in (5.13) by the same
substitutions:

C
∣∣
F(T )T(log Φ)

=
2

r2

[
2

r2
F(τ) + q(1)(x)

dF(τ)

dx
+ q(2)(x)

d2F(τ)

dx2

]
. (5.36)

Thus the chiral part of SUSY invariant supergravity counterterm is given by∫
d4x

√
g C|F(T )T(log Φ) = 64π2F(τ+) . (5.37)

Similarly we can compute the anti-chiral counterterm constructed from the
anti-chiral coupling multiplet T and the compensating vector multiplet Vc:∫

d4x
√
g C|F(T )T(log Φ) = 64π2F(τ−) , (5.38)

where the anti-holomorphic F(τ) is the complex conjugate of the holomorphic
function F(τ) when τ = τ ∗. The supergravity conterterm is given by a sum
of (5.37) and (5.38). They give rise to the Kähler transformations

K(τ+, τ−) → K(τ+, τ−) + F(τ+) + F(τ−) , (5.39)

in the Janus partition function ZI
SUSY[S4] (5.26).
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5.3 Entropy of Janus interface

By substituting the Janus partition function (5.26) into the formula (3.42),
we finally obtain the entropy of the Janus interface:

SI = − 1

24
[K(τ+, τ+) +K(τ−, τ−)−K(τ+, τ−)−K(τ−, τ+)] . (5.40)

The linear combination in the bracket is Calabi’s diastasis defined in Intro-
duction. The important point is that this result does not have ambiguity
due to the Kähler transformations given in (5.27) and (5.39), although the
sphere partition functions given in (5.25) and (5.26) have such ambiguity.

5.4 Holographic example

In this section we focus on a theory with more supersymmetries, a 4d N = 4
super Yang-Mills (SYM) theory. A 4d N = 4 SYM theory is conjectured to
be a string theory (or its supergravity limit) on a AdS5×S5 background [40].
This correspondence is called the AdS/CFT correspondence or holography.
Although there is no proof for AdS/CFT correspondence, there are many
non-trivial results supporting this mysterious conjecture. This correspon-
dence is considered to still hold in the presence of defects. In this section we
compute an interface entropy and sphere partition function via holography.
It provides a non-trivial check for our formula (3.42).

5.4.1 The Janus solution in supergravity

A 4dN = 4 SYM has 32 supersymmetries and an internal symmetry SO(6)R.
We here use the dual supergravity solution [41] to the Janus interface in the
Janus interface in a 4d N = 4 SYM. The solution is given by type IIB
supergravity on AdS4×S2×S2×Σ2 where Σ2 is a two-dimensional Rimeann
surface. This solution preserves the SO(1, 3)× SO(3)× SO(3) subgroup in
SO(2, 3)× SO(6) The metric is given by

ds2 = f 2
4 ds

2
AdS4

+ ρ2 dvdv + f 2
1 ds

2
S2 + f 2

2 ds
2
S2 , (5.41)

where ds2S2 is the metric of a unit 2-sphere and v = x + iy is a complex
coordinate on a strip with x ∈ R and 0 ≤ y ≤ π/2. The functions f1, f2, f4, ρ
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in the above metric are given as

f 8
4 = 16

F1F2

W 2
, ρ8 =

28F1F2W
2

h41h
4
2

,

f 8
1 = 16h81

F2W
2

F 3
1

, f 8
2 = 16h82

F1W
2

F 3
2

,

(5.42)

where

Fi = 2h1h2|∂vhi|2 − h2iW (i = 1, 2) , W = ∂v∂v(h1h2) . (5.43)

The two real functions h1(v, v) and h2(v, v) above are defined as

h1(v, v) = −iα1 sinh

(
v − ∆ϕ

2

)
+ c.c. , (5.44)

h2(v, v) = α2 cosh

(
v +

∆ϕ

2

)
+ c.c.. (5.45)

By taking x → ±∞ we recover the dual CFT on the right/left side of the
Janus interface in which we assume to have different couplings g±YM. The
dilaton ϕ in the SUGRA solution takes different values across the interface
corresponding to different couplings in the dual CFT, and they are related
by

(g±YM)
2 = 4π

∣∣∣∣α2

α1

∣∣∣∣ e±∆ϕ, (5.46)

where ∆ϕ is a difference of dilaton values and constants α1, α2 are related to
AdS radius L as

L4 = 16|α1α2| cosh∆ϕ. (5.47)

5.4.2 Sphere free energy

First let us evaluate the free energy on a four-sphere. The free energy is
defined as the log of a partition function. This quantity in the current setting
is obtained by evaluating corresponding the on-shell supergravity action via
the AdS/CFT correspondence as [42] 1

I = −3 · 26Vol(S2)2

16πGN

∫
AdS4

d4x
√
g(4)

∫
dx dyWh1h2 , (5.48)

1They evaluated this quantity in another setting.
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where GN is the Newton constant in ten dimensions and g(4) is a four dimen-
sional metric of AdS4. To evaluate this integral, we introduce the coordinates
for AdS4 in which the metric is given by

ds2AdS4
=

1

cos2 λ

[
dλ2 + sin2 λ ds2S3

]
, (5.49)

with 0 ≤ λ ≤ π/2. Then by using these coordinates we can write the on-shell
action (5.48) as

I =
3Vol(S2)2Vol(S3)L8

26πGN

∫ π/2

0

dλ
sin3 λ

cos4 λ

×
∫ π/2

0

dy sin2(2y)

∫ ∞

−∞
dx

(
1 +

cosh(2x)

cosh(∆ϕ)

)
. (5.50)

This integral is divergent since the AdS space has an infinite volume. So we
have to regularize it. In the absence of an interface we can simply regularize
the off-shell action by using Fefferman-Graham coordinates. However, in the
presence of an interface, it can be difficult to construct Fefferman-Graham
coordinates to cover all of the interface. One way to overcome this difficulty
is to use the single cut-off regularization [43, 44] 2. In this approach we
introduce the hypersuface defined by

f4
Z

=
L

δ
(5.51)

with Z := cosλ and eliminate the region between this hypersurface and the
boundary of the AdS spacetime. In other words, the range of x is restricted
to the region between x±(Z, y) which are determined by f4(x±, y) = LZ/δ
for Z, y fixed, and the range of Z is also restricted from Z∗ := f4(v = 0)δ/L
to 1. We expand x±(Z, y) in Z/δ:

x±(Z, y) = ±1

2
log

(
4 cosh(∆ϕ)

Z2

δ2

)
− cos(2y) tanh(∆ϕ)± 2

8

(
δ

Z

)2

+O
(
δ4

Z4

)
. (5.52)

2Another approach is to use two Fefferman-Graham coordinates and connect them to
cover all space [31]. They showed that the universal part of an entanglement entropy does
not depend on the detail of the curve connecting two patches. Instead one can introduce
double cut-offs. This scheme was studied for the Janus interface in [44].
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Thus we can expand the integral over x as∫ x+(Z,y)

x−(Z,y)

dx

(
1 +

cosh(2x)

cosh(∆ϕ)

)
= log

(
4 cosh(∆ϕ)

Z2

δ2

)
+ 2

Z2

δ2
− 1 +O

(
δ2

Z2

)
. (5.53)

By substituting this expansion into the on-shell action (5.50), we have

I =
3Vol(S2)2Vol(S3)L8

26πGN

∫ π/2

0

dy sin2(2y)

∫ 1

Z∗

dZ
1− Z2

Z4

×
[
log

(
4 cosh(∆ϕ)

Z2

δ2

)
+ 2

Z2

δ2
+ 1 +O

(
δ2

Z2

)]
(5.54)

=
Vol(S2)2Vol(S3)L8

27GN

×
[
c3
δ3

+
c2
δ2

+
c1
δ
+ log

(
4 cosh(∆ϕ)

δ2

)
+

5

3
+O(δ2)

]
, (5.55)

where ci, (i = 1, 2, 3) are constants whose explicit forms are not needed for
our discussion here.

To extract a contribution from the Janus interface, we subtract a free
energy in the absence of the Janus interface which is obtained by setting
∆ϕ = 0 to have

∆I = I − I|∆ϕ=0 =
Vol(S2)2Vol(S3)L8

27GN

log cosh(∆ϕ) . (5.56)

Note that we use the same regularization scheme for calculations of the free
energy with and without the interface. Then we have the universal result,
that is, the result which does not depend on the regularization scheme 3.

The free energy evaluated in the AdS space can be mapped to one in the
dual CFT. The dictionary between the deference of the value of a dilaton ∆ϕ
in the AdS and that of a coupling gYM in the CFT is given in (5.46). Moreover
the relation between the Newton constant and the rank of the gauge theory
is given by

GN =
Vol(S2)2Vol(S3)L8

26N2
. (5.57)

3Remind that when we define an interface entropy as (3.30) we subtract the vacuum
(i.e. no interface) contribution from the net entanglement entropy.
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By using these relations, we can translate ∆I obtained from supergrav-
ity (5.56) into the CFT language as

∆I =
N2

2
log

[
1 +

(g+YM − g−YM)
2

2g+YMg
−
YM

]
. (5.58)

So far we considered the Janus interface across which only a coupling
gYM changes its value whereas a theta angle ϑ does not. The result for
the Janus interface changing a theta angle is obtained by acting SL(2,R)
transformations of type IIB supergravity on the previous result as

∆I =
1

24
[K(τ+, τ+) +K(τ−, τ−)−K(τ+, τ−)−K(τ−, τ+)] , (5.59)

where K is the Kähler potential given by

K(τ, τ) = −6N2 log [i (τ − τ)] . (5.60)

5.4.3 Entanglement entropy

In this section we compute an entanglement entropy across a spherical en-
tangling surface in the presence of the Janus interface via the AdS/CFT cor-
respondence. This computation was done by using the Fefferman-Graham
regularization in [31] and the single and double cut-off regularization in [44].
We here review the computation using single cut-off regularization [44] and
compare it to the result in the previous subsection.

An entanglement entropy in a CFT in a holographic setup can be calcu-
lated by the Ryu-Takayanagi (RT) formula [45] 4. The RT formula connects
an entanglement entropy SΣ across an entangling surface Σ in a CFT with
the geometrical quantity in the AdS space, the area of the minimal surface
anchored on the entangling surface Σ as

SΣ = min
γΣ

Area(γΣ)

4GN

, (5.61)

where γΣ is a surface anchored on Σ. So to compute an entanglement entropy
we first write down the area of a surface γΣ and then minimize it. For

4The formula for a CFT with a boundary was first proposed in [46].
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this purpose, we here move to the Lorentzian signature and introduce the
Poincaré patch for AdS4 in which the metric is given by

ds2AdS4
=

1

z2
[
dz2 − dt2 + dr2 + r2 dϕ2

]
. (5.62)

In these coordinates, the spherical entangling surface we have considered is
given by

Σ = {t = 0, r = R, z = 0} . (5.63)

Then the area of a surface γΣ in the coordinates is given by [45, 47]

S =
Vol(S2)2Vol(S1)

4GN

(∫
dx dy (f1 f2 f4 ρ)

2

)∫
dz

r

z2

√
1 + (∂zr)2. (5.64)

It is specified by the function r(z). Note that r(z) does not depend on (t, ϕ)
because of a spherical symmetry.

Minimizing (5.64) gives the equation of motion. By solving this equation
of motion we have [48]

r =
√
R2 − z2 . (5.65)

Similar as in the previous subsection, the integral (5.64) has divergence
and we need to regularize it. To regulate this divergence due to an infinite
volume of the AdS spacetime we cut it at a hypersurface specified by

f4
z

=
L

ε
. (5.66)

Then the integration range for x is restricted to x−(z, y) ≤ x ≤ x+(z, y).
The values of x±(z, y) are obtained by replacing (Z, δ) with (z, ε) in (5.52).
The z integral is also restricted to z∗ ≡ f4(0)ε/L ≤ z ≤ R. Then evaluating
the regularized minimal area leads to

S =
24πVol(S2)2 L8

24GN

∫ π/2

0

dy sin2(2y)

×
∫ 1

z∗/R

dz

z2

∫ x+(z,y)

x−(z,y)

dx

(
1 +

cosh(2x)

cosh(∆ϕ)

)
. (5.67)



58 CHAPTER 5. JANUS INTERFACE ENTROPY

Similar as the calculation of the free energy we extract a contribution from
the Janus interface by subtracting an ambient contribution:

SI |univ = −N
2

2
log cosh(∆ϕ). (5.68)

This again gives the universal part of the entanglement entropy. Note that
this result agrees with the result obtained from another regularization [31].

Thus we show via holography that the minus of the interface entropy (5.68)
is equal to the contribution to the free energy from the interface (5.56). This
is consistent with our formula (3.42) derived from the CFT consideration.



Chapter 6

Conclusion and outlook

In this thesis we study the entropy of the Janus interface in a 4dN = 2 SCFT
and show that it can be written by Calabi’s diastasis. The former half of
this thesis is on a general conformal/superconformal interface. We define an
entropy of an interface as its contribution to an entanglement entropy with
a spherical entangling surface. Then we derive the formula (3.42) relating
the interface entropy to the sphere partition function in the presence of a
half-BPS superconformal interface via the CHM map. In the intermediate
step we make the assumption (3.41). We do not have a proof for it, but we
give some evidences:

• It is natural in terms of the supersymmetric Rényi entropy. See Sec-
tion 3.3.3.

• The results in a holographic example are consistent with the resulting
formula (3.42). See Section 5.4.

• We provide a proof for the similar relation (C.8) in a 2d N = (2, 2)
SCFT by using boundary super-Weyl anomaly [13]. See Appendix C.

The latter half of this thesis we focus on the Janus interface. We give
an off-shell construction of the Janus interface by introducing the coupling
multiplet. We then evaluate the sphere partition function in the presence
of the Janus interface. By combining this result and the formula (3.42) we
show that the Janus interface entropy is given by Calabi’s diastasis.

There are interesting open problems. We list some of them:

59
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• It is very important and interesting to prove (3.41). One possible way
to achieve this is to use similar argument in 2d by extending the results
for the boundary super-Weyl anomaly [13] to 4d.

• It is interesting to show that the contribution to the conformal anomaly
from an interface indeed vanishes in the right hand side of (3.42). See
Section 3.2.3.

• It can be possible to construct the Janus interface in a theory with other
dimensions and SUSY. It is nice to study its entropy and investigate
whether it can be written as Calabi’s diastasis.

• General properties of Calabi’s diastasis is interesting to study. Can we
use it to investigate the structure of conformal manifold?

• General properties of an interface entropy is also interesting. Can we
confirm whether it is C-function or not? Can we get interesting con-
straints on ICFTs from it?

Ultimately we want to understand general properties and structure of the
space of conformal/quantum field theories. We hope that study of interface
entropies can be a strong tool for this purpose.
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Appendix A

Supersymmetry and
supergravity

A.1 Notations and conventions

Here We mostly use conventions and notations used in [49, 25]. The imag-
inary unit is denoted by i. Complex conjugation is indecated by ∗ while
hermitian conjugation by †.

A.1.1 Signature and coordinate index

We denote coordinates indices on a general manifold as µ, ν, · · · while coor-
dinates indices on a flat space as a, b, · · · . Indices run within 0, 1, 2, 3 in the
Lorentzian signature, while 1, 2, 3, 4 in the Euclidean signature. A flat space
metric is given by ηab = diag(−1,+1,+1,+1) in the Lorentzian signature
and ηab = diag(+1,+1,+1,+1) in the Euclidean signature. The vielbein and
its inverse are denoted by eµ

a and ea
µ respectively.

A.1.2 Gamma matrix

The gamma matrices γµ with a Greek alphabet satisfy

{γµ, γν} = 2gµν , (A.1)

while the gamma matrices γµ with a Latin alphabet satisfy

{γa, γb} = 2ηab . (A.2)
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We sometimes denote γa as Γa. We can take a specific matrix representation
to have more explicit expressions. For example, in the Weyl representation,
γa are given by

γa =

(
0 σµ

σµ 0

)
, (A.3)

where σµ = (σ1, σ2, σ3, i), σa = (σ1, σ2, σ3,−i), and σi (i = 1, 2, 3) are Pauli
matrices.

The gamma matrices with Greek and Latin indices are related by vielbein
as

γµ = γaea
µ . (A.4)

The gamma matrix γa is hermitian if a = 0 and anti-hermitian otherwise.
The gamma matrices in the Lorentzian signature and in the Euclidean sig-
nature are related by

γa=0 = −iγa=4, (A.5)

and the other components are same.
We define the chirality matrix by γ∗ = iγ0γ1γ2γ3 = γ1γ2γ3γ4. By using

the matrix γ∗, we define chiral projection operators as

PL =
1

2
(1 + γ∗) , PR =

1

2
(1− γ∗) . (A.6)

A.1.3 Charge and Weyl conjugation

The charge conjugate matrix C satisfies

CC† = 1 CT = −C , CγµC
−1 = −γTµ . (A.7)

Then the charge conjugation of a four-component spinor Ψ which we denote
as ΨC is defined by

ΨC = B−1Ψ∗ , (A.8)

where B = iCγ0. By definition the matrix B satisfies the relation

B−1(γµ)∗B = γµ . (A.9)

We list some properties of the charge conjugation:

(ΨC)C = Ψ, (γµ1 . . . γµN
Ψ)C = γµ1 . . . γµN

ΨC , (A.10)
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and
(ϵγµ1 . . . γµN

η)∗ = ±ϵCγµ1 . . . γµN
ηC . (A.11)

We denote the Weyl conjugate of Ψ as Ψ which is defined by

Ψ := ΨTC . (A.12)

Note that this is equivalent to the Dirac conjugate when the spinor satisfies
the certain condition. See Appendix A.2.

A.1.4 SU(2)R multiplets

We denote SU(2)R doublet indices by i, j, . . . . We can regard SU(2)R triplet

as a tree-component vector Y⃗ . We can construct the 2 × 2 matrix Yi
j from

Y⃗ as

Yi
j = τ⃗i

j · Y⃗ , (A.13)

where τ⃗i
j = i σ⃗i

j. SU(2)R indices are raised or lowered by anti-symmetric
tensors εij and εij which satisfy ε12 = ε12 = 1 as

τ⃗ ij = εikτ⃗k
j = (τ⃗ij)

∗ = εikεjlτ⃗kl . (A.14)

By using τ ij we can also construct a symmetric matrix Y ij from Y⃗ as

Y ij = τ⃗ ij · Y⃗ . (A.15)

A.2 Supersymmetry parameters

The Poincaré SUSY parameters ϵi, ϵi in the Lorentzian signature satisfy

(ϵi)C = ϵi . (A.16)

For spinors satisfying the above condition, the Weyl conjugate is equivalent
to the Dirac conjugate:

ϵi = (ϵi)
†iγ0 . (A.17)

The special conformal SUSY parameters ηi, ηi satisfy the same condition as

(ηi)C = ηi . (A.18)

According to [25], these parameters are chiral in the Lorentzian and Eu-
clidean signature :

ϵi = PLϵ
i , ϵi = PRϵi , ηi = PRη

i , ηi = PLηi . (A.19)
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A.3 N = 2 supermultiplets

In the rest of Appendix A, we assume that the values of the fields in the
Weyl multiplet vanish except for a metric and vielbein. We also assume that
the SUSY parameters satisfy the following conditions [29]:

ηi =
1

4
γµ∇µϵ

i, ηi =
1

4
γµ∇µϵi. (A.20)

Under these assumptions, we give the SUSY transformations of a vector and
chiral multiplet.

A.3.1 Vector multiplet

A vector multiplet has (X,Ωi, Aµ, Yij) as its components. The spinor Ωi

is left-chiral and its conjugate Ωi is right-chiral. They are related by
(ΩI

i )
C = ΩIi in Minkowski space. We expand fields in terms of hermitian

generators TI as X = TIX
I , Aµ = TIA

I
µ, and so on. Then we give the SUSY

transformations for them as [49]

δXI =
1

2
ϵiΩI

i , (A.21)

δΩI
i = /DXIϵi +

1

4
γµνF I

µν εijϵ
j +

1

2
Y I
ij ϵ

j +XJXKfJK
Iεij ϵ

j + 2XIηi ,

(A.22)

δAI
µ =

1

2
εij ϵiγµΩ

I
j +

1

2
εij ϵ

iγµΩ
jI , (A.23)

δY⃗ I =
1

2
τ⃗ ij ϵi /DΩI

j − fJK
I τ⃗i

j ϵj X
JΩiK + h.c. . (A.24)
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A.3.2 Chiral multiplet

A chiral multiplet A has (A,Ψi, Bij, F
−
ab, Λi, C) as its components. Their

SUSY transformations are [50, 49]

δA =
1

2
ϵiΨi , (A.25)

δΨi = /∇(Aϵi) +
1

2
Bij ϵ

j +
1

4
ΓabF−

ab εij ϵ
j + (2w − 4)Aηi , (A.26)

δBij = ϵ(i /∇Ψj) − ϵk Λ(i εj)k + 2(1− w) η(i Ψj) , (A.27)

δF−
ab =

1

4
εij ϵi /∇ΓabΨj +

1

4
ϵi ΓabΛi −

1

2
(1 + w) εij ηi ΓabΨj , (A.28)

δΛi = −1

4
Γab /∇(F−

ab ϵi)−
1

2
/∇Bij ε

jk ϵk +
1

2
Cεij ϵ

j

− (1 + w)Bij ε
jk ηk +

1

2
(3− w) ΓabF−

ab ηi , (A.29)

δC = −∇µ(ε
ij ϵi γ

mΛj) + (2w − 4) εij ηi Λj , (A.30)

where w is the Weyl weight of the multiplet.
An anti-chiral multiplet A has (A,Ψi, Bij, F+

ab, Λ
i, C) as its components.

The SUSY transformations in Lorentzian signature are obtained by taking
complex/Weyl conjugate of SUSY transformations of a chiral multiplet. The
transformations in Euclidean signature are formally given by the same pro-
cedure.

A.4 Tensor calculus for chiral multiplets

Let us consider two chiral multipletsA,B whose fermionic components vanish

A = (A|A, Ψi|A = 0, Bij|A, F−
ab|A, Λi|A = 0, C|A) , (A.31)

B = (A|B, Ψi|B = 0, Bij|B, F−
ab|B, Λi|B = 0, C|B) . (A.32)

Then we can make the product of these chiral multiplet which is also a chiral
multiplet as [51]

A|AB = A|AA|B , (A.33)

Bij|AB = A|ABij|B + A|B Bij|A , (A.34)

F−
ab|AB = A|A F−

ab|B + A|B F−
ab|A , (A.35)

C|AB = A|AC|B + C|AA|B − 1

2
εikεjlBij|ABkl|B + F−

ab|A F
−ab|B . (A.36)
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By iterating the above product, we obtain the n-th product of a chiral mul-
tiplet as

A|An = (A|A)n , (A.37)

Bij|An = n (A|A)n−1Bij|A , (A.38)

F−
ab|An = n (A|A)n−1 F−

ab|A , (A.39)

C|An = n (A|A)n−1C|A − 1

4
n(n− 1) (A|A)n−2

[
εikεjlBij|ABkl|A − 2

(
F−
ab|A

)2]
.

(A.40)

We have to apply the above formulae to the coefficients of generators TI when
fields are in the adjoint representation.

A.5 Definition of T(log Φ)

In this appendix we give the definition of the chiral multiplet T(log Φ) made
from an anti-chiral multiplet Φ with vanishing fermionic and field strength
components. First, the components of log Φ are given by [52]

A|log Φ = log
(
A|Φ

)
, (A.41)

Bij|log Φ =
Bij|Φ
A|Φ

, (A.42)

C|log Φ =
C|Φ
A|Φ

+
1

4
(
A|Φ

)2 εikεjl (Bij|Φ
) (
Bkl|Φ

)
. (A.43)

The chiral multiplet T(anti-chiral multiplet) is the so-called N = 2 kinetic
multiplet [53]. The components of the kinetic multiplet made from log Φ are
then given as [52]

A|T(log Φ) = C|log Φ , (A.44)

Bij|T(log Φ) = −2εikεjl□CB
kl|log Φ , (A.45)

C|T(log Φ) = 4□C□CA|log Φ , (A.46)

where □C is the so-called conformal d’Alembertian.
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A.6 Supercurrent multiplet

The components of the supercurrent multiplet for an Abelian vector multiplet
can be obtained by linearizing the superconformal action (20.89) of [25] in
terms of the Weyl multiplet. They are given by

T µν = 8∂(µX∂ν)X − 4gµν |∂ρX|2 + 4

3
(gµν∂2 − ∂µ∂ν) |X|2

− gµν(X∂2X +X∂2X) + Ωiγ(µ
↔
∂ ν)Ωi −

1

4
gµνΩ

i↔
/DΩi

+ 2F µ
ρF

νρ − 1

2
gµνFρσF

ρσ, (A.47)

Sµ
i = −1

2
Fρσγ

ρσγµεijΩ
j − 2X

↔
∂
µ

Ωi + 2Xγµ/∂Ωi −
2

3
γµν∂ν

(
XΩi

)
, (A.48)

jµ
i
j = −2ΩiγµΩj + δijΩ

kγµΩk, jµ = −4iX
↔
∂µX + iΩiγµΩi, (A.49)

J = −4XX, ji = 4XΩi, j+µν = XF+
µν , j−µν = XF−

µν . (A.50)

They are equivalent to the supercurrent multiplet written in [54] in terms of
two component notations.





Appendix B

Weyl transformation between
S4 and flat space

In this appendix we show that the auxiliary fields in the coupling multiplet
in a flat space and S4 are related by a Weyl transformation.

We denote Cartesian coordinates in a flat space by yµ while stereographic
coordinates for S4 by xµ. For this purpose, we introduce the five-dimensional
embedding coordinates Y M (M = 1, · · · , 5). They satisfy∑

(Y M)2 = r2 , ds2S4 =
∑

(dY M)2 . (B.1)

They can be parametrized by x and y-coordinates as
Y 1

Y 2

Y 3

Y 4

Y 5

 =

f(x)

x1

x2

x3

x4


g(x)

 =


g(y)

f(y)


y4

y1

y2

y3


 , (B.2)

where the function f(·) is defined in (4.22) and g(·) is defined by

g(z) := r
1− z2

4r2

1 + z2

4r2

. (B.3)

By using these relations, we can relate the delta function in θ and y-coordinates
as

1

r
δ
(
θ − π

2

)
=

1

f(y)
δ(y3) ,

1

r2
δ′
(
θ − π

2

)
= − 1

f(y)2
δ′(y3) . (B.4)
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By substituting these relations into (4.14) and (4.42) we obtain the relations
between them as

B
(τ)
ij |S4 =

1

f(y)
B

(τ)
ij |R4 , B(τ)ij|S4 =

1

f(y)
B(τ)ij|R4 , (B.5)

C(τ)|S4 =
1

(f(y))2
C(τ)|R4 , C|S4 =

1

(f(y))2
C|R4 . (B.6)

Note that the function f(y) is the Weyl factor of transformations between the
flat space and S4 and the powers of f(y) in the above relations correspond to

the Weyl weights of the auxiliary fields B
(τ)
ij , B

(τ)ij, C(τ), C which are 1, 1, 2, 2,
respectively. Thus we have shown that the auxiliary fields in a flat space and
S4 are related by the Weyl transformation.



Appendix C

Boundary super-Weyl anomaly
in 2d N = (2, 2) SCFT

In this appendix we give a proof for the similar statement as (3.41) in 2d
N = (2, 2) SCFTs by using the boundary super-Weyl anomaly [13].

C.1 Super-Weyl anomaly on closed manifold

First we review the result in [55]. The authors of the paper considered the
supersymmetric version of the Weyl anomaly called the super-Weyl anomaly
in 2d N = (2, 2) SCFTs on a closed Riemann manifold.

The Weyl anomaly is defined by rescaling a metric gµν . Similarly, the
super-Weyl anomaly is defined by varying values of the components in a
graviton multiplet. We take a conformal gauge gµν = e2σδµν and introduce
Cartesian coordinates (x1, x2). We then consider the so-called U(1)V super-
gravity in which the graviton multiplet is a twisted chiral multiplet Σ. The
lowest component of Σ is the combination of a metric gµν and a gauge field
V µ that couples to the vector-like R-symmetry:

Σ(yµ) = σ(yµ) + i a(yµ) + θ+χ+(y
µ) + θ−χ−(y

µ) + θ+θ−w(yµ), (C.1)

where y± = x± ∓ θ±θ± and x± = x1 ± x2. See Chapter 12 of [56] for
the superfield conventions in 2d N = (2, 2) SCFTs. Then the anomalous
dependence of the partition function on the graviton multiplet Σ for a closed
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manifold M is given by [55]

Aclosed := −iδΣ logZ[M], (C.2)

= − i

4π

∫
M

d2x

∫
d4θ

[ c
6
(δΣΣ + δΣΣ)− (δΣ + δΣ)K(T , T )

]
, (C.3)

where T is a twisted chiral multiplet whose lowest component is a moduli
parameter τ and the function K(τ, τ) is identified with the Kähler potential
on the moduli space. By integrating (C.2), we have

logZ[M] ⊃ 1

4π

∫
M

d2x

∫
d4θ

[ c
6
ΣΣ− (Σ + Σ)K(T , T )

]
. (C.4)

The first term gives the contribution from the usual Weyl anomaly, while the
second term gives the contribution as (2.34).

C.2 Super-Weyl anomaly on open manifold

and hemisphere partition function

The author of the paper [13] extend the result reviewed in the previous section
to the super-Weyl anomaly for 2d N = (2, 2) SCFTs with a supersymmetric
boundary. We here review their results and then prove the similar statement
as (3.41) for 2d N = (2, 2) SCFTs by using their result.

The author of the paper [13] showed that the super-Weyl anomaly on a
manifold M with a supersymmetric boundary is given by

Aopen := −iδΣ logZ[M], (C.5)

⊃ δ
[ i

4π

∫
M

d2x
(
□(σ − i a)hΩ +□(σ + i a)hΩ

)
+

1

4π

∫
∂M

dx2(whΩ − whΩ)
]
, (C.6)

where dropped moduli independent terms and terms that contain derivatives
of moduli parameters. The function hΩ(τ) is related to the holomorphic
central charge cΩ(τ) which gives the hemisphere partition function [57, 58, 59]
as

cΩ = exphΩ. (C.7)

We call the anomaly (C.5) as the boundary super-Weyl anomaly.
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Now, we consider the boundary super-Weyl anomaly on a two-dimensional
hemisphereD2 and prove that the hemisphere partition function computed in
a conformal scheme Z(BCFT)[D2] and in a supersymmetric scheme ZB

SUSY[D
2]

are related by
Z(BCFT)[D2] =

∣∣ZB
SUSY[D

2]
∣∣ . (C.8)

This is a 2d boundary CFT version of the statement (3.41).
The D2 background is given by

σ = − log(1 + zz), a = 0, (C.9)

where z = x1 + ix2. First we want to evaluate the partition function in a
conformal scheme which instead violates supersymmetry. For this purpose,
we turn off auxiliary fields in a Weyl multiplet: w = w = 0. Then integrat-
ing (C.5) leads to

Z(BCFT)[D2] = Z0 exp

[
1

2
(hΩ(τ) + hΩ(τ))

]
, (C.10)

where Z0 is a moduli independent factor due to the Weyl anomaly 1.
On the other hand, if we want to evaluate the partition function in a

SUSY preserving scheme which instead violates the conformal symmetry, we
take the background as

w = w = − 2i

1 + zz
. (C.11)

Then the resulting partition function is

ZI
SUSY[D

2] = Z0 exp
[
hΩ(τ)

]
= Z0c

Ω(τ). (C.12)

This is the hemisphere partition function obtained by [57, 58, 59]. Thus
we prove the similar statement as (3.41) in a 2d N = (2, 2) SCFT with a
supersymmetric boundary.

1See (2.34) and the footnote 9 in Section 2.3.3.
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