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Dissertation Abstract

論文の内容の要旨

Assessment of Asian elephant status and human-elephant
conflict risk under climate change scenarios

(気候変動シナリオの下でのアジアにおける人間とゾウの軋轢の評価)

ナンティコーン　キットラットポン

Nuntikorn Kitratporn

Asian elephant (Elephas maximus) occurs in 13 range countries occupying heavily frag-
mented landscapes surrounded by human-dominated activities. Negative interactions
between wild elephants and humans through crop depredation, property damages, and
fatality, impact the quality of life of local communities and also hammer the species
conservation outlook. As economic development and human population growth in this
region are expected to continue, Human-Elephant Conflict (HEC) will likely become more
frequent and emerge as the national challenge. Nevertheless, HEC management remains
mostly reactive with localized assessment and lack of long-term planning. Therefore, a
study on landscape-scale assessment of HEC distribution that incorporates future sce-
narios can benefit the species conservation, but has yet to be done. This dissertation
aims to develop assessment framework for HEC that covers large spatial scale and con-
siders climate change scenarios. Expected outputs from the proposed framework would
quantify current and future HEC distribution at country-level by utilizing open-access
data, spatio-temporal coverage of remotely-sensed products, ecological modeling, and
climate change assessment techniques. To construct the framework and identify needed
key variables for analysis, the following three sets of questions were raised: (i) What
are the main priority for Asian elephant conservation in each range country? and which
country is the most concern for HEC? (ii) Within the country of most concern, how did
HEC distribution change over time? and what are the important variables influencing
its change? Lastly, (iii) within the country of most concern, how HEC will change in the
future, and which spatial locations should be given priority?

Chapter 2 categorizes range countries based on possible relationship of changes in
wild elephant population to key landscape and socioeconomic factors. The long-term
changes in land cover and landscape were analyzed within elephant home ranges based
on remotely-sensed ESA CCI land cover product from three time periods: 1990, 2003,



and 2015. GHSL human settlement and socioeconomic factors (Human Development In-
dex, GDP, and Control of Corruption index) were also considered as candidate variables
in sustaining large wild elephant population. Based on the best model with the lowest
AICc (28.77) and good pseudo-R2 (0.68), four key drivers were identified from multiple
logistic regression, namely area of the largest forest patch, land cover diversity, forest
fragmentation, and average number of human population within elephant home range.
Principle Component Analysis and K-means clustering were then applied on the linear
trend coefficient of the elephant population and its cross-correlation coefficient to the four
key selected drivers. The results indicated four possible groups with the following charac-
teristics: (i) Cambodia, Laos, and Vietnam experienced a decrease in elephants with high
forest loss and fragmentation, implying priority in halting habitat loss. (ii) Indonesia and
Myanmar had a decrease in elephants even with remaining large forest patch as a possible
result of illegal forest encroachment and poaching respectively, implying necessity for ef-
fective conservation law enforcement. (iii) Protection of key forest habitat was identified
in Bhutan, India, and Nepal which should be further expand in other areas within the
country. Lastly, (iv) a stable or increasing elephant population despite human distur-
bance and varying level of unfavorable conditions were identified in Bangladesh, China,
Malaysia, Thailand, and Sri Lanka, implying the likelihood of overlapping resource usage
and HEC. Within this group, Thailand was positioned as a potential leading country on
the development pathway of forest transition theory, especially within Southeast Asia.
The country showed an increasing elephant population despite highly developed land-
scape and deteriorating conditions of all key variables. This same situation will likely
become that of many neighboring countries. Therefore, Thailand was chosen on which
further analysis of HEC situation was performed.

Chapter 3 identifies governing factors of HEC by modeling its distribution in East-
ern Thailand, a region with high number of reported HEC. To overcome data limitation
due to the lack of official HEC records, news reports in online platform were collected
from 2009 to 2018. The time-calibrated species distribution modeling (SDM) with max-
imum entropy (MaxEnt) was applied to model the relative probability of HEC in wet
and dry seasons. The environmental dynamic over the 10-year period was represented
by remotely sensed vegetation (MOD09A1), meteorological drought (KBDI), topograph-
ical (SRTM), and human-pressure data (human population, transport network, and dis-
tance to protected habitats). Results were classified into HEC zones using the proposed
two-dimensional conflict matrix. The models yielded good predictive performance with
AUC>0.78. The results showed that although HEC probability varied across seasons,



overall HEC-prone areas expanded in all provinces from 2009 to 2018. High HEC-prone
areas were estimated to cover 5,381 and 8,806 km2 in the wet and dry season during
2018, which were double and triple that of 2009 estimation. The largest HEC areas
were estimated during dry seasons with Chanthaburi, Chonburi, Nakhon Ratchasima,
and Rayong provinces being the HEC hotspots. Direct human pressure caused a more
gradual increase of HEC probability around protected areas, while resource suitability
showed large variation across seasons. The top importance variables from direct human
pressure (forest cover percent, drought level, and distance to forest) and resource suitabil-
ity (distance from protected habitats, and human density) were identified. The evaluation
from Eastern Thailand also highlighted climate-induced HEC impacts in which drought
variations greatly alter HEC distribution.

In Chapter 4, the IPCC risk framework was adopted to assess spatial distribution of
HEC risk under baseline (2000-2019) and near future (2025-2044) for Thailand. HEC
risk is defined as the probability of wild elephant occurrence (hazard) in overlapping
areas with human population (exposure) who possess different vulnerable levels (vulner-
ability). Four future scenarios were based on the combination of Representative Con-
centration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) with 12km
buffer-zone (BZ) policy: A1 (RCP4.5-SSP2-BZ), A2 (RCP8.5-SSP5-BZ), B1 (RCP4.5-
SSP-no BZ), and B2 (RCP8.5-SSP5-no BZ). Climatic data included ERA5 (baseline)
and NEX-GDDP (5 selected future GCMs). MOD09A1, ALOS-PALSAR yearly com-
posite, and SRTM were used for land cover supervised classification at baseline period.
Future land cover were simulated from land demand projection and location suitability.
Derived land cover maps together with HydroSHED, ERA-JRC surface water, transport
network, and topography represented landscape conditions. Elephant occurrences were
obtained from existing literature, GBIF database, and Thailand national park report.
Elephant habitat suitability and dispersal probability were then modeled for hazard. Ex-
posed rural human population were available from existing study as proxy of exposure,
while vulnerability was represented by socioeconomic factors and drought probability.
Composite HEC risk was then calculated using geometric means with equal weighting.
The validation indicated an average AUC of 0.71±0.01 for baseline HEC risk map. The
findings suggested a northward shift in future HEC risk which resulted in an average of
1.7% to 7.4% increase for four forest complexes (FC) in northern region and an average
reduction of -3.1% to -57.9% for other FCs in lower latitude. Climate-induced changes
were estimated to prominently alter HEC risk through deteriorating habitat conditions



and increasing drought probability. Although land cover changes had overall lower ef-
fect, future conversion to abandoned land holds potential for conservation. HEC buffer
zones created both positive and negative effects depending on locations. Many of the FCs
projected with future unfavorable habitat conditions currently host large elephant popu-
lation. Hence, habitat improvement is their likely priority to buffer the effects of climate
change. On the other hand, FCs with expected increase in HEC risk hold lower elephant
population and is surrounded by less developed human activities. Capacity building and
limited access to future habitats maybe beneficial for communities in these locations.

Lastly, Chapter 5 discusses the contribution of this research which is two-fold. First,
the proposed framework improves the assessment of HEC to cover large spatial scale,
multi-dimensional analysis, and climate change impacts. The approaches used in this
study utilize open-access dataset which support evident-based assessment in data-poor
locations and can be applied across different species. Second, the findings of the pro-
posed framework highlighted the areas that needed management attention. Allocation of
limited conservation resources, thus, can be systematically planned. Caveats and recom-
mendations to further the applicability of the proposed framework were also discussed.
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Chapter 1

Introduction

1.1 Background
Anthropogenic activities transformed large extent of the earth land surface, degrading
and extirpating habitats, which triggered the on-going sixth mass extinction of organism
globally (Chapin et al., 2000). The extinction rates are estimated to be over 1,000
times greater than the likely natural background (Pimm et al., 2014). Between 1900 to
2015, all of the 177 mammals species being studied loss at least 30% of its geographical
ranges, while 40% of these species experienced severe habitat shrinkage of over 80%
(Ceballos, Ehrlich, and Dirzo, 2017). The loss of species and associated biodiversity may
go unnoticed at the immediate present, but can certainly cause significant impacts to
ecosystem and human health in long-term. The persistence of wild species, especially
of large herbivores and carnivores (megafauna), affects ecosystem physical structure,
trophic structure (abundance and composition of animals community) and ecosystem
biogeochemistry (Malhi et al., 2016). The extinction of one megafauna species will not
only cause co-extinctions (Galetti et al., 2018), but also degrade the health of ecosystem
functions and services which are fundamental for human survivals (Cardinale et al., 2012).

Despite the evidences in support of nature and wildlife conservation, the rate of habi-
tat loss, habitat degradation, and number of threatened species accelerated (IPBES,
2019). With the projected growth of human population, the 2019 world population of
7.7 billion people will reach 9.7 billion by 2050 and 10.9 billion by 2100 (United Na-
tions, 2019b). The continuation of development is necessary to ensure equal opportunity
and quality of life for the global citizen. The agenda to conserve nature while support
growing human population is challenging. The increase in human population comes with
associated surges in demand for resources, especially for food. Agricultural land already
covered around 38% of the earth terrestrial surface (FAO, 2016) and its expansion con-
tributed to 40% of tropical deforestation during 2000 and 2010 (FAO and UNEP, 2020).
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The expansion of agricultural land caused not only the direct increase in habitat loss and
fragmentation (Veach, Moilanen, and Minin, 2017), but also the agricultural frontiers
that stimulates resource competitions and interactions between human and wild species
(Nyhus, 2016). This unavoidably leads to conflict over wildlife-induced damages. Such
situations can negatively impact people through crop and livestock depredations, dam-
ages to property and even the loss of lives (Dickman, Marchini, and Manfredo, 2013).
In response, human developed hostility and resorted to retaliation killing of the problem
species (Mateo-Tomás et al., 2012). Although human-wildlife conflict (HWC) occurred
mostly in communities at close proximity to forest, conflict is escalating near urban-fringe
(Anand and Radhakrishna, 2017). Therefore, HWC phenomena is fast becoming one of
the must-addressed issues to further the success of conservation and the sustainability of
human livelihood (Distefano, 2005; Inskip and Zimmermann, 2009). Figure 1.1 showed an
exponential increase in the numbers of scientific papers on HWC in the last two decades
which reflected the raising priority and interest of this issue (Nyhus, 2016).

Figure 1.1: The number and growth of scientific papers cov-
ering human-wildlife conflicts during 1995 to 2015 with red
referring to the exact usage of the word ‘human-wildlife con-
flict’ or ‘human wildlife conflict’ in Google Scholar and blue
representing a combination of ‘human’ and ‘wildlife’ with

‘conflict’ in Scopus database (Nyhus, 2016)

Although species of varying sizes were found in conflict with human, large endan-
gered species are disproportionately caused concerns (Dickman, 2010). The number of
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threatened large herbivores are concentrated in South and Southeast Asia, while inten-
sive human pressure were also observed in the same region (Figure 1.2). Moreover, most
countries in this region remain within developing category where the problems of HWC
is believed to be particularly challenging (Seoraj-Pillai and Pillay, 2017). With high
number of large species, existing pressure from human activities, and projected growth
in economic development, this region is likely to face with intensified conflicts between
human and nonhuman species.

Figure 1.2: Global distribution of the threatened larger her-
bivores total number (Ripple et al., 2015) (A) and the level
of human pressure measured by Human Footprint Index in

2009 (Venter et al., 2016) (B)

Asian elephants (Elephas maximus) is the largest terrestrial herbivore in Asia. The
species is a subject of intense HWC which is usually referred to as human-elephant conflict
(HEC). Hosting the largest population of wild elephants, the HEC situation in India is
causing the death of approximately 400 people and 100 elephants each year (Rangarajan
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et al., 2010). In Thailand, 70% of the protected areas estimated with wild elephant are
facing HEC (Noonto, 2009). In China, HEC is officially listed as the leading damages from
wildlife despite small elephant population (Li et al., 2017). Evidences of HEC in varying
degrees were reported from all countries where Asian elephants occur (IUCN/SSC Asian
Elephant Special ist Group, 2017). Approximately 10-15% of total agricultural output in
many areas located close to elephant habitats can be damaged by wild elephants (Barua,
Bhagwat, and Jadhav, 2013). Therefore, the management of HEC became the central
focus of Asian elephant conservation.

HEC is a reciprocal complex system involving various components that ranges among
elephant ecology, geopolitic, socio-economic, human perception, and resource distribu-
tion. Among existing mitigation strategies, landscape-scale planning is regularly em-
phasized together with the fostering of human tolerance (Hoare and Du Toit, 1999; Si-
tati et al., 2003; Neupane, Johnson, and Risch, 2017; Shaffer et al., 2019). However,
landscape-scale assessment remained limited and urgently needed (Gubbi et al., 2014).
The researches on HEC are normally localized covering a single protected area or few
surrounding villages. Besides logistics difficulty and resource limitations, the reasons for
such local-scale focus usually arise from the observations that HEC is context-specific.
Although an in-depth understanding of the conflict characteristics within a particular
area is invaluable, the lack of landscape-scale consideration and planning led to incom-
plete awareness of the situation and short-sighted decision-making (Athreya et al., 2013;
Goswami and Vasudev, 2017). Therefore, assessment of Asian elephant conservation and
related conflicts at larger scale, despite lessen in detailed information, are critical and
should be pursue.

When assessing and monitoring large habitats, the use of geo-spatial and satellite
remote sensing (RS) tools together with modeling techniques became an invaluable com-
plementary to traditional in-situ data. The most commonly used RS data is land cover
products, while continuous measurements, such as vegetation indices and climatic data,
are being increasingly utilized (He et al., 2015; Radeloff et al., 2019). The integration of
RS and ecological modeling enhance the monitoring and assessment of species and be-
lieved to be the way forward (Randin et al., 2020). In addition, the application of RS data
not only expands spatiotemporal coverage of monitoring but also provides standardized
products and techniques allowing comparative assessment across continents (Skidmore et
al., 2015). Hence, the integration of RS products, geo-spatial techniques, and ecological
modelings also likely enable the evaluation of HEC at landscape-scale.
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Accordingly, in the following sections I provided details on Asian elephant conserva-
tion status, then reviewed literature on the mechanism of HEC and current situations
in Asia, the concept of coexistence, landscape conservation and scenario planning, and
lastly the application of remote sensing and geospatial tools.

1.2 Literature review

1.2.1 Asian elephants

Asian elephants historical range comprised over 9 million km2; stretched from West Asia
to Southeast Asia and reached as far west as Yangtze-Kiang river in China (Sukumar,
2003). However, its current range contracted and comprised of sparsely fragmented habi-
tats covering 486,800 km2 (Blake and Hedges, 2004). As a long-lived species with late
reproduction, this severe habitat destruction occurred rather rapidly within roughly two
to three generations of many populations. The 13 countries hosting the remaining Asian
elephant population include Bangladesh, Bhutan, Cambodia, China (Yunnan province),
India, Indonesia, Laos, Malaysia, Nepal, Sri Lanka, Thailand and Vietnam (Figure 1.3).
Elephant population in Asia has been estimated at 40,000 to 50,000 individuals and listed
under endangered status since 1990 (IUCN, 2015). In fact, many experts believed the ac-
tual number is likely lower because range countries mostly lacked systematic range-wide
population assessment (Blake and Hedges, 2004; Calabrese et al., 2017). Unlike their
African counterpart, Asian elephants do not face extensive risk of poaching, but habitat
conversion and conflict with humans are severely prominent (Sukumar, 1989; Fernando
et al., 2005; Choudhury et al., 2008; Fernando and Pastorini, 2011; IUCN/SSC Asian
Elephant Special ist Group, 2017).

Asian elephants are regarded as an ecosystem engineer and a keystone species. Ele-
phants influence the structure of ecological communities and processes through various
foraging behaviors (Blake and Inkamba-Nkulu, 2004; Hawthorne and Parren, 2000). The
trampling and breaking by forest elephants open up dense vegetation to create forest gaps
enabling light to reach the forest floor, which creates productive ground layer and benefits
various ground species of plants and vertebrates (Terborgh et al., 2016). These behaviors
also filter tree recruitment and allow higher carbon storage effecting climate regulation
(Berzaghi et al., 2019). Asian elephants are also one of the most crucial long-distance
seed dispersal agent (Harich et al., 2016). As a seed disperser, elephants maintain tree
diversity and some native plants developed to solely rely on them for spreading seeds
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Figure 1.3: The estimated historical and present distribution
of Asian elephants (Sukumar, 2003)

(Campos-Arceiz and Blake, 2011). Moreover, elephants are considered as an umbrella
species. Because their conservation requires the protection of wide-ranging areas, the safe-
guarding of elephant habitats consequently preserve habitats for other species and serve
a greater biodiversity protection (Branton and Richardson, 2011; Epps et al., 2011). For
conservation community, elephants are also viewed as a flagship species because their
charismatic appearance and nature which help bringing public attention and awareness
(Barua, Tamuly, and Ahmed, 2010).

Beside their ecological importance, the species also holds a cultural role in their range
countries and has long been in intricate relationship with humans. Historical records
mentioned elephants in association to gods, kings, a mechanism of wars, a mode of
transport, a token of peace, a source of fears and much more (Sukumar, 1992). In
Hinduism and Buddhism, elephants are associated with deity and prosperity (Bandara
and Tisdell, 2003). In Thailand, for example, white elephant was perceived as a national
pride and once printed on the country’s flag as a national symbol (Vinitpornsawan and
Sirimanakul, 2014).

Nonetheless, over time economic and technological development shifted human per-
ception of forest and wildlife within it. Forest and wild elephants became assets when
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benefits can be directly reaped, such as during the peak of logging, but burden other-
wise (Laohachaiboon, 2010). The estimated home range of wild elephants now lies in
heavily fragmented landscapes and is surrounded by human-dominated activities (Leim-
gruber et al., 2003). Since wild elephant population decreased and their sightings became
disproportionate, the bonds and knowledge of locals about the species faded (Vinitporn-
sawan and Sirimanakul, 2014). The shifting in perceptions and the localized increase
in elephants’ use of human-dominated land led to a growing in likelihood of negative
interactions between human and wild elephants which resulted in HEC.

1.2.2 Human-elephant conflict (HEC)

Adapted from the International Union for Conservation of Nature (IUCN)’s definition
of HWC, HEC can be defined as situations when needs and actions of wild elephants
caused recurring threats, both actual and perceived, to the livelihood of people, leading
to the persecution of elephants (IUCN/SSC Human Wildlife Conflict Taskforce, 2020).
HEC incidents in Asia are believed to be increasing and caused concerns across all range
countries. For example, Desai and Riddle (2015) approximated 500,000 to 1 millions
households in India as being affected by damages related to wild elephants. Even one
of the smallest population located in China were involved in conflict causing the deaths
of 12 humans in 2019 and a yearly estimate of 4.5 million dollars losses (Jia and Wei,
2020). Although monetary and spatial quantity of damages are relatively small at a
national level, affected communities were usually either among the least privileged or
disproportionately bare the cost beyond their capacity (Barua, Tamuly, and Ahmed,
2010). In addition, intangible costs of conflict such as the inability to travel caused by fear
of roaming elephants, loss of time and deterioration of health during night guarding, and
other opportunity costs can greatly affect the livelihood of those who co-habit elephants
range (Jadhav and Barua, 2012; Barua, Bhagwat, and Jadhav, 2013; Kansky and Knight,
2014).

Mechanism of conflicts

Conflict between human and wildlife, including HEC, is complex and driven by numer-
ous reciprocal factors. Various scholars suggested that HWC should be viewed as cou-
pled systems and sometimes referred to as coupled human and nature systems (CHANS)
(Carter et al., 2014), socio-ecological systems (SES) (Lischka et al., 2018) or coupled
human-environmental systems (Turner et al., 2003). Despite these varying terminologies,
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the general concepts are similar. Such systems comprised of biophysical (nature) and
social (human) elements with interactions at multiple spatial, temporal, and organiza-
tional scales that are controlled in dynamic and complex ways (Liu et al., 2007; Redman,
Grove, and Kuby, 2004). Ostrom (2009) suggested multidisciplinary approach to under-
stand such integrated systems and emphasized its importance for sustainability. Similar
suggestion was stressed for HWC (Pooley et al., 2017). Based on these concepts, the
alternation of one component can trigger changes in others and even cause a shift in the
system stage. Hence, it is crucial to understand the holistic picture of HEC system.

Based on existing literature, I reviewed and grouped HEC components into two cate-
gories: (i) proximate elements and (ii) ultimate factors. The overall interaction between
each component was summarized in Figure 1.4. HEC was shown as hexagon. Proximate
actions were drawn in rectangle, while ultimate factors were represented with ellipsoid.

Figure 1.4: The general summary of the components and
their associated relationships within HEC system which in-
cluded ultimate causes represented in oval and proximate

factors represented in rectangular symbols

Proximate factors
Proximate factors cause immediate effects and directly influence HEC situations.

Three main factors were summarized namely, elephant ecology, human perception and
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tolerances linking to human behaviors, and land use induced resource distribution.
Elephant ecology: To support their physiological and energy requirements, ele-

phants need to daily consume around 10% of their body weight, or approximately 150
kilograms of food and 190 liters of water (Sukumar, 2003). Consequently, elephants
tend to forage over large area, sometimes extending beyond formal protected habitats.
Despite disruption from human structures, seasonal movement and migration were re-
ported within many ranges, covering 100-10,000 km2 of areas depending on resource
availability (Fernando and Leimgruber, 2011). Moreover, elephants are edge-specialist
and prefer matrix of land cover which is often occurring near the forest edges (Wadey
et al., 2018). The optimal foraging theory (Stephens and Krebs, 1986), individuals seek
for the most energy at the lowest cost, was also believed to influence crop-raiding by
elephants. Sukumar (1989) suggested a ”high risk, high gain” strategy in which richer
nutrients and mineral salts in cultivated crops maximize nutrient intake better than nat-
ural vegetation. Pokharel et al. (2019) confirmed higher productivity and dietary quality
in human-production land surrounding elephant habitats and also measured lower faecal
glucocorticoid metabolite (fGCM) levels, an indicator of stress, from elephants habituate
agricultural lands. These requirements and preferences led the species to forage near the
forest edge and human-dominated lands which increases the likelihood of interactions
and conflicts.

Human perception, tolerance, and behavior: Perception reflects how individ-
uals perceived themselves to be at risk which socially and culturally constructed through
personal experiences (Hill, 2004). Tolerance here indicates how much ones can accept
negative impacts caused by wildlife (Kansky, Kidd, and Knight, 2016). Tolerance is in-
fluenced by perception along with individual economic conditions (Nsonsi et al., 2017),
social connections (e.g. institutional trust) (Bruskotter and Wilson, 2014) as well as
frequency and extent of damages (Sampson et al., 2019). Direct tangible losses cannot
always indicate the level of tolerance toward wildlife. In spite of high costs induced
by wildlife, some communities maintained positive attitude toward conservation, while
other refused to compromise with much smaller losses (Kansky, Kidd, and Knight, 2016).
Specifically, tolerance toward wild elephants varied greatly among studies and, in some
cases, high tolerance were observed (Kansky, Kidd, and Knight, 2014). Such aspects
of human cognition were recognized to translate into expression of behaviors and ac-
knowledged among the key to conservation success (Chapron et al., 2014; Bruskotter and
Wilson, 2014).

Resource distribution and land use: Previously, the distribution of resources
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were mainly governed through natural factors, but human adaptation and recent tech-
nological advancement allowed rapid spatial and temporal alteration of resources. Agri-
culture land conversion was suggested to associate with elephant conflicts (Hoare, 1999).
Crop types and location of certain palatable trees in relation to residential areas increased
the likelihood of HEC (Neupane, Johnson, and Risch, 2017). Moreover, the availability
of mature crops adjacent to protected areas during a period of low vegetation productiv-
ity within natural habitats influenced elephants’ movement and raiding pattern (Branco
et al., 2019). Timing and availability of food were a stronger indicator associated with
an increase in conflicts, not the abundance of species or number of problem individu-
als (Artelle et al., 2016). Analysis of GPS collar and long-term sighting showed that
the locations and available of resources together with associated risk influence elephants
movement and distribution (Chamaillé-Jammes et al., 2013; Krishnan et al., 2019). Con-
sequently, managing spatial and temporal distribution of shared resources was proposed
as a key to long-term HEC management (Shaffer et al., 2019) .

Ultimate factors
The ultimate factors are considered as root-causes and act at large scale, such as

regional, and global. These factors are usually problematic to directly manage, but es-
sential indirect drivers of proximate factors. Human population, socio-economic demands
and climate change are the main forces under this category.

Human population: The growth of human population was directly linked to the
negative impacts on nature, especially through increase in land demand (Crist, Mora,
and Engelman, 2017). In South and Southeast Asia, increasing in land demand resulted
in pervasive forest conversion, with less than half of its original forest remained (Sodhi
et al., 2004). Besides influencing land configuration which consequently alter resource
distribution, human population also created direct pressure for wildlife through predator
effects.

Socioeconomic demands and market trends: Along with human population
growth, socioeconomic demands largely impact food production. Food consumption and
waste, for example, can heighten land demand beyond simple linear relationship to the
number of human population. The boom of palm oil as low-cost ingredient in various
products is one example of how market demand influenced local farmer or government
decision to promote certain land use (Meijaard et al., 2018). Suba et al. (2017) identified
oil palm conversion which showed an increase of over 400% during 2006-2010, as the
single biggest cause of HEC in north Kalimantan, Indonesia. Besides being an indirect
driver of land conversion, socioeconomic trends can also influence human behavior both
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through government regulations or individuals decision, such as growing movement in
elephant-friendly tea plantation in India or rubber plantation in China (Liu et al., 2017).

Climate change: Although land use is currently the number one cause of biodi-
versity deterioration, climate change is fast becoming more prominent and believed to
surpass land use in the future (IPBES, 2019). As climate change causes fundamental shift
in precipitation, temperature, and extreme events, existing habitat of Asian elephants
may become unsuitable. Changes in climatic conditions can either cause direct physical
impacts on elephants, such as that of thermal regulation, or indirectly through alteration
of food and water availability (Kanagaraj et al., 2019). Silva et al. (2020) suggested over-
all future contraction of Asian elephant range areas with some localized range expansion
especially at higher altitude. This projection suggested range shifting which may trigger
migration through human-dominated landscape and consequently increase the probabil-
ity of HEC. Moreover, climate change will likely impact crop yield and crop suitability
resulting in land use alteration (Zhao et al., 2017) which also link to elephant-human
resource distribution.

Common mitigation and success uncertainty

Various mitigation strategies have been implemented. Most of which are founded in
fear conditioning and physical separation that include deterrents (e.g. creating loud
noises through drumming or firecrackers), guarding (e.g. watchtower, patrolling), and
physical barriers (e.g. fences, elephant-proof trenches) (Desai and Riddle, 2015). Some
mitigation aim to directly alter elephant population, such as domestication, culling, and
translocation of problem individuals (Shaffer et al., 2019). Others aim to increase human
tolerance through compensation (DeMotts and Hoon, 2012). More proactive methods
were also attempted, such as tracking the movement of problem individuals with the use
of GPS collaring (Salim, 2019), and the implementation of government insurance schemes
(Nuntatripob, 2019). New technology and innovation are also being explored, such as
advance early warning technologies based on the detection of infrasonic sounds used by
elephants (Zeppelzauer, Hensman, and Stoeger, 2015), and the image recognition of live
camera installed in elephants paths (Ramesh et al., 2017; Zeppelzauer and Stoeger, 2015).

Despite the various methods, the effectiveness and success of mitigation strategies var-
ied greatly between communities. Some techniques are expensive to maintain or facing
low uptake by local communities (Hoare, 2015). Moreover, elephants possess behavioral
flexibility which allow them to adapt and become habituate to deployed mitigation re-
ducing its effectiveness over time (Mumby and Plotnik, 2018). More often than not, the



Chapter 1. Introduction 12

implementation of mitigation within one location merely shift HEC problems to adjacent
areas due to the lack of landscape consideration (Osipova et al., 2018). Mumby and Plot-
nik (2018) suggested that commonly employed mitigation only reduce conflict symptoms,
but overlook the underlying causes.

1.2.3 Coexistence

The traditional conservation approach of complete separation became impractical as nat-
ural landscape decreased. Carter and Linnell (2016) conceptualized the definition of coex-
istence as “a dynamic but sustainable state in which humans and large [species] co-adapt
to living in shared landscapes where human interactions with [species] are governed by
effective institutions that ensure long-term [species] population persistence, social legit-
imacy, and tolerable levels of risk”. The concept emphasized the long-term perspective
and the ability to co-adapt by both human and wildlife to share the key overlapping
resources. Spatial arrangement of resources in shared landscape and their accessibility at
multiple scales are, thus, fundamental to HWC management (Carter et al., 2012).

1.2.4 Landscape conservation and scenario planning

Although protected areas will retain its central role in conservation, human activities
and interactions with wild species in landscape beyond their boundaries will influence
management options (DeFries et al., 2007). Landscape approach, with the integration
of socioeconomic needs and environmental effects, allows holistic evaluation of trad-off
and synergies between conservation and development for various stakeholders (Palomo
et al., 2014; Reed et al., 2016). Morzillo, Beurs, and Martin-Mikle (2014) emphasized
the impacts of landscape-scale characteristics and spatial changes on HWC. Traditional
conservation plannings frequently rely on localized historical records; however, they are
unlikely to cope with rapidly changing and uncertain future at landscape level (Peterson,
Cumming, and Carpenter, 2003).

Scenario plannings, on the other hand, allow decision-makers to explore plausible
futures and develop relevant alternative actions (Mahmoud et al., 2009). Foden et al.
(2019) emphasized the importance to evaluate future climate impacts on species in order
to identify needed modifications to conservation strategies. Titeux et al. (2016) suggested
that future scenarios in ecological modeling should consider climate change, as well as
inter-related climate and human-induced land cover changes. Similarly, future climate



Chapter 1. Introduction 13

and anthropogenic change are expected to alter resource dynamic over shared landscape
requiring both humans and elephants to adapt (Shaffer et al., 2019).

Landscape scale scenario planning that incorporated future scenarios were conducted
for elephant distribution (Kanagaraj et al., 2019; Li et al., 2019) and population response
(Boult et al., 2019a), but yet to directly address HEC. Limited study on HEC that
somehow evaluated future scenario mostly considered historical trend in land cover only
(Naha et al., 2019).

1.2.5 Geospatial and remote sensing application

HEC is a spatial phenomena requiring the investigation of spatially explicit factors (Smith
and Kasiki, 2000). Dublin and Hoare (2004) also emphasized the necessity of spatial
analysis of HEC and highlighted that much more remained to be done. Since then
multiple HEC studies attempted to utilize geospatial techniques together with RS data.
Sitati et al. (2003) provided spatial prediction of HEC at coarse resolution (25-km2).
Graham et al. (2010) analyzed HEC pattern at various spatial scale based on intensive
collection of crop damage data. Chen et al. (2016) predicted HEC hotspot in Southwest
China using detailed HEC compensation records with land cover and distance to key
landscape features.

Advancement in computational power and increasing availability of satellite RS prod-
ucts enabled more landscape details, larger spatial coverage, and finer spatiotemporal
resolution to be incorporated. Duffy and Pettorelli (2012) identified positive relationship
between satellite-derived Normalised Difference Vegetation Index (NDVI) and African
elephant densities. Boult et al. (2019b) utilized NDVI as a proxy of resource availability
which govern elephants’ movement decision beyond protected areas. Additionally, the
timing of vegetation productivity in agricultural land influenced raiding pattern of crop
depredation by elephants (Branco et al., 2019).

Nevertheless, there remain limitations among existing studies which commonly arise
from the lack of underlying HEC records and the spatial and temporal coverage of the
analysis. These limitations may be addressed with data integration combining available
data from multiple sources including RS, geospatial, socioeconomic, and ecological data
(Randin et al., 2020).
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1.3 Motivation of this study
Despite the advancement of spatial analysis on Asian elephant habitats and HEC, most
studies remain limited in their spatial coverage and consideration of future outlook. Land-
scape assessment are fundamental to provide holistic decision-making which enable lim-
ited conservation resources to be delegated appropriately. Although widely recognized
and already observed in many locations, climate change-induced impacts on wildlife
conflicts has yet been systematically incorporated in long-term HEC management. A
study on landscape-scale assessment incorporating climate change scenario can benefit
Asian elephant conservation. Therefore, analytical framework that enable such assess-
ment should be studied and practical suggestions should be put forward.

1.4 Objective of this study
Taking the argument in the previous sections, the objective of this study is to develop as-
sessment framework for HEC that covers large spatial scale and considers climate change
scenarios. Consistent risk framework, in which risk is expressed as a function of hazard,
exposure, and vulnerability, was employed in United Nations Office for Disaster Risk
Reduction (UNSDRR) guideline (UNISDR, 2015) as well as Intergovernmental Panel
on Climate Change (IPCC) Special Report (IPCC, 2012) and Fifth Assessment Report
(IPCC, 2014). This framework potentially holds characteristics necessary to support HEC
assessment as it provides flexibility in utilizing data upon availability, spatially explicit
outputs, multi-dimensional analysis, and scenario planning consideration. Specifically, to
adapt this framework to HEC assessment and identify needed key variables for analysis,
this study address the following three sets of questions:

1. What are the main priority for Asian elephant conservation in each range country
considering long-term historical changes in elephant population and key driving
factors within elephant home ranges?, and which country is the most concern for
HEC? (Chapter 2)

2. Within the country of most concern, how did HEC distribution change over time?
and what are the important environmental variables influencing changes in HEC?
(Chapter 3)

3. Within the country of most concern, how HEC will change in the future, and which
location should be given priority? (Chapter 4)
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1.5 Contribution and novelty of this study
The contribution of this research is two-fold. First, the proposed framework improves
the assessment of HEC to cover large spatial scale, multi-dimensional analysis, and cli-
mate change impacts. The approaches used in this study utilize open-access dataset
which support evident-based assessment in data-poor locations. The framework also
aim to provide flexibility that allow it to be applied across different locations and tar-
geted species. Second, the findings of the proposed framework highlighted the areas that
needed management attention. Allocation of limited conservation resources, thus, can be
systematically planned. Specifically, novelty of this study include:

1. Being the first study to adopt risk framework from IPCC and UNSDRR to assess
HEC risk

2. Providing quantitative spatial distribution of current and future HEC risk at country-
level by incorporating Representative Concentration Pathways (RCP), Shared So-
cioeconomic Pathways (SSP), and spatial policy.

1.6 Thesis outline
This thesis is divided into five chapters. Chapter 1 (current chapter) introduced Asian
elephants conservation status with a review HEC mechanism, coexistence, landscape
conservation and scenario planning followed by motivation, objective, contribution and
novelty of the research. The main body of this dissertation is divided into three chapters.
Each chapter covers background and relevant literature, the data and methodology used,
results, discussion and conclusion. Chapter 2 describes cross-country assessment of Asian
elephant habitats and subsequent categorization of country characteristics by analysis its
population dynamic with environmental changes in 1990, 2003, and 2015. Chapter 3
covers the modeling of HEC distribution in Eastern Thailand to identify spatio-temporal
trend of HEC and important drivers. Chapter 4 discusses the application of risk frame-
work with future scenario projection of HEC risk at country-scale for Thailand. Finally,
Chapter 5 summarizes the outcomes of this research, recommendations, limitations and
future works. Figure 1.5 shows the general flow and order of chapters.
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Chapter 2

Country-level comparative
assessment of Asian elephant
population dynamic and
environmental changes

2.1 Introduction
The Asian elephant (Elephas maximus) is listed as endangered species in the IUCN Red
List of Threatened Species (IUCN, 2015). Its range in 2000s has significantly reduced
over four times that of early 1900s (Fernando and Pastorini, 2011). The main reason
affecting the Asian elephant population is habitat loss and fragmentation due to growing
human population and competition for resources (Leimgruber et al., 2003; Madhusudan
et al., 2015). Other factors that contributed to Asian elephant population reduction
are poaching (Diana Vollmerhausen, 2014), capturing of live elephants (Doyle et al.,
2010), and human-elephant conflicts (HEC)(Fernando and Leimgruber, 2011). Despite
its endangered status and well-known ecological importance for conservation, the baseline
data on Asian elephant population and habitat quality are severely sparse. Although it
is the priority to improve the quantity and quality of such data, careful utilization of
existing data to guide conservation remain essential despite its limitations.

Elephants are the largest terrestrial mammal and can weight over 1,000 kilograms.
With such large body size, the wild Asian elephants forage over wide habitat areas to
support their physical requirements. To monitor the conditions of habitats in such large-
scale, networks of standardized in-situ observations are necessary, yet lacking due to
logistic difficulty and restricted resources. Consequently, satellite remote sensing has
been a vital alternative. Many studies utilized satellite-derived land surface information
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ranging from such products as land cover, vegetation productivity, and digital surface
model. Together with elephant presences collected either from field observation or GPS
telemetry, satellite-derived dataset can be used to model habitat preference and suit-
ability. Despite the commonality of researches that incorporated satellite dataset (Aini
et al., 2017; Duffy and Pettorelli, 2012; Liu et al., 2016; Rood, Ganie, and Nijman, 2010;
Zhang et al., 2015), such studies are performed at the local-scale within a single park
level or province-level.

Limited studies evaluated cross-country status of Asian elephants and their habitats.
Leimgruber et al. (2003) quantified the level of fragmentation and the availability of undis-
turbed wild land within known elephants home ranges. In their study the satellite-derive
land cover and fire location from Advanced Very High Resolution Radiometer (AVHRR)
satellite were used together with other spatially explicit ancillary data. Calabrese et al.
(2017) further incorporated socio-economic indicators, such as Gross Domestic Product
(GDP), corruption level and environmental performance. Despite the importance and
usefulness of their results, these two studies were performed at a static time period. For
long-live species like elephants, long-term monitoring and assessment are critical for con-
servation purposes, where drivers of change in species population and demography can be
identified and then adequately managed. Additionally, since Asian elephants face various
threats, the long-term cross-country assessment is important to inform government and
support appropriate allocation of resources.

2.1.1 Objectives

To address the gap of limited temporal assessment and elucidate country-specific con-
servation priority, this chapter aims to review long-term and cross-countries factors that
impact Asian elephant population dynamic. The outputs are also expected to address
the first set of research questions raised in Chapter 1 and support the country selection
for further HEC analysis. Since habitat alteration is believed to be a prominent fac-
tor effecting the species population, this study focused on the land cover and landscape
changes together with some key social indicators. The specific objectives are to:-

1. assess the land cover and landscape within range countries and available home
range around 1990, 2003, and 2015

2. identify significant drivers and their correlation with the dynamic of Asian elephant
population over time
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3. categorize range countries based on characteristics of change in selected key drivers
and elephant population over time

2.2 Methodology

2.2.1 Study location and flowchart

Figure 2.1: Study area shows home ranges of the wild
Asian elephants and the 15km-buffered areas with an ex-

cerpt zooms-in over Myanmar.

The home ranges where wild Asian elephants occur with certainty are provided in
digital format from IUCN (WWF, 2015). A 15-km buffer was generated as shown in
Figure 2.1, and any overlapping home ranges were joined. This buffer rule was based on
the observation of Asian elephant average daily movement in zoo (9.05 ±0.6 km/day)
(Rowell, 2014) as well as the average large daily travel distance in the wild (Fernando
et al., 2012). Moreover, since the home range data was generated in early 2000s, the
buffer assisted to cover the uncertainty of past home range in 1990. Because elephant
population data is at the country-level, any cross-border home ranges are intersected
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using country boundary and assigned to relevant countries. All land cover and landscape
metrics for this study were generated only within this specified home range. Figure 2.2
provides the overview of the dataset and the methodology used.

Figure 2.2: Flow chart of this study

2.2.2 Datasets

This study used records of Asian elephant population in 1990, 2003 and 2015. Other
datasets which represent environmental and social conditions were retrieved as closely as
possible to these three period. The available data covered around 25 year period. Even
though the importance of longer monitoring period is recognized, the duration covered
in this study closely represents one generation change of elephant population (Turkalo,
Wrege, and Wittemyer, 2018) and is also adequate to identify changes in land cover.
Table 2.1 described the data used for this study.
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Table 2.1: The data used in this study as proxies for envi-
ronmental and social conditions

Data Source Temporal
Coverage

Original
Resolution

Land cover ESA CCI-Land 1992/2003/2015 300m
Elevation SRTM 2000 90m
Human population GHSL 1990/2000/2015 250m
GDP growth rate United Nations 1990/2003/2015 country-level
Human Development Index UNDP 1990/2003/2015 country-level
Control of Corruption WGI 1996/2003/2015 country-level

ESA CCI-Land: European Space Agency Climate Change Initiative-Land cover, SRTM: Shuttle
Radar Topography Mission, GHSL: Global Human Settlement Layers, UNDP: United Nations
Development Programme, WGI: Worldwide Governance Indicators.

Asian elephant population

The Asian elephant census is not regularly reported. Large-scale reporting of population
census were publicly available from 1990 (Santiapillai and Jackson, 1990), 2003 (Choud-
hury et al., 2008), and 2015 (IUCN/SSC Asian Elephant Special ist Group, 2017). The
total populations have been estimated at around 50,000 elephants since 1990 with only a
slight decline. However, at individual range country, the population illustrated apparent
differences. Some countries experienced a drastic reduction in elephant population, while
others showed continuous increase (Figure 2.3).

Land cover variables

To capture the change of land cover and landscape throughout the selected period, con-
sistent land cover maps with classification that reflect elephants’ preference are needed.
Due to the large extent of the study area resulting in the lack of ground truth data, the
existing land cover products were used instead of re-performing the classification myself.
The European Space Agency (ESA) Climate Change Initiative (CCI) land cover maps,
hereafter CCI-Land, were selected. This product provides moderate spatial resolution at
300 m and an annual temporal resolution from 1992 to 2015. CCI-Land applied United
Nation Land Cover Classification System (UN-LCCS). Its predecessor version was evalu-
ated to be suitable for climate modeling, global forest change assessment as well as global
agriculture monitoring (Tsendbazar, Bruin, and Herold, 2015). CCI-Land from the year
1992, 2003 and 2015 were used because of their temporal proximity to the study period.
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Figure 2.3: Officially estimated number of Asian elephants
in 1990 (Santiapillai and Jackson, 1990), 2003 (Choudhury
et al., 2008) and 2015 (IUCN/SSC Asian Elephant Special
ist Group, 2017) from each of the thirteen range countries

Based on the use of various land cover type by elephants (Sukumar, 2003), original UN-
LCCS classes were reclassified to eight classes including crop, forest, shrub and grass,
other vegetation, urban, bare land, water and snow. Table 2.2 mapped the reclassified
land cover types from 22 UN-LCCS classes to that used in this study. Land cover re-
classification was performed and downloaded from Google Earth Engine (Gorelick et al.,
2017). Further analysis was done in R version 3.5.3 (R Core Team, 2019).

Landscape metrics

Landscape metrics quantitatively describe the spatial patterning of the ecosystem (O’Neill
et al., 1988; Turner, 1989) and various indicators had been generated to evaluate the
interconnection between spatial heterogeneity and ecological processes (Turner, 2005).
The landscape metrics must be considered because the amount of land cover type alone
do not provide adequate insight into the landscape structure. Herbivores, including
elephants, response to patchiness of foraging resources, in which the dominant scale
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Table 2.2: The eight reclassified land cover types used in
this study and their associated classes from that of Climate

Change Initiative land cover map (CCI-land).

Land Cover
Reclassification

Original ESA CCI-Land Cover Classes

Crop Cropland, rainfed
Cropland, irrigated or post-flooding
Mosaic cropland (>50%/ natural vegetation (<50%)
Mosaic natural vegetation (>50%)/ cropland (<50%)

Forest Tree cover, broadleaved, evergreen (>15%)
Tree cover, broadleaved, deciduous (>15%)
Tree cover, needleleaved, evergreen (>15%)
Tree cover, needleleaved, deciduous (>15%)
Tree cover, mixed leaf type
Mosaic tree and shrub (>50%)/ herbaceous cover (<50%)

Grass/Shrub Mosaic herbaceous cover (>50%)/ tree and shrub (<50%)
Shrubland
Grassland

Other Vegetation Lichens and mosses
Sparse vegetation (<15%)
Tree cover, flooded, fresh or brakish water
Tree cover, flooded, saline water
Shrub or herbaceous cover, flooded, fresh/saline/brakish water

Urban Urban areas
Bare land Bare areas
Water Water bodies
Snow Permanent snow and ice

and intensity of spatial heterogeneity can explain the variance in elephant occurrences
(Murwira and Skidmore, 2005). In addition, fragmentation also negatively influences
elephant habitat utilization (Leimgruber et al., 2003). Goossens et al. (2016) illustrated
that the level of fragmentation restricted the population size due to the available of
resources and can also lead to isolation between herds which negatively impact gene
pool and genetic diversity. Based on previous researches regarding the relationship of
landscape and elephant distribution (Gaucherel et al., 2010; Leimgruber et al., 2003;
Neupane et al., 2019), the following landscape metrics were chosen: Patch Density (PD),
Largest Patch Index (LPI), and Shannon Evenness Index (SHEI). The mathematical
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formula for PD, LPI and SHDI were shown in Equation 2.1, 2.2 and 2.3 respectively.

PD =
ni

A
(2.1)

LPI =
n

max j=1(ai j)

A
×100 (2.2)

SHEI =
−∑m

i=1(Pi lnPi)

lnm
×100 (2.3)

PD represents the number of patches of type i per landscape area A. LPI reflects the
percentage of the landscape comprised by the largest patch of type i. LPI reaches 100
when the largest patch occupies 100% of the landscape. Different from PD and LPI,
which are of a class-level, SHEI measures heterogeneity at a landscape-level considering
all land classes. It calculates the distribution of area among patch types. Pi represents
the proportion of class i, while m refers to the number of classes. SHEI value ranges from
0 to 100 where 0 indicates no diversity when the landscape contains only one patch. In
this study, only vegetation classes (crop, forest, grass/shrub, and other vegetation) were
considered in SHEI calculation.

Prior to calculating landscape metrics, the elevation above 3,000 m and the slope over
40◦, extracted from Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM) product, were used to masked the land cover maps. Topographic characters can
act as natural barriers and prevent habitat utilization. Previous Asian elephants habitat
suitability studies identified unlikely occurrences above these thresholds. All calculation
was done in R using ‘landscapemetrics’ package (Hesselbarth et al., 2019).

Human disturbance variables

Human presence and activities showed significant impact to landscape and wild elephant
distribution and movement (Hoare and Du Toit, 1999; Aini et al., 2017; Krishnan et al.,
2019). To incorporate human influence, the averages euclidean distance to urban land
cover type within the home ranges of each country were computed. Additionally, spatially
explicit count of human population from the Global Human Settlement Layers (GHSL)
population grid for 1990, 2000, and 2015 were also used. This data utilized the estimates
by Gridded Population of the World (GPW) v.4 in aggregation with density of built-up
map for more accurate distribution of human population and provide number of people
at 250 m resolution (Freire et al., 2016). The sum of human population within home
ranges of individual countries were computed.
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Human socioeconomic variables

As suggested by Calabrese et al. (2017) and De Boer et al. (2013), socio-economic factors
influence conservation performance and correlate with presence of elephants. In this
study, GDP annual growth rate (GDP-growth, World Bank 2020b), Human Development
Index (HDI, United Nations Development Program 2020) and Control of Corruption
(CC, World Bank 2020a) were used. GDP-growth infers the consumption of resources
to produce goods and services of a country which believes to limit wildlife conservation,
especially in developing nations that rely heavily on agriculture sectors (Czech, 2000).
HDI is an aggregated indicator that measures the progress in three basic dimensions,
knowledge, health and per capita income, and was shown to have positive relationship
with population trend of wildlife within protected areas (Barnes et al., 2016). HDI ranges
from 0 to 1 in which the value approaches 1 when human development is high. Lastly, the
level of corruption was shown to be a predictive indicator of elephant population status
(Calabrese et al., 2017). CC is a composite indicator reflecting governance performance
and ranging from -2.5 (weak) and 2.5 (strong).

2.2.3 Quantification of land cover and landscape changes

The land cover and landscape changes were calculated in three periods which include the
overall changes between 1992 to 2015, the changes in epoch1 covering 1992 to 2003, and
the changes in epoch2 between 2003 and 2015. The overall land cover changes within each
country and its elephant home range were compared. The conversion matrix was then
calculated for elephant home range of each country to quantify the area of land converted
between different classes during epoch1 and epoch2. To visualize these land conversions,
sankey diagram was generated for the elephant home range of each country. The sankey
diagram is commonly applied to analyze energy or material flows to and from nodes in a
network (Schmidt, 2008). For land cover, sankey diagram depicts changes from multiple
intervals with chronicle flow from left to right and with thickness of the flows representing
the proportion of land type being converted (Cuba, 2015).

2.2.4 Identification of drivers of elephant population changes

To identify key variables effecting elephant population changes, the logistic regression
was applied with elephant population at country level as a dependent variable (n=39,
13 countries from 3 year) and various social and environmental factors as independent
variables. Because the population data is based on educated guess, previous studies
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have highlighted concern on the accuracy of such rough estimation that the direct use
of census data can mislead the results (Calabrese et al., 2017). Hence, The elephant
population data was simplified into large or small population. I assigned each country
to a population category namely, category 1: large population of ≥ 2000 elephants, and
category 2: small population of 2000 individuals. This threshold was adapted from a
previous research (Santiapillai, 1997).

Based on the land cover analysis, forest and crop land cover area were chosen among
other classes for further analysis as together they contributed over 75% of home range ar-
eas for each country. The area of the largest forest patch was also used. Natural log trans-
formation was applied to area variables and human population variable. To reduce the
effect of multicollinearity, variables with high correlation, r ≥ |0.75| and variance inflation
factors (VIF) > 10, were removed. After removing highly correlated variables, nine vari-
ables remained: four land-related variable (PDcrop, LPIcrop, SHEI, Ln.largestForest),
two human disturbance variables (Ln.humanPop, distance.urban), and three human so-
cioeconomic status (CC, HDI, GDP.growth).

Rather than using automatic model selection, the model candidates were identified
based on priori knowledge. Previous studies suggested land-related variables, especially
forest cover, to determine level of elephant population (Leimgruber et al., 2003; Choud-
hury et al., 2008; Calabrese et al., 2017). Therefore, candidate models were first built
with land-related variables and Ln.largestForest was used as a base variable for all mod-
els. After the best-fit land-related model was identified, the human disturbance and
socioeconomic variables were considered. Akaike’s Information Criterion corrected for
small sample sizes (AICc) was used to rank candidate models. A final model was se-
lected based on the smallest AICc where the AICc difference (∆AICc) equaled to zero.
McFadden pseudo R2 was calculated to evaluate model fit. The variables from the final
model were then select as key drivers which increase the likelihood of having large ele-
phant population. All calculation was performed in R program using ‘glm’ function in
‘stats’ package.

2.2.5 Categorization of country-level status

To assess changes of selected key variables in relation to elephant population dynamic
within elephant home range of each country over time, the change in elephant population
along with the correlation between elephant population and selected key drivers were
calculated. Since each country initial elephant population in early 1990s differed and
proportional changes were more meaningful for comparison, natural log transformation
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was applied to the raw elephant population before further analysis. The overall change of
elephant population within each country was obtained from linear regression with time,
following equation 2.4. Cross-correlation coefficients with no lag were also calculated
between selected variables and elephant population for each range country, following
equation 2.5.

β =
∑[(xt − x̄)(t − t̄)]

∑(xt − x̄)2 (2.4)

rxy
t =

∑[(xt − x)(yt − y)]√
∑(xt − x)2(yt − y)2

(2.5)

where xt is elephant population variable at year t, and yt is key selected variables at time
t. The coefficient value of this linear trend model (β ) and cross-correlation coefficient
(rxy

t ) were then used. The magnitude and direction of the associations from correlation
coefficient provided general information of how situations within each range country
varied. Principle Components Analysis (PCA) were then applied on these coefficients to
identify clusters of country with similar changes over time. Using K-means clustering
on PCA scores, each country was assigned to different category. PCA and K-means
clustering calculation was also performed in R program with ‘stats’ package.

2.3 Results

2.3.1 Land cover and landscape changes

The proportion of area by land cover type over the whole country and that with the
country’s elephant home range are shown in Figure 2.4. India holds the largest home range
area, followed by Myanmar, Malaysia and Thailand, while over 50% of Sri Lanka land
area fell within Asian elephant home range (Table 2.3). Except for Indonesia, a higher
proportion of forest land cover were observed within elephant home ranges compared to
that of the whole country throughout all the three years. Table 2.3 also highlighted the
net gain of crop and urban cover within Asian elephant home ranges for all countries
between 1992 to 2015. The loss of forest cover was prominent in Cambodia, Vietnam
and Indonesia. On the other hand, an increase in forest were identified in Bhutan and
Yunnan (China) which expanded around 10% of the home range area. A slight increase
in forested area of around 3% were also identified in Myanmar. Other countries showed
either rather stable or loss of forest cover over the years.
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Figure 2.4: Proportion of land cover types within each range
country and its Asian elephant home range in 1992, 2003
and 2015 showed over all expansion of crop areas across all

countries.
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Figure 2.5 illustrated the conversion among land cover types within the elephant
home range in 1992, 2003 and 2015. Within elephant home ranges, the most common
converted land cover class were crop, forest, and grass/shrub. Different change patterns
were observed and three examples were also highlighted in Figure 2.6. Most countries had
larger land conversions during epoch1 (1992-2003) of which Cambodia had the largest
forest conversion. Only Indonesia showed a higher area conversion in epoch2 (2003-2015),
specifically a change from forest cover to cropland. Cropland was commonly expanded
into forested areas. On the other hand, forest cover expansion was usually contributed by
grass/shrub land cover and less likely from other land classes. While it was uncommon
for cropland to reverted into forest, it happened in Malaysia during epoch1. In Bhutan
and Yunnan (China), a clear increase in forest cover as a result of grass/shrub conversion
was identified. Although some countries (e.g. Bhutan) showed stable or even increasing
forest cover, growing urban areas crept ever closer to forested areas.

The changes of landscape structure within the elephant home ranges are shown in
Figure 2.4. The PD value for crop cover decreased for most country which can be in-
ferred that cropland became larger and more connected. Cambodia had the highest
increase in forest PD reflecting severe forest fragmentation. A decrease in fragmentation
of grass/shrub was observed for all country except Vietnam which showed slight increase.
For LPI, the decrease in its value indicates that the largest patch of that particular class
becomes smaller. For crop cover, most country showed an increase in LPI which indi-
cated a larger patch of crop cover. Only in Yunnan (China) where a clearly smaller LPI
was identified. On the other hand, the largest decrease in forest LPI was in Sri Lanka,
followed by Cambodia. The grass/shrub patch becomes smaller with an exception of
that in Thailand and Vietnam. Although SHEI did not change much for most coun-
tries, Bhutan and Yunnan (China) showed large reduction of 24% and 50% respectively.
The increase/decrease of SHEI reflects the increase/decrease in equal distribution among
patch type. Hence, the large reduction can imply more dominant patch type occurred,
which in the case of Bhutan and Yunnan are likely a result of forest expansion.

2.3.2 Possible drivers of Asian population dynamic

The best AICc model using land-only variables was built with Ln.largestForest, SHEI,
and PDforest (Table 2.5) with the lowest AICc of 32.40 and McFadden’s R2 of 0.56.
The best AICc model after considering both human disturbance and socioeconomic vari-
ables showed an improvement in McFadden R2 (0.68) and lower AICc (28.77) compared to
land-only model. The final selection of key variables comprised of Ln.largestForest, SHEI,
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Figure 2.5: Conversion between land cover types within
Asian elephant home range for each country from 1992 to

2003 and 2003 to 2015 represented from left to right.
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Figure 2.6: Land cover changes in epoch1 (1992-2003)
and epoch2 (2003-2015) were highlighted in three regions
with different change patterns. Nepal-Bhutan border (top)
showed stable forest cover with continuous expansion of ur-
ban areas in close proximity. Cambodia (right) illustrated
large conversion to cropland in epoch1, while Sumatra-
Indonesia (bottom) showed the conversion continued in

epoch2.



Chapter 2. Country-level comparative assessment of Asian elephant population
dynamic and environmental changes

33

Table 2.4: Percentage change of Patch Density (PD), Largest
Patch Index (LPI) and Shannon’s Evenness Index (SHEI)

between 1992 and 2015

PD LPI SHEI
Country Period Crop Forest Grass Crop Forest Grass
Bangladesh ’92-’15 (6.7) (5.2) (9.3) (0.7) 1.9 (6.3) (4.1)
Bhutan ’92-’15 (6.4) (40.0) (29.1) 22.5 15.9 (98.5) (50.0)
Cambodia ’92-’15 (43.4) 169.2 (1.8) 46.2 (40.2) (22.1) 2.6
China ’92-’15 1.5 (20.8) (32.6) (34.2) 13.7 (87.3) (26.0)
India ’92-’15 (6.1) (3.4) (9.3) 5.0 5.1 0.0 (7.1)
Indonesia ’92-’15 (19.0) 23.7 - 10.2 4.1 - (0.9)
Laos ’92-’15 (8.2) 10.3 (2.2) 82.1 (7.7) (59.7) 0.3
Malaysia ’92-’15 (26.7) 9.1 - 29.1 2.4 - 1.0
Myanmar ’92-’15 (5.6) (6.1) (9.8) 0.8 13.6 (3.3) (2.9)
Nepal ’92-’15 (17.6) 9.1 0.0 5.7 5.5 (65.3) (1.5)
Sri Lanka ’92-’15 (7.3) 18.5 (1.2) 4.8 (47.0) 72.6 0.7
Thailand ’92-’15 (15.2) 7.4 (2.0) 4.8 (13.9) 139.6 (0.1)
Vietnam ’92-’15 4.3 53.6 4.6 96.3 (12.1) 13.8 10.6

PDforest, and Ln.humanPop. Signs of the coefficient estimates from the best model indi-
cated that probability of large elephant population increase with higher Ln.largestForest,
SHEI, and Ln.humanPop, and lower PDforest (Table 2.6). Ranking of variables showed
Ln.largestForest as the most important predictor following closely by SHEI, Ln.humanPop
and PDforest respectively.

2.3.3 Range countries categorization

The changes over the three period of elephant population (log-transformed), along with
the selected four key drivers are shown in Figure 2.7. The coefficient of linear trend
in elephant population and its cross-correlation coefficient to key drivers were used for
PCA and K-means clustering analysis. PCA results illustrated that the first two prin-
ciple components explain 86% of the variation observed between countries. On Figure
2.8, ElephantPop is the coefficient of proportional elephant population over time, while
other variables were the correlation coefficient between that variable and the elephant
population. The first component (PC1) explained 47.5% of variation and had correlation
with changes in landscape components, namely correlation coefficient of the largest for-
est area, PD forest, and SHEI. Component 2 (PC2, 38.8% variation) was a function of
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Table 2.5: List of top 5 candidate models under land-only
variables (m1-m5) and combining the AICc-best land-only
model with disturbance and socioeconomic variables (m1a-
m1e). AICc, McFadden’s R2, and ∆AICc were calculated

with bold indicated final selection.

Variables AICc R2 ∆AICc

Land-only
largestForest, SHEI, PDforest 32.40 0.56 0.00
Ln.largestForest, SHEI 32.95 0.51 0.55
Ln.largestForest, SHEI, PDforest, PDcrop 33.64 0.59 1.24
Ln.largestForest, SHEI, PDforest, LPIcrop 34.27 0.57 1.87
Ln.largestForest, SHEI, LPIcrop 34.95 0.51 2.55
Land/Disturbance/Socioeconomic
Ln.largestForest, SHEI, PDforest, Ln.humanPop 28.77 0.68 0.00
Ln.largestForest, SHEI, PDforest, Ln.humanPop, CC 29.78 0.71 1.00
Ln.largestForest, SHEI, PDforest, Ln.humanPop, GDP.growth 30.32 0.70 1.55
Ln.largestForest, SHEI, PDforest, CC 30.73 0.64 1.96
Ln.largestForest, SHEI, PDforest, Ln.humanPop, dist.Urban, CC 31.25 0.73 2.48

Table 2.6: Coefficient estimates, standard error, and P-value
for the best model with lowest AICc, where (**) P-value

<0.01, (*) P-value <0.05, (.) P-value < 0.1.

Variable Estimate Std.Error P-value
(Intercept) -60.2052 22.0461 **
Ln.largestForset 2.233 1.0214 *
SHEI 0.3562 0.1643 *
Ln.humanPop 2.0811 1.0182 *
PD forest -270.695 139.1338 .
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changes in population including trend in elephant population and correlation coefficient
of human population.

Projections of range countries onto principle components and application of K-means
clustering revealed four groups among thirteen range countries (Figure 2.8). Group A is
composed of the countries with reduction in proportion of elephant population (located
at opposite to ElephantPop vector) along with increasing human population (negative
correlation to elephant population), decreasing in areas of largest forest (positive coef-
ficient correlation with elephant population), and increase in forest patches (negative
coefficient correlation of forest PD and SHEI to elephant population). Group B includes
range countries which have an increase in proportion of elephant population together with
increasing human population, while area of largest forest patch slightly increased with a
decrease in fragmentation especially from SHEI reduction. Majority of range countries
were under Group C which show a stable or increasing trend in proportion of elephant
population with a positively correlated changes in largest forest area, but varying degree
of change in human population and forest fragmentation among countries. Lastly, the
reduction in elephant population with increasing human population despite the increase
in area of the largest forest constituted Group D.

2.4 Discussion

2.4.1 Habitat conditions as shown from long-term land cover
changes

Although elephant home range within different range countries faced varying degree of
change, majority commonly experienced loss in forest cover and large expansion of crop-
land. Only Bhutan and China (Yunnan) showed relatively stable crop land areas with
an increase in forest cover. The decline in native food supplies due to the loss of natural
habitat together with expansion of high nutrient cropland was believed to exacerbate
human-elephant conflict (HEC) (Desai and Riddle, 2015). Elephants were more reliance
on cropland for forage in many range areas (Chen et al., 2016; Naha et al., 2020). Since
elephant utilized mixed of land cover, changes of a single land cover type may not directly
impact population and a combination of land cover maybe more informative (Sukumar,
2003). Similar situation can be implied from this current study in which forest loss and
gain did not simply translate into the decrease or increase of elephant population. Sri
Lanka, for example, reported a continuous increase in Asian elephant population, but its
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Figure 2.7: The changes of natural-log transformed elephant
population (Ln.elephant population), as well as the four se-

lected drivers are shown.
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Figure 2.8: Biplot of Principle Component Analysis with
K-mean clustering results for range countries showed four
groups based on pattern of changes in elephant populations

and associated correlation of key drivers.

land cover change illustrated a dominant conversion of forest area. As the continuous loss
in forest cover and expansion of cropland were identified across epoch1 and 2, it is possi-
ble to say that this trend will likely to continue in the future. In addition, with projected
growth in human population within these countries, the situation for wild elephant may
be further exacerbated. Hence, continuous monitoring together with future projection
based on historical trend of key drivers are critical for the planning of landscape-level
management for Asian elephant population. However, habitat loss is not the only threads
or the main threat for all the countries. Myanmar, where a drastic drop of elephant pop-
ulation was reported, showed a net gain of forest from 1990 to 2015. Therefore, it is also
important to elucidate the prominent threads and prioritize appropriate conservation
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Figure 2.9: The map of range countries classified into four
groups showed most countries under Group B in which HEC
situation was expected as primary conservation concern.

actions.

2.4.2 Key drivers of large Asian elephant populations

The key variables in the final model selected for logistic regression indicated that sub-
stantial Asian elephants population can persist in highly diverse landscape along side
human population when a large patch of forest with less fragmentation were maintained.
The most important driver was the areas of largest forest patch which agreed with the
initial expectation. Similarly, forest cover was identified as positively associated with oc-
cupancy (Jathanna et al., 2015; Liu et al., 2016) and the probability of step selection in
Asian elephant (Suksavate, Duengkae, and Chaiyes, 2019). SHEI, representing land cover
diversity, was the second most influential variable in this study. The result suggested
that larger SHEI increased the likelihood of maintaining large elephant population. Land
cover diversity was also previously identified as a key feature preferred by Asian elephants
(Calabrese et al., 2017; Huang et al., 2019; Neupane et al., 2019). Sukumar (2003) and
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Fernando and Leimgruber (2011) observed that elephants benefit from a mixed of habi-
tats where elephants can switch between grazing and browsing depending on the season.
In addition, forested areas can provide refuge and cover, while agricultural mosaic supply
high nutrient forage and grazing opportunities. Nevertheless, the forest-agriculture mo-
saic must also be balanced by level of forest fragmentation as the increase in forest patch
density (PDforest) caused a reduction in probability of having large elephant population.
Fragmented landscape leads to the increase in human-elephant conflicts which is one of
the leading cause in the decline of Asian elephant (Leimgruber et al., 2003). Three main
socioeconomic factors were considered, yet none was selected in the final model. This
may suggest that habitat-related and human disturbance cause a more direct influence
on elephant population. Although good governance was suggested as an important pre-
dictor in Asian elephant abundance (Calabrese et al., 2017), CC was not selected in the
current study. Nevertheless, the variable was part of most top competing models which
indicated its potential predictive power.

2.4.3 Conservation implications from change patterns of key
drivers

This study assessed the proportional change in elephant population and the corresponding
changes in four key selected variables, namely (i) areas of largest forest patch (LargestFor-
est), (ii) land cover diversity (SHEI), (iii) forest fragmentation (PDforest), and human
population (HumanPop). The range countries can be, firstly, looked at in term of changes
in elephant population. Large proportional reduction in elephant population was identi-
fied in Group A and Group D which comprised of Cambodia, Laos, Vietnam, Indonesia,
and Myanmar. the other two group, Group B and Group C mainly showed an increase
(Bhutan, India, Nepal, Thailand, Sri Lanka, and Malaysia), then stable (China), and low
reduction (Bangladesh).

Among the countries with decreasing elephant population, Group A was categorized
with corresponding reduction in the area of the largest forest, while forest patch density,
land cover diversity, and human population increased. Countries within this group, hence,
faced with severe loss of key habitat and forest fragmentation. Countries under Group A
included Cambodia, Laos and Vietnam. Although forested areas over the whole country
were increasing, Vietnam showed a decrease in forest cover within elephant home range.
The transition to reforestation program in many areas of Vietnam displaced deforestation
to neighboring countries, Cambodia and Laos (Meyfroidt and Lambin, 2009; Ingalls
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et al., 2018). In fact, Cambodia showed the second largest reduction of forest cover
within the elephant home ranges (Table 2.3). The country was also identified with one
of the highest rate of deforestation in the world (FAO and UNEP, 2020). In addition,
negative net change in forest cover were reported in many areas of Cambodia, Laos,
and Vietnam (NYDF Progress Assessment, 2019). Consequently, the loss of key forested
habitats, increasing forest fragmentation, and growing human population likely linked to
the reduction of elephant population within this group. Halting the loss of key habitats
along with protection and restoration of forested areas should be given a high priority.

Group D, on the other hand, showed a decreasing trend in elephant population de-
spite an increasing in areas of the largest forest patch. Although both were placed within
Group D, Myanmar and Indonesia showed slightly different characteristic in forest frag-
mentation. Indonesia was positioned at the opposite end crossing into Quadrant I, while
Myanmar was in Quadrant IV as shown in Figure 2.8. Myanmar showed a positive correla-
tion between elephant population and PD forest, hence a corresponding decrease in forest
fragmentation was identified. In contrast, Indonesia with negative correlation between
elephant population and PD forest, faced higher forest fragmentation. Unfragmented
wildland remained in Myanmar (Leimgruber et al., 2003), but geographical distribution
and population shrunk drastically Leimgruber et al., 2011. Intact forest, >80% canopy
cover, in Myanmar declined in recent years and most forested areas are not formally
protected (Bhagwat et al., 2017). In addition, disturbing rate of poaching for elephants’
body parts were observed (Sampson, 2013). This may explain the large reduction even
with the increase in key forest area and decrease in forest fragmentation within Myan-
mar’s elephant home range. In Indonesia, encroachment to expand agricultural land was
identified (Rood, Ganie, and Nijman, 2010) which likely caused the increase in PD forest.
In addition, the country, especially Sumatra, experienced large expansion of oil palm and
rubber plantation which can be difficult to distinguish from forest (Leimgruber et al.,
2003; Menon and Tiwari, 2019). Despite slightly different characteristics, both Indonesia
and Myanmar seemed to face with illegal human activities which likely impacted ele-
phant population in their ranges. Therefore, high priority should be given to enforce
conservation laws and establish protected areas.

Group B comprised of Bhutan, India, and Nepal where elephant population showed
an overall proportional increase from early 1990s. India holds over half (nearly 30,000 in-
dividuals) of the total Asian elephant population, while Bhutan and Nepal only sustained
less than 2.5% of the population occurred in India. However, these three countries illus-
trated corresponding increase in the area of the largest forest patch along with a decrease
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in land cover diversity within elephant home ranges. These implied that improvement of
some key forest habitats positively influence the proportional change in elephant popula-
tion. Two regions with the largest elephant population in India are located at the southern
and north-eastern regions. The latter is bordering with Bhutan and Nepal, as well as
fostering known trans-boundary elephant migrations (Menon and Tiwari, 2019). Bhutan
and Nepal were reported to have high commitment in conservation program. Bhutan,
specifically, established protected area networks covering over 50% of the country ar-
eas (Dorji, Rajaratnam, and Vernes, 2019). The northeastern regions of India together
with Nepal and Bhutan trans-boundary landscape still retain adequate natural areas for
mammal conservation with potential for future recovery (Dorji et al., 2018). These likely
contributed to the results of this analysis. Close inspection, however, revealed differences
in level of forest PD among these three countries. India, specifically, showed less cor-
relation coefficient between forest PD and elephant population due to the heterogeneity
across its large geographical areas. In fact, India faced severe habitat deterioration, es-
pecially at West and Central regions (Leimgruber et al., 2003). Priority should be given
to strengthen the effectiveness of existing protected networks and restore key habitats
in Bhutan, Nepal, and India, especially the northeastern regions. Nevertheless, careful
consideration and additional analysis at regional level should be performed for India.

Group C showed proportional increase and rather stable in elephant population, but
with varying characteristics of land cover and landscape changes within elephant home
ranges. Countries in this group included Bangladesh, China (Yunnan), Malaysia, Sri
Lanka, and Thailand. Except Malaysia, all countries had a reduction in the areas of
the largest forest patch. Higher land cover diversity was identified for all countries.
Forest fragmentation also became more severe across the countries with an exception
in Yunnan. Human population within elephant home ranges increased in Bangladesh,
China, and Thailand, while rather stable in Malaysia and Sri Lanka. Overall, it can be
inferred that elephant population persisted despite recent development and fragmentation
in their ranges within these countries. Consequently, negative interaction between human
and elephant or HEC are expected. Different degree of HEC was reported in all range
countries, of which Sri Lanka identified with high severity due to high number of elephants
(IUCN/SSC Asian Elephant Special ist Group, 2017). India and Sri Lanka had been
dealing with HEC and developed variety of studies and mitigation (Desai and Riddle,
2015). On the other hand, other countries in this group were less studied. Therefore,
priority should be emphasized on the mitigation of HEC through knowledge-sharing from
more experience range countries (i.e. Sri Lanka) and further enhanced the effectiveness
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in protected network.

2.4.4 Thailand’s unique position

Thailand was the only country with the overall increase in proportion of elephant pop-
ulation despite the negative impacts from all four key drivers. The country showed a
reduction in the largest forest area, a relatively high land cover diversity, high human
population and overall increasing in forest fragmentation. Due to high timber demand
during 1960s coupled with government-led policy to allow settlement of unoccupied land
and expansion of cash crops, Thailand historically had the highest rate of deforestation
in the region (ICEM, 2003). Despite the recent trend of slow forest recover, land cover in
Thailand has been mostly developed and forested areas are restricted within fragmented
protected areas. With finite resource, the interaction between humans and elephants
are likely increased, leading to HEC. Based on the idea following environmental Kuznets
curve and forest transition (Perz, 2007), countries are believed to follow development path
where ecological degradation is first expected and later replenished. Therefore, Thailand
in particular was likely position as a leading country on the development pathway based
on forest transition theory, especially within Southeast Asia. This same situation will
become that of many neighboring countries. In addition, compare to countries in South
Asia, limited HEC evaluation was conducted in this region. Therefore, Thailand was
chosen as representative case to further analyze its HEC situation.

2.4.5 Uncertainties based on current assumptions

To properly interpret and apply the results from this study, it is crucial to recognize the
uncertainties and limitations of the approach employed here. First, the elephant pop-
ulation data used were mostly based on expert estimation, hence any uncertainties in
the data would be presented in the analysis. Second, the long-term elephant population
data was available at coarse geographical resolution of country-level. Consequently, the
analysis was performed with a single representative result for each country. However,
variations from different regions of the same country may be present in countries with
large geographical areas, such as India, and Indonesia. Incorporating such differences
would require more precise elephant population data, possibly, at the scale of a single
home range. Such data would also support home range specific conservation recommen-
dations. Third, I recognized that lager number of variables may impact Asian elephant
population. Therefore, it may be possible that some important factors were missed. Such
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variables may include vegetation phenology, water availability, human value and tradi-
tions, etc. Lastly, with limited temporal availability of elephant population, a simple
cross-correlation was performed assuming no lag time between changes in key variables
and the corresponding changes in elephant population. However, depending on the type
of changes on the landscape, there may be possible delayed in population response.

2.5 Conclusion
In this chapter, I aimed to perform a review of Asian elephant status in relation to land
cover and socioeconomic changes at country-scale with three specific objectives: (i) to
assess the land cover and landscape within range countries and available home range
around 1990, 2003, and 2015, (ii) to identify significant drivers and their correlation
with the dynamic of Asian elephant population over time, and (iii) to categorize range
countries based on changes of drivers and elephant population over time

For the first objective, overall expansion of agriculture areas were the prominent cause
of forest conversion, while continuous growth in urban areas were also common within
elephant home ranges in all countries. In addition, most countries experience higher forest
fragmentation represented by increasing forest patch density, while cropland showed more
connectedness with growing area of largest crop patches.

As for the second objective, four key variables, namely area of largest forest patch,
landscape diversity (SHEI), forest fragmentation (PD forest), and human population
were identified as part of logistic regression model with lowest AICc and good pseudo
R2. This model implied that substantial Asian elephants population can persist in highly
diverse landscape along side human population when a large patch of forest with less
fragmentation were maintained. Area of largest forest patch was the dominant predictor
of having large elephant population which agreed with my expectation.

Based on the change in the proportion of elephant population and the correlation
between that of key selected drivers, range countries can be categorized into four groups.
This findings addressed the third objective. Cambodia, Laos, and Vietnam showed high
forest loss and fragmentation with the corresponding reduction in elephant population;
hence, halting habitat destruction should be given priority. Indonesia and Myanmar
showed a decrease in elephant population despite the remaining largest forest patch. The
two countries displayed different forest fragmentation characters which implied dissimi-
lar underlying causes, with potential poaching for Myanmar and forest enroachment for
Indonesia. Therefore, priority should be given to enforce conservation laws and establish
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protected areas. Bhutan, India, and Nepal maintained an increase in elephant popula-
tion with improvement in largest forest and fragmentation. Majority of the countries
(Bangladesh, China, Malaysia, Thailand, and Sri Lanka) hosted a stable and even in-
creasing elephant population, while human disturbance and habitat deterioration were
observed within their elephant home ranges. HEC was expected to become more frequent
in such countries and mitigation should be given priority.

The cross-country analysis in the current study demonstrated that patterns and vari-
ations among countries can be identified using various satellite-based remote sensing
products and comparison results may be useful to develop conservation applications. I
attempted to incorporate many aspects of possible drivers, but recognized that more ex-
haustive list remains. In addition, the assumption of homogeneous characteristics within
the country with large geographical areas (e.g. India) may biased the result and must
be taken with caution. Further research can be performed to seek finer-resolution for
both elephant population and environmental dataset, as well as to elucidate key selected
factors in more detail.

In the future, growth in economic development and human population are expected
in most regions of Asia which will fuel further land conversion placing human in closer
proximity to Asian elephant habitat. This situation will increase the likelihood of HEC
in many regions and negatively impact both human development and elephant conser-
vation. Thailand, in particular, was positioned with unfavorable conditions from all
key factors while retained an increasing elephant population. Land cover in Thailand is
highly developed with remaining forest resided mainly in protected areas within matrix
of human-modified land cover. This situation will likely be the future of many range
countries. Hence, further analysis on HEC situation in Thailand was performed and
discussed in later chapters, Chapter 4 and 5.



45

Chapter 3

Modeling spatiotemporal
Distribution of Human-Elephant
Conflict in Eastern Thailand

3.1 Introduction
Thailand is estimated to have 3,000-3,500 wild elephants in 68 areas, 41 of which are
facing HEC, commonly in the form of crop depredation (Noonto, 2009). Historically,
elephants have been recorded inside Bangkok, Thailand’s capital city, and the surrounding
provinces (Sukmasuang, 2015). Nowadays, the estimated home range of wild elephants in
the country lies in heavily fragmented landscapes and is surrounded by human-dominated
activities (Leimgruber et al., 2003). Consequently, interaction between wild elephants
and humans became more frequent, increasing the likelihood of Human-Elephant conflict
(HEC).

Across countries with presence of wild elephants, various mitigation strategies have
been implemented that include guarding (e.g. watchtowers), deterrents (e.g. firecrack-
ers), physical barriers (e.g. trenches and various form of fences: electric, chilies), translo-
cation of elephants or humans, and compensation (Desai and Riddle, 2015). In Thailand,
guarding, together with traditional deterrents, are the most common strategy (WCS
Thailand, 2007). In high conflict areas, large fences and trenches were constructed by
the government, but proved ineffective due to the lack of proper maintenance (Vinitporn-
sawan, 2012). Recently, more active approaches were employed, such as (i) GPS collaring
of wild elephants known to forage outside protected areas to track their movement (Salim,
2019), and (ii) issuing of government insurance schemes for crop damage by elephants
(Nuntatripob, 2019). Landscape planning is viewed as a potential long-term solution
(Saif et al., 2019), but its implementation has not yet been established despite being
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mentioned in the draft of 20-year Master Plan for Elephant Conservation (Nuntatripob,
2019).

Apart from the negative human-elephant interaction, HEC also includes conflicting
human objectives (Dickman, 2010; Redpath, Bhatia, and Young, 2015). Social factors,
such as trust in authority, education, income, culture, and religion, influence community
tolerance and willingness to coexist with elephants (Nyhus, 2016; Saif et al., 2019).
Simultaneously, competition for scare resources between humans and wildlife in a shared
landscape remains a fundamental cause of conflict (Morzillo, Beurs, and Martin-Mikle,
2014; Shaffer et al., 2019). Knowledge of the spatiotemporal variation of resources and
its effect on the pattern of conflict is an important initial step toward a sustainable,
long-term solution (Chen et al., 2016).

Studies in Thailand generally focus on social aspects of HEC, such as people’s
attitudes and perceptions (Water and Matteson, 2018; Jenks et al., 2013), conservation
and legal management (Parr et al., 2008; Thongjan et al., 2017). An existing study
on the spatial distribution of wild elephants included only localized habitat suitability
assessment in a single conservation area (Sukmasuang, 2015). Studies on spatiotemporal
patterns of HEC across landscapes remain limited but they are crucial for appropriate
decision making (Gubbi et al., 2014). Compared to African elephants, such studies are
relatively few in Asia (but see Goswami et al. 2015; Chen et al. 2016; Li et al. 2018) and,
to the best of our knowledge, no such study exits in Thailand.

Species Distribution Models (SDMs) are widely used in ecology to predict spatial
patterns of species. SDMs are numerical models that quantify the relationship between
ecological (e.g. species/population abundance) and environment variables (Elith et al.,
2011). SDMs estimate the environmental similarity between locations to known eco-
logical response and extrapolates from local samples to entire target landscapes. Their
application has been seen in human-wildlife conflicts (Mateo-Tomás et al., 2012), but
remains relatively few in HEC modeling.

Previous ecological studies on elephants have researched the seasonal variation in ele-
phant movement and dispersal (Sukumar, 1992; Santiapillai, Chambers, and Ishwaran,
1984). Nevertheless, SDMs commonly employ environmental data that provide less dy-
namic information with often irrelevant temporal resolution between predictor and re-
sponse variables. This is specifically true for meteorological time series, which are often
interpolated from weather stations, introducing uncertainty due to uneven data distri-
bution and availability in developing countries (Bedia, Herrera, and Gutiérrez, 2013). In
contrast, remotely sensed satellite datasets can provide spatially explicit and continuous
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observation which are believed to enhance SDM accuracy (He et al., 2015). Previous stud-
ies highlighted model-performance improvement due to the utilization of remote sensing
datasets, such as vegetation phenology (Tuanmu et al., 2011), and human activities (Al-
abia et al., 2016). In addition, a generic assumption in SDMs is that ecological response
can be described by a single function, which results in over-simplification (Naves et al.,
2003), reducing the ability to identify drivers of response (Bleyhl et al., 2015). Specifi-
cally in habitat modeling, a single function SDM will overlook certain management areas
(e.g. sink-like habitat) when key factors that determine the occurrences are not positively
correlated (De Angelo et al., 2013). Therefore, modeling occurrences based on two SDMs
from the perspective of different key factors allows for a more informative assessment (De
Angelo et al., 2013; Bleyhl et al., 2015; Romero-Muñoz et al., 2019). HEC in particular,
depends on two prominent physical variables; resource suitability and human pressure.
Such a two-dimensional approach has not yet been applied in HEC modeling.

3.1.1 Objectives

The aim of this study was to estimate the recent trend of HEC and identify the physical
factors that potentially govern its spatial distribution. The findings from this section will
address the second set of research questions raised in Chapter 1. Eastern Thailand region
was chosen as a study area as it was reported with high HEC incidents. Given the large
landscape extent and the dynamic spatiotemporal variation of environmental and physical
factors, I utilized remotely-sensed satellite data and quantified the spatiotemporal HEC
distribution over 10-year period. The specific objectives were to

1. model the potential spatial distribution of seasonal HEC from 2009 to 2018 with
the use of time-calibrated SDMs

2. identify and distinguish the contribution over time of important modeling factors
(resource suitability and direct human disturbance)

3. prioritize the areas that require targeted management and increased intervention

3.2 Methodology

3.2.1 Study location and flowchart

This study was carried out in two forest-dominated areas or forest complexes of Eastern
Thailand (Figure 3.1) covering eight eastern and two north-eastern provinces. The area
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has a tropical monsoon climate. The monsoon season occurs from mid-May to mid-
October with an average rainfall of 1,400 mm, while the area during dry season receives
about 400 mm of rainfall (Thailand Meteorological Department, 2015; Nounmusig, 2018).
The region has nine national parks (NP) and wildlife sanctuaries (WS) hosting elephants
(Sukmasuang, 2015). Khao Angruenai-WS, for example, experiences high density of
wild elephants, approx. 0.2 elephant/km2 (Vinitpornsawan et al., 2013). In addition, a
constantly low elevation in the central region enabled elephants to easily disperse into
agricultural land. Consequently, this area is suspected to be a HEC hotspot. Agriculture
is the dominant land cover. Five most important crops in planting areas are rice, cassava,
rubber plant, sugarcane, and maize. Orchards and plantations commonly spread out in
the southern areas. To limit the modeling boundary to only those potentially accessible by
elephants, a 20km buffer was created from the boundary of protected areas and village
location with reported HEC. The seasonal models were set according to the monsoon
pattern with May to October as the wet season and November to April of the following
year as the dry season.

HEC occurrences were collected from online news reported between 2014 to 2018.
Based on this data, I built the models using environmental variables temporally matched
with each occurrence and modeled spatial distribution of HEC across the study area for
the period 2009-2018. The maps of HEC category were then developed. The flow chart
of this study is shown in Figure 3.2. The procedures comprised of three parts including
the preparation of input data, the model construction and evaluation of HEC probability,
and the classification of HEC category and trend analysis.

3.2.2 Dataset used

HEC occurrences

Until March 2019 when elephant-induced damages were first included in farmers insur-
ance schemes, HEC was neither compensated nor insured by the Thai government (Nun-
tatripob, 2019). Consequently, official records were not consistently maintained across
protected areas. Although elephants’locations outside of protected areas were some-
times documented, elephants presence is not always equivalence to HEC. Reporting from
news sources usually happens when negative outcomes occur, and this better reflect HEC
occurrences. Therefore, HEC incidences were retrieved from online news sources. ‘Wild
elephants’ in Thai language was used as a search keyword from the News section of Google
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Figure 3.1: The study area in Eastern Thailand (a). The area
is dominated by croplands and savannas, while the damaged
villages are located near the forests (b). Human-elephant
conflict was modeled within 20-km buffers generated around
the nine protected areas (c, d), which are natural habitats

for elephant populations.

Search Engine. A customized time period was set between 2014 to 2018. Each search
output was investigated manually to exclude duplicated reports of the same incident.

The news reports, however, did not mention the precise locations of HEC occur-
rence but only the village names. To overcome this lack of exact occurrence locations,
I simulated the occurrence locations using conditional random sampling method. The
sampling boundaries were restricted within a 3km-buffer around the center of each men-
tioned village, excluding areas that fall within the protected areas, large water bodies
(e.g. reservoirs), and major road networks. I excluded locations with the aforementioned
features because HEC are unlikely to occur within them. The numbers of random oc-
currence points were generated according to the numbers of damage incidents reported
within each village. A total of 124 incidents occurred in the wet season; a combination
of 7, 12, 14, 31, and 60 incidents from 2014 to 2018 respectively. The dry season had 122
reports in total; 5, 20, 20, 20, and 57 of which occurred respectively.

Five sets of random occurrences were generated. A Wilcoxon-Mann-Whitney test
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Figure 3.2: Flow chart of the study showed that two models
for each season under resource availability and direct human
pressure were constructed to identify governing environmen-
tal variables, HEC spatiotemporal distribution, and trends.

(Fay and Proschan, 2010) was performed to compare the distribution profile of each
independent variable to that of the other four sets of simulated occurrence records. The
p-value of over 0.05 indicated no significant difference between each set. I then selected
one set for model constructions.

Environmental variables

Thirteen variables were analyzed. I grouped the predictors into two scenarios: (i) resource
suitability and (ii) direct human pressure. Resource suitability comprised of vegetation
productivity (Enhanced Vegetation Index - EVI), seasonal vegetation changes (EVI slope,
and EVI standard deviation), landscape composition (EVI homogeneity), meteorologi-
cal drought condition (Keeetch-Byram Drought Index), refuge locations (Forest percent
cover, Distance to forest), and topographic condition (Terrain Roughness Index-TRI).
Direct human pressure included distance to lit-up area, to main roads, to protected habi-
tats, and human population density. Indirect human pressures, such as sociopolitical
factors, were not considered in this study. All the predictors were re-projected to the
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WGS 84/UTM zone 47N (EPSG:32647) and resampled to a 500m resolution using bi-
linear interpolation. Pre-processing was performed using Google Earth Engine (Gorelick
et al., 2017) and R version 3.5.3 (R Core Team, 2019). Table 3.1 shows each variable
together with the data source, the original resolution, and the temporal period used.

Resource suitability variables
Normalized Difference Vegetation Index (NDVI) was found to be an effective proxy

of forage availability (Pettorelli et al., 2005). Dispersal of African elephants was shown
to coincide with the greening-up measured by NDVI (Bohrer et al., 2014). For this
study, I utilized the Enhanced Vegetation Index (EVI). Despite being similar to NDVI,
EVI improved saturation in high biomass regions, corrected for aerosol influence, and
reduced noise from soil background (Liu and Huete, 1995). Following (Huete, 1997), EVI
was calculated from MODerate Resolution Imaging Spectroradiometer (MODIS) Terra
product (MOD09A1) as:

EV I = 2.5× ρNIR −ρRed

(ρNIR +6×ρRed −7.5×ρBlue +1)
(3.1)

where ρNIR, ρRed, and ρBlue represent the reflectance of the near-infrared, red, and blue
bands respectively. Only the pixels under clear cloud state and no cloud shadow were
used.

I first calculated the monthly median of EVI for each month from 2009 to 2018. The
missing monthly pixels were filled using the 10-year averaged EVI value in the same
pixel location of the same month. From the monthly EVI data, I then calculated the
mean EVI for each season which represents vegetation productivity. Next, the EVI
slope, representing the rate of change in vegetation condition (e.g. crop senescence),
was calculated by applying pixel-wise linear regressions over the monthly EVI within
each season. A standard deviation of the monthly EVI values within each season was
calculated next which represents fluctuation in vegetation dynamic. These EVI variables
can also be linked to different characteristics of land cover types. For example, a high EVI
with a EVI slope near zero and low standard deviation usually associate with tropical
forest land cover (Figure 3.3). Lastly, a spatial homogeneity of EVI was generated using
the Gray Level Co-Occurrence Matrix (Haralick, Shanmugam, and Dinstein, 1973).

Drought influences surface water availability and vegetation quality, which govern ele-
phant habitat use (Sukumar, 1992). The Keetch-Byram Drought Index (KBDI) estimates
dryness of soil layers. The KBDI product was computed using the precipitation data de-
rived from the Global Satellite Mapping of Precipitation (GSMaP) and land surface
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Figure 3.3: Histograms of three EVI properties (EVI slope,
EVI standard deviation, mean EVI) from different vegeta-
tion land covers in wet and dry seasons during 2014-2018,

y-axis shows number of pixels.

temperature (LST) data from Multi-functional Transport Satellite (MTSAT) (Takeuchi
et al., 2015). The value of KBDI ranges from 0 (no moisture deficit) to 800 (extreme
drought). The daily data from 2009 to 2018 was averaged by season. Additionally, wild
elephants were observed to move toward inland areas during the dry season as waterhole
in coastal regions dried up (Santiapillai, Chambers, and Ishwaran, 1984). To capture ac-
cessibility to water, locations of surface water were obtained from the monthly historical
Landsat Global Water Surface Product (Pekel et al., 2016). Within a single year, pixels
detected with water for at least 3 months were marked as water and Euclidean distance
to them were calculated.

Forest is considered a natural habitat and represents a potential refuge location.
Forest land cover classes from the MODIS land-cover product (MCD12Q1) was used.
MCD12Q1 provides annual land cover in 500m resolution. Since the study area was
dominated by dry evergreen forest (90% of all forest classes), I reclassified all forest types
to a single land cover class. According to an interview with park rangers conducted
by the authors, 6km was suggested to be a one-way distance traveled by wild elephants
between patches of the forest outside the protected areas. Two variable were calculated, a
mean Euclidean distance from each pixel to forest and a percentage of forest cover within
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6km-buffer around each pixel. Lastly, I calculated terrain ruggedness index (TRI) from
the Shuttle Radar Topography Mission data (SRTM) (USGS, 2004). The TRI represents
the relative change in elevation from a center cell and eight surrounding cells. The higher
TRI value indicates more rugged areas.

Direct human disturbance variables
Direct human disturbance was measured based on human population density as well

as Euclidean distance to protected habitats, to main roads, and to lit-up areas. Density of
human population also influences alteration of landscape and intensity of anthropocentric
activities, which may not be captured by using only the proxy of urban areas. Hence,
mean human population density was computed using yearly estimations from LandScan.
Main roads were obtained in vector format from Thailand Bureau of Highway and only
highway and primary roads were extracted for euclidean distance calculation. Vectors
of protected areas recognized by IUCN was downloaded from the World Databased of
Protected Areas (WDPA).

To detect lit-up areas, the pixels detected with light or the lit-up pixels were com-
puted from satellite-derived night time light data. The Defense Meteorological Satellite
Program’s Operational Linescan System (DMSP-OLS) and the Suomi National Polar-
orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (VIIRS) were
the main sources of night-time light product. DMSP operation was committed from 1996
and then succeeded by VIIRS in 2012. Due to different specification of sensors on board
the satellites through out operational time, calibration among OLS sensors, as well as
between OLS and VIIRS was necessary. I applied a second-order regression model from
(Elvidge et al., 2014) for the calibration among OLS sensors. For OLS and VIIRS inter-
calibration, I first created VIIRS annual composite following (Wu and Wang, 2019) and
then applied a combination of power function and Gaussian low pass filter (Li et al.,
2017).

xi j = axb
i j (3.2)

G(x,y) =
1

2πσ2 exp−
x2+y2

2σ2 (3.3)

x′′′i j =

s if x′′i j > s

x′′i j otherwise
(3.4)

The pixel value of i-th row and j-th column of DMPS image denoted as xi j was
processed first with Equation 3.2. A 2-D Gaussian kernel of window size w with a standard
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deviation σ was then applied on the whole image. Next, the produced pixel value x′′i j

was adjusted using Equation 3.4 with a threshold s. In this study parameter a,b,σandw

were identified using step-wise analysis and the initial values were set following (Li et al.,
2017). Final optimal value were 11.4, 0.43, 9 and 0.52 respectively. Same as Li et al.
(2017), threshold s was set to 50. The images from 2012 were used. The calibrated result
showed r and RMSE of 0.892 and 5.345. The example of calibrated result in Figure 3.4
showed the digital number of the original DMSP and the simulated DMPS from VIIRS
in 2011. With calibrated time-series of night time light ready, the pixels with digital
numbers of over 20 were used as delineate locations with anthropocentric activities. The
Euclidean distance from extracted pixels were then calculated.

Figure 3.4: The night-time light result of DMSP-OLS (left)
and the simulated DMSP-OLS based on VIRRS (right)
from 2012. DMSP-OLS: efense Meteorological Satellite Pro-
gram’s Operational Linescan System, VIIRS: Visible In-

frared Imaging Radiometer Suite.

3.2.3 Model construction and evaluation

Bias correction

HEC incidences from online news sources are opportunistically collected and not ran-
domly sampled. Such datasets often contain sampling bias wherein more reporting
are made from easily accessible locations or well-known hotspots (Kramer-Schadt et al.,
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2013). With sampling bias, it is hard to determine whether occurrences were reported due
to preferable conditions in that locations or concentration of search effort. When relative
search effort across the landscape is known, sampling bias can be directly modeled and
provided as prior distribution during SDM construction (Merow, Smith, and Silander,
2013; Phillips et al., 2009). Alternatively, the effect from sampling bias can be partially
accounted for by subsampling the training dataset or adjusting the background selection
(Elith, Kearney, and Phillips, 2010; Kramer-Schadt et al., 2013; Fourcade et al., 2014).
Due to low occurrences in our study, we applied background selection method which
nullifies bias by generating a similar bias in the background (Phillips et al., 2009). Bias
grids were produced by deriving a Gaussian kernel density map of the village locations
weighted by the average number of duplicated reports within each village. The bias val-
ues were re-scaled from 1 to 20, following (Elith, Kearney, and Phillips, 2010) to avoid
extreme values, and used as probability in sampling background points. I sampled a total
of 10,000 points, a combination of 2,000 each year from 2014 to 2018. The generated
background points were later used as pseudo-absences in model construction.

Modeling HEC occurrence probability with Maximum Entropy

The Maximum Entropy algorithm from MaxEnt (Phillips, Anderson, and Schapire, 2006)
was used. MaxEnt is a machine-learning technique that estimates the unknown distribu-
tion of suitability by contrasting the values of predictors at occurrence locations with the
overall distribution of these predictors (Merow, Smith, and Silander, 2013). A detailed
explanation and related equations can be found in (Phillips, Anderson, and Schapire,
2006). MaxEnt had shown a high performance even with few occurrence records and was
least affected by errors of occurrence location (Merow, Smith, and Silander, 2013). It also
outperformed other methods (Elith and Graham, 2009). All our models were constructed
using dismo package in R with MaxEnt 3.3.4 version (Hijmans et al., 2017). The logistic
link function was used to derive a relative probability of potential HEC occurrence rang-
ing between zero (low probability) and one (high probability) (Phillips, Anderson, and
Schapire, 2006).

A time-calibrated method (Sieber et al., 2015) was applied in which each occurrence
point was matched with environmental predictors from the relevant season during which
HEC was reported. This resulted in time-independent models which allowed comparabil-
ity across the study period. MaxEnt requires background points as pseudo-absent. The
10,000 background samples previously generated in section 3.2.3 was used.
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Prior to model construction, multicollinearity among predictors was evaluated. High
Pearson correlation (r < |0.75|) and Variables that had Variance Inflation Factors (VIF)
greater than 10 were removed. To identify variable for removal, stepwise VIF was per-
formed. Since feature classes and regularization multiplier (RM) impacted modeling re-
sults (Merow, Smith, and Silander, 2013), parameter optimization was conducted using
EMNeval package in R (Muscarella et al., 2014). Product and Threshold features were
excluded in our models. Product-feature tends to over-fit and complicates interpretation
of variable responses (Liu, Newell, and White, 2016). Threshold-feature should be used
when a drastic cut-off exists in species’ response to environmental factors, but no such
cut-off has been identified for Asian elephants. Therefore, only Linear/Quadratic/Hinge
combinations were selected and k-fold cross-validation was performed with RM value
from 0.5 to 5 at 0.5 increment. Akaike Information Criterion (AIC) was used for optimal
parameters selection. Other settings were left with default values which included 500
iteration maximum and convergence thresholds.

After optimal parameters were identified, the models were constructed using k-fold
cross validation (k=5) and evaluated with Receiver Operating Characters (ROC) with
average Area Under the Curve (AUC) from all replicas. In addition, a jackknife test was
used to identify important predictors. Responses for each variable were also generated.
A total of four models were constructed, one model for each season under the two high-
level scenarios (resource suitability and direct human pressure). I identified the differences
between environmental predictors from each season to those used for model construction
using Multivariate Environmental Similarity Surface (MESS) and limiting factors (Elith,
Kearney, and Phillips, 2010). The negative MESS score indicated a novel condition in
variables used for prediction which implies possible uncertainty. I then estimated relative
probability of HEC across the landscape for 20 seasons by applying the constructed
models on the predictors from 2009-2018.

Conflict classification

The probability of HEC occurrence for each group was then categorized in three classes
(High, Low, Very Low). Two thresholds were used, (i) 10th percentile of presence loca-
tions and (ii) maximum training sensitivity plus specificity (maxSS). The first threshold
allowed omission of 10 percent of occurrences which reduces sensitivity to extreme local-
ities (Radosavljevic and Anderson, 2014), while the second threshold was evaluated as
an effective threshold value for presence-only modeling (Liu, White, and Newell, 2013).
Probability lower than the first threshold was set as Very Low class. I then applied the
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Figure 3.5: The proposed conflict classification matrix gen-
erated by overlaying between probability of resource suit-

ability and direct human disturbance.

second threshold where the probability lower than maxSS was set as Low, and those higher
or equal to maxSS was set as High. Interpretation of resource suitability is straight for-
ward in which high HEC probability occurred in a more suitable condition. Conversely,
the high HEC probability of human pressure captured the disturbance level in which
conflict peaked. In reality, high human disturbance beyond the peak level existed, but
likely restricted occurrence of elephants resulting in low predicted HEC probability.

Each classified maps from different scenario in the season were then overlaid into
a two-dimensional HEC categorical map (Figure 3.5). these categorical classification
contained:-

• Avoid matrix: at least one very low class from either scenario

• Rare conflict: low resource suitability and low human pressure

• Low conflict: high resource suitability but low human pressure

• Likely conflict: low resource suitability and high human pressure

• High conflict: high resource suitability with high human pressure

By using two-dimensional classification, two main key management-relevant actions re-
lated to each group of factors can be identified. First, management actions associated
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with resource suitability are linked to natural resource and land management (e.g. land-
use policies, establishing elephants corridors) (e.g. Neupane, Johnson, and Risch 2017;
Goswami and Vasudev 2017). Second, HEC occurrences are also governed by level of
human disturbances which can be associated with different management actions directed
more toward human co-adaptation (e.g. insurance schemes, behavioral adjustment in
crop husbandry) (e.g. Chen et al. 2013; Treves et al. 2006).

3.2.4 Analysis of HEC distribution and trends

For each year during 2009-2018, two HEC maps (a wet season map and a dry season map)
were generated. Areas of different HEC levels were calculated by summing the number
of pixels within each category and multiplying that by the pixel size. The affected areas
for each HEC classes were calculated by season from 2009 to 2018 both for the whole
region and separately by provinces. Distribution of conflict hotspots, which are the areas
repeatedly predicted with the same conflict category across the years, were identified.
The change in probability of HEC occurrence under resource suitability and direct human
pressure scenario over 10 years was calculated by fitting pixel-wise linear regression on
predicted probability from 2009 to 2018.

Yi = β0 +β1t + εi (3.5)

The slope coefficient (β1) of the fitted regression indicated the rate and direction of
change in HEC probability. The intercept (β0) represented the baseline probability in
2009.

3.3 Results

3.3.1 Model performance and variable responses

The p-value of all simulated HEC occurrences were greater than 0.19. The mean cross-
validated AUCs were 0.81 for resource suitability/wet season, 0.73 for resource suitabil-
ity/dry season, 0.78 for direct human pressure/wet season, and 0.77 for direct human
pressure/wet season. Jackknife analysis for the resource suitability scenario and direct
human pressure scenario (both seasons) identified the same top three importance vari-
ables (Figure 3.6). Forest Percent Cover had the highest predictive contribution; together
with KBDI, Distance to Forest, and EVI slope, these four predictors accounted for over
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80% of the models’ predictive power (Figure 3.6a). For the dry season model, KBDI had
slightly less contribution, while distance to forest edge became more important. Under
human pressure scenario (Figure 3.6b), Distance to Protected Habitats was the most
influential variable for both season. The next important predictor for the wet season was
Human Density, while Distance to Main Roads was for the dry season.

Figure 3.6: Permutation importance showed percentage of
contribution from variables under (a) resource suitability

and (b) direct human pressure.

Figure 3.7 shows how the HEC probability changes as each environmental predictor is
varied, while keeping all other environmental variables at their average sample value. The
response of Forest Percent Cover was similar for both seasons. In the highest and lowest
forest densities, lower HEC probability was expected, while higher HEC probability was
found in moderate forest densities. For KBDI, higher probability of HEC in wet season
occurred at low KBDI, with a continuous reduction after KBDI of around 50. In dry
season, however, HEC probability peaked at intermediate KBDI around 300-400 and
decreased slowly. The response of EVI Slope for the wet season indicated that HEC
was more likely to occurred where vegetation conditions were changing (diverted from
zero), the highest HEC probability occurred when EVI was reducing over the season. In
the dry season, however, probability of HEC was higher when EVI was relatively stable
(EVI of zero) or increasing slightly (EVI of 0.05), indicating green-up of vegetation.
The patterns of EVI slope from both seasons corresponded to the characteristics of EVI
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Figure 3.7: Relative probability of human-elephant con-
flict (HEC) occurrences for each environmental predictor,
grouped based on resource suitability (top) and direct hu-
man pressure (bottom), while keeping all other predictors at
average values. The predictors shown had a combined con-
tribution greater than 80%. KBDI, Keetch-Byram Drought

Index. EVI, Enhanced Vegetation Index.

slope from forest and savanna land cover (Figure 3.3). For human pressure, response of
Distance to Protected Habitats, Distance to Main Roads, and Distance to Lit-up Areas
had similar characteristics for both seasons. In dry season, a slower reduction in HEC
probability was observed for Distance to Protected Habitat and Distance to Lit-up Areas
as distance increased. For Human Density, HEC probability in the wet season reduced
as density approached 1,000 person/km2, but did not affect HEC probability in the dry
season. Possible higher tolerance to high human pressure of elephants was captured in
dry season.

MESS results indicated similarity of variables under the resource suitability scenario
for the most part of the study period except slight dissimilarity in 2010 and 2014-2016.
During those years, KBDI became prominent limiting factors, affecting large areas. Fig-
ure 3.8 showed examples of KBDI anomaly from which positive values observed in 2014-
2016 indicated higher KBDI than the 10-year average values, while 2013 represented a
relatively normal condition. For the direct human pressure scenario, dissimilarity with
negative MESS was identified in 2012-2013 which I suspected was due to the use of
different sensors for night-time light dataset.
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Figure 3.8: Anomaly of Keetch-Byram Drought Index
(KBDI) showed large positive value in 2014-2016 compared
to relatively normal condition in 2013. Positive KBDI
anomaly indicated deficit of soil moisture which suspected
to restrict availability of resource and alter potential HEC

distribution.

3.3.2 Distribution of conflict and conflict hotspot

The potential for HEC occurrence was higher during the dry season; High and Low
conflict areas were larger and more frequent. In contrast, during the wet season, the
Likely and Rare conflict categories were more frequent, suggesting lower HEC potential.
The hotspots of High conflict category were concentrated around the south and south-
west of Ang Ruenai-WS in Chonburi, Rayong, and Chantaburi provinces (Figure 3.9). In
the north, smaller clusters, especially near the protected areas, was predicted in Nakhon
Ratchasima, Nakhon Nayok and Prachinburi provinces. The high HEC zones shrunk
closer to the protected areas in the wet season and mainly located around Khao Chamao
Khao Wong-NP at the border between Rayong and Chantaburi, east of Khao Soi Dao-WS
in Chantaburi, and northwest of Khao Yai-NP in Nakhon Ratchasima. Additionally, the
models estimated that many areas under High conflict category in the dry season changed
to Likely conflict category in the wet season. This result implied that such locations have
potentially experienced year-round HEC in different levels (e.g. intensity or frequency).
Low conflict class was predicted in large areas in the dry season, affecting all provinces.
Although less in frequency and intensity, in the wet season coldspots of Low and Rare
conflict categories were concentrated around the main roads with some areas located are
from protected areas.

During 2009-2018, overall areas of potential conflict were estimated to be increasing
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Figure 3.9: The sum of human-elephant conflict (HEC)
classes over 10-year period (2009-2018) which indicated the
number of years with repeated predictions of the same HEC

class.

as shown in Figure 3.10. The increasing trend of High HEC was captured in both dry and
wet season, although the peak values were lower in the wet season. Potential HEC areas
expanded more than double between 2016 and 2017, of which areas with High conflict
increased from 2,235 to 4,306 km2 and 115 to 2,467 km2 in the dry and wet season
respectively. The dry season was dominated by two conflict categories, High and Low.
On the other hand, similar trends were presented across all conflict categories in the wet
season despite variations of affected areas among the years. For Likely conflict, the wet
seasons had a similar increasing trend to that of the High conflict category. However, the
dry seasons had relatively stable areas of the Likely and Rare HEC.
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Figure 3.10: Total areas (km2) of human-elephant conflict
(HEC) under each category showed an overall increasing

trend from 2009 to 2018.

Figure 3.11: Areas of human-elephant conflict (HEC) un-
der each category calculated by province from 2009 to 2018

showed that Chantaburi had the largest HEC areas.
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Chantaburi was estimated to have the largest areas of HEC, followed by Nakhon
Ratchasima (Figure 3.11). In Chantaburi, large areas of High HEC (approx. 900 km2)
were estimated in the dry season from the beginning of the study period. The province
showed an increase in overall areas of conflicts, as well as the largest area expansion of
High HEC captured in the wet season, from 170 km2 in 2009 to 689 km2 in 2018. Nakhon
Ratchasima also had large HEC-prone areas, but the High conflict category showed a
large increase only from 2014 onward. Similar to Nakhon Ratchasima, Buri-Ram and
Chachoengsao were predicted with High HEC from 2014. Except Nakhon Nayok and
Trat, all provinces were predicted to have a larger area of High conflict category during
the dry season. HEC areas were increased more than double from 2016 to 2017 in Buri-
Ram, Chachoengsao, Chantaburi, Nakhon Ratchasima, Prachinburi, Rayong, and Sa
Kaeo. On the other hand, a decrease in the areas of HEC was identified in 2010 and
2014-2016 for most provinces.

3.3.3 Drivers of changes in HEC probability over time

We identified the contribution to changes of HEC by evaluating HEC probability from
resource suitability and direct human pressure across the study period. From Figure
3.12a, HEC probability from direct human pressure scenario generally showed a gradual
increasing trend with an exception of a drastic area expansion in both High (2,203 to
6,503 km2) and Low (4,773 to 8,983 km2) classes in 2014. This sudden increase was likely
caused by lit-up areas increased as a result of improved night-time light sensor started
from 2014 onward. For resource suitability scenario, a clear pattern cannot be observed.
Hence, variation of predicted HEC category seen among different years were likely due
to the dynamic changes in suitable resources. Areas of High and Low probability under
resource suitability were reduced over half in 2010 and seemed to continuously decrease
from 2012 to 2016. This reduction in HEC areas coincided with the high anomaly of
KBDI period in Thailand.
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Figure 3.12: (a) Temporal distribution of areas predicted
as High, Low, and Very Low category during 2009-2018.(b)
Changes in HEC probability from 2009 to 2018 under re-
source suitability and direct human pressure scenarios. Each
location presents two values, a slope and an intercept. The
maps are visualized using RGB composite, Red: negative
slope (decreasing trend), Green: intercept (baseline of HEC
probability in 2009), and Blue: positive slope (increasing

trend).

Figure 3.12b shows spatial distributions of changes in HEC probability from 2009 to
2018 under resource suitability and direct human pressure scenario. Each location on the
maps conveys two information, (i) a regression slope (a rate and direct of change in HEC
probability), and (ii) a regression intercept (a baseline of HEC probability in 2009). A
decreasing trend is shown in red and an increasing trend in blue. A high 2009 baseline is
shown in bright green, while a lower baseline is in darker shade.

In resource suitability maps, areas with orange color corresponded to a high baseline
with moderate negative rate of change in HEC probability. This decreasing trend (-0.07
to -0.04 per year) in both wet and dry season was mainly predicted around the edge of
the forests. Base on MODIS land cover (Figure 3.13), the reduction of HEC probability
near the forest was due mainly to forest cover increased over the years. According to the
predictors’ responses in Figure 3.7, areas with high forest densities and nearer to forest
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were estimated with lower HEC probability. Positive trends (0.2 to 0.4 per year) was
sparsely predicted in both wet and dry seasons on the west-side of Ang Ruenai-WS in
Chachoengsao and Chantaburi provinces. Although we cannot specify a reason behind
this increase, we observed from MODIS land cover that there was an expansion of the
savannas land cover during 2017-2018, as well as increased of forest in those areas (Figure
3.13b). The high HEC probability of EVI slope corresponded to the characteristics of
forest and savanna which may have heightened the predicted probability.

For direct human pressure scenario, large areas of increasing trend occurred in previ-
ously low and moderate HEC probability baseline in wet (a pure bright blue) and dry (a
dark greenish-blue) season respectively. These areas were located around Ang Ruenai-
WS, north-east of Khao Yai-NP, and north of Thablan-NP. Since the variables used under
direct human pressure scenario only contain static and annual characteristic (Table 3.1),
the differences observed between seasons were not the result of physical differences. The
dissimilarities were due to seasonal differences of variable response that governed HEC
prediction. In addition, the southern areas of Ang Ruenai-WS were predicted with con-
stantly high HEC probability (around 0.7) from human pressure in the dry season. The
increasing trend within the same areas in the wet season (a rate of 0.07 to 0.10 per year)
likely caused a year-round HEC. The large positive trend from direct human pressure,
when happen in areas with already high HEC probability predicted under resource suit-
ability, may escalate HEC to a higher category. Lastly, spares areas in orange indicated
a decreasing trend in HEC probability. These areas scattered in the west near the main
roads. This is due to human population growth. The same was not predicted for the dry
season because of the differences in variable response between the two models.
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Figure 3.13: (a) Areas of different land cover types from
2009 to 2018 of the reclassified MODIS land cover classes
(b) Dominant land cover changes detected between 2016 to

2017.

3.4 Discussion

3.4.1 Implication of the proposed models

Using two-dimensional classification together with time-calibrated SDM on remotely
sensed satellite data, I predicted and compared potential HEC distribution in Eastern
Thailand from 20 seasons across 10-year period. Making informed decision on where to
allocate limited resources is crucial for government and conservation organizations alike
(Bottrill et al., 2008). A two-dimensional classification approach has been used to iden-
tified management-relevant actions in habitat modeling (De Angelo et al., 2013; Bleyhl
et al., 2015; Romero-Muñoz et al., 2019). Utilizing similar method, we recommended
prioritization of HEC-zone dependent management actions. Two groups of management
actions are considered, (i) natural resource/land management and (ii) promotion of hu-
man adaptation. High HEC zones must receive first priority with parallel emphasis on
both land-use policies and human adaptation. Together with HEC-relevant land man-
agement, behavioral adaptation of those who live in the areas are important to reduce
risky behaviors. In Likely HEC zones, certain land management actions are not necessary
(e.g. permanent electric fences), but more focus should be put on community develop-
ment. For areas with Low HEC category, the extensive change in human behavior may
not be needed (e.g crop husbandry), but general knowledge on appropriate actions when
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encountering with wild elephants are potentially useful. In such areas, land use plan-
ning is more important in preventing further escalation of conflict. Lastly, Rare HEC
zones were predicted sparsely and far from protected areas (Figure 3.9). Since these
areas were concentrated closer to the main roads, management may focus on the risk of
vehicle-elephant-collision. Further field investigation and data collection are necessary to
pinpoint appropriate management actions.

3.4.2 Climatic and drought impacts on HEC distribution

Overall, the models predicted the occurrence of large HEC-conflict areas during the dry
season which decreased both in term of spatial extent and intensity during the wet season.
Chantaburi and Nakhon Ratchasima were predicted to have the largest HEC-prone areas.
Drought-induced decrease in the distribution of suitable resources (base on KBDI index),
resulted to a relevant decrease in the spatial extent of HEC. The high KBDI detected
in 2010 and 2014-2016 (Figure 3.8) coincided with the El Nino phenomena that caused
severe and prolonged drought in Thailand (NOAA/National Weather Service, 2019).
This caused a decrease in the spatial HEC extent in some provinces, but HEC extent
increased in other provinces. Previous studies in arid savannas showed that extreme
drought can alter the distribution and abundance of elephants population, leading to mass
starvation Wato et al., 2016; Foley, Pettorelli, and Foley, 2008. However, such extreme
events is usually not considered during modeling. Considering that dry periods, and their
associated extreme drought events, may occur more frequently due to climate change,
HEC distribution may become unpredictable, causing critical management implications.
Additional field investigation is required to examine whether or not a decrease in the
spatial HEC extent in some areas may result to concentrated increase of elephant-induced
damages in other locations.

3.4.3 Importance of forest and changes in land cover

The peak of HEC probability for forest percent cover, a variable with the highest predic-
tive power, was identified at 25-45%. Forest land cover mainly entailed protected areas.
Hence, HEC occurred in areas close to elephant natural habitats. Although high HEC
occurrence near protected areas is expected, the peak probability implies that conflict
incidents do not always locate directly adjacent to protected parks. Available patches of
forest outside of protected areas, such as community forest, may assist in wild elephant
dispersal as long as the composition with other land cover provide 25-45% cover within
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6km. Further field study is necessary to identify the size of forest patches required by
elephants outside of protected areas.

HEC hotspots along the southern and western of Ang Ruenai-WS were dominated
by savannas land cover, a mixed tree and grass system. The peak in HEC probability as
seen from EVI slope coincided with characteristics of MODIS savannas and forest land
cover class. By comparing MODIS land cover with land use map from Land Development
Department, Ministry of Agriculture and Cooperatives of Thailand, savannas land cover
was generally rubber plantations and orchards. Available tree canopies in these land
use, despite being sparse, may provide cover for elephants and assist in their movement.
Studies in India and China identified proximity to forest edge and high-statue vegetation
(e.g. eucalyptus and acacia) as important factors determining elephant occurrences out-
side of protected areas (Kumar, Mudappa, and Raman, 2010; Liu et al., 2016; Li et al.,
2018). With large continuous extant of savannas within these hotspot, together with high
HEC predicted across both season, elephants may already be frequent and even residing
permanently in the areas.

3.4.4 Comparison of certain variables to existing studies

Although predictor responses were generally similar to studies from other Asian countries,
some variable contributions were different. Distance to water has been identified as an
important factor determining elephants distribution in China (Li et al., 2018), Indonesia
(Evans, Asner, and Goossens, 2018), India (Lakshminarayanan et al., 2016), and Thailand
(Meijer et al., 2018). In this study, however, it was not a prominent predictor. We
expected the reason to be the coarse spatial resolution as we re-sampled the data from
30m to 500m. Consequently, small water bodies located in individual farmers’ lands
might not be captured. Although vegetation index was a good proxy for forage quality
in (Pettorelli et al., 2005), the EVI variable had relatively lower predictive importance in
our study. Usefulness of vegetation index depends highly on the types of habitat and the
season (Borowik et al., 2013). In tropical forest, elephant forage abundance was unable
to be mapped directly using average value of NDVI (Gautam, Arulmalar, and Kulkarni,
2019). Nevertheless, EVI slope had the highest predictive power among all EVI variables,
implying possible importance of vegetation phenology. A study of crop raiding behavior in
African elephants identified crop availability and ripening timing as important indicators
for predicting crop damage (Branco et al., 2019). Therefore, variables related to crop
types along with its phenology, which can be detected from remotely sensed satellite data,
should be further studied.
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3.4.5 Limitations and uncertainties of current assumptions

Overall our calibrated models had a good to very good predictive power with AUC rang-
ing from 0.73-0.81. Nevertheless, this study still contains limitations and uncertainties.
First, although bias correction was applied, we still cannot account for unreported loca-
tions where HEC occurred but not reported in the news. Second, different in variable
responses were identified between wet and dry season, but the significance between pre-
dicted wet and dry HEC distributions remain to be evaluated. Having two separate HEC
maps can support effective operational planning (e.g. seasonal patrol routes), but can
also cause confusion for policy-level planning. Future study can evaluate models from
key season similar to (Bleyhl et al., 2015) in which winter season was chosen. Third,
additional variables can be included to provide better prediction of HEC occurrence. Be-
sides potential use of cropping pattern and phenology, human tolerance and perception
of risk should also be considered. These factors represent the possibility of coexistence
between human and wildlife (Morzillo, Beurs, and Martin-mikle, 2019). Fourth, current
mitigation efforts have not been included, but are essential as they can alter elephants’
access to resources. Previous studies have shown that implementation of physical barriers
shift HEC to new locations (Osipova et al., 2018). Such data on existing mitigation can
be incorporated after to identify movement routes and potential corridors. Lastly, future
study can include assessment of habitat quality within protected areas. Our models pre-
dicted an increase in potential HEC areas after prolong drought during 2014-2016. We
cannot infer a conclusion based on our current study. However, extreme events can cause
a change to land use and vegetation in the following years, impacting elephant’s natural
habitat and adjacent agricultural lands. Such information can elucidate root cause of
conflict and enhance management decision.

3.5 Conclusion
This study utilized publicly available dataset and applied time-calibrated SDM with two-
dimensional conflict classification to estimate time-series distribution of potential HEC in
eastern Thailand. Three objectives were raised which included (i) to model the potential
spatial distribution of seasonal HEC from 2009 to 2018, (ii) to identify and distinguish
the contribution over time of important factors influencing HEC distribution, and (iii) to
prioritize the areas that require targeted management and increased intervention.

As for the first objective, overall increasing trend of potential areas affected by HEC
was predicted. HEC was projected to occur in both wet and dry season, with larger
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extend during the dry season. All provinces in the Eastern region experienced HEC at
varying level across the seasons. In 2018, overall area of HEC under high category was
estimated to cover 5,381 and 8,806 km2 in the wet and dry season respectively. These
were approximately triple and double the areas of high HEC in the wet and dry season
during 2009. Chantaburi had the largest areas of HEC, followed by Nakhon Ratchasima.
Nakhon Nakok, on the other hand, showed the smallest areas potentially affected by
HEC. The reduction of conflict areas in 2010 and 2014-2016 were identified and likely
explained by severe drought from El Nino events which was captured by KBDI. The
increase of HEC areas noticeably from 2016 onward was possibly a result of land cover
change.

For the second objective, the results suggested that variation in the probability and
distribution of HEC was due to changes in resource suitability, while a more continuously
gradual increase was observed from direct human pressure. Resource suitability was
prominently governed by forest percent cover, drought condition, and distance to forest.
This result implied that forested areas remained the source habitat and critical refuge
for elephants, while drought seasonally alter resource distribution and the consequent
changes in elephant presence and HEC. For direct human pressure, distance to protected
habitat, level of human density, and distance to transport network were the key factors
affecting HEC distribution.

Besides identifying HEC response to environmental characteristics, the findings can
also support prioritization of conservation resources which answered the third objective.
Based on the analysis, I proposed HEC-zone dependent management. Parallel emphasis
on extensive land management and human co-adaptation should be performed in High
HEC-zones. In Likely HEC-zones, more attention should be given to raise safe behaviors
for communities. Land use policies in Unlikely HEC-zones should be strengthened with
general awareness of appropriate actions when encountering wild elephants. Rare HEC-
zones were scattered close to main roads, hence investigation to prevent vehicle-elephant
collision should be given priority. Within each zone, more focus can be given to hotspots
that estimated with repeated HEC. Lastly, this study highlighted the advantages of
satellite-derived variables with high temporal resolution which can capture annual and
seasonal variation.

In this chapter, the evaluation of HEC in Eastern Thailand was conducted in which
increasing trend of spatial distribution from 2009 to 2018 was identified. Climate varia-
tions, specifically drought condition, was one of the key factors influencing alteration in
HEC. With such increasing trend in recent years and imminent climate change impacts,
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consideration of future climate scenarios on HEC distribution can further improve long-
term planning. In addition, the analysis in this chapter was confined only in Eastern
region due to the lack of records of HEC incidents. However, whole country assessment
is crucial for a holistic planning. Following the understanding gained and key variables
identified in this chapter, Chapter 4, will propose assessment framework that enables
whole country evaluation along with the incorporation of future climate scenarios.
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Chapter 4

Countrywide HEC risk assessment
under climate and land cover change
scenarios in Thailand

4.1 Introduction
Human-Elephant Conflict (HEC) escalated in many countries and became an important
issue for both elephant conservation and human development (Hoare, 2015). Among the
countries hosting Asian elephant population, Thailand faced with increasing HEC inci-
dents in most protected areas hosting elephant populations (Noonto, 2009). An average
of 212 nights was annually spent by household in guarding crops against elephant-raiding
and the HEC-induced cost is significant compared to average household income (Jarun-
grattanapong, Olewiler, and Nabangchang, 2017). Threats associated with wildlife, in-
cluding HEC, is considered as small frequent events which are commonly neglected in
risk assessment and consequent disaster risk management policies (Gaillard et al., 2019).
Nevertheless, the impacts from small frequent events usually accumulate and massively
erode society’s ability to handle next hazardous incidents and achieve sustainable devel-
opment (Wisner and Gaillard, 2009; UNISDR, 2015). Gaillard et al. (2019) emphasized
the gap and necessity to reconcile human-wildlife conflict and disaster risk management
as an integrated approach to broaden beyond managing conflict incidents.

The first step toward integration of risk reduction and HEC is to quantitatively mea-
sure HEC risk. Risk measurement is common in disaster and climate change risk analysis
and essential for informed decision. Despite its initial parallel development, disaster risk
reduction (DRR) and climate change adaptation (CCA) communities jointly adopt the
same risk assessment framework (Birkmann and Welle, 2015; Sudmeier-Rieux et al.,
2019). In particular, risk is defined as the probability of negative consequences from the
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interaction of hazards and the vulnerabilities of exposed elements (UNDP, 2010; IPCC,
2012). The framework had long been utilized in assessing natural disaster risk, such as
floods, droughts, and earthquakes (UNISDR, 2015). It was recently also applied by the
Intergovernmental Panel on Climate Change (IPCC) as part of its Special Report (IPCC,
2012) and the Fifth Assessment Report (IPCC, 2014). This risk assessment framework
became an established practice to guide decision-making in government, business, and
international organizations.

Traditional conservation plannings frequently rely on localized historical records; how-
ever, they are unlikely to cope with rapidly changing and uncertain future (Peterson,
Cumming, and Carpenter, 2003). Scenario plannings, on the other hand, allow decision-
makers to explore plausible futures and develop relevant alternative actions (Mahmoud
et al., 2009). Foden et al. (2019) emphasized the importance to evaluate future climate
impacts on species in order to identify needed modifications to conservation strategies.
Titeux et al. (2016) addressed that future scenarios in ecological modeling should consider
climate change, as well as inter-related climate and human-induced land cover change.
Climate change causes a stronger impact on the spatial distribution of species at regional
scale, while land cover changes influence more prominently at a finer-scale (Sirami et al.,
2017). Similarly, future climate and anthropogenic change are expected to alter resource
dynamic requiring both humans and elephants to adapt (Shaffer et al., 2019). However,
it remains uncertain whether future changes will increase or decrease the likelihood of
HEC. Hence, future scenarios should be incorporated to HEC risk assessment to support
conservation planning for long term co-existence (Shaffer et al., 2019)

Some studies attempted to assess future changes of the interaction between humans
and wildlife. Using Species Distribution Modeling (SDM) under future land use scenarios,
Saito et al. (2016) projected higher conflict between humans and large mammals in Japan
due to the estimated expansion of the studied species in 2028. Brambilla et al. (2016) also
applied SDM technique and predicted potential conflict from the higher overlap between
areas suitable for ski-pistes and those for high-elevation bird species based on various
climate change scenarios in 2050. Schwartz et al. (2012) modeled four future scenarios
of urban expansion and quantified the loss of key grizzly bear habitats within Greater
Yellowstone Ecosystem. Specifically for HEC, Naha et al. (2019) applied SDM method
and predicted the probability of HEC based on land cover in 2028 which was projected
from historical land cover change trend. These studies, however, separately considered
either changes in climate or land cover. In addition, the land cover scenarios were mainly
based on historical trend and did not considered climate-induced effects. Socioeconomic
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factors, such as human population trend, were not considered, although conflict with
wildlife is influenced by changes in socioeconomic aspects.

New set of future scenarios was developed based on the combinations of Represen-
tative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs)
(Vuuren et al., 2014). RCPs cover different trajectories of time-dependent projections
of atmospheric greenhouse gas (GHG) concentrations which affect the climate radiative
forcing and consequent warming of the planet (Vuuren et al., 2011). SSPs provide qual-
itative narratives and quantification of key socioeconomic variables which can alter the
challenges to mitigation and adaptation to climate change, such as population growth,
income, urbanization, agriculture production, among others (Riahi et al., 2017; O’Neill
et al., 2017). The RCP-SSP scenarios were used in various future assessments, such
as species range shift (Beyer and Manica, 2020), habitat loss in terrestrial vertebrate
(Powers and Jetz, 2019), and costs of flood protection (Ward et al., 2017). The applica-
tion of RCP-SSP is paramount for risk assessment. However, it remains limited in HEC
especially at the national scale.

4.1.1 Objectives

In this chapter, I proposed and demonstrated the application of HEC risk assessment
framework with RCP-SSP scenarios to estimate spatial distribution of HEC risk at base-
line (2000-2009) and near future (2025-2044) in Thailand. The scenarios will evaluate
the future changes in climate, related land cover, as well as HEC-based spatial policy.
The specific objectives were to :-

1. assess the change in hazard sub-components between baseline and future scenarios

2. assess the change in exposure sub-components between baseline and future scenarios

3. assess the change in vulnerability sub-components between baseline and future
scenarios

4. compare baseline HEC risk and quantify relative changes in the future
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4.2 Methodology

4.2.1 Study location

In this study, Thailand was selected for analysis. Historically, wild elephants were sighted
across the country even at the peripheral of Bangkok, the country’s capital city (Sukma-
suang, 2015). However, high timber demand during the 1970s led to large deforestation
(Hirsch, 1990). Forest conversion was further exacerbated by government-led policy to
allow settlement of unoccupied land, as well as the expansion of commercial agriculture
(ICEM, 2003). Between 1980 to 1990, Thailand had the highest deforestation rate in
the region with 2.6% annual forest loss (Hirsch, 1990). The 1989 nationwide ban on
logging, which slowed down deforestation, was put in place following massive interna-
tional campaigns and disastrous floods (Grainger, 2004). However, explosive growth in
the economy continued to boost the demand for infrastructure development with various
transport and dam construction projects. Despite slowing rate of deforestation and sub-
sequent reforestation efforts, most forested area had already been lost with a remaining
forest cover of 25% in 1993 compared to 53% in 1961 (Wannitikul, 2005).

Thailand’s protected areas were first inaugurated in the 1960s and rapidly increased
during the 1980s and 90s (ICEM, 2003). However, most land areas had already been
developed and Thailand’s protected areas were deemed too small to conserve biodiversity
and sustain wide-ranging large species like elephants (Suksawang, 2018). As of 2015, there
were 147 National Parks (NP) and 58 Wildlife Sanctuaries (WS) in Thailand, of which
68 hosted elephant populations (Suksawang and Mcneely, 2015; Noonto, 2009). Most
elephant populations were confined within these fragmented protected areas surrounded
by human-induced agriculture lands (Leimgruber et al., 2003). To facilitate more effec-
tive management of ecosystem within adjacent protected areas and surrounding lands,
landscape-conservation units called forest complexes (FC) were designated (Suksawang,
2018). Three main groups of elephant population are currently located in the Western
FC, the Khaengkrachan FC, and in Eastern region comprised of the Eastern FC and the
Khao Yai-Dong Prayayen FC (Figure 4.1).

As discussed in Chapter 2, Thailand is likely leading the development path which other
range countries in southeast Asia will follow. In term of HEC, this suggested Thailand as
an interesting case study where forested areas are restricted among highly developed land
cover. Additionally, growth in Thailand’s urbanization and aging population are expected
to induce a continuous reduction in rural population (World Bank, 2020b). Similar
situation caused land abandonment and subsequent habitat recovery in depopulated rural
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areas of Japan (Tsunoda and Enari, 2020). If the same will occur in Thailand, the future
of HEC situations is uncertain.

Figure 4.1: The map of the study location covering the whole
of Thailand. The estimated elephant population is shown for
each protected areas, while established forest complexes are

numbered.

4.2.2 Definition of HEC risk and underlying components

Following IPCC (2012) definition, risk is defined as a function of hazard, exposure, and
vulnerability. To adopt this framework for HEC, HEC risk is defined as the probability of
wild elephant occurrence (hazard) in overlapping areas with human population (exposure)
who possess different vulnerable levels (vulnerability). The implementation of HEC risk
assessment required the selection of hazard, exposure, and vulnerability components. The
overview of proposed HEC risk components was shown in Figure 4.2 and Table 4.1.
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Figure 4.2: The overview of risk components in this study
which comprised of hazard, exposure, and vulnerability.
Highlighted in red-boxes are sub-indicators that must be
calculated, while gray boxes were obtained directly from an-

cillary data or projections provided by other studies.

Hazard: Hazard refers to any phenomena that may cause negative impacts, such as
damage to properties, injuries to human, or socioeconomic disruption (IPCC, 2012). In
represent HEC hazard, the probability of elephant occurrence was chosen. Three sub-
indicators must be obtained to determine this hazard probability. These three compo-
nents included (i) climatic suitability for elephant, (ii) landscape suitability for elephants,
and (iii) elephant dispersal probability from protected areas. The climatic and landscape
suitability were modeled using SDM technique with relevant variables previously identi-
fied to influence elephant presence. The variables selected for modeling are discussed in
detail under section 4.2.5. Dispersal probability was considered because the proximity
to source habitats, such as protected areas, is the dominant factors in determining HEC
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Table 4.1: The sub-indicators chosen for this study to rep-
resent Hazard, Exposure and Vulnerability are listed.

Indicators Data Baseline Future
Hazard : the probability of elephant presence
Climatic suitability Calculate X X
Landscape suitability Calculate X X
Dispersal probability Calculate X -

Exposure : the number of population potentially affected by hazard
Rural population Gao 2020 X X

Vulnerability : susceptibility of population to the loss from exposed hazard
Technology NSO1 X -
Education NSO1 X -
Income NSO1 X -
Drought probability Calculate X X

1 Thailand National Statistic Office

(Chapter 3). The closer to protected areas, the more likely that HEC will occur.
Exposure: Exposure is defined as any assets (e.g. people, properties, etc.) that

are present in the overlapping areas with hazards, and are thus subjected to potential
loss (IPCC, 2012). The number of potentially affected human population was used to
represent exposure in this study. Only rural population was considered because HEC
incidents more commonly occur in rural areas close to elephant habitats. Spatially explicit
dataset for rural population is available from Gao (2020) and was used.

Vulnerability: Vulnerability is the characteristics of assets, in this case rural pop-
ulation, that make them susceptible to the negative effects from hazards (IPCC, 2012).
Human population exposed to the same level of hazards will response differently depend-
ing on their vulnerability level. The sub-indicators for HEC vulnerability can be divided
into two groups, (i) the socioeconomic group representing human capital and (ii) the
additional hazards group incorporating added pressure from other natural disasters. The
socioeconomic sub-indicators were obtained from the National Statistic Office of Thai-
land (NSO, 2020). These sub-indicators intended to represent level of adaptive capacity
in an event of HEC. Technology, education, and income level were previously identified
to influence the vulnerable level of communities to wildlife threats (Nyirenda et al., 2018;
Water and Matteson, 2018). Drought can further add to the vulnerable of human pop-
ulation and was considered under additional hazard sub-indicator. Drought was chosen
as it historically disrupted Thailand agricultural sector (Prabnakorn et al., 2019) and
expected to cause large yield reduction in the future (Leng and Hall, 2019).
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4.2.3 Proposed future scenarios

Scenarios of plausible future allow an evaluation of potential outcomes which support
suitable design of policies under interacting-complex system and uncertainties (Moss et
al., 2010; Bai et al., 2016; Kebede et al., 2018). This section introduced climate change
scenarios from RCP-SSP and HEC spatial policy represented by buffer zones that were
chosen for the current assessment.

Combination of Representative Concentration Pathways and Shared Socioe-
conomic Pathways (RCP-SSP)

In this study, climate change scenarios were from existing global projections of poten-
tial changes in climate and socioeconomic aspects. Each RCP is a different scenario
based on how quickly greenhouse gas (GHG) concentration in the atmosphere can be
reduced. RCPs provide climate predictions. SSPs provide trajectories of how society,
demographics and economics might change, especially those factors underlying climate
change mitigation and adaptation. Various RCPs and SSPs are available (Vuuren et al.,
2014), but two RCP-SSP combinations were used in this study. The characteristics of
each chosen RCP and SSP were summarized in Table 4.2.

Table 4.2: The characteristics of Representative Concentra-
tion Pathways (RCPs) and Shared Socioeconomic Pathways
(SSPs) chosen for this study. The color-coding showed the
chosen RCP-SSP combinations, RCP4.5-SSP2 (light-shade)

and RCP8.5-SSP5 (dark-shade).

Pathway Key characteristics

RCP4.5
Radiative forcing 4.5 W m−2 by 2100

Very low baseline GHG emission with medium-low mitigation
Medium air pollution

Slowly
declining
emission

RCP8.5
Radiative forcing 8.5 W m−2 by 2100

High baseline GHG emission
Medium-High air pollution

Rising
emission

SSP2

Medium population
Medium urbanization

Medium uneven economy
Medium pace of tech change and productivity

Middle of
the road

SSP5
Low-Medium population

High urbanization
High economy

Rapid increase in productivity

High
reliance on
fossil fuel
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The RCP4.5 is a trajectory for radiative forcing of 4.5Wm−2 corresponding to a global
mean temperature of +1.8◦C and considered as ‘middle of the road’ scenario where the
emission is slowly declining (Thomson et al., 2011). The RCP4.5 assumed a slow start
of emission reduction which corresponds to government efforts proposed for the Paris
agreement (Van Hooidonk et al., 2016). On the other hand, RCP8.5 represents the high
emission trajectory for radiative forcing greater than 8.5Wm−2 corresponding to +3.7◦C
(Moss et al., 2010). This scenario assumed the continuous reliance on fossil fuel with
rising emission and is sometimes referred to as ‘business-as-usual’ scenario. Therefore,
these chosen climate scenarios represent the likely future of whether emission reduction
is committed (RCP4.5) or not (RCP8.5). The quantitative projections of the underlying
GHG emission (Figure 4.3a) were used by experts to generate Global Circulation Models
(GCMs) which estimate various climatic variables, such as temperatures and precipita-
tion.

For socioeconomic trajectories, SSP2 and SSPs were selected. Vuuren et al. (2014)
proposed scenario matrix which evaluated the possible combinations of RCPs and SSPs.
It was suggested that RCP4.5 can be matched with SSP2, while RCP8.5 with SSP5. The
same RCP-SSP combinations were adopted for the development of the next generation
Coupled Model Intercomparison Projects or CMIP6 (O’Neill et al., 2016). SSP2 describes
intermediate challenges mostly following historical pattern with heterogeneity within and
across countries (O’Neill et al., 2017). SSP5 represents high development in economic and
human capital with strong reliance on fossil fuels and the lack of environmental concerns
(O’Neill et al., 2017). Along with the qualitative scenarios, the underlying key factors
were quantitatively estimated as shown in Figure 4.3b. These data were used for land
cover projection in this study.

HEC spatial policy around protected areas (buffer zones)

Buffer zone is one of the long-term conservation strategy where locations peripheral to
protected areas are designated with special regulations. It is common that only ecolog-
ically low impact activities are allowed within the buffer zone, while communities are
subsidized for possible costs, such as damages from wildlife (Wegge, Yadav, and Lamich-
hane, 2018; Lamichhane et al., 2019). Although having a buffer zone does not equate to
the elimination or even a reduction of HEC (Sharma et al., 2020), the establishment of
buffer zones is critical to allow application of land-use planning and relevant support to
communities within the areas.
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(a) RCP scenarios (Vuuren et al., 2011)

(b) SSP2 and SSP5 quantitative projection (Riahi et al., 2017)

Figure 4.3: The quantification of some underlying drivers
for RCPs and SSPs is shown with color-coding corresponded
to that shown in Table 4.2, RCP4.5-SSP2 (light-shade) and

RCP8.5-SSP5 (dark-shade).

The appropriate formulation of buffer zones require on-the-ground information and
participatory of local communities. I do not attempt to specify precise location of buffer
zones, but rather evaluate the what-if scenarios where the implementation of buffer zones
is considered. In this study, buffer zones were considered around protected areas with
known elephant populations (Figure 4.1). A 12-km buffer from the boundary of such
protected areas were chosen based on the average daily round-trip distance traveled by
elephants from the forest edge to forage on agricultural lands and back (interview with
park rangers at Khoa Yai National Parks on September 2019). I assumed that, within
this 12-km buffer zones, no additional land conversion of any type is allowed.
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Four future scenarios

Figure 4.4 illustrated the general narratives in this study where combination of RCP-SSP
are matched with the spatial policy with and without buffer zones (BZ). The combination
provided four possible future scenarios, namely A1 (RCP4.5-SSP2-BZ), B1 (RCP4.5-
SSP2-noBZ), A2 (RCP8.5-SSP5-BZ), and B2 (RCP8.5-SSP5-noBZ). Based on narrative
characteristics (Table 4.2), RCP4.5-SSP2 (‘1’-scenario) is estimated with some demand
reduction for agricultural land due to moderate development in yield productivity, while
RCP8.5-SSP5 (‘2’-scenario) is expected to have further reduction of agricultural land
from both the grater advancement in technology and the combination of lower population
growth with high shared of urban resident. ‘2’-scenario are expected to face higher change
in temperature and precipitation which will likely impact level of drought. ‘A’-scenarios
include buffer zone consideration, while ‘B’-scenarios do not.

Figure 4.4: The proposed scenarios for this study considering
RCP-SSP combination and the spatial policy to establish
buffer zones around protected areas with elephant residents
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4.2.4 Dataset

Climatic dataset

The climatic dataset used in this study are listed in Table 4.3. Minimum temperature,
maximum temperature, and precipitation were obtained from ERA5 reanalysis product
to represent baseline conditions, while the same from NASA Earth Exchange Global
Daily Downscaled Projections (NEX-GDDP) were obtained for near future scenarios.
ERA5 was developed under the European Centre for Medium-Range Weather Forecasts
(ECMWF) and showed consistent improvements over previous products (Albergel et al.,
2018). ERA5 was suggested to have high temporal advantage in modeling species distri-
butions (Bütikofer et al., 2020). NEX-GDDP is a global bias-corrected and statistically
downscaled products derived from Global Climate Models (GCMs) of the Coupled Model
Intercomparison Project Phase 5 (CMIP5) under RCP 4.5 and 8.5 emission scenarios.
NEX-GDDP product provided higher resolution and accuracy compared to the original
GCMs by applying Bias-corrected/Spatial Disaggregation (BCSD) method (Thrasher et
al., 2012). Accuracy assessment over South Asia suggested that NEX-GDDP performance
surpassed regional simulations, COordinated Regional climate DOwnscaling Experiment
(CORDEX, Giorgi et al., 2009), and provided realistic climate extremes (Jain et al.,
2019). NEX-GDDP also well represented the mean temperature and precipitation in
Southeast Asia at monthly scale (Raghavan, Hur, and Liong, 2018).

Table 4.3: The climatic dataset used in this study was ob-
tained from ERA5 reanalysis product for baseline and bias-
corrected downscaled NEX-GDDP product for future sce-

narios.

Dataset Description Spatial
resolution

Temporal
resolution

Baseline ERA5 reanalysis product by
European Centre for
Medium-Range Weather
Forecasts (ECMWF)

Minimum temperature ~25km Daily
Maximum temperature ~25km Daily
Precipitation ~25km Daily

Future NEX-GDDP product by NASA
based on bias-corrected
downscaled GCM under CMIP5

Minimum temperature ~25km Daily
Maximum temperature ~25km Daily
Precipitation ~25km Daily

For future climate scenarios, five GCMs were selected to represent ranges of potential
future climatic conditions. The selection of these GCMs followed the guideline from
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Sanderson, Knutti, and Caldwell (2015) which provided an order for model selection
based on stepwise model elimination procedure using model similarity information. The
five selected GCMs included CanESM2, CESM1-BGC, IPSL-CM5A-MR, MIROC5, and
MPI-ESM-MR.

To assess the accuracy of the chosen climatic dataset, Root Mean Square Error
(RMSE) was calculated between ERA5 reanalysis data and the observed amount of daily
precipitation, minimum temperature, and maximum temperature during 2015 from 124
weather stations in Thailand. The same was performed for NEX-GDDP dataset. The
RMSE was defined as below where Oi represents the observations at station i, Di is the
values from climatic dataset in correspond to station i and N is the number of stations.

RMSE =

√
1
n

Σn
i=1

(Di −Oi

σi

)2
(4.1)

Landscape dataset

The landscape conditions were represented by land cover and surface features that influ-
ence elephant presence as identified in Chapter 3 (Kitratporn and Takeuchi, 2019) and
previous studies (Chen et al., 2016; Estes et al., 2012; Naha et al., 2020; Wato et al.,
2016; Wilson et al., 2015). Table 4.4 listed the data used in this study.

The 2015 baseline land cover was classified from remotely-sensed satellite imagery
available during 2014-2016. The combination of spectral refletance and indices from
the following products were used: MOD09A1 Version 6 product from the Moderate
REsolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellite
(Vermote, Kotchenova, and Ray, 2011), yearly composite from the Phased Array L-band
Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observing Satellite
(ALOS) (Shimada et al., 2014), and digital elevation dataset from the Shuttle Radar
Topography Mission (SRTM) (USGS, 2004).

The topographic features were represented by terrain roughness index (TRI) calcu-
lated from SRTM product. For water availability, HydroSHED (Grill et al., 2019) and
European Commission Joint Research Centre (JRC) yearly water classification version
1.2 derived from Landsat 5,7, and 8 (Pekel et al., 2016) were used to identify rivers
and water points respectively. The pixel locations where seasonal and permanent water
classes from JRC product occurred every year during the selected period were identified.
Euclidean distance from river locations and water points were then calculated. Anthro-
pogenic disturbances were represented by transport features from GRIP4 road network
(Meijer et al., 2018) and Thai Railway dataset. Euclidean distance from these transport
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Table 4.4: The landscape dataset used in this study was
obtained or calculated from various remotely-sensed satellite

products and spatial ancillary data

Dataset Description Spatial Temporal
resolution period

Baseline
Land cover MOD09A1 500m 2014-2016

PALSAR yearly mosaic 25m 2015
SRTM 90m 2000

Transport
- Roads GRIP4 Vector multi-source
- Railways Thai railway Vector 2000

Water
- Rivers HydroSHED Vector 2000
- Water bodies JRC yearly water 30m 2014-2016

Terrain roughness index (TRI) SRTM 90m 2000
Future
Land cover Simulated based on pro-

jected future land demand
and location suitability

500m 2045

Transport / Water / TRI Assumed static and the
same 2015 baseline was used

500m baseline

locations were calculated and used. All the data was re-projected to the WGS84 and
resampled to a 500m resolution using bilinear interpolation.

For future dataset, the land cover was simulated based on the changes in underlying
drivers from RCP-SSP scenarios. Other variables, namely topographic conditions, rivers
and water points, and anthropogenic disturbances, were assumed static and the same
dataset from the baseline scenario were used. The land cover classification and projections
are discussed in more detail under section 4.2.5.

4.2.5 Data pre-processing

Bioclimatic variables and drought indicators

Bioclimatic variables are commonly used in species distribution modeling and many eco-
logical modeling (Hijmans et al., 2005). They are generated from monthly temperature
and precipitation values to create biologically meaningful variables (Hijmans et al., 2005;
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O’Donnell and Ignizio, 2012). Previous studies identified significant contributions of cer-
tain bioclimatic variables in determining elephant presence (Deb et al., 2019; Silva et al.,
2020; Li et al., 2019). These variables included annual mean temperature (bio1), diurnal
range (bio2), isothermality (bio3), temperature seasonality (bio4), annual precipitation
(bio12), and precipitation seasonality (bio15). To prevent multicollinearity, Variance
Inflation Factor (VIF) was calculated and variable with VIF>10 was removed. Each
remaining variable was defined below where Tmax, Tmin, and Prannual refers to maximum
temperature, minimum temperature, and annual precipitation respectively.

bio1 = Tmean (4.2)

bio2 =
Σi=12

i=1 (Tmaxi −Tmini)

12
(4.3)

bio3 =
bio2

max(Tmax1..12)−min(Tmin1..12)
(4.4)

bio14 =
SD(Tmean1..12)

Tmean
×100 (4.5)

bio12 = Prannual (4.6)

bio15 =
SD(Pr1..12)

Prannual ÷12
×100 (4.7)

From Chapter 3, drought was suggested to influence the presence of elephant through
the alteration of available food resources. In this study, Keetch-Byram Drought Index
(KBDI) was used. KBDI reflects the net effect of evapotranspiration and precipitation in
producing cumulative moisture deficiency in deep duff and upper soil layers. The index
ranges from zero, the point of no moisture deficiency, to 800, the maximum drought that
is possible. KBDI was calculated following Keetch and Byram (1968) and Alexander
(1990) using daily climatic data introduced in the previous section.

KBDI = KBDIt−1 +
[800−KBDIt−1][0.968e(0.0486×Tmax)−8.3]×10−3

1+10.88e(−0.0441×Prannual)
− (100×Pr) (4.8)

where KBDIt−1 is previous day KBDI, Tmax is daily maximum temperature, Pr is daily
precipitation and Prannual is the average annual precipitation. Drought day (Dday) was
then identified when standard anomaly of KBDI is over 1.5, while drought event (Devent)
was defined as when at least seven consecutive Dday was measured. Drought intensity and
frequency for baseline and future period were then calculated where KBDIDday and dayDday



Chapter 4. Countrywide HEC risk assessment under climate and land cover change
scenarios in Thailand

89

refer to the value of KBDI and number of day identified as Dday.KBDI was then used
to calculated drought indicators which include Drought intensidy and Drought f requency.
Prior to the calculation of these two drought indicators, drought days (Dday) and drought
events (Devent) must first be identified. Dday was defined as the day with the standard
anomaly of KBDI over 1.5, while Devent is defined as when at least seven consecutive Dday

was measured. The standard anomaly of KBDI, drought intensity and drought frequency
are define as below:-

KBDIstd.anomaly =
(KBDIi,d −µ)

σ
(4.9)

Drought Intensity =
∑KBDIDday

∑dayDday
(4.10)

Drought Frequency = ∑Devent (4.11)

Comparison between KBDI calculated in this study and that derived from satellite
data (Takeuchi et al., 2015) were performed to evaluate the agreement and general per-
formance. Agreement between KBDI-based drought defined in this study and the Palmer
Drought Severity Index (PDSI, Palmer 1965) provided by TerraClim dataset (Abatzoglou
et al., 2018) was also assessed.

Land cover supervised classification

The flow for supervised classification of baseline land cover is shown in Figure 4.5. Five
land cover classes were selected, namely Abandoned, Crops, Plantations, Forest, Built-up,
and Water. The description of each land cover class was adapted from Thailand Land
Development Department (LDD, 2016). Abandoned land comprised of all abandoned
parcels, such as abandoned field crops, abandoned rice field, abandoned perennial crops,
and abandoned orchards. Agriculture land were represented by two classes, crops and
plantations. Crop land cover class included paddy rice, field crop, and shifting cultivation.
Plantations referred to perennial crops and orchards. Forest comprised of both intact
and disturbed evergreen, deciduous, mangrove and swamp forest, as well as ago-forestry.
Built-up represented city and industrial land, while water included both artificial and
natural water bodies.

Prior to performing the classification, satellite dataset were pre-processed to ob-
tain accurate surface information. MOD09A1 product was masked using quality band,
’StateQA’, to remove pixel with cloud, shadow, cirrus, and aerosol. All masked images
available during 2014-2016 were median-composited based on wet months (May-October)
and dry months (December-February). Using temporal profile can support the classifier
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Figure 4.5: Overview of the flow to perform supervised clas-
sification of the land cover map at baseline and to simulation

land cover for four future scenarios

in distinguish crops (Kuenzer et al., 2014). The following spectral indices were then calcu-
lated, Enhanced Vegetation Index (EVI, Huete 1997), Normalized Different Water Index
(NDWI, Gao 1996), Normalized Built-up Index (NDBI, Zha, Gao, and Ni 2010). For
PALSAR dataset, Lee filter (Lee, 1980) was applied and digital numbers were converted
to sigma-naught values (Rosenqvist et al., 2007).

All pre-processed spectral bands and indices from MOD09A1, PALSAR, and SRTM
were used with supervised classification using Random Forest classifier. The training
(136,765 pixels), testing (58,485 pixels) and independent validation (20,817 pixels) sam-
ples were obtained from 2015/2016 land use polygon provided by LDD. The results were
evaluated using producer and user accuracy for each land cover class, as well as the over
all accuracy and Kappa value.

Simulation of future land demand

To simulate future land cover, two inputs are necessary, namely land demand and land
allocation (Figure 4.5). The simulation of future land demand was based on the assump-
tions as follows:-

Water: Water areas were assumed to be constant from 2015 baseline into the future.
Built-up: Built-up areas were based on projections by Gao and O’Neill (2020). Gao

and O’Neill (2020) provided country-level quantification of future built-up land at 10-year
interval under different SSPs (Figure 4.6a). The built-up cover for the year 2040 from
SSP2 and SSP5 were obtained for this study.



Chapter 4. Countrywide HEC risk assessment under climate and land cover change
scenarios in Thailand

91

Forest: Forest areas were assumed to increase in the future based on the recent
trend (2010-2019) of increasing protected areas in Thailand (World Bank, 2020b) and
Thailand National Forestry Strategy which aimed to reach 40% of forest cover by 2036
(RFD, 2017). Across all future scenarios, the same amount of forest areas was assumed.
Forestry industry is not explicitly considered. To simulate future forested area, the
coefficient (βF0) from a linear trend model of the recent forested area under protection
was used to extrapolate for forest land demand in the future (Figure 4.6b).

Protected areas(km2) = βF0 +βF1(Year) (4.12)

Agriculture (Crops/Plantations): The same assumption and simulation tech-
niques were applied for crop land cover class and plantation land cover class. Based on
existing studies, land under agriculture activities were assumed as a function of produc-
tion demand and yield (Alexandratos and Bruinsma, 2012; Stehfest et al., 2019). Histori-
cal data of the top ten highest production agriculture products of Thailand were selected.
Sugar cane, sugar crop, cereal, rice, roots and tubers, and cassava were selected to rep-
resent crops. For plantation, palm oil, palm oil fruit, fruits, rubber natural were used.
Historical agricultural data (production quantity and harvested areas) (FAO, 2020) and
economic data (GDP, % agriculture contribution to GDP, and rural population) (World
Bank, 2020b) were used to fit historical production demand and yield.

Firstly, historical production demand was fitted using GDP, % agriculture distribution
to GDP (Agri%), and rural population (Rural.pop) . For both crops and plantation,
the production regression model achieved R2 > 0.9. A model for historical yield was
calculated using GDP which showed good fit (R2 > 0.7). For future simulation, GDP
and rural population for future scenarios under SSP2 and SSP5 were obtained from
IIASA database, https://tntcat.iiasa.ac.at/SspDb/ (Riahi et al., 2017), while Agri% was
calculated based on historical linear trend. For the future yield, it was assumed based on
SSP narrative that higher agriculture productivity is expected for RCP8.5-SSP5. Hence,
yield was simulated for RCP8.5-SSP5 first and then only two-third of that yield was
assumed to be achieved under RCP4.5-SSP2. The simulated results are shown in Figure
4.6c.

Production (tonnes) = βP0 +βP1(Agri%)+βP2(GDP)+βP3(Rural.pop) (4.13)

YieldRCP8.5−SSP5 (tonnes/km2) = βY 0 +βY 1(GDP) (4.14)

https://tntcat.iiasa.ac.at/SspDb/
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YieldRCP4.5−SSP2 (tonnes/km2) =
2
3

YieldRCP8.5−SSP5 (4.15)

Abandoned: Abandoned land cover was assumed to be fulfilled only after other land
demands are met.

Figure 4.6: Built-up areas projected by Gao, and O’Neill
(2020) (a), forest areas projected from recent historical
trend (b), and historical trend (History), simulated histori-
cal trend (History_calc), and projection result under SSP2

and SSP5 for crops and plantations land cover (c)

Spatial allocation of future land cover

The CLUE-S model (Conversion of Land Use and its Effects Modeling Framework) Ver-
burg et al., 1999; Verburg et al., 2002 was employed to perform spatially explicit allocation
of land cover under future scenarios. The CLUE method was applied in various stud-
ies, including those in Thailand Reidsma et al., 2006; Trisurat, Alkemade, and Verburg,
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2010; Waiyasusri, Yumuang, and Chotpantarat, 2016. The model also allowed multiple
interacting variables and the simulation of spatial policy, such as exclusion areas and
restriction areas Verburg et al., 2002.

To use the CLUE model, four inputs are necessary, namely (i) future land demand
(simulated as discuss in main text), (ii) baseline land cover (satellite image classification
as discussed in main text), (iii) conversion rules, (iv) spatial restriction, and (v) location
characteristics.

Conversion rules comprised of conversion elasticity and sequence. The relative elas-
ticity values range from 0 to 1 (easy conversion to irreversible change) must be defined in
which a general assumption based on cost for investment was considered. For example,
built-up areas are not likely converted due to permanent features, but crops are easily
convertible. Here, we set abandoned class with easiest conversion, followed by crops, plan-
tations, and forest. Water and built-up classes were assumed to not be convertible once
gained. Neighborhood effect was specifically set for built-up class in which conversion to
built-up is more likely when surrounded pixels are already under built-up. Conversion
sequence covers temporal characteristics, but was not considered in this study. For spa-
tial restriction, the existing protected areas were defined as exclusion areas in which no
changes were allowed. This spatial restriction settings allow buffer zone scenarios to be
incorporated. For scenario under 12-km buffer zone, further expansion of exclusion areas
were applied with 12-km buffer from protected areas with known elephant population.

To determine the suitable location for each land cover class, logistic regression was
used. The logistic regression identifies the relationship between land cover type (depen-
dent variable) and a set of possible drivers (independent variables).

ln
Pi

(1−Pi)
= β0 +β1X1i +β2X2i + ...+βnXni (4.16)

where Pi represents the probability of occurrence of a particular land cover class, Xi are
the independent variables, and β is the estimated coefficient. Independent variables that
potentially influenced land use occurrence are anthropocentric drivers (travel time to
cities: Weiss et al., 2018, distance to roads: Meijer et al., 2018, human population count:
LandScan, GDP: World Bank, 2020b), topographic drivers (elevation and slope), climatic
drivers (temperature and precipitation), distance to rivers, soil characteristics including
nutrient level, oxygen level, and rooting conditions FAO/IIASA, 2012. Soil characteristics
are particularly important to determine different type of vegetation land cover. For
example, soil with low oxygen and rooting level is likely to be unsuitable for agriculture.
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Soil data is categorical. Thus, dummy coding was applied. Multicollinearity between
independent variables was performed. In addition, the total number of independent
variables was limited to seven, reducing potential over-fitting of the model. The list
of driving factors (independent variables) and the regression coefficient of different land
cover types are shown in Table 4.8. Each land cover typed showed different characteristic.
The performance of land cover simulation was assessed by comparing the simulated land
cover map in 2015 to land cover classification result.

4.2.6 Hazard modeling and projection

The modeling of hazard is comprised of three main sub-indicators, namely climatic suit-
ability for elephant, landscape suitability for elephant, and dispersal probability of ele-
phants. In total, 20 future projects were obtained under hazard, 5 GCMs under each
future with different climate scenarios (RCP-SSP) and buffer zone combination.

Suitability of climate and landscape for elephants

The methodology for habitat suitability followed the SDM techniques in which location
of known species presence are used to identify relationships with ecologically relevant
environmental variables, resulting in probability ranging from 0 (no chance of presence)
to 1 (high presence probability).

Climatic and landscape suitability were separately modeled because climatic acts on
a larger scale in compare to landscape variables, thus they should be separately modeled
(Mateo et al., 2019; Fournier et al., 2017). Specifically, climatic suitability reflects species
built-in physical tolerance to factors such as thermal regulation. The suitable climatic
range should capture the whole spectrum of species tolerance regardless of their location.
Hence, regional coverage was considered when modeling climatic suitability (incorporate
all 13 range countries), while landscape suitability modeling considered areas within
Thailand.

Environmental factors under climatic suitability models include six bioclimatic and
three drought variables: bio1, bio2, bio3, bio12, bio14, bio15, drought intensity, drought
frequency, and KBDI in dry quarter. Nine factors were considered for landscape models,
namely forest cover within 6km, percent food cover (forest and crop land cover) within
6km, distance to crop, distance to forest, distance to plantation, distance to transport,
distance to urban, distance to water, and TRI. Environmental variables from the baseline
scenario are shown in Figure 4.7 and 4.8 for climate and landscape suitability respectively.
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Figure 4.7: Environmental variables used for climatic suit-
ability modeling.

Figure 4.8: Environmental variables used for landscape suit-
ability modeling.
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The overall procedures are similar for both climatic and landscape suitability model,
but the presence dataset and environmental variables were differed. Figure 4.9a and
4.9b illustrated the overall methodology employed for climatic suitability and landscape
suitability modeling respectively. In this study, the ensemble modeling approach was
employed using BIOMOD2 package (Thuiller et al., 2020) with R version 4.0.2 (Team,
2020).

(a)

(b)

Figure 4.9: The overview of methodology used for climatic
(a) and landscape (b) suitability modeling to estimate the

probability of elephant presence.

For climatic suitability, the elephant presences (Figure 4.10a) were obtained from
GBIF database (http://gbif.org) and previous literature (Bi et al., 2016; Sampson et al.,
2019; Naha et al., 2019). Spatial filtering was applied to reduce potential autocorrelation
among presence points (Fourcade et al., 2014). Only one occurrence was considered
within 25km (1 pixel). After spatial filtering, 328 presences were left for further modeling.
Absence locations of elephant are required for modeling, but not available. Therefore,
five sets of 5,000 random pseudo-absence points were generated instead. The data was

http://gbif.org
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Figure 4.10: The elephant occurrences as well as the pseudo-
absences (PA) for climatic (a) and landscape (b) suitability
model. Five and three replicas were generated for climate

and landscape.

then split into 70%/30% for training/testing with 5 replicas. For parameter tuning,
first multicollinearity was checked in which variable with r < |0.75| and V IF > 10 were
removed.

For landscape suitability, the elephant presences (Figure 4.10b) were digitized from
the Department of Thailand National Parks, Wildlife and Plant Conservation (DNP n.d.).
Similar procedures to climatic suitability modeling was employed. First, spatial filtering
was applied which only allowed one presence point within 2 km radius resulting in 3,018
presences. Random pseudo-absences were generated with spatial restriction in which only
areas within 30-km buffer from protected areas and not within 1km from known presence
location were allowed. This is to ensure representative of true absence points. Three sets
of 20,000 pseudo-absence points were generated. Multicollinearity was also applied using
the same criteria with that of climatic suitability modeling.

The model performance was evaluated using two index, True Skill Statistic (TSS,
Allouche, Tsoar, and Kadmon 2006) and area under the curve (AUC) of the receiver
operating characteristic (ROC). TSS takes into account both omission and commission
errors and ranges also from −1 to 1. For TSS, the values from 0.2 to 0.5 were poor, from
0.6 to 0.8 were useful, and values larger than 0.8 were good to excellent. For AUC, the
prediction accuracy is considered to be no better than random for AUC values of <0.5,
poor between 0.5–0.7, and useful in the range 0.7–0.9. AUC values that are greater than
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0.9 are considered to be excellent. Generalized Linear Modeling (GLM, McCullagh 1984),
Generalized Additive Modeling (GAM, Trotter 1986), Generalized Boosted Modeling
(GBM, Ridgeway 1999), Multivariate Adaptive Regression Spline (MARS, Kariya 1991),
Random Forest (RF, Pavlov 2019), Maximum Entropy (MaxEnt, Phillips, Anderson, and
Schapire 2006 were chosen for model training based on previous literature (Kanagaraj
et al., 2019). Then, only model with T SS ≥ 0.6 were considered for ensemble calculation
with weighted average.

Area reachable by wild elephants

Dispersal probability is also important to be considered. The closer to elephant habitat,
the more likelihood for communities to face with HEC which was demonstrated in Chapter
3. Euclidean distance from the boundary of protected areas with known elephant presence
was calculated. The inverse function was then applied to place a higher value on the areas
with closer proximity to the boundary of elephant habitats. In addition, the distance was
restricted to 50km in which beyond this threshold likelihood became 0. This is to reflect
that elephants are not able to travel beyond this distance considering the landscape
condition in Thailand.

4.2.7 Exposure modeling and projection

Exposure was represented by number of rural population. The projected maps provided
by Gao (2020) under SSP2 and SSP5 were at 10-year interval from 2010 to 2100. For
this study, the data at the year 2040 were used for calculation. Since the population
count is commonly skewed, natural log was applied to the data before further processing
was performed. In total, two exposure future projections were obtained which represent
climate change scenarios (RCP-SSP) without the influences from buffer zone policy.

4.2.8 Vulnerability modeling and projection

Vulnerability was comprised of human capital and drought probability. Total of ten future
projections were obtained with 5 GCMs under each climate change scenario (RCP-SSP)
without the influences of buffer zones. The detail of each variable was discussed below.

Human capital

Human capital reflects level of susceptibility to the exposed hazard. In this study, tech-
nology, education, and income level were represented by percentage of household with
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internet access (%Internet), percentage of workforce with higher secondary (%Edu), and
the average household monthly income (Income). Accessibility to information sharing
and technology were suggested reduce crop damage and strengthen HEC-affected com-
munity (Nyirenda et al., 2018). Additionally, previous research showed that education
level allowed possible access to alternative sources of income and indicated the ability to
implement more effective crop protection measures (Nyirenda et al., 2018). Low income
limited household’s ability to mitigate conflict and more likely to suffer greater impacts
from wildlife-induced loss (Inskip and Zimmermann, 2009). The three sub-indicators
were obtained from Thailand National Statistical Office (NSO, 2020) at province-level,
the finest level of available data from the year as close to 2015 as possible. The data was
from 2015, 2019, and 2015 for %Internet, %Edu, and Income respectively.

Drought probability

Drought was chosen as it historically disrupted Thailand agricultural sector (Prabnakorn
et al., 2019) and expected to cause large yield reduction in the future (Leng and Hall,
2019). Drought probability was calculated to represent added pressure to communities
exposed to HEC.

Drought Probability =
∑Devent 20 years

N
(4.17)

where Devent 20 year refers to the number of drought events, on when drought are measured
at least seven consecutive drought days, over the 20-year period. Drought probability
then measures the number of drought event during 20-year period over the maximum
number of drought detected in the region (N).

4.2.9 Risk index aggregation and projection

To generate composite index, I followed the guideline as provided by United Nations
(2019a). Each sub-indicators under each component were first check for multicollinear-
ity. All sub-indicators must then be normalized. In this study, min-max normalization
was applied. In addition, weighting can be incorporated when aggregate sub-indicators.
However, the level of influence from each sub-indicators was not cleared and uncertain
to determine. Therefore, equal weighting was used. The aggregation followed geometric
mean method. Similar normalization, equal-weighting, and aggregation approach were
also applied for well-known index, such as Human Development Index (HDI, United
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Nations Development Program 2020). The normalization and geometric mean are repre-
sented as follows:-

I
′
i =

Xi −Xmin

Xmax −Xmin
(4.18)

(
n

∏
i=1

I
′wi i

) 1
∑n

i=1 wi

=
n
√

I
′w1
1 I

′w2
2 · · · I ′wn

n (4.19)

where Xi is the value of indicator i, while Xmin and Xmax represents minimum and maximum
value within the range of indicator i respectively. I

′
i refers to normalized sub-indicator i

and wi represents weighting power, which is equally set in this study. The score of risk
and its underlying components ranges from 0 to 1. A 5-class equal interval classification
was applied from Very Low to Very High.

4.2.10 Validation

Validation of HEC risk require long-term historical data of HEC events and related
information (e.g. loss quantity, compensation records, etc.), but this information has
not been tracked systematically for Thailand. Alternatively, we performed validation
using only location of HEC events from Khaoyai-Dong Phayayen FC(2) together with 60
sets of randomized HEC pseudo-absences (200 ≤n≤2,400) as shown in Figure 4.11. This
independent HEC records were collected with GPS coordinates by DNP (DNP, 2019)
and WongramWongram and Salee, 2017 in 2019 and 2012 to 2017 respectively. The area
under the receiver operating characteristic curve (AUC), a threshold independent metric,
was generated from the true positive (sensitivity) and false positive (1-specificity).

4.3 Results and discussion

4.3.1 Climatic variables evaluation

Accuracy of ERA5 and NEX-GDDP climate data

The Root Mean Square Error (RMSE) is calculated as in Table 4.5, while the overall
range of each dataset is shown in Figure 4.12. The results showed similar performance
with studies from other regions. The RMSE of minimum and maximum temperature
ranged between 1.6 to 3.5 depending on the dataset. The RMSE of ERA5 were at the
lowest error among the chosen dataset. The results were similar to a previous study in
China (Wang et al., 2020) and with lower RMSE than that in Asia (Mahto and Mishra,
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Figure 4.11: HEC presences (n=803) from Khaoyai-Dong
Phayayen forest complex as collected by a previous study
(Wongram and Salee, 2017) and the Department of National
Park, Wildlife and Plant Conservation (DNP, 2019) and an

example of randomized HEC absences.

2019). The error of precipitation were relatively high across the dataset, ranging between
10.5 to 15.5 mm.day−1. A study in China identified higher RMSE of ERA5 precipitation
at the lower attitude, up to approx. 9 mm.day−1(Wang et al., 2020). The average daily
precipitation were lower for all models compared to the observations. Close inspection
showed that both ERA5 and NEX-GDDP dataset contain higher number of days without
rain.

Evaluation of simulated KBDI and drought indicator

The evaluation of calculated KBDI based on the chosen climatic dataset with those calcu-
lated from satellite-derived data showed overestimation (Figure 4.13a). The comparison
indicated that overestimation of ERA5-derived KBDI were more likely to happen at the
lower KBDI level. Figure 4.13b compared the temporal pattern of ERA5-derived KBDI
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Figure 4.12: Comparison of observed climatic values from
weather station (n=124) to ERA5 and 5 General Climatic
Models (GCMs) from GDDP-NEX dataset under RCP4.5

and RCP8.5 scenarios over Thailand during 2015.
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Table 4.5: The Root Mean Square Error (RMSE) between
observed climatic values from weather stations (n=124) and
different climatic dataset chosen for this study, namely
ERA5 and 5GCMs under RCP4.5 and RCP8.5 from NEX-

GDDP

RMSE
Variables Pr Tmax Tmin

Baseline ERA5 10.58 2.18 1.60

RCP4.5 (A1/B1)

CESM1-BGC 15.58 3.51 2.49
MPI-ESM-MR 12.92 2.75 2.27
MIROC5 14.31 3.32 2.48
IPSL-CM5A-MR 12.79 2.78 2.50
CanESM2 12.53 2.96 2.32

RCP8.5 (A2/B2)

CESM1-BGC 13.43 3.03 2.58
MPI-ESM-MR 13.53 2.75 2.30
MIROC5 14.13 3.15 2.12
IPSL-CM5A-MR 12.52 2.92 2.79
CanESM2 12.53 2.84 2.45

and Satellite-derived KBDI which also showed overestimated from ERA5 at lower KBDI.
This was likely influenced by the high RMSE and lower daily average discussed in the
previous section. Moreover, the satellite-derived KBDI are at smaller spatial resolution
(4km) which also likely causes this discrepancy. Nevertheless, the general temporal pat-
tern between both data remain relatively similar.

The identification of drought was also evaluated as shown in Figure 4.13c. Overall,
the calculated KBDI in this study agreed with majority of the drought identified from
PDSI result. Since PDSI was measured in monthly unit, most of the missed identifica-
tion of drought from KBDI consisted of short drought days as highlighted in blue and
likely were not detected in PDSI. In 2009-2010, severe drought was reported in Thai-
land (NOAA/National Weather Service, 2019) which was detected by KBDI, but not
PDSI. Hence, the drought derived from KBDI in this study deems to have acceptable
performance.
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(a) (b)

(c)

Figure 4.13: Comparison of KBDI value (a) and temporal
pattern (b) calculated from ERA5 and satellite-based cli-
matic dataset and (c) comparison of KBDI from ERA5 and

PDSI which is a commonly used drought indicator
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4.3.2 Landscape variables evaluation

Baseline land cover classification map

The accuracy of the baseline land cover was shown in Table 4.6. Overall accuracy was
0.89 with Kappa of 0.83 which indicates highly accurate result. Most land cover class
showed moderate to high producer and user accuracy. Only abandoned land cover yield
lower user accuracy at 0.17. Based on LDD definition, the training samples for abandoned
include mixed of various abandoned land, such as abandoned croplands, plantations, and
aquaculture ponds. Therefore, the low accuracy was likely due to the lack of unique
spectral signatures of such land cover class. The map of baseline land cover was shown in
Figure 4.14. Majority of the areas were covered by crops land cover class (> 250,000 km2),
followed by forest, plantation, water, built-up, and abandoned respectively. Additionally,
the classified map showed that most of the protected areas were surrounded by agriculture
land, mostly crops cover type. The eastern and southern areas were distinct in which
plantations and orchards were the dominant land cover surrounding forested areas.

Table 4.6: The accuracy of the baseline land cover from
the supervised classification was measured by producer ac-

curacy, user accuracy, overall accuracy, and Kappa.

Variables Producer Accuracy User Accuracy
Abandoned 0.75 0.17 Overall
Crops 0.85 0.94 Accuracy
Plantations 0.86 0.73 0.89
Forest 0.92 0.95
Built-up 0.89 0.60 KAPPA
Water 0.87 0.83 0.83

Simulated results of the future land demands

The projection of land cover demand is listed in Table 4.7, while the proportion of each
class is shown in Figure 4.15. The demand for agriculture lands was reduced due to
an increase in yield production. The RCP8.5-SSP5 scenario showed large increase in
abandoned land compare to RCP4.5-SSP2.

Simulated result of the future land cover spatial allocation

Prior to fitting logistic regression to determine suitable probability for each cover type,
multicollinearity was performed in which elevation and temperature were found to have
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Figure 4.14: The baseline land cover map for Thailand which
was generated by supervised classification of satellite data.

high correlation (r2 > 0.85). Therefore, elevation and temperature are not included in
the same regression model. The list of driving factors (independent variables) and the
regression coefficient of different land cover types are shown in Table 4.8. For each
land cover type, not all driving variables are significant. Each land cover typed showed
different characteristic.

The maps of land cover projection for the year 2045 under four different scenarios are
shown in Figure 4.16. Large expansion of abandoned land were projected under RCP8.5-
SSP5 (A2/B2) scenario , especially at the northeastern part of Thailand near the country
border. Built-up areas under RCP8.5-SSP5 (A2/B2) increased in the east of Bangkok and
the southern region of the country. On the other hand, RCP4.5-SSP2 (A1/B1) projected
that built-up areas were likely expanded in the eastern region of Thailand.

The restriction posed on the buffer zone resulted in the stable areas of agriculture
lands near the protected areas, while conversion to abandoned lands were projected in
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Table 4.7: The land demand in km2 for baseline scenario
were obtained from 2015 land cover classification map and
that for future scenarios at year 2045 were simulated under

RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5 (A2/B2).

Land cover 2015 2045
RCP4.5-SSP2 (A1/B1) RCP8.5-SSP5 (A2/B2)

Abandoned 1,559.25 14,742.13 72,044.37
Crops-Rice 257,860.75 237,798.63 185,831.92
Plantations-Orchards 63,202.75 55,118.22 46,912.84
Forest 193,837.75 203,951.28 203,951.28
Built-up 6,120.25 10,970.50 13,840.35
Water 11,574.00 11,574.00 11,574.00

Figure 4.15: The proportion of land demand for baseline
obtained from land cover classification and future simulated
under RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5 (A2/B2).

the same areas when no restriction was placed. Abandoned land cover types were usually
projected near existing forested cover.

4.3.3 Hazard index

Performance of suitability model

The model performance was measured from TSS and ROC values. The result are shown
in Figure 4.17a and 4.17b for climate and landscape suitability respectively. Three mod-
els under climatic suitability (GBM, GAM, and RF) had TSS ≥ 0.6 and were selected for
ensemble, while two models (GBM and RF) under landscape suitability met this criteria.
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Figure 4.16: Future land cover map projected under four
scenarios A1: RCP4.5-SSP2-BZ, A2: RCP8.5-SSP5-BZ, B1:
RCP4.5-SSP2-no BZ, and B2: RCP8.5-SSP5-no BZ. RCP-
Representative Concentration Pathways, SSP-Shared So-

cioeconomic Pathways, and BZ-Buffer zones.
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Table 4.8: Driving factors for location suitability with asso-
ciated coefficient (β) of significant factors, and AUC for each

land cover type.

Variables Abandoned Crops Plantations Forest Built-up Water
constant -7.2077 -9.1528 -2.6194 -2.8961 -25.0439 -0.6300
access_cities - - - - -0.0732 0.0039
access_rivers 0.0003 - - - - -0.0005
access_roads - -0.0004 -0.0001 0.0002 -0.0001 -
GDP - - 0.0000 0.0000 0.0000 -
population - - 0.0004 - 0.0069 -
temperature -0.0023 0.4391 - - 0.8871 -
precipitation 0.0016 -0.0021 0.0018 0.0002 -0.0019 -
elevation - - -0.0088 0.0034 - -0.0099
slope - - - 0.4706 - -
soil_nutrient_high - - -1.3959 - - -
soil_nutrient_med. - - -1.469 - - -
soil_oxygen_high -2.7516 -0.3724 - - - -1.3520
soil_oxygen_med. -2.4622 0.7534 - - - -0.6208
soil_rooting_high - 1.3128 - -1.0578 - -1.0887
soil_rooting_med. - 0.9200 - -0.4572 - -0.7068
AUC 0.937 0.931 0.904 0.971 0.979 0.843

These models, thus, were used for ensemble modeling with weighted average. The coeffi-
cient of variation computed for the ensembled results under both climate and landscape
suitability showed high agreement among the models, 0.05 and 0.3. Variations were larger
at central and northeastern areas. The ensembled models were used for projection.

Comparison of future habitat suitability between climate and landscape con-
ditions

Overall, Thailand became less suitable under both future climatic and landscape con-
sideration (Figure 4.18). However, more reductions were likely the result of changes in
climatic conditions. All GCMs showed an overall reduction in suitability, except for
MIROC5 under RCP8.5-SSP5 (A2/B2) in which a stable condition with a slight increase
was projected. The country’s median climatic suitability at the baseline was 0.45 and
decreased by 0.01-0.28 depending on GCMs. Among different GCMs, CanESM2 showed
the largest reduction. The maximum suitability reduced from 0.90 at baseline scenario
to an average of 0.76 and 0.75 under RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5 (A2/B2)
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(a)

(b)

Figure 4.17: True Skill Statistics (TSS) and area under the
curve of the receiver operating characteristic (ROC) of cli-
matic suitability (a) and landscape suitability (b) model
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respectively. Comparison of the same GCM under A1/B1 and A2/B2 scenarios showed
that all models predicted slightly lower suitability under A1/B1 except for MIROC5. For
further analysis, an average of 5 GCMs within the same scenario was used resulted in
similar suitability of 0.34 and 0.32 for A1/B1 and A2/B2 respectively.

Figure 4.18: Boxplot of suitability probability, indicating
likelihood of elephant presences, for baseline period and fu-
ture scenarios under climatic (with five GCMs) and land-

scape models.

For landscape suitability results, the baseline was projected with an average suitabil-
ity of 0.05 across the whole country. The median values were low because high suitable
areas were mostly clustered and concentrated near protected areas. Under future scenar-
ios, the suitability decreased around 0.01-0.02 depending on the scenarios. RCP4.5-SSP2
(A1/B1) had a slightly larger decrease compared to RCP8.5-SSP5 (A2/B2). The max-
imum suitability under baseline was 0.98 which reduced slightly to 0.96 under A1/B1,
but remained the same under A2/B2. The impacts from buffer zones implementation
was not evident which likely due to their small spatial coverage compared tot he whole
study area.

Although the spatial pattern showed an overall reduction in most of the areas, north-
western shift in climatic suitability was observed, especially near FC5, 8, and 9 (Figure
4.19a). More localized geographical changes were projected under landscape suitability,
especially as a result of HEC buffer zones as visible under A1 and A2 scenarios (Figure
4.19b). Under landscape suitability, abandoned land cover class which were projected to
occur between forest area and agriculture land has potential for conservation planning,
but its applicability is beyond the scope of the current study.
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Figure 4.19: Relative probability of elephant presences
(habitat suitability). a. Climatic suitability and b. land-
scape suitability were projected under baseline and fu-
ture scenarios, A1: RCP4.5-SSP2-BZ, A2: RCP8.5-SSP5-
BZ, B1: RCP4.5-SSP2-noBZ, and B2: RCP8.5-SSP5-noBZ.
Solid circle indicated climate-induced changes, while dashed

circle highlighted effects of buffer zones.
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Composite hazard component

The high level of baseline hazard (>0.8) was concentrated close to protected areas, espe-
cially near Eastern FC(1), Khao Yai-Dong Phayayen FC(2), Phukieo-Namnow FC(4),
Western FC(10), Khaengkrachan FC(11), and Klong Saeng-Khaosok FC(13) (Figure
4.20), which corresponded to current areas estimated to host large number of elephant
population (Figure 4.1). However, these locations were projected with an overall de-
creasing hazard level across future scenarios (Figure 4.20). On the other hand, increas-
ing future hazard level was estimated for some areas, specifically in Lamnampai-Salawin
FC(8), west of Mae Pin-Omgoi FC(9), west of Western FC10, Phumieng-Phuthon FC(5),
and north of FC2. Since dispersal probability remained constant under future scenarios,
changes in suitability sub-indicators were the main cause of variations in future hazard.

The overall changes were similar across the four future scenarios with localized dif-
ferent in level of changes as shown in Figure 4.20 under S1-S3 highlighted areas. In S1
highlighted areas, west of FC8 and FC9 were projected with an increase in hazard under
scenarios with buffer zones (A1/A2, >100% change in hazard level in some locations)
compared to B1/B2. For S2 highlighted area in FC10, larger increase in hazard under A1
and B1 (RCP4.5-SSP2) was projected on the west side, but on the east side A2 and B2
scenarios projected with higher hazard. In S3 highlighted areas, opposite from situation
in S1, the buffer zone policy (A1/A2) was projected to cause a reduction in hazard level.

4.3.4 Exposure component

The exposure levels were calculated with min-max normalization of natural-log trans-
formed rural population based on Gao (2020) results. The exposure map at baseline,
RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5 (A2/B2) are shown in Figure 4.21. Reduction
in exposure level was projected in most areas of Thailand due to the combination of
urban expansion and lower rural population in the future. Large reduction was projected
in three locations: peripheral of Bangkok, northeastern plain, and southern region. Most
areas adjacent to protected areas were projected with rather stable exposure level (within
±5-6% increase). The overall greater reduction in the number of exposed persons under
RCP8.5-SSP5 (A1 and B1), -38%, compared to RCP4.5-SSP2 (A2 and B2), -21% (Ta-
ble 4.9). This larger reduction in exposed population under RCP8.5-SSP5 corresponded
with the demographic trajectory of SSP5 in which relatively low population growth and
fertility with high migration and urbanization (O’Neill et al., 2017).
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Figure 4.20: The hazard level aggregated from all sub-
indicators for baseline and future scenarios (A1: RCP4.5-
SSP2-BZ, A2: RCP8.5-SSP5-BZ, B1: RCP4.5-SSP2-noBZ,
and B2: RCP8.5-SSP5-noBZ), as well as the average per-
centage change from baseline are shown. Selected areas with

large increase or decrease are highlighted in S1-3.
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Figure 4.21: The exposure level calculated with min-max
normalization of natural-log transformed rural population
at the baseline, RCP4.5-SSP2 (A1/B1), and RCP8.5-SSP5
(A2/B2) scenario showed from left to right. The average
change in percentage under future scenarios was also com-

puted.
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4.3.5 Vulnerability component

Static socioeconomic sub-indicators

Vulnerability scores for socioeconomic sub-indicators are shown in Figure 4.22, which in-
cluded household access to Internet (a), workforce with at least higher secondary educa-
tion (b), and household average monthly income (c). These sub-indicators were assumed
static and remained constant for across future scenarios. For all sub-indicators, the north-
ern region was consistently one of the highest vulnerable areas. Northeastern regions and
the south most areas of Thailand were closely followed with high vulnerability, especially
under income sub-indicator.

Figure 4.22: The vulnerability scores for socioeconomic sub-
indicators under baseline including (a) household access to
Internet, (b) workforce with at least higher secondary edu-

cation, (c) and household average monthly income.

Drought probability sub-indicator

The results of future drought probability showed an increase across all GCMs and sce-
narios 4.23. Similar projection with the overall increasing drought was also previously
identified for Thailand (Seeboonruang, 2016). CESM1-BGC showed the highest increase,
while CanESM2 had the smallest increase. Although all five General Circulation Models
(GCM) under RCP8.5-SSP5 (A2/B2) had slightly higher drought probability compared
to RCP4.5-SSP2 (A1/B1), they were very close without clear differences in spatial dis-
tribution. Similar projections of future drought in southeast Asia was identified with an
average increase and relatively low spatial differences among RCPs Lu, Carbone, and
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Figure 4.23: Comparison between drought probability from
five selected GCMs at baseline period and the future
scenarios under RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5

(A2/B2) showed an increase across all models.

Grego, 2019. The largest increase was projected in northern region near FC8 and FC9.
Within this region, some areas had low to no drought likelihood in baseline, but were
projected to increase 60% to >100%. Despite increasing in lower magnitude, the FC10,
FC4, FC2, and FC1 also showed higher in drought probability of around 20% to 50%
increase depending on the areas.

Composite vulnerability component

With a static vulnerability scores from socioeconomic sub-indicators, the future aggre-
gated vulnerability level were projected to increase due solely to the higher drought
probability. At the baseline period, moderate vulnerability was mainly projected at
northeastern region and sparsely clustered in northern and southern areas of Thailand
(Figure 4.25). Across all future scenarios, RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5
(A2/B2), vulnerability increased at almost all areas in north, northeastern, and central
region of Thailand. The largest increased was projected near FC8, followed by FC9,
FC10, Srilanna-Khuntan FC (7). Other areas that also projected with an increase, but
at a lower level, FC4 and FC11. Overall higher vulnerability level was expected.
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Figure 4.24: Spatial distribution of drought probability at
baseline period and the future scenarios under RCP4.5-SSP2
(A1/B1) and RCP8.5-SSP5 (A2/B2) averaged across five

GCMs.

4.3.6 Composite HEC risk

Validation of baseline projection

Due to inadequate information from HEC incidents, validation was only performed for
baseline HEC risk from FC2. Validation data with HEC presences and 60 sets of ran-
domized HEC absences were used. The results showed an average area under the receiver
operating characteristics curve (AUC) of 0.71 with 0.01 standard deviation (Figure 4.26).

HEC Risk under baseline and future scenarios

The baseline HEC risk in Thailand was under Very Low to Low (0.0-0.4) in most lo-
cations and increased to Moderate and High (0.4-0.8) closer to protected areas (Figure
4.27). Five FCs with the highest average baseline HEC risk were FC1, FC2, FC14, FC11,
and FC13 respectively. These FCs remained at the top five under future scenarios, but
FC1 was projected to replace FC2 as an area with the highest HEC risk. Under fu-
ture scenarios, areas that were projected to face with increasing HEC risk included FC8,
FC9, west of FC10, surrounding areas of FC5, north of FC2. Ares that showed the
largest reduction in HEC risk level were at the southern region close to FC14 and west
of FC2. In both locations, urban expansion was expected to reduce exposure and hazard
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Figure 4.25: The vulnerability level aggregated from all
sub-indicators for the baseline, RCP4.5-SSP2 (A1/B1), and
RCP8.5-SSP5 (A2/B2) as well as the average percentage

change.



Chapter 4. Countrywide HEC risk assessment under climate and land cover change
scenarios in Thailand

120

Figure 4.26: Receiver operating characteristic (ROC) curves
for 60 run of HEC validation data was calculated with an
average area under the curve (AUC) and its standard devi-

ation.

level through decreasing in rural exposed human population and habitat suitability re-
spectively. Although overall similar spatial pattern was projected for all four scenarios,
variations in some locations can be identified. Under A1/B1 (RCP4.5-SSP2) compared
to A2/B2 (RCP8.5-SSP5), larger spatial coverage of increasing and decreasing HEC risk
was projected on the east and west of FC10 respectively (Figure 4.27, S2). In S1 and S3
area (Figure 4.27), impacts from buffer zones were identified where increase and decrease
in HEC risk were estimated under A1/A2 (buffer zone) scenarios.

The number of population under exposed hazard at different vulnerable level varied in
the future as shown in Table 4.9. Overall reduction under all hazard level was projected
across four future scenarios, but higher level of vulnerability was estimated within each
hazard level. This pattern is due to the increase in drought probability and subsequent
vulnerability level. Under Very High Hazard, approximately 332,000 exposed persons
were projected at baseline period, but decreased to around 19,000, 11,000, 15,000, and
11,000 at A1, A2, B1, and B2 scenario respectively. Total of approximately 1.4 million
persons were estimated to be exposed to High Hazard at baseline period which then
decreased 2-3 times in future scenarios. Similar pattern of exposed population also pro-
jected under Moderate Hazard and Low Hazard with less reduction (<0.25 time decreased
from baseline), despite an over increase in exposed area under some scenario, A1 and A2.
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Figure 4.27: The HEC risk aggregated from hazard, expo-
sure, and vulnerability components for baseline and future
scenarios (A1: RCP4.5-SSP2-BZ, A2: RCP8.5-SSP5-BZ,
B1: RCP4.5-SSP2-noBZ, and B2: RCP8.5-SSP5-noBZ), as
well as the average percentage changes from baseline are

shown. Selected areas are highlighted in S1-3.
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Table 4.9: The number of population (shown in 1,000
persons) with different level of vulnerability that were
exposed to varying levels of hazard under baseline, A1
(RCP4.5-SSP2-BZ), A2 (RCP8.5-SSP5-BZ), B1 (RCP4.5-

SSP2-noBZ), and B2 (RCP8.5-SSP5-noBZ) scenario.

Exposed population (1,000 person)
Hazard Vulnerability Baseline A1 B1 A2 B2
Very High Moderate 9 18 14 10 11

Low 323 1 1 0 0
Very Low

Total very high hazard 332 19 15 11 11
High Moderate 115 613 613 468 480

Low 1,286 176 204 86 117
Very Low 0

Total high hazard 1,401 789 817 554 597
Moderate Moderate 213 1,290 1,228 1,296 1,121

Low 1,963 468 498 334 395
Very Low 25

Total moderate hazard 2,201 1,758 1,727 1,630 1,516
Low Moderate 537 2,280 2,057 1,992 1,881

Low 3,553 1,421 1,399 1,332 1,270
Very Low 66

Total low hazard 4,156 3,701 3,457 3,314 3,151
Very Low Moderate 7,029 19,605 19,894 15,103 15,377

Low 24,146 5,362 5,325 3,790 3,749
Very Low 374 42 42 36 36

Total very low hazard 31,549 25,010 25,261 18,928 19,161
Total exposed population 39,638 31,276 31,276 24,436 24,436
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4.4 Discussion

4.4.1 Policy implications

Our projections suggested a northward shift in HEC risk which resulted in an average of
1.7% to 7.4% increase within four FCs in northern region. On the other hand, FCs in
lower latitude showed decreasing future HEC risk of -3.1% to -57.9% on average.

Higher hazard and vulnerability levels due to more favorable habitat conditions and
increase in drought probability were projected to cause an increase in HEC risk for FCs
in northern regions of Thailand. This shift in suitable ranges of various species to higher
latitude or elevation were observed and projected in various species Scheffers et al., 2016.
Although these areas currently host relatively low wild elephant population and face
Very Low level of HEC risk (Figure 4.27), climate change impacts through drought was
expected to reduce the capacity of exposed population to bare damages from HEC in the
future. Local observations already identified changing in weather patterns which caused
decrease in crop yield, intensified extreme events, and escalated resource competitions
(Savo et al., 2016). Various strategies to enhance adaptive capacity and coexistence
can be considered, such as improving educational attainment (O’Neill et al., 2020), and
behavioral change training (Eeden et al., 2018). Additionally, since these areas are still
not fully developed, land use planning to selectively limit access to potential habitats can
also be applied.

On the other hand, varying level of risk reduction was estimated for most FCs in
southern, eastern, and lower western regions of Thailand. Many of FCs in these regions
currently host large elephant populations, but existing favorable habitat conditions were
expected to decline (Figure 4.27). Since population responses usually lag behind distur-
bances (Kuussaari et al., 2009), the reduction in habitat suitability would not immediately
lead to decrease in population and subsequent HEC hazard. Consequently, those FCs
with less favorable habitat conditions may retain high number of elephant for a period of
time, but its long-term survival are likely hammered with increasing localized extinction
(Figueiredo et al., 2019). Human-dominated land cover around these protected areas will
further restrict elephants’ dispersal to more suitable habitats. Therefore, management
actions must be identified to buffer the future impacts which may include establishment
of protected area networks (Maron et al., 2015), increasing existing carrying capacity
through habitat improvements (Bonebrake et al., 2018), and translocation of population
to more suitable locations (Bonebrake et al., 2018).



Chapter 4. Countrywide HEC risk assessment under climate and land cover change
scenarios in Thailand

124

This study also evaluated the impacts of HEC buffer zones within which no additional
land conversion was allowed under future scenarios. However, it was identified that buffer
zones with this simple restriction can cause both negative and positive impact on HEC
risk. Further analysis with more specific restriction is, hence, necessary to evaluate
appropriate buffer zones.

4.4.2 Caveats and limitations

First, although multiple GCMs was employed to cover ranges of plausible climate, results
of future projection still contained possible uncertainty (Sanderson, Knutti, and Cald-
well, 2015). Second, bias could also be present in the elephant presence-only data used for
suitability modeling. Although the official database and creditable materials were used
to obtain presence-only data, the species may have broader niche. Third, simplified land
cover classes and straightforward assumptions were made to project future land cover.
Here, I did not specify the usage and potential impacts of abandoned land cover. Large
agricultural areas in this study were projected to convert into abandoned lands which has
potential to support conservation causes as well as bioenergy demand. Each will cause
opposite impacts on the distribution of elephants and the subsequent HEC risk. Fourth,
when apply to different species, care must be taken to ensure ecologically relevant un-
derlying variables and sub-indicators are chosen. Additionally, potential improvements
of the proposed framework was also identified. Since human perception and tolerance
are an informative determinant of human-wildlife coexistence (Nyhus, 2016; Dickman,
2010; Struebig et al., 2018), more exhaustive list of vulnerability sub-indicators should
be incorporated. Sensitivity analysis and further evaluation of contribution from each
components can also be performed. More realistic dispersal probability can also be eval-
uated. Lastly, since our findings suggested that buffer zones can alter spatial locations
of HEC risk, more comprehensive spatial policy can be evaluated.

4.5 Conclusion
In this chapter, I adopted risk assessment framework from IPCC (IPCC, 2012) and
UNSDRR (UNISDR, 2015) with plausible future scenarios from RCP-SSP climate change
projections and buffer zone (BZ) policy to evaluate the spatial distribution of HEC risk.
To demonstrate its application, I applied the framework to evaluate HEC risk in Thailand
during the baseline (2000-2019) and near future (2025-2044) by considering four future
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scenarios which included A1 (RCP4.5-SSP2-BZ), A2 (RCP8.5-SSP5-BZ), B1 (RCP4.5-
SSP2-noBZ), and B2 (RCP8.5-SSP5-noBZ). The specific objectives were to (i) assess the
change in hazard components between baseline and future scenarios, (ii) assess the change
in exposure components between baseline and future scenarios, (iii) assess the change
in vulnerability components between baseline and future scenarios, and (iv) compare
baseline HEC risk and quantify relative changes in the future.

For the first objective, majority of the FCs in Thailand, especially those located in
eastern, lower western, and southern region, were projected with reduction in hazard level
across all future scenarios. On the other hand, some locations with increasing hazard are
situated at the northern region, including FC5, FC8, FC9, and west of FC10. Inspecting
the contributions between climate and landscape suitability, I identified prominent and
uniform reduction as a result of changes in future climate conditions. In most locations,
only small differences between RCP4.5-SSP2 (A1/B1) and RCP8.5-SSP5 (A2/B2) was
observed, except on the east of FC10 where A2/B2 scenarios were projected with an
increasing hazard. The implementation of buffer zones caused both negative and positive
impacts causing varying changes in hazard level depending on locations.

As for the second objective, exposure were projected to reduce in large areas due to
the expected decrease in rural population and urbanization, especially at the peripheral
of Bangkok, northeastern high plain, and the southern region of the country. Smaller
magnitude of reduction was also projected with forest areas. However, areas adjacent to
many FCs were projected with rather stable exposure level.

The third objective was addressed in which higher HEC vulnerability level was pro-
jected due to an increase in drought probability in many areas of Thailand. Even though
there were slight differences among GCMs, similar drought probability and spatial dis-
tribution were estimated from all future scenarios. The highest increase was projected
at the northern region of the country, specifically near FC8 and FC9. The other areas
located close to protected areas also expected to experience an increase in vulnerability,
though, less severe. These areas include north of FC2, northwest of FC4, FC7, west of
FC10, FC11, and south of FC14.

For the fourth objective, low to moderate HEC risk level was projected close to
protected areas under baseline scenario. The future risk level is estimated to reduce
for most FCs at lower latitude with an average HEC risk reduction of -3.1% to -57.9% at
FC level. This reduction in HEC risk was a result of decreasing in hazard and exposure
from lessen habitat conditions and urbanization respectively. These FCs, however, were
already shown moderate level of risk and high elephant populations at baseline period.
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Improvement in habitat quality is, thus, importance to buffer these impacts. On the other
hand, the increase of HEC risk were projected for some FCs which include FC5, FC8,
FC9, west of FC10, and north of FC2. Specifically for these locations, the combination
of increasing hazard and vulnerability from more favorable habitat condition and higher
drought probability largely altered HEC risk. Among the FCs with projected increase in
HEC risk, FC5, FC8 and FC9 in the north of Thailand were estimated with very low to
low HEC at baseline period which implied that the exposed population would be likely
unfamiliar with HEC. Hence, adaptive capacity and limiting access to futures habitat
can be considered.

Based from the results, it was demonstrated that climate-induced changes were ex-
pected to cause high impact on HEC situation in the country. The HEC risk is expected
to shift north and west-ward as a result of changing habitat suitability (hazard) and
drought probability (vulnerability). Urbanization dominantly causes exposure and risk
reduction for FCs in southern region. Changes in land cover created localized increase
and decrease in HEC risk for many areas, specifically the conversion of existing land
cover to abandoned land cover type. Although the usage and impacts of abandoned land
cover were not specified in the current study, such areas can potentially be used for con-
servation and habitat restoration. Buffer zone both negatively and positively affect risk;
hence, more specific spatial restrictions within buffer zone should also be investigated.

This chapter demonstrated the possibility of applying risk assessment framework on
HEC. The results identified specific risk components that should be focused by manage-
ment for different forest complexes. In addition, it also highlighted the ability to utilize
RCPs and SSPs projections at the national level, while also allow user-define spatial
policy to be implemented. This proposed framework is flexible and can be applied on
different locations and targeted species. However, care must be taken to selected eco-
logically relevant underlying variables and sub-indicators when apply this framework on
different species. Lastly, I also recognized that the evaluation remain preliminary and
limitations existed which can be further improved as highlighted under discussion section.
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Chapter 5

Conclusions

Considering the increasing frequency and magnitude of conflicts between humans and wild
Asian elephants, national strategies to prevent future HEC and mitigate existing conflicts
are critical. Appropriate actions to manage HEC will also likely boost the support for
Asian elephant conservation from local communities. Nevertheless, the lack of holistic
landscape-scale assessment impedes the ability of government and relevant stakeholders
to have evident-based discussion and plan for long-term resolutions.

This dissertation contributes to the scientific community and wildlife conservation
managers by proposing the assessment methods that enables large spatial coverage, al-
lows multi-dimensional analysis, and considers climate change scenarios. The HEC risk
assessment framework proposed in this study is flexible and can be extended to consider
ranges of relevant factors, diverse spatial policies as well as apply on different locations
and species. More generally, this dissertation also attests and demonstrates the im-
portance of climate change consideration in wildlife conflict planning. In addition, the
findings from this study also support the prioritization of areas that required management
attention.

To construct HEC risk assessment framework, three sets of research questions were
raised in Chapter 1 which include the followings:-

1. What are the main priority for Asian elephant conservation in each range country
considering long-term historical changes in elephant population and key driving
factors within elephant home ranges?, and which country is the most concern for
HEC? (Chapter 2)

2. Within the country of most concern, how did HEC distribution change over time?
and what are the important environmental variables influencing changes in HEC?
(Chapter 3)



Chapter 5. Conclusions 128

3. Within the country of most concern, how HEC will change in the future, and which
location should be given priority? (Chapter 4)

Through this dissertation, each of the questions was addressed in separate chap-
ters. Here I first discussed the implications and significance of the findings, followed by
recommendations, limitations of current study, and future works. Finally, I provided
concluding remarks.

5.1 Summary of findings and key recommendations
In Chapter 2, to addresses the first set of research question, I performed cross-country as-
sessment based on the Asian elephant population dynamic and associated socio-environmental
factors from three time periods (1990, 2003, and 2015). The results suggested that sub-
stantial Asian elephant population can persist in highly diverse landscape along side
human population when a large forest area with less fragmentation were maintained.
Range countries were also classified into four groups. First, a decrease in elephants with
high forest loss and fragmentation were found in Cambodia, Laos, and Vietnam, implying
key habitat loss. Second, Indonesia and Myanmar had a decrease in elephants even with
remaining large forest patch which was likely a result of illegal forest encroachment and
poaching respectively. Third, effective protection in key forest habitat was identified in
Bhutan, India, and Nepal which should be expanded across the countries. Fourth, a sta-
ble or increasing elephant population even with human disturbance and habitat loss was
identified in Bangladesh, China, Malaysia, Thailand, Sri Lanka, implying the likelihood
of overlapping resource usage and HEC. This result highlighted different management
focus for each country. In particular, Thailand was discussed to possess an interesting
position in which other range countries may follow. Hence, HEC situation in Thailand
was further analyzed and discussed in Chapter 3 and 4.

In chapter 3, I addressed the second research question. The results highlighted the
expansion of HEC hotspot over the 10-year period. In 2018, overall area of HEC under
high category in the wet and dry season was approximately triple and double that in
2009. Chantaburi province, particularly near Khao Chamao-Khao Wong and Ang Ruenai
Wildlife Sanctuary, was identified with the largest area of HEC. Nakhon Ratchasima
province was also estimated with large HEC areas, followed by Prachinburi, Rayong, and
Sa Kaeo. Looking at the changes over time, the results indicated a gradual increasing
trend of direct human pressure but more erratic patterns of resource suitability. In
particular, a large reduction of high suitable resources was observed during drought year.
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Key drivers governing HEC distribution were also identified from namely, forest coverage,
drought conditions, distance to forest, distance to protected habitat, human density, and
distance to transport network. These drivers were considered for further modeling in
Chapter 4.

To address the third set of research questions, I proposed HEC risk assessment frame-
work and demonstrated its application by analysis spatial distribution of HEC in Thailand
under current and future scenarios in Chapter 4. This chapter illustrates the utilization
of well-established projections under RCPs and SSPs at national scale. The results sug-
gested that HEC risk were likely decrease in the future at lower latitude, particularly
in southern, central, and eastern region of Thailand. Specific areas that were projected
with higher HEC risk where mostly located toward the north of Thailand which include
Lamnampai-Salawin Forest Complex (FC), Mae Pin-Omgoi FC, Phumieng-Phuthon FC,
and west of Western FC. Despite its location at lower latitude, areas north of FC2 is
also expected with higher risk. Climate-induced changes were estimated to prominently
impact the change in HEC risk by reducing habitat suitability and increasing drought
probability which influenced hazard and vulnerability components. Urbanization and
reduction of rural population are expected to decrease number of exposed population
and the subsequent future exposure level. Although land cover changes had overall lower
effect on HEC risk, it caused localized added impact on top of climate, especially from
the conversion to abandoned land cover class.

Based on the findings of this dissertation, a number of key statements and policy
implication can be highlighted which cloud support conservation strategies.

1. Climate, especially changes in drought, prominently impacted historical pattern of
HEC and its future risk; hence should be incorporated in all future conservation
and human-wildlife conflict related policy.

2. Map of HEC risk distribution in Thailand suggested that conservation strategies to
buffer climate volatility is necessary, especially in areas currently host high elephant
population but lower future habitat suitability. Such locations include (i) Eastern
FC, (ii) Khao Yai-Dong Phayayen FC, (iii) Phukeio-Namnow FC, (iv) eastern areas
within Western FC, (v) Khaengkrachan FC, (vi) Klong Saeng-Khaosok FC, and
(vii) Khao Laung FC. Improvement of habitat quality (e.g. protected area network,
and improve carrying capacity) within these groups of FCs may reduce climate
impacts as well as prevent crop-raiding due to lack of available natural forages.
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3. Map of HEC risk distribution in Thailand also suggested areas with existing low
human population but high future HEC risk: (i) west of Lumnampai-Salawin FC,
(ii) west of Mae Pin-Omgui FC, (iii) west of Western FC, (iv) and adjacent ar-
eas around Phumeing-Phuthon FC. Building adaptive capacity and limited human
access in potential future habitats may be considered.

4. Evaluation at regional scale implied country specific conservation priority for range
states. Halting habitat conversion and deforestation are recommended priority for
Cambodia, Laos, and Vietnam. Strengthening of conservation laws and better
their execution are recommended for Myanmar and Indonesia. For most countries
including Bangladesh, China, India, Malaysia, Nepal, Sri Lanka, and Thailand,
further focus on HEC investigation and mitigation are crucial. Lastly, Bhutan,
India, and Nepal likely possess effective protection of key habitats, hence how to
further expand the effort to other locations within the country should be priority.

5. Specifically for Eastern Thailand, HEC-zone dependent management can be planned
after further investigation. These HEC-zone included:-

• High HEC: directly adjacent to protected area boundaries in the south of
Khao Angruenai, surrounding areas of Khao Chamao-Khao Wong, and north
of Khao Yai.

• Likely HEC: approximately 6-12km from protected area boundaries mainly
present in wet season.

• Low HEC: approximately over 12km from protected area boundaries mainly
present in dry season.

• Rare HEC: scattered around main roads with most clustered predicted in
Chachoengsao, Chonburi, and Chantaburi provinces, implying necessary pre-
vention of vehicle-elephant collision.

6. The proposed framework should be applicable to different locations and targeted
species. However, when applying the proposed risk framework to different species,
care must be taken to ensure ecologically relevant underlying variables and sub-
indicators are chosen.
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5.2 Limitations of this research
Despite the promising outcome of the proposed framework, some limitations existed and
should be addressed:

• Home range of Asian elephants are fragmented and sparsely distributed even within
the same country. Countries with large geospatial areas, such as India and Indone-
sia, may have drastically different characteristics among regions. However, the
lack of long-term baseline data on Asian elephant population at home range level
restricted a finer-scale assessment. The current results are useful, but general.

• Presence-only elephant presences and HEC incidents most likely represent realized
niche of the species, but not the fundamental niches. Therefore, there remain
potential bias which may be enhanced by the improvement of on-the-ground data.

• Socioeconomic factors are critical in governing human tolerance and vulnerabil-
ity. In this study, economic and human development indicators, such as average
monthly income, education level, and access to technology were used to represent
these complex aspects. Due to the coarse temporal (1-5 years collection) and spa-
tial (province-level) measurement of these indicators, conversion of such statistical
parameters to geospatial data will not capture finer variations.

• Related with the aforementioned limitation and the literature discussed in 1, more
exhaustive social factors, such as culture, religions, and trust toward institutions
have yet to be incorporated.

• Validation of baseline risk is critical and required large-scale past records of disaster
events. Nevertheless, country-wide historical data on HEC is limited or non-existed
in Thailand. Data on damages by elephants in Thailand are not regularly and sys-
tematically recorded due to the lack of compensation schemes. Hence, no incentive
to do report. Only in mid-2019 that the compensation for damages on rice (other
crops are not covered) started in some locations. With this limitation, the valida-
tion data was obtained from one FC in northeastern region which may or may not
represent the nature of conflict other regions.

• Future projection relied on various empirical modeling results (e.g. GCMs, land
cover, etc.), all of which inherited errors and uncertainties. Hence, the aggregation
of these dataset may cause propagation of uncertainty into model results. Since
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projection is not prediction and uncertainties are expected, care must be taken
when interpreting the results.

5.3 Future works
Even though I have been able to demonstrate the applicability and discuss the assess-
ment of long-term Asian elephant habitats and the current and future HEC distribution,
further study remains. The variability in land surface phenology and human activi-
ties at higher temporal (seasonally) and spatial (farm-level) resolutions remain unclear.
Satellite-derived vegetation productivity are now available at finer resolution (e.g 10m
at 5-day revisit), while elephant movement from GPS collars are also being collected
in many areas. Therefore, the utilization of such finer resolution dataset will allow the
assessment of crop types and cropping pattern at finer spatial scale. With more elephant
data being collected, the implementation of centralize and systematic sharing of baseline
data on Asian elephant population and HEC incidents should be considered. Accessibility
to nation-wide baseline data would advance conservation research and improve decision
making. Since the perception of communities greatly influence elephant tolerance and
conservation support, indicators that reflect these human dimension should be further
evaluated under vulnerability component which would improve the accuracy of HEC risk
projection. In addition, social and economic inequality exist in many countries including
Thailand which likely impacts exposed human population and subsequent distribution
of HEC risk. Therefore, further study should also incorporate inequality. Most impor-
tantly, collaboration with stakeholders must be implemented, so that feedback can be
obtained to certain the applicability of this proposed framework.

5.4 Conclusion
Human-elephant conflict in Asia is a“wicked problem”(Game et al., 2014) and one of the
greatest challenges facing the species long-term conservation. For Asian elephant conser-
vation to be successful, conflicts between the species and humans must be appropriately
measured and managed. The key contribution of this dissertation is through the im-
provement of assessment framework that allows large spatial coverage, multi-dimensional
analysis, and climate change considerations. Although the current study focuses on con-
flicts between wild Asian elephants and humans, the proposed framework should also be
applicable to other targeted species. More generally, the findings attest the importance in



Chapter 5. Conclusions 133

climate change consideration in wildlife conflict management. Additionally, various anal-
ysis in this study highlight the possibility of large-scale assessment that integrated the
knowledge and techniques from remote sensing, geographical information system, ecol-
ogy, and climate change. The knowledge and outcomes gained in this research, which
include the country conservation priority, the hotspot of HEC conflict in Eastern Thai-
land, the changes in countrywide distribution of HEC risk under future scenarios, can
support the prioritization of locations in need for management attention and guide further
scientific studies on this issue. Engagement from stakeholders is necessary to advance the
understanding of HEC. Extending the implications of this proposed framework to local
communities is, hence, a necessary next step to certain the future of Asian elephants.
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