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Abstract

In this dissertation, we study the generalized Lefschetz thimble method using gradient
flows without the blow-up, in order to solve the sign problem. The sign problem appears
in the numerical simulations of the systems with complex actions. In the systems with
complex actions, the integrand of the path integral oscillates and gives an exponentially
small expectation value as the volume or the inverse temperature increase. Thus in the
numerical simulation, an exponentially huge number of configurations are required. To
solve the sign problem, the generalized Lefschetz thimble method is proposed. The idea of
the generalized Lefschetz thimble method is complexifying the integration variables and
deforming the integration contour owing to Cauchy’s integral theorem. In the generalized
Lefschetz thimble method, the gradient flow is used to deform the integration contour
and suppress the fluctuation of the imaginary part of the action. However, generally the
action goes to infinity in a finite time by the gradient flow. The divergence of the action
is called the blow-up. The blow-up causes a separation of the integration contour and
the ergodicity is broken. To circumvent the blow-up the modification of the gradient flow
is proposed. We construct the hybrid Monte Carlo algorithm on the flowed integration
contour using the gradient flow without the blow-up. In order to test the validity of the
gradient flow without the blow-up, we apply the algorithm to the (0 + 1)-dimensional
massive Thirring model at finite density, which is a fermionic model with auxiliary fields.
Then we show that the sign problem is mild in the algorithm and the result we obtain
agrees with the analytic result.
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Chapter 1

Introduction

1.1 Overview

In quantum physics, physical quantities are calculated by the path integral. The path
integral can be regarded as the multi-dimensional integral, and the stochastic methods
such as the Monte Carlo are used to compute it. The point of this method is that the
integrand of the path integral is considered as the Boltzmann weight, and the configura-
tions are generated according to the probability distribution proportional to the weight.
Then we obtain the expectation value of an observable effectively by the average over the
samples. In quantum field theories, especially, this method is a powerful tool to obtain
non-perturbative results, and it has been succeeded to study hadron physics using lattice
quantum chromodynamics (QCD). However, when the action is a complex number, we no
longer can interpret the integrand as the probability, and the direct Monte Carlo method
cannot be applied. This problem is called the sign problem. One may consider the imagi-
nary part of the action as a phase factor and include it in the observable. However, as the
volume or the inverse temperature increase, the phase fluctuates rapidly, and the path
integral gives an exponentially small phase average. Thus in the numerical simulation,
an exponentially huge number of configurations are required, and the sign problem is not
resolved. Some of the physically interesting systems have the sign problem. For example,
finite-density QCD has a complex action and involves the sign problem. Thus the sign
problem is an obstacle of studying neutron matter found in nucleon stars. Moreover, the
sign problem appears in real-time dynamics, from which we can obtain the observables
such as the viscosity of quark-gluon plasma created in heavy ion collisions. Therefore the
development of the approaches solving the sign problem is important.

There have been many approaches which attempt to solve the sign problem. One of the
approach is the complex Langevin method [1,2] based on the stochastic quantization [3],
which is referred to as the real Langevin method. In the real Langevin method, the
configurations are evolved according to the Langevin equation, which can be regarded
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2 CHAPTER 1. INTRODUCTION

as the Brownian motion. After the thermalization, the configurations are distributed
according to the Boltzmann weight. Thus the real Langevin method is the well-established
tool to study the quantum many-body systems with a real action. The idea of the complex
Langevin method is the complexification of the configuration space. Then we can define
the complexified Langevin equation, and consider the evolution of the configurations.
However the convergence is not guaranteed as opposed to the real Langevin method.
Also even if the convergence is achieved, the expectation value may be incorrect. If the
probability distribution of the drift term falls off sufficiently fast, the complex Langevin
method is justified [4–6]. For a review of the complex Langevin method, See Ref. [7].

Another approach is deforming the integration path on the complexified configuration
space, owing to Cauchy’s integral theorem. This approach is the main topic of this dis-
sertation. Using the gradient flow equation, one can define Lefschetz thimbles, on which
the imaginary part of the action is constant. In the early attempts, a single thimble was
taken into account as the integration contour, under the assumption that it gives the
dominant contribution. There are several algorithms to compute the path integral on
a single thimble: the Langevin algorithm [8, 9], the Metropolis algorithm [10], and the
hybrid Monte Carlo algorithm [11]. Generally the original integration contour is homolog-
ically equivalent to the multiple thimbles. To take the contribution of multiple thimbles
into account, the generalized thimble method was proposed [12]. In this method, the
integration contour is deformed by the gradient flow. However as the flow time increase
the contour becomes a disconnected region, and the ergodicity is not satisfied. To avoid
this problem, the tempering method [13], and the parallel tempering method [14,15] are
proposed. The idea of these methods is introducing a relaxation parameter, along which
the probability distribution is relaxed and the integration contour is merged. Then by
the transition along the relaxation parameter, the transition between the configurations
which are disconnected is available. In the parallel tempering method, the relaxation
parameter is the flow time. For each of the discretized flow times, the configurations
are generated simultaneously and exchanged regularly. As an extension of the parallel
tempering method, the method where the flow time is also taken into account as the
integration region was proposed [16]. There is an attempt to construct an integration
contour with some parameters and optimize the parameters so that the sign problem
ameliorates. In this approach the integration contour is unrelated to the Lefschetz thim-
ble. To optimize the integration contour, a cost function is defined. Then it is minimized
by computing the gradient of it or using the neural network [17–24]. For a review of the
Lefschetz thimble method and other path deforming methods, See Ref. [25].

Each of the methods has a strong point and a weak point. The complex Langevin
method has the advantage of the cheap computational cost, but it may give incorrect
results. On the other hand, the (generalized) Lefschetz thimble method has the dis-
advantage of the expensive computational cost, since we need to compute the tangent
vectors on the deformed integration contour and the determinant of them. However, it
has the advantage that mathematically the results are correct as long as the deformed
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integration contour is homologically equivalent to the original contour. To apply the Lef-
schetz thimble method or other path deforming methods to the numerical simulation, we
need to specify the deformed integration contour and develop the Monte Carlo algorithm
which gives numerically correct results.

The aim of this dissertation is testing the generalized thimble method using the flowed
contour by the gradient flow without the blow-up. The flowed contour by the gradient
flow without the blow-up is a connected region, and thus the transition between the
regions close to different Lefschetz thimbles is possible. We show that in this method the
sign problem is mild and the configuration is distributed over the multiple thimbles by
applying the method to a toy model.

1.2 Outline of this dissertation

In Chapter 2, a brief review on the Lefschetz thimble method is given. The Lefschetz
thimble method was proposed in Refs [8, 9, 11] to solve the sign problem. The sign
problem appears in the numerical simulation of the path integral with a complex action.
A simple model which has the sign problem is provided to explain the main idea of the
Lefschetz thimble method. As one of the numerical implementation, the hybrid Monte
Carlo algorithm on the Lefschetz thimble is introduced.

In Chapter 3, the generalized Lefschetz thimble method is reviewed. The generalized
Lefschetz thimble method was proposed in Ref [12] to improve a weak point of the Lef-
schetz thimble method. The original idea of the Lefschetz thimble method does not work
in general since many Lefschetz thimbles may contribute to the path integral. In the
generalized Lefschetz thimble method the integration contour is deformed to a connected
region on which the sign problem is mild. Thus this method may take the contribution
of multiple thimbles into account.

In Chapter 4, the idea of the modified gradient flow, which is introduced in order
to circumvent the blow-up, is reviewed based on Ref [26]. In the generalized Lefschetz
thimble method, the blow-up problem appears as the integration contour is deformed
using the conventional gradient flow. The blow-up comes from both the bosonic action
and the fermion determinant. It is shown that the improved gradient flow given in this
section indeed circumvent the blow-up.

Chapter 5 is the main part of this dissertation, and is based on the author’s original
work. We construct the algorithm computing the path integral using the gradient flow
without the blow-up, based on the hybrid Monte Carlo algorithm on the Lefschetz thim-
ble. Then we apply it to the (0+1)-dimensional massive Thirring model at finite density,
which is a fermionic model with auxiliary fields. We show the result of the numerical
simulation. It shows a good agreement with the analytic result, since the algorithm we
construct circumvents the blow-up.





Chapter 2

Lefschetz thimble method

In this chapter, we first provide an intuitive explanation of the sign problem, which
appears in the evaluation of the path integrals. Then we explain the Lefschetz thimble
method, which may solve the sign problem. We review the basis of the Lefschetz thimble
method and algorithms to compute the path integral which has the sign problem.

2.1 Sign problem and Lefschetz thimble method

In quantum field theories, the lattice field theory provides a non-perturbative definition
of the path integrals. The Monte Carlo simulation of lattice QCD has been a power-
ful tool to study hadron physics. However, at low temperature and finite density, the
sign problem appears and prevents us from studying the phase diagram from first prin-
ciples. In this section, we explain the sign problem, which arises from the difficulty of
the numerical simulation of the path integral with a complex action. Then, we consider
a one-dimensional integral, from which we study a key idea to solve the sign problem.

2.1.1 path integral

In quantum mechanics, the path integral [27, 28] is one of the method to formulate a
quantum system and calculate physical quantities. In quantum field theories especially,
the partition function in Euclidean formalism is given by

Z =

∫
dϕ(x) exp [−S(ϕ(x))] , (2.1)

and the expectation value of an observable O is calculated as

⟨O⟩ = 1

Z

∫
dϕ(x)O(ϕ(x)) exp [−S(ϕ(x))] , (2.2)

5
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where S(ϕ) is the action functional of ϕ(x) and x denotes the coordinate point in Eu-
clidean spacetime. Here, we consider the imaginary time or the finite temperature β 1).
For bosonic fields we impose a periodic boundary condition,

ϕ(x+ e(i)L) = ϕ(x), i = 1, 2, 3, (2.3)

ϕ(x+ e(4)β) = ϕ(x), (2.4)

where e(i) (i = 1, . . . , 3) denote the unit vectors in the direction xi. For fermionic
fields ψ(x), we impose an antiperiodic boundary condition ψ(x + e(4)β) = −ψ(x) in
the imaginary-time direction. Since the coordinate space {x} is continuous, the number
of degrees of freedom of the field ϕ(x) is infinite and the path integral (2.2) is formally
a integral of the infinite-dimensional space. Discretizing the spacetime on the lattice is a
way to define the integral rigorously and also enable us to evaluate the integral numeri-
cally. After the spacetime is discretized on the lattice, scalar fields and fermionic fields
are defined on the lattice points, whereas gauge fields are defined on the links. Then
the number of degrees of freedom of the field is finite; it consists of the number of the
lattice points (links) and the internal degrees of freedom. For example, gauge fields have
vector indices and fermionic fields have spinor indices. Thus, the path integral comes
down to the finite-dimensional integral with the large number of integration variables 2).
The continuum limit is considered as the limit in which the lattice volume goes to infinity
and the lattice spacing goes to zero.

2.1.2 Monte Carlo method

The Monte Carlo method with importance sampling is mainly used to evaluate multi-
dimensional integrals numerically. In this method, the configurations ϕ(1), . . . , ϕ(N) are
sampled according to the probability function P (ϕ) ∝ exp(−S(ϕ)). Then, the expectation
value of an observable O is estimated by the average of the configurations,

⟨O⟩ ≈ 1

N

N∑
i=1

O(ϕ(i)) +O(1/
√
N). (2.5)

The statistical error O(1/
√
N) is independent of the dimension of the integration space,

and stochastic approaches such as the Monte Carlo method are powerful to simulate
integrals with large numbers of dimensions. The key point of the importance sampling

1)One may also consider real-time dynamics through the Schwinger-Keldysh formalism [29, 30]. This
can be constructed on the lattice. However, simulating the real-time dynamics involves the sign problem.
There are studies of Monte Carlo simulations using the complex Langevin method [31, 32] and the
Lefschetz-thimble method [33–35].

2) The measure dϕ is defined properly. In the case of a scalar field, the measure is defined by dϕ :=∏
x∈Γ dϕ(x), where Γ is the discretized spacetime.
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is to find an efficient algorithm generating the configurations ϕ(1), . . . , ϕ(N) according to
the probability function P (ϕ). In order to generate the configurations, a Markov process
is usually used. In this process, a sequence ϕC0 , ϕC1 . . . of the configurations is produced
according to the transition probability T (ϕCi

→ ϕCi+1
). If the transition probability

satisfies the detailed balance condition,

exp(−S(ϕ))T (ϕ→ ϕ′) = exp(−S(ϕ′))T (ϕ′ → ϕ), (2.6)

and the stationary distribution exists, the distribution of the configurations ϕCi
converges

to the probability P (ϕ) ∝ exp(−S(ϕ)), as i goes to infinity 3). To ensure the detailed
balance condition, for example Metropolis algorithm and hybrid Monte Carlo algorithm
are employed.

2.1.3 Sign problem and reweighting procedure

The method we introduced above works well if the action S(ϕ) is real. However, since the
probability function needs to be positive, the importance sampling cannot be applied if
the action S(ϕ) is a complex number or the weight function is oscillatory. This problem
is called the sign problem.

One may include the phase factor exp(ImS(ϕ)) in the observable. This is called
reweighting procedure. In this procedure, the weight function is replaced by the absolute
value of the exponentiation of the action | exp(−S)|, and the integral of this weight
function is called the phase-quenched partition function,

ZPQ =

∫
dϕ |exp (−S(ϕ))| =

∫
dϕ exp (−ReS(ϕ)) . (2.7)

Then, the expectation value of an observable O with respect to the phase-quenched weight
function is given by

⟨O⟩PQ =
1

ZPQ

∫
dϕO(ϕ) exp [−ReS(ϕ)] , (2.8)

and the expectation value of the observable O with respect to the overall weight function
including the phase factor is given by the ratio of the phase-quenched expectation values,

⟨O⟩ = ⟨O exp(−iImS(ϕ))⟩PQ
⟨exp(−iImS(ϕ))⟩PQ

. (2.9)

3) We abbreviate T (ϕCi
→ ϕCj

) as Tij and consider the probability that a configuration ϕCi
transits

to a configuration ϕCj after N steps, which is given by P
(N)
ij :=

∑
i1,...,iN−1

Tii1Ti1,i2 · · ·TiN−1,j . If the

Markov process satisfies P
(N)
ij > 0 for some N , P

(N)
ii ̸= 0 for any N , and

∑∞
n=1 nP

(n)
ii < ∞, the stationary

distribution πj := limN→∞ P
(N)
ij exists.
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If the phase fluctuation is mild and the cancellation between the contributions from
the positive and negative signs does not occur frequently, both the numerator and the
denominator on the right-hand side of Eq. (2.9) are finite so that we can numerically
evaluate the ratio with sufficient accuracy. However, conversely if the phase cancellation
occurs frequently, a huge number of configurations are required so that the statistical error
is much smaller than the mean of the phase average, |⟨exp(−iImS(ϕ))⟩PQ| ≫ 1/

√
N . In

the physical systems the phase average vanishes exponentially as we increase the volume
V or the inverse temperature β:

⟨exp(−iImS(ϕ))⟩PQ =

∫
dϕ exp (−S(ϕ))∫
dϕ exp (−ReS(ϕ))

≈ exp(−βV f)
exp(−βV fPQ)

= e−βV (f−fPQ), (2.10)

where f and fPQ denote the free energy density in the original and phase-quenched
systems. We note that f − fPQ > 0, since the numerator on right-hand side of the first
equation in Eq. (2.10) has a phase factor exp (−iImS(ϕ)) in the integrand. Thus, the
computational cost to achieve the sufficiently small statistical error in evaluating ⟨O⟩
grows exponentially as we increase the volume or decrease the temperature:

N ≫ e2βV (f−fPQ). (2.11)

This means the reweighting procedure does not work practically, and the sign problem
again appears. Moreover the situation is worse when the action is pure imaginary, since
reweighting procedure cannot be applied. Thus the simulation of the real-time dynamics
suffers from the severe sign problem.

2.1.4 Example of complexified contour: Airy integral

Although the numerical simulations of the integrals with the complex actions are quite
difficult in a direct way, there are cases where the sign problem disappears by using the
alternative description based on the complex analysis. To explain how to circumvent it,
now we consider the following one-dimensional integral:

Z(t) =

∫ ∞

−∞

dϕ

2π
exp(−S(ϕ, t)), S(ϕ, t) = −i(ϕ3/3 + tϕ). (2.12)

Z(t) is known as Airy integral. Since the action is a pure imaginary number, the conver-
gence of the integral as ϕ goes to infinity is slow. However, owing to Cauchy’s integral
theorem, after the analytic continuation of the integration variable we can deform the
integration contour keeping the integral unchanged, and make the integrand have a good
convergence property along the contour. We can find the steepest descent and ascent
paths for each of the critical points ϕcrit., which satisfy ∂S/∂ϕ(ϕcrit., t) = 0. The critical
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point is called the saddle point especially in one-dimensional integral because of this prop-
erty. Along the steepest descent and ascent paths, the tangent vector eiθ is determined
so that

S(ϕ+ εeiθ, t) ≈ S(ϕ, t) + εeiφS

∣∣∣∣∂S∂ϕ
∣∣∣∣ eiθ, ∂S

∂ϕ
= eiφS

∣∣∣∣∂S∂ϕ
∣∣∣∣ (2.13)

is maximized and minimized in the real part, respectively. It indicates θ = −φS and
θ = π − φS, and the imaginary part of the action ImS is constant along them. Thus the
steepest descent path satisfies the properties required for the numerical simulation, that
is, the fast convergence and the constant phase factor. Let us consider Airy integral with
t > 0. After complexifing the integration variable ϕ ∈ C, the critical points are given by
the equation,

∂S

∂ϕ
(ϕcrit., t) = −i(ϕ2

crit. + t) = 0 ⇔ ϕcrit. = ±i
√
t. (2.14)

There are two critical points and we need to choose the relevant steepest descent path.
The integrand is convergent only if Re(ϕ3) > 0 as |ϕ| goes to infinity, and we denote the
corresponding regions of 2π/3 < arg(ϕ) < π, 0 < arg(ϕ) < π/3 and 4π/3 < arg(ϕ) <
5π/3 as the regions A, B and C as shown in Fig. 2.1(Left). The starting and ending points
at infinity of the deforming contour need to be in these regions. Therefore, we can deform
the integration contour to the steepest descent path with the critical point ϕcrit. = +i

√
t

as shown in Fig. 2.1(Left). As shown in Fig. 2.1(Right), although the integrand of the
original contour is oscillatory (solid red line), that of the deformed contour damps out
(dashed blue line).

-3
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 0
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 3

-3 -2 -1  0  1  2  3

Im
(ϕ
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Re(ϕ)

original contour
steepest descent

critical points
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-0.5

 0

 0.5

 1

-4 -2  0  2  4

R
e[
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p(

-S
)]

Re(ϕ)
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steepest descent

Figure 2.1: Two integration contours for Airy integral (t = 1). (Left) Deformation
of the integration contour on the complex ϕ-plane. In the gray regions the integrand
is asymptotically convergent. (Right) Behavior of the integrands Re(exp(−S)) for the
original contour and the deformed contour.

Let us consider a generic case where t is a complex number. Along the real axis the
integrand is divergent, but we can define the contour where the starting and ending points
at infinity go to the regions A and B so that the integral is convergent. We denote the
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steepest descent and ascent paths associated with the critical point ϕcrit. as Jϕcrit. and
Kϕcrit. . If the phase of the parameter t is small enough, then we can deform the original
contour to the steepest descent path associated with the critical point i

√
t as is the case

for t > 0:

Z(t) =

∫ ∞

−∞

dϕ

2π
exp(−S(ϕ, t)) =

∫
Ji

√
t

dϕ

2π
exp(−S(ϕ, t)). (2.15)

We note that the steepest descent path associated with the critical point −i
√
t does not

contribute to the integral (2.15), but the topological structure of the steepest descent
paths changes drastically at arg(t) = 0, which is called the Stokes jump. As shown
in Fig. 2.2, the steepest descent path J−i

√
t connects with the regions of C and A for

arg(t) < 0 but C and B for arg(t) > 0. The Stokes phenomenon may happen when
the multiple critical points share the same value of the imaginary part of the action
ImS, and both the steepest descent and ascent paths connect these critical points. The
Stokes jumps suggest the possibility of the drastic change of the steepest descent path
contributing to the integral. If we define the original integration contour as the one that
connects with the regions of C and A or C and B, then the contributing contours change
at arg(t) = 0.
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Figure 2.2: Stokes jump at arg(t) = 0 in the complex ϕ-plane. (Left) t = exp(−δi).
(Right) t = exp(+δi). Here we put δ = 0.1 in both cases.

Since the action S has two critical points ϕcrit. = ±i
√
t, the candidates for the param-

eter t of the Stokes jumps are given by the condition,

ImS(i
√
t, t) = ImS(−i

√
t, t) ⇔ t = 0, e±2πi/3. (2.16)

As shown in Fig. 2.3 for t = e2πi/3, the Stokes jump occurs at t = e±2πi/3. We note that
when 2π/3 < arg(t) < 4π/3, both of the steepest descent path associated with the critical



2.2. COMPLEXIFICATION IN MULTIPLE DIMENSIONS 11

points ϕcrit. = ±i
√
t contribute to the integral; that is, they are topologically equivalent

to the original integration contour:

Z(t) =

∫
J−i

√
t

dϕ

2π
exp(−S(ϕ, t)) +

∫
J+i

√
t

dϕ

2π
exp(−S(ϕ, t)). (2.17)

Thus in general, it is an important task to determine which steepest descent paths con-
tribute to the integral when we use the steepest descent method.
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critical points
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Im
(ϕ

)

Re(ϕ)

critical points

Jieπi/3

Kieπi/3

J-ieπi/3

K-ieπi/3

Figure 2.3: Stokes jump at arg(t) = 2π/3 in the complex ϕ-plane. (Left) t = exp(2πi/3−
δi). (Right) t = exp(2πi/3 + δi). Here we put δ = 0.1 in both cases.

2.2 Complexification in multiple dimensions

In this section, we generalize the steepest descent method in multi-dimensional theory.
In multi-dimensional theory, Lefschetz thimbles correspond to steepest descent paths.
Lefschetz thimbles are constructed using the gradient flow, along which the imaginary
part of the action is constant.

2.2.1 Generalized Cauchy’s integral theorem

First, let us consider the theory with n real degrees of freedom x = (x1, . . . , xn). We
assume that x takes the value on CR (⊆ Rn). The partition function of this theory is
given by

Z =

∫
CR
dnx exp(−S(x)), (2.18)
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and our main purpose is to evaluate the expectation value of an observable O(x),

⟨O⟩ = 1

Z

∫
CR
dnxO(x) exp(−S(x)). (2.19)

We complexify the real variable as x ∈ CR → z ∈ Cn and assume that S(z) is a holomor-
phic function in Cn → C. Due to Cauchy’s integral theorem in multiple dimensions, we
may deform the contour CR to the contour C in the complex space Cn:

Z =

∫
C
dnz exp(−S(z)). (2.20)

Eq. (2.20) is formally an integral over the n complex variables, and one may take the
definition as follows:∫

C
f(z)dz1 · · · dzn =

∫
M
f(φ(ξ)) det J(ξ)dξ1 · · · dξn, (2.21)

where φ maps n-dimensional real manifold M by the real coordinates ξ = (ξ1, . . . , ξn) to
the contour C in the n-dimensional complex space, as zi = φi(ξ1, . . . , ξn). det J(x) is the
determinant of the Jacobian matrix,

Jij(ξ) =
∂zi
∂ξj

, (2.22)

and det J(ξ) is a complex number in general. Here, we assume C and thus M have no
boundary. We note that the integrand of the right-hand side in Eq. (2.21) is complex,
but we may take the right-hand side in Eq. (2.21) as the sum of the real part and the
imaginary part, which are the integrals of the real function. Now we consider two such
integration contours C0 and C1 that we can deform smoothly to each other. We can define
a continuous map Φ(ξ, t) : M× [0, 1] → Cn such that Φ(ξ, 0) maps ξ onto C0 and Φ(ξ, 1)
maps ξ onto C1. Then we have∫

C1−C0
f(z)dz1 · · · dzn =

∫
M×[0,1]

∂

∂t
[f(Φ(ξ, t)) det J(ξ)] dtdξ1 · · · dξn. (2.23)

We note that the following identity holds:

∂

∂t
[f(Φ(ξ, t)) det J(ξ)] =

n∑
i=1

∂

∂ξi

[
f(Φ(ξ, t)) det J(ξ)|ξi→t

]
, (2.24)

where

J(ξ)kl|ξi→t =


∂zk
∂ξl

(l ̸= i),

∂zk
∂t

(l = i).
(2.25)

Therefore the right-had side of Eq. (2.23) vanishes, and we obtain the generalized Cauchy’s
integral theorem, ∫

C0
f(z)dz1 · · · dzn =

∫
C1
f(z)dz1 · · · dzn. (2.26)
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2.2.2 Gradient flow and Lefschetz thimble

Now, we are interested in deforming the contour where the sign problem vanishes. Picard-
Lefschetz theory, which is the analogue of Morse theory for the complex space, is applied
to find such a contour [36, 37] 4). To perform the deformation, the gradient flow is
introduced through the differential equation,

d

dt
zi(t) =

(
∂S

∂zi

)∗

, (2.27)

where the complex conjugate of z = a + ib (a, b ∈ R) is denoted as z∗ = a − ib. Here
the flow time t is introduced, and initial point zi(0) is mapped to zi(t) according to the
gradient flow equation (2.27). Since critical points zσ satisfy ∂S/∂zi(zσ) = 0, they are
the fixed points of the gradient flow. Associated with a critical point zσ, we can define
two types of submanifolds in Cn:

Jσ := {z(0) ∈ C | z(−∞) = zσ} , (2.28)

Kσ := {z(0) ∈ C | z(+∞) = zσ} . (2.29)

The former corresponds to the steepest descent path for the one-dimensional theory and
the latter corresponds to the steepest ascent path for the one-dimensional theory. We
call the submanifold Jσ the Lefschetz thimble and the submanifold Kσ the dual thimble.

Using Eq. (2.27) we have

d

dt
ReS =

1

2

(
∂S

∂zi

dzi
dt

+

(
∂S

∂zi

)∗(
dzi
dt

)∗)
=

(
∂S

∂zi

)∗
∂S

∂zi
≥ 0, (2.30)

d

dt
ImS =

1

2i

(
∂S

∂zi

dzi
dt

−
(
∂S

∂zi

)∗(
dzi
dt

)∗)
= 0. (2.31)

We note that exp(−ReS) monotonically decreases (increases) as the point z on Jσ (Kσ)
flows away from the critical point, and the phase factor exp(−ImS) is constant along both
Jσ and Kσ. If a critical point zσ is isolated, the Hessian matrix of −ReS with respect
to the 2n real degrees of freedom Re(zk), Im(zk) (k = 1, . . . , n) has n positive eigenvalues
and n negative eigenvalues. Thus both Jσ and Kσ are the n-dimensional submanifolds.
Since −ReS(z) ≤ −ReS(zσ) for z ∈ Jσ and −ReS(zσ) ≤ −ReS(z) for z ∈ Kσ, Jσ and
Kσ has a intersection only at the critical point zσ. On the other hand, when the Stokes
phenomenon does not occur and thus the critical points are not connected by the gradient

4) −ReS(z) correspond to the Morse function h in Morse theory. The Morse function is a function
such that the Hessian matrix is invertible at the critical points. The number of negative eigenvalues
of this matrix is called the Morse index. The Morse function is a powerful tool to analyze the relative
homology group. It gives Morse inequalities, which state that the rank of the n th homology group is less
than or equal to the number of critical points with the Morse index n. If the equalities hold especially,
h is called a perfect Morse function.
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flow, Jσ1 and Kσ2 with different critical points zσ1 ̸= zσ2 do not intersect with each other.
We denote the intersection of Jσ1 and Kσ2 as 5)

⟨Jσ1 ,Kσ2⟩ = δσ1σ2 . (2.32)

According to Picard-Lefschetz theory, the contour CR over which the integral converges
is homologically equivalent to a linear combination of the Lefschetz thimbles Jσ:

CR ≃
∑
σ∈Σ

nσJσ, nσ ∈ Z, (2.33)

where Σ denotes the set of the critical points, and from Eq. (2.32) the coefficient nσ is
given by 6)

nσ = ⟨CR,Kσ⟩. (2.34)

Since the integration contour CR can be deformed to the combination of the Lefschetz
thimbles according to Eq. (2.33), the partition function is given by

Z =
∑
σ∈Σ

nσ exp(−S(zσ))Zσ, (2.35)

where

Zσ =

∫
Jσ

dnz exp [−Re(S(z)− S(zσ))] . (2.36)

Therefore, if an observable O(x) is holomorphic in Cn → C, the expectation value of
O(x) is now given by

⟨O⟩ = 1

Z

∑
σ∈Σ

nσ exp(−S(zσ))Zσ⟨O⟩Jσ , (2.37)

where

⟨O⟩Jσ =
1

Zσ

∫
Jσ

dnz exp [−Re(S(z)− S(zσ))]O(z). (2.38)

We note that the set of critical points Σ is divided into the three subsets:

Σ0 := {σ ∈ Σ | zσ ∈ CR} , (2.39)

Σ≥ :=

{
σ ∈ Σ

∣∣∣∣ zσ /∈ CR,−ReS(zσ) ≥ max
x∈CR

[−ReS(x)]

}
, (2.40)

Σ< :=

{
σ ∈ Σ

∣∣∣∣ zσ /∈ CR,−ReS(zσ) < max
x∈CR

[−ReS(x)]

}
. (2.41)

5) The sign of the intersection number depends on the orientations of Jσ and Kσ. For example, we
can introduce the real local coordinates ξ1, . . . , ξn for Jσ and η1, . . . , ηn for Kσ at the vicinity of the
intersecting point. Then, we can give a positive intersection number if the determinant of the Jacobian
matrix ∂(Re(z1), . . . ,ℜ(zn), Im(z1), . . . , Im(zn))/∂(ξ1, . . . , ξn, η1, . . . , ηn) is positive and vice versa. Here,
we introduce appropriate orientations of Jσ and Kσ so that they have a positive intersection number.

6) The contour CR may intersect with Kσ more than once. In that case, nσ is given by n+−n−, where
n+ (n−) is the number of the intersections with positive (negative) signs.
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Kσ associated with the critical point belonging to Σ≥ do not intersect with the orig-
inal integration contour CR, since −ReS(z) > −ReS(zσ) for z ∈ Kσ − {zσ}, whereas
−ReS(z) ≤ −ReS(zσ) for z ∈ CR. Thus the associated Lefschetz thimbles Jσ do not
contribute to the path integral. The Lefschetz thimbles Jσ associated with the critical
point belonging to Σ< may or may not contribute to the integral (2.35), but the contribu-
tion is exponentially suppressed by the relative weight exp(−S(zσ)). The critical points
belonging to Σ0 satisfy ⟨CR,Kσ⟩ = ±1 since Kσ intersects with CR at the critical point.
In particular, with respect to the classical vacuum zvac., which is a critical point on the
original contour CR and satisfies

− ReS(zvac.) = max
x∈CR

[−ReS(x)] , (2.42)

the associated Lefschetz thimbles Jvac. contribute to the integral with the largest relative
weight exp(−S(zσ)) among all the thimbles contributing to the integral. Therefore, if
the model has a classical vacuum zvac., we may approximate the expectation value of an
observable O(x) by the Lefschetz thimble associated with the classical vacuum:

⟨O⟩ ≈ ⟨O⟩Jvac. . (2.43)

2.2.3 Tangent Vectors

We can parametrize the point z on the thimble Jσ by the initial point z(0) in the vicinity
of the critical point and the flow time t when the initial point z(0) arrives at the point
z = z(t). In the vicinity of the critical point zσ, the gradient flow equation (2.27) can be
linearized as

d

dt
(zi(t)− zσ) = H∗

ij(z
∗
j (t)− z∗σj), Hij :=

∂2S

∂zi∂zj
(zσ). (2.44)

According to the Takagi factorization theorem [38], the complex symmetric matrix H
can be factorized into UTdiag(λ1, . . . , λn)U , where U is a unitary matrix and λα are
non-negative numbers. In other words, using orthonormal complex vectors vαi , we have

Hijv
α
j = λavα∗i . (2.45)

We note that the set of complex vectors {vαj } and {ivαj } spans Cn with real coefficients.
Eq. (2.44) is a linear differential equation; that is, if u1(t), u2(t) ∈ Cn are the solution
of zi − zσ in Eq. (2.44), c1u(t)1 + c2u2(t), (c1, c2 ∈ R) is also the solution. Thus we may
substitute for zi(t) − zσ the linear combination of complex vectors {vαj } and {ivαj } with
real coefficients, and the solution of Eq. (2.44) can be written as

zj(t)− zσj =
n∑

α=1

ξαvαj e
λαt +

n∑
α=1

ηαivαj e
−λαt, ξα, ηα ∈ R (α = 1, . . . , n). (2.46)
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Now we assume the critical point is isolated 7). Then the first term in the right-hand side
of Eq. (2.46) converges to zero as t→ −∞, whereas the second term converges to zero as
t→ −∞. From the definition of Jσ and Kσ, v

α
j and ivαj are the tangent vectors of Jσ and

Kσ at the critical point, respectively. Thus in the vicinity of the critical point, the point z
on the Lefschetz thimble is parametrized by the real variables ξα as zj ≈ zσj + ξ

αvαj . The
tangent vectors V α

i at a generic point are obtained by solving the differential equation,

d

dt
V α
i (t) =

(
∂2S

∂zi∂zj

)∗

V α∗
j (t), (2.47)

which is the consequence of the infinitesimal variation δz in Eq. (2.27). The basis of
tangent vectors {V α

i } is not orthonormal in general, but we can derive the coefficients
ξα, ηα of the vector ξαV α

j + ηαiV α
j ∈ Cn by using the reality condition,

V α∗
i V β

i − V β∗
i V α

i = 0, (2.48)

which holds since from Eq. (2.27) we have

d

dt
(V α∗

i V β
i − V β∗

i V α
i ) = 0, (2.49)

and the initial vectors at the critical point are orthonormal. We can define an inner
product of two complex vectors u, v ∈ Cn as

⟨u, v⟩ := Re(u∗jvj) = Re(uj)Re(vj) + Im(uj)Im(vj). (2.50)

Then the reality condition (2.48) can be expressed as ⟨V α, iV β⟩ = 0.

2.2.4 Parametrization

We can parametrize any point z on the thimble Jσ by (e, t) through solving Eq. (2.27) up
to the flow time t with the initial condition z(0) = zσ + εe, where e is the unit vector on
the tangent space, and ε is a sufficiently small constant so that the linear approximation
is valid. We can also compute the associated tangent vector through solving Eq. (2.47)
with the initial condition V α

i (0) = vαi .

7) For example, in the complex scalar field theory with the finite chemical potential, the global minimum
is degenerate if the U(1) symmetry is spontaneously broken. In that case, We can resolve the degeneracy
by introducing a term which explicitly breaks the symmetry: ε

∑
a,x ϕa(x), where ϕa(x) (a = 1, 2) denotes

the real field variables of the complex scalar field ϕ(x) = ϕ1(x) + iϕ2(x) on the lattice [8, 9]. These real
variables are complexified to deform the integration contour. Then the physical result is obtained by
extrapolating to ε → 0.
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2.3 Summary of the algorithm

In this section, we review the hybrid Monte Carlo approaches on the Lefschetz thimble,
which was proposed in Refs. [11]. As discussed in the previous section, we assume a
single Lefschetz thimble contributes to the path integral. Then we can use the Markov
chain Monte Carlo method where the new configurations are generated according to
the probability distributed around the old configurations on the connected space. The
hybrid Monte Carlo method is the method often used in the lattice simulations since the
configurations are generated with the high acceptance rate, compared to the Gaussian
random walk proposal in the Metropolis method [39].

2.3.1 Hybrid Monte Carlo

On the real space Rn, the hybrid Monte Carlo update is given by the following procedure:

1. Set the initial configuration ϕ ∈ Rn.

2. Generate π according to the Gaussian distribution PG(π) ∝ e−π
2/2.

3. Propose a configuration (ϕ′, π′) by a reversible map, where the transition probability
satisfies the equality, 8)

PH((ϕ, π) → (ϕ′, π′)) = PH((ϕ
′,−π′) → (ϕ,−π)). (2.51)

4. Accept the proposed configuration (ϕ′, π′) by the probability,

PA((ϕ, π) → (ϕ′, π′)) = min{1, e−∆H}, (2.52)

where ∆H is the variation of the Hamiltonian

H =
1

2
π2 + S(ϕ). (2.53)

By repeating the update, we obtain the sequence of the configurations ϕ(1), . . . , ϕ(ntraj).
This update satisfies the detailed balance condition as follows. The transition proba-

bility restricted to the variables ϕ is given by

PM(ϕ→ ϕ′) =

∫
dπdπ′ PG(π)PH((ϕ, π) → (ϕ′, π′))PA((ϕ

′, π′) → (ϕ, π)). (2.54)

From the identity,

e−H(ϕ,π)PA((ϕ, π) → (ϕ′, π′)) = e−H(ϕ′,π′)PA((ϕ
′, π′) → (ϕ, π)), (2.55)

8) The probability function PH is a delta function if the map (ϕ, π) → (ϕ′, π′) is deterministic.
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and the reversibility (2.55), we have

e−S(ϕ)PM(ϕ→ ϕ′) = e−S(ϕ
′)PM(ϕ′ → ϕ). (2.56)

The update efficiently generates the configurations according to the probability P (ϕ) ∝
e−S(ϕ), if the variation of the Hamiltonian ∆H is small and the updated configurations
are distant. Now we consider the molecular dynamics to find a map (ϕ, π) → (ϕ′, π′)
which preserves the Hamiltonian. The molecular dynamics evolution is considered by

dϕ

dτ
(τ) =

δH

δπ
= π(τ), (2.57)

dπ

dτ
(τ) =

δH

δϕ
= −∂S

∂ϕ
(ϕ(τ)). (2.58)

Here a Monte Carlo time τ is introduced. In analogy to classical mechanics, the Hamil-
tonian is invariant. We stress that Eqs. (2.57) and (2.58) are not the equations of motion
of the underlying theory, but those associated to the artificial Hamiltonian H. If the
variable τ is continuous and we solve the dynamics up to the time τf , the proposed con-
figuration (ϕ(τf ), π(τf )) in the hybrid Monte Carlo update is alway accepted. However,
in the numerical simulation the variable τ need to be discretized by the number of steps
nstep. The discretization is simply implemented by the leap-frog:

π(n+ 1/2) = π(n)− 1

2
∆τ

∂S

∂ϕ
(n), (2.59)

ϕ(n+ 1) = π(n) + ∆τπ(n+ 1/2), (2.60)

π(n+ 1) = π(n+ 1/2)− 1

2
∆τ

∂S

∂ϕ
(n+ 1), (2.61)

where ∆τ is the step size and given by τf/nstep. We note that the leap-flog is reversible
(ϕ(n + 1),−π(n + 1)) → (ϕ(n),−π(n)) and the violation of the Hamiltonian is O(∆τ 2)
due to the reversibility.

2.3.2 Molecular dynamics with constrains

Now, we are interested in formulating the hybrid Monte Carlo on the thimble Jσ. Since
the thimble Jσ is a curved space, we need to introduce the molecular dynamics with
constraints by the equation of motion,

dzi
dτ

= wi, (2.62)

dwi
dτ

= −
(
∂S

∂zi

)∗

− iV α
i λ

α, (2.63)
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where λα ∈ R (α = 1, . . . , n) are the Lagrange multipliers. Here we introduced the
complex-valued momenta wi. Since zi are constrained on the thimble and Eq. (2.62)
holds, wi are constrained on the tangent space TzJσ. These constraints are represented
as

z = Φ(e, t), ⟨w, iV α⟩ = 0. (2.64)

Φ is the map given by the flow (2.27) up to the flow time t of the initial point z(0) = zσ+εe,
where e ∈ TzσJσ and ∥e∥ = 1. The gradient flow equation (2.27) is solved numerically
by the Runge-Kutta method. The Hamiltonian is given by

H =
1

2
w∗
iwi +Re[S(z)], (2.65)

and it is conserved since

dH

dτ
=

1

2

(
dwi
dτ

∗
wi + w∗

i

wi
dτ

)
+Re

(
∂S

∂zi

dzi
dτ

)
= −⟨w, iV α⟩λα

= 0. (2.66)

To implement the molecular dynamics in the numerical simulation, we may discretize the
time τ as follows:

wi(n+ 1/2) = wi(n)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n)

− 1/2∆τiV α
i (z(n))λ

α
1 , (2.67)

zi(n+ 1) = zi(n) + ∆τwi(n+ 1/2), (2.68)

wi(n+ 1) = wi(n+ 1/2)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n+1)

− 1/2∆τiV α
i (z(n+ 1))λα2 . (2.69)

λα1 , λ
α
2 are determined so that z(n) ∈ Jσ and w(n) ∈ Tz(n)Jσ are mapped to z(n+1) ∈ Jσ

and w(n + 1) ∈ Tz(n+1)Jσ. wi(n + 1/2) are not the tangent vectors but the vectors
connecting zi(n) and zi(n + 1). The constraint z(n + 1) ∈ Jσ is represented by the
equations,

Φi(e(n+ 1), t(n+ 1))− z̃i = −1/2∆τ 2iV α
i (z(n))λ

α
1 , (2.70)

where

z̃i := zi(n) + ∆τwi(n)− 1/2∆τ 2
(
∂S

∂zi

)∗∣∣∣∣
z(n)

. (2.71)

The map (z(n), w(n)) → (z(n + 1), w(n + 1)) is reversible for a small but finite step
size ∆τ so that a unique solution (λα1 , λ

α
2 ) exists in Eqs. (2.67)-(2.69). Thus we need to

take a small ∆τ carefully. The solution e(n+ 1), t(n+ 1), λα1 is found by the fixed point
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iteration method or Newton’s method [15]. In these methods, we compute the sequence
(e(k), t(k), λ

α
1(k)) using the gradients,

∂Φi

∂eα
(e, t) = εV α

i , (2.72)

∂Φi

∂t
(e, t) =

(
∂S

∂zi

)∗

= gαV α
i . (2.73)

The flow direction e is represented by the linear combination of the tangent vectors {vαi }
at the critical point as ei = eαvαi , where e

α ∈ R. The force term (∂S/∂zi)
∗ is a tangent

vector and represented by the combination of the basis V α
i with the coefficients gα ∈ R.

To derive the coefficients gα, we need to compute the inverse matrix V −1 through the LU
decomposition.

In the fixed point iteration method, we solve the following linear equation iteratively:

z
(k)
i − z̃i+

∂Φi

∂eα
(e(n), t(n))∆eα(k)+

∂Φi

∂t
(e(n), t(n))∆t(k) = −1/2∆τ 2iV α

i (z(n))λ
α
1(k), (2.74)

where ∆eα(k),∆t(k) denote the increments, given by

∆eα(k) = eα(k+1) − eα(k), (2.75)

∆t(k) = t(k+1) − t(k). (2.76)

Since the flow direction e is a unit vector, we impose a constraint,

n∑
α=1

∆eα(k)e
α
(k) = 0. (2.77)

Then the correction of the normalization eα(k+1) → eα(k+1)/
√
1 + ∥∆e(k)∥2 is the second

order. Starting from the initial guess z
(0)
j = Φj(e(0), t(0)) = zj(n), we derive the sequence

as follows:

∆t(k) = −(gαeα(k))
−1Re

[(
V −1(z(n))

)α
i
(zi(n+ 1)− z̃i)

]
, (2.78)

∆eα(k) = −ε−1Re
[(
V −1(z(n))

)α
i
(zi(n+ 1)− z̃i)

]
− ε−1∆t(k)g

α, (2.79)

eα(k+1) = eα(k) +∆eα(k), (2.80)

t(k+1) = t(k) +∆t(k), (2.81)

eα(k+1) → eα(k+1)/
√

1 + ∥∆e(k)∥2, (2.82)

z
(k+1)
i = Φi(e(k+1), t(k+1)). (2.83)
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If the initial guess is sufficiently close to the solution, z
(k+1)
i converges to zi(n + 1) lin-

early, and the increments ∆eα(k),∆t(k) decrease exponentially. We compute the sequence

(e(k), t(k)) until it satisfies the stopping condition,

∥V (z(n))α
(
ε∆eα(k) +∆tgα

)
∥2 < ϵ′2 (2.84)

for a sufficiently small ϵ′2 . After we obtain e(n+1), t(n+1), we derive λα1 by the equation,

1/2∆τ 2λα1 = Im
[(
V −1(z(n))

)α
i
(zi(n+ 1)− z̃i)

]
. (2.85)

In Newton’s method, we find the solution e(n+ 1), t(n+ 1), λα1 as follows. We define
the function,

F = (FI) =

(
Φi(e, t)− z̃i + 1/2∆τ 2iV α

i (z(n))λ
α
1

eαeα − 1

)
, (2.86)

and the variables,

W = (WA) =

 eα

t
λα1

 , (2.87)

where I = 1, . . . , n+ 1 and A = 1, . . . , n+ 1. Then the constraints are represented as

FI(W
A) = 0. (2.88)

The equations (2.88) are solved by generating the sequence W(k) according to the linear
equations:

∂FI
∂WA

(W(k))∆W
A
(k) = −FI(W(k)), (2.89)

where

∆WA
(k) = WA

(k+1) −WA
(k). (2.90)

We can write the explicit form of the linear equations (2.89) as

(
εV

α(k)
i gβV

β(k)
i iV

α(0)
i

) ∆eα(k)
∆t(k)
∆λα1(k)

 = −Φi(e(k), t(k)) + z̃i − 1/2∆τ 2iV
α(0)
i λα1(k),

(2.91)
and

2eα(k)∆e
α
(k) = −eα(k)eα(k) + 1, (2.92)

where {V α(k)
i } is the basis of the tangent vectors at z(k). Starting from the initial guess,
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z
(0)
j = Φj(e(0), t(0)) = zj(n) and λ

α
1(0) = 0, we derive the sequence as follows:

∆WA
(k) = −

[(
∂F

∂W

)−1
]A
I

FI(W(k)), (2.93)

WA
(k+1) = WA

(k) +∆WA
(k), (2.94)

z
(k+1)
i = Φi(e

(k+1), t(k+1)), (2.95)

V
α(k+1)
i = Ψα

i (e
(k+1), t(k+1)), (2.96)

where Ψα
i is the map given by the flow (2.27) of the initial tangent vector V α

i (0) = vαi
along the flow of z = Φ(e, t).

If the initial guess is sufficiently close to the solution, z
(k+1)
i converges to zi(n + 1)

quadratically. The stoppoing condition is given by

Re(F ∗
I FI) < ϵ′2, (2.97)

with a sufficiently small ϵ′2.
In the fixed point iteration method, we use the gradients at the initial guess through

the iteration and we can save the iterative computation of the tangent vectors. In New-
ton’s method, though we need to compute the tangent vectors iteratively, we can find the
solution for the larger distance between the initial guess and the solution.

Once we obtain e(n + 1), t(n + 1), we compute the tangent vectors V α
i (z(n + 1)) =

Ψα
i (e(n+1), t(n+1)), which is already done in Newton’s method, and compute the inverse

matrix V −1(z(n+1)). Then to satisfy the constraint w(n+1) ∈ Tz(n+1)Jσ, we determine
λα2 as

1/2∆τλα2 = Im

[(
V −1(z(n+ 1))

)α
i

(
wi(n+ 1/2)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n+1)

)]
. (2.98)

2.3.3 Hybrid Monte Carlo on Lefschetz thimble

Now we summarize the hybrid Monte Carlo update on the Lefschetz thimble Jσ.

1. Set the initial configuration (e, t) and compute

zi = Φi(e, t), V α
i = Ψα

i (e, t) (2.99)

by the Runge-Kutta method. Also compute V −1 by the LU decomposition. Here
Φi(e, t) is the solution of Eq. (2.27) at the flow time t with the initial condition
zi(0) = zσ + εei, where zσ is a critical point and ε is a small positive constant.
Similarly, Ψα

i (e, t) is the solution of Eq. (2.47) at the flow time t with the initial
condition V α

i (0) = vαi , where v
α
i is the tangent vectors at the critical point zσ and

is given by Eq. (2.45).
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2. Generate n pairs of unit Gaussian random numbers ξi, ηi (i = 1, . . . , n). Then the
tentative momenta wi = ξi + iηi are projected on the tangent space TzJσ by

wi = V α
i Re

[
(V −1)αj wj

]
. (2.100)

3. Iteratively compute the discretized molecular dynamics (2.67)-(2.69) with the con-
straints z(n) ∈ Jσ and w(n) ∈ Tz(n)Jσ, using the fixed point iteration method or
Newton’s method. At each step in Eqs. (2.67)-(2.69), we compute the tangent vec-
tors V and the inverse matrix V −1. At the final step in Eqs. (2.67)-(2.69), we have
(z′, w′).

4. Accept the proposed configuration (w′, z′) by the probability min{1, e−∆H}, where
∆H = H(w′, z′)−H(w, z).

2.3.4 Residual phase

To evaluate the integral over the thimble Jσ, we introduce the real orthogonal coordinate
in the vicinity of a point z. The basis of the tangent vectors {V α

i } can be orthonormalized
by the QR decomposition such as Gram-Schmidt orthonormalization,

V α
i = Qβ

i R
βα, (2.101)

where {Qα
i } is a basis satisfying ReQα∗

i Q
β
i = δαβ, and Rαβ is a real upper triangle matrix.

From the reality condition (2.48), we have ImQα∗
i Q

β
i = 0. Thus Q is a unitary matrix.

The tangent vector is represented as the linear combination of Qα
i and the point in the

vicinity of z is parametrized as δzi = Qα
i δξ

α. Thus the complex measure is expressed
as dnz = dnξeiφ(z), where eiφ(z) := detQ = detV/| detV |. The determinant detV is
computed through LU decomposition, in which we can also compute the inverse V −1. We
note that the hybrid Monte Carlo on the thimble generates the configurations according
to the probability proportional to e−Re(S(z)) and the measure is given by |dnz| := dnξ.
Thus the average of an observable O(z) gives the following integral:

1

Z ′
σ

∫
|dnz| e−Re(S(z))O(z) ≈ 1

Nconf

Nconf∑
k=1

O(z(k)), (2.102)

where

Z ′
σ =

∫
|dnz| e−Re(S(z)). (2.103)

Here, z(k) (k = 1, . . . , Nconf) denote the measured configurations, which are sampled from
the sequence generated by the hybrid Monte Carlo update with sufficiently large intervals
so that the autocorrelation is negligible. Therefore to evaluate the expectation value of
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an observable O over the thimble Jσ, we need to include the residual phase factor eiφ(z)

in the observable as follows:

⟨O⟩Jσ ≈ N−1
conf

∑
k e

iφ(z(k))O(z(k))

N−1
conf

∑
k e

iφ(z(k))
. (2.104)

As we discussed that reweighting procedure (2.7) does not work practically if the phase
is oscillatory, the average of the residual phase factor eiφ(z) need to be sufficiently large
so that the evaluation (2.104) is valid numerically. The matrix Q is written by

(Q1
i , . . . , Q

n
i )P

T = (eiθ1u1i , . . . , e
iθnuni ), (2.105)

where P is an orthogonal matrix, and {uαi } is an orthonormal basis of real vectors.The
residual phase represents the total phase eiφ(z) = ei

∑
j θj between the tangent vectors on

the thimble Jσ and the real space Rn. If the shape of the integration contour changes
rapidly, the cancellation between the positive and negative contribution may happen.
Thus we need to examine the residual phase carefully when we use the hybrid Monte
Carlo update on the thimble.

2.3.5 Computational cost

The computational cost of solving the gradient flow equation (2.27) using the Runge-
Kutta method is O(n) and O(n2) for the configuration zi and the basis of tangent vec-
tors {V α

i (z)}, which are parametrized by the flow direction e and the flow time t. The
computational cost of deriving the determinant detV (z) and inverse V −1(z) using the
LU decomposition is O(n3). In the lattice model the number of the degrees of freedom is
proportional to the volume size V . Therefore the total computational cost of the hybrid
MonteCarlo update is O(V 3).



Chapter 3

Generalized Lefschetz thimble
method

In general, models in quantum field theories are very complicated to analyze the criti-
cal points and the thimble which contribute to the path integral. Moreover, fermionic
models, for example lattice QCD with the finite chemical potential have fermion deter-
minants after the fermions are integrated out, and generally the determinants contain
many zeros. Since these zeros are connected by the end points of Lefschetz thimbles, we
expect that many Lefschetz thimbles contribute to the path integrals. For example, in
one-dimensional massive Thirring model at finite density, which is the solvable toy model
of a fermionic system, the Monte Carlo simulation on the single dominant thimble gives
an incorrect answer because the contribution of subdominant Lefschetz thimbles is not
negligible [40, 41]. Thus Monte Carlo approaches on a Lefschetz thimble do not seem
to work well. One of the approaches to avoid these problems may be provided by the
alternative deformed contour which is the connected space and on which the sign problem
is mild. This approach is called the Generalized Lefschetz thimble method [12].

3.1 Flow of the original contour

In this section, we consider the integration contour deformed by the gradient flow. we
discuss the behavior of the flowed contour by the gradient flow. Using a simple one-
dimensional integral, we view that the flowed contour approaches Lefshets thimbles which
contribute to the path integral.

3.1.1 Behavior of the flowed contour

So far we have used the gradient flow (2.27) to construct the thimbles. As explained
previously, we first find the critical point which contributes to the path integral, and

25
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then the thimbles are parametrized by flowing the points in the vicinity of the critical
point. Now, we consider each point on the original contour CR as an initial condition
of the gradient flow, and flow the original contour CR up to a finite time Tflow. Let us
call the flowed contour C(Tflow). Since the real part of the action grows monotonically
as the flow time increases, the absolute value of the integrand on the flowed contour is
smaller than that on the original contour. Thus the integral over the flowed contour is
convergent for any flow time Tflow. If a thimble Jσ contributes to the path integral, the
dual thimble Kσ intersect with the original contour CR on a point xσ. The point in the
vicinity of the intersection point xσ flows toward the critical point zσ, and then deviates
from it along the thimble Jσ. Thus by the gradient flow, the region on CR lying in the
vicinity of the intersection point xσ approaches the critical point zσ, and then covers
the thimble Jσ as the flow time increases. On the other hand, the points far from the
intersection points quickly go to the regions where the action diverges, that is, the infinity
or the zeros of the fermion determinant. Therefore, as the flow time goes to infinity, the
flowed contour C(Tflow) converges to the thimbles which are homologically equivalent to
the original contour:

lim
t→∞

C(t) =
∑
σ∈Σ

nσJσ, (3.1)

where nσ is the intersection number given by nσ = ⟨CR,Kσ⟩. Since the small regions
in the vicinity of the intersection points contribute to the path integral, the fluctuation
of the phase exp(−iImS) is small. Generally the phases on the different critical points
are different, and the phase variation occurs when the flowed contour crosses the regions
where the real part of the action exp(−ReS) is extremely large. The relative phases
among the critical points may cancel, but we expect that such a cancellation happens
by approximate symmetries. Then it is avoided by adding a symmetry-breaking term
εSSB(z) and the physical results are obtained by extrapolating to ε → 0. Therefore we
expect the sign problem on the flowed contour is mild.

3.1.2 Flow contour in an example

The flow of the integration contour is explicitly viewed by a simple example. Let us
consider the one-dimensional integral given by

Z =

∫ ∞

∞
dϕ (ϕ− ϕ1)(ϕ− ϕ2)e

−ϕ2/(2σ). (3.2)

The effective action is given by S(ϕ) = ϕ2/(2σ) − log[(ϕ − ϕ1)(ϕ − ϕ2)]. It may be
considered as a toy model of a fermionic system coupled to an auxiliary field ϕ, where the
fermionic field is integrated out and the fermion determinant appears as the polynomial
(ϕ− ϕ1)(ϕ− ϕ2). Fig. 3.1 shows the thimbles, the dual thimbles, the critical points, the
zeros, and the flowed contour. There are four regions where the action diverges: two
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asymptotic regions with Re(ϕ2/(2σ)) > 0, and two zeros. The thimbles connect with the
two of those regions. For σ = 0.5, ϕ1 = i − 1, ϕ2 = 2i + 1, two dual thimbles intersect
with the original contour. Thus, the linear combination of two thimbles accompanied by
those dual thimbles is homologically equivalent to the original contour R. As shown in
Fig. 3.1, the flowed contour approaches those thimbles. We can view that the regions
in the vicinities of the intersection points approach the critical points, and then expand
along the thimbles. The phase exp(−ImS) varies slowly with the value close to that on
the thimble nearby, but drastically changes when the flowed contour passes by the zero
which connects the two thimbles.

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1  0  1  2  3

Im
(ϕ

)

Re(ϕ)

thimbles
dual thimbles

flowed contour
zeros

critical points

Figure 3.1: Thimbles (solid cyan lines), dual thimbles (dashed coral lines), critical points
(magenta blobs), zeros (green crosses), and a flowed contour (solid black line) are shown
for σ = 0.5, ϕ1 = i− 1, ϕ2 = 2i+1 and Tflow = 1. Also the flows of the real regions in the
vicinities of the points intersecting with the dual thimbles are shown (red lines).

3.2 Algorithm on the flowed contour

In this section we explain two algorithms in which we evaluate path integrals on the
flowed contour. We first consider the Metropolis method with the real variables, where
the update requires O(n2) computation. The distribution of the proposed configuration
on the flowed contour is anisotropic, and the sampling is inefficient. However, this method
has the advantage that we are free from solving an iterative method such as the fixed
point iteration method and Newton’s method. We then consider the hybrid Monte Carlo
method on the flowed contour. In this method, we need to solve an iterative method,
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where we may not find a solution for a large step size. However, this method provides
configurations efficiently.

3.2.1 Simulation using the real configuration space

We may carefully adjust the flow time so that the flowed contour does not approach
the regions where the action diverges but that the sign problem is mild. Then we can
implement hybrid Monte Carlo algorithm on the flowed contour C(Tflow) in the same
way as that on the Lefschetz thimble. However, on the flowed contour we need to solve
Newton’s method iteratively to propose next configurations. We can rewrite the path
integral using the real configuration space, instead of the curved space C(Tflow). Since the
map ΦTflow : CR → C(Tflow) by the gradient flow (2.27) is a diffeomorphism, we can change
the integration variables z ∈ C(Tflow) back to the real variables x ∈ CR. Thus we have

Z =

∫
CR
dnx exp(−S(x)) =

∫
C(Tflow)

dnz exp(−S(z))

=

∫
CR
dnx detV (Tflow, x) exp(−S(ΦTflow(x))), (3.3)

where V (Tflow, x) is the Jacobian matrix V α
i (Tflow, x) = ∂(ΦTflow)i/∂x

α, and also represents
the basis of the tangent vectors on the flowed point z = ΦTflow(x). V (Tflow, x) is computed
by the differential equation (2.47), and the initial condition is a unit matrix as V (0, x)αi =
δαi

1) . The initial condition V (0, x)αi is independent of x since the original contour CR is
a hyperplane. We note that the phase fluctuation of the integrand in the second line of
Eq. (3.3) is milder than the original integrand. Thus we may numerically evaluate the
path integral directly on the real space CR. Then the expectation value of an observable
O is given by

⟨O⟩ = ⟨eiφO⟩Seff

⟨eiφ⟩Seff

. (3.4)

Here
φ(x, Tflow) = arg detV (Tflow, x)− ImS(ΦTflow(x)) (3.5)

is the phase coming from the Jacobian determinant and the action, and

⟨O⟩Seff
=

∫
CR
dnx e−Seff(x,Tflow)O(ΦTflow(x))) (3.6)

is the expectation value of the observable O with the action,

Seff(x, Tflow) = ReS(ΦTflow(x))− log |detV (Tflow, x)| . (3.7)

1) We note that originally in Eq. (2.47) we start from the vicinity of a critical point and consider the
flow along the thimble, but now we start from the point on the real space and consider the flow of the
real space.
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3.2.2 Grady algorithm

Here we consider the Metropolis algorithm using Eq. (3.6). Naively this algorithm is given
by the following procedure. We set the initial condition as x, and propose a configuration
x′ = x + ∆x according to the distribution function Pr(∆x), which we assume to be
isotropic, for example, the Gaussian distribution. The Metropolis test may be simply
given by the acceptance ratio,

Pacc(x→ x′) = min{1, e−∆Seff}, (3.8)

where ∆Seff is the variation of the action given by

∆Seff = Seff(x
′, Tflow)− Seff(x, Tflow). (3.9)

We note that this update satisfies the detailed balance condition (2.6), since the distri-
bution function Pr(∆x) is explicitly symmetric under the exchange of x and x′. For each
update, we need to compute the gradient flow equation, and the computational cost is
O(n). However we also need to compute the Jacobian determinant, and the computa-
tional cost is O(n3).

In Ref. [35] an algorithm which avoids computing the Jacobian determinant is in-
troduced based on the Grady algorithm [42] as follows. To propose a configuration

x′, we generate random numbers η
(R)
i , η

(I)
i according to the distribution proportional to

exp[−η(R)
i η

(R)
i /δ2] and exp[−η(I)i η

(I)
i /δ2]. Here δ is a parameter indicating the step size,

and is adjusted so that the acceptance rate is sufficiently large. We may consider the
complex vector ηi = η

(R)
i + iη

(I)
i as the distribution around the flowed point z = ΦTflow(x).

Then after projecting ηi on the tangent space at z, we can relate it to the tangent space
at x as ∆x = Re((V −1)|x η), and propose a configuration x′ = x +∆x. The proposal is
isotropic on the flowed contour if we take the step size sufficiently small so that the map
of the neighborhood of x onto the flowed contour C(Tflow) is linearized. Since the set of
complex vectors {V α

i } and {iV α
i } spans Cn with real coefficients, we have

ηi = V α
i c

α
∥ + iV β

i c
β
⊥, cα∥ , c

β
⊥ ∈ R. (3.10)

The measure is transformed as∏
i

dη
(R)
i dη

(I)
i = det(V †V )

∏
α

dcα∥dc
α
⊥. (3.11)

Thus the proposal distribution is given by

Pr(x→ x′) =

√
det (V †V )|x

πnδ2
exp

[
−∆xT (V †V )

∣∣
x
∆x/δ2

]
. (3.12)

We note that the matrix V †V is real, since the reality condition (2.48) holds. To compute

the acceptance ratio, we generate the complex vector ζi = ζ
(R)
i + iζ

(I)
i according to the
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distribution proportional to exp[−ζ(R)
i ζ

(R)
i ] and exp[−ζ(I)i ζ

(I)
i ]. Then we introduce an

auxiliary complex vector ξ, which is given by ξ = (V −1)|x′ ζ. The distribution of ξ is
given by

Paux(ξ) =
det (V †V )

∣∣
x′

πn
exp

[
−ξ† (V †V )

∣∣
x′
ξ
]
, (3.13)

and we accept the proposal by the probability,

Pacc = min
{
1, exp[−Re∆S + ξ†(∆V 2)ξ −∆xT (∆V 2)∆x/δ2]

}
, (3.14)

where ∆S = S(ΦTflow(x
′))− S(ΦTflow(x)), and

(∆V 2)αβ = V α∗
i (x′, Tflow)V

β
i (x

′, Tflow)− V α∗
i (x, Tflow)V

β
i (x, Tflow). (3.15)

The total transition probability is given by

T (x→ x′) = Pr(x→ x′)

∫
dnξ(R)dnξ(I) Paux(ξ)Pacc, (3.16)

where the measure is defined by dnξ(R)dnξ(I) =
∏

i dξ
(R)
i dξ

(I)
i . Then we have

e−Seff(x,Tflow)T (x→ x′)

=
det (V †V )

∣∣
x
det (V †V )

∣∣
x′

π3n/2δ

∫
dnξ(R)dnξ(I) min

{
e−F (x,x′), e−F (x′,x)

}
, (3.17)

where

F (x, x′) = S(ΦTflow(x)) + ∆xT (V †V )
∣∣
x
∆x/δ2 + ξ† (V †V )

∣∣
x′
ξ. (3.18)

Therefore, the detailed balance condition (2.6) is satisfied.
Now we summarize the generalized thimble method using the Metropolis algorithm

on the real space.

1. Set the initial configuration x ∈ CR.

2. Generate a complex vector η ∈ Cn according to the distribution proportional to
exp[−η†η/δ2].

3. Compute ∆x = Re (V −1)|x η, and propose a configuration x′ = x+∆x.

4. Generate a complex vector ζ ∈ Cn according to the distribution proportional to
exp[−ζ†ζ].

5. Compute ξ = (V −1)|x′ ζ and accept the proposed configuration x′ by the probability
Pacc.
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In step 3 and 5, ∆x and ξ are computed using an iterative method. In this method,
V −1 is not explicitly computed, but V ρ is iteratively computed for complex vectors
ρ = ρ(R) + iρ(I). V ρ is computed by flowing the initial vector V (0)ρ(R) and V (0)ρ(I)

according to Eq. (2.47), and thus the computational cost is O(n). To compute the expec-
tation value (3.6), we need to compute the phase eiφ. It requires the computation scaling
as O(n3), but the set of the sampled configurations is a small subset of the sequence gen-
erated by the Metropolis update. Thus the computational cost of the phase is relatively
small. In addition, an efficient method to compute the phase is proposed in Ref. [43].

3.2.3 Hybrid Monte Carlo on the flowed contour

Now we consider the hybrid Monte Carlo algorithm on the flowed contour using the
gradient flow. Here, the molecular dynamics on the flowed contour Σ is given by

dzi
dτ

= wi, (3.19)

dwi
dτ

= −
(
∂S

∂zi

)∗

− iV α
i λ

α, (3.20)

where λα ∈ R are the Lagrange multipliers.
zi is constrained on the flowed contour Σ and wi is constrained on the tangent space

TzΣ. the conserved Hamiltonian is given by

H =
1

2
w∗
iwi +Re[S(z)], (3.21)

since
dH

dτ
= −Re(w∗

i V
α
i )λ

α = 0. (3.22)

Eqs. (3.19) and (3.20) are discretized as follows:

wi(n+ 1/2) = wi(n)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n)

− 1/2∆τiV α
i (z(n))λ

α
1 , (3.23)

zi(n+ 1) = zi(n) + ∆τwi(n+ 1/2), (3.24)

wi(n+ 1) = wi(n+ 1/2)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n+1)

− 1/2∆τiV α
i (z(n+ 1))λα2 , (3.25)

where λα1 , λ
α
2 are determined so that z(n+ 1) ∈ Σ and w(n+ 1) ∈ TzΣ.

We may use the fixed point iteration method or Newton’s method to solve the equa-
tions. In these methods we set an initial guess (z

(0)
j , λα1(0)) = (zj(n), 0), and generate a

sequence (z
(k)
j , λα1(k)). Then the solution (zj(n + 1), λα1 ) is obtained by the limit of the

sequence, if the step size ∆τ is sufficiently small. Here we define

z̃i := zi(n) + ∆swi(n)− 1/2(∆s)2(∂iS(z(n)))
∗. (3.26)
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In the fixed point iteration method, we obtain the solution z(n + 1) by solving the
recurrence relation,

∆x(k+1)
α = −Re[(V −1)αj (z

(k)
j − z̃j)], (3.27)

x(k+1)
α = x(k)α +∆x(k+1)

α , (3.28)

z
(k+1)
i = Φi[x

(k+1)], (3.29)

where Φi is the map flowing the initial point x ∈ CR to the point z ∈ Σ.

In Newton’s method, we obtain the solution (z(n + 1), λ) by solving the recurrence
relation, (

∆x(k+1)

∆λ1(k+1)

)
=
(
V (k) iV (0)

)−1
(−z(k)i + z̃ − iV (0)αλα1(k)), (3.30)

x(k+1) = x(k) +∆x(k+1), (3.31)

z(k+1) = Φ[x(k+1)], (3.32)

V (k+1) = Ψ[x(k+1)], (3.33)

λ1(k) = λ1(k) +∆λ1(k+1), (3.34)

where Ψα
i is the map flowing the initial tangent vector δαi at x ∈ CR to the tangent vector

V α
i ∈ TzΣ.

After obtaining the solution (z(n + 1), λα1 ) , we compute the inverse of the tangent
vectors V α

i (z(n + 1)). Since wi(n + 1) is constrained on the tangent space Tz(n+1)Σ, we
have

wi(n+ 1) = V α
i |z(n+1) Re

[
(V −1)αj

∣∣
z(n+1)

w̃i(n+ 1)
]
, (3.35)

where

w̃i(n+ 1) = wj(n+ 1/2)− 1/2∆τ

(
∂S

∂zj

)∗∣∣∣∣
z(n+1)

. (3.36)

The hybrid Monte Carlo update on the flowed contour using the gradient flow is given
as follows:

1. Set the initial configuration xi and compute

zi = Φi(x), V α
i = Ψα

i (x) (3.37)

by the Runge-Kutta method. Also compute the inverse of the tangent vectors
V α
i . Here Φi(x) is the solution of Eq. (2.27) at the flow time Tflow with the initial

condition zi(0) = xi. Similarly, Ψα
i (x) is the solution of Eq. (2.47) at the flow time

Tflow with the initial condition V α
i (0) = δαi .
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2. Generate n pairs of unit Gaussian random numbers ξi, ηi (i = 1, . . . , n). Then the
tentative momenta wi = ξi + iηi are projected on the tangent space TzΣ by

wi = V α
i Re((V

−1)αj wj). (3.38)

3. Iteratively compute the discretized molecular dynamics (3.23)-(3.25) using the fixed
point iteration method or Newton’s method. In Eqs. (3.23)-(3.25), we update zi =
Φi(x), V

α
i = Ψα

i (x) and the inverse of the tangent vectors V −1.

4. Accept the proposed configuration (w′, z′) by the probability min{1, e−∆H}, where
∆H = H(w′, z′)−H(w, z).





Chapter 4

Gradient flows without blow-up

In chapter 2, we introduced the gradient flow equation,

d

dt
zi(t) =

(
∂S

∂zi

)∗

. (4.1)

Once we specify the critical points, using the gradient flow we can find the associated
Lefschetz thimbles, on which the imaginary parts of the actions are constant. Also in
the generalized Lefschetz thimble method, we can deform the integration contour so that
the phase fluctuations are mild. Thus the gradient flow (4.1) may be useful to solve the
sign problem. However, as the flow time increases, the deformed contour is divided by
the regions where the real part of the action is significantly large. Then the sequence of
the Monte Carlo update is trapped to a limited region in the deformed contour, and the
situation is the same as in the simulation on a single thimble. Moreover, as we show later,
the deformed contour goes to infinity or zeros of the fermion determinant in a finite flow
time, and the force term (∂S/∂zi)

∗ of the gradient flow equation (4.1) diverges. Here we
call this phenomenon the blow-up. To circumvent these problems, We need to tune the
flow time carefully, but finding such a flow time may not be practical. In Ref. [26], new
gradient flows are proposed to avoid the blow-up. In this chapter we review the proposal.

4.1 Blow-up problem

In this section, we show that the blow-up of the gradient flow is caused by both the
bosonic action and the fermion determinant, using simple toy models. The blow-up is a
generic phenomenon for non-linear differential equations, and also seen in lattice models
as discussed in Chapter 5 using the Thirring model.
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4.1.1 Blow-up of bosonic action

Let us consider the following example:

Z =

∫ ∞

−∞
dx e−

λ
4
x4 . (4.2)

The action is given by S(x) = (λ/4)x4, and may be considered as a toy model of a
massless scalar field theory. The gradient flow (4.1) is written as

d

dt
x(t) = λx3. (4.3)

Here we consider a real initial condition x(0) = x0 > 0. Then the force term (∂S/∂x)∗

is real, and x is real for any flow time t. We can solve the differential equation (4.3)
analytically, and obtain

x(t) =
1√

x−2
0 − 2λt

. (4.4)

Explicitly the solution blows up as t approaches 1/(2λx20).
More generally, let us consider the action is a multivariable polynomial function of

degree k with the variables zi ∈ Cn. From the inequality (2.30), the real part of the
action goes to infinity as the flow time increases. Thus r =

√
z∗i zi also goes to infinity,

and behaves as
d

dt
r ≈ crk−1, (4.5)

where c is a positive constant. If the degree k is larger than two, the asymptotic behavior
is given as r ≈ κ(tc − t)−1/(k−2), where κ is a positive constant and tc is a blow-up time.
Exceptionally if k = 2, the asymptotic behavior is given as r ≈ r0e

ct with a positive
constant r0.

4.1.2 Blow-up of fermion determinant

Next, let us consider the following example:

Z =

∫ ∞

−∞
dx (1− x2)e−x

2

. (4.6)

The action is given by S(x) = x2 − log(1 − x2), and the polynomial (1 − x2) may be
considered as a toy fermion determinant. The bosonic action is quadratic and seems to
be safe from the blow-up, but now the blow-up arises from the fermion determinant. The
gradient flow (4.1) is written as

d

dt
x(t) = 2x+

2x

1− x2
. (4.7)



4.2. PROPERTIES OF GRADIENT FLOWS WITHOUT BLOW-UP 37

Here we consider a initial condition x(0) = x0 with 0 < x0 < 1. The force term (∂S/∂x)∗

is real, and x is real for any flow time t. We can solve the differential equation (4.7)
analytically, and obtain

x(t) =

√
1−

√
1− x20(2− x20)e

8t. (4.8)

The solution reaches the singular point x = 1 when t = (1/8) log(1/(x20(2− x20))).
More generally, let us consider the fermion determinant D(z) is a multivariable poly-

nomial function written as D(z) =
∏

i(z−λi)mi . As z approaches the zeros of the fermion
determinant, the real part of the action goes to infinity. Thus the points close to the zeros
flow into them. We consider a point close to a zero λ that has multiplicity k, and write
as z = λ+ δz with δr =

√
δz∗i δzi ≪ 1. δr behaves as

d

dt
δr ≈ − k

δr
, (4.9)

and the solution is given as δr ≈
√
δr20 − 2kt, where δr0 is the initial condition.

Now, for the flow time Tflow we define a subset of the integration contour CR as

Cfin = {x ∈ CR | ∥ΦTflow(x)∥ <∞} , (4.10)

where ΦTflow is the map given by flowing the initial point x up to the flow time Tflow.
Then, the path integral is written as

Z =

∫
C(Tflow)

dnz exp(−S(z)) =
∫
Cfin

dnx detV (Tflow, x) exp(−S(ΦTflow(x))). (4.11)

Here, the flowed contour C(Tflow) is considered as the image of the subset Cfin. For a
sufficiently small flow time the subset Cfin is equivalent to the original integration contour
CR. However as the flow time Tflow increases, it may shrinks to the vicinities of the
intersection points xσ, where the original contour CR and the dual thimbles Kσ intersect.
Then the flowed contour consists of the disconnected regions, which correspond to the
union of Lefschetz thimbles contributing to the path integral. The discontinuity is the
obstacle to implement the Monte Carlo simulations. We note that the blow-up does not
break the equivalence of the complex integral by deforming the integration contour, but
is the problem of implementing the numerical simulations.

4.2 Properties of gradient flows without blow-up

In this section, we define a new gradient flow. This flow is similar to the conventional
gradient flow, but a positive factor is introduced so that the flow slows down as the action
goes to infinity. We show that the blow-up is absent in the new gradient flow.
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4.2.1 Formulation

Here we define a new gradient flow as

d

dt
zi(t) = g(z, z∗)

(
∂S

∂zi

)∗

, (4.12)

where g(z, z∗) is a positive real number. The flow with a positive constant function
g(z, z∗) corresponds to the conventional gradient flow (4.1). We specify g(z, z∗) later.
Using Eq. (4.12), we have

d

dt
ReS =

1

2

(
∂S

∂zi

dzi
dt

+

(
∂S

∂zi

)∗(
dzi
dt

)∗)
= g

(
∂S

∂zi

)∗
∂S

∂zi
≥ 0, (4.13)

d

dt
ImS =

1

2i

(
∂S

∂zi

dzi
dt

−
(
∂S

∂zi

)∗(
dzi
dt

)∗)
= 0. (4.14)

Thus as the flow time increases, the real part of the action ReS increases monotonically,
whereas the phase exp(−ImS) is constant.

4.2.2 Absence of blow-up

g may be considered as a factor which determines the speed of the flow. When the
flow approaches the blow-up regions, g need to be suppressed to balance the force term
g(∂S/∂zi)

∗. One of the example may be given as

g = e−Re(SB(z))/ΛB

(
| detD|2

| detD|2 + Λ−2
F

)η
, (4.15)

where ΛB,ΛF ≥ 1 are regularization parameters and η ≥ 1 is a parameter which deter-
mines the asymptotic behavior in the vicinity of the zeros of the fermion determinant.
Here the action is written as S(z) = SB(z)− log detD(z), where the bosonic action SB(z)
and the fermion determinant detD(z) are polynomial.

We show that the choice (4.15) avoids the blow-up. The blow-up happens when the
action diverges and the divergence is classified into the following cases:

1.Re(SB(z)) → ∞, (4.16)

2. logD(z) → 0. (4.17)

In the first case, z approaches infinity since SB is polynomial. In the second case, z
approaches a zero of logD(z). Thus it is sufficient to check these cases.

Here the gradient flow equation (4.12) is written as

d

dt
zi(t) = e−Re(SB(z))/ΛB

(
| detD|2

| detD|2 + Λ−2
F

)η [(
∂SB
∂zi

)∗

− 1

(detD)∗

(
∂ detD

∂zi

)∗]
.

(4.18)
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As z approaches infinity, the right-hand side of Eq. (4.18) decreases exponentially. Thus
z(t) grows logarithmically at most. As z approaches a zero λ of the fermion determinant
detD(z), the fermion determinant behaves as detD(z) ∝ (z−λ)k with a positive integer
k. Thus neglecting subleading terms, we have

d

dt
|z − λ| ≈ −c|z − λ|2ηk−1, (4.19)

where c is a positive constant. We then obtain |z − λ| ≈ κt−1/(2ηk−2) with a positive
constant κ when ηk > 1, and |z − λ| ≈ κ′ exp(−ct) with a positive constant κ′ when
ηk = 1. Therefore in both limits, the flow does not reach the singularities in a finite time.





Chapter 5

HMC on the flowed contour without
blow-up

In this chapter we construct the hybrid Monte Carlo algorithm on the the flowed contour
using the gradient flow without the blow-up. The flowed contour by the gradient flow
without the blow-up is a connected region, and thus the transition between the regions
close to different Lefschetz thimbles is possible. We apply the algorithm to the (0 + 1)-
dimensional massive Thirring model at finite density, which is a fermionic model with
auxiliary fields. We show that the result we obtain agree with the analytic result, as
opposed to the conventional generalized Lefschetz thimble method. We also show that
the sign problem is mild and the configuration is distributed over the multiple thimbles.

5.1 Construction of the algorithm

In this section, we discuss the hybrid Monte Carlo using the gradient flow without the
blow-up,

d

dt
zi(t) = g(z, z∗)

(
∂S

∂zi

)∗

, (5.1)

where g is a positive function, and we specify it later.

5.1.1 Projection onto tangent space

To solve the molecular dynamics on the flowed contour Σ := C(Tflow), we need to specify
the tangent space TzΣ. The flowed contour is derived by solving Eq. (5.1) with the initial
condition zi(0) = xi ∈ CR up to the flow time Tflow. The associated tangent vectors are
derived by solving the differential equations,

d

dt
V α
i (t) = 2Re

(
∂g

∂zj
V α
j

)(
∂S

∂zi

)∗

+ g

(
∂2S

∂zi∂zj
V α
j

)∗

. (5.2)
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with the initial condition V α
i (0) = δαi . We note that the reality condition (2.48) does not

hold if g is not a constant function. Thus some modifications are required to implement
the hybrid Monte Carlo on the flowed contour. To construct projection operator Pz on
the tangent space TzΣ, we use the QR decomposition of the tangent vectors V α

i as(
V (R)

V (I)

)
=

(
Q(R) Q̃(R)

Q(I) Q̃(I)

)(
R
O

)
. (5.3)

V (R), V (I) are n×n real matrices satisfying V α
i = V

(R)α
i +iV

(I)α
i , and Q(R), Q(I), Q̃(R), Q̃(I)

are n× n real matrices satisfying

Q
(R)α
i Q

(R)β
i +Q

(I)α
i Q

(I)β
i = δαβ, (5.4)

Q̃
(R)α
i Q̃

(R)β
i + Q̃

(I)α
i Q̃

(I)β
i = δαβ, (5.5)

Q
(R)α
i Q̃

(R)β
i +Q

(I)α
i Q̃

(I)β
i = 0. (5.6)

Rαβ is an n× n upper triangular matrix with real elements, and the diagonal element is
positive 1). We note that the inner product of complex vectors u, v ∈ Cn is defined by

⟨u, v⟩ = Re(u∗i vi), (5.7)

and the decomposition gives an orthogonal basis. In the representation using complex
vectors, we have

V =
(
Q Q̃

)(R
O

)
, (5.8)

where Qα
i , Q̃

α
i are complex matrices satisfying

ReQα∗
i Q

β
i = δαβ, (5.9)

ReQ̃α∗
i Q̃

β
i = δαβ, (5.10)

ReQα∗
i Q̃

β
i = 0. (5.11)

Thus the tangent space TzΣ is spanned by the tangent vectors {Qα
i }, and the normal

space NzΣ is spanned by the normal vectors {Q̃α
i }. The projection of a complex vector

wi ∈ Cn onto the tangent space TzΣ is given by

Pz : wi 7→ Qα
i ⟨Qα, w⟩. (5.12)

1) Generally, we can decompose an m×n real matrix M into an m×n matrix Q with real orthogonal
columns and an n× n upper triangular matrix R with real elements. The factorization is unique if the
matrix M is invertible. Here, the differential equation (5.2) is linear over R, since the blow-up does not
occur. Then the map of the tangent vectors V α

i (0) = δαi ∈ TxCR to the flowed tangent vectors V α
i (Tflow) ∈

TzΣ is linear, and the tangent vectors {V α
i } are linearly independent over R. Therefore, Q(R), Q(I) and

R are uniquely determined, and Q̃(R), Q̃(I) are determined up to an n-dimensional rotation.
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5.1.2 Molecular dynamics

Here, the molecular dynamics on the contour Σ is given by

dzi
dτ

= wi, (5.13)

dwi
dτ

= −
(
∂S

∂zi

)∗

− Q̃α
i λ

α, (5.14)

where λα ∈ R are the Lagrange multipliers.
zi is constrained on the flowed contour Σ and wi is constrained on the tangent space

TzΣ. the conserved Hamiltonian is given by

H =
1

2
w∗
iwi +Re[S(z)], (5.15)

since
dH

dτ
= −⟨w,Qαλα⟩ = 0. (5.16)

Eqs. (5.13) and (5.14) are discretized as follows:

wi(n+ 1/2) = wi(n)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n)

− 1/2∆τQ̃α
i (z(n))λ

α
1 , (5.17)

zi(n+ 1) = zi(n) + ∆τwi(n+ 1/2), (5.18)

wi(n+ 1) = wi(n+ 1/2)− 1/2∆τ

(
∂S

∂zi

)∗∣∣∣∣
z(n+1)

− 1/2∆τQ̃α
i (z(n+ 1))λα2 , (5.19)

where λα1 , λ
α
2 are determined so that z(n+ 1) ∈ Σ and w(n+ 1) ∈ TzΣ.

We may use the fixed point iteration method or Newton’s method to solve the equa-
tions. In these methods we set an initial guess (z

(0)
j , λα1(0)) = (zj(n), 0), and generate a

sequence (z
(k)
j , λα1(k)). Then the solution (zj(n + 1), λα1 ) is obtained by the limit of the

sequence, if the step size ∆τ is sufficiently small. Here we define

z̃i := zi(n) + ∆swi(n)− 1/2(∆s)2(∂iS(z(n)))
∗. (5.20)

In the fixed point iteration method, we obtain the solution z(n + 1) by solving the
recurrence relation,

∆x(k+1)
α = −R−1

αβRe[Q
β∗
j (z

(k)
j − z̃j)], (5.21)

x(k+1)
α = x(k)α +∆x(k+1)

α , (5.22)

z
(k+1)
i = Φi[x

(k+1)], (5.23)
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where Φi is the map flowing the initial point x ∈ CR to the point z ∈ Σ.
In Newton’s method, we obtain the solution (z(n + 1), λ) by solving the recurrence

relation, (
∆x(k+1)

∆λ1(k+1)

)
=
(
V (k) Q̃

)−1
(−z(k)i + z̃ − Q̃αλα1(k)), (5.24)

x(k+1) = x(k) +∆x(k+1), (5.25)

z(k+1) = Φ[x(k+1)], (5.26)

V (k+1) = Ψ[x(k+1)], (5.27)

λ1(k) = λ1(k) +∆λ1(k+1), (5.28)

where Ψα
i is the map flowing the initial tangent vector δαi at x ∈ CR to the tangent vector

V α
i ∈ TzΣ.
After obtaining the solution (z(n + 1), λα1 ) , we compute the QR decomposition of

the tangent vectors V α
i (z(n + 1)). Since wi(n + 1) is constrained on the tangent space

Tz(n+1)Σ, we have

wi(n+ 1) = Qα
i |z(n+1) Re

(
Qα∗
j

∣∣
z(n+1)

[
wj(n+ 1/2)− 1/2∆τ

(
∂S

∂zj

)∗∣∣∣∣
z(n+1)

])
. (5.29)

5.1.3 Residual phase

Now we discuss the residual phase. The flowed contour Σ is embedded in R2n by the
map z 7→ (Rez, Imz), as we construct the orthonormal basis of the tangent vectors {Qα

i }
and normal vectors {Q̃α

i } by the QR decomposition (5.3). The point in the vicinity of z
is parametrized by the coordinates δξα as δzi = Qα

i δξ
α, and the molecular dynamics is

constrained on the real manifold M ⊂ R2n, which is parametrized by the local coordinates
{ξα}. Thus from the measured configurations z(k) (k = 1, . . . , Nconf), we estimate the
expectation value of an observable O(z) as

1

Z0

∫
M
dnξ e−ReS(z(ξ))O(z(ξ)) ≈ 1

Nconf

Nconf∑
k=1

O(z(k)), (5.30)

where

Z0 =

∫
M
dnξ e−ReS(z(ξ)). (5.31)

Since the complex integral is related to the real integral of the real coordinates ξα by
Eq. (2.21), we need to compensate the Jacobian determinant detQ and the phase factor
e−iImS(z) as,

⟨O⟩ ≈ N−1
conf

∑
k detQ(z

(k))e−iImS(z
(k))O(z(k))

N−1
conf

∑
k detQ(z

(k))e−iImS(z(k))
. (5.32)



5.1. CONSTRUCTION OF THE ALGORITHM 45

By the QR decomposition, Q is uniquely determined, but detQ is also explicitly repre-
sented by the tangent vectors {V α

i } through

detQ =
detV√

det(Re(V †V ))
. (5.33)

To evaluate detQ, we consider the properties of the n-dimensional complex basis
{Qα

i }. Since Eq. (5.9) include 1/2n(n + 1) constraints, Q is an element of the (2n2 −
1/2n(n + 1))-dimensional compact manifold. We introduce the real matrices QR, QI as
Q = QR + iQI . Then the condition (5.9) is rewritten as

QT
RQR +QT

I QI = I, (5.34)

and the matrix Q is decomposed into the following form:

Q = L1diag(cos θ1, . . . , cos θn)R + iL2diag(sin θ1, . . . , sin θn)R, (5.35)

where L1, L2, R are the n × n orthogonal matrix and 0 ≤ θ ≤ π/2. We note that the
total number of degrees of freedoms of orthogonal matrices L1, L2, R and the parameters
θ agree with that of the condition (5.9) as

1/2n(n− 1)× 3 + n = 2n2 − 1/2n(n+ 1). (5.36)

If the reality condition (2.48) is satisfied, we have ImQα∗
i Q

β
i = 0 and Q is a unitary

matrix. Thus we have
QRQ

T
R +QIQ

T
I = I, (5.37)

and the matrix Q is decomposed into the following form:

Q = Ldiag(eiθ1 , . . . , eiθn)R, (5.38)

where L,R are the n×n orthogonal matrices whose determinants are 1, and 0 ≤ θ < 2π.
From Eq. (5.35), we can write Q as

Q = P1H1 + iP2H2, (5.39)

where H1, H2 are the commutative Hermitian matrices satisfying H2
1 +H

2
2 = 1 and P1, P2

are the orthogonal matrices. Then we have

Q†Q = 1 + i(H1P
T
1 P2H2 −H2P

T
2 P1H1) =: 1 + iA, (5.40)

where A is the antisymmetric real matrix. By introducing a matrix,

B ≡ H1P
T
2 P1H1 +H2P

T
1 P2H2, (5.41)
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we have the equation,
(iA)†(iA) +B†B = I. (5.42)

Thus the eigenvalues λi(iA) (i = 1, . . . , n) of the Hermitian matrix iA are bounded by
−1 ≤ λi(iA) ≤ 1.

From this bound, the eigenvalues of the matrix Q are bounded by

|λi(Q)| ≤
√

maxλi(Q†Q) =
√
2. (5.43)

For example, 2× 2 matrix, (
cos(π/4) −i sin(π/4)
i sin(π/4) cos(π/4)

)
(5.44)

has the eigenvalues 0,
√
2, and the equality of (5.43) holds. Since A is the antisymmetric

matrix, the eigenvalues come in pairs ±λi (i = 1, . . . , n′) except for the zero eigenvalues,
and we have

det(Q†Q) =
n′∏
i=1

(1− λ2i ) ≤ 1. (5.45)

Therefore we have | detQ| ≤ 1. The equality | detQ| = 1 holds, if and only if the flowed
tangent vectors V α

i ∈ TzΣ satisfy the reality condition (2.48), which is derived in the
conventional gradient flow. If | detQ| ≪ 1, the evaluation (5.32) is not valid numerically
and we suffer from the sign problem. However we expect that | detQ| is close to unity,
since as the flow time increases the flowed contour approaches the Lefschetz thimbles, on
which the reality condition is satisfied.

5.1.4 Summary of the algorithm

Here we briefly summarize the hybrid Monte Carlo update on the flowed contour Σ.

1. Set the initial configuration xi and compute

zi = Φi(x), V α
i = Ψα

i (x) (5.46)

by the Runge-Kutta method. Also compute the QR decomposition (5.8) of the
tangent vectors V α

i . Here Φi(x) is the solution of Eq. (5.1) at the flow time Tflow
with the initial condition zi(0) = xi. Similarly, Ψα

i (x) is the solution of Eq. (5.2) at
the flow time Tflow with the initial condition V α

i (0) = δαi .

2. Generate n pairs of unit Gaussian random numbers ξi, ηi (i = 1, . . . , n). Then the
tentative momenta wi = ξi + iηi are projected on the tangent space TzΣ by

wi = Qα
i Re(Q

α∗
j wj). (5.47)
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3. Iteratively compute the discretized molecular dynamics (5.17)-(5.19) using the fixed
point iteration method or Newton’s method. In Eqs. (5.17)-(5.19), we update zi =
Φi(x), V

α
i = Ψα

i (x) and the QR decomposition.

4. Accept the proposed configuration (w′, z′) by the probability min{1, e−∆H}, where
∆H = H(w′, z′)−H(w, z).

5. After repeating step 2 to step 4 sufficiently many times , get a configuration z and
compute the determinant detQ.

6. After repeating step 2 to step 5, obtain a sequence of the configurations z(1), . . . , z(Nconf)

and evaluate the expectation value of an observable O(z) by Eq. (5.32).

5.1.5 Computational cost

The difference between the flow without the blow-up and the conventional flow arises in
the computation of g in Eqs. (5.1) and (5.2), and the QR decomposition of the tangent
vectors {V α

i }. For example, the fermion determinant detD appears in Eq. (4.15), and
requires the computation scaling as O(n3) iteratively in the Runge-Kutta method. It is
the dominant part of the computation in fermionic models, and we need an improvement
of the choice of g. The computation of QR decomposition scales as O(n3), whereas
that of inverse matrix V −1 used to project complex vectors on the tangent space in the
conventional flow scales as O(n2) by the iterative method, for example, the conjugate
gradient method.

5.2 Massive Thirring model at finite density

We examine the hybrid Monte Carlo algorithm on the flowed contour Σ without the blow-
up by applying it to the (0+1)-dimensional massive Thirring model at finite density [13,
14,40,41,44–48].

5.2.1 Model

We start from the d-dimensional massive Thirring model. The path integral in the con-
tinuum is given by

Z =

∫
dψdψ̄e−

∫
ddxL(ψ,ψ̄), (5.48)

where the action is

L(ψ, ψ̄) =
∑
f

ψ̄f (∂µγ
µ +mf + µfγ

0)ψf +
g2

2NF

(
ψ̄fγµψ

f
) (
ψ̄f

′
γµψf

′
)
. (5.49)



48 CHAPTER 5. HMC ON THE FLOWED CONTOUR WITHOUT BLOW-UP

Here the index f, f ′ = 1, . . . , NF denotes the fermion flavors. The γ matrices satisfy the
anticommutation relation γµ, γν = 2δµν . For example, γ matrices for d = 2 are given by

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −i
i 0

)
. (5.50)

We impose the following boundary condition:

ψ(x+ β0̂) = −ψ(x), (5.51)

ψ(x+ Lî) = ψ(x), i = 1, . . . , d− 1, (5.52)

where î denote the unit vectors in the direction xi. Introducing auxiliary fields Aµ(x),
we can write the path integral as

Z =

∫
dA

∫
dψdψ̄e−

∫
ddxL(A,ψ,ψ̄), (5.53)

where

L(A,ψ, ψ̄) =
∑
f

ψ̄f (γν(∂ν + iAν) +mf + µfγ
0)ψf +

NF

2g2
AνA

ν . (5.54)

After integrating out the fermion fields, we obtain

Z =

∫
dA e−SA

∏
f

detDf (A, µ), (5.55)

where

SA =
NF

2g2

∫
ddxAνA

ν . (5.56)

Here we introduce an operator Df = γµ(∂µ+ iAµ)+mf +µfγ
0. We note that the fermion

determinant satisfies the relation,

detDf (A, µf )
∗ = detDf (A,−µ∗

f ). (5.57)

Thus for µf > 0 the path integral is complex, and suffers from the sign problem.

5.2.2 Discretization

Now we discretize the action. On the lattice, the chemical potential is introduced like the
zero-th component of an imaginary constant gauge field, according to the prescription by
Ref. [49]. The fermion field are defined on the lattice by the Wilson fermions [50] or the
staggered fermions [51,52]. Then the lattice action for Wilson fermions is given by

Slat(A,ψ, ψ̄) =
∑
x,ν

NF

g2
(1− cos aAν(x)) +

∑
f,x,y

ψ̄f (x)
(
DW

)f
xy
ψf (y), (5.58)
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where the operator DW is given by(
DW

)f
xy

= δx,y − κf
∑
ν

[
(1− γν)e

iAν(x)+µf δ0,νδx+ν,y + (1 + γν)e
−iAν(x)−µf δ0,νδx,y+ν

]
,

(5.59)
with 1/κf = 2mf + 2d. The lattice action for staggered fermions is given by

Slat(A,χ, χ̄) =
∑
x,ν

NF

g2
(1− cosAν(x)) +

∑
f,x,y

χ̄f (x)
(
DKS

)f
xy
χf (y), (5.60)

where χf and χ̄f denote staggered fermion fields with no spinor indices. The flavor index
runs f = 1, . . . , NF/2

⌊d/2⌋, since the fermion doubling accounts for the flavors 2). The
operator DKS is given by

(
DKS

)f
xy

= mfδx,y +
1

2

∑
ν

ην(x)
[
eiAν(x)+µf δ0,νδx+ν,y − e−iAν(x)−µf δ0,νδx,y+ν

]
, (5.61)

with the phase factor ην(x) = (−1)x0+···+xν−1 . Here, we adopt the staggered lattice action.
After integrating out the fermion fields, we thus obtain

Z =

∫ π

−π

(∏
x,ν

dAν(x)

2π

)
e−1/g2

∑
(1−cosAν(x))

(∏
a

detDKS
a

)
. (5.62)

In (0+1)-dimensional massive Thirring model, we can solve the integral (5.62) explic-
itly. Here after we consider NF = 1 particularly. Then the path integral we are interested
in is given by

Z =

∫ π

−π

(
Nt∏
k=1

dzk
2π

)
e−α

∑Nt
k=1(1−cos zk) detD(z). (5.63)

Here we recover the lattice spacing a, and discretize the Euclidean time by an even
number of lattice points Nt as β = Nta. Also we introduce a parameter α = 1/(g2a).
The functional determinant detD(z) of D is given by

detD(z) =
1

2Nt−1

[
cosh

(
Ntµ̂+ i

∑Nt

k=1
zk

)
+ cosh(Ntm̂)

]
, (5.64)

2) The fermion doubling is a problem that lattice fermion fields satisfying some fundamental prop-
erties describes multiple fermionic particles, which are physically unfavored. The Nielsen-Ninomiya
theorem [53,54] states that lattice fermions satisfying translation invariance, chiral symmetry, Hermitic-
ity, quadraticity in the fields, and local inevitably possess the doubling. To solve this problem, we need
to break the chiral symmetry explicitly like the Wilson fermions, or regard the doublers as spinors and
flavors like the staggered fermions.
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where µ̂ = µa and m̂ = sinh−1ma. We can perform the path integral analytically, and
the explicit expression of the integral is given by

Z =
1

2Nt−1
e−Ntα

[
I1(α)

Nt cosh(Ntµ̂) + I0(α)
Nt cosh(Ntm̂)

]
, (5.65)

where In(x) are the modified Bessel functions. From (5.65), we obtain the number density
and the fermion condensate as

⟨n⟩ := 1

Nta

∂ logZ

∂µ
=

I1(α)
Nt sinh(Ntµ̂)

I1(α)Nt cosh(Ntµ̂) + I0(α)Nt cosh(Ntm̂)
, (5.66)

⟨χ̄χ⟩ := 1

Nta

∂ logZ

∂m
=

1

cosh(m̂)

I0(α)
Nt sinh(Ntm̂)

I1(α)Nt cosh(Ntµ̂) + I0(α)Nt cosh(Ntm̂)
. (5.67)

As the lattice spacing a goes to zero, the partition function (5.65) behaves as

Z → 1

2Nt−1

(
e−

3
8
βg2 cosh βµ+ e

1
8
βg2 cosh βm

)
. (5.68)

To derive the asymptotic form (5.68), we used the approximation,

I0(α) ≈
eα√
2πα

(
1 +

1

8

1

α

)
, (5.69)

I1(α) ≈
eα√
2πα

(
1− 3

8

1

α

)
. (5.70)

In the low temperature limit β → ∞, the number density and the fermion condensate
behave as

⟨n⟩ → H(µ− µc), (5.71)

⟨χ̄χ⟩ → 1−H(µ− µc), (5.72)

where H(x) is the Heaviside step function, and µc = m + g2/2. Therefore the model
shows a first-order transition at the critical chemical potential µc.

5.2.3 Thirring model in the uniform-field subspace

Before simulating the (0 + 1)-dimensional massive Thirring model, we simulate the
Thirring model in the uniform-field subspace, where the thimble structure is explicitly
visible. The partition function of this simplified model is given by

Z =

∫ π

−π

dz

2π
e−αL(1−cos z) detD(z). (5.73)
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Here the functional determinant detD(z) is given by

detD(z) =
1

2L−1
[cosh(L(µ̂+ iz)) + cosh(Lm̂)] . (5.74)

The path integral is derived by restricting the configuration to the uniform-field subspace
zi = z (i = 1, . . . , Nt) and replacing the number of degrees of freedoms Nt by a parameter
L. The partition function is explicitly given by

Z =
1

2L−1
e−Lα [IL(Lα) cosh(Lµ̂) + I0(Lα) cosh(Lm̂)] . (5.75)

Thus we obtain the number density and the fermion condensate as

⟨n⟩ = IL(Lα) sinh(Lµ̂)

IL(Lα) cosh(Lµ̂) + I0(Lα) cosh(Lm̂)
, (5.76)

⟨χ̄χ⟩ = 1

cosh(m̂)

I0(Lα) sinh(Lm̂)

IL(Lα) cosh(Lµ̂) + I0(Lα) cosh(Lm̂)
. (5.77)

5.3 Test of HMC without blow-up

Now we apply the hybrid Monte Carlo algorithm without the blow-up to the (0 + 1)-
dimensional massive Thirring model at finite density, and discuss the result.

5.3.1 Flow factor

To implement the hybrid Monte Carlo algorithm without the blow-up, we need to chose
the flow factor g appearing in the gradient flow equations (5.1) and (5.2). As discussed
in chapter 4, one of the example is given by

g = e−Re(SB(z))/ΛB

(
| detD|2

| detD|2 + Λ−2
F

)η
. (5.78)

There are two cases when the blow-up happens: the divergence coming from the bosonic
action and the fermion determinant. In the first case, the flowed point z goes to infinity,
but the growth of z(t) is logarithmically slow. In the second case, the flowed point z
goes to zeros of the fermion determinant. The behavior in the vicinity of the zero z0
that the flowed point z approaches depends on the multiplicity k of the zero. When
ηk > 1, the flowed point approaches the zero as a power |z − z0| ∝ t−1/(2ηk−2). Whereas,
when ηk = 1, the flowed point approaches the zero exponentially as |z − z0| ∝ exp(−ct)
with a positive constant c. Fig. 5.1 shows the behavior of the fermion determinant as a
function of the flow time for the Thirring model in the uniform-field subspace. In this
model, the initial condition x = 0.1 flows into a zero of the fermion determinant for
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α = 1,ma = 1, µa = 1.5. When η = 1, the fermion determinant decrease exponentially.
To compute the flow equation (5.1), we use the Runge-Kutta Fehlberg method. In this
method the step size is adaptively determined to achieve the required precision. Here we
require the estimated error is smaller than 10−10. However the fermion determinant detD
falls below the precision of the computation in a short time if the regularization parameter
ΛF is not suppressed. For the larger flow time, we thus cannot compute the action and
its derivatives. If we strongly suppress the regularization parameter ΛF , the flow factor
g is also strongly suppressed and the integration contour is not sufficiently deformed so
that the phase fluctuation is mild. The flow with η = 1 requires the careful adjustment
of the flow time and the regularization parameter ΛF so that the sign problem is mild
but the flow does not approaches zeros. However such an adjustment is not practical for
all the initial condition x on the real axis. Therefore we use the flow factor (5.78) with
η = 2 in the simulation.
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Figure 5.1: Behavior of | detD| as a function of the flow time. (Left) η = 1. (Right)
η = 2. Here the other parameters are L = 8, α = 1,ma = 1, µa = 1.5 and the initial
condition x = 0.1.

5.3.2 HMC simulation in uniform-field model

Fig. 5.2 shows the flowed contour using the gradient flow without the blow-up (5.1).
In the Thirring model in the uniform-field subspace, Lefschetz thimbles are attached to
the zeros of the fermion determinant. Thus the contour deformed by the conventional
gradient flow (4.1) approaches the zeros and flows into them in a short time. However
the contour deformed by the gradient flow without the blow-up (5.1) circumvents the
infinity and the zeros of the fermion determinant. Therefore it is a connected region, and
we expect the hybrid Monte Carlo simulation on it includes the contribution from the
multiple thimbles.

Now, following the steps in Sec. 5.1.4, we apply the hybrid Monte Carlo algorithm to
the Thirring model in the uniform-field subspace. In step 1, we set the initial configuration
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Figure 5.2: Thimbles (solid cyan lines), dual thimbles (dashed coral lines), critical points
(magenta blobs), zeros (green crosses), and a flowed contour without blow-up (solid black
line) are shown for L = 8, α = 1,ma = 1, µa = 1.5 and the flow time Tflow = 0.2.

to the x = 0, which flows toward the critical point of the main thimble. We use the Runge-
Kutta Fehlberg method to compute Eqs. (5.46). Here we fix the flow time to Tflow = 0.2.
In step 3, we set the step size to ∆τ = 0.02 and the number of steps to nsteps = 25.
Thus the trajectory length is τtraj = 0.5 for each of the hybrid Monte Carlo update. To
compute the discretized molecular dynamics (5.17)-(5.19), we use Newton’s method so
that the recurrence relation converges more safely. For the thermalization, we discard
first 200 configurations generated in step 2 to step 4. We then repeat step 2 to step 4 ten
times, and sample the configurations as step 5. In step 6, we estimate the expectation
value (5.32) using 1000 configurations out of 10200.

Fig. 5.3 shows the average of detQe−iImS, which is the denominator in Eq. (5.32). The
result is shown for L = 8, α = 1,ma = 1. The action is real for the chemical potential
µ = 0, and as µ increases the phase exp(−iImS) fluctuate along the real axis. The blue
points represents the result for the original integration contour. It corresponds to the
reweighting procedure (2.9), since Q is an identity matrix for the flow time Tflow = 0.
The phase average decreases to nearly zero as the chemical potential µ exceed 1, and the
sign problem appears. The green points represents the result for the contour deformed
by the conventional gradient flow with Tflow = 0.2. The average of detQe−iImS is near
to 1 and the sign problem disappears. The red points represents the contour deformed
by the gradient flow without the blow-up with Tflow = 0.2. The average of detQe−iImS

is smaller than the contour deformed by the conventional gradient flow for µ ≳ 1, but
still sufficiently large so that the sign problem is mild. Thus at this point, both the
conventional flow and the flow without the blow-up seem to be useful to avoid the sign
problem.
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Figure 5.3: Average of detQe−iImS as a function of the chemical potential µ for the
original integration contour (blue), the contour deformed by the conventional gradient
flow with Tflow = 0.2 (green), and the contour deformed by the gradient flow without the
blow-up with Tflow = 0.2 (red). The other parameters are L = 8, α = 1,ma = 1.

However, a significant difference between the conventional flow and the flow without
the blow-up is seen in the evaluation of the expectation value. Fig. 5.4 shows the number
density as a function of the chemical potential µ. The solid black line indicates the exact
value given by Eqs. (5.76) and (5.77). The green points represents the result for the
contour deformed by the conventional gradient flow with Tflow = 0.2. They show a small
statistical error, but we see a discrepancy between the estimated value and the exact value.
The contour deformed by the conventional flow is flowed into the zeros of the fermion
determinant, and is separated by those points. In the hybrid Mote Carlo simulation, we
start from the configuration x = 0. The sequence of the configurations is trapped to the
main thimble lying on the center of Fig. 5.2. Thus the result includes the contribution
only from the main thimble, and the discrepancy is explained by the contribution from
the other subdominant thimbles. The red points represents the result for the contour
deformed by the flow without the blow-up with Tflow = 0.2. They agree with the exact
value, and imply that the estimated value includes the contribution from the multiple
thimbles since the flowed contour is a connected region. Thus the difference of the relative
phases e−iImS(zσ) between the thimbles Jσ decrease the average of detQe−iImS as seen in
Fig. 5.3.

5.3.3 HMC simulation in Thirring model

Now we apply the hybrid Monte Carlo algorithm without the blow-up to the (0 + 1)-
dimensional massive Thirring model at finite density, where the path integral is given
by the multi-dimensional integral. We again follow the steps in Sec. 5.1.4. We fix the
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Figure 5.4: Number density and fermion condensate as a function of the chemical po-
tential µ for the conventional flow with Tflow = 0.2 (green) and the flow without the
blow-up with Tflow = 0.2 (red). The solid black line indicates the exact value. The other
parameters are L = 8, α = 1,ma = 1.

flow time to Tflow = 1, 2, 3, 4 and obtain the results with Nt = 8, α = 1,ma = 1. We
note that the flow time Tflow we consider here is much longer than in the uniform-field
model, since in the uniformed-field model the force term g(∂S/∂zi)

∗ in Eq. (5.1) is Nt

times larger than in the Thirring model with zi = z (i = 1, . . . , Nt). Fig. 5.5 shows the
average of detQe−iImS. The average of detQe−iImS with the flow time Tflow = 1 is smaller
than that with Tflow ≥ 2, since the flowed contour with Tflow = 1 is still distant from
the Lefschetz thimbles and the fluctuation of the phase e−iImS still remains. For the flow
time Tflow ≥ 2, the difference of the average of detQe−iImS is small. Thus we expect that
the flowed contour with Tflow ≥ 2 sufficiently approaches the Lefschetz thimbles, and the
flow time Tflow = 2 is enough to solve the sign problem.

In the gradient flow without the blow-up, we have | detQ| ≤ 1 for multi-dimensional
integrals, since the reality condition (2.48) is not satisfied. Thus the smallness of | detQ|
may possibly worsen the sign problem. Fig. 5.6 shows the average of | detQ| with the
flow time Tflow = 2. The average of | detQ| is close to 1, and the decrease of the average
of detQe−iImS in Fig. 5.5 is explained by the fluctuation of the phase of the Jacobian
determinant detQ and the difference of the relative phases e−iImS(zσ) between the thimbles
Jσ.

Fig. 5.7 shows the number density as a function of the chemical potential µ. The
solid black line indicates the exact value given by Eqs. (5.66) and (5.67). The red points
represents the result on the contour deformed by the gradient flow without the blow-up
with Tflow = 2. They agree with the exact value, and imply that the estimated value
includes the contribution from the multiple thimbles. This is confirmed by Fig. 5.8.
In Fig. 5.8 the distribution of zave = N−1

t

∑
i zi is shown on a complex plane. The the

configurations are distributed across the zero of the fermion determinant, and thus spread
over the multiple thimbles.



56 CHAPTER 5. HMC ON THE FLOWED CONTOUR WITHOUT BLOW-UP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

〈
 d

et
 Q

 e
-iI

m
S  
〉

 

µ

Tflow=1
Tflow=2
Tflow=3
Tflow=4

Figure 5.5: Average of detQe−iImS as a function of the chemical potential µ with the flow
time Tflow = 1, 2, 3, 4. The other parameters are Nt = 8, α = 1,ma = 1.

5.4 Discussion

We point out that in the hybrid Monte Carlo update on the curved space we may possibly
fail to compute a proposal. This happens in the step of solving the discretized molecular
dynamics (5.17)-(5.19) using the iterative method such as the fixed point iteration method
or Newton’s method. In some cases, we cannot find a solution by the iterative method,
and it is caused by the following two problems.

The first problem comes from the parametrization of a flowed point z. By the gradient
flow, a point x ∈ CR in the vicinity of the intersection point of the original integration
contour CR and a dual thimble Kσ approaches the critical point, and then deviates from
it along the thimble Jσ. Thus a small region in the vicinity of the intersection point
approaches the critical point and then covers the thimble Jσ. On the other hand, a point
far from the intersection points approaches infinity or zeros of the fermion determinant.
Now we consider a contour consisting of a region approaching a thimble and a region
approaching a zero. Since the tangent vectors V α

i is given by the derivative of a flowed
point z with respect to an initial condition x as V α

i = ∂zi/∂x
α, the norms of the tangent

vectors are large in the region approaching a thimble and small in the region approaching a
zero. As the flow time increase, the difference of the norms of the tangent vectors between
those regions becomes significant. Thus when a point on the region approaching a thimble
is shifted toward the region approaching a zero by the hybrid Monte Carlo update, the
tangent vectors abruptly change. Then the iterative method may not converge since the
sequence of approximate solutions is generated only by the local function with respect
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Figure 5.7: Number density and fermion condensate as a function of the chemical poten-
tial µ for the flow without the blow-up with Tflow = 2 (red). The solid black line indicates
the exact value. The other parameters are Nt = 8, α = 1,ma = 1.

to the point x on the original integration contour. We note that not the tangent space
TzΣ but the basis of the tangent vectors {V α

i } may cause the problem. Thus it can be
solved by improving the iterative method. For example, if the (k + 1)-th approximation
x(k+1) = x(k)+∆x is worse than x(k) as |x(k+1)−xsol| > |x(k)−xsol| with the solution xsol,
we may employ x(k+2) = x(k) + ∆x/2 as (k + 2)-th approximation. This improvement
works well if a local minimum does not exist around the solution.

The second problem comes from the shape of the flowed contour. For example, in
the vicinity of zeros of the fermion determinant, the directions of the tangent vectors
may abruptly change since the zeros connect the thimbles. This problem is more se-
rious because we confront the following three problems. First, if the flowed contour is
sharply curved, the solution may not exist. Second, even if we find the solution, the map
(w(n), z(n)) → (w(n + 1), z(n + 1)) by the discretized molecular dynamics (5.17)-(5.19)
may not be continuous. Then the Hamiltonian (5.15) jumps and the acceptance rate
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decreases. Third, the solution may not be unique, and the reversibility (2.51) is not
ensured. Thus the detailed balance condition is not satisfied. To avoid these problems
we need to adjust the step size ∆τ in the discretized molecular dynamics (5.17)-(5.19).
We note that the detailed balance condition is slightly broken for an arbitrarily small
step size, since the momentum can be arbitrarily large according to the Gaussian dis-
tribution. In order to have the detailed balance condition and continue the simulation
even if the solution of (5.17)-(5.19) is not found, we take into account the momentum
flip as implemented in the parallel-tempering algorithm [14, 15]. However, without the
parallel-tempering algorithm, the ergodicity is not assured. Thus we carefully adjusted
the step size in the simulation so that we can find a solution.

As an alternative method, we may implement the Metropolis algorithm using the gra-
dient flow without the blow-up. Using a uniform distribution function with a sufficiently
small radius r, we have the detailed balance condition (See Appendix ). However, we
observe a long autocorrelation time, and thus the algorithm is inefficient. For a future
study, we leave the improvement of the algorithm using the gradient flow without the
blow-up.

We also point out that the computational cost using the flow without the blow-up is
more expensive than the conventional flow. It requires the additional computation of g
in Eqs. (5.1) and (5.2), and the QR decomposition of the tangent vectors {V α

i }. Since
the computation of detD in g, which iteratively appears in the Runge-Kutta method is
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O(n3), we need to improve the choice of g 3). One of the alternative choice may be given
by using the inverse of the norm of ∂SF/∂zi where SF = log detD instead of detD. Since
∂SF/∂zi and its derivative are also computed in the conventional flow, the computational
cost of the gradient flow with the alternative g scales as with the conventional flow. For
a future study, we leave the investigation of the algorithm using the gradient flow with
the alternative g.

3) In the (0+1)-dimensional massive Thirring model at finite density, the fermion determinant detD is
analytically given by Eq. (5.64). Thus when we use Newton’s method to solve the discretized molecular
dynamics, the computational cost is similar to that with the conventional flow.





Chapter 6

Summary and Outlook

The sign problem arises from the difficulty of the numerical simulation of the path in-
tegral with a complex action, where the integrand gives both the positive and negative
contributions and they almost cancel each other out. Thus a huge number of configu-
rations are required to evaluate the integral. This problem appears in many physically
interesting systems, for example finite-density QCD and real-time dynamics, and thus it
is important to develop the simulation methods which solve this problem.

In Chapter 2, we give a brief review on the Lefschetz thimble method. This method
was proposed to solve the sign problem. The point of the Lefschetz thimble method is the
complexification of the integration variables and deformation of the integration contour in
the complexified space, thanks to Cauchy’s integral theorem. To solve the sign problem,
we need to find a contour on which the phase fluctuation disappears. Such a contour is
formulated by the gradient flow, which is defined by the differential equation with respect
to the complexified variables. One of the important property in the gradient flow is that
along the flow the real part of the action monotonically increases whereas the imaginary
part of the action is constant. Using the gradient flow we can define the contours on
which the imaginary part of the action is constant. These contours are called Lefschetz
thimbles. The original integration contour is deformed to the linear combination of the
Lefschetz thimbles. Therefore, if a single thimble gives a dominant contribution to the
path integral and we identify it, we can numerically evaluate the path integral.

As one of the approach to evaluate the path integral, we consider the hybrid Monte
Carlo algorithm on the Lefschetz thimble, in which configurations are proposed with the
high acceptance rate. Since we need to compute the inverse of tangent vectors and the
Jacobian determinant using the LU decomposition, its computational cost is O(n3). If
many thimbles contribute to the path integral, however, the original idea of the Lefschetz
thimble method does not work well. Also the identification of the thimble which gives a
dominant contribution is a hard task, in general.

In Chapter 3, we consider the generalized Lefschetz thimble method, where the con-
tribution of multiple thimbles are included in the path integral and the identification of
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the thimble is not necessary. The point of this improved method is to find a integra-
tion contour which is a connected region, and on which the fluctuation of the phase is
mild. To find such a contour we consider a point on the original integration contour as
an initial condition of the gradient flow. Then flowing each point on the original inte-
gration contour, we obtain a deformed contour. The deformed contour approaches the
Lefschetz thimbles contributing to the path integral, and by adjusting the flow time we
observe that it is a connected region. Since a point on the original integration contour
is mapped to a point on the deformed contour by a diffeomorphism, we can change the
complex integration variables on the curved space back to the real variables. Thus by
using the real variables we do not need to solve the equation of the motion for the con-
straint system. We consider the Metropolis method with the real variables, where the
update requires O(n2) computation. The distribution of the proposed configuration on
the flowed contour is anisotropic for a large flow time, and the sampling is inefficient.
However, as opposed to the simulation on the curved space, this method has the advan-
tage that for the arbitrary random numbers we always find a proposed configuration on
the flowed contour, as long as the original integration contour and the flowed contour
have a one-to-one correspondence.

In Chapter 4, we discuss the gradient flow without the blow-up. In the generalized
Lefschetz thimble method, we use the gradient flow to deform the contour. However,
as the flow time increase, the flowed contour approaches infinity or zeros of the fermion
determinant, and divided by them in a finite flow time. Thus the sequence of the config-
uration is trapped to the restricted region, and the situation is the same as in the original
Lefschetz thimble method. The divergence of the action in a finite flow time is called the
blow-up. To prevent the blow-up, we introduce an alternative flow equation. The point
of this flow is a flow factor in the force term, which is a function with respect to the
complexified variables, and suppressed in the vicinity of infinity and zeros of the fermion
determinant.

In Chapter 5, we construct an algorithm which evaluate the path integral using the
gradient flow without the blow-up. Based on the hybrid Monte Carlo algorithm on the
Lefschetz thimble, we construct the hybrid Monte Carlo algorithm on the flowed contour
without the blow-up. The algorithm we construct is different from the conventional one in
that the reality condition is not satisfied for the gradient flow without the blow-up. Thus
to project a momentum on the tangent space, we compute the QR decomposition of the
tangent vectors, whereas in the conventional gradient flow we compute the inverse of the
tangent vectors. In order to confirm the validity of the algorithm we construct, we first
apply it to the Thirring model in the uniformed subspace, where the path integral is given
on the one-dimensional space, and then to the Thirring model, where the path integral
is given on the multi-dimensional space. We show that the result we obtain agree with
the analytic result, as opposed to the conventional generalized Lefschetz thimble method.
Therefore it shows that the contributions of the multiple thimbles are correctly included
in the numerical evaluation.
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However the algorithm we construct has some week points. Firstly, the computational
cost is potentially expensive. In the computation of the gradient flow equation we adopt,
we need to compute the fermion determinant iteratively. Secondly, the contour may be
strongly curved depending on the regularization parameters in the flow equation and the
flow time. For the strongly curved contour, we take a sufficiently small step size to solve
the molecular dynamics, or we cannot project the momentum on the contour. We need
to overcome these week points, and leave them for a future study.

We also need to confirm that the algorithm is applicable to a wide range of models.
For a future study, it would be interesting to apply the hybrid Monte Carlo algorithm
without the blow-up to the other models such as the chiral random matrix model [55,56],
which is a toy model of finite-density QCD. We believe that the algorithm using the
gradient flow without the blow-up is promising approach to solve the sign problem and
by developing and improving it we can apply it to finite-density QCD in future.





Appendix A

Metropolis algorithm on generalized
surface

In the Metropolis method, we accept a proposed configuration xB, which is generated
from the configuration xA by a probability,

Pacc(xA → xB) = min
{
1, e−S(xB)/e−S(xA)

}
. (A.1)

Here we denote the transition probability from xA to xB as T (xA → xB). Then we note
that in order to satisfy the detailed balanced condition,

e−S(xA)T (xA → xB) = e−S(xB)T (xB → xA), (A.2)

the probability P (xA → xB) of generating a configuration xB from a configuration xA
need to be equivalent to the probability P (xB → xA) of generating a configuration xA
from a configuration xB. If we have P (xA → xB) ̸= P (xB → xA), after generating the
configuration xB from the configuration xA we accept it by a probability,

Pcorr(xA → xB) = min {1, P (xB → xA)/P (xA → xB)} . (A.3)

Thus we need to accept the proposal twice to update the configuration, and the transition
probability from xA to xB is written as

T (xA → xB) = P (xA → xB)Pcorr(xA → xB)Pacc(xA → xB), (A.4)

and the detailed balanced condition is satisfied. On the curved space, the method of
proposing a new configuration is important. Here we consider the method in which we
can adopt the proposal used in the hybrid Monte Carlo algorithm on the curved space in
Sec. 5.1.

First, we generate a complex momentum w on the tangent space TzΣ. One may
consider to generate it by the Gaussian distribution, but the momentum can be arbitrarily
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large. For a large momentum, possibly we may not find a proposal. Thus here we generate
a complex momentum by a uniform distribution with a small radius r as 1)

Punif(w) =

{
const. (∥w∥ ≤ r),

0 (∥w∥ > r).
(A.5)

The generated momentum w is projected on the tangent space TzΣ using the projec-
tor (5.12). To propose a configuration, we update the pair (z, w) by the equations,

wi(n+ 1/2) = wi(n)− 1/2∆τQ̃α
i (z(n))λ

α
1 , (A.6)

zi(n+ 1) = zi(n) + ∆τwi(n+ 1/2), (A.7)

wi(n+ 1) = wi(n+ 1/2)− 1/2∆τQ̃α
i (z(n+ 1))λα2 . (A.8)

The equations are same as the equations of motion of molecular dynamics (5.17)-(5.19)
without the force term (∂S(z(n))/∂z)∗, and we can solve them using the iterative method
such as the fixed point iteration method and the Newton’s method.

If the solution is unique, Eqs. (A.6)-(A.8) are reversible. Then using the reversibility
and accepting the proposal by the probability,

Pcorr(ΦA → ΦB) = min {1, Punif(wB)/Punif(wA)} , (A.9)

the detailed balance condition (A.2) is satisfied. Here we write Φ = (z, w) for simplicity.
The transition probability from xA to xB is written as

T (xA → xB)

= Pacc(zA → zB)

∫
dwAdwB Punif(wA)PM(ΦA → ΦB)Pcorr(ΦA → ΦB), (A.10)

where PM is the probability to choose the configuration (zB, wB),

PM(ΦA → ΦB) = δ(2n)(ΦA − F (ΦB)). (A.11)

F denotes the map given by Eqs. (A.6)-(A.8). Here we decompose the momentum as
wi = Qα

i p
α, and define the measure by dw = dnp. Then we prove that the detailed

1) For example, by generating n unit Gaussian random numbers pi (i = 1, . . . , n) and a uniform random
number r in the interval [0, 1], we have the complex vector wi = Qα

i p
α using the orthonormal basis {Qα

i }
given by the QR decomposition (5.8). Then, we normalize the momenta as wi → r1/n(wi/∥w∥).
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balance condition is satisfied as follows:

e−S(xA)T (xA → xB)

= e−S(xA)Pacc(zA → zB)

∫
dwAdwB Punif(wA)PM(ΦA → ΦB)Pcorr(ΦA → ΦB) (A.12)

= e−S(xB)Pacc(zB → zA)

∫
dwAdwB Punif(wA)PM(ΦA → ΦB)Pcorr(ΦA → ΦB) (A.13)

= e−S(xB)Pacc(zB → zA)

∫
dwAdwB Punif(wA)PM(ΦB → ΦA)Pcorr(ΦA → ΦB) (A.14)

= e−S(xB)Pacc(zB → zA)

∫
dwAdwB Punif(wB)PM(ΦB → ΦA)Pcorr(ΦB → ΦA). (A.15)

To derive the relation above we used PM((zA, wA) → (zB, wB)) = PM((zB,−wB) →
(zA,−wA)), and Punif(−w) = Punif(w).
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