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Abstract 

 

  The ideal Bose gas is the most common model in quantum statistics. It predicts a pure 

statistical Bose-Einstein condensate (BEC). However, real systems are interactive. Many 

properties of the BEC are known to be altered by the interaction. Interestingly, the model for 

interacting BEC is not explicitly connected to the ideal one. One distinctive difference between 

an interacting BEC and an ideal BEC is that they are in different universality classes. Thus, 

possess different critical exponents. 

  Previous investigations on the critical phenomena of interacting BECs all show good 

agreement with the 3D-XY model, which is predicted to be the universality class for an 

interacting BEC. But a BEC phase transition which matches the description of the ideal gas 

model has never been observed. 

  In this thesis, 7Li bosons are cooled using 6Li fermionic coolant. In addition, the interaction 

between the bosons is controllable via the Feshbach resonance by changing an external 

magnetic field applied to the system. This potentially allow us to eliminate the interaction 

between the bosons to create an equilibrium ideal Bose gas in canonical ensemble under proper 

condition. 

  The condition for the Bosons to become non-interacting is experimentally decided in this 

research. We further consider the possible effects of the Bose-Fermi mixture on the Bosons and 

find that the Fermions can be treated as simple coolant for our experiment conditions. We also 

present the method we use to extract precise local information via the inverse Abel transform. 

We then use this method to examine the equivalence of ensembles, where it is shown that the 

equilibrium state of the gas is the same with or without the coolant. These results imply that 

the non-interacting Bose gas created in our system is a close analogue to the ideal Bose gas. 

Finally, we use both the non-interacting gas and a repulsively interacting gas to measure the 

isothermal compressibility near the critical point of the BEC phase transition. We find that the 

scaling behavior is similar in both cases and deviates from the ideal gas model. The deviation 

matches the interacting 3D-XY model so that we conclude the interacting model offers a better 

description for the phenomenon. Our results also imply the possible absence of a “textbook” 

ideal matter wave BEC inside an ultracold atomic gas with tunable interaction. 
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Chapter 1 

Introduction 

 

  Bosons are particles that follow Bose-Einstein statistics who possess integer spin. A key 

feature of the bosons is the existence of the Bose-Einstein condensate (BEC). BEC is originally 

predicted by Bose and Einstein in 1920s [Bose 1924, Einstein 1925]. BEC describes the 

phenomenon where macroscopic occupation of the ground state appears near the zero 

temperature. At first, the BEC was only predicted for non-interacting ideal systems, but has 

been later extended to include particle interactions, consequently making BEC considered as a 

generic phenomenon [Dalfovo 1999, Leggett 2001]. The interacting BEC theory is mainly 

discussed at zero temperature and becomes much more complicated in finite temperatures 

[Andersen 2004, Proukakis 2008]. In general, the interacting BEC theory exists some degree 

of disconnections either in principle or in property with the ideal Bose gas [Zagrebnov 2001, 

Yukalov 2016]. 

  The experimental realization of BEC was achieved much later than the theoretical proposal. 

In 1995, BEC was finally produced with laser cooling and trapping techniques using rubidium 

[Anderson 1995], sodium [Davis 1995] and lithium atoms [Bradley 1995]. Atomic BEC 

possess much more degrees of freedom on various parameters such as the spin state, density, 

and even interacting strength compared to traditional strongly interacting liquid helium. 

Therefore, atomic BEC has since been used to study quantum physics in a relatively simple 

and controllable manner. Up until now, numerous researches have been conducted using the 

ultracold atomic gas exploring topics like coherency [Andrews 1997], collective excitations 

[Jin 1996], Mott insulator [Greiner 2002], Josephson junction [Albiez 2005], Efimov effect 

[Kraemer 2006], and Anderson localization [Roati 2008]. Advanced trapping and controlling 

techniques are also invented such as optical lattices [Jaksch 1998, Morsch 2006], optical 

tweezer [Gustavson 2002], artificial gauge potentials [Dalibard 2011], and box trap [Gaunt 

2013]. With the recent advancement in the idea called quantum simulation [Georgescu 2014, 

Horikoshi 2019, Altman 2019], BEC is shown to be able to simulate other phenomena such as 

high-harmonic generation [Feng 2019] and quantum gravity [Howl 2019, Hu 2019]. 

 

 

1.1 Bose Einstein condensate 

 

  BEC describes a state of matter, and the process for thermal atoms to enter the condensate 

state is a kind of second-order phase transition. From the ideal gas model this is simply a result 

of statistics. For interacting gases this can be understood that the gauge U(1) symmetry of the 
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thermal particles is broken during the transition. 

  In a real experimental system, the generation of BEC has some notable features. First, it 

takes place at a finite temperature and therefore is a classical phase transition. However, the 

boundary between classic and quantum can be obscure for such a low temperature. Second, 

although theoretically BEC can form without any interaction, a real gas possesses interaction. 

Third, it is usually trapped in inhomogeneously. Last, it involves dynamics. 

  The earliest experiments on BEC’s thermodynamics were conducted using rubidium atoms 

[Ensher 1996] and sodium atoms [Mewes 1996], where they measured the condensate 

fraction’s dependence on temperature as well as the critical temperature. Later these properties 

have been measured for many other systems, 7Li BEC immersed in a cloud of 6Li fermionic 

atoms [Schreck 2001a], which shares a close theme with our experiment. Also, some 

thermodynamical properties have been measured for the Bose gas using a set of defined global 

variables [Shiozaki 2014, Poveda-Cuevas 2015]. 

One major difference between laboratory BEC and the ideal gas theory is the interaction. 

The theoretical efforts to include interactions into condensed systems began some 70 years ago 

by Bogoliubov [Bogolubov 1947] and others [Penrose 1956] mainly focusing on zero 

temperature properties, which were later extended to finite temperatures by Lee, Huang and 

Yang [Lee 1957]. Furthermore, the interaction between particles in atomic gases can be tuned 

via Feshbach resonance in experiments [Inouye 1998, Courteille 1998], which is also a 

powerful tool for atomic ultracold experiments. 

Interactions bring about many distinctive effects on BEC in many ways [Smith 2016], for 

instance, alternation in excitation modes [Jin 1997, Chevy 2002], chemical potential 

[Meppelink 2010], and the emergence of a quantum depletion [Lopes 2017]. It has been pointed 

out that interactions can change the temperature dependence of BEC [Giorgini 1996]. In 

experiments, the effect of interactions on the critical temperature was measured in 2004 

[Gerbier 2004] and has been thoroughly examined later [Smith 2011]. Another distinct feature 

is that for interacting BEC, a lack of saturation in the excited sates has been presented [Tammuz 

2011]. 

Most produced BECs have repulsive interactions but attractive BECs also exist. In fact, one 

of the three earliest experiments on BEC features an attractive interaction [Bradley 1995]. The 

ability to tune the scattering length via a Feshbach resonance enables creation of attractive BEC 

with other species [Cornish 2000, Lepoutre 2016]. The attractive BECs have some distinctive 

properties such as collapse [Bradley 1997] and multiple solitons [Strecker 2002]. Attractive 

force can also be used to form a state called quantum droplet [Cabrera 2018] and has also been 

examined using bright soliton [Cheiney 2018]. 

Dynamical behavior is also a very interesting topic. Typically, dynamics can be observed 

using non-destructive imaging such as partial-transfer absorption [Ramanathan 2012], Faraday 

imaging [Kristensen 2017], and shadowgraph imaging [Wigley 2016]. The first dynamical BEC 
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experiment focusing on BEC growth was published in 1998 [Miesner 1998]. Some recent 

experiments include collective emission [Clark 2017], prethermal dynamics [Eigen 2018], 

granulation [Nguyen 2019] and pattern formation [Zhang 2020]. 

Also, laboratory BEC is a trapped system with a finite size. The existence of the trap alters 

the property of particles from a free gas. The trap geometry can reduce BEC’s dimensionality 

that will affect BEC’s properties [Petrov 2000, Druten 1997], which can be experimentally 

realized [Görlitz 2001]. In addition, a two-dimensional phase transition [Hadzibabic 2008], the 

Berezinskii-Kosterlitz-Thouless phase transition, has also been realized using BEC 

[Hadzibabic 2006, Fletcher 2015]. 

One important result from statistical physics is the scaling theory. It characterizes the 

properties of a second order phase transition with exponential scaling laws that is irrelevant to 

the details of the system. A collection of systems with the same set of critical exponents is 

called a universality class. The scaling theory is a very powerful tool to describe a vast variety 

of different systems. Interestingly, ideal BEC and interacting BEC belongs to different 

universality classes. For interacting BEC, measurements on the critical behavior of BEC has 

been experimented with the correlation length [Donner 2007]. In addition, dynamical scaling 

defined by Kibble-Zurek mechanism [Zurek 1996, Campo 2014] has also been measured in 

BEC [Weiler 2008, Lamporesi 2013, Navon 2015, Chen 2019]. 

Previous experiments on the critical scaling of BEC all showed good agreement with the 

3D-XY model, which is the universality class that interacting BEC belongs to [Stanley 1999, 

Pelissetto 2002]. This brings us the curiosity that how the phase transition will change when 

we remove the interaction, which is the main motivation of this thesis. However, normally we 

cannot casually create a non-interacting Bose gas in thermal equilibrium. The assistance of an 

external heat bath is required, which is achieved using sympathetic cooling in a Bose-Fermi 

mixture. 

 

 

1.2 Sympathetic cooling and Bose-Fermi mixture 

 

In a mixture of two-component gases that are in thermal contact, the method to cool down 

one component through elastic collisions with the other pre-cooled component is called 

sympathetic cooling. One advantage of this method is that it does not rely on the self-

interactions of the target component as long as it stays in thermal contact with the coolant. This 

method is potentially possible to create arbitrarily weak interacting and even non-interacting 

BEC. The sympathetic cooling was first employed in cold atom experiments with a mixture of 

two hyperfine states of 87Rb Bose gas [Myatt 1997]. In 2001, Hulet group [Truscott 2001] and 

Salomon group [Schreck 2001b] demonstrated two experiments of the sympathetic cooling of 

the bosonic 7Li and the fermionic 6Li. 
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The first Bose-Fermi superfluid mixture is achieved in 2014 with a mixture of 7Li and 6Li 

[Ferrier-Barbut 2014]. Our system is the second one to create such a mixture. In our system, 

when the magnetic field is tuned to 832 G, i.e., the Feshbach resonance of 6Li, there exist two 

boson BEC components after cooling, one being repulsively interacting and the other being 

attractive. Furthermore, the zero crossing of the scattering length for the attractive component 

is not far from 832 G. This species is used to generate a non-interacting Bose gas in this thesis. 

Recently, Bose-Fermi superfluid mixtures of 6Li-41K [Yao 2016], 6Li-174Yb [Roy 2017] and 
6Li-133Cs [DeSalvo 2017] have also been realized. Unique phenomena such as phase separation 

[Lous 2018], breathing mode [Huang 2019] and induced interaction [DeSalvo 2019] have also 

been examined. 

 

 

1.3 Motivations and aims 

 

  Thus far, research on the Bose gas and BEC has been mostly focused on the repulsively 

interacting regime and weakly attractive regime. Though some experiments explored the non-

interacting BEC regime by changing the interaction using the BEC, a non-interacting ideal 

Bose gas at finite temperature has not been examined. In the thermal regime, a non-interacting 

Bose gas cannot thermalize on its own, thus a finite temperature non-interacting Bose gas in 

equilibrium is only obtainable via sympathetic cooling. While it is known that certain 

disconnections might exist between ideal gas model and weakly interacting model, they have 

not been thoroughly examined. More specifically, it is not experimentally known how the 

critical behavior of interacting BEC approaches the ideal gas behavior when we decrease the 

interaction. 

The first aim of this thesis is to create a non-interacting Bose gas as close as possible towards 

a “textbook” description of the ideal Bose gas. To achieve this, we have to first find the non-

interacting condition, and then verify the effect of the mixture and ensure that the existence of 

the coolant does not change the properties of the Bose gas. Once we have created such a 

representation, we aim to explore its critical behaviors by measuring the isothermal 

compressibility, which is the only accessible quantity to obtain the critical scaling with current 

set-up. We will also conduct the same experiment using interacting gas and compare their 

results to the ideal Bose gas model. 

 

 

1.4 Thesis outline 

 

  This thesis is organized as follows: 

  Chapter 2 gives a brief introduction to the theory of Bose gas. Including the ideal gas model, 
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the interacting model, and the scaling theory. 

  Chapter 3 is an introduction of our experimental set-up. Including laser cooling and trapping 

processes, the Feshbach resonance and the imaging systems. We also demonstrate how the 

experimental parameters are measured. 

  Chapter 4 shows our experimental results of the scattering length measurement where we 

change the external magnetic field and locate the non-interacting condition for the bosons using 

the ground state of the condensate. 

  Chapter 5 discusses the effects of the Bose-Fermi mixture on bosons such as mixability, 

induced potential and induced interaction. We also present related experimental results. 

  Chapter 6 presents how the equation of state is measured from absorption images and 

demonstrates the violation of the local density approximation in BEC. The temperature 

measurement results that are used in later chapters is also shown. 

  Chapter 7 discusses the concept of the three ensembles and the equivalence or potential 

differences between them. We estimate the relations between the ensembles to establish a 

connection between our experiment, other ultracold atom experiments and the textbook case. 

  Chapter 8 explains how the isothermal compressibility is measured from the equation of 

state. We present our experimental results with the repulsive gas and non-interacting gas where 

the critical behaviors are identified in both cases. The possible implications of the results are 

also discussed. 
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Chapter 2 

Backgrounds of the Bose gas 

 

2.1 Ideal Bose gas 

 

  Non-interacting bosons, who can occupy any available energy level with any number and 

are indistinguishable, satisfy the following relation under the framework of the grand canonical 

ensemble in thermodynamic equilibrium 

 ( ) ( )/

1
,

1i B
i k T

f
e

 


−
=

−
  (2.1) 

where 𝑘𝐵  is the Boltzmann constant, 휀𝑖  is the energy of state i, and 𝜇  is the chemical 

potential. This equation is the well-known Bose-Einstein distribution. The chemical potential 

is defined by the total particle number N so that 

 ( ).i

i

N f =   (2.2) 

Evidently, the distribution on any energy level must be non-negative for equation (2.1) to make 

sense. For the lowest level, which is set to be zero, we have the following relation 
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When the temperature approaches zero, we must have 𝜇 < 0  to make this equation 

meaningful. Under such a condition, any excited state become unoccupied as  
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This result directly indicates that macroscopic occupation occurs at zero temperature and all 

the particles “condensated”. This phenomenon is called the Bose-Einstein condensate (BEC). 

  If the ideal Bose gas is confined in a box of volume V, we can write the single-particle 

Hamiltonian as 

 
2

(1) .
2

p
H

m
=   (2.6) 

The solutions of this Hamiltonian under cyclic boundary conditions 𝜑(𝑥, 𝑦, 𝑧) = 𝜑(𝑥 +

𝐿, 𝑦, 𝑧) and the same with the other two direction, where 𝐿 = 𝑉1/3, takes the form of plane 

waves 
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/1

,ip r

p e
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where �⃗� = 2𝜋ℏ�⃗⃗�/𝐿 and �⃗⃗� = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) is a vector with integer components. The number 

of thermal atoms then can be written as 
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where 𝛽 = 1/(𝑘𝐵𝑇). The thermal de Broglie wavelength is defined as 
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The Bose function is defined as 
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where we have introduced the fugacity 𝑧 = exp(𝛽𝜇) . By setting the particle density 𝑛 =

𝑁/𝑉, equation (2.8) gives the equation of state of the thermal Bose gas 
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The local critical temperature of a trapped thermal Bose gas can be found by setting the 

chemical potential to the ground state 
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where   is the Riemann zeta function. Below the critical temperature, we can write the total 

atom number as 𝑁 = 𝑁0 + 𝑁𝑇, where 𝑁0 is the number of condensate atom. This gives us 

the relation between condensate fraction and temperature 
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In our experiment system, the atoms are trapped in a harmonic form external potential 

 ( ) ( )2 2 2 2 2 2 .
2
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m
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The eigenenergies of the Hamiltonian take the form 

 
1 1 1

.
2 2 2x y zn n n x x y y z zn n n   

     
= + + + + +     
     

  (2.15) 

In this case the ground state energy is no longer zero. By setting the critical chemical potential 

to the ground state energy, we can define the global critical temperature and condensate fraction 
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( )

3

0

0
1 ,

c

N T T

N T

 
= − 

 
  (2.17) 

where the geometric average of the oscillator frequencies is defined as 

 ( )
1/3

.ho x y z   =   (2.18) 

Note that the condensate fraction is modified comparing to the uniform case equation (2.13). 

  The discussion above is based purely on quantum statistics and does not consider interaction. 

Therefore, ideal BEC can be considered as the result of inherent statistical nature of the bosons.  

 

 

2.2 s-wave scattering length 

 

  The strength of interaction in ultracold physics are usually characterized with the scattering 

length. The most common form of scattering is the s-wave scattering. Let us first consider a 

simply scattering problem of two free particles under a hard-sphere potential with diameter a. 

Their two-body wave function are given by 

 ( ) ( )1 2, ,iP Rr r e r =   (2.19) 

where 
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We can consider the interaction as boundary conditions and view the particles as free, hence 

their Schrödinger equation becomes 

 
( ) ( )

( )

2 2 0     ( ),

0     ( ).

k r r a

r r a





 + = 

= 
  (2.21) 

Let us restrict ourselves to the spherically symmetric (s-wave) and low energy (𝑘 → 0) part. 

The equation is broken into a radial one 
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2
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d d
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r dr dr
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Then, the solution outside the hard-sphere is 

 ( ) const. 1      ( ).
a

r r a
r


 

= −  
 

  (2.23) 

  In order to obtain the exact behavior outside the sphere, we need to modify the hard-sphere 

boundary condition by extending the free Schrodinger equation inside the sphere 

 ( ) ( )2 2 0     ( 0),k r r + =    (2.24) 
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with the boundary condition 

 ( ) 0.a =   (2.25) 

For low energy limit 𝑘 → 0, we have  

 ( ) 0
1 ,

r a
r

r
 →  

⎯⎯⎯→ − 
 

  (2.26) 

where 𝜒 is a constant related to the boundary condition at 𝑟 = ∞, we can also write 
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0

.
r

r
r

 
=
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  (2.27) 

Then we can inspect the behavior of equation (2.24) near 𝑟 = 0 
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r
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 ⎯⎯⎯→ =


  (2.28) 

Hence, we can write a new equation that is satisfied everywhere 

 ( ) ( ) ( ) ( )2 2 4 .k r a r r
r

   


 + =


  (2.29) 

We can see that the r.h.s. of this equation functions as a kind of contact potential 

(pseudopotential). However, equation (2.29) does not provide the exact result, by expanding 

the wave function in spherical harmonics and repeating the process above, one can obtain the 

exact equation for the pseudopotential 

 ( ) ( ) ( ) ( )2 2
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4
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where 𝛿0 is the phase shift that can be expanded by 
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By taking low energy s-wave limit, Equation (2.30) reduces to Equation (2.29). With such a 

potential, the large distance behavior of the wave function, namely the asymptotic wave 

function, can be described as (see Fig. 2.2.1.) 

 ( ) ( ) ( )0lim const. sin tan cos ,
r

r r r r kr kr  
→

 = +   (2.32) 

where only a phase shift takes place compared with free gas. In a low energy s-wave scattering, 

the relation between the induced phase shift and the scattering length takes a simple form 

 
0

1
.

cot
a

k 
= −   (2.33) 
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Fig. 2.2.1. The effect of scattering on the wave function with (a) a positive scattering length (repulsive) 

and (b) a negative scattering length (attractive). The scattering length is the intercept of the asymptotic 

wave function with the x axis. The repulsive or attractive effects can be seen intuitionally. Taken from 

[Huang 1987]. 

 

 

2.3 The Gross-Pitaevskii equation 

 

  The Gross-Pitaevskii (GP) equation serves as the interacting model for the Bose gas at zero 

temperature. The second-quantized Hamiltonian to describe a system of N interacting bosons 

trapped inside an external potential can be written as 
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  (2.34) 

  In the s-wave scattering case, the interacting potential can be treated as a pseudopotential 

similar to equation (2.29) 

 ( ) ( )int ,V r r g r r − = −   (2.35) 

where the coupling constant is written with the s-wave scattering length 
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Using the commutation relations 
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We can obtain the Heisenberg equation for the field 
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m


 = 
 

 
= −  + +    
 

  (2.38) 

Since at zero temperature macroscopic occupation occurs, we can decompose the Bose field 

operator into a mean field term 

 ( ) ( )ˆ, , ,r t r t     (2.39) 

and a fluctuation term 

 ( ) ( ) ( )ˆ ˆ, , , .r t r t r t  = +   (2.40) 

This is called the mean field approach. Now we can simply drop the fluctuation term and 

equation (2.38) becomes the Gross-Pitaevskii equation 

 ( ) ( ) ( )
2

22

ext, , , ,
2

i r t V g r t r t
t m
  

 
= −  + + 

  
  (2.41) 

  Note that the classic field 𝜓 also severs the roll of an order parameter since the one-particle 

density matrix 

 ( ) ( ) ( )†

1
ˆ ˆ, , , , ,r r t r t r t  =     (2.42) 

satisfies the following off-diagonal long-range behavior 

 ( ) ( ) ( )*

1lim , , , , .
r r

r r t r t r t  
− →

 =   (2.43) 

  The Gross-Pitaevskii equation can be calculated easily and is widely used in both theoretical 

works and experiments. It provides precise estimation of the BEC at zero temperature. 

 

 

2.4 Weakly interacting gas at finite temperature 

 

  When one attempts to extend the theory of an interacting Bose gas to finite temperature, 

things become much more difficult. How one should model such a system is still an ongoing 

topic for theorists. A review of this topic is given in [Proukakis 2008] where they summarized 

various methods developed to describe the interacting system. Here we will only summarize 

the basic idea. 

  The Hamiltonian of an interacting system equation (2.34) can be decomposed by writing 

the field operator into two parts 
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 ( ) ( ) ( )ˆ , , , ,r t r t r t  = +   (2.44) 

where �̂� is the field operator for the condensate and 𝛿 is the field operator for the thermal 

atoms. Since the condensate state is macroscopically occupied, the �̂� is replaced using the 

condensate wavefunction 𝜙(𝑟, 𝑡) = √𝑁0𝜑0(𝑟, 𝑡), this is called the Bogoliubov approximation. 

Then we can write down the decomposed Hamiltonian as 

 0 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ,H H H H H H= + + + +   (2.45) 

where 

 

( ) ( )

( ) ( )( )

( )

4*

0 0

2 2† *

1 0 0

22† * 2 † †

2 0

† † * †

3

† †

4

2
2

0 ext

ˆ ,
2

ˆ ˆˆ ˆˆ ,

ˆˆ ˆ ˆ ˆ ˆ ˆˆ 2 ,
2

ˆ ˆ ˆ ˆ ˆ ˆˆ ,

ˆ ˆ ˆ ˆˆ ,
2

ˆ .
2

g
H dr h

H dr h g h g

g
H dr h g

H g dr

g
H dr

h V r
m

  

     

       

     

  

 
= + 

 

 = + + +
 

 
= + + + 

 

 = +
 

=

−
=  +











  (2.46) 

This Hamiltonian can be calculated by omitting one or several terms or taking further 

approximations. This results in various models, which are generally created to address certain 

problems. Typically, the modeling process gets more problematic as the temperature increases 

when the condensate atoms become lesser. In a general sense, there is no existing calculatable 

perfect model to solve all the problems for an interacting Bose gas and it is not explicitly 

connected to the ideal gas model. 

 

 

2.5 Scaling theory 

 

  The scaling theory describes the properties of a system near the critical point of a second-

order phase transition. Here we use the Landau-Ginsburg theory to introduce some basic 

concepts. Near the critical point of the phase transition, the free energy density of the system 

takes the form 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2 2 4

0 0

1 1 1
, ,

2 2 B

m x H x m x r m x u m x m x H x
k T

 =  + + −   (2.47) 

where 𝑚(𝑥) is the order parameter,𝐻 is an external field, and 𝑢0 and 𝑟0 are some detailed 

parameters. The phase transition occurs when 𝑟0 reaches zero 
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0 0 ,       ,c

c

T T
r a

T
 

−
= =   (2.48) 

where 𝑎0 is another detailed parameter. A schematic of the free energy near the critical point 

is shown in Fig. 2.5.1. 

 

 

Fig. 2.5.1. The free energy near a second-order phase transition. The order parameter appears when 

휀 < 0. 휀 = 0 is where the phase transition occurs and is called the critical point. Taken from [Huang 

1987]. 

 

  We will use the spatial correlation of the system as an example. This property can be 

examined by introducing a test source 

 ( ) ( ).H x x= −   (2.49) 

The free energy influenced by this source then becomes 

   ( ) ( )2 2 4

0 0

1 1
,

2 2
E m dx m m r m u m m x x 

 
= −  + + + 

 
   (2.50) 

and we can obtain the corresponding differential equation 

 ( ) ( ) ( )2 2

0 04 .r u m x m x x  − − =    (2.51) 

This equation can be solved by taking Fourier transforms 
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 ( ) ( ) ( ) 2 /

2 2

0 0

,    .
ikx

x d xe
m k m x dk x e

k r k r


 → − −= = ⎯⎯⎯→

+ +   (2.52) 

Then the correlation length can be found to be 

 
( )

( )

( ) ( )

( ) ( )

1/2 1/2

0 0

1/2 1/2

0 0

     0 ,

2 2  0 .

r a

r a

 


 

− −

− −

   
= = 

− −   

  (2.53) 

We can see that the reaction of the order parameter to a certain fluctuation is spatially correlated 

near the critical point, which can be characterized with an exponent. Therefore, we can obtain 

the critical exponent of correlation length 𝑣 as 

 1/2~ .v  − −=   (2.54) 

Apparently, this critical exponent is irrelevant of all the detailed parameters. It can be shown 

that all other critical exponents also share this property, which is a key feature of the scaling 

theory. Also note that this form of Landau mean field scaling is only quantitatively correct for 

systems with at least four spatial dimensions. 

  Similarly, we can calculate the critical exponents for all kinds of realistic systems. But since 

the scaling is irrelevant to the microscopic details of a system, it simply reflects the scale 

invariance which the system possesses in the vicinity of the critical point. That is to say, 

empirically lots of systems can be found obeying the same critical scaling, as shown in Fig. 

2.5.2. The collection of systems that share a same set of critical exponents is called a 

universality class. The universality classes are known to be only dependent on some few 

properties of the systems: the dimension of the system, the dimension of the order parameter 

and the range of interaction. 

 

 

Fig. 2.5.2. The universality in the Gas-liquid coexistence region. Taken from [Sethna 2006]. 
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  For ideal gas, since we already know the partition function, all thermodynamic properties 

can be strictly calculated. A detailed discussion for all the critical exponents can be found at 

Chapter 13 of [Pathria 2011]. They show that the universality class for the ideal BEC coincides 

with the spherical model, which corresponds to the 𝑛 → ∞ limit of a n-vector model [Stanley 

1999]. Here we are interested in the isothermal compressibility which is defined as 

 
2

1
.T

T

n

n





=


  (2.55) 

The exact expression for the isothermal compressibility can be obtained from equation (2.8), 

which is 

 ( )ideal

1 22 3

1
Li .T

dB B

e
n k T




=   (2.56) 

This value obeys the scaling law 

 ideal 1~ .T  −   (2.57) 

  For interacting gas, ideally one may also derive all the critical exponents from the partition 

function. However, the problem is that we do not know the exact expression for the partition 

in this case. Generally speaking, one might as well construct an effective action 𝑆[𝜙; g], where 

𝜙 is a field and g is a vector of coupling constants g = (g1, g2, g3, ⋯ ), to express the partition 

function 𝛧 as 

 ( )    ;
,

S g
Z g D e




−
=    (2.58) 

where ∫𝐷[𝜙] = ∏ ∫(𝑑𝑥𝑖/√2𝜋)
𝑁
𝑖=1   in N-dimension. Then, we can apply the Wilsonian 

renormalization group method to evaluate the critical exponents. The first thing we would like 

to do is to decompose the field in the momentum space into slow modes 𝜙< and fast modes 

𝜙> written as 𝜙 = 𝜙< + 𝜙> so that we can get rid of the large field part 

 
( )

;

;
.

S g

S g

Z g D D e

D e

 



 



 

  


 − +   

 −  

   =    

 =  

 


  (2.59) 

After this mode elimination, we will rescale the system in terms of rescaled quantities where 

the quantities retain the same form as before. This operation is possible for that the system is 

scale invariant, i.e., self-similar near the critical point. The rescaled wave vector is defined as 

 ,k bk =   (2.60) 

where b is the step size of the renormalization group transformation. Then the rescaled field 

𝜙′(𝑘′) can be written using the original field 𝜙<(𝑘′) as 

 ( ) ( )1 / ,bk k b  −   =   (2.61) 

where 휁𝑏 = 𝑏𝐷𝜙√𝑍𝑏  is called the field rescaling factor. The factor 𝐷𝜙  is the canonical 
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dimension of the field that measures the powers of inverse length needed to make it 

dimensionless. The factor 𝑍𝑏 is called the wave function renormalization factor and can be 

chosen based on the need of the calculation. 

  Combining the mode-elimination and the rescaling steps, one can obtain a mapping for the 

initial coupling g = (g1, g2, g3, ⋯ ) with initial action 𝑆[𝜙; g] and a set of modified coupling 

g′ = (g1
′ , g2

′ , g3
′ , ⋯ ) with the effective action 𝑆′[𝜙′; g′], expressed via 

 
( )1 2 3; , , , , 1, 2,3,

( ; ).

i ig R b g g g i

g b g

 = =

→ = R
  (2.62) 

The renormalization group transformation function R is usually in complex nonlinear form. By 

iterating these two processes, we obtain a chain of renormalized couplings 

 
( ) ( )1

( ; ) ( ; ).
n n ng b g b g

−
= =R R   (2.63) 

Then, by analyzing how the properties changes during these operations, we can numerically 

evaluate the critical exponents. The techniques involved in actual renormalization group 

calculations are vastly complicated and one might find a thorough introduction in, e.g., [Kopietz 

2010].  

The scaling law for the isothermal compressibility of the interacting gas can be calculated 

using the renormalization group method in 3DXY model, which gives [Campostrini 2006] 

 3DXY 1.3~ .T  −   (2.64) 

Note that the this result is different from the ideal gas model equation (2.57), showing some 

degree of disconnection. 

  



17 

Chapter 3 

Experimental set-up 

 

  The experimental set-up of our experiment includes two separate laser systems for 6Li and 
7Li and a trapping system composed of a 2D magneto-optical trap, a 3D magneto-optical trap 

and two optical dipole traps. We will present the details of our set-up and showcase how the 

experimental parameters are measured. 

 

 

3.1 Laser cooling 

 

  The idea of laser cooling is based on the scattering process between photon and atom. When 

a moving atom absorb a photon, its speed changes according to the momentum of the photon. 

Therefore, when we apply a laser beam in the opposite direction of a moving beam of atoms, 

we can ideally decelerate the atoms. However, things are far more complicated in real world 

due to the doppler effect. If moving in the same direction, the angular frequency of the laser 𝜔 

in the stationary frame is changed to 𝜔′ = 𝜔 − 𝑘𝑣, where 𝑣 is the speed of atom and 𝑘 =

2𝜋/𝜆is the wavevector of the light, or 𝜔′ = 𝜔 +𝜔𝑣/𝑐 if moving in opposite direction. 

  When a laser beam is incident towards a moving atom, the scattering force the atom received 

is estimated by the number of photons absorbed, that is, 𝐹sc = (Momentum) ×

(Scatteringrate). With a certain amount of detune 𝛿, this scattering force can be written as 

 

sat
sc 2

sat

sat
sc 2

sat

/
,

2 1 / (2 / )

/
,

2 1 / (2 / )

I I
R

I I

I I
F k

I I






=

+ + 


=

+ + 

  (3.1) 

where 𝑅sc is the scattering rate, Γ is the absorption line width, 𝐼 is the laser intensity and 

𝐼sat is the saturation intensity. The maximum amount of deceleration the atom with mass 𝑚 

receives is 

 
max .

2

k
a

m


=   (3.2) 

Typically, the atom with initial velocity 𝑣0 stops in a distance of 𝐿stop = 𝑣0
2/𝑎max. 

The atom species used in our set-up are 6Li and 7Li. The level structure of these atoms is 

shown in Fig 3.1.1. The two species are cooled by separate lasers. For 6Li the D2 line from the 

ground state |𝐹 = 3/2⟩ to the excite state |𝐹′ = 5/2⟩ is used to cool down the atom, where 

the laser beam is labeled as “cooling” laser. For 7Li the D2 line |𝐹 = 2⟩ → |𝐹′ = 3⟩ is used. 

Ideally the “cooling” laser alone is sufficient to cool down the atoms, however, the energy 
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difference between the highest hyperfine state of 2𝑃1/2  and the lowest hyperfine state of 

2𝑃3/2 is very small. Therefore, occasionally the atoms will enter 2𝑃1/2 and relaxed to the 

ground state |𝐹 = 1/2⟩  for 6Li or |𝐹 = 1⟩  for 7Li, which then stops to interact with the 

“cooling” laser. To address this matter, an additional “repump” laser is introduced to pump the 

atoms from D1 line |𝐹 = 1/2⟩ → |𝐹′ = 3/2⟩ for 6Li and D2 line |𝐹 = 1⟩ → |𝐹′ = 2⟩ for 
7Li, which ensures that the atoms are relaxed to the correct ground state and continue the 

cooling cycle. 

 

 

Fig. 3.1.1. Fine level structure of 6Li and 7Li. 

 

We use GaAs diode laser as source of external cavity diode laser (ECDL) to obtain single 

frequency laser beam. The locking processes of the lasers are based on the saturated absorption 

spectroscopy of the 6Li |𝐹 = 3/2⟩ → |𝐹′ = 5/2⟩ D2 line, where an oven with 6Li inside is 

heated to about 360 ℃ to provide atom source. After this 6Li “cooling master” laser is locked, 

it serves as the base frequency for all other lasers. The 6Li “repump” laser is locked by applying 

a 9.8 GHz offset locking and 7Li “cooling” laser is also locked with a 10.3 GHz offset locking. 

The 7Li “repump” laser is set by tuning its “cooling” laser for 800 MHz with an acousto-optic 

modulator (AOM). 

The detuning introduced by the Doppler effect reduces the absorption and consequently 

prevents us to cool down the atoms. There are two common solutions to the Doppler shift 

problem, one by manipulating the laser, another by manipulating the atoms. The first one is 
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called the chirp cooling which is achieved by scanning the frequency of the laser. The method 

we adopt here is the later one using Zeeman effect by applying a magnetic field. 

 

 

3.2 Magneto-optical trap 

 

  The magneto-optical trap (MOT) is invented to slow down and trap the atoms at the same 

time. When a magnetic field that is linear to position �⃗⃗� = 𝐵′𝑟 is applied, where the zero point 

is the center of the trap, the detuning that an atom feels is modified to 𝛿′ = 𝛿 − �⃗⃗� ∙ �⃗� +

𝜇𝐵|�⃗⃗�|/ℏ. The last term corresponds to Zeeman shift where 𝜇𝐵 is the magnetic moment of the 

atom. For simplicity we first consider a 1D case. Inside this field, two laser beams are applied 

in the opposite direction, then the scattering force on an atom from each side is 
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The total scattering force on this atom then becomes 
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  (3.4) 

This force can be separated in terms of velocity and position 

 MOT MOT MOT ,F v r = − −   (3.5) 

It is obvious that this force provides a damped oscillation to the atom and traps the atom around 

the center. The trap can be optimized by adjusting the laser detuning 𝛿 and the slope of the 

magnetic field 𝐵′. If we apply this method in two dimensions, the trap is called a 2D magneto-

optical trap (2D-MOT). If applied to all dimensions, it is called a 3D magneto-optical trap (3D-

MOT). 

  In our set-up, the trap system is separated into a low-vacuum chamber and a high-vacuum 

chamber that is connected via a differential pumping tube, as shown in Fig. 3.2.1. This double-

chamber set-up ensures a high-quality vacuum environment for the observation, which is vital 

in cold atom experiments. In the low-vacuum chamber, a beam of 6Li and 7Li coming out from 

an oven heated to about 320 ℃ is ejected towards a 2D-MOT. The atoms pre-cooled from the 

2D-MOT then continue to propagate through the differential pumping tube to the high-vacuum 

chamber and are trapped inside a 3D-MOT. The purpose of pre-cooling the atoms with a 2D-

MOT before trapping is to reduce the presence of high temperature atoms which will decrease 

the trap lifetime through scattering during subsequent processes. Typically, around 2 × 108 
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6Li and 2 × 108 7Li at a temperature on the order of 1 mK are collected after a capture period 

of 40 second. 

 

 
Fig. 3.2.1. A schematic view of the MOT. 

 

  Since laser cooling excites an atom, recoil from spontaneous emission causes the atom to 

change its velocity into random directions. Although this kick from recoil is averaged to zero, 

it triggers a random walk effect on the atoms, which prevents them from further cooling. The 

severity of the random walk is related to the steps taken, which is decided by the scattering rate 

in this case. The mean square velocity resulting from this effect in a single direction from a 

single laser beam is 𝑣spon2̅̅ ̅̅ ̅̅ ̅ = ℏ𝑘𝑅sc𝑡/(3𝑚)  within a time period of 𝑡 . Meanwhile, the 

fluctuations raised from the number of absorptions within this period will also add another 

random walk velocity with similar form 𝑣abs
2̅̅ ̅̅ ̅ = ℏ𝑘𝑅sc𝑡/𝑚. For a 3D-MOT, the total mean 

square velocity from the random walk in equilibrium can be calculated from the Newton 

equation, which can be translated into a related temperature written as 

 
( )

2
1 2 /

.
4 2 /

Bk T




+ 
=

− 
  (3.6) 

The minimum can be found at 𝛿 = −Γ/2, which is 

 .
2

B Dk T


=   (3.7) 

This temperature 𝑇𝐷 is known as the Doppler cooling limit. For our system this value is about 

140 μK. In order to further cool down the gas, sub-Doppler cooling is required. 
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3.3 Optical dipole trap 

 

  In our set-up the atoms are transferred to an optical dipole trap (ODT) for sub-Doppler 

cooling. For an atom with polarizability 𝜖0𝜒, an electric field �⃗⃗� induces a dipole moment of 

−𝑒𝑟 = 𝜖0𝜒�⃗⃗�. Then the interaction energy between this dipole with the field when the detune 

is much larger than the line width can be written as [Grimm 2000] 
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  (3.8) 

where 𝜔0 is the resonant angular frequency and Γ is the absorption line width of the two-

level structured atom. For a Gaussian beam of 
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  (3.9) 

where 𝑃 is the power of the beam, 𝑤0 is the beam waist, and 𝑧𝑅 = 𝜋𝑤0/𝜆 is the Rayleigh 

length. This dipole interaction is attractive and cylindrically symmetric. In the regime close to 

the focus, the potential takes a harmonic form 
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  Since the size of the ODT is smaller than the 3D-MOT, we will first shrink the 3D-MOT by 

adjusting the laser frequency and intensity for a smooth transition. After holding the atoms in 

this compressed-MOT (CMOT) for 45 ms, roughly 1 × 107 6Li and 3 × 106 7Li eventually 

enter the ODT. 

The actual set-up for ODT is depicted in Fig. 3.3.1. The light source is provided by a 200 W, 

1070 nm ytterbium fiber laser. The source is separated into two paths to form a high power 

ODT (HP-ODT) and a low power ODT (LP-ODT). The atoms are first transited into the HP-

ODT and then moved to the LP-ODT after some cooling. This configuration is adopted to 

reduce heat related effects to optics induced by the high intensity laser source, which gives a 

better shaped trap during the later processes inside the LP-ODT. 
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Fig. 3.3.1. The set-up of the optical dipole trap system. 

 

  After the atoms are loaded inside the ODT, we apply evaporative cooling to further reduce 

the temperature. Unlike laser cooling, evaporative cooling is achieved by deducing the laser 

intensity for the trap. It is known that certain scaling laws exist to minimalize the atom loss and 

optimize the cooling efficiency [O’Hara 2001]. The average energy for the atom lost when we 

decrease the trap potential can be written as 𝑈trap + 𝛼𝑘𝑇, where 0 ≤ 𝛼 ≤ 1. The evolution of 

the total energy 𝐸 is related to the atom loss rate 𝑁′ by 

 ( ) .
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U E
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 = + +   (3.11) 

From the classical limit of the total energy 𝐸 = 3𝑁𝑘𝑇, we have 

 3 3 .E NkT N kT  = +   (3.12) 

Combining these two equations gives 
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where 휂 = 𝑈trap/(𝑘𝑇)  and 휂′ = 휂 + 𝛼 = 휂 + (휂 − 5)/(휂 − 4) . The value of parameter 𝛼 

is estimated with the harmonic potential using the s-wave Boltzmann equation. The loss rate is 

evaluated to be [Luiten 1996] 

 ( ) ela2 4 ,N e N − = − −   (3.14) 

where 𝛾ela ∝ 𝑁𝑣3/(𝑘𝑇) is the elastic collision rate. Then, the scaling for the trap depth can 

be written as 

 
( ) ( )2 1 3/

0

1 ,
t

U t t

U





− −

=

 
= + 
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where constant 𝜏 takes the from 1/𝜏 = 2휂′(휂 − 4)exp(−휂)𝛾ela
𝑡=0/3. In practice this means 

that we need to deduce the trap depth according to a specific power law to effectively cool 

down the gas. The optimization of this scaling has already been done for our set-up in previous 

experiments. 

  The evaporative cooling process is separated into three-steps as illustrated in Fig. 3.3.2. The 

first step takes place after the transition of atoms from CMOT into HP-ODT. This step reduces 

the trap temperature from 2.8 mK to 560 μK. The second evaporation begins as we turn on the 

LP-ODT and further reduce the intensity of HP-ODT, the two traps are spatially overlapped so 

that the atoms are automatically transits into the LP-ODT during this process. The trap 

temperature in LP-ODT after this process is 38 μK. Then the third step starts in the LP-ODT 

to further reduce the temperature to the order of 100 nK. The typical number of atoms after a 

30 second evaporation is about 3 × 105  6Li and 5 × 104  for 7Li. The atoms are finally 

imaged after a small period of holding. 

 

 

Fig. 3.3.2. A typical three-step evaporation. 

 

As shown in equation (3.15), the efficiency of the evaporative cooling is dependent on the 

elastic collision rate, which is proportional to the square of scattering length. The scattering 

length between atoms are controlled by the Feshbach resonance. 
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3.4 Feshbach resonance 

 

In a low energy scattering, when the scattering energy is close to a bound state, the scattering 

process becomes resonant, as shown in Fig. 3.4.1. This process is called Feshbach resonance 

which modifies the interaction strength between atoms. A detailed review of this topic is given 

in [Chin 2010] and here we will only summarize the key features. 

 

 

Fig. 3.4.1. The two-channel model of the Feshbach resonance. Resonant interaction is induced when 

the scattering energy 𝐸 approaches a bound state energy 𝐸𝐶. 𝑉𝑐 and 𝑉𝑏𝑔 are atom potentials where 

𝑉𝑏𝑔 is fixed and 𝑉𝑐 changes with the magnetic field. Taken from [Chin 2010]. 

 

The initial state configuration of the two atoms is called the entrance channel and the 

different states which the two can be coupled is called the closed channel. The zero energy in 

the closed channel can be varied with an external parameter, which is the magnetic field B in 

our case. The Feshbach resonance can also be induced using radio-frequency or optical 

radiation. In the magnetic Feshbach resonance case, when the energy of a bound state in the 

closed channel crosses the scattering energy of the entrance channel, the scattering process gets 

enhanced resulting in a divergence of scattering length 𝑎. The width in magnetic field Δ of 

this resonance depends on the coupling strength of the two channels. The scattering length 

effected by all the resonances takes the form 

 
( )0,

1 ,i
bg

i i

a a
B B

 
= − 

 − 
   (3.16) 

where 𝑎𝑏𝑔  is the background scattering length and 𝐵0  is the resonant magnetic field, the 

subscript 𝑖 marks the number of each resonance. 
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  For the purpose of manipulating the scattering length, a bias magnetic field of 832.18 G is 

applied simultaneously when the CMOT is turned on and remains throughout the evaporative 

cooling process. The value of this bias magnetic field is adjusted during the second evaporation 

to a final value between 800 G to 900 G to suit the needs of the experiment. The atom species 

we use in this thesis are the hyperfine levels of 6Li |𝐹 = 1/2⟩ and 7Li |𝐹 = 1⟩. The resonance 

between 6Li |𝐹 = 1/2,𝑚𝑓 = +1/2⟩  and |𝐹 = 1/2,𝑚𝑓 = −1/2⟩  are located at 832.18 G 

and is considered to diverge across the whole magnetic regime we examined in this thesis. For 

this reason, the 6Li fermions cool down extremely fast during the evaporative cooling, typically 

faster than a scale of tens of milliseconds, and is served as coolant for the 7Li bosons. The 

interaction between the bosons and the fermions is at a constant value of 𝑎𝑏𝑓~40𝑎0 according 

to [Ferrier-Barbut 2014]. This scattering is the responsible for the cooling bosons. The strength 

of this scattering is large enough for the bosons to cool down in the order of seconds.  

For the 7Li bosons, we use either |𝐹 = 1,𝑚𝑓 = −1⟩  or |𝐹 = 1,𝑚𝑓 = 0⟩ . The third 

hyperfine state |𝐹 = 1,𝑚𝑓 = +1⟩  disappears during the first evaporation due to frequent 

inelastic collision. The other two hyperfine states remain in the trap and we will remove one of 

them after the second evaporation using the probe laser to avoid mixing these two. The 

|𝐹 = 1,𝑚𝑓 = 0⟩ is used as repulsive gas at 832.18 G, with a scattering length of 𝑎00 = 70𝑎0 

[Gross 2011, Julienne 2014]. The |𝐹 = 1,𝑚𝑓 = −1⟩ is the candidate for the non-interacting 

gas, where the response of the scattering length to the magnetic field has not been measured 

before. A rough schematic of the scattering length in a mixture of |𝐹 = 1/2,𝑚𝑓 = +1/2⟩ and 

|𝐹 = 1/2,𝑚𝑓 = −1/2⟩ fermions and |𝐹 = 1,𝑚𝑓 = −1⟩ bosons is shown in Fig. 3.4.2, the 

values used to calculate the scattering length is taken from [Ferrier-Barbut 2016].  

 

 

Fig. 3.4.2. The Feshbach resonance of the atoms. (a) The scattering length of the bosons (black line) 

and the scattering length between the bosons and fermions (red line). (b) Same as (a), with the scattering 

length of the fermions added and the vertical axis rescaled.  

 

 

(a) (b) 
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3.5 Imaging system 

 

  The method we obtain information on the ultracold atoms we created is through imaging. 

The imaging system in our set-up features two probes, one for in-situ absorption imaging and 

the other for time-of-flight (TOF) imaging. A schematic of the probe system is shown in Fig. 

3.5.1. The Cartesian coordinate system for the trap is set as follows: the propagation direction 

of the ODT laser is the z direction, the gravity is in the y direction and the horizontal direction 

vertical to the laser beam is the x direction. Some examples of the images taken inside the Bose-

Fermi superfluid mixture at 832.18 G is shown in Fig. 3.5.2 [Ikemachi 2016]. The pixel size 

for the in-situ camera is 𝐿𝑝𝑖𝑥 = 13μm  with a imaging magnification of 𝑀𝑚𝑎𝑔 = 7.68 , 

therefore, the size of each pixel in the captured image is 𝑑 = 𝐿𝑝𝑖𝑥/𝑀𝑚𝑎𝑔 = 1.7μm. The TOF 

camera has a pixel size of 16μm and a adjustable imaging magnification between 1 and 3.28. 

The TOF images from LP-ODT uses a magnification of 3.28 while the lower magnification is 

used to adjust the 3D-MOT and HP-ODT. 

 

 

Fig. 3.5.1. A schematic view of the imaging system. 
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Fig. 3.5.2. Examples of the Bose-Fermi mixture after third evaporation with different cooling time. (a-

c) The TOF images of paired fermions, black dots are the integrated momentum distributions along the 

y direction and the lines are results of a bimodal fitting. (d-f) The TOF images of bosons. (g-i) In-situ 

images of the |𝐹 = 1,𝑚𝑓 = −1⟩ boson. (j) In-situ image of the |𝐹 = 1,𝑚𝑓 = 0⟩ boson. 

 

The TOF probe is set in the same path as the ODT and is mainly used to evaluate the 

temperature of the atoms. Additionally, it is used to observe the collective oscillation of atoms. 
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When we are attempting to measure the temperature, the trap is turned off at a designated 

moment and the atoms enter ballistic movement. The probe is applied after the atoms fly for a 

period of 𝑡, typically about serval milliseconds. The mean square spread of the atoms after this 

flight can be written as 
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where 𝑓(𝑟, 𝑣)  is the distribution of atoms in the phase space. We can use the Maxwell 

distribution to evaluate the atoms 
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where 𝜎  is connected to the temperature via 𝜎2 = 𝑘𝐵𝑇/𝑚 . The 1/e value 𝑟(𝑡)  of the 

distribution during the flight is 

 ( ) ( ) ( )
2 2

0 2 .r t r t= +   (3.19) 

Since the image is taken in strong confinement directions (x-y plane) the 𝑟(0)  simply 

corresponds to the geometric mean of the harmonic frequency of the trap in x and y directions. 

Therefore, by fitting the spread after the flight, we can obtain the temperature of the atoms. 

  The in-situ probe is used to obtain the density distribution of the trapped atoms. This method 

is called absorption imaging from which the total number of atoms and local density can be 

calculated. A detailed description is given in [Horikoshi 2017a]. When a probe laser with 

intensity 𝐼 pass through the atom cloud, its intensity decreases according to the Beer-Lambert 

law 
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where 𝜎abs is the absorption cross section. The column density then can be derived as 
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  (3.21) 

Where 𝐼in(𝑥, 𝑧) = 𝐼(𝑥, −∞, 𝑧)  is the incident intensity and 𝐼out(𝑥, 𝑧) = 𝐼(𝑥, +∞, 𝑧)  is the 

output intensity. The optical depth (OD) is defined as 

 ( ) ( )abs, , .OD x z n x z=   (3.22) 
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In an realistic experimental run, an absorption image is calculated from 3 CCD counting images. 

The first one is the probe laser with atoms 𝐶abs. The second one is the probe laser without 

atoms 𝐶probe. The third one is the background without the probe laser 𝐶back. The background 

is removed as 𝐶in = 𝐶probe − 𝐶back and 𝐶out = 𝐶abs − 𝐶back. Then equation (3.21) can be 

converted into CCD counts 
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where (i, j) labels the location of the pixel correspond to (𝑥𝑗,𝑧𝑗), t is the duration of the probe 

and the saturation count is defined by 𝐶sat = 𝐶(𝐼sat, 𝑡) = 𝜒sat𝑡. From this equation we can see 

that the saturation count 𝜒sat can be determined from the gradient of 𝐶1 to 𝐶2 and can be 

measured by changing the probe intensity. For this thesis, 𝜒sat = 1050 is measured and used 

for the bosons. The absorption cross section 𝜎abs for the bosons can be measured using the 

ground state of |𝐹 = 1,𝑚𝑓 = −1⟩ with a known scattering length of 70𝑎0. Since the total number of 

atoms can be expressed by OD as 
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we can use the N calibrated from Thomas-Fermi approximation to assess the cross section. The 

cross section is measured to be 𝜎abs = 8 × 10−14m2. 

 

 

3.6 Trap evaluation 

 

  Since an amount of bias magnetic field is applied in the z direction, the external potential is 

modified according to 

 ( ) ( ) ( )ext dip mag, , , , ,U x y z U x y z U z= +   (3.25) 

Where the magnetic field provides a simple one-dimensional harmonic potential 

 ( ) 2 2

mag mag .
2

m
U z z=   (3.26) 

The magnetic curvature 𝜔mag is about 𝜔6mag = 2𝜋 × 0.24√𝐵Hz for the 6Li fermions and 

𝜔7mag = 2𝜋 × 0.24휂√𝐵Hz for 7Li bosons, where B is in Gauss and 휂 = √𝑚6/𝑚7. 

  In our system the trap laser is an elliptic Gaussian beam. When can modify equation (3.9) 
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to describe its intensity 
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where 𝑖 denotes the direction x or y. The trapping frequencies then can be expressed by 
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where �̃�𝑧 is the trapping frequency by the ODT and 𝜔𝑧 is the effective trapping frequency 

in z direction. The trapping frequencies for the bosons satisfy 𝜔7 = 휂𝜔6. The power of the 

LP-ODT 𝑃ODT is controlled by a virtual parameter in our operation system denoted as 𝑈trap, 

ranging from 0 to 10. 𝑈trap controls the output of the LP-AOM. In this thesis we refer 𝑈trap 

as trap depth and it has linear relations with 𝑃ODT and atom temperature. 

  The trap parameters 𝑤𝑥0, 𝑤𝑦0 and 𝜔𝑧 can be measured either using the fermions alone 

without loading the bosons or using the bosons in a mixture. However, in a mixture the 

frequency cannot be measured by fermions for that its low density gives bad signal to noise 

ratio.  

The trap frequency in x and y direction can be measured using the collective oscillation. In 

the case of fermions, we use ideal Fermi gas at 527 G. By turning off the LP-ODT for 30 μs 

and then re-trap the atoms by turning on the LP-ODT again, a collective oscillation along the 

x and y direction can be excited. The oscillation is imaged with the TOF camera where the size 

of the gas is examined. Fig 3.6.1. shows the results of such a measurement. The oscillation 

frequency of this mode is 2𝜔𝑥 and 2𝜔𝑦. With the measured frequency, we can use equation 

(3.28) to obtain the beam waists 𝑤0𝑥 and 𝑤0𝑦. For bosons, similar measurement is performed 

using 𝑚𝑓 = 0 at 832.18 G. The oscillation frequency of the collective mode is √5𝜔𝑥 and 

√5𝜔𝑦 [Miyakawa 2000]. An example of the oscillation is given in Fig. 3.6.2. 
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Fig 3.6.1. Example of collective oscillation measured with ideal Fermi gas, 𝑈trap = 0.40 . (a) x 

direction Gaussian width. (b) y direction Gaussian width. The line corresponds to a sine fit with a 

lifetime.  

 

 

Fig 3.6.2. Example of collective oscillation measured with 𝑚𝑓 = 0 Bose gas at 832.18 G, 𝑈trap =

0.50. (a) x direction Gaussian width. (b) y direction Gaussian width. The line corresponds to a sine fit.  

 

  The effective trapping potential 𝜔𝑧  can be measured using the dipole oscillation. The 

oscillation is excited by briefly turning on the HP-ODT while the atoms are trapped inside the 

LP-ODT. This provides a modulation in density distribution along the z direction which results 

in a dipole oscillation. In-situ images are taken to evaluate the movement of the center of mass. 

The oscillation frequency is 1𝜔𝑧 for both bosons and fermions. Using this measured value 

and beam waists, we can calculate the magnetic curvature 𝜔mag. An example of the dipole 

oscillation is shown in Fig. 3.6.3. 

 

(a) (b) 

(a) (b) 
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Fig 3.6.3. Example of dipole oscillations evaluated from the movement of center of mass along z 

direction measured at 832.18 G. (a) Fermions at 𝑈trap = 0.40. (b) Bosons at 𝑈trap = 0.20. The line 

corresponds to a sine fit. 

 

  Realistically, the trap parameters can vary slightly based on factors such as the optical path 

of the ODT and the condition of the fiber laser. The values are found to vary naturally on a 

weekly to monthly basis in response to environmental changes. Also, the values change during 

operation compared to that at the start. Therefore, we usually start the experiment after the 

system has been completely warmed-up when the trap condition as well as the atom loading 

condition become stabilized. The warm-up operation typically takes around three hours. The 

changes in trap condition are mostly found in the beam width in x and y direction. However, 

since these directions are strongly confined and we are mostly dealing with data in the z 

direction, changes around 1 or 2 μm typically does not affects the result of the experiment. 

The trapping frequency in z direction is relatively stable because it mainly comes from the 

magnetic field. 

  The trap parameters used for the data in Chapter 8 are measured to be 𝑤𝑥0 = 40.5μm , 

𝑤𝑦0 = 47.0μm, 𝜔mag = 2𝜋 × 6.3Hz, and 𝑃ODT = 1.25 ∗ (0.642 + 195.13 ∗ 𝑈trap)mW. 

 

 

Summary 

 

  In this chapter we presented how the Bose gas of 7Li are prepared. We covered the basics of 

laser cooling, magneto-optical trapping, optical-dipole trapping, evaporative cooling and 

Feshbach resonance. We also introduced the imaging system and explained how the atom 

number and density are calculated. Finally, we explained the trap parameters and demonstrated 

how they are measured. 
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Conclusion 

 

  In this thesis, we have presented the creation of ultracold Bose gases of 7Li using laser 

cooling, magneto-optical trapping, and optical-dipole trapping. The gas is evaporatively cooled 

with 6Li coolant to achieve a sympathetic cooling under an external Feshbach magnetic field. 

We introduced our imaging system and demonstrated how the experimental parameters are 

determined. 

we have measured the scattering length of 7Li bosons in the hyperfine state 

|𝐹 = 1,𝑚𝑓 = −1⟩ across a magnetic field range from 832 G to 900 G via evaluating the size 

of the ground state BEC. The experimental range covers the scattering length from −3.2𝑎0 

to 15𝑎0. We experimentally located the non-interacting limit of the bosons at a magnetic field 

of 850.5 G, where the scattering length is measured to be 0.08 ± 0.15𝑎0. This condition is 

used to represent an ideal gas. 

  We examined the properties of the Bose-Fermi mixture which includes mixability, the effects 

of fermions on the potential of bosons, and the fermion induced interaction between bosons. 

We find that the boson and fermion components are mixable. The induced potential is found to 

change the trapping frequency for about 1%. The induced interaction is found to be less than 

the error of the measured scattering length. Therefore, the effects induced by the mixture can 

be omitted and the fermions can be treated safely as simple coolant for the bosons. 

  We presented the calculation of the equation of state where we average more than 30 in-situ 

absorption images and apply the inverse Abel transform to generate the local density. Then the 

local density is mapped towards the local potential to obtain the density EOS. We demonstrated 

the LDA violation in BEC and explained that BEC proportion is removed for isothermal 

compressible measurement. We also shown the temperature measurement results using TOF 

imaging and bimodal fitting. 

  We explored the concept of ensembles and the equivalence between them. We mentioned 

some under-debate problems regarding the ensembles. We demonstrated that our system 

composed by bosons and fermionic coolant is equivalent to similar system where bosons are 

isolated, i.e., the equivalence between canonical ensemble and microcanonical ensemble, by 

partially removing the heat bath and re-balancing the system. This implies that statistically the 

experimental results from our system should be the same with the majority of other ultracold 

atom systems without coolant. 

  With these results, we can conclude that the non-interacting Bose gas created in our system 

is a close analogue to the “textbook” case of an ideal Bose gas. We also explained that why 

such condition can only be obtained via sympathetic cooling. 

  Finally, we evaluated the local isothermal compressibility for both repulsive Bose gas with 

70𝑎0  and the non-interacting Bose gas with 0.08 ± 0.15𝑎0 . We managed to capture this 
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property by using the inverse Able transform to acquire accurate local information. The gases 

are found to match the ideal gas model away from the critical point. Similar critical divergence 

is observed in both cases, where the compressibility deviates the prediction of the ideal gas 

model and seemingly matches the 3D-XY behavior. The cause for the 0.08𝑎0  gas to not 

following the ideal gas model near critical point can be explained by weakly interacting theory. 

An ideal BEC phase transition might not be achievable in real experiment conditions since we 

cannot completely remove all the interaction and the interacting BEC phase transition may be 

non-perturbatively different from an ideal one. We conclude that interacting model gives a 

more realistic view of the Bose gas than the ideal model and much care has to be taken for the 

possible disconnection between these two. Our results also imply the possible absence of a 

“textbook” ideal matter wave BEC inside an ultracold atomic gas with tunable interaction. 

  The work in this thesis can be extended in several directions. First, one might consider 

examine other range of scattering length to locate the existence of a possible crossover between 

the interacting model and the ideal model. Since we have no idea how exactly the interaction 

affects the system, the location of this crossover can be very narrow near the effective zero 

scattering length or somewhere sightly away from it. If one manages to increase the accuracy 

of the measured critical scaling, one might also be able to identify other possible scenarios such 

as the Casimir effect. Alternatively, one might use other traps to examine the critical 

phenomenon, such as a box trap. Although by applying the LDA, the local properties we 

examined here should be the same with that of a homogenous trap, the harmonic potential 

changes some global properties of the condensate. Therefore, a box trap should be a closer 

representation to the textbook case. One might also be interested to examine other possible 

disconnected properties between the ideal gas and the interacting gas such as the thermal 

saturation. In addition, thermalization dynamics can be an interesting topic to study, since the 

temperature range we studied here is somewhere in the vague boundary between quantum and 

classic. 
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