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Abstract

U(1)Lµ−Lτ gauge symmetry is one of the possibilities of the extension of the Standard Model

(SM). Models extended by the U(1)Lµ−Lτ gauge symmetry contain a corresponding new gauge

boson and have often been discussed in the context of the muon anomalous magnetic moment

(muon g – 2). However, the U(1)Lµ−Lτ gauge symmetry can play other important roles and

is attractive even without the muon g – 2. In this thesis, we focus on both the U(1)Lµ−Lτ

gauge boson and the U(1)Lµ−Lτ gauge symmetry itself and discuss how they affect the neutrino

and dark matter (DM) sectors. First, we discuss relations between neutrino parameters and

structure of the neutrino mass matrices derived from the U(1)Lµ−Lτ gauge symmetry in the

minimal gauged U(1)Lµ−Lτ model, and find that the neutrino CP phases and the sum of the

neutrino masses are determined as functions of the neutrino oscillation parameters, regardless

of the U(1)Lµ−Lτ -breaking and Majorana mass scales. Second, using the above results, we point

out that the successful non-thermal leptogenesis and inflation can be realized simultaneously

in the minimal model. Third, we find that if the U(1)Lµ−Lτ gauge symmetry is broken at the

electroweak scale, the U(1)Lµ−Lτ gauge boson can successfully contribute to the muon g – 2 and

determination of the light DM abundance simultaneously. Moreover, we explore the indirect

detection of such a light DM by neutrino observations and obtain the upper limits from the

future HyperKamiokande (HK) sensitivity to the DM annihilation cross section.
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Notation and units

Notation
In this thesis, we use Greek indices of vectors and tensors as four dimension space-time coordi-

nates, and Latin ones as three dimension spatial coordinates as follows :

µ, ν, ρ, ... = 0, 1, 2, 3 ,

i, j, k, ... = 1, 2, 3 .

Moreover, we use the following Greek indices of matrices and fields to distinguish flavors as

follows :

α, β, ... = e, µ, τ .

As the metric of the flat Minkowski space, we apply the time-like convention :

ηµν = (+1,−1,−1,−1) .

Units
Unless noted otherwise, we use the natural units for the physical units of measurement. In the

natural units, the speed of light c, reduced Planck constant ~, and Boltzmann constant kB are

set equal to unity :

c = ~ = kB = 1 .
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a successful model that has been verified by a

lot of experiments and eventually established by the discovery of the Higgs boson at the Large

Hadron Collider (LHC) in 2012. Although the SM provides explanations to a lot of phenomena

related to particle physics, there are unsolved problems. One of them is the muon anomalous

magnetic moment (muon g − 2). Generally, charged particles have magnetic dipole moment ~µ

which is the physical value defined in terms of its spin ~s as follows:

~µ = g
( q

2m

)
~s , (1.1)

where g is the gyromagnetic ratio called g-factor, and m and q = ±e is the mass and electric

charge of the given charged particle, respectively. From the classical Dirac equation, the g-

factor is exactly 2. However, quantum loop corrections deviate the g-factor from 2, and this

deviation is represented by the parameter a` = (g−2)/2 and called anomalous magnetic moment.

The muon g − 2 has been precisely measured by several experiments for over half a century,

and the Brookhaven E821 experiment has given the experimental value [1–3]. On the other

hand, theoretical prediction from the SM has also been calculated vigorously [4–15] (see also

Ref. [16]), and it is known that there is the existence of the long-standing discrepancy between

the experimental and SM predicted values at more than 3σ level.

To explain this discrepancy, a lot of extensions of the SM have been proposed. One promis-

ing solution of them is an extension of the SM gauge sector by an Abelian U(1)Lµ−Lτ gauge

symmetry. In models with U(1)Lµ−Lτ gauge symmetry, muon (tau particle) and mu (tau)-type

neutrino have U(1)Lµ−Lτ charge +1(−1), and the other SM particles have no charge. In this

extended model, an extra U(1)Lµ−Lτ gauge boson interacts with muon and contribute to the

muon g − 2 at one-loop level. If the mass of the U(1)Lµ−Lτ gauge boson is O(10-100) MeV

and the gauge coupling constant is O(10−4), the discrepancy of the muon anomalous magnetic

moment can be explained without conflicting severe experimental bounds. The review of the

U(1)Lµ−Lτ gauge symmetry and its gauge boson is shown in Section 2.1.
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Besides the muon anomalous magnetic moment, the SM has long-standing unsolved prob-

lems. Representative examples of them are dark matter (DM) and the baryon asymmetry of the

Universe (BAU). The existence of the DM is considered to be certain by various cosmological

and astrophysical observations, such as those of the galaxy rotation curves [17–21] and cosmic

microwave background (CMB) [22–26]. There are various candidates for the DM, including

particles and non-particles. When the DM is elemental particle, it is required to have no elec-

tromagnetic charge and be non-relativistic to avoid experimental and observational constraints.

Moreover, it should be stable or live longer than the age of the Universe in order not to de-

crease the abundance until the present. Because of the discovery of neutrino oscillation [27], it

is known that neutrinos certainly have masses, and, comparing their masses and temperature

estimated by that of the CMB, at least two of neutrino generations are non-relativistic. Then,

among the SM particles, only neutrinos satisfy the above conditions. It is clear, however, that

neutrinos can not be the candidate of DM because of the bounds on the sum of neutrino masses

and failure of the structure formation of the Universe [28, 29]. Therefore, the SM has no can-

didate for DM and many new particles have been proposed as alternative candidates. One of

the most promising and attractive candidates is Weakly Interacting Massive Particles (WIMPs).

WIMPs appear in various motivated models, such as supersymmetric model [30], universal extra

dimension model [31], and so on.

WIMPs are also attractive from the viewpoint of the DM production mechanism. WIMPs

interact weakly with the SM particles and have been in thermal equilibrium in the early Universe.

They are produced through interactions with the SM particles. With the cooling of the Universe,

the ratio of the interaction rate to the Hubble expansion rate decreases, and then the interactions

eventually freeze out. After that, with the expansion of the Universe, the DM number density

decreases, and then the observed relic abundance of DM is realized. This kind of production

scenario is called thermal freeze-out. When the DM mass is around the electroweak scale, the

observed relic abundance indicates that the coupling strength between DM and SM particles is

around the strength of the electroweak coupling. Such a realization of the DM relic abundance

is called WIMP miracle. A lot of experiments have been performed to search WIMP DM

with electroweak scale mass. However, there is no indication of DM detection, and for example,

XENON1T experiment [32–34], which is one of the world’s leading direct detection experiments,

gives the most stringent constraint on the DM-nucleon scattering cross section. In order to

avoid the severe constraints from direct detection experiments, alternative candidates of DM

are explored.

U(1)Lµ−Lτ gauge symmetry, described above, provides an escape route for DM from severe

constraints from direct detection experiments. If DM has the U(1)Lµ−Lτ charge, after breaking of

the U(1)Lµ−Lτ gauge symmetry, the remaining accidental global U(1) symmetry can warrant the

DM stability, depending on the DM U(1)Lµ−Lτ charge, as explained in section 7.2. Moreover,
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DM can annihilate into the SM µ and τ -type particles through the U(1)Lµ−Lτ gauge boson,

if kinematically allowed, and the observed relic abundance is realized. For direct detection

experiments, because U(1)Lµ−Lτ gauge boson couple to neither nucleon nor electron at tree level,

DM-nucleon and DM-electron scattering cross sections are suppressed, and severe constraints can

be avoided. On the other hand, the DM annihilation into µ and τ -type SM particle, especially

neutrinos is allowed, and thus there is a possibility of indirect detection by neutrino telescope,

such as Superkamiokande. The feasibility of both DM relic abundance and muon g − 2, and

the bound on the DM annihilation cross section by the neutrino observations are discussed in

Chapter 7, and this discussion is based on Ref. [35].

Baryon asymmetry of the Universe is also one of the unsolved puzzles. The SM includes

both particles and antiparticles, and CPT invariance is conserved. Starting on the discovery of

positron by C. D. Anderson in 1932, various antiparticles are observed. However, these particles

are secondary cosmic rays and not primary ones which exist since the early Universe and come

from outside the Earth’s atmosphere. Standard big bang nucleosynthesis (BBN) scenario and

observed abundance of light elements suggest baryon-antibaryon asymmetry in the Universe.

The current observed value of the baryon asymmetry with 1σ error from the CMB observations

by Planck satellite is given by [25]

ΩBh
2 = 0.02233± 0.00015 , (1.2)

where ΩB = ρB/ρc is the density parameter of baryon, and ρB and ρc are the baryon en-

ergy density and critical density, respectively. h is the Hubble parameter expressed in units of

100 km/s/Mpc. If this baryon-antibaryon asymmetry has been generated before the inflation,

it has been diluted with expanding the Universe, and the observed asymmetry cannot be ob-

tained. Therefore the asymmetry should be generated after the inflation, and various scenarios

that explain generations of the baryon-antibaryon asymmetry, called baryogenesis, are proposed.

Leptogenesis [36] is one of the promising baryogenesis scenarios. In this scenario, lepton-

antilepton asymmetry is generated by some mechanism and converted into baryon-antibaryon

one through sphaleron process [37]. So far many kinds of leptogenesis scenarios are proposed, and

each scenario has its production mechanism of lepton asymmetry. The most well-known example

is the generation of lepton asymmetry by decays of heavy right-handed neutrinos. Introducing

right-handed neutrinos into the SM, neutrinos can form Dirac mass terms. Moreover, if right-

handed neutrinos have much heavier Majorana masses than the Dirac masses, the lightness of

neutrinos can be explained naturally by seesaw mechanism [38–41]. In this way, the right-handed

neutrinos and their Majorana nature are attractive and searched for a long time.

U(1)Lµ−Lτ gauge symmetry also affects leptogenesis. In the minimal model extended by

U(1)Lµ−Lτ gauge symmetry and right-handed neutrinos, matrices of neutrino Dirac and Ma-

jorana masses are severely restricted, and this restriction gives relations between parameters
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relative to neutrinos. Therefore, this model can predict neutrino Dirac and Majorana CP phases

with less ambiguity. Moreover, because of the restriction of neutrino parameters including Dirac

and Majorana CP phases, there is the correlation between the Dirac CP phase and the sign of

baryon asymmetry generated through leptogenesis scenario appears. We discuss the restrictions

of neutrino parameters in Chapter 5 and the baryon asymmetry generated through leptogenesis

scenario in Chapter 6, and these discussions are based on Refs. [42–45].

This thesis consists of two parts. Part I is the review part and consists of three chapters.

In Chapter 2, we give reviews of theoretical foundation, such as right-handed neutrinos and

its Majorana nature (Sec. 2.2) and U(1)Lµ−Lτ gauge symmetry (Sec. 2.1). In Chapter 3, we

give reviews about WIMP dark matter and thermal freeze-out mechanism. In Chapter 4, we

summarize leptogenesis scenario. Part II consists of three chapters. In Chapter 5, the relations

between the structure of the neutrino mass matrix and the neutrino parameters are discussed.

In Chapter 6, non-thermal leptogenesis in the minimal gauged U(1)Lµ−Lτ model is discussed,

assuming an inflation model. In Chapter 7, the Dirac fermion DM in the U(1)Lµ−Lτ model and

indirect search by neutrino telescopes are discussed. Chapter 8 is lastly devoted to the summary

and conclusion of this thesis. In Appendix, we collect some supplemental materials to support

our understanding. In this thesis, Chapter 5, 6, and 7 are based on Refs. [42–44], [45], and [35],

respectively.
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Review Part
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Chapter 2

Foundation

In this thesis, we discuss how U(1)Lµ−Lτ gauge symmetry affects dark matter and leptogenesis

scenarios, following the author’s works [35, 42–45]. In this chapter, we give the review of the

U(1)Lµ−Lτ gauge symmetry and relation with the muon g− 2, firstly. After that, we summarize

the experimental constraints on the U(1)Lµ−Lτ gauge boson. Secondly, we review the right-

handed neutrinos and Majorana natures.

2.1 U(1)Lµ−Lτ gauge symmetry

Extensions of the gauge sector in the SM have been tried, as one of physics beyond the SM,

in various context for a long time (see Refs. [46–49] for early examples). U(1)Lµ−Lτ gauge

symmetry is one of the examples and motivated by the discrepancy of the muon anomalous

magnetic moment. Under this gauge symmetry, muon µL,R and mu-type neutrino νµ have the

U(1)Lµ−Lτ charge +1, tau particle τL,R and tau-type neutrino ντ have the U(1)Lµ−Lτ charge

−1, and the other SM particles have no U(1)Lµ−Lτ charge.

2.1.1 Gauge anomaly cancellation

When an extra gauge symmetry is added to the gauge sector of the SM, it is pretty important

whether new symmetry causes gauge anomaly. The existence of the gauge anomaly destroys

renormalizability and unitarity of S-matrix, and then it leads models to lose predictive power.

The SM is the chiral gauge theory, and there is a danger that it includes the gauge anomaly in

nature. But, in the SM, anomalies from the quark and lepton sectors, miraculously, cancel each

other nontrivially. However, as we mentioned above, when U(1)Lµ−Lτ gauge symmetry is added

to the SM gauge sector, we have to confirm the anomaly cancellation.

The SM is the chiral gauge theory, and the left and right-hand fermions transform differently
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under the gauge transformation. For the SU(2)L gauge transformation,

ΨL(x)→ Ψ′L(x) = U(x)ΨL(x), ΨR(x)→ Ψ′R(x) = ΨR(x) , (2.1)

where ΨL(R) is the SU(2)L doublet (singlet) of the SM left (right)-handed fermion, and U(x) =

exp[igζa(x)T a] is the Hermitian matrix of the SU(2) gauge transformation with the gauge cou-

pling constant, g, parameter of the transformation, ζa(x), and generator matrices of the SU(2)L,

T a. In the classical theory, the action is invariant under the above transformation. However,

at the quantum level, the effective action included in the one-loop contribution of fermions is

not necessarily invariant under the chiral gauge transformation. In fact, the gauge invariance is

violated by the triangle diagram of fermions at the one-loop level. This violation of the gauge

invariance is intrinsic and cannot be removed by adding local counterterms to the action. This

kind of violation is called gauge anomalies. For the above triangle diagram, the gauge anomaly

is given by

Aabc =
∑
fL

tr
(
ta
{
tb, tc

})
−
∑
fR

tr
(
ta
{
tb, tc

})
≡ AabcL −AabcR , (2.2)

where fL(R) is the SM left (right)-handed fermion, ta is the generator matrix associated with the

gauge boson which couples to fermions at an apex of the triangle, and we omit the coefficient in

Eq. (2.2). When left and right-handed fermions have the same charges, AabcL = AabcR , and then

the anomalies are canceled.

The left and right-handed fermions transform in the same way under the U(1)Lµ−Lτ gauge

transformation when the right-handed neutrinos with three lepton flavors, νR,α, are introduced,

and then there are five triangle diagrams which we have to confirm the anomaly cancellation as

follows :

(i) U(1)Lµ−Lτ - gravity - gravity (ii) U(1)Lµ−Lτ - U(1)Lµ−Lτ - U(1)Lµ−Lτ

(iii) U(1)Lµ−Lτ - U(1)Lµ−Lτ - U(1)Y (iv) U(1)Lµ−Lτ - U(1)Y - U(1)Y

(v) SU(2)L - SU(2)L - U(1)Lµ−Lτ

13



In (i) ∼ (v) cases, the gauge anomalies are given by

(i)
∑

α=e,µ,τ

[
−Y ′(eL,α) + Y ′(eR,α)− Y ′(νL,α) + Y ′(νR,α)

]
= 0 , (2.3)

(ii)
∑

α=e,µ,τ

[
−Y ′(eL,α)3 + Y ′(eR,α)3 − Y ′(νL,α)3 + Y ′(νR,α)3

]
= 0 , (2.4)

(iii)
∑

α=e,µ,τ

[
−
(
−1

2

)
Y ′(eL,α)2 + (−1)Y ′(eR,α)2 −

(
−1

2

)
Y ′(νL,α)2 + 0× Y ′(νR,α)2

]
= 0 ,

(2.5)

(iv)
∑

α=e,µ,τ

[
−
(
−1

2

)2

Y ′(eL,α) + (−1)2Y ′(eR,α)−
(
−1

2

)2

Y ′(νL,α) + 02 × Y ′(νR,α)

]
= 0 ,

(2.6)

(v)
∑

α=e,µ,τ

[
−Y ′(eL,α)− Y ′(νL,α)

]
= 0 , (2.7)

where Y ′(f) is the U(1)Lµ−Lτ charge of fermion f . Here, we should emphasize that the above

gauge anomalies cancel even if the right-handed neutrinos are not introduced. Moreover, we

note that, in Chapter 7, we consider the Dirac fermion DM with non-zero U(1)Lµ−Lτ charge,

and this DM transform vector-like under the U(1)Lµ−Lτ gauge transformation for the anomaly

cancellation.

2.1.2 Kinetic mixing

Here, we show the Lagrangian relative to the U(1)Lµ−Lτ gauge boson X :

Lint = −gXXλ(µ̄γλµ− τ̄ γλτ + ν̄L,µγ
λνL,µ − ν̄L,τγλνL,τ ) , (2.8)

Lkin = −1

4
FλρF

λρ − 1

4
XλρX

λρ , (2.9)

where F λρ and Xλρ are the field strengths of the SM photon and U(1)Lµ−Lτ gauge boson, re-

spectively, and gX is the gauge coupling constant of U(1)Lµ−Lτ . As mentioned in the former

subsection, the electron and quarks have no U(1)Lµ−Lτ charge, and therefore X does not in-

teract with them directly. However, the muon and tau particle have both U(1)Lµ−Lτ and SM

electroweak charges in the gauged U(1)Lµ−Lτ models. Therefore, the models have the gauge

kinetic mixing ε of X and the SM photon γ at low scale, although we set ε to be zero at some

high scale. As shown in Fig. 2.1, the gauge kinetic mixing is generated at one-loop level and is

given by

Lε = −εA
2
FλρX

λρ − εZ
2
ZλρX

λρ , (2.10)

εA = − egX
12π2

ln

(
m2
τ

m2
µ

)
, (2.11)
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Figure 2.1: Kinetic mixing between the U(1)Lµ−Lτ gauge boson and SM photon induced by
muon and tau particle loop.

where F λρ and Zλρ denote the field strength for photon and Z boson, respectively. Besides, e

is the electromagnetic charge, and mµ(τ) is the muon (tau particle) mass.

We will take into account this one-loop level mixing in this thesis. To get the canonically

normalized gauge fields, we shift the photon field as Aµ → Aµ + εAXµ for |εA| � 1. This shift

induces the interaction of X to the electromagnetic current εAeXµJ
µ
em, which is crucial for DM

direct detection. Similarly, the mixing with the Z boson is given by

εZ = −
(
−1

4
+ sin2 θW

)
egX

12π2 cos θW sin θW
ln

(
m2
τ

m2
µ

)
, (2.12)

with the Weinberg angle θW . Shifting Zµ → Zµ − εZm2
X/m

2
ZXµ and Xµ → Xµ + εZZµ to get

the canonically normalized gauge fields, we find the Z boson couples to Lµ−Lτ current and the

X boson to the neutral current,

LZ,Lµ−Lτ = −gXεZZµJµLµ−Lτ , (2.13)

LX,NC =
g

cos θW
εZ
m2
X

m2
Z

XµJ
µ
NC , (2.14)

for mX � mZ . In Chapter 7, the U(1)Lµ−Lτ gauge boson is assumed to be much lighter than

the SM Z boson. Therefore, the effect of the mixing εZ is suppressed by m2
X/m

2
Z , and thus

we neglect it in the following discussion. In Appendix A.1, we show the detail about the gauge

kinetic mixing and canonical normalization.

2.1.3 Muon anomalous magnetic moment

Muon anomalous magnetic moment is one of the most important motivations for the U(1)Lµ−Lτ

models. The latest experimental value of the muon g − 2 is given by the Brookhaven E821

experiment [1–3]. On the other hand, the vigorous efforts have given the precise theoretical

values, and the discrepancies of the muon g−2 between the experimental and theoretical values
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are given by

∆aµ ≡ aexp
µ − aSM

µ =


(260± 79)× 10−11 [11]

(280.2± 73.7)× 10−11 [12]

(279± 76)× 10−11 [16]

(261± 79)× 10−11 [50]

. (2.15)

The differences among the above values in Eq. (2.15) are mainly derived from the estimations

of the hadronic vacuum polarization.1

New physics can contribute to the muon g − 2 and explain the long-standing deviation. To

do so, new physics have to couple to muon. U(1)B−L, which is the well-known Abelian gauge

group, is one example. However, the U(1)B−L gauge boson has couplings with the electron

and quarks, and then experimental constraints on the gauge coupling and gauge boson mass

are much severe. Therefore, U(1)B−L gauge boson can not explain the muon g − 2 discrepancy

without conflicting with the experiments (for example, see Ref. [52]). On the other hand, the

U(1)Lµ−Lτ gauge boson can avoid the constraints from the various experiments because it has

no coupling with the electron and quarks. Therefore, the U(1)Lµ−Lτ gauge boson can explain

the muon g − 2 discrepancy, avoiding the experimental constraints.

The U(1)Lµ−Lτ gauge boson contributes to the muon g − 2 through the one-loop diagram

shown in Fig. 2.2. 2

The one-loop contribution of the U(1)Lµ−Lτ gauge boson is given by

∆aXµ =
g2
X

8π

∫ 1

0
dx

2m2
µx

2(1− x)

x2m2
µ + (1− x)m2

X

, (2.16)

where gX is the U(1)Lµ−Lτ gauge coupling constant, and mX is the mass of the U(1)Lµ−Lτ gauge

boson. In Fig. 2.3, the parameter region in the mX -gX plane which explains the muon g − 2

anomaly is shown.

The dark (light) red area corresponds to the 1σ(2σ) favored region of the muon g − 2 and

realizes ∆aXµ = (268±76)×10−11 [50]. The light brown area and dark brown dashed line corre-

spond to the experimental constraints by CHARM-II and CCFR measurements of the neutrino

trident production νN → νNµ+µ− [53–55], respectively. The dark gray area corresponds to the

1The BMW Collaboration [51] gave the new result of the determination of the hadronic vacuum polarization,
based on the lattice calculation, and its value is significantly larger than the above values on Eq. (2.15), based
on the phenomenological input. If this value is adopted, the deviation between the experimental and SM values
reduces.

2The U(1)Lµ−Lτ gauge boson interacts with the SM muon and has a gauge mixing with the SM photon as
shown in Fig. 2.1. However, there is no contribution to the muon g−2 by a tree diagram which is described by the
gauge interaction and gauge kinetic mixing with the photon. This is because, as shown in Appendix A.1, the SM
photon is defined as a massless eigenstate after redefining gauge bosons mixed with each other and removing the
gauge kinetic mixing. Therefore, the SM photon has no mixing with a mass eigenstate X and the he U(1)Lµ−Lτ
gauge boson contributes to the muon g − 2 at one-loop level.
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Figure 2.2: One-loop diagram which contributes the muon g − 2. X denotes the U(1)Lµ−Lτ
gauge boson.

bound from Borexino measurement of the interaction rate of the mono-energetic 862 keV 7Be

solar neutrino [56–58]. The region above the solid blue line corresponds to the experimental

constraints by BABAR search for e+e− → µ+µ−X with a subsequent decay X → µ+µ− [59].

Besides the experimental constraints, there are some astrophysical bounds on the U(1)Lµ−Lτ

gauge boson. The light gray area corresponds to the astrophysical constraint by the white dwarf

(WD) cooling induced by the plasmon decay via the off-shell U(1)Lµ−Lτ gauge boson [60, 61].

Lastly, the yellow area and dashed line correspond to the bound from the effective neutrino

number Neff . The X boson mainly decays into a pair of neutrinos for mX < 2mψ. The life-

time is much shorter than the time scale (τBBN ∼ 1 sec) of BBN in the parameter space that

we are interested in. If the X boson is light enough, the X boson can be in equilibrium with

the neutrinos after the neutrino decoupling (T ∼ 1 MeV). Then, it is possible to increase the

effective neutrino number Neff . Since the X boson is already non-relativistic at the BBN, it

does not contribute directly to Neff . It can decay into neutrinos, however. The decay releases

the energy into neutrinos, reheating the neutrino temperature. Following [62], we estimate the

contribution to Neff and obtain the lower mass bound mX & 6 MeV for εA = 0. When we

include the effects of the non-vanishing kinetic mixing, the lower bound becomes 10 MeV for

εA ' 7.2× 10−6 corresponding to gX = 5× 10−4. For further details of the contribution to Neff

and the cosmological implication of the light U(1)Lµ−Lτ gauge boson, see e.g. Ref. [63]. We

conservatively use mX & 6 MeV as the lower mass bound in this thesis.

The allowed region which explains the muon g − 2 discrepancy can be searched in future

experiments. For example, the E949 [64, 65]-like experiment has a potential to test the above

region by searches for single muon tracks from the decays of stopped charged kaon (K+ →
µ+ + νµ + X, X → νν̄) [66]. Besides, NA64 experiment can probe the above region through

µ + N → µ + N + X, X → inv. process [67, 68]. Also, the Belle-II experiment [69] also does
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Figure 2.3: Constraints on the U(1)Lµ−Lτ boson and muon g − 2 favored region. Dark (light)
red area corresponds to the 1σ(2σ) favored region of the muon g − 2, respectively.

by missing energy search from the mono-photon process (e+e− → γX, X → inv.) [70] and

the X-bremsstrahlung one (e+e− → µ+µ−X, X → inv.) [71]. Moreover, a new experiment

carried out at the Fermilab [72, 73] is trying to measure the muon g − 2 discrepancy precisely

and reduce the experimental uncertainty. The J-PARK will also carry out another experiment

using the newly developed novel technique [74, 75]. Lastly, we note that SHiP experiment at

the CERN Beam Dump Facility [76, 77], which is one of future beam dump experiments, can

also prove U(1)Lµ−Lτ gauge boson. However, the U(1)Lµ−Lτ gauge coupling constant which

SHiP can search is much smaller that that which can explain the muon g − 2 [52]. Also, the

U(1)Lµ−Lτ gauge boson interacts with quarks through the gauge kinetic mixing. However, this

interaction is quark flavor-diagonal and does not have a significant effect on B and K meson

physics. Therefore, there is no substantial constraint on the U(1)Lµ−Lτ gauge boson. We

note that, in Refs. [78, 79], U(1)Lµ−Lτ -charged vector-like heavy quarks are introduced, and the

relation between the U(1)Lµ−Lτ gauge boson and B → K∗µ+µ− anomaly reported by LHCb [80].

2.2 Right-handed neutrinos and Majorana nature

Neutrino is one of the irregular particles in the SM matter contents. One major difference from

the other SM fermions is the absence of the right-handed part. As a result, neutrinos cannot
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have the Dirac mass terms and must be massless in the SM. However, starting with the report

in Neturino 1998 that the neutrino oscillation has been observed by the Super-Kamiokande

experiment [27], various experiments have observed the neutrino oscillation and it is clear that

the neutrinos are massive. This fact indicates the necessity of extension of the SM in order to

give masses to neutrinos. 3

Right-handed neutrinos give a simple solution for the above problem of the neutrino masses.

These particles beyond the SM are singlet fermions under the SM gauge group, SU(3)c× SU(2)L×
U(1)Y . Therefore, they have no danger of the gauge anomaly. Moreover, the neutrinos are

neutral fermion, and then there is a possibility that they are Majorana particles. If they are,

these new particles may possibly solve various problems that the SM is facing. In this subsection,

we give a brief review of the Majorana nature of the neutrinos and their effects on the beyond

SM physics.

2.2.1 Majorana nature

Neutrinos have been discovered by F. Reines and C. L. Cowan in 1953 [81, 82]. After that,

various experiments are trying to observe this particle. If neutrinos are Dirac fermion, the

degree of freedom is four because there are neutrino and antineutrino, and left-handed and right-

handed. However, currently, only left-handed neutrino and right-handed antineutrino have been

observed, and therefore, we come across the possibility that neutrino and antineutrino are the

same because neutrinos are neutral. Such particles, which are the same as their antiparticles, are

called Majorana particles, and they have been proposed by E. Majorana [83]. In this subsection,

we give a short review of Majorana particles and neutrinoless double beta decay, which is one

of the phenomena specific to Majorana particles.

© Majorana particle and Majorana mass

Majorana particle is a particle that is identified with its antiparticle, that is, charge conjugate

of the particle. Charge conjugation of particles ψ is given by

ψ =

(
ξa

ηȧ

)
C−−−→ ψc =

(
η∗bεba

εȧḃξ∗
ḃ

)
= iγ2ψ∗ ≡ Cψ̄T , (2.17)

where εba, ε
ȧḃ are the completely antisymmetric tensors of rank 2 with ε12 = ε12 = 1, and ξα, ηα̇

3In the SM, the neutrino masses can be realized by the Weinberg operator Mν = cαβ(L̄α · H̃)(H̃T · Lcβ)/Λ

with cαβ being a dimensionless constant, Λ the cutoff scale, and H̃ = iσ2H
∗. However, this operator is non-

renormalizable, and the extensions of the SM are necessary to construct UV complete models.
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are two-component spinors. γµ is the gamma matrix given by

γµ =

(
0 (σ̄µ)ȧb

(σµ)aḃ 0

)
, (2.18)

with

σµ = (1,−σ1,−σ2,−σ3), σ̄µ = (1, σ1, σ2, σ3) . (2.19)

Matrices of dimension two, σi (i = 1 ∼ 3), are well-known Pauli matrices and given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.20)

C is the matrix of dimension four, which has the following characteristics :

C−1 = C† = CT = −C, (2.21)

[C, γ5] = 0, (2.22)

CγTµC
−1 = −γµ , (2.23)

with γ5 ≡ iγ0γ1γ2γ3. Majorana particle satisfies ψ = ψc, and thus

ξa = η∗bεba, η
ȧ = εȧḃξ∗

ḃ
=⇒ ψ =

(
ξa

εȧḃξ∗
ḃ

)
=

(
η∗bεba

ηȧ

)
(2.24)

is given. When right-handed neutrinos are introduced, neutrinos also can have the Dirac mass

terms. Moreover, if neutrinos are Majorana particles, the following Majorana mass terms can

be formed

−1

2
(MR)αβN̄

c
αNβ + h.c. = −1

2

{
(MR)αβξα,aε

abξβ,b − (MR)∗αβξ
∗ȧ
α εȧḃξ

∗ḃ
β

}
, (2.25)

where α, β = e, µ, τ are the index of lepton flavors, and a, b = 1, 2 is that of spinors.

© Neutrinoless double beta decay

It is much important to confirm whether the neutrino is Majorana or Dirac fermion. This

is because the neutrino sector perhaps can solve various problems that the SM is facing if

the neutrino is Majorana fermion. Up to now, the most promising way to confirm it is the

observation of the neutrinoless double beta decay.

It is known that some radioactive elements undergo beta decay through the weak interaction

as follows :

(A,Z) −→ (A,Z + 1) + e− + ν̄e , (2.26)

(d −→ u+ e− + ν̄e)
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Figure 2.4: Relation between the atomic number Z and mass, based on the Bethe-Weizsäcker
formula [84]. The blue (red) line corresponds to the case that both atomic and mass numbers
are even (odd). In the setup of this figure, the element with Z0 − 1 has smaller binding energy
than that with Z0 − 2. Therefore, the mass of the element with Z0 − 1 is heavier than that of
the element with Z0− 2, and the beta decay is prohibited. On the other hand, the element with
Z0 is lighter than that with Z0 − 2, and therefore, the double beta decay can occur, and the
difference of the binding energies Q is brought by emitted electron and neutrino.

where A and Z are mass and atomic numbers of the radioactive element, respectively.

However, among such radioactive elements whose mass and atomic numbers are even, some

kinds of elements have higher binding energy than the daughter elements, as shown in Fig. 2.4,

and therefore their masses are lighter than that of the daughter elements.4 In this case, unstable

elements with (A,Z) cannot undergo beta decay, which shifts atomic number by one. If the

element with (A,Z + 2) has larger biding energy and is lighter than that with (A,Z), as shown

in Fig. 2.5a, double beta decay with neutrino emission (2νββ), which shifts the atomic number

4The Bethe-Weizsäcker formula [84] is based on the liquid drop model and describes binding energy between
nucleons. For elements with A . 30, the binding energy B(A,Z) is given accurately by five terms as follows :

B(A,Z) = aVA− aSA
2
3 − aC

Z(Z − 1)

A
1
3

− aA
(A− 2Z)2

A
+ δ(A,Z) . (2.27)

In Eq. (2.27), the first term is known as volume term and comes from attractive forces by the strong interaction
between neighboring nucleons. The second term is known as the surface term and corresponds to the correction
due to the weakness of the binding energy of nucleons on the surface. This term is necessary because nucleons on
the surface neighbor fewer nucleons than interior ones. The third term is known as the Coulomb term and comes
from Coulomb repulsive force between protons.

Mass of nucleon is written in terms of the binding energy as follows :

m = Zmp + (A− Z)mn −B(A,Z) , (2.28)

where m, mp, and mn are the nucleon, proton, and neutron mass, respectively.
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(a) Double beta decay with neutrino emission (2νββ) (b) Neutrinoless double beta decay (0νββ)

Figure 2.5: Feynman diagrams of two types of double beta decay. When neutrino is a Majorana
particle, neutrinoless double beta decay can occur.

by two, can occur as follows :

(A,Z) −→ (A,Z + 2) + 2e− + 2ν̄e . (2.29)

This process is a second order process of the weak interaction, and the amplitude is suppressed

by the Fermi constant, GF , squared. As a consequence, the half-life is very long, and, for

example, in 48Ca case, is given by T 2ν
1/2 =

[
6.4+0.7
−0.6 (stat.)+1.2

−0.9 (syst.)
]
× 1019 yr [85].

Moreover, if neutrino is a Majorana particle, as shown in Fig. 2.5b, neutrinoless double beta

decay (0νββ) can occur as follows :

(A,Z) −→ (A,Z + 2) + 2e− . (2.30)

This process is not only second order of the weak interaction, but also suppressed by the inter-

action vertex, represented by a cross in Fig. 2.5b, 〈mββ〉 /q ≤ 1 eV/100 MeV, where 〈mββ〉 is

the effective Majorana neutrino mass, and q is the typical scale of nuclear energy. On the other

hand, in the 0νββ process, no neutrino is emitted, and therefore, the phase space factor is larger

than the 2νββ process. The daughter elements are much heavier than emitted electrons and

neutrinos, and then they are at rest. Thus the difference of the binding energy Q is distributed

to the electrons and neutrinos. In the 2νββ process, the emitted neutrinos take away a part of

”Q”, and the energy spectrum of the emitted electrons is continuous, as shown in Fig. 2.6. On

the other hand, in the (0νββ) process, neutrinos do not take away energy, and thus the energy

spectrum has a sharp peak at E = Q. Therefore, by preparing a large number of radioactive
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Figure 2.6: Energy spectra of emitted electrons in 2νββ and 0νββ processes. This figure shows
the characteristic of the energy spectrum, and the scale of the vertical axis is not correct.

elements that are prohibited from undergoing the beta decay, and confirming whether there is

a sharp peak at E = Q in the energy spectrum of the emitted electrons, we can search for the

Majorana nature of the neutrinos or, at least, the existence of new physics [86].

The effective Majorana neutrino mass 〈mββ〉 is a parameter which characterizes the half-time

of 0νββ process and given by

〈mββ〉 ≡ |(Mν)ee| =

∣∣∣∣∣∑
i

mi (UPMNS)2
ei

∣∣∣∣∣ =
∣∣∣m1c

2
13c

2
12 +m2c

2
13s

2
12e

iα2 +m3s
2
13e

i(α3−2δ)
∣∣∣ , (2.31)

where (Mν)ee is the (e, e) element of the mass matrix for the light neutrinos, and mi (i = 1, 2, 3)

is the mass eigenvalues of the light neutrinos. As is described in detail in subsection 2.2.3, UPMNS

is the unitary matrix, so-called Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix) [87,

88] and characterized by the mixing between three lepton flavors, sin θij ≡ sij , cos θij ≡ cij , one

Dirac CP phase, δ, and two Majorana CP phases, α2,3.5 Using the effective Majorana neutrino

mass, the half-life of (0νββ) process, T 0ν
1/2, is given by [50](

T 0ν
1/2

)−1
= G0ν

∣∣M0ν
NM

∣∣2 〈mββ〉2

m2
e

, (2.32)

where G0ν is the phase space volume, and M0ν
NM is the nuclear matrix element. Among these

parameters, the theoretical values of the nuclear matrix element have large uncertainties coming

from the uncertainty in nuclear models.

Recently, various experiments are performing to observe the neutrinoless double beta decay,

but they have not detected6 , and then these experiments give severe bounds on the half-life and

5When neutrinos are Dirac particles, the Majorana CP phases do not exist. Moreover, even for the Majorana
neutrinos, if two (not three) right-handed states are introduced, only one Majorana CP phase exists.

6The HEIDELBERG-MOSCOW experiment claimed that they had observed neutrinoless double beta de-
cay [89–91]. The detail of their claim is that they detected 0νββ process of 76Ge at the 6σ significance level and
obtained T 0ν

1/2(76Ge) =
(
2.23+0.44

−0.31

)
× 1025 [year]. However, many researchers are doubtful about, for example,

treatments of data [92–95], and there is no consensus on the discovery of the 0νββ process.
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effective Majorana neutrino mass. In Tab. 2.1, we show the experiments which are performing

and planning and their sensitivities. Moreover, for reference, the KamLAND-Zen experiment,

which gives the most stringent bound, is also described at the bottom of the table.

Experiment Isotope Sensitivity of 〈mββ〉 [meV] Experimental period

KamLAND-ZEN 800 [96] 136Xe 40 . since 2019

KamLAND2-ZEN [97] 136Xe 20 . since 2027

SNO+ [98] 130Te 55-133 for 5 years, since 2017

LEGEND-200 [99] 76Ge < 75 for 5 years, since 2021

LEGEND-1000 [99] 76Ge < 24 for 10 years

CUORE [100] 130Te 50-130 2017 ∼ 2022

CUPID [101] 130Te 6-15 for 10 years

NEXT-100 [102, 103] 136Xe 80-160 for 3 years, since 2021

SuperNEMO [104] 82Se 50-100 for 5 years

nEXO [105] 136Xe 5.7-17.7 for 10 years

KamLAND-ZEN [97, 106] 136Xe 61-165 finished

Table 2.1: On-going and planned experiments and their sensitivities of the effective Majorana
neutrino mass. The uncertainties of 〈mββ〉 come from the uncertainties of the nuclear matrix
elements.

2.2.2 Seesaw mechanism

There is no doubt that neutrinos are massive because of the observation of the neutrino oscil-

lation. By the precise measurements of the neutrino oscillation, we know two neutrino mass

squared differences, but do not know absolute values of the neutrino masses. The recent

cosmological and astrophysical surveys give the severe constraint on the sum of the neutrino

masses
∑
mνi < 0.15 eV for normal ordering [107]. 7 These results indicate that neutrino

masses are much smaller than the other SM fermions with O(MeV-GeV) masses. If neutrinos

are Dirac fermions and only renormalizable mass terms are considered, the neutrino masses are

originated from the Dirac Yukawa terms, and this fact indicates the existence of a large hierarchy

among the Yukawa coupling constants of the SM fermions.

Seesaw mechanism [38–41], discussed in this subsection, gives natural explanation for the

mass hierarchy of the SM fermions. So far, various kinds of seesaw models have been proposed,

and they are characterized by new fields introduced. In this subsection, we introduce the type-I

7The Planck Collaboration gives the stronger bound on the sum of the neutrino masses :
∑
mνi <

0.12 eV (95% C.L.) [25]. To obtain this value, they assumed degeneracy of the neutrino masses. In Ref. [107], the
neutrino mass squared differences are taken into account, and a more conservative bound is given.
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seesaw model, which plays an important role in Chapter 6.

© Type-I seesaw model

In the type-I seesaw model, right-handed neutrinos are introduced, and neutrinos are as-

sumed to be Majorana particles. The neutrino mass matrix is written by

−Lν,m =
1

2

(
νTL , (N

c)T
)( 0 MD

MT
D MR

)(
νL

N c

)

≡ 1

2
ΨT
νMΨν , (2.33)

where νTL = (νL,e, νL,µ, νL,τ )T and NT = (Ne, Nµ, Nτ )T are left-handed and right-handed neutri-

nos, respectively. MD and MR are the Dirac and Majorana mass term, respectively, and both

are 3 by 3 matrices. Among them, the Majorana mass term, (N c)TMRN
c is a lepton number

violating operator (∆L = 2).

Here, we assume that the Majorana mass is much heavier than the Dirac mass, that is

(Θ)αβ ≡ (MDM−1
R )αβ � 1 , (2.34)

where α, β are indices of flavors. Diagonalization of the neutrino mass matrix gives the mass

eigenvalues for the active and heavy neutrinos. First, we block-diagonalize the neutrino mass

matrix in terms of the left-handed and right-handed parts by a unitary transformation of Ψ.

The block-diagonalization is realized by an approximate orthogonal matrix, U , which satisfies

UUT = UTU = 1 +O(Θ4), as follows :

UTMU =

(
MνL 03×3

03×3 MN

)
+O(Θ3MR) , (2.35)

U =

(
13×3 − 1

2ΘΘT Θ

−ΘT 13×3 − 1
2ΘTΘ

)
, (2.36)

MνL = −MDM−1
R M

T
D , (2.37)

MN =MR +
1

2

(
MRΘTΘ + ΘTΘMR

)
'MR , (2.38)

where MνL and MN are the mass matrices for the active and heavy neutrinos. As shown in

Eq. (2.37), the mass matrix for the active neutrinos is suppressed by the inverse of the masses

for the Majorana masses, and then the lightness of the masses for the active neutrinos can be

realized without pretty small Dirac Yukawa couplings. This type-I seesaw model is represented

by the Feynman diagram in Fig. 2.7.
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Figure 2.7: Feynman diagram which realizes lightness of the active neutrinos in the type-I seesaw
model.

2.2.3 Flavor mixing and mass hierarchy of neutrinos

When the right-handed neutrinos are introduced in the SM, the neutrinos can form the Dirac

mass terms and have masses. In general, the flavor eigenstates of the neutrinos and charged

leptons are different from the mass eigenstates, and then the flavor mixing appears in the charged

current of leptons, just like the flavor mixing in the quark sector. Moreover, by the observations

of the neutrino oscillation, the mass squared differences of the neutrinos are measured precisely,

but the absolute masses are unknown. In this subsection, we give a brief review of the flavor

mixing in the lepton sector and mass ordering of the active neutrinos.8

© Mass hierarchy

The absolute masses of the neutrinos are bounded by astrophysical observations, but the

precise value is unknown. On the other hand, the squared mass differences of the neutrinos

are precisely measured by observations of neutrino oscillation. The observations of solar and

atmospheric neutrinos imply the existence of three mass eigenstates of neutrinos. Among two

eigenstates implied by the solar neutrinos, the mass of the lighter (heavier) is defined by m1(m2),

and the squared mass difference from the solar neutrinos is written as ∆m2
sol ≡ ∆m2

21 = m2
2−m2

1.

Moreover, a mass of third mass eigenstate is defined by m3, and the squared mass difference

from the atmospheric neutrinos is written by ∆matm ≡ ∆m2
32(31) = m2

3 − m2
2(1). We know

∆m2
sol � |∆m2

atm|, and the followng parameters, ∆m2 and δm2 are often used :

∆m2 ≡ ∆m2
31 −∆m2

21/2 = m2
3 − (m2

2 +m2
1)/2 , (2.39)

δm2 ≡ ∆m2
21 = m2

2 −m2
1 . (2.40)

δm2 is positive by definition of m1 and m2, and ∆m2 may be either positive or negative. As

8This kind of topic is written in detail in, for example, Refs .[50, 108].
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Figure 2.8: Mass hierarchy of neutrinos. The left shows the normal ordering (NO), and the right
shows the inverted ordering (IO).

shown in Fig. 2.8, when ∆m2 > 0, namely m1 < m2 < m3, such a mass hierarchy is called

Normal Ordering (NO). On the other hand, when ∆m2 < 0, namely m3 < m1 < m2, such is

called Inverted Ordering (IO).

© Flavor mixing

Interactions between the SM gauge bosons and leptons come from the kinetic terms of the

leptons as follows :

LKinetic ⊃ −ejµγAµ −
g

2 cos θW
jµNCZµ −

g

2
√

2
(jµ†WW

+
µ + jµCCW

−
µ ) , (2.41)

where jγ , jNC, and jCC are the electromagnetic, neutral, and charged currents, respectively, and

they are given by

jµγ = −ēγµe , (2.42)

jµNC = ν̄γµPLν + ēγµ(2 sin θW − PL)e , (2.43)

jµCC = 2ēγµPLν , (2.44)

with the elementary charge, e, the gauge coupling constant of SU(2)L, g, and the Weinberg

angle, θW . Aµ, Zµ, and W±µ denote the SM photon, Z boson, and W boson, respectively.

In Eqs. (2.43) and (2.44), PL/R ≡ (1 ∓ γ5)/2 is the projection operator which extracts left-

handed element. In the above equations, eT = (e, µ, τ)T and νT = (νe, νµ, ντ )T . By the unitary
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transformations of the leptons :

e′L = Ve,LeL, e′R = Ve,ReR,

ν ′ = Vν,LνL, N ′ = Vν,RNR , (2.45)

the mass matrices for the leptons in the flavor basis can be diagonalized as follows :

V †e,LM
e
DVe,R = diag(me,mµ,mτ ) , (2.46)

V T
ν,LMνLVν,L = diag(m1,m2,m3) . (2.47)

In Eqs. (2.45), fields with primes denote that they are mass eigenstates, while those without

primes denote flavor eigenstates. Using the mass eigenstates, the charged current is rewritten

as follows :

jµW = 2ē′LV
†
L,eVL,νγ

µν ′ = 2ē′LUPMNSγ
µν ′ , (2.48)

where UPMNS is the PMNS matrix [87, 88] and characterizes flavor mixing in the lepton sector.

In the neutral current, because VL,e and VL,ν are unitary matrices, no flavor mixing appears.

So far, we derived the PMNS matrix from general mass matrices for the leptons, and, from

here, we consider the lepton mixing in the basis so that the mass matrix for the charged leptons

is diagonal. On this basis, the relation between the flavor eigenstates, να, and mass eigenstates,

ν ′i, of the neutrinos is given by the PMNS matrix as follows :

νL,α =
∑

i=1,2,3

(UPMNS)αiν
′
i (α = e, µ, τ) . (2.49)

The mass matrix for the active neutrinos is diagonalized by the PMNS matrix as follows :

UTPMNSMνLUPMNS = diag(m1,m2,m3) . (2.50)

Next, we discuss the degree of freedom in the PMNS matrix. Generally speaking, when there

are N generations, there are N2 degrees of freedom in the PMNS matrix because the PMNS

matrix is unitary. The breakdown of the degree of freedom is composed of N(N − 1)/2 mixing

angles and N(N + 1)/2 phases. When the neutrinos are Dirac particles, 2N − 1 phases can be

removed by phase redefinition of the lepton fields. Therefore, the PMNS matrix eventually has

N(N − 1)/2 mixing angles and (N − 1)(N − 2)/2 CP phases. On the other hand, when the

neutrinos are Majorana particles, the Majorana mass terms are not invariant under the above

phase redefinition. Thus, only the redefinition of the charged leptons is allowed, and N phases

can be removed. There are N(N − 1)/2 remaining phases, and therefore the PMNS matrix

eventually has N(N − 1)/2 mixing angles and N(N − 1)/2 phases for the Majorana case. In

the SM, there are three lepton generations, namely electron, muon, and tau particle, and the

28



parameter mass ordering Best fit 1σ 3σ

δm2/10−5 eV2 NO,IO 7.39 7.19 → 7.60 6.79 → 8.01

|∆m2/10−3| eV2 NO 2.528 2.497 → 2.557 2.436 → 2.618

IO -2.510 -2.541 → -2.480 -2.601 → -2.419

sin2 θ12/10−1 NO,IO 3.10 2.981 → 3.230 2.75 → 3.50

sin2 θ13/10−2 NO 2.237 2.172 → 2.303 2.044 → 2.435

IO 2.259 2.194 → 2.324 2.064 → 2.457

sin2 θ23/10−1 NO 5.63 5.39 → 5.81 4.33-6.09

IO 5.65 5.43 → 5.82 4.36 → 6.10

δ/◦ NO 221 193 → 260 144 → 357

IO 282 257 → 305 205 → 348

Table 2.2: Values for the neutrino oscillation parameters we use in this paper. We take them
from the NuFIT v4.1 result with the Super-Kamiokande atmospheric data [109, 110].

PMNS matrix has three mixing angles and three CP phases. Among three CP phases, the one

CP phase which exists both in the Dirac and Majorana cases is called the Dirac CP phase. On

the other hand, the two CP phases which are added in the Majorana case are called Majorana

CP phases.

The PMNS matrix is characterized by the above mixing angles and CP phases and written

as follows :

UPMNS =

{
V (Dirac)

V P (Majorana)
, (2.51)

V ≡


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.52)

P ≡


1

ei
α2
2

ei
α3
2

 , (2.53)

where sij ≡ sin θij and cij ≡ cos θij with the mixing angle, θ12, θ23, and θ13. δ and α2,3 are the

Dirac and Majorana CP phases, respectively. In Eqs. (2.51)∼(2.53), we follow the convention of

the Particle Data Group [50], where 0 < ∆m2
21 � |∆m2

31| with ∆m2
ij ≡ m2

i −m2
j . In Tab. 2.2,

we show the recent global fit, NuFIT v4.1 [109, 110].
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2.3 Standard Cosmology

The history of our Universe described by the standard cosmology is dynamic. The Universe

is expanding since its birth, and the temperature is cooling with its expansion. Such behavior

is described by general relativity (GR). In this section, we give a brief review of the standard

cosmology that is one of the bases of Chapter 6 and 7.

2.3.1 Space-time of the Universe

The standard cosmology is based on the following fact :

• The Universe is spatially almost homogeneous and isotropic on large scales, and there is

no special location and direction in the Universe.

This notion is called cosmological principle and confirmed by various observations. This principle

is satisfied when we see at enough large scale. On the other hand, at the small scales, the Universe

has various structures, for example, galaxies, stars, and so on.

Homogeneous and isotropic space-time is described by the Friedmann-Lemâıtre-Robertson-

Walker metric (FLRW) metric. Hereafter, we apply the natural unit, and because the Universe

has no special direction, we use the polar coordinates, (x0, x1, x2, x3) = (t, r, θ, φ). The FLRW

metric is given by

ds2 = gµνdx
µdxν , (2.54)

g00 = 1, g11 = − a(t)2

1−Kr2
, g22 = −a(t)2r2, g33 = −a(t)2r2 sin θ2, gµν = 0 (µ 6= ν), (2.55)

where a(t) is the so-called scale factor that depends on the time and characterizes the size of the

Universe. K is the spatial curvature and can be taken to be −1, 0, and +1. When K = +1(−1),

the space-time of the Universe is non-Euclidean and has non-zero curvature. When K = 0, the

space-time is flat, and the CMB observation indicates our Universe is K ≈ 1 [25].

The space-time is characterized by the Christoffel symbols of the second kind, and they are

defined by

Γµνρ ≡
∑
λ

1

2
gµλ

(
∂gρλ
xν

+
∂gνλ
xρ
− ∂gνρ

xλ

)
, (2.56)

Under the FLRW metric, the Christoffel symbols are calculated as

Γ0
00 = Γ0

0i = Γ0
i0 = Γi00 = 0, Γ0

ij =
ȧ

a
gij = Hgij , Γij0 = Γi0j =

ȧ

a
δij = Hδij ,

Γijk = gii
(
∂gki
xj

+
∂gji
xk
−
∂gjk
xi

)
, (2.57)
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where ˙≡ d/dt is the time derivative of the scale factor, and δij is the Kronecker delta. H(t) ≡
ȧ(t)/a(t) is the Hubble parameter and characterizes the expansion rate of the Universe. The

Hubble parameter depends on the time, and the present value of H(t) is called the Hubble

constant, H0. The recent observations of the CMB [25] give

H0 = 67.4± 0.5 km s−1 Mpc−1 . (2.58)

In terms of the Christoffel symbols, the Riemann curvature tensor, Ricci tensor, and Ricci scalar

are defined by

Rλκµν ≡
∂Γλµν
∂xκ

− ∂Γλκν
∂xµ

+
∑
ρ

ΓλκρΓ
ρ
µν −

∑
ρ

ΓλµρΓ
ρ
κν , (2.59)

Rµν =
∑
κ

Rκκµν , (2.60)

R =
∑
µν

gµνRµν . (2.61)

Using the results in Eqs (2.57), non-zero Ricci tensor and Ricci scalar are calculated as

R00 = −3
ä

a
, Rij = −

{
ä

a
+ 2

ȧ2

a2
+ 2

K

a2

}
δij , (2.62)

R = −6

{
ä

a
+
ȧ2

a2
+
K

a2

}
. (2.63)

Mass and energy distributions in the Universe are characterized by the energy-momentum

tensor, Tµν . In the FLRW space-time, the Universe is homogeneous and isotropic, and then

the energy-momentum tensor is described in terms of the energy density, ρ, and pressure, p, as

follows :

Tµν =


ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p

 . (2.64)

2.3.2 Evolution of the Universe

The evolution of the Universe is described by the Einstein equation :

Rµν −
1

2
Rgµν − Λgµν = 8πGTµν , (2.65)

where G is the gravitational constant and Tµν is the energy-momentum tensor. The third term

in the left-hand side of Eq (2.65) is the cosmological constant term. From the (0, 0) component

of Eq. (2.65), the Friedmann equation is obtained as

H2 =

(
ȧ

a

)2

=
8πG

3
(ρ+ ρΛ)− K

a2
, (2.66)
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where ρΛ ≡ −Λ/8πG is the energy density originated from the cosmological constant. From the

(i, j) component of Eq. (2.65), the following equation is obtained :

ä

a
= −4πG

3
(ρ+ 3p) . (2.67)

These two equations originated from the Einstein equation determine the relationship between

the dynamics of space-time and energy distribution. From Eq. (2.67) and the derivative of

Eq. (2.66) with respect to time, t, we obtain

ρ̇ = −3H(ρ+ p) , (2.68)

and this relation is also derived from the time component of the conservation law of energy and

momentum :

∇µTµν = 0 , (2.69)

where ∇µ is the covariant derivative and defined by

∇κXλµ ≡ ∂Xλµ

∂xκ
+
∑
ν

(
ΓλκνX

νµ + ΓµκνX
νλ
)
. (2.70)

In Eqs. (2.66) and (2.67), there are three independent variables, a, ρ, and p, and then it

is impossible to solve these equations. By determining what occupies the energy density of

the Universe, namely, giving the relation between the energy density and pressure, the above

variable can be calculated. In the Universe, there are three kinds of energy component as follows :

© Radiation

Radiation is the relativistic component of particles in the Universe, and a representative example

is a photon. The radiation satisfies the following equation of state (EOS)

p =
1

3
ρ . (2.71)

From Eq. (2.69), the energy density of the radiation satisfies the following time evolution with

the expansion of the Universe :

ρR ∝ a−4 . (2.72)

© Matter

The matter is the non-relativistic component of particles in the Universe, and a representative

example is a baryon in the present Universe. The matter satisfies the following EOS

p = 0 . (2.73)
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From Eq. (2.69), the energy density of the matter satisfies

ρM ∝ a−3 . (2.74)

© Dark energy

Dark energy is a kind of energy components and contributes to the acceleration of the expansion

of the Universe. The dark energy satisfies the following EOS

p = −ρ . (2.75)

From Eq. (2.69), the energy density of the dark energy satisfies the following time evolution

with the expansion of the Universe :

ρΛ = const . (2.76)

Substituting the obtained energy density of each component for Eq. (2.66), the behavior of

the scale parameter as a function of the time can be calculated as follows :

a(t) ∝


t
1
2 [radiation dominant]

t
2
3 [matter dominant]

exp(H0t) [dark energy dominant]

. (2.77)

The radiation, matter, and dark energy components of the energy coexist in the Universe.

The fraction of these components is parametrized by the density parameters as

Ωi =
ρi
ρc

(i = r,m,Λ) , (2.78)

where ρc ≡= 3H2/8πG is called the critical density, and from Eq. (2.66), the density parameters

satisfy

1− (Ωr + Ωm + ΩΛ) = − K

a2H2
. (2.79)

According to the recent result by the Planck collaboration [25], the non-relativistic matter

and dark energy occupy about 68% and 32% of the energy density in the present Universe,

respectively. The fraction of the relativistic radiations is O(10−5) and pretty small. This is

because, as shown in Eqs. (2.72) and (2.74), the energy density of the radiation decreases more

rapidly with the expansion of the Universe than that of the non-relativistic matter. The sum

of Ωr, Ωm, and ΩΛ is pretty close to one. Therefore, the curvature term is negligible, and

the curvature of the Universe can be considered to be flat. Moreover, the above result of the

energy components in the present Universe and time evolution of them imply the existence of

the radiation and then matter dominant eras.
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2.3.3 Early Universe and thermodynamics

In the previous subsection, we discuss the evolution of the Universe and confirm that the Universe

expands with the time evolution, as shown in Eq. (2.77). Thus, the early Universe was much

smaller and hotter than the previous one. Particles in the early Universe interact with each

other, and the higher the temperature is, the more the interaction rate is. In the early radiation

and matter dominant eras, the Hubble parameter also increases as going back in time. However,

the former increases more rapidly and, at a certain time, exceeds the latter. Such a comparison

between the Hubble parameter and interaction rate is important to judge whether a given

particle interacts with other ones or not. Gamov’s criterion gives one of the simplest standards

for judgment of whether a given particle is decoupled or not as follows :{
Γint > H in thermal equilibrium

Γint < H decoupled
. (2.80)

From Gamov’s criterion, it is certain that particles interact with each other and are in the

thermal equilibrium in the early Universe.

Particles in the thermal equilibrium have a common parameter which characterizes their

states, namely, temperature, T, and they obey the following Fermi-Dirac or Bose-Einstein dis-

tribution functions for the fermion or boson case, respectively :

f(~p, T ) =
1

e(E−µ)/T ± 1
, (2.81)

where plus (minus) in the denominator is for fermion (boson), and ~p, E, and µ are the spatial

momentum, energy, and chemical potential of the particle, respectively. The thermodynamical

intensive variables are calculated by integrating the distribution function over the particle mo-

mentum with some weight. The number density, energy density, and pressure of a given particle

are given by

n(T ) = g

∫
d3p

(2π)3
f(~p, T ) , (2.82)

ρ(T ) = g

∫
d3p

(2π)3
E(~p)f(~p, T ) , (2.83)

p(T ) = g

∫
d3p

(2π)3

|~p|2

3E(~p)
f(~p, T ) , (2.84)

where g is the internal degrees of freedom for the particle. The temperature dependence of

these values varies according to whether the particles are fermion or boson, and relativistic or

non-relativistic.

When particles are relativistic, the relation, m� T , is satisfied. If the chemical potential is

negligible compared to the temperature, the number density, energy density, and pressure of a
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given particle are given by

n(T ) =

{
3
4
ζ(3)
π2 gT

3 [fermion]
ζ(3)
π2 gT

3 [boson]
, (2.85)

ρ(T ) =

{
7
8
π2

30 gT
4 [fermion]

π2

30 gT
4 [boson]

, (2.86)

p(T ) =
1

3
ρ(T ) , (2.87)

where ζ(z) is the Riemann zeta function.

When particles are non-relativistic, the relation, T � m, is satisfied. Regardless of whether

the particles are fermion or boson, the above variables are given by

n(T ) = g

(
mT

2π

) 3
2

e−
m−µ
T , (2.88)

ρ(T ) =

(
m+

3

2
T

)
n(T ) , (2.89)

p(T ) = n(T )T � ρ(T ) . (2.90)

As shown in Eqs. (2.85) ∼ (2.90), the thermodynamical variables of non-relativistic partcles

are much suppressed by exponential factors. Thus, relativistic ones dominate most of these

variables, and the non-relativistic ones do not give a significant contribution to them. Neglecting

the non-relativistic component, the total energy density of the Universe is given by the sum of

contributions from all kinds of relativistic particles :

ρ(T ) ≈ ρr(T ) =
π2

30
g∗(T )T 4 , (2.91)

where g∗ is the effective relativistic degrees of freedom given by

g∗(T ) =
∑

ib∈boson

gib +
7

8

∑
if∈fermion

gif , (2.92)

with gib(f) being the internal degrees of freedom for the particle ib(f). In Eq. (2.92), the thermal

equilibrium between photon and particle ib(f) is assumed, and the temperature of ib(f) is taken

to be the same value as that of photon. However, even though particles are relativistic, if they

are decoupled from the thermal bath, generally their temperature is different from that of the

photon. In that case, the effective relativistic degrees of freedom is given by

g∗(T ) =
∑

ib∈boson

gib

(
Tib
T

)4

+
7

8

∑
if∈fermion

gif

(
Tif
T

)4

, (2.93)

Next, we discuss the time dependence of temperature. In the previous subsection, we derived

Eq. (2.68) corresponding to the energy conservation law. This equation leads to the following
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equation :

0 =
1

T

(
d(ρa3) + pd(a3)

)
=

1

T
(dU + pdV )

= dS +
1

T

∑
i

µidNi , (2.94)

with the internal energy of the Universe, U , comoving volume, V = a3, entropy, S, number

of particle i, Ni, and chemical potential of i, µi. Therefore, if the numbers of particles are

preserved or the chemical potentials are negligible, the entropy in the comoving volume is also

preserved. Even if it is not the case, if particle reactions are in chemical equilibrium, the sum

of µidNi vanishes, and the entropy is also preserved. By substituting Eq. (2.94) for Eq. (2.93),

the entropy density is calculated as

s(T ) ≡ S(T )

a(T )3
=

4

3

ρ(T )

T
=

2π2

45
g∗s(T )T 3 , (2.95)

where g∗s is the entropic effective degrees of freedom defined by

g∗s(T ) =
∑

ib∈boson

gib

(
Tib
T

)3

+
7

8

∑
if∈fermion

gif

(
Tif
T

)3

. (2.96)

During the expansion of the Universe, if the entropic effective degrees of freedom does not

change, the entropy is preserved because of the above discussion, and then the evolution of the

scale factor is described as

S(T ) =
2π2

45
g∗s(T )T 3a(T )3 = const =⇒ a(t) ∝ T−1 ∝ t

1
2 . (2.97)

At the end of this subsection, we see the temperature dependence of the Hubble parameter in

the radiation dominant era for the discussion in the next subsection. By substituting Eq. (2.91)

for Eq. (2.66), we obtain

H(T ) =

(
π2g∗(T )

90

) 1
2 T 2

MP
∝ t−1 , (2.98)

with MP ≡ 1/
√

8πG ' 2.4 × 1018 GeV being the reduced Planck mass. Therefore, the Hubble

parameter decreases with the expansion in the radiation dominant era.

2.3.4 Decoupling of Neutrino and Photon

In the early Universe, particles frequently interact with each other, and they are in thermal

equilibrium. With the cooling of the Universe, the interaction rate drops, and the particles are

decoupled from the thermal bath. In this subsection, we review the decoupling of neutrino and

photon in the thermal history of the Universe.
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Neutrino is one of the SM particles and interacts with other ones through weak interaction.

The rate of the weak interaction is roughly given by

Γν ∼ G2
FT

5 , (2.99)

with GF ' 10−5 GeV−2 being the Fermi coupling constant, which gives the typical strength of

weak interaction. Comparing Eq. (2.98) and (2.99), the decoupling temperature of neutrino is

calculated as Tν,dec ∼ 1.5 MeV. After decoupling, a neutrino with energy, E, and momentum,

~p, propagates as a free particle in the Universe, and, by redshift, its momentum decreases as

~p(t) =
a(tdec)

a(t)
~p(tdec) , (2.100)

where tdec is the time at the neutrino decoupling. Because neutrinos do not interact with other

particles, the number of them is preserved, and the number density of neutrinos decreases as

n(t) ∝ a(t)3 with the expansion of the Universe. Therefore, for t > tdec, the distribution function

of neutrinos is described by

f(~p(t), T (t)) = f

(
a(tdec)

a(t)
~p(tdec), Tdec

)
=

1

exp
(
|~p|
Tν

)
+ 1

, (2.101)

where Tν(t) ≡ (a(tdec)/a(t))Tdec is the neutrino temperature after decoupling. When the tem-

perature falls below the electron mass, electrons and positron annihilate through the following

process : e+ + e− → 2γ. At that time, they inject entropy into the photon and change the

temperature of the photon. Before the annihilation of the electron, the temperatures of photon

and neutrino are the same : Tν,b = Tb, where the subscript, b(a) denotes before (after) the dis-

appearance of the electron, respectively. After the disappearance, the temperatures of neutrino

satisfies Tν,aaa = Tdeca(tdec) = Tbab. Moreover, from the entropy conservation, we obtain

g∗s,bT
3
b a

3
b = g∗s,aT

3
a a

3
a , (2.102)

with

g∗s,b = gγ +
8

7

{
ge

(
Te
Tb

)3

+ gν

(
Tν,b
Tb

)3
}

= 2 +
8

7
{4 + 2× 3} =

43

4
, (2.103)

g∗s,a = gγ +
8

7
gν

(
Tν,b
Ta

)3

= 2 +
8

7
× 2× 3×

(
Tν,a
Ta

)3

= 2 +
21

4

(
Tν,a
Ta

)3

, (2.104)

and three in the neutrino term of the above equations comes from the number of neutrino flavors.

Combining these relations, we lastly see the relation between the temperatures of photon and

neutrino after the annihilation of the electron as follows :

Tν,a =

(
4

11

) 1
3

Ta . (2.105)
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Using Eq. (2.105), the energy density of neutrinos is written in terms of that of the photon

as

ρν(T ) =
7

8
×Neff ×

(
4

11

) 4
3

ργ(T ) , (2.106)

with Neff is the effective number of neutrino species and equal to be three when neutrinos were

decoupled instantaneously in the early Universe. Some previous works [111–115] give the precise

calculations without assuming instantaneous neutrino decoupling and with considering neutrino

oscillation, and they predict the different evolution of momentum spectra of neutrinos from

that in the naive calculation. Therefore, the effective number of neutrino species deviates from

three and is given as Neff,SM = 3.046 [112]. The relativistic energy density of the Universe is

parametrized in terms of Neff,SM as follows

ρr(T ) =

[
1 +

7

8
×Neff,SM ×

(
4

11

) 4
3

]
ργ(T ) . (2.107)

However, if there are extra radiation components beyond the SM, extra factors are added into

Eq. (2.107), and it is useful to parametrize the extra contributions by ∆Neff being deviation of

Neff,SM from the SM value as follows :

ρr(T ) =

[
1 +

7

8
× (Neff,SM + ∆Neff)×

(
4

11

) 4
3

]
ργ(T ) . (2.108)

If there are extra particles beyond the SM that couple to neutrinos, and they decouple from

the thermal bath after the neutrino decoupling, extra particles inject entropy into neutrinos and

heat the neutrino temperature. Therefore, ∆Neff deviates from ∆Neff,SM. The recent Planck

result of the CMB observation gives Neff = 3.11+0.44
−0.43 (95% C.L., TT+lowE+lensing+BAO), and

extra particles are constrained by comparing the Planck result and theoretical prediction.

After neutrino decoupling and BBN, photon eventually decouples from the other particles.

In the early Universe, electrons exist as plasma and interact with photons through a coupling

process between the electron and proton : p + e ↔ 1H + γ, called recombination of hydrogen.

The number densities of electron, proton, and hydrogen atom in thermal equilibrium are given

by

ni = gi

(
miT

2π

) 3
2

e−
mi−µi
T (i = e, p,H) , (2.109)

where gi, mi and µi denote the internal degrees of freedom, mass, and chemical potential for

particle i. The condition for chemical equilibrium is written by

µe + µp = µH . (2.110)
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From Eq. (2.109) and (2.110), we obtain

nH =
gH
gegp

nenp

(
meT

2π

)− 3
2

e
B
T , (2.111)

B = me +mp −mH = 13.6 eV . (2.112)

Moreover, from the conservation laws of electromagnetic charge and baryon number, ne = np

and np + nH = nb, with nb being the baryon number density. With the cooling of the Universe,

electrons couple to protons in the plasma and form hydrogen atoms. The ionization fraction

Xe ≡ np/nb is calculated by the following Saha formura [116, 117] :

1−Xe

X2
e

=
4
√

2ζ(3)√
π

ηb

(
T

me

) 3
2

e
B
T , (2.113)

with ηb ≡ nb/nγ . From Eq. (2.113), the ionization fraction fall much below one around T ∼
4000 K = 0.4 eV. In the derivation of Eq. (2.113), the thermal equilibrium is assumed, however

with proceeding recombination of hydrogen, p+e↔ 1H+γ process is driven out of equilibrium,

and Eq. (2.113) is improper in such a condition. According to the precise analyses, the ionization

fraction near recombination time (800 < z < 1200) is given in terms of the redshift, z(t) ≡
(a(t0)/a(t))− 1 with the present time t0, as following fitting formula [118] :

X(z) ' 2.4× 10−3 1

Ωbh

( z

1000

)12.75
(800 < z < 1200) , (2.114)

where Ωb = ρb/ρc is the baryon density parameter.

For T . 3000 K, photons interact with electrons through the Thomson scattering, and

electrons do with baryons through electromagnetic interaction.9 Therefore, photons indirectly

couple to baryons, and they behave as a mixed fluid. Because of gravitational gradient originated

from inflation, this fluid accumulates in a dense region, and the density gradient consequently

increases. On the other hand, the denser number fluid density is, the stronger pressure of the

fluid is, and then such a pressure propagates in the fluid as oscillation, which is called the

baryon acoustic oscillation. With the decreasing of free electrons, the Thomson scatterings

between photons and electrons become rare, and around for T ∼ 3000 K, the optical depth of

Thomson scattering becomes one. Then photons stream without scattering with electrons, and

such photons are observed now as CMB. The baryon acoustic oscillation is recorded as density

fluctuations of baryon and photon and has been observed in CMB.

9See also Ref. [119].
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Chapter 3

WIMP Dark Matter and Thermal
Freeze-out Scenario

Dark matter (DM) has only quite weak interaction with the SM particles and affects visible

matters through gravitational potential. The existence of dark matter firstly has been proposed

by F. Zwicky in 1933 [120, 121]. He applied the virial theorem to the Coma Cluster and the

estimated value of the total mass. By comparing it to the value estimated from the brightness

and number of galaxies, he concluded the existence of missing mass. Moreover, starting with V.

C. Rubin’s work [19], distributions of rotation velocities of various galaxies have been observed,

and they indicate the existence of missing mass. After these pioneer works, various observations

indicate the existence of DM up to the present time. So far, CMB observations by the Planck

satellite give the most precise value of the DM energy density in the Universe, and DM makes

up 32% of the total energy density.

There is no candidate in the SM, and various types of DM are proposed from the perspective

of the other BSM physics. For successful DM scenarios, it is important how DM is produced,

and the observed relic density is realized. Weakly Interacting Massive Particles (WIMPs) are

one of the attractive candidates and give a simple solution to the DM production, so-called

thermal freeze-out mechanism. In the last several decades, many kinds of WIMP models are

discussed, and great efforts have been underway to detect WIMPs.

In this chapter, we give a short review of WIMP dark matter and thermal freeze-out scenario.

First, in Section 3.1, we show how thermal relic abundance of WIMP is calculated in the thermal

freeze-out scenario. In Section 3.2, we introduce one of the DM models, called secluded DM, and

discuss differences from other DM models. In Section 3.3, we give a review about DM search

and current bounds from direct and indirect detection experiments.
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3.1 Thermal Freeze-out Mechanism

In this section, we give a short review of the thermal freeze-out mechanism and an analytic

formula of thermal relic abundance of DM, which appears in Chapter 7.

First, we show a rough story of the thermal freeze-out scenario. In the early Universe,

DM is relativistic and in thermal equilibrium with the SM particles, and, from Eq. (2.85), the

behavior of its number density is proportional to T 3 ∝ a−3. At a temperature where DM

becomes non-relativistic, the behavior of DM number density changes and obeys Eq. (2.88).

DM, however, interacts with the SM particles in the thermal bath and decreases with the

expansion of the Universe. When the interaction rate with the SM particles, Γint is equal to

be the Hubble parameter, H, the time interval of interactions reaches the age of the Universe,

and the reactions is driven out of equilibrium. Then, the interactions freeze out, and the DM

number density decreases by the expansion of the Universe and is proportional to a−3.

To obtain a quantitative value of DM number density, we introduce the Boltzmann equation

which describes the statistical behavior of a thermodynamic system. As shown in Appendix B.1,

the Boltzmann equation for DM number density is given as follows :

dnDM

dt
+ 3HnDM = −〈σannvrel〉

(
n2

DM − (neq
DM)2

)
, (3.1)

where nDM (neq
DM) is the (equilibrium) number density of DM and 〈σannvrel〉 is the DM annihi-

lation cross section. The DM relic density can be obtained by solving Eq. (3.1) numerically. In

general, a solution of Eq. (3.1) can not be obtained analytically. However, by assuming 〈σannvrel〉
to be constant, and applying sudden freeze-out approximation [122], we can estimate the DM

relic density.

Firstly we use an useful expression of DM number density, YDM ≡ nDM/s, instead of n.

In the expanding Universe, DM number density, nDM, is not invariant even if the DM number

does not change. This is because nDM is proportional to cubic scale parameter, a−3. On the

other hand, the ratio of DM number density to entropy density, YDM, is invariant as far as the

change of DM number and entropy production does not occur because the entropy density is

also proportional to cubic scale parameter, a−3. Using YDM, the Boltzmann equation for DM

number density in Eq. (3.1) is rearranged as follows :

x

YDM

dYDM

dx
= −Γann

H

{(
YDM

Y eq
DM

)2

− 1

}
, (3.2)

where x ≡ mDM/T is a new parapeter, instead of time, and Γann ≡ neq
DM 〈σannvrel〉 is the rate

of DM annihilation process. During Γann(x) > H(x), DM is in thermal equilibrium and YDM

is almost equal to be Y eq
DM. When the annihilation rate decreases with the decreasing of DM

number density and reaches the Hubble parameter as follows : Γann(x) = H(x) at x = xf , DM is
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Figure 3.1: Time evolution of the ratio of the DM number density to the entropy density for
mDM = 100 GeV. The DM annihilation cross section is varied to be 3× 10−24 (red), 3× 10−26

(blue, canonical value), and 3 × 10−28 cm3/s (green). Black dashed line corresponds to YDM

when the annihilation process is in thermal equilibrium.

suddenly driven out of thermal equilibrium. And then the ratio, YDM is frozen at the value when

the annihilation process is driven out of thermal equilibrium. The parameter at the freeze-out,

xf , is approximately calculated as

xf = ln(y) + ln(ln(y)) , (3.3)

y ≈
√

45

4π5

gDM

g
1
2
∗

MplmDM 〈σannvrel〉 , (3.4)

and typically xf ∼ 20-30. The DM relic density is eventually obtained by

YDM

∣∣∣∣
x=∞

=

√
45g∗
8π2

xf
g∗s 〈σannvrel〉MPmDM

. (3.5)

Instead of the ratio, YDM, the DM number density and density parameter are obtained by

nDM,0 = 2.2× 103 g
1
2
∗ xf

g∗sMPmDM 〈σannvrel〉
, (3.6)

ΩDM,0h
2 = 1.07× 109 xf

(g∗s/g
1/2
∗ )MPmDM 〈σannvrel〉

= 0.1

(
3× 10−26 cm3/s

〈σannvrel〉

)
xf . (3.7)

Typical value of annihilation cross section which realizes the observed DM relic abundance is

〈σannvrel〉 ∼ 3 × 10−26 cm3/s, and called canonical value. In Fig. 3.1, we show time evolution

of the ratio of the DM number density to the entropy density, YDM, for mDM = 100 GeV. The

red, blue, and green solid lines correspond to the results for 〈σannvrel〉 = 3 × 10−24, 3 × 10−26
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Figure 3.2: The SM and DM sectors connect each other via a mediator.

(canonical value), and 3× 10−28 cm3/s, respectively. The black dashed line corresponds to YDM

when the annihilation process is in thermal equilibrium. Fig. 3.1 shows us that YDM follows

the equilibrium value during annihilation process is in equilibrium, and then is frozen when

annihilation is driven out of equilibrium, namely, x = xf ≈ 20-30. Moreover, as shown in

Eq. (3.5), the ratio decreases as the DM annihilation cross section increases.

3.2 Secluded Dark Matter

There is various pieces of evidence of DM existence, and a lot of experiments have been performed

to search WIMP DM with electroweak scale mass. However, although great efforts have been

devoted to DM detection, DM has not been observed directly yet, and only strong bounds on the

interaction between DM an SM particles are obtained as discussed in the following Section 3.3

If DM is WIMP and produced through the thermal freeze-out mechanism, DM generally needs

a sizable connection to the SM sector via a mediator to be generated thermally and annihilate

to realize the observed DM relic abundance, see Fig. 3.2. On the other hand, such a connection

leads to sizable scattering cross section with nucleons and threatens WIMP DM models with

the severe constraints from direct detection experiments. Therefore, simple WIMP DM models

are facing severe difficulties, and there have to be some tricks to avoid a strong connection to

the SM sector.

Secluded DM [123–125] is one of attractive possibilities to avoid the experimental difficulties.

One of the differences between standard WIMP DM and secluded DM is a way to annihilate

into the SM particles. For the usual WIMP case (mDM < mmed with mmed being mediator

mass), DM annihilates into SM particles via virtual mediator like the left panel of Fig. 3.3.

In this case, annihilation cross section is proportional to g2
DMg

2
SM with gDM(SM) being coupling

between DM (SM) and mediator, and scattering cross section with SM particles also has the

same dependence. Therefore, couplings, gDM(SM), to realize the DM relic abundance leads to

large scattering cross section. On the other hand, for the secluded DM case (mDM > mmed),

another annihilation channel like the right panel of Fig. 3.3 opens. In this case, DM annihilates

into on-shell mediators, and then those mediators decay into the SM particles. The annihilation

cross section of this process is proportional to g4
DM, and thus this process is dominant if gDM is
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Figure 3.3: WIMP annihilation processes for mDM < mmed (left) and mDM > mmed (right,
secluded DM).

much larger than gSM. On the other hand, scattering cross section with the SM particles also

is proportional to g2
DMg

2
SM as the standard WIMP models. Therefore, even if the annihilation

cross section is large, the scattering cross section can be small to avoid the severe constraints

from the recent direct detection experiments.

3.3 Dark Matter Searches

A lot of experiments are performed to detect signals from DM in various ways. These experiments

are classified roughly into the following three types, as shown in Fig. 3.4. The first is called

direct detection. A lot of DM passes through the earth and some of them scatter with target

particles elastically. Direct detection experiments are trying to detect recoils of target particles.

The second is called indirect detection. In the Universe, especially in the center of the galaxy,

huge amount of DM are crowding, and some of them annihilate into SM particles. Indirect

detection experiments are trying to detect cosmic rays from DM annihilation. The third is

collider searches of DM. By collision of SM particles, DM is produced through the inverse

process of DM annihilation. Produced DM goes away without any signal, and missing energy is

a clue of DM.

In this section, we give a brief review of DM searches and show the present constraints on

DM. Although there are many kinds of DM models, we discuss fermion DM and vector mediator

in this section because they have something to do with the following Chapter 7.

3.3.1 Direct Searches

Dark matters have no electromagnetic charge, and then it is quite difficult to detect them.

However, if they scatter with target particles in the detector and recoil targets are detected,
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Figure 3.4: Rough classification of WIMP DM searches. Direct detection experiments detect
recoils of target particles by elastic scatterings between DM and target particles. Indirect de-
tection experiments detect cosmic rays produced by DM annihilation. Collider experiments
produce DM directly and detect missing energy taken away by DM.

we can detect DM. This idea firstly has been proposed in 1985 by M. W. Goodman and E.

Witten [126]. After this proposal, various experiments have been trying to detect recoils by

scattering with DM for several decades. There are many kinds of detectors, and according to

the mass range of DM, suitable matters are chosen as targets in detectors.

For detection of DM with electroweak scale mass, nuclear recoils are mainly used. This is

because spin-independent (SI) scattering cross section between DM and nuclei is proportional to

squared mass number, not the mass number, as shown in the following discussion. We consider

the following interaction between DM and nuclei via vector mediator :

Lint = ψ̄γµ (gψv ,X + gψa,Xγ5)ψXµ +
∑
f∈SM

f̄γµ (gfv ,X + gfa,Xγ5) fXµ , (3.8)

where ψ and X are fermion DM and vector mediator, respectively, and giv(a),X is vector (axial)

coupling between mediator and particle i. We notice that the coefficients, giv(a),X are model

dependent, and gψa(v),X = 0 for Dirac (Majorana) fermion DM. The above interactions lead

to X mediated elastic scattering between DM and nucleon, and there are two types of elastic

scattering cross sections. One is the spin-independent (SI) cross section. SI scattering cross

section of DM and nucleon is given by [127–129]

σ
(per nucleon)
SI =

µ2
ψn

π

[
Zfp + (A− Z)fn

A

]2

, (3.9)

where A and Z are the mass and atomic numbers, respectively. µψn is the reduced mass of DM

and nucleon, and defined by µψn ≡ mψmn/(mψ +mn). For much heavier DM than nucleon, the

reduced mass is approximated as µψn ≈ mn, on the other hand, for much lighter DM, µψn ≈ mψ.
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Table 3.1: Spin fraction of proton and neutron carried by quark [131, 132].

proton neutron

∆u 0.78± 0.02 −0.48± 0.02

∆d −0.48± 0.02 0.78± 0.02

∆s −0.15± 0.02 −0.15± 0.02

fp and fn are the effective coupling constants of ψ̄ψp̄p and ψ̄ψn̄n, respectively, and calculated

by

fp =
gψv ,X
m2
X

(2guv ,X + gdv ,X) , fn =
gψv ,X
m2
X

(guv ,X + 2gdv ,X) , (3.10)

with mX being the vector mediator mass. Because of the condition that DM avoids falling into

the center of the galaxy, the averaged velocity of DM is about 230 km/s ∼ 10−3c with c being

the speed of light. The de Broglie wavelength of DM is O(1) fm for mDM ∼ 100 GeV, which

is the same scale as nuclei. Therefore, the SI scattering cross section of DM and nucleus is

enhanced by the coherence of all nucleons in the nucleus and given by

σASI ' A2

(
µψA
µ2
ψn

)2

σ
(per nucleon)
SI , (3.11)

with µψA being the reduced mass of DM and nucleus with the mass number A. In particular, in

the limit of fp = fn, the SI scattering cross section is proportional to the squared mass number,

A2, and moreover, for mn � Amn ≈ mψ, A4.

The other type of elastic scattering cross section is spin-dependent (SD) one. SD scattering

cross section of DM and nucleon is given by [126–128, 130]

σ
(i)
SD ≈

4µ2
ψn

π

 ∑
q=u,d,s

hqλq

2

JN (JN + 1) (i = p, n) , (3.12)

where JN is the angular momentum of the nucleus, and it is equal to be 1/2 for free proton or

neutron. hq is the effective coupling constant of ψ̄γµγ5ψq̄γµγ5q and given by

hq =
gψagqa

m2
Z′

. (3.13)

λq is the fractional quark-spin coefficient, and for free proton and neutron, equal to be the spin

fraction of the nucleon carried by quark, ∆q. These values are shown in Tab. 3.1. For nucleus

with mass number, A, the fractional quark-spin coefficients, λq, are more complicated and given

by

λq '
1

JN

[
∆(p)
q 〈Sp〉+ ∆(n)

q 〈Sn〉
]
, (3.14)
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where 〈Sp〉 and 〈Sn〉 are the respective expectation values for the proton and neutron group spin

contents in the nucleus, and the detail is shown in Ref. [30]. The values of 〈Sp〉 and 〈Sn〉 depend

on models1 , and we do not discuss the detail here.

Next, we show the current bounds and prospects from the direct detection experiments. In

Fig. 3.5, we show the recent and projected bounds on the SI elastic scattering cross section of DM

and nucleon. The regions above the solid, dashed, dotted, and dot-dashed lines, and red shaded
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Figure 3.5: Recent constraints on the spin-independent elastic scattering cross section of DM
with nucleon by XENON1T [32], XENON1T (Migdal) [34], XENON1T (ionisation only) [33],
XENONnT [135], PandaX-II [136], LUX [137], DEAP-3600 [138], PICO-60 [139], CDMSlight-
R3 [140], CRESST-III [141], NEWS-G [142], DAMIC [143], EDELWEISS [144], Super-
CDMS (@Soudan) [145], DarkSide-50 [146], SuperCDMS (@SNOWLAB) [147], LUX-ZEPLIN
(LZ) [148], DarkSide G2 [149], DARWIN [150], and DAMA [151, 152]. The gray shaded region
shows the neutrino floor [153].

1For example, concrete values of 〈Sp〉 and 〈Sn〉 are given in Ref. [133, 134].
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one are excluded or will be proved by XENON1T [32], XENON1T (Migdal) [34], XENON1T

(ionisation only) [33], XENONnT [135], PandaX-II [136], LUX [137], DEAP-3600 [138], PICO-

60 [139], CDMSlight-R3 [140], CRESST-III [141], NEWS-G [142], DAMIC [143], EDELWEISS [144],

SuperCDMS (@Soudan) [145], DarkSide-50 [146], SuperCDMS (@SNOWLAB) [147], LUX-

ZEPLIN (LZ) [148], DarkSide G2 [149], and DARWIN [150]. In Fig. 3.5, the DM local density

is assumed to be ρDM = 0.3 GeV/cm3. The regions inside the olive-colored rings are allowed at

at 90% confidence level by DAMA/NaI [151] and DAMA/LIBRA [152] collaborations. These

collaborations claimed that they had detected annual modulated events and discovered DM

by more than 100 kg highly radiopure NaI(Tl) scintillators, and finally at a significance of

9.3σ [154]. However, although their high statistics data, such regions are excluded by other non-

NaI(Tl)-based direct detection experiments, as shown in Fig. 3.5. So far, several direct detection

experiments, for example, COSINE-100 [155], SABRE [156], ANAIS [157], PICO-LON [158], and

so on, are trying to verify the results of DAMA/RIBRA by NaI(Tl) scintillators, which are the

same way as DAMA/RIBRA. Searching regions of lower scattering cross section of DM is quite

difficult. The gray shaded region shows the neutrino floor [153]. In the sun, a lot of high energy

neutrinos (Eν < 15 MeV) are produced by decays of 8B originated by the proton-proton chain.

These solar neutrinos induce coherent elastic scattering of neutrino and nucleus, and this kind

of events with nuclear recoil energies below ∼few keV becomes background which is difficult to

remove. This difficulty in searching DM is firstly mentioned in Ref. [159], and some kinds of

direct detection experiments, such as NaI-based experiments mentioned above, NEWAGE [160],

NEWSdm [161], and so on, are trying to avoid this difficulty by detections of annual modulated

events or directional sensitivity.

In Fig. 3.6 and 3.7, we show the recent and projected bounds on the SD elastic scattering

cross section of DM with proton and neutron, respectively. The regions above the solid, dashed,

dotted, and dot-dashed lines, and shaded ones are excluded or will be proved by PICO-60 [139],

PICASSO [162], SIMPLE [163], COUPP [164], PandaX-II [165], XENON1T [166], LUX [167],

SuperKamiokande [168], IceCube [169], and DARWIN [150].

Next, we give a review of direct detection experiments based on DM-electron scattering.

Electrons are much lighter than nucleons, and thus lighter DM can give enough recoil energy to

electrons in target nuclei. Assuming the above Lagrangian in Eq. (3.8), scattering cross section

of DM with the electron is given by [170]

σ(e) =
µ2
ψe

π

g2
ψvg

2
ev(

q2
ref +m2

Z′
)2 , (3.15)

where µψe = mψme/(mψ + me) is the reduced mass of DM and electron. pref = αme is the

reference momentum transfer with α being the fine structure constant, and is conventionally

used as a reference value.
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Figure 3.6: Recent constraints on the spin-dependent elastic scattering cross section of DM
with proton by PICO-60 [139], PICASSO [162], SIMPLE [163], COUPP [164], PandaX-II [165],
XENON1T [166], LUX [167], SuperKamiokande [168], and IceCube [169].

The recent bounds on the elastic scattering cross section of DM with the electron are

shown in Fig. 3.8. The regions above the solid, dashed lines are excluded by XENON10 [171],

XENON100 [172], XENON1T [33], analyses of XENON10 and XENON100 results by R. Essig

et. al. [173], SENSEI [174], protoSENSEI (@Surface) [175], protoSENSEI (@MINOS) [176],

DarkSide-50 [177], CDMS-HVeV [178], and DAMIC-SNOWLAB [179].

3.3.2 Indirect Searches

In the thermal freeze-out mechanism, WIMP dark matter is produced thermally in the early

Universe. The produced DM annihilates into the SM particles, and its number density decreases

following Y eq
DM. This decreasing stops at the point when the annihilation process is driven out

of equilibrium. DM exists all over the present Universe, and its density is not uniform because

of the structure of the Universe and gravitational potential. Generally, DM rich regions are in

matter rich ones, and, for example, the center of the galaxy, Milky Way galactic halo, dwarf
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Figure 3.7: Recent constraints on the spin-dependent elastic scattering cross section of DM
with proton by XENON1T [166], LUX [167], SuperKamiokande [168], SIMPLE [163], PandaX-
II [165], and DARWIN [150].

spheroidal galaxies, galaxy clusters, and so on. In such regions, DM frequently annihilates into

SM stable particles or unstable ones which subsequently decay into SM ones, and then fly to the

earth as cosmic rays. The larger the DM annihilation cross section is, the more cosmic rays are

produced, and therefore the DM annihilation cross section can be constrained by observation

of cosmic rays. In this subsection, first, we give a short review of the calculation of cosmic ray

flux originated from DM annihilation, and then show the recent observational bounds on DM

annihilation cross section.

In the galactic halo, a huge amount of DM is trapped by gravitational potential, and various

models have been proposed as DM density distribution in the galactic halo. Well-known DM

halo profiles are shown in Tab. 3.2. In the table, rs = 20 kpc is the scale radius, and ρs is the

normalization factor of DM density profile such as to satisfy ρ(r = 8.5 kpc) = 0.4 GeV/cm3. For

Einasto profile, α is the fitting parameter and taken to be α = 1 ∼ 2. All DM density profiles

in Fig. 3.2 are based on sphericity of galaxies, and however, the possibility of non-sphericity is

also explored, for example, [188]. However, in this thesis, we assume isotropic distribution of

DM number density, and therefore ρ(~x) depends only on the distance from the galactic center

(GC).

The production rate of final state particles, f , by DM annihilation at a point ~x is given
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Figure 3.8: Recent constraints on the elastic scattering cross section of DM with electron by
XENON10 [171], XENON100 [172], XENON1T [33], analyses of XENON10 and XENON100 re-
sults by Essig, Volansky, and Yu [173], SENSEI [174], protoSENSEI (@Surface) [175], protoSEN-
SEI (@MINOS) [176], DarkSide-50 [177], CDMS-HVeV [178], and DAMIC-SNOWLAB [179].
The bounds are obtained by assuming fp = fn.

by [50]

dΓann
f

dEf
= c

ρψ(~x)2

m2
ψ

〈σannvrel〉
dNann

f

dEf
, (3.16)

where dNann
f /dE denotes the energy spectrum of the final state particle per one annihilation,

and c is equal to 1/4 (1/2) for Dirac (Majorana) DM. The total flux of the final state particles,

for example, photons, electrons, and neutrinos, from the DM halo in the galaxy is calculated by

integrating dΓann
f /dE over the galactic region as follows [50]:

dΦann
f

dEf
=

c

4π

〈σannvrel〉
m2
ψ

dNann
f

dEf
J∆Ω , (3.17)

where J∆Ω is the so-called J-factor with units of GeV2 cm−5, and in the polar coordinate (s, b, l),

calculated by integrating over the target solid angles in the sky and line of sight as follows [50] :

J∆Ω ≡
∫ bmax

bmin

db cos b

∫ lmax

lmin

dl

∫ smax

0
ds ρψ(r(s, b, l))2 , (3.18)
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Table 3.2: DM density distributions in the garactic halo based on astrophysical obsrvations,
numerical simulations, and theoretical models.

profile ρ(r) Ref.

NFW ρs
(
rs
r

)
1

(1+r/rs)
2 [180]

Isothermal ρs
1

1+(r/rs)2
[21, 181]

Burkert ρs
1

(1+r/rs)(1+(r/rs)2)
[182]

Moore ρs
(
rs
r

)1.16
(

1 + r
rs

)−1.84
[183, 184]

generalized NFW (gNFW) ρs
(
rs
r

)γ 1
(1+r/rs)

3−γ [185]

Einasto ρs exp
[
− 2
α

{(
r
rs

)α
− 1
}]

[186, 187]

where r is the distance from the solar system to the point (s, b, l) on the line of sight given by

r(s, b, l) =
√
s2 + r2

� − 2sr� cos b cos l , (3.19)

with the distance from the GC to the solar system, r�. Here, we define the direction of the GC

as b = l = 0◦, and the solar system is placed at the origin. The upper limit of the integration

over the line of sight, smax, is given by

smax(b, l) =
√
R2

halo − r2
� + r2

� cos2 b cos2 l + r� cos b cos l , (3.20)

with the size of the galaxy halo, Rhalo. For charged particles, such as electron and proton, the

propagation of the produced particles are affected by interstellar radiation and magnetic field

in the galaxy, and the energy spectrum of the flux of the final state particles are practically

not simple as Eq. (3.17). For cosmic neutrino, which is discussed in Chapter. 7, and gamma

rays produced by the annihilation of DM freely propagate in the space because of the weakness

of interaction with other particles. Therefore, Eq. (3.17) gives a better estimation of the total

flux. However, even for the neutrino and photon cases, we have to note that bounds on the

DM annihilation cross section from indirect detection experiments have several astrophysical

uncertainties, for example, J-factor.

Next, we show the current bounds and prospects from the indirect detection experiments.

In Fig. 3.9, and 3.10, we show the recent bounds and future prospects for DM annihilation

cross section from Fermi Large Area Telescope (Fermi-LAT) [189, 190], Cherenkov Telescope

Array (CTA) [191], and High Energy Stereoscopic System (HESS) [192]. We also show the

favored regions based on the assumption, that the observed gamma-ray excess in the inner

galaxy and the GC is derived from DM annihilation, in Ref. [193–195]. However, there are the

claims that this excess can be explained by young pulsars and millisecond pulsars (MSPs) [197,

198]. Moreover, such regions are excluded by Fermi-LAT observations of nearby satellite dwarf
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Figure 3.9: Recent constraints and future prospects for the DM annihilation cross section,
DMDM → b̄b, by Fermi-LAT [189, 190], CTA [191], and HESS [192]. Regions inside solid
orange, purple, and brown rings are favored by gamma-ray excess in the inner galaxy and the
GC in Ref. [193–195]. Gray dotted line corresponds to the thermal cross section [196].

spheroidal galaxies, but we show these results for references. The gray dotted lines in Fig. 3.9,

and 3.10 represent the thermal relic annihilation cross section of DM [196].
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Chapter 4

Baryon Asymmetry of the Universe
and Leptogenesis

The matter contents of the Standard Model include both matter and antimatter. Because of

the existence of antimatter, the SM satisfies CPT invariance, and antimatter have already been

discovered by various experiments and observations, for example, the observations of cosmic rays.

However, such detected antimatter are secondary cosmic rays, and no detection of antimatter

that exist since the early Universe [199–201]. If there is no asymmetry between baryon and

antibaryon, the same amount of baryon and antibaryon exist in the early Universe. Hence, they

annihilate each other, and the observed baryon density can not be explained. Moreover, if there

are regions where stars and galaxies are formed by antimatter in the observable Universe, the

annihilation of electrons and positrons happens on the boundary between antimatter space and

our matter one, and characteristic 511 keV gamma rays are produced. However, such cosmic

rays have not been detected as of now. Therefore, there is no possibility of existence of the

above antimatter space in the observable Universe [199, 200, 202, 203]. On the other hand,

even if there is matter-antimatter asymmetry before inflation, expansion of the Universe during

the inflation negligibly dilutes it, and the observed baryon-antibaryon asymmetry can not be

explained. Therefore, matter-antimatter asymmetry has to be generated after inflation.

In this section, we first give a brief review of baryon asymmetry and then summarize the

production of baryon asymmetry. Especially, we mention one of the production scenarios of

baryon asymmetry, so-called leptogenesis, and this scenario is important for the discussion in

chapter 6.

4.1 Baryon Asymmetry in the Universe

As mentioned briefly in subsection 2.3.2, non-relativistic matter occupies about 32% of the energy

density in the present Universe, and baryon does only a few percents of them. However, such a
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small amount of baryon, compared to total energy density, gives considerable contributions to

the evolution of the Universe.

4.1.1 Observational Estimation of Baryon Asymmetry

Baryon-antibaryon asymmetry in the Universe is expressed in the following three different ways :

Ωbh
2 ≡ ρb

ρc
, (4.1)

ηB ≡
nB − nB̄

nγ
, (4.2)

Y∆B ≡
nB − nB̄

s
, (4.3)

where nB(nB̄) and ρb are the number and energy densities of (anti)baryon, respectively. Among

the above three, ηB and Y∆B are invariant during the expansion of the Universe because all nB,

nB̄, nγ and s are proportional to a(t)−3 ∝ T 3 from Eq. (2.85) and (2.95). However, ηB change in

the early Universe by particle decays and annihilation, while Y∆B is invariant as long as entropy

production does not occur.

From Eq. (2.85) and (2.95), the ratio of entropy density to photon number density is given

by

s

nγ

∣∣∣∣
0

=
g∗s
gγ

2π4

45ζ(3)
= 7.04 , (4.4)

and thus the relation between ηB and Y∆B is obtained by

ηB = 7.04Y∆B . (4.5)

Moreover, Ωbh
2 and ηB have the following relation :

ΩBh
2 =

ρb
ρc
h2 =

nBmBh
2

ρc
=
mBnγh

2

ρc
ηB = 3.65× 107ηB , (4.6)

where mB is the averaged baryon mass, and in Eq. (4.6), we use the proton mass mp = 938 MeV

as mB.

The baryon asymmetry in the Universe is estimated or measured by two independent meth-

ods. One is the BBN, and the baryon asymmetry can be obtained by using the fact that the

abundances of light elements, such as deuterium (D), 3He, 4He, 7Li, and so on, depend only on

the baryon asymmetry, ηB, except for the uncertainty of neutron lifetime 1. The abundances

1Neutrons contribute to the BBN process through, for example, p + n → D + γ and D + n → 3H + γ, and
therefore, the neutron lifetime affects its abundance, consequently the abundace of light elements. Neutron lifetime
is measured by two independent approaches, such as bottle and beam methods. In the bottle method [204–211],
ultracold neutrons (UCN) are storing in bottle, and remaining UCNs are counted after some time. In the beam
method [212, 213], neutron beam is pass through charged particle detectors, and beta decays of neutrons are
detected. The former gives τn = 879.4± 0.6 s (PDG average [50]), and the latter gives τn = 887.7± 2.3 s [213].
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of light elements are calculated by solving the nuclear reaction network, which is a system of

ordinary differential equations including the effect of the expansion of the Universe. The baryon

asymmetry can be estimated by comparing the prediction from the nuclear reaction network

and the observed value of abundances of light elements, and the recent analysis gives [50]

5.8 ≤ ηB × 1010 ≤ 6.5 (95% CL) . (4.7)

We notice that the lithium constraint is not taken into account because there is a considerable

discrepancy between the favored value of ηB from 7Li and the other light elements, and this is

called the lithium problem.

The other way is measurements of the CMB. As discussed in subsection 2.3.4, the fluctuation

of the CMB is produced by that of baryon-photon mixed fluid, and thus the baryon asymmetry

can be obtained by observation of the temperature fluctuation of the CMB. The recent value

estimated by the Planck observation [25] is given by

ηB = (6.14± 0.03)× 10−10 . (4.8)

4.1.2 Conditions of baryon number production

To produce baryon asymmetry during the evolution of the Universe, it is well-known that the

following Sakharov’s three conditions are satisfied [214] :

(i) Baryon number violation

After inflation, the baryon number (B) density is zero or negligibly small, and thus B-

number violating processes are needed to produce B-number.

(ii) C and CP violation

If C and CP are conserved, probabilities of baryon and antibaryon production are equal.

Therefore, C and CP should be violated, and the frequency of baryon and antibaryon

production should be different.

(iii) Departure from thermal equilibrium

In a thermal equilibrium system, process and inverse process of baryon production occur

with the same frequency, and thus the system should depart from thermal equilibrium.

For the scenarios of departure from thermal equilibrium, some are proposed, and the well-

known examples are as follows :

• Departure from the equilibrium of decay process of heavy particles

−→ Leptogenesis, GUT baryogenesis
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• Electroweak phase transition

−→ Electroweak baryogenesis

Among them, the leptogenesis scenario is important for this thesis, especially in Chapter 6, and

therefore we give only a short review of leptogenesis.

4.1.3 Sphaleron process

In the SM, baryon (B) and lepton (L) numbers are conserved at tree level, and currents of B

and L numbers, jµB and jµL, satisfy

∂µj
µ
B = ∂µj

µ
L = 0 . (4.9)

However, the B and L numbers are violated at the quantum level, and the divergences of their

currents are given by

∂µj
µ
B = ∂µj

µ
L =

Nf

32π2

(
g2W a

µνW̃
aµν − g′2BµB̃µν

)
, (4.10)

where g(g′) is the gauge coupling constant of SU(2)L (U(1)Y ), and Nf is the number of fermion

generation. The field strengths of the gauge fields with a tilde are the self-dual fields of gauge

fields and defined by

W̃ aµν =
1

2
εµνρσW a

ρσ, B̃µν =
1

2
εµνρσWρσ . (4.11)

From Eq. (4.10), the B and L numbers are not conserved. However, both have the same

divergence, and thus their difference (B − L) is conserved because of ∂µ(jµB − jµL) = 0. On

the other hand, their sum (B + L) is not conserved, and the divergence of (B + L) current

jµB+L = jµB + jµL is given by

∂µj
µ
B+L =

Nf

16π2

(
g2W a

µνW̃
aµν − g′2BµB̃µν

)
= 2Nf (∂µK

µ − ∂µkµ) , (4.12)

where

Kµ =
g2

32π2
εµνρσ

(
W a
νρW

a
σ −

g

3
εabcW a

νW
b
ρW

c
σ

)
, (4.13)

kµ =
g
′2

32π2
εµνρσBνρBσ . (4.14)

Integrating Eq. (4.12) with respective to the coordinate, the left-hand side (LHS) is transformed

as follows :

(LHS) =

∫ tf

ti

dt

∫
d3x∂µj

µ
B+L

=

∫
d3x

(
j0
B+L(tf )− j0

B+L(ti)
)

= (B + L)(tf )− (B + L)(ti) ≡ ∆(B + L) . (4.15)
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On the other hand, the right-hand side (RHS) is

(RHS) =

∫ tf

ti

dt

∫
d3x 2Nf (∂µK

µ − ∂µkµ)

= Nf (NCS(tf )−NCS(ti)) , (4.16)

where NCS(t) is the Chern-Simons number of gauge field, which is topological invariant value,

given by

NCS(t) =
g2

32π2

∫
d3xεijk

(
W a
ijW

a
k −

1

3
W aiW bjW ck

)
. (4.17)

From Eqs. (4.16) and (4.16),

∆(B + L) = Nf (NCS(tf )−NCS(ti)) , (4.18)

and therefore, (B + L) number is not conserved. This kind of phenomenon appears only when

the gauge symmetry corresponding to the gauge boson is non-Abelian. In non-Abelian gauge

theory, there are infinite degenerate vacuums distinguished by the Chern-Simons number. As

mentioned above, the Chern-Simons number is topological invariant and does not change under

gauge transformation. However, there are, in fact, two processes that change the Chern-Simons

number of vacuums, namely, baryon number. One is the tunneling process, and its transition

probability calculated by semiclassical approximation is given by

Γtunnel ∼ e
− 16π
g2 = O(10−162) , (4.19)

for NCS(tf ) − NCS(ti) = 1. The probability is suppressed exponentially, and thus this process

can be neglected.

The other is sphaleron process [37, 215, 216]. Sphaleron is a classical saddle point solution

which connects two vacuums with different Chern-Simons numbers, and state transitions which

change baryon number occur in the early Universe. Accoroding to Ref. [217] (more accurate

calculation in Ref. [218]), the transition rate par volume after the electroweak phase transition

(T < TEW) is calculated by

Γsph

V
∼
(
Esph

T

)3(mW (T )

T

)4

T 4e−
Esph(T )

T ∼ e−
mW
αT , (4.20)

Where Esph is the sphaleron energy given by

Esph(T ) ' 8π

g
v(T ) , (4.21)

with v(T ) being the vacuum expectation value (VEV) of the Higgs field. In Eq. (4.20), the

transition rate of the sphaleron process after the electroweak phase transition is also suppressed
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exponentially and very small. On the other hand, according to Ref. [219, 220], the rate before

electroweak phase transition (T ≥ TEW) is given by

Γsph

V
∼ 25α5

WT
4 , (4.22)

with αW = g2/4π. In this case, the rate has no exponential suppression factor, and thus, baryon

and lepton number violations often occur. From Gamov’s criterion, the sphaleron process is in

thermal equilibrium when

TEW ∼ 100 GeV < T . 1012 GeV . (4.23)

4.1.4 Relation between produced baryon and lepton numbers

In subsection 4.1.2, we give a short review of the condition for the production of baryon number,

and we show the relation between baryon and lepton numbers produced through some mechanism

in this subsection. In the leptogenesis scenario, lepton number is first generated by decays of

heavy right-handed neutrinos, and then some of them are converted into baryon number through

the sphaleron process.

The difference between the number density of particle i and antiparticle ī is given by

ni − nī = gi

∫
d3k

(2π)3

[
1

e(E−µi)/T ± 1
− 1

e(E+µi)/T ± 1

]
' 1

6
ξgiT

3µi
T

(for m, |µi| � T ), (4.24)

with ξ = 1(2) for fermion (boson), and µi being chemical potential of particle i.

In thermal plasma with high temperature, the SM quarks, leptons, and Higgs boson are in

equilibrium through gauge and Yukawa interaction and sphaleron process. Hereafter, we show

relations between chemical potentials of particles in equilibrium (see also Ref. [221]). For gener-

ality, we set numbers of fermion generation and Higgs doublets to be Nf and NH , respectively

(Nf = 3 and NH = 1 for the SM).

Sphaleron process

∑
α

(
µuL,α + 2µdL,α + µνL,α

)
= 0 , (4.25)

with α being the index of fermion generation.

Yukawa interaction
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µdL,α − µdR,β − µφ0 = 0 ,

µuL,α − µuR,β + µφ0 = 0 , (4.26)

µeL,α − µeR,β − µφ0 = 0 .

Gauge interaction

µuL,α − µdR,α + µW = 0 ,

µνL,α − µeL,α + µW = 0 , (4.27)

µφ− + µφ0 − µW = 0 .

Using these relations, the densities of baryon B and lepton L numbers, electroweak charge Q,

and the third component of SU(2)L, Q3 are given by

B ≡ nB
s

=
15gf

4π2gs∗T

∑
α

(
µuL,α + µuR,β + µdL,α + µdR,α

)
=

15gf
4π2gs∗T

∑
α

(
4µuL,α + 2µW

)
,

(4.28)

L ≡ nL
s

=
15gf

4π2gs∗T

∑
α

(
µνL,α + µeL,α + µeR,α

)
=

15gf
4π2gs∗T

∑
α

(
3µνL,α + 2µW − µφ0

)
, (4.29)

Q ≡
nQ
s

=
15gf

4π2gs∗T

∑
α

{
3× 2

3
(µuL,α + µuR,β )− 3× 1

3
(µdL,α + µdR,β )

−(µeL,α + µeR,α)− 4

Nf
µW −

2NH

Nf
µφ−

}
=

15gf
4π2gs∗T

∑
α

{
2µuL,α − 2µνL,α −

4Nf + 2NH + 4

Nf
µW +

4Nf + 2NH

Nf
µφ0

}
, (4.30)

Q3 ≡
nQ3

s

=
15gf

4π2gs∗T

∑
α

{
3× 1

2
(µuL,α − µdL,β ) +

1

2
(µνL,α − µeL,α)− 4

Nf
µW −

NH

Nf
(µφ0 + µφ−)

}
= −

15gf
4π2gs∗T

(2Nf +NH + 4)µW , (4.31)

with gf being the degree of freedom of left and right-handed fermion. Before the electroweak

phase transition (T ≥ TEW), both Q and Q3 must be zero. The latter condition implies µW = 0,

and using the former one, the baryon and lepton number densities are given by

B =
8Nf + 4NH

22Nf + 13NH
(B − L) , L = −

14Nf + 9NH

22Nf + 13NH
(B − L) . (4.32)
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For the SM case,

B =
28

79
(B − L) , L = −51

79
(B − L) . (4.33)

Immediately after inflation, the total (B − L) = 0, and thus, Eq. (4.32) implies a need for

(B − L)-violating process in order to generate baryon asymmetry.

4.2 Leptogenesis

In subsection 4.1.4, we show that not only (B+L)-violating sphaleron process but also (B−L)-

violating one are necessary for generation of baryon asymmetry. In leptogenesis scenario [36],

decays of heavy right-handed neutrinos (RHNs) violate lepton number, and then it is converted

into baryon number. The produced baryon asymmetry is evaluated by asymmetry parameter

ε1, defined below. In this section, we give a brief review of leptogenesis, which is important for

the discussion in chapter 6.

First, we show how lepton asymmetry is generated by decays of heavy RHNs and formula

of asymmetry parameter in subsection 4.2.1. In subsection 4.2.2, we give a brief review of the

thermal leptogenesis scenario, in which heavy RHNs are produced in the SM thermal plasma.

We, finally, show non-thermal leptogenesis scenario [222–229], in which heavy neutrinos are

produced by decays of scalars, and this scenario appears in chapter 6.

4.2.1 Asymmetry Parameter

In the leptogenesis scenario, baryon number is generated through the sphaleron process that

is in thermal equilibrium before the electroweak phase transition, and thus, we discuss only

much higher temperature than the electroweak scale (T � TEW ∼ O(102) GeV). In this case,

the electroweak symmetry is not violated, and the SM neutral and charged Higgs bosons φ =

(φ+, φ0)T have the same masses, and the SM gauge bosons have no mass. The light active

neutrinos have no mass, while the heavy RHNs have non-zero masses because of the Majorana

masses.

In the basis where the Majorana mass matrix is diagonal, the Lagrangian relative to neutrinos

are given by

∆L = −λ̂iαN̂ c
i (Lα ·H)− 1

2
MiN̂

c
i N̂

c
i + h.c. , (4.34)

where N̂i is i-th mass eigenstate of heavy neutrinos with mass eigenvalue Mi, and λ̂iα is neutrino

Dirac Yukawa coupling. N̂i decays into SU(2)L doublet Higgs boson and lepton like N̂i → φ+Lα,
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(a) tree diagram (b) vertex collection (c) self-energy

Figure 4.1: Diagrams of decays of the SM singlet RHNs contributing to lepton asymmetry. Lep-
ton asymmetry is generated by interference between (a) tree and (b,c)one-loop level diagrams.

and decay rate of this process is given by

ΓDi =
∑
α

[
Γ(Ni → Lα + φ) + Γ(Ni → L̄α + φ̄)

]
=

1

8π
(λ̂λ̂†)iiMi . (4.35)

Because of SU(2)L gauge symmetry, the following conditions are satisfied :

Γ(N̂i → να + φ0) = Γ(N̂i → e−α + φ+) ≡ 1

2
Γ(N̂i → Lα + φ) , (4.36)

Γ(N̂i → ν̄α + φ0∗) = Γ(N̂i → e+
α + φ−) ≡ 1

2
Γ(N̂i → L̄α + φ̄) . (4.37)

From the Sakharov condition, it is necessary for the generation of lepton number that decay

processes of heavy RHNs are driven out of equilibrium :

ΓDi < H|T=Mi
. (4.38)

When the lightest mass eigenstate of heavy neutrinos N̂i is much lighter than the others N̂2,3,

only the time evolution of N̂1 is important for the generation of lepton asymmetry. This is

because lepton asymmetry generated by decays of N̂2,3 for T � M1 is washed out by the

processes involving N̂1. For M1 'M2,3, the contribution of N̂2,3 decay to lepton asymmetry has

to be taken into account. The leptogenesis scenario under such a situation is called resonant

leptogenesis, and the details are not discussed in this thesis. This scenario is discribed in, for

example, Refs. [230–236].

When the temperature goes below M1 (T < M1), N̂1 is driven out of thermal equilibrium,

and the lepton asymmetry is generated by interference terms between tree and one-loop level

diagrams of the decay process, shown in Fig. 4.1. The generated lepton asymmetry is expressed
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in terms of the asymmetry parameter ε1, which is calculated by [232, 237, 238]

ε1 =

∑
α

[
Γ(N̂1 → Lαφ)− Γ(N̂1 → L̄αφ

∗)
]

∑
α

[
Γ(N̂1 → Lαφ) + Γ(N̂1 → L̄αφ∗)

]
' 1

8π

1

(λ̂λ̂†)11

∑
j=2,3

Im

[{
(λ̂λ̂†)1j

}2
]
f

(
M2
j

M2
1

)
, (4.39)

f(x) =
√
x

[
1− (x+ 1) ln

(
1 +

1

x

)
− 1

x− 1

]
. (4.40)

Among the terms in the definition of f(x), the first and second terms are originated from

interference between tree and vertex correction diagrams, and the third term is from that between

tree and self-energy ones. For the hierarchical masses M1 � M2,3, f(x) is approximately

−2/3
√

2, and the asymmetry parameter is given by

ε1 ' −
3

8π

1

(λ̂λ̂†)11

∑
i=2,3

Im
{

(λ̂λ̂†)2
1j

}M1

Mi
. (4.41)

4.2.2 Thermal Leptogenesis

In this subsection, we show a rough story of thermal leptogenesis. However, the leptogenesis

scenario discussed in chapter 6 is the non-thermal case, and therefore, we here do not go into

the detail of the thermal leptogenesis scenario.

In the early Universe, heavy RHNs are produced thermally in the SM thermal plasma.

Produced RHNs decay into the SM particles and generate lepton asymmetry. This is the first

step of the thermal leptogenesis proposed in Ref. [36]. However, when the decay process of heavy

RHNs is in thermal equilibrium, the lepton asymmetry L generated by N1 decays are washed out

by the asymmetry with the inverse sign−L generated by inverse decay and scattering. Therefore,

the decay process should be driven out of equilibrium to avoid wash-out of the produced lepton

asymmetry. From Gamov’s criterion, such a condition is given by

K ≡ ΓD1

H|T=M1

' (λ̂λ̂†)11M1/(8π)

1.66
√
g∗M2

1 /Mpl
'

Mpl

41.7
√
g∗

(λ̂λ̂†)11

M1
< 1 , (4.42)

with g∗ = 106.75 being the degree of freedom of relativistic particles. This condition leads to

the following constraint on the effective mass of the lightest neutrino m̃1 [239, 240] :

m̃1 ≡ (λ̂λ̂†)11
v2

M1
' 41.7

√
g∗

v2

Mpl

ΓD1

H

∣∣∣∣
T=M1

< 10−3 eV . (4.43)

The remained lepton asymmetry after wash-out is given by [119]

YL =
nL − nL̄

s
= κf

ε1
g∗

, (4.44)
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where κf is the efficiency factor of lepton asymmetry production and depends on the decay

parameter K in Eq. (4.42). The final baryon asymmetry generated through thermal leptogenesis

is obtained by multiplying YL by the sphaleron conversion factor in Eq. (4.33) as follows :

YB =
28

79
YB−L = −28

79
YL = −28

79
κf
ε1
g∗

. (4.45)

For K � 1, such a situation is called the ”strong wash-out” regime. In this case, both decay

and inverse decay processes frequently occur, and thus, many RHNs are produced through

the inverse decay process. During T > M1, decay and inverse decay processes get in thermal

equilibrium, and the number density of lightest RHN NN1 is equal to be its equilibrium value

N eq
N1

. When the temperature goes below M1, the processes are driven out of equilibrium, and

(B−L)-number is produced as RHNs decay. The efficiency factor, in this case, is given by [241]

κf ' 0.02

(
0.01eV

m̃1

)1.1

= 0.02

(
10

K

)1.1

. (4.46)

On the other hand, for K < 1, such a situation is called the ”weak wash-out” regime. In

this case, both decay and inverse decay processes are suppressed. Thus, the temperature of the

Universe goes below M1 before NN1 reaches its equilibrium value N eq
N1

, and then decay process

is driven out of equilibrium. Therefore, the amount of produced RHNs is less than the strong

wash-out case, and the (B − L)-number generated by their decays is also less. The efficiency

factor, in this case, is given by [241]

κf '
(

3π

8
K

)2

. (4.47)

4.2.3 Non-Thermal Leptogenesis

In this subsection, we give a brief review of non-thermal leptogenesis [222–229], which plays

an important role in chapter 6. In the thermal leptogenesis scenario described in the previous

subsection, heavy RHNs are produced thermally in the SM plasma. On the other hand, in the

non-thermal leptogenesis scenario, RHNs are produced by decays of a scalar field coupled to

RHNs. Produced RHNs are supposed to be out of equilibrium, and thus wash-out effect is not

effective. Therefore, the lepton asymmetry is produced by decays of all RHNs, and it becomes

the final value of generated (B − L)-number without wash-out.

Lepton asymmetry generated in non-thermal leptogenesis scenario is evaluated by the fol-

lowing formula [222–229]

YL =
nL
s

=
∑
i

nσ
s

nNi
nσ

nL
nNi

=
∑
i,j

nσ
s
× Br(σ → N̂iN̂j)× (εi + εj) , (4.48)
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where σ is a scalar which has coupling to RHNs, and Br(σ → N̂iN̂j) is the branching ratio of

σ → N̂iN̂j process. The final baryon asymmetry generated through non-thermal leptogenesis

is obtained by multiplying the above YL by the sphaleron conversion factor in Eq. (4.33) as

follows :

YB =
28

79
YB−L = −28

79
YL = −28

79

∑
i,j

nσ
s
× Br(σ → N̂iN̂j)× (εi + εj) . (4.49)

The number density of the scalar σ is dependent on the dynamics of σ in the early Universe, and

generally, this value is calculated by solving the Boltzmann equation, mentioned in section 3.1.

In chapter 6, we assume the above scalar is inflaton, and in this case, the number density of

inflaton is calculated in terms of the inflaton mass and reheating temperature. The detail is

shown in chapter 6.
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Chapter 5

Predictions for the neutrino
parameters in the minimal gauged
U(1)Lµ−Lτ model

The neutrino sector is one of the most mysterious parts in the SM, we know that this sec-

tor should be extended because of the observations of neutrino oscillation and the existence of

non-zero neutrino masses. One possibility of extensions of the neutrino sector is introducing

right-handed neutrinos (RHNs), and it simply explains the neutrino masses. Moreover, if the

neutrinos are Majorana particles, their Majorana nature gives the neutrino sector rich phe-

nomenology, such as neutrinoless double beta decay (subsection 2.2.1), the seesaw mechanism

(subsection 2.2.2), and leptogenesis (section 4.2).

The U(1)Lµ−Lτ gauge symmetry also gives interesting phenomenology to the neutrino sector.

Gauge symmetries control interactions between fields in gauge theories, and in the U(1)Lµ−Lτ

case, only the leptons are transformed non-trivially. In the gauged U(1)Lµ−Lτ model, some

mass terms in the neutrino sector are forbidden by the gauge symmetry, and the degree of

freedom of parameters in the neutrino mass matrices is less than the case without U(1)Lµ−Lτ .

So far, many previous studies have explored the relations between the mass structures of the

neutrinos in the U(1)Lµ−Lτ models and the observed values relative to neutrinos, for example,

Refs. [42–44, 242–250]. As mentioned above, the U(1)Lµ−Lτ gauge symmetry constrains the

neutrino sector and force the neutrino Dirac and Majorana mass matrices to be diagonal and

block-diagonal, respectively. Because of the type-I seesaw mechanism (see Eq. (2.37) of sub-

section 2.2.2), the active neutrino mass matrix is also block-diagonal and cannot explain the

neutrino oscillation data. Therefore, the U(1)Lµ−Lτ gauge symmetry should be broken, and

one scalar with U(1)Lµ−Lτ charge is introduced for the spontaneous symmetry breaking. There

are several possibilities as U(1)Lµ−Lτ -breaking scalar, but only SU(2)L singlet with U(1)Lµ−Lτ

charge ±1 realizes the observed neutrino oscillation and avoids the cosmological constraint on
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the neutrino masses [42, 43]. Introduction of one SU(2)L singlet scalar is the minimal extension

which is consistent with the existing experimental and cosmological results, and such a model

is called the minimal gauged U(1)Lµ−Lτ model.

The minimal gauged U(1)Lµ−Lτ model naturally realizes the so-called two-zero minor struc-

ture, namely, two components in the inverse of the active neutrino mass matrix vanish. Re-

lations between lepton flavor-dependent U(1) gauge symmetries and two-zero minor structure

have been discussed, for example, in [244, 245]. And, focusing on less degree of freedom, those

between two-zero minor structure and neutrino parameters have been discussed, for example,

[42–44, 243, 246–252]. Among them, the author’s works [42–44] have exactly analyzed the con-

straints on the neutrino parameters from the two-zero minor structure and obtained the neutrino

CP phases, sum of the neutrino masses, effective Majorana neutrino mass for the neutrinoless

double beta decay, and so on. And we have obtained these parameters as functions of the

neutrino oscillation parameters. In this model, all the neutrino parameters are determined by

the neutrino oscillation parameters. Therefore, this model has predictive power for the effective

Majorana neutrino mass for neutrinoless double beta decay and lepton asymmetry generated by

decays of heavy RHNs.

In this chapter, we discuss the relations between the two-zero minor structure and neutrino

parameters, following Refs. [42–44]. This chapter is organized as follows. In section 5.1, we

introduce the minimal gauged U(1)Lµ−Lτ model and derive the relations between the two-zero

minor structure and neutrino parameters. In section 5.2, using the results in the previous section,

we show the predictions for the neutrino parameters, including the effective Majorana neutrino

mass for neutrinoless double beta decay. Lastly, in section 5.3, we summarize this chapter.

5.1 Minimal Gauged U(1)Lµ−Lτ Model and Neutrino Mass Struc-
ture

In the minimal gauged U(1)Lµ−Lτ model, three RHNs are introduced for non-zero neutrino

masses. Moreover, neutrinos are assumed to be Majorana particles to realize the seesaw mech-

anism and leptogenesis scenario. In the U(1)Lµ−Lτ gauge theory, muon µL,R, mu-type neutrino

νµ, and mu-type RHN Nτ have the U(1)Lµ−Lτ charge +1, tau particle τL,R, tau-type neutrino

ντ , and tau-type RHN Nτ have the U(1)Lµ−Lτ charge −1, and the other SM fields have the zero

U(1)Lµ−Lτ charge. We summarize the charge assignment of the field content in the minimal

gauged U(1)Lµ−Lτ model in Tab. 5.1. Under this charge assignment, the neutrino Dirac and

Majorana Yukawa mass terms which are invariant under the U(1)Lµ−Lτ gauge transformation
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field Lµ =

(
νµ

µL

)
, µR, Nµ Lτ =

(
ντ

τL

)
, τR, Nτ σ others

U(1)Lµ−Lτ charge +1 -1 +1 0

Table 5.1: U(1)Lµ−Lτ charges of the field content in the minimal gauged U(1)Lµ−Lτ model.

are obtained as follows :

Dirac : MD =


∗ 0 0

0 ∗ 0

0 0 ∗

 , Majorana : MR =


∗ 0 0

0 0 ∗
0 ∗ 0

 , (5.1)

where ∗ denotes no-zero mass component. From Eq. (2.37), the mass matrix for the active

neutrinos is given by

MνL ' −MDM−1
R M

T
D =


∗ 0 0

0 0 ∗
0 ∗ 0

 , (5.2)

This result is interpreted as θ12 = θ13 = 0 and θ23 = π/2, and these mixing angles are clearly

different from the observed values. Therefore, the U(1)Lµ−Lτ gauge symmetry should be violated.

Here, we introduce one SM singlet scalar σ with the U(1)Lµ−Lτ charge +1. This scalar

develops a vacuum expectation value (VEV), and then breaks the U(1)Lµ−Lτ gauge symmetry

spontaneously. Under these charge assignments, the most general renormalizable interaction

terms in the neutrino sector are given by

LN =− λeN c
e (Le ·H)− λµN c

µ(Lµ ·H)− λτN c
τ (Lτ ·H)

− 1

2
MeeN

c
eN

c
e −MµτN

c
µN

c
τ −

1

2

∑
α,β=e,µ

hαβσN
c
αN

c
β −

1

2

∑
α,β=e,τ

hαβσ
∗N c

αN
c
β + h.c. , (5.3)

where the dots between Lα and H denotes the contraction of the SU(2)L indices. hαβ is a

symmetric matrix with heµ = hµe, heτ = hτe, and all other elements being zero. After the Higgs

field H and the U(1)Lµ−Lτ -breaking scalar σ acquire VEVs 〈H〉 = v/
√

2, and 〈σ〉,1 the neutrino

mass terms are written in the flavor basis as follows :

MD =


λe 0 0

0 λµ 0

0 0 λτ

 〈H〉 , MR =


Mee heµ 〈σ〉 heτ 〈σ〉
heµ 〈σ〉 0 Mµτ

heτ 〈σ〉 Mµτ 0

 . (5.4)

As shown in Eq. (5.4), the Dirac mass matrix MD is diagonal, and then the active neutrino

mass matrix MνL is diagonalized by the PMNS matrix, which appears in subsection 2.2.3, as

1We can always take the VEV of σ to be real by using U(1)Lµ−Lτ transformations.
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follows :

UTPMNS MνL UPMNS = diag(m1,m2,m3) , (5.5)

with mi the mass eigenvalues of the active neutrinos. 2 From Eqs. (2.37) and (5.5), the following

relation is obtained :

M−1
νL

= UPMNS diag(m−1
1 ,m−1

2 ,m−1
3 ) UTPMNS ' −(M−1

D )TMRM−1
D . (5.6)

We then notice that the (µ, µ) and (τ, τ) components of these terms vanish because MD is

diagonal, and those of MR also vanishes, as shown in Eq. (5.4). Therefore, we obtain the

following two complex conditions :

1

m1
V 2
µ1 +

1

m2
V 2
µ2e

iα2 +
1

m3
V 2
µ3e

iα3 = 0 , (5.7)

1

m1
V 2
τ1 +

1

m2
V 2
τ2e

iα2 +
1

m3
V 2
τ3e

iα3 = 0 , (5.8)

where the unitary matrix Vαi and the Majorana CP phases α2,3 are defined in Eqs. (2.52) and

(2.53), respectively. We note that the above conditions are independent of the VEV of the

U(1)Lµ−Lτ -breaking scalar 〈σ〉 and the Majorana mass Mee,Mµτ . This point is much important

and indicates that the following analyses and results shown in section 5.2 are independent of the

scales of the U(1)Lµ−Lτ -breaking and Majorana mass.

Regarding the neutrino oscillation parameters as the inputs and solving Eqs. (5.7) and (5.8)

for eiα2 , eiα3 , we obtain

eiα2 =
m2

m1
R2(δ), eiα3 =

m3

m1
R3(δ) , (5.9)

with

R2(δ) ≡ (Vµ1Vτ3 + Vµ3Vτ1)V ∗e2
(Vµ2Vτ3 + Vµ3Vτ2)V ∗e1

, R3(δ) ≡ (Vµ1Vτ2 + Vµ2Vτ1)V ∗e3
(Vµ2Vτ3 + Vµ3Vτ2)V ∗e1

. (5.10)

In Appendix C.2, we give explicit expressions for R2 and R3 in terms of neutrino oscillation

parameters. Taking the absolute values of both sides of two equations in Eqs. (5.9), the ratios

of the mass eigenvalues of the active neutrinos are obtained as follows :

m2

m1
=

1

|R2(δ)|
,

m3

m1
=

1

|R3(δ)|
. (5.11)

Here, R2 and R3 depend only on the Dirac CP phase δ, except for the neutrino mixing angles,

and satisfy R∗2,3(−δ) = R2,3(δ). Therefore, the mass ratios m2,3/m1 is symmetric under sign

flip of δ : δ → −δ (π + δ → π − δ). In Fig. 5.1, we plot the mass ratios m2/m1 and m3/m1

2For m1 = 0 (NO) or m3 = 0 (IO), the determinant of MνL is equal to be zero. Because of the discussion in
Appendix C.1, this case leads to a block-diagonal MνL and then conflicts with the observed neutrino oscillation.
Therefore, we assume mi 6= 0 in this chapter.
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Figure 5.1: The mass ratios m2/m1 and m3/m1 as functions of the Dirac CP phase δ, from
Eq. (5.11). The bands show uncertainty coming from the 1σ error in the neutrino mixing
parameters. The thin dotted line corresponds to m2,3/m1 = 1.

against the Dirac CP phase δ using Eq. (5.11). The bands show uncertainty coming from the 1σ

error in the neutrino mixing parameters. For input parameters of the neutrino mixing angles,

we use sin2 θ12 = 3.10+0.13
−0.12 × 10−1, sin2 θ13 = 2.237+0.0066

−0.0065 × 10−2, and sin2 θ23 = 5.63+0.18
−0.24 ×

10−1 [109, 110] (see Tab. 2.2). It is found that the resultant uncertainty mainly comes from the

error in θ23. From this figure, we find that when δ ' π the observed neutrino mixing angles

are incompatible with the condition m1 < m2, and thus these regions are excluded. Moreover,

around δ ' 0, 2π we have m1 < m3 < m2, which disagrees with the possible neutrino mass

ordering: either m1 < m2 < m3 or m3 < m1 < m2 [50]. As a consequence, in the region

where a consistent neutrino mass ordering is obtained, the neutrino mass ordering is always

Quasi-Degenerate Normal Ordering with m1 . m2 . m3, which is realized around δ ∼ π/2 and

3π/2.

According to the recent global-fit analysis in Ref. [110], the NO is somewhat favored over

IO at ∼ 2.5σ level. There are quite a few proposed experiments that may determine the neu-

trino mass ordering at more than 3σ level within a decade [253, 254], such as PINGU [255],

ORCA [256], and JUNO [257, 258]. To confirm NO in these future experiments would be the

first consistency check of our model.

Now that the mass ordering has been fixed, we determine m1 and δ by using the above
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results. From the neutrino oscillation experiments, we can measure 3

δm2 ≡ m2
2 −m2

1 , (5.13)

∆m2 ≡ m2
3 − (m2

2 +m2
1)/2 . (5.14)

These quantities are related to the neutrino mass ratios as

δm2 = m2
1

(
m2

2

m2
1

− 1

)
= m2

1

(
1

|R2(δ)|2
− 1

)
, (5.15)

∆m2 +
δm2

2
= m2

1

(
m2

3

m2
1

− 1

)
= m2

1

(
1

|R3(δ)|2
− 1

)
. (5.16)

By solving these equations, we can determine m1 and δ. The observed values of δm2 and ∆m2

are given by δm2 ' 7.39× 10−5 eV2 and ∆m2 ' 2.528× 10−3 eV2, respectively [109, 110]. This

means that the right-hand side of Eq. (5.15) is much smaller than that in Eq. (5.16). From

Fig. 5.1, we see that such a hierarchy can be realized only when m2
2/m

2
1 ' 1, i.e., |R2(δ)| ' 1.

With the explicit formula of R2(δ) in Eq. (c.3), this leads to

cos δ ' cot 2θ12 cot 2θ23

sin θ13
. (5.17)

When the best-fit values of the mixing angles θij are used, this leads to cos δ ' −0.34, which

corresponds to δ ' 0.61π or 1.39π. In Eq. (c.5) in Appendix C.3, we give a cubic equation whose

solution gives an exact value of cos δ as a function of the mixing angles θij and the squared mass

differences δm2 and ∆m2. As discussed there, the solution (5.17) approximates the real solution

of the cubic equation (c.5) at O(δm2/∆m2) level. By solving Eq. (c.5) numerically, we find

cos δ = −0.349 for the best-fit values of θij , δm
2, and ∆m2, which means δ = 0.613π or 1.387π,

and justifies the expected accuracy of the approximated formula (5.17).

Before closing this section, let us give a general remark about quantum corrections to the

neutrino mass matrix. If the U(1)Lµ−Lτ symmetry breaking scale is much higher than the

electroweak scale, we expect sizable quantum corrections to the neutrino mass matrix. Such

quantum corrections can be taken into account by using renormalization group equations. Re-

markably, it is found that the two-zero minor structure of MνL is preserved throughout the

renormalization group flow [259, 260]. To see this, we first note that below the right-handed

neutrino mass scale, which is around the U(1)Lµ−Lτ symmetry breaking scale in this model,

right-handed neutrinos are integrated out to give the following dimension-five effective operator:

Leff =
1

2
Cαβ(Lα ·H)(Lβ ·H) + h.c. , (5.18)

3In terms of the squared mass differences ∆m2
21 ≡ m2

2−m2
1 and ∆m2

31 ≡ m2
3−m2

1, δm2 and ∆m2 are expressed
as

δm2 = ∆m2
21 , ∆m2 = ∆m2

31 −
1

2
∆m2

21 . (5.12)
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where Cαβ has the two-zero minor structure at the right-handed neutrino mass scale. The

renormalization group equation of the Wilson coefficient Cαβ at one-loop level is [261]

µ
dC

dµ
= − 3

32π2

[(
Y †e Ye

)T
C + C

(
Y †e Ye

)]
+

K

16π2
C , (5.19)

with

K = −3g2
2 + 2Tr

(
3Y †uYu + 3Y †d Yd + Y †e Ye

)
+ 2λ , (5.20)

where Yu, Yd, and Ye denote the up-type, down-type, and charged-lepton Yukawa matrices,

respectively, g2 is the SU(2)L gauge coupling, and λ is the Higgs quartic coupling: Lquart =

−1
2λ(H†H)2. Now recall that the charged lepton Yukawa matrix is diagonal in our model. In

this case, the above equation can readily be solved as follows [262]:

C(t) = IK(t) I(t)C(0) I(t) , (5.21)

where t ≡ ln(µ/µ0) with µ0 being the initial scale, and

IK(t) = exp

[
1

16π2

∫ t

0
K(t′) dt′

]
, I(t) = exp

[
− 3

32π2

∫ t

0
Y †e Ye(t

′) dt′
]
. (5.22)

Note that I(t) is a diagonal matrix. Therefore, if C−1
µµ (0) = C−1

ττ (0) = 0, then C−1
µµ (t) = C−1

ττ (t) =

0, which proves that the two-zero minor structure of the Wilson coefficient C remains at low

energies. As a result, the two-zero minor neutrino-mass structure in our model is robust against

quantum corrections, even if the U(1)Lµ−Lτ symmetry breaking scale is much higher than the

electroweak scale.

5.2 Predictions for the Neutrino Parameters

Using the results obtained above, we now compute quantities relevant to neutrino experiments

with the errors in the neutrino oscillation parameters taken into account. For input values, we

use the values given in Ref. [109, 110], which are summarized in Table 2.2. In particular, we

take the three mixing angles and the two mass squared differences,

θ12, θ23, θ13, δm
2, ∆m2 , (5.23)

as input parameters, and evaluate the predicted values of the other parameters, including Dirac

CP phase δ, the absolute masses mi, their sum
∑

imi, and the effective Majorana neutrino mass

〈mββ〉. The prediction for the Majorana phases α2 and α3 is also presented in Appendix C.2.

In Fig. 5.2, we plot the Dirac CP phase δ as functions of θ23 in the red lines. We vary θ23 in

the 3σ renege, where the 1σ range is in between the vertical thin dotted lines. The dark (light)
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Figure 5.2: The prediction for the Dirac CP phase δ in the minimal gauged U(1)Lµ−Lτ model.
The red lines show the CP phase δ against θ23. θ23 is varied in the 3σ range, and the 1σ range
is in between the vertical thin dotted lines. The dark (light) red bands show the uncertainty
coming from the 1σ (3σ) errors in the parameters θ12, θ13, δm2, and ∆m2. We also show the
1σ (3σ) favored region of δ in the dark (light) horizontal green bands.

red bands show the uncertainty coming from the 1σ (3σ) errors in the other parameters θ12, θ13,

δm2, and ∆m2. We find that this uncertainty is dominated by the error in θ12. We also show the

1σ (3σ) favored region of δ in the dark (light) horizontal green bands.4 As we discussed in the

previous section, there are two solutions for δ for each value of θ23. Intriguingly, the upper line

is right in the middle of the favored range of δ; in particular, θ23 ' 48.6◦ gives δ ' 1.4π, both

of which are within the 1σ allowed region. Consequently, this model predicts δ ' 1.36π–1.43π

(1.30π–1.62π) within 1σ (3σ). Future neutrino experiments can test this prediction through

precision measurements of θ23 and δ [264].

Next, we evaluate the neutrino masses mi, which are shown in Fig. 5.3a as functions of θ23.

Here, the other parameters are fixed to be their best-fit values. We see that all of these masses

are predicted to be &
√

∆m2 ' 5 × 10−2 eV. We also plot the sum of these neutrino masses

as a function of θ23 in Fig. 5.3b, where the dark (light) red band shows the uncertainty coming

from the 1σ (3σ) errors in the parameters other than θ23. In this case, it turns out that the

dominant contribution to the uncertainty (except for that from the error in θ23) comes from the

error in θ13, though the error in ∆m2 also gives a sizable contribution. We also show in the

black dashed line the present limit given by Ref. [107] :
∑

imi < 0.146 eV (normal ordering,

95% C.L.). From this figure, we find that a wide range of the parameter region predicts a value

4The recent result by NOvA experiment reports that δ < π is favored in the NO case [263].
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Figure 5.3: (a) The prediction for the neutrino masses in the minimal gauged U(1)Lµ−Lτ model.
The neutrino masses mi are shown as functions of θ23. The other four parameters (θ12, θ13, δm2,
and ∆m2) are fixed to their best-fit values. (b) The sum of the neutrino masses as a function
of θ23. The dark (light) red band shows the uncertainty coming from the 1σ (3σ) errors in the
parameters θ12, θ13, δm2, and ∆m2. The entire region is within the 3σ range of θ23, while its
1σ range is between the thin vertical dotted lines. We also show in the black dashed line the
present limit given by Ref. [107] :

∑
imi < 0.146 eV (normal ordering, 95% C.L.).

of
∑

imi which is above the present limit, but the region around θ23 ∼ 50◦ is still marginally

viable.

These relatively large values of mi open up a possibility of testing this model in neutrinoless

double beta decay experiments. The rate of neutrinoless double beta decay is proportional

to the square of the effective Majorana neutrino mass 〈mββ〉, which is given by Eq. (2.31) in

subsection 2.2.1. It should be emphasized that, in the minimal gauged U(1)Lµ−Lτ model, not

only the neutrino masses mi but also the Majorana phases α2,3 are uniquely determined as

functions of the other neutrino oscillation parameters. Thus, the value of the effective mass

〈mββ〉 is also predicted unambiguously. Note also that this quantity has reflection symmetry

with respect to δ → −δ and thus depends only on cos δ. In Fig. 5.4, we show 〈mββ〉 as a

function of θ23, where the dark (light) red band shows the uncertainty coming from the 1σ (3σ)

errors in the parameters other than θ23. We also show in the light blue band the current bound

on 〈mββ〉 given by the KamLAND-Zen experiment, 〈mββ〉 < 0.061-0.165 eV [106], where the

uncertainty stems from the estimation of the nuclear matrix element for 136Xe. As we see in

Fig. 5.4, 〈mββ〉 is predicted to be ' 0.021 eV for θ23 ' 51◦, which is well below the present

KamLAND-Zen limit, and this value can be within the reach of future neutrinoless double beta
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Figure 5.4: The prediction for the effective Majorana neutrino mass 〈mββ〉 as a function of
θ23 in the minimal gauged U(1)Lµ−Lτ model. The dark (light) red band shows the uncertainty
coming from the 1σ (3σ) errors in the parameters other than θ23. The entire region is within
the 3σ range of θ23, while its 1σ range is between the thin vertical dotted lines. The light
blue band shows the current upper limit on 〈mββ〉 given by the KamLAND- Zen experiment,
〈mββ〉 < 0.061-0.165 eV [106].

decay experiments, such as CUPID [101] and nEXO [105].

5.3 Summary and Discussions of Chapter 5

In this chapter, we have discussed the minimal gauged U(1)Lµ−Lτ model and the restrictions

on the structure of the neutrino mass matrices, following Refs. [42–44]. In the minimal gauged

U(1)Lµ−Lτ model, because of the gauge symmetries, the structures of the Dirac and Majorana

mass matrices are tightly restricted, and the mass matrix for the active neutrinos has two-zero

minor structure. These restrictions connect the low-energy neutrino parameters, and four of

them are given as functions of the rest of the parameters, namely the neutrino mixing angles

and squared mass differences. Using these relations, we obtained the prediction for the Dirac

and Majorana CP phases, sum of the neutrino masses, and effective Majorana neutrino mass.

We emphasize that these predictions are independent of the scales of the U(1)Lµ−Lτ -breaking

and Majorana masses. This is because the two-zero minor structure of the neutrino mass matrix

and the relations derived from the structure also do not depend on these scales. In the following

chapters, we assume that the U(1)Lµ−Lτ is broken at the much higher scale (Chap. 6) and

electroweak one (Chap. 7). Although the breaking scales in chapter 6 and 7 are different from
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each other, the results in this chapter are valid as long as the neutrino sector has the same

structure as the minimal gauged U(1)Lµ−Lτ model.
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Chapter 6

Non-thermal Leptogenesis in the
U(1)Lµ−Lτ Model and Sign of Baryon
Asymmetry

In the previous chapter, we have shown that the U(1)Lµ−Lτ gauge symmetry restricts the neu-

trino mass matrices and connects the neutrino parameters with the neutrino oscillation pa-

rameters. This result brings us to an interesting fact that the sign of the baryon asymmetry

generated by leptogenesis is determined by the neutrino oscillation parameters. This is because

the neutrino CP phases, which are the origin of lepton asymmetry, are also determined by the

oscillation parameters. The relations between the sign of baryon asymmetry and neutrino os-

cillation parameters have been analyzed in the author’s works [42, 44], and [45] has discussed

the non-thermal leptogenesis case, as a concrete example, and founded that the minimal gauged

U(1)Lµ−Lτ model can realize successful baryogenesis and inflation simultaneously.

In this chapter, we discuss non-thermal leptogenesis in the minimal gauged U(1)Lµ−Lτ model,

following Ref. [45]. This chapter is organized as follows. In section 6.1, we show the sign of the

asymmetry parameter in the minimal gauged U(1)Lµ−Lτ model, using the results in the previous

chapter. In section 6.2, we discuss the leptogenesis model which we assume in this chapter. In

section 6.3, we assume the concrete inflation model and discuss the baryon asymmetry generated

by non-thermal leptogenesis. Lastly, in section 6.4, we summarize this chapter.

6.1 Asymmetry Parameter of the Right-handed Neutrino Decay

We consider the non-thermal leptogenesis scenario in the minimal gauged U(1)Lµ−Lτ model,

described in Chap. 5. First, we discuss the CP-violating decay of heavy RHNs in our model.

As seen in the previous chapter, the effective light neutrino mass matrix is subject to the two-

zero minor conditions, i.e., the inverse of the matrix, M−1
ν , contains two zeros among its nine
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components. These two conditional equations force four free parameters to be dependent on the

others, whose values are fixed in the following analysis as the best-fit values, except for θ23. θ23

is fixed to be θ23 = 51◦ to avoid the present constraint on the sum of the neutrino masses. Still,

there are several coupling constants undetermined in the Lagrangian in Eq. (5.3). It is then

convenient to take λα as input parameters; with this choice, all the entries in MD and MR are

uniquely determined in terms of λα and the neutrino oscillation parameters. By diagonalizing

the mass matrix of the RHNs, the Lagrangian (5.3) can be rewritten as

∆L =− λ̂iαN̂ c
i (Lα ·H)− 1

2
MiN̂

c
i N̂

c
i + h.c. , (6.1)

where

MR = Ω∗diag(M1,M2,M3)Ω† , (6.2)

N̂ c
i =

∑
α

Ω∗αiN
c
α , (6.3)

λ̂iα = Ωαiλα (not summed) , (6.4)

where Ω is a unitary matrix and Mi (i = 1, 2, 3) are the mass eigenvalues of MR. These quan-

tities are, again, uniquely determined in terms of λα, for a given set of the neutrino oscillation

parameters.

In leptogenesis, the final baryon asymmetry depends on the asymmetry parameters of the

decay of RHNs, as shown in Eq. (4.39):1

εi =
Γ(N̂i → LH)− Γ(N̂i → L̄H∗)

Γ(N̂i → LH) + Γ(N̂i → L̄H∗)
. (6.5)

At the leading order, it is computed as

εi =
1

8π

1(
λ̂λ̂†
)
ii

∑
j 6=i

Im
{(
λ̂λ̂†
)2
ij

}
f

(
M2
j

M2
i

)
, (6.6)

f(x) =
√
x

[
1− (1 + x)ln

(
1 + x

x

)
+

1

1− x

]
. (6.7)

The significance of the effect of each asymmetry parameter on the resultant lepton asymmetry

highly depends on the leptogenesis scenarios. As mentioned in subsection 4.2.2, in the thermal

leptogenesis, for instance, the decay of the lightest right-handed neutrino tends to give the

dominant contribution to the lepton asymmetry, since the asymmetry generated by the heavier

RHNs are washed out—in this case, the final baryon asymmetry, nB, is essentially proportional

to ε1. In the case discussed in the next section, we will consider the decay of all three RHNs.

1In the following analysis, we assume that the mass of the U(1)Lµ−Lτ gauge boson, X, is sufficiently large so

that the decay modes that contain X in the final state, such as N̂i → N̂jX and N̂i → νjX, are kinematically
forbidden.
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Figure 6.1: The sign of the asymmetry parameter for the lightest right-handed neutrino, ε1, in
the φ-θ plane for δ > π. The shaded region corresponds to a negative value of ε1. For δ < π,
the sign of ε1 is flipped. The blue solid and gray dashed contour lines show the ratios of the
right-handed neutrino masses, M2/M1 and M3/M1, respectively.

In the present scenario, the sign of εi, and thus that of the resultant baryon asymmetry

as well, for the case of δ > π turns out to be opposite to that for δ < π. As can easily be

seen from the analytical expressions for the Majorana CP phases α2,3 given by Eqs. (5.9), the

transformation δ → 2π − δ flips the signs of α2,3 and leads to UPMNS → U∗PMNS, which then

results in Mν → M∗νL , MR → M∗R, Ω → Ω∗, λ̂ → λ̂∗, and thus εi → −εi. To obtain the

correct sign (positive) for baryon asymmetry in leptogenesis, the generated lepton asymmetry

nL must be negative, because the sphaleron processes predict nB/nL < 0, shown in Eq. (4.33).

This, in particular, indicates that ε1 should be negative when the decay of the lightest RHN

predominantly generates lepton asymmetry.

To see the predicted sign of ε1 in our scenario, in Fig. 6.1, we show the sign of the asymmetry

parameter for the lightest RHN, ε1. In visualizing this, we parametrize the coupling constants

λα as

(λe, λµ, λτ ) = λ (cos θ, sin θ cosφ, sin θ sinφ) , (6.8)

with 0 ≤ θ, φ ≤ π/2 and λ > 0, and show sgn(ε1) in the φ-θ plane. Here, we take δ > π, as
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favored by the neutrino oscillation data [109, 110]. We see that the desirable sign, ε1 < 0, is

obtained in almost all the parameter region, except in the small crack around φ = 45◦. Notice

that, as discussed above, the sign of εi is flipped under the transformation δ → −δ + 2π. This

has interesting implications for our model; the experimentally favored Dirac CP phase, δ > π,

generically leads to the correct sign of baryon asymmetry, whilst the experimentally disfavored

one, δ < π, yields the wrong sign.2

We also show in Fig. 6.1 the ratios of the RHN masses, M2/M1 and M3/M1, in the blue solid

and gray dashed contour lines, respectively. It is found that this model predicts a moderately

degenerate mass spectrum for RHNs, except near the edge of the plane.

As can be seen from Eq. (4.40), the asymmetry parameters εi are proportional to λ2. We

have also checked that the magnitude of the asymmetry parameter ε1 is predicted to be |ε1|/λ2 .

O(10−4) in the typical parameter region in Fig. 6.1, and thus the observed baryon asymmetry

can be reproduced for a sufficiently large λ. A more detailed analysis of the thermal leptogenesis

in the present scenario is beyond the scope of this letter and will be given elsewhere. In the next

section, instead, we study the non-thermal leptogenesis for a minimal inflation scenario in our

model.

6.2 Inflation Model

Now we investigate the non-thermal leptogenesis that proceeds through the inflaton decay into

RHNs [222–229] in the minimal gauged U(1)Lµ−Lτ model. We identify the U(1)Lµ−Lτ breaking

field σ as the inflaton field and assume the following form of the Lagrangian terms for this

field [266] (see also Refs. [267–270]):

Lσ =
|Dµσ|2

(1− |σ|2/Λ2)2
− κ(|σ|2 − 〈σ〉2)2 , (6.9)

where Λ is a parameter with mass dimension one, taken such that Λ > 〈σ〉. By using a U(1)Lµ−Lτ

gauge transformation, we can always take the direction of the field excursion to be real; in this

basis, ϕ ≡
√

2Re(σ) plays the role of the inflaton. The pole of the kinetic term guarantees that

the effective potential becomes very flat at large field values [271, 272]. The inflaton field is

canonically normalized with a change of variable,

ϕ√
2Λ
≡ tanh

(
ϕ̃√
2Λ

)
, (6.10)

which leads to

Lσ =
1

2
(∂µϕ̃)2 − V (ϕ̃) , (6.11)

2Note that the sign of ε1 obtained here is opposite to that found in Ref. [42]. This difference is attributed to
the different choices of the input parameters, especially θ23; in Ref. [42], the value of θ23 was taken from the global
fit performed in Ref. [265], which was in the first octant—the preferred value of θ23 has moved to the second
octant since then, as found in Refs. [109, 110], and this change results in a sign flip in ε1.
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with

V (ϕ̃) = κΛ4

[
tanh2

(
ϕ̃√
2Λ

)
−
(
〈σ〉
Λ

)2
]2

. (6.12)

This potential becomes flat for a large field value of ϕ̃, allowing ϕ̃ to behave as an inflaton field.

As we see below, in the parameter region of interest, 〈σ〉 � Λ; in this case, the VEV of the

canonically-normalized field ϕ̃ is simply given by 〈ϕ̃〉 '
√

2 〈σ〉. Near this minimum, ϕ differs

from ϕ̃ by a factor of 1−| 〈σ〉 |2/Λ2, which is very close to unity when 〈σ〉 � Λ—we, thus, ignore

this factor in the following expressions.

The scalar potential receives quantum corrections via the couplings of the σ field with the

RHNs and the U(1)Lµ−Lτ gauge field.3 These corrections turn out to be negligible if

|heµ|2 + |heτ |2 � 4π
√
κ , (6.13)

g2
X � 4π

√
κ , (6.14)

where gX is the U(1)Lµ−Lτ gauge coupling constant. We assume these conditions to be satisfied

in the following analysis.

The number of e-folds after the CMB modes left the horizon is defined by

Ne ≡ ln

(
af
ak

)
, (6.15)

where af is the scale factor at the end of inflation, ak ≡ k/Hinf with Hinf the Hubble parameter

during inflation, and k is a wave-number which corresponds to the CMB scale. We set k equal to

the default pivot scale adopted by the Planck collaboration [25], k = 0.05 Mpc−1, and evaluate

Ne as [273]

Ne ' 62 +
1

3
ln

(
HinfTR
M2
P

)
' 49 +

1

3
ln

(
Hinf

1011 GeV

)
+

1

3
ln

(
TR

109 GeV

)
, (6.16)

where TR is the reheating temperature. On the other hand, given the inflaton potential (6.12),

we can express Ne in terms of the inflaton field ϕ̃ as

Ne '
∫ ϕ̃N

ϕ̃f

(
V

M2
PV
′

)
dϕ̃

=
1

8M2
P

{(
Λ2 − 〈σ〉2

)
cosh

(
2ϕ̃√
2Λ

)
− 4 〈σ〉2 ln

[
sinh

(
ϕ̃√
2Λ

)]} ∣∣∣∣ϕ̃N
ϕ̃f

, (6.17)

where ϕ̃N and ϕ̃f are the field values when the fluctuations observed in the CMB are created

and inflation ends, respectively. In the present model, inflation ends when |V ′′M2
P /V | ∼ 1 and

3The radiative corrections by the self-coupling κ are insignificant as long as κ is perturbative.
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it turns out that the corresponding field value ϕ̃f is in general much smaller than ϕ̃N . In this

case, we can obtain an approximate solution of Eq. (6.17) with respect to ϕ̃N , by noting that

〈σ〉 � Λ and that the first term dominates the second term in Eq. (6.17) for ϕ̃N > Λ:

ϕ̃N '
Λ√
2

ln

(
16NeM

2
P

Λ2

)
. (6.18)

We then evaluate the slow-roll parameters as

ε ≡ MP

2

(
V ′

V

)2

'
(

Λ

2NeMP

)2

, (6.19)

η ≡ V ′′

V
M2
P ' −

1

Ne
, (6.20)

as well as the scalar spectral index ns and the tensor-to-scalar ratio r as

ns = 1− 6ε+ 2η ' 1− 2

Ne
, (6.21)

r = 16ε '
(

2Λ

MPNe

)2

' 3× 10−8 ×
(

Λ

1016 GeV

)2(Ne

50

)−2

. (6.22)

From Eq. (6.21), we see that ns ' 0.96 for Ne ' 50; this is compatible with the Planck best-fit

value ns = 0.9649± 0.0042 [25]. On the other hand, the predicted value of the tensor-to-scalar

ratio is much smaller than the Planck limit [25], r0.002 < 0.10 (95%, TT,TE,EE+lowE+lensing)

at pivot scale 0.002 Mpc−1, and unable to be probed in the next-generation CMB experiments.

The power spectrum of the curvature perturbation Pζ is

Pζ =
V 3

12π2M6
PV
′2 '

κN2
eΛ2

6π2M2
P

.

With the measured value of the power spectrum, Pζ ' (2.10± 0.03)× 10−9 [25], we determine

the coupling κ:

κ ' 3× 10−6 ×
(
Ne

50

)−2( Λ

1016 GeV

)−2

. (6.23)

We then obtain the Hubble parameter during inflation and the inflaton mass as

Hinf '
Λ2

MP

√
κ

3
' 4× 1010 GeV ×

(
Λ

1016 GeV

)(
Ne

50

)−1

, (6.24)

mϕ ' 2
√
κ 〈σ〉 ' 3× 1010 GeV ×

(
〈σ〉

1013 GeV

)(
Λ

1016 GeV

)−1(Ne

50

)−1

. (6.25)

Also, the mass of the U(1)Lµ−Lτ gauge boson is given by

mX '
√

2gX 〈σ〉 . (6.26)
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For Λ� 〈σ〉, the potential height at the origin is much lower than the potential energy during

inflation. In this case, the U(1)Lµ−Lτ gauge symmetry would be restored during the (p)reheating

process [274]. The subsequent symmetry breaking then leads to the formation of a cosmic-string

network. Throughout cosmic history, oscillating string loops in the network emit gravitational

waves, yielding a stochastic background of gravitational waves. The most stringent limits on

this signature are imposed by pulsar timing arrays (PTAs), such as the Parkes PTA [275, 276],

the European PTA [277], and the North American Nanohertz Observatory for Gravitational

Waves (NANOGrav) [278, 279]. With these data, as well as the theoretical predictions given in

Refs. [280, 281], one obtains Gµ . O(10−11), where µ is the mass per unit length of the cosmic

string. For the Bogomol’nyi-Prasad-Sommerfield strings, which correspond to the case with

mϕ = mX , we have µ = 2π 〈σ〉2, for which the above limit leads to 〈σ〉 . 2 × 1013 GeV. This

bound slightly depends on the choice of parameters, κ and gX , through the change in µ. For

example, in the limit mX � mϕ, we have µ→ 2π 〈σ〉2 / ln(mX/mϕ) [282], with which we obtain

a weaker bound on 〈σ〉 than the aforementioned one. Future interferometric gravitational-wave

detectors are expected to be sensitive to a much smaller value of Gµ; for example, the Laser

Interferometer Space Antenna (LISA) can probe the gravitational waves emitted by cosmic

strings with Gµ & 10−17 [283], which corresponds to 〈σ〉 & 2 × 1010 GeV. Moreover, the

NANOGrav collaboration analyzed 12.5 years pulsar timing data and reported strong evidence

for a stochastic common-spectrum process which can be interpreted as a gravitational wave

(GW) with frequency f ∼ 1/yr [284]. Various works (for example, Refs. [285–288]) explore

the possibility that the above GW is originated from cosmic strings formed by breaking of

U(1) gauge symmetry, and the relation between the NANOGrav results and lentogenesis in the

minimal gauged U(1)Lµ−Lτ model will be study in future work [289].

6.3 Non-thermal Leptogenesis in the Minimal Gauged U(1)Lµ−Lτ
Model

After inflation ends, the Universe is reheated through the inflaton decay. In the following discus-

sions, we consider the case where the inflaton decays dominantly into RHNs; more specifically,

we assume that the quartic coupling λHσ|H|2|σ|2 is negligibly small and that mϕ < 2mZ′ .
4 The

total decay rate of inflaton in this case is given by

Γϕ =
∑
i,j

mϕ

32π

[
1−

2(M2
i +M2

j )

m2
ϕ

+
(M2

i −M2
j )2

m4
ϕ

] 1
2

×
[
Re
(
ĥij

)2
{

1− (Mi +Mj)
2

m2
ϕ

}
+ Im

(
ĥij

)2
{

1− (Mi −Mj)
2

m2
ϕ

}]
, (6.27)

4We can instead assume that g′Z is negligibly small. In either case, we can always find a value of g′Z that
satisfies the condition (6.14).
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where ĥij ≡
∑

α,β hαβΩαiΩβj . As it turns out later, the couplings ĥij are perturbative and

Γϕ � Hinf in the parameter region of our interest. We then estimate the reheating temperature

as

TR '
(

90

π2g∗

) 1
4 √

ΓϕMP , (6.28)

where g∗ = 106.75 is the relativistic degrees of freedom at the end of reheating.

If TR . 0.1M1, the produced RHNs are out of thermal equilibrium,5 and their subsequent

non-thermal decay generates a lepton asymmetry. In this work, we focus on such a parameter

region where this condition is satisfied and leptogenesis takes place non-thermally. For a higher

reheating temperature, we need to take account of the inverse decay and scattering processes

with the thermal plasma; a detailed analysis for this case will be given in the author’s future

work.

As shown in Eq. (4.49), the baryon asymmetry generated in the non-thermal leptogenesis is

computed

YB ≡
nB
s

= −28

79
· 3TR

4mϕ
· (2εeff) , (6.29)

where εeff is the effective asymmetry parameter defined by the averaged asymmetry parameter

over the RHN decays:

εeff ≡
1

2

∑
i≤j

(εi + εj)Br(ϕ→ NiNj) . (6.30)

As seen in Eq. (6.29), to obtain YB > 0, we need εeff < 0.

Now we show the predictions of our model. Let us begin with briefly summarizing the input

parameters in this model. As discussed in Sec. 5.1, there are nine parameters in the light neutrino

sector, among which four parameters are determined as functions of the other five parameters

through the two-zero minor conditions [M−1
ν ]µµ = [M−1

ν ]ττ = 0 as in Eqs. (5.7) and (5.8). We

then fix four of the remaining five parameters using the neutrino oscillation data as in Tab. 2.2

and θ23 to be 51◦ for the avoidance of the present constraint on the sum of the neutrino masses.

As a result, there is no free parameter in the light neutrino sector. For the input parameters in

the RHN and inflation sectors, we take:

• λ, θ and φ in Eq. (6.8) for the Dirac Yukawa couplings

• VEV of the U(1)Lµ−Lτ -breaking Higgs field, 〈σ〉

5We, however, note that the temperature of the Universe during reheating is in general larger than TR [290, 291]
and thus RHNs may be produced from the thermal bath even if TR . 0.1M1. In the following analysis, we neglect
their contribution just for simplicity.
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Figure 6.2: The φ-θ plane for λ = 0.01, 〈σ〉 = 1013 GeV, and Λ = 1016 GeV, exhibiting the area
where εeff < 0 in the pink shaded region. The blue solid (gray dashed) contours show the ratio
M2/M1 (M3/M1).

• Λ in Eq. (6.9)

Once the values of λ, θ and φ are chosen, together with the neutrino oscillation parameters,

we can uniquely determine the heavy RHN mass matrix as discussed in Sec. 6.1, as well as the

couplings hαβ for a given value of 〈σ〉.6 The parameter κ in Eq. (6.23) and the e-folding number

Ne are determined by solving Eq. (6.16), Eq. (6.24), Eq. (6.25), and Eq. (6.28) for a given set of

the above input parameters. Here, we require Ne ≥ 46 in order to satisfy the constraint on the

spectral index ns within 2σ. We do not specify the value of the U(1)Lµ−Lτ gauge coupling, gX ,

as it does not affect the following analysis—we just assume that gX is taken to be in the range√
κ/2 < gX � (16π2κ)1/4 to satisfy mϕ < 2mX and the condition (6.14). We can always find

such a gX for a perturbative value of κ.

The pink shaded region on the φ-θ plane in Fig. 6.2 shows the area in which εeff is predicted

to be negative, corresponding to YB > 0, for λ = 0.01, 〈σ〉 = 1013 GeV, and Λ = 1016 GeV. We

also show the ratios of the RHN masses, M2/M1 and M3/M1, by the blue solid and gray dashed

contours, respectively, which are identical to the ones shown in Fig. 6.1. Comparing Figs. 6.1

6We note that in this case hαβ ∝ 〈σ〉−1.
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Figure 6.3: The λ-Λ plane for θ = 60◦, φ = 30◦, and 〈σ〉 = 1013 GeV. In the blue shaded
region, mϕ < 2M1 and thus the decay of inflaton into right-handed neutrinos is kinematically
forbidden. In the orange shaded region, TR > 0.1M1, for which our analysis for the non-thermal
leptogenesis is inappropriate. The black solid curve corresponds to YB ' 8.7× 10−11 [25].

and 6.2, we see that the contribution of the heavier RHNs to the effective asymmetry parameter

is sizable—in a part of the region on the φ-θ plane, ε1 < 0 but εeff > 0, and vice versa. It is also

found that εeff < 0 is realized in a fairly large fraction of the parameter space.

Now we show in Fig. 6.3 the allowed parameter region of this model on the λ-Λ plane for

θ = 60◦, φ = 30◦, and 〈σ〉 = 1013 GeV. This value of 〈σ〉 is chosen such that the cosmic-string

bound discussed in Sec. 6.2 is evaded. In the blue shaded region, mϕ < 2M1 and thus the decay

of inflaton into RHNs is kinematically forbidden. In the orange shaded region, TR > 0.1M1,

for which our analysis for the non-thermal leptogenesis is inappropriate. The black solid curve

corresponds to the observed baryon asymmetry YB ' 8.7 × 10−11 [25]. We find that the latter

can be reproduced within the allowed parameter region indicated by the white strip between

the blue and orange areas. The mass scale of the inflaton and RHNs in this case is found

to be O(1010) GeV, and the reheating temperature is O(108) GeV. Over the parameter space

shown in this figure, the couplings hαβ are O(10−3) and thus perturbative and compatible with

the condition (6.13). The value of the spectral index, ns, is predicted to be ns ' 0.96. This
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prediction can be tested in future CMB experiments such as CMB-S4 [292, 293].

The shape of the black solid curve in Fig. 6.3 can be understood as follows. In the bulk

region below this curve, YB is predicted to be larger than the observed value. To see the change

of YB in this region, we first fix λ and examine the dependence of YB on Λ. In this case, the

right-handed neutrino masses are fixed and thus the couplings hαβ are also fixed. This means

that the inflaton decay width, Γϕ, is determined solely by the inflaton mass, and approximately

goes as ∝ mϕ ∝ Λ−1 in the bulk region. It then follows that TR/mϕ, and thus YB as well, gets

larger for a larger Λ, roughly scales as ∝ Λ1/2. Just below the blue shaded region, however, the

inflaton decay width is highly suppressed by the kinematic factor, resulting in a suppression in

the reheating temperature and therefore in YB. As a result, we can find a correct value of YB

below the blue shaded area. Next, we fix Λ and consider the dependence of YB on λ. In this

case, as λ decreases, the right-handed neutrino masses, and thus hαβ as well, get smaller. This

leads to a lower reheating temperature. The asymmetric parameters εi in Eq. (6.6) are also

suppressed for a smaller λ. Hence, YB decreases as λ gets smaller (YB ∼ λ4) and at a certain

point (λ ' 0.002) it coincides with the observed value, YB ' 8.7× 10−11 [25].

A large value of YB in the bulk region below the black curve would be depleted once we

include the thermalization of the RHNs and the wash-out of the lepton asymmetry by the

thermal bath. This implies that we may find other parameter regions that are compatible with

the observed baryon asymmetry, with the thermal effect taken into account. This possibility

will be explored in the author’s future work.

If we take a smaller value of 〈σ〉 than that in Fig. 6.3, we need a smaller Λ in order to keep

mϕ larger than 2M1 (see Eq. (6.25)). On the other hand, the reheating temperature is larger for

a smaller 〈σ〉 since hαβ increase as ∝ 〈σ〉−1, as noted in footnote 6, and therefore the boundary

of the TR > 0.1M1 region gets closer to the mϕ < 2M1 region; namely, we need mϕ ' 2M1 to

suppress the inflaton decay width kinematically so that the non-thermal condition is satisfied.

As a result, the allowed parameter region is considerably narrowed down, though the observed

value of the baryon asymmetry is still reproduced along the border of the kinematic bound.

All in all, we conclude that the non-thermal leptogenesis can be realized successfully in the

framework of the minimal gauged U(1)Lµ−Lτ model, though the allowed parameter space is

rather restricted. Our inflation model can be tested in the future with a precise measurement

of ns in CMB experiments, as well as through the search for the cosmic string signatures in

gravitational-wave experiments such as LISA.
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6.4 Summary and Discussions of Chapter 6

In this chapter, we have discussed the non-thermal leptogenesis in the minimal gauged U(1)Lµ−Lτ

model as an example of interesting phenomenology in the case where the U(1)Lµ−Lτ are broken

at high energy scale. We regard the U(1)Lµ−Lτ -breaking scalar as inflaton and consider the

Lagrangian in Eq. (6.9) for this field and then found that this potential can offer successful

inflation that is consistent with the CMB observation. By requiring that the measured value of

the power spectrum be reproduced, we determine the value of the inflaton self-coupling κ as a

function of other input parameters, for which we take Λ and 〈σ〉 in Eq. (6.9).

As discussed in the previous chapter, the minimal gauged U(1)Lµ−Lτ model has nine param-

eters in the light neutrino sector, and among them, four ones are determined by the other five

ones because of the two-zero minor structure of the neutrino mass matrix. Also, the structure of

the RHN mass matrix is determined by fixing three parameters for the Dirac Yukawa couplings,

λα (α = e, µ, τ) [42]. Our model, therefore, has five free parameters, Λ, 〈σ〉, and λα (α = e, µ, τ).

We then study the non-thermal leptogenesis in our model, focusing on the case where the

inflaton decays only into RHNs, and these RHNs are never thermalized after the Universe is

reheated. The successive decay of RHNs then generates a lepton asymmetry, which is converted

to a baryon asymmetry through sphaleron processes. We find that the observed value of baryon

asymmetry can be explained in this scenario. In particular, the correct sign of baryon asymmetry

can be obtained in a wide range of parameter space. We recall that our choice of δ > π, which

is favored by the present neutrino oscillation data [109, 110, 294], was crucial in obtaining this

result; if we instead chose δ < π, we would obtain a wrong sign for the baryon asymmetry in

most parameter regions.

Our analysis shows that baryon asymmetry tends to be overproduced in the non-thermal

leptogenesis scenario. This observation gives a strong motivation for a more detailed study on

leptogenesis in this model with the effect of the thermal plasma taken into account—we shall

return to this issue in future work [289].
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Chapter 7

Secluded dark matter in the
U(1)Lµ−Lτ model and indirect
detection by neutrino telescope

In the previous chapters, we have focused on the U(1)Lµ−Lτ gauge symmetry itself and discussed

the neutrino mass structure in chapter 5 and implication for leptogenesis in chapter 6. In the

previous chapter, we have assumed that the scale of the U(1)Lµ−Lτ -breaking is much higher

than the electroweak scale. On the other hand, we focus on the U(1)Lµ−Lτ -breaking at the

electroweak scale in this chapter.

We have seen that the WIMP dark matter, which is one of the strongest candidates, has two

kinds of regimes, namely, the usual WIMP regime and secluded one, in chapter 3. WIMP DM

can be produced naturally through the thermal freeze-out mechanism and has been discussed

in various previous works. For several decades, lots of experiments and observations have tried

to discover WIMP DM. However, no one detects it so far, and scattering and annihilation

cross sections between DM and SM particles are severely constrained, as shown in section 3.3.

The secluded DM, which is reviewed in section 3.2, is one possibility to relax the severe direct

detection constraints on the DM-nucleon scattering cross section because the DM annihilation

cross section depends only on the coupling between DM and mediator. Therefore, scattering

cross section can be small while keeping large annihilation cross section.

U(1)Lµ−Lτ gauge symmetry and corresponding gauge boson play important roles in the

secluded WIMP DM scenario. First, if DM has U(1)Lµ−Lτ charge, an accidental symmetry

guarantees the DM stability even after spontaneous symmetry breaking of U(1)Lµ−Lτ gauge

symmetry. Therefore, we do not have to introduce Z2 discrete symmetry by hand for DM

stability. Second, the U(1)Lµ−Lτ gauge boson has no coupling to electron and quarks at tree

level, and thus, not only the gauge boson can avoid experimental searches, but also the U(1)Lµ−Lτ

charged DM can do severe constraints from direct detection experiments.
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This chapter is dedicate to the U(1)Lµ−Lτ -charged DM and indirect detection by neutrino

observation experiments, and this discussion is based on Ref. [35]. In Sec. 7.1, we summarize a

history of DM in the U(1)Lµ−Lτ models. In previous works, many attempts have been made to

explain the relic abundance of U(1)Lµ−Lτ -charged DM and muon anomalous magnetic moment

simultaneously. We explain the previous works and the difference between them and this thesis.

In Sec. 7.2, we show the U(1)Lµ−Lτ -charged DM model. In Sec. 7.3, we discuss DM physics in the

U(1)Lµ−Lτ model. First, fixing the U(1)Lµ−Lτ gauge boson mass and gauge coupling constant to

explain the muon g − 2 discrepancy, we explore whether the observed abundance of DM can be

produced in the thermal freeze-out scenario. Then we also investigate experimental and astro-

physical constraints. As revealed later, although the mediator has no coupling to the electrons

and quarks, the direct detection experiments give strong constraints on the U(1)Lµ−Lτ -charged

DM, and this DM is required to have sub-GeV mass. In Sec. 7.4, we discuss the possibility of

DM indirect detection by neutrino observation experiments, such as Super-Kamiokande (SK)

and Hyper-Kamiokande (HK).

7.1 History of U(1)Lµ−Lτ Charged Dark Matter

Before discussing U(1)Lµ−Lτ charged DM and indirect detection by neutrino observation exper-

iments, in this section, we briefly summarize DM in U(1)Lµ−Lτ models which have discussed in

the previous researches.

First discussion of U(1)Lµ−Lτ charged DM has appeared in the context of the muon g − 2

in Ref. [295], and the DM relic abundance and contribution of U(1)Lµ−Lτ gauge boson to the

muon g − 2 have been mentioned briefly. After that, in Ref. [296], the U(1)Lµ−Lτ charged

DM model which explains the muon g − 2 discrepancy simultaneously has been discussed in

detail. Refs. [296, 297] have explored the possibility of direct, indirect, and collider experiments,

and the excess of positron flux in cosmic rays reported by HEAT, PAMELA, and Fermi-LAT

collaborations have been explained. These works assume that DM and U(1)Lµ−Lτ gauge boson

has GeV∼TeV scale masses. After these works, Ref. [55] has focused on contributions of the

U(1)Lµ−Lτ gauge boson to neutrino trident production process (νµN → νµNµ
+µ−) and obtained

the constraints on the U(1)Lµ−Lτ gauge boson by analyzing the results of CHARM-II [53] and

CCFR [54]. Then the U(1)Lµ−Lτ gauge boson with more than GeV scale mass has been excluded

as a new particle which explains the muon g − 2 discrepancy.

After the above analysis of the constraint from neutrino trident production, the works related

to the U(1)Lµ−Lτ charged DM are roughly classified into three types :

• The U(1)Lµ−Lτ gauge coupling constant which explains the muon g− 2 discrepancy is too

small to realize the observed relic abundance of DM. When DM mass is close to a half of
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fields SU(2)L U(1)Y U(1)Lµ−Lτ

(Le, Lµ, Lτ ) 2 −1/2 (0,+1,−1)

(eR, µR, τR) 1 −1/2 (0,+1,−1)

ψ 1 0 qψ

Table 7.1: Charge assignment

the U(1)Lµ−Lτ gauge boson mass, the annihilation cross section of DM is enhanced by the

Breit-Wigner enhancement, and the U(1)Lµ−Lτ gauge boson can be a mediator [298].

• To obtain enough annihilation cross section, other mediators are introduced, and the

U(1)Lµ−Lτ gauge boson is devoted to explaining the muon g − 2 anomaly [62, 299–301].

• Abandoning the explanation of the muon g−2 discrepancy, contributions of the U(1)Lµ−Lτ

gauge boson to other BSM physics are studied. For example, relations with B meson

anomaly [302–307], excess in gamma-ray signal near the Galactic center [308], and positron

excess observed by AMS-02 [307] are explored.

In this chapter, both the relic abundance of U(1)Lµ−Lτ charged DM and explanation of the

muon g − 2 discrepancy are realized without other mediators and Breit-Wigner enhancement,

and this point is one of the novelties of this thesis.

7.2 Model

In this section, we show the U(1)Lµ−Lτ charged Dirac fermion DM model, based on Ref. [35].

This model is based on an SU(3)c×SU(2)L×U(1)Y×U(1)Lµ−Lτ gauge theory. We introduce a

SM singlet Dirac fermion DM ψ that carries an Lµ−Lτ charge qψ in the unit of the muon (tau)

charge being +1(−1). As mentioned in subsection 2.1.1, the above Dirac fermion DM produces

no gauge anomaly because it transforms vector-like under U(1)Lµ−Lτ gauge transformation.

The charge assignment for DM and leptons is summarized in Table 7.1. In this model, DM

has much larger U(1)Lµ−Lτ charge than the SM fields, and then, ψ must appear with ψ̄ in the

Lagrangian to preserve the invariance of the U(1)Lµ−Lτ gauge symmetry. Therefore, even after

the spontaneous symmetry breaking of the U(1)Lµ−Lτ , an accidental global U(1) symmetry of

which only DM has non-zero charge remains. 1 Moreover, because of the observations of neutrino

oscillation by various experiments, at least two mass eigenstates of the neutrinos are undoubtedly

massive, and thus the neutrino sector should be extended. There are many previous works in

1If there are scalar fields with U(1)Lµ−Lτ charge qψ or qψ±1 in this model, Yukawa interaction terms between
DM and SM leptons can be formed. In this case, there is no symmetry which guarantees the DM stability.
Therefore, we assume that such scalar fields do not exist in this model.
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which the relation between U(1)Lµ−Lτ gauge symmetry and neutrino masses is discussed, for

example, Refs. [42–44, 243–245, 247]. However, neutrino masses is much lighter than the other

particles in the model, and they are negligible and irrelevant in the following discussion about

DM physics. Therefore, we assume that the neutrino masses can be approximated massless.

The model Lagrangian is given by

L = LSM − gXXλ

(
µ̄γλµ− τ̄ γλτ + ν̄µLγ

λνµL − ν̄τLγλντL
)

− 1

4
XρλX

ρλ +
1

2
m2
XXλX

λ − ε

2
XρλB

ρλ

+ ψ̄ (i/∂ −mψ)ψ − qψgXXλψ̄γ
λψ , (7.1)

Here, we assume that the mass of X is generated by the Higgs mechanism. However, since the

origin of the mass and scalar sector are irrelevant to our discussion about DM physics, we do

not specify them. Now, we have five free parameters, mX , gX , mψ, qψ and ε in the model.

In this paper, we will consider qψ as a free parameter that takes an arbitrary value unless it

violates unitarity. As will see in section 7.3, a large qψ is indeed required to explain the observed

DM abundance. Such a large qψ is allowed phenomenologically, but it may be unnatural from

the theoretical perspective. We do not discuss in this paper any UV origin of the large charge

hierarchy between DM and muon, but one of possible UV extensions includes the addition of

another dark U(1) gauge symmetry that is coupled only to DM. If DM is not charged under

the U(1)Lµ−Lτ symmetry and there is a small mixing between two U(1)’s, we will be able to

apparently realize the large charge hierarchy.

We further assume the kinetic mixing ε of X and the hypercharge gauge field B is vanishing

at some high scale. Nonetheless, as shown in subsection 2.1.2, the gauge kinetic mixing between

X and the SM photon appears in this model, and then X couples to the electromagnetic current

as follows :

LX,EM = εAeXµJ
µ
EM . (7.2)

This interaction contributes to the elastic scattering process of the DM with the nucleon and

electron, and the constraints from the direct detection experiments are given, as discussed in

subsection 7.3.2.

This model has four free parameters, the mass of the U(1)Lµ−Lτ gauge boson mX , gauge

coupling constant gX , DM mass mψ, and U(1)Lµ−Lτ charge of DM qψ. Among them, we set mX

and gX so that the U(1)Lµ−Lτ gauge boson explain the discrepancy of the muon g − 2 [50] :

∆aµ = aexp
µ − aSM

µ = (261± 79)× 10−11 . (7.3)

From Eq. (2.16), the parameter region in mX − gX plane where the above discrepancy can be

explain is given by Fig. 7.1. As explained in subsection 2.1.3, the favored region by the muon
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Figure 7.1: Constraints on the U(1)Lµ−Lτ boson and muon g − 2 favored region. Dark (light)
red area corresponds to the 1σ(2σ) favored region of the muon g − 2, respectively.

g − 2 at 1σ(2σ) level is shown in dark (light) red area, and the experimental, cosmological, and

astrophysical constraints correspond to the various colored lines and areas. In the model with

U(1)Lµ−Lτ charged DM, the bound from the BABAR experiment is different from the tha case

without DM. The dashed blue line corresponds to the constraint when the Dirac fermion DM

has five times larger U(1)Lµ−Lτ charge. As mentioned in subsection 2.1.3, BABAR experiment

constraints on X by the search for e+e− → µ+µ−X process with a subsequent decay X → µ+µ−.

Therefore, as qψ is much larger than the charge of the muon, the branching fraction ofX → µ+µ−

decay is much smaller than the case for qψ = 0, and then the limit by BABAR experiment is

weaker. We show in the figure the BABAR limit for qψ = 5 with the dashed blue line, assuming

DM is much lighter than X. Hereafter, we focus on the parameter space where the muon g−2 is

explained within 2σ while avoiding the other constraints from the BABAR, CHARM, Borexino

experiments, WD cooling, and ∆Neff .

7.3 Dark Matter Physics

In this section, we study the DM thermal production and constraints from direct detection and

CMB observations.

95



7.3.1 Dark Matter Relic Density

As shown in Eq. (3.1) in section 3.1, the DM thermal relic abundance is calculated by the

Boltzmann equation and given by

dnd

dt
+ 3Hnd = −〈σannvrel〉

2

(
n2

d − (neq
d )2

)
, (7.4)

where H denotes the Hubble parameter, and nd does the DM number density. The right-

hand side of Eq. (7.4) is different by 1/2 from that of Eq. (3.1). This is because the DM ψ

in this model is Dirac fermion, and the total (equilibrium) DM number density is given by

n
(eq)
d = n

(eq)
ψ + n

(eq)

ψ̄
. Therefore, the annihilation cross section of ψ averaged over the thermal

distributions of the initial state 〈σannvrel〉 should be twice that of total DM (ψ + ψ̄). Study on

precise calculation of the thermal relic density [196, 309] indicates the canonical value of the

cross section to explain the observed DM abundance,

〈σannvrel〉 /2 ' 3× 10−26 cm3/s , (7.5)

for DM mass ranging from MeV to 100 TeV.2 In this chapter, we employ micromegas 4 3 5 [310]

to calculate the DM thermal abundance numerically.

In the U(1)lµ−Lτ charged DM model, there are two kinds of DM annihilation processes,

ψψ̄ → ff̄ (f = µ, τ, νµ, ντ ) and ψψ̄ → XX. If the DM is lighter than the U(1)Lµ−Lτ gauge

boson, the only possible annihilation process is ψψ̄ → ff̄ through the s-channel X boson

exchanging. The annihilation cross section is given by

(σv)ff̄ =


q2
ψg

4
X

2π

(2m2
ψ +m2

f )(1−m2
f/m

2
ψ)1/2

(4m2
ψ −m2

X)2 +m2
XΓ2

X

(f = µ, τ) ,

q2
ψg

4
X

2π

m2
ψ

(4m2
ψ −m2

X)2 +m2
XΓ2

X

(f = νµ, ντ ) ,

(7.6)

where ΓX denotes the total decay width of X and we only keep the partial s-wave. Since the

gauge coupling constant gX is as small as O(10−4) for the successful explanation of the muon

g− 2, the resulting annihilation cross section is too small to achieve the correct relic abundance

for qψ = O(1). Therefore, for enough annihilation cross section, the DM mass have to be fine

tuned to satisfy mψ ' mX/2 or the U(1)lµ−Lτ charge of DM satisfies qψ � 1. A comprehensive

study of the resonant production has been made on a benchmark point mψ = 0.45mX [298],

including various experimental constraints. We study another option of exploiting the large DM

charge as well as the resonant case.

2Ref. [309] precisely calculates the annihilation cross section of WIMP DM that requires for a successful
production of WIMP DM through the thermal freeze-out mechanism and indicates that DM with MeV mass
requires 〈σannvrel〉 ∼ 4× 10−26 [cm3/s].
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If DM is heavier than the U(1)lµ−Lτ gauge boson, the other annihilation channel ψψ̄ → XX

opens, and the annihilation cross section of that process is given by

(σv)XX =
(qψgX)4

4πmψ

(m2
ψ −m2

X)3/2

(2m2
ψ −m2

X)2
. (7.7)

The annihilation cross section of ψψ̄ → XX process in Eq. (7.7) is proportional to q4
ψ, while that

of ψψ̄ → ff̄ in Eq. (7.6) to q2
ψ. Therefore, even if there is no enhancement by tuning between

the DM and U(1)Lµ−Lτ gauge boson masses, the DM annihilation cross section can be large

enough to realize the successful thermal production only for qψ � 1, and ψψ̄ → XX process

gives dominant contribution.

7.3.2 Direct Detection Constraints

As shown in Eq. (7.2), the U(1)Lµ−Lτ gauge boson couples to the electromagnetic current JEM

through the small gauge kinetic mixing εA, and then the scattering of DM with a nucleus and

an electron can occur, although the cross section is suppressed by ε2A. The mixing with the Z

boson εZ also causes the scattering. However, εZ is suppressed by a factor of m2
X/m

2
Z , compared

with the leading contribution, and thus we neglect it.

In this model, the effective coupling constants of ψ̄ψp̄p and ψ̄ψn̄n are given by

fp =
εAeqψgX
m2
X

, fn = 0 , (7.8)

and from Eqs. (3.9) and (3.11), the SI scattering cross section of DM with a nucleus is given by

σSI
N =

µ2
N

π

Z2ε2Ae
2q2
ψg

2
X

m4
X

, (7.9)

here µN = mNmψ/(mψ + mN ) is the reduced mass of DM and a nucleus with mN being

the nucleus mass, Z the atomic number of the nucleus. This scattering is very similar to the

one via the photon exchanging induced by the DM charge radius, bψ = εAqψgX/m
2
X . Thus,

the cross section is proportional to Z2 rather than A2 with A being the atomic mass. As

shown in Fig. 3.5, the most stringent current limit on the cross section is set by XENON1T

(5 GeV . mψ) [32], XENON1T with ionization signals (3 GeV . mψ . 5 GeV) [33], DarkSide-50

(2 GeV . mψ . 3 GeV) [311], XENON1T with migdal effects (0.1 GeV . mψ . 2 GeV) [34], and

a TEA-LAB simulated experiment inspired by the DarkSide50 result (0.05 GeV . mψ . 0.1 GeV)

[312].

Similarly, from Eq. (3.15), the cross section of the DM-electron scattering is given by

σ̄e =
µ2
e

π

ε2Ae
2q2
ψg

2
X

(m2
X + α2m2

e)
2
, (7.10)
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where µe denotes the DM-electron reduced mass. The constraints strongly depend on the

scenario if the scattering depends on momentum-transfer q or not. If the X boson mass is

much lighter than keV, the scattering is enhanced at a small momentum transfer. Then, we

have to take into account a DM form factor, FDM = (αme/q)
2. Since we are interested in

mX & 6 MeV, however, the scattering is momentum-transfer independent, so that we can use

the limit with a DM form factor, FDM = 1, in the literature. As shown in Fig. 3.8, the most

stringent current limit on the cross section is set by XENON1T (30 MeV . mψ) [33], DarkSide50

(20 MeV . mψ . 30 MeV) [311], XENON10 (10 MeV . mψ . 20 MeV) [171], and SENSEI

(mψ . 10 MeV) [174].

7.3.3 Cosmological Bounds

DM pair-annihilates into charged leptons and neutrinos. These annihilations during the cos-

mic dark ages and the BBN era have impacts on the ionization history and Neff , bringing us

cosmological bounds. We will give brief comments on these bounds in the following.

A. CMB

Annihilation of DM into charged particles and photons increases the ionization fraction in the

post-recombination era, modifying the CMB anisotropies and in turn providing the strong limit

on the cross section. According to Refs. [313, 314], we adopt a conservative limit on the thermal

averaged cross section into charged final states, (σv)charged/(2mψ) ≤ 5.1×10−27 cm3 s−1 GeV−13.

It suggests that there is a lower mass boundmψ & 5 GeV if the annihilation into charged particles

is only responsible for the thermal production.

Let us see the impact of the CMB limit on the model. For mψ ≤ mX , DM can only annihilate

into the muon, tau particle, and neutrinos. Since the cross section for these three processes is

almost same, (σv)µ+µ−,τ+τ− ' 10−26 cm3/s is suggested if kinematically possible, excluding the

DM mass up to several GeV. Thus, the CMB observation excludes the region where mµ < mψ.

For mψ > mX , the annihilation is dominated by ψψ̄ → XX followed by X → νν̄. The cross

section for the annihilation into charged states is smaller by a factor of (1/q2
ψ) than ψψ̄ → XX.

In this case, there is less significant energy release from DM annihilation into electron and

photon. The CMB bound is much weaker than that for mψ ≤ mX . Nonetheless, the CMB

observations partly limit the parameter space. We shall estimate it by considering mX � mψ

for simplicity. The cross section of ψψ̄ → µ+µ− is related to that of ψψ̄ → XX as

(σv)µ+µ− =

[
1 +m2

µ/(2m
2
ψ)
] (

1−m2
µ/m

2
ψ

)1/2

q2
ψ

× (σv)XX . (7.11)

3Since we consider Dirac DM with the symmetric relic, the left-hand side is divided by 2.
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The canonical cross section is (σv)XX/2 ' 5× 10−26 cm3/s for Dirac DM [196, 309] in the sub-

GeV region where the direct detection bound will be avoided. Plugging the canonical value in

Eq. (7.11), the CMB bound reads

q2
ψ & 9.8

(
GeV

mψ

)(
1 +

m2
µ

2m2
ψ

)(
1−

m2
µ

m2
ψ

)1/2

. (7.12)

It follows from this equation that qψ . 6.9 is excluded for mψ = 200 MeV. We illustrate the

CMB bound expressed by Eq. (7.12) in Fig. 3.1 (right).

B. Effective neutrino number Neff

The annihilation into neutrinos reheats the SM plasma when DM becomes non-relativistic. If it

occurs after the neutrino decoupling, only the neutrino is reheated and the neutrino-to-photon

temperature ratio increases, resulting in a higher expansion rate at the BBN than the standard

scenario. The expansion rate at the BBN, together with the baryon-to-photon ratio, affects the

primordial abundances of helium and deuteron.

The change of the expansion rate is rendered in the effective neutrino number Neff . A

significant deviation of Neff from the standard value Neff,SM = 3.046 [112] is faced with the

precise Planck observations. In [315–318], the authors calculate the increase of Neff by a relic

particle coupled to neutrinos, assuming that the particle is only in equilibrium with the neutrinos

during the BBN. They obtain the lower mass bound of Dirac DM mψ & 10 MeV, which is drawn

in Fig. 7.2 with light blue.

7.3.4 Allowed Region

Fig. 7.2 shows the allowed region in the (mψ, qψ) plane. The left panel corresponds to the usual

WIMP case (mψ < mX), while the right panel to the secluded case (mψ > mX). In both panels,

we scan two parameters, mX and gX , such that the experimental and cosmological limits given

in subsection 7.2 are avoided. The DM observed abundance, ΩCDMh
2 = 0.12, can be explained

in all the regions in the plots, except for the dark gray region where Ωψh
2 > 0.12 is predicted.

We also highlight the 1σ (2σ) muon g − 2 favored region with the (light) red band.

In Fig. 7.2 (left) with mψ < mX , the muon g − 2 explanation and DM production are

simultaneously achieved in a wide DM mass range. In particular, we find that the non-resonant

DM production is realized for qψ & O(10), otherwise, a large resonant enhancement is needed.

We also show the excluded regions from the CMB (green) and Neff (light blue). These restrict

the DM mass to be 10 MeV . mψ . 100 MeV. Note that the BABAR limit (blue) depends on

qψ for mψ < mX/2. We estimate this limit by rescaling the announced BABAR limit [59] with

the branching ratio: gX → gX · {BrX→µ+µ− |qψ/BrX→µ+µ− |qψ=0}1/2. Naively speaking, the limit
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Figure 7.2: The allowed parameter region in the plane of the DM parameters. Dark (light) red
region is favored the muon g − 2 at 1σ (2σ) level. Shaded regions are excluded by the CMB
(green), ∆Neff (light blue) and direct detection (black) and the BABAR (blue) experiments.
The dark gray region is disfavored by the DM overabundance (Ωψh

2 > 0.12).

is weakened by a factor of qψ, compared to the announced one. The BABAR limit excludes the

region of qψ . 5, although it is overlapped with the CMB limit.

It is obvious from Fig. 7.2 (right) that allowing the large qψ opens a new mass regime,

mψ > mX , that has not been pointed out in the previous study. The heavy DM mass, even

O(100 GeV), is allowed in this regime. The leading constraints in the heavy mass region are

set by the direct detection experiments. Given the current results, the DM mass should be

lighter than 2 GeV to resolve the muon g − 2 anomaly. In contrast, if we do not require the

muon g − 2 explanation, the direct detection limit can be very weak, since we can consider the

heavy X boson outside the light red band in Fig. 7.2. The gain of the X boson mass does not

affect the DM production much, while it considerably reduces the elastic scattering with nuclei

and electrons, thereby weakening the direct detection bound4. As far as the indirect bounds

are concerned, the Neff bound disfavors mψ . 10 MeV, while the CMB gives a complementary

constraint in the O(100 MeV) region, but only a small part is covered yet. Altogether, it is

10 MeV . mψ . 2 GeV where the muon g − 2 anomaly and DM are both addressed. One may

wonder if the large DM charge will generate a sizable Sommerfeld enhancement at the freeze-out

or in indirect searches. We have confirmed, however, that there is no sizable Sommerfeld effect

in the parameters space we consider.

4The leading constraint on the heavy X boson is e.g. from a CMS search [319], but it is weaker than the
constraints on the light X boson. Thus, we have no difficulty in making the X boson heavy enough to avoid the
direct detection limit.
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It has turned out so far that allowing the large DM charge opens two new DM production

regimes; (i) the non-resonant production for mψ < mX and (ii) the secluded production for mψ >

mX . These are overlooked possibilities in the previous study. Given the new phenomenological

possibilities, it is natural to explore the signals of DM in this new parameter space. In the

next section, we will study the indirect signals of this DM candidate at neutrino telescope

experiments.

7.4 Indirect Detection by Neutrino Telescope

In subsection 7.3.4, we have shown that the DM annihilation cross section is large enough to

realize the successful thermal production of the U(1)Lµ−Lτ charged DM without the resonance

enhancement by the fine tuning of the X and ψ masses when the DM U(1)Lµ−Lτ charge is large

enough. This large annihilation cross section leads to an excess of the neutrino flux from the

galactic space. In this section, we discuss the sensitivity of the SK to the neutrino flux excess

and the prospect at the HK.

There are some dedicated works which discuss signature of neutrinos originated from DM

annihilation in the framework of simplified models [320–327]. In these works, the DM annihi-

lation is considered in the usual WIMP regime, namely, it produces a pair of neutrinos. The

resulting monochromatic neutrino fluxes are compared with the results of searches for unknown

extraterrestrial neutrino sources [328, 329], supernova relic neutrino (SRN) searches [330–332]

and atmospheric neutrino measurements [333], to derive upper limits on the annihilation cross

sections. In the following, we perform an independent analyses for the DM signals measured at

the SK, assuming that the extra neutrino flux originates from the direct annihilation ψψ̄ → νν̄

or the secluded annihilation ψψ̄ → XX → 2ν2ν̄ in the Milky Way. We also note that the

analysis in this section is applicable as far as the event topologies are the same only by changing

the model-dependent flux normalization.

7.4.1 Neutrino flux from DM annihilation

We here assume that neutrinos are Dirac particles for definiteness, but the result will be un-

changed even if these are Majorana particles. From Eq. (3.16), the expected electron (anti-

)neutrino flux at the detector from DM pair annihilation in the galactic halo is expressed by

dΦann
νe(ν̄e)

dEν
=

1

4π

∑
i

〈σv〉i
4m2

ψ

κ
dNi

dEν
J∆Ω , (7.13)

where 〈σv〉i denotes the annihilation cross section into a final state i, κ is a model dependent

constant which characterizes electron-neutrino flavor fraction, dNi/dEν the neutrino spectral

function for the final state i, J∆Ω the astrophysical J-factor shown in Eq. (3.18). Here, we assume
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the NFW profile as DM density distributions in the galactic halo, and we set the parameters in

the NFW profile and J-factor as the following conventional values :

scale radius : rs = 20 kpc ,

normalized density profile : ρ(r = r�) = 0.4 GeV/cm3 , (7.14)

angular range : 0◦ ≤ b ≤ 90◦, 0◦ ≤ l ≤ 180◦ .

The resulting all-sky J-factor is J∆Ω ' 1.5 × 1023 GeV2/cm5. As an example for calculating

the model dependent constant κ in Eq. (7.13), if the neutrino flavor ratio at source is νe : νµ :

ντ = 0 : 1 : 1, then the flavor ratio at the detector is 1 : 2 : 2. Thus, κ = 1/5 is obtained for

U(1)Lµ−Lτ DM model. If we consider other gauged U(1) models, the neutrino flux is obtained

by changing the value of κ. For example, in the U(1)B−L model, the neutrino flavor ratio at

source is νe : νµ : ντ = 1 : 1 : 1, then the flavor ratio at the detector is also 1 : 1 : 1, and then

κ = 1/3 is obtained.

The neutrino flux exhibits a distinctive feature. There are two important annihilation modes,

which are ψψ̄ → νν̄,XX. The former is dominant for mψ ≤ mX , while the latter for mψ >

mX . In the former annihilation, the neutrino spectrum is monochromatic at Eν = mψ in

the center-of-mass frame of the annihilation. Since DM is almost at rest in the galactic halo,

the monochromatic feature is maintained in the lab frame that is the rest frame of the DM

halo. When the annihilation occurs in the Milky Way, the redshift is negligible. Therefore, the

neutrino spectrum at the detector keeps the monochromatic form, dN/dEν ∝ δ(Eν −mψ). This

spiky spectrum is easy to be disentangled from the smooth background spectrum, providing a

good sensitivity.

In the secluded annihilation ψψ̄ → XX → 2ν2ν̄, the neutrino spectrum takes another

characteristic form. The spectral feature from such a cascade annihilation has been studied in

[334] for an intermediate state with an arbitrary spin, and the authors have shown that the

spectral shape in general depends on the polarization of the intermediate state. In what follows,

we restrict ourselves to an annihilation process ψψ̄ → V V → 2ν2ν̄ with a vector boson V (not

necessarily be the X boson), and briefly review the spectral form. In the rest frame of the

decaying V , each of emitted neutrinos has a monochromatic spectrum at E′ν = mV . In the lab

frame, the neutrino energy is boosted and reads

Eν =
mψ

2

r2
V

1− cos θ
√

1− r2
V

, (7.15)

where rV = mV /mψ and θ is the angle between momenta of the parent V boson and the

emitted neutrino in the lab frame. There is a sharp kinematical cut of the neutrino energy. The

maximum (minimum) neutrino energy corresponds to θ = 0◦ (180◦). Since the emission angle θ

determines the neutrino energy in the lab frame, we can obtain the neutrino energy spectrum
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once we know the angular distribution of the neutrino emitted by the V boson decay. If the

V boson produced in ψψ̄ → V V is unpolarized, the neutrino emission is isotropic and has no

angular distribution. In this case, the neutrino spectrum has no energy dependence between the

kinematical endpoints, i.e. it takes the so-called box shape [335, 336],

dN

dEν
=

2

mψ(1− r2
V )1/2

Θ(y − y−)Θ(y+ − y), (7.16)

where y = Eν/mψ and y± =
(

1±
√

1− r2
V

)
/2 and Θ(y) is the Heaviside theta function. On

the other hand, if the produced V boson is polarized, the neutrino emission has an angular

distribution and hence the resulting neutrino spectrum has an energy dependence.

In general, the neutrino spectrum in the ψψ̄ → V V → 2ν2ν̄ process is expressed by

dN

dEν
=

1

mψ

∑
m,n

Brm,n [fm(y) + fn(y)] , (7.17)

where the summation runs over V boson helicity m,n = +1, 0, −1 and Brm,n denotes the

production branching fraction for each helicity state,

Brm,n =
σv(ψψ̄ → VmVn)∑
m,n σv(ψψ̄ → VmVn)

. (7.18)

The spectral functions fm(y) are in the form of

f0(y) =
3

2

4y − 4y2 − r2
X

(1− r2
X)3/2

Θ(y − y−)Θ(y+ − y), (7.19)

f±1(y) =
3

4

Θ(y − y−)Θ(y+ − y)

(1− r2
X)3/2

×
[
2− 4y + 4y2 − r2

X ± 2(C+1 − C−1)(2y − 1)
√

1− r2
X

]
, (7.20)

where Cm are model-dependent coefficients that characterize how the intermediate state with

the different polarizations couples to the decay products. For example, when the vector boson

couples to the final state fermions as f̄ (gfR,V γ
µPR + gfL,V γ

µPL) f ′Vµ, we find

C0 '
m2
f +m2

f ′

2m2
V

+
2gfL,V gfR,V
g2
fL,V

+ g2
fR,V

mfmf ′

m2
V

, (7.21)

C+1 '
g2
fR,V

(1− C0)

g2
fL,V

+ g2
fR,V

+
2gfL,V gfR,V (g2

fL,V
− g2

fR,V
)

(g2
fL,V

+ g2
fR,V

)2

mfmf ′

m2
V

, (7.22)

C−1 '
g2
fL,V

(1− C0)

g2
fL,V

+ g2
fR,V

−
2gfL,V gfR,V (g2

fL,V
− g2

fR,V
)

(g2
fL,V

+ g2
fR,V

)2

mfmf ′

m2
V

, (7.23)

in the leading order in mf/mV or mf ′/mV [334]. Here, we would like to mention the relation,

1

3

∑
m

fm(y) =
Θ(y − y−)Θ(y+ − y)

(1− r2
V )1/2

. (7.24)
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It follows from this relation that if the branching fraction is helicity-independent, i.e. the V

boson is unpolarized, then we exactly obtain the box-shape spectrum Eq.(7.16).

Now let us return to our model. The X boson mostly couples to the left-handed neutrinos

which can be regarded as massless, so that C0 ' C+1 ' 0 and C−1 ' 1. Further, the polarization

of the X boson produced in the annihilation ψψ̄ → XmXn is purely transverse,

Br = diag(1/2, 0, 1/2). (7.25)

As a result, the neutrino spectrum is in the form of a bowl-shape,

dN

dEν
=

2

mψ

3(2− 4y + 4y2 − r2
X)

4(1− r2
X)3/2

Θ(y − y−)Θ(y+ − y). (7.26)

In Fig. 7.3, we show the neutrino spectrum Eq.(7.26), which is symmetric with respect to

Eν = mψ/2. The width of the spectrum is determined solely by kinematics and is given by√
1− r2

V . As ψ and X are more degenerate, the width is narrower and the height is taller.

We would like to remark on the DM model dependence of the neutrino spectrum from the

secluded annihilation. For example, if DM is a complex scalar charged under the U(1)Lµ−Lτ

gauge group as considered in [337], the annihilation into the longitudinally polarized X boson

is nonvanishing and the branching fraction depends on the mass degeneracy of DM and X,

Br ∝ diag

(
1,

r4
X

(2− r2
X)2

, 1

)
. (7.27)

With a small rX , the annihilation into the longitudinal polarization is sub-leading and the

spectral form is similar to the bowl-shape, while all polarizations contribute equally with rX ' 1

and the spectrum gets close to the box-shape. Moreover, the annihilation into the longitudinal

polarization can be even dominant if DM is sizably coupled to the Nambu-Goldstone mode of the

U(1)Lµ−Lτ Higgs field. In this case, the spectrum is like an upside-down bowl. With the current

and even future-planned precision, however, it will be difficult to distinguish the difference and

these spectra will look practically the same shape in experiments. It might be interesting if any

effort in future would realize good enough capability to discern the difference of the spectra.

7.4.2 Analysis

In this subsection, we explain our analytical method. We try to reinterpret the result of the

2,853 days SK search for SRN [331], to derive the limits on the DM annihilation cross section.

The signal in this experiment is an electron and a positron produced in the reaction of the inverse

beta decay (IBD) (ν̄e + p→ e+ + n) the neutrino absorption by Oxygen in the charged current

(CC) interactions (νe(ν̄e) + 16O→ e−(e+) +XA). The energy of the produced electron/positron
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Figure 7.3: The shape of the neutrino spectrum for the ψψ̄ → XX → 2ν2ν̄ annihilation.

is related to the initial neutrino energy as follows :

Ee ' Eν − 1.3 MeV (ν̄ep) ,

Ee ' Eν − 15.4 MeV (νeO) ,

Ee ' Eν − 11.4 MeV (ν̄eO) .

(7.28)

If no excess of the recoil events is found, one can derive the limit on the neutrino flux, which is

in turn translated into the bound on the annihilation cross section.

The signal region is set to Ee = 16–88 MeV which is divided into 18 bins with a 4 MeV width.

The number of the signal events measured in the i-th bin is expressed by

Ni,sig = NSK TSK

∫
dEν

dΦνe

dEν

∫ Ei+1

Ei

dEvis

∫
dEeR(Ee, Evis) ε(Evis)

×
{
dσν̄ep
dEe

(Eν , Ee) +
1

2

(
dσνeO
dEe

(Eν , Ee) +
dσν̄eO
dEe

(Eν , Ee)

)}
, (7.29)

where NSK = 1.5×1033 denotes the number of free protons in the SK detector, TSK the exposure

time of SK.

We combine SK-I (1, 497 days), SK-II (794 days), and SK-III (562 days) data. To take

into account the detector efficiency and the finite energy resolution, we introduce the efficiency

function, ε(Evis) (Fig. 10 of [331]), and the Gaussian-like resolution function,

R(Ee, Evis) =
1√
2πσ

exp

{
−(Ee − Evis)

2

2σ2

}
, (7.30)
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with the width σ(Ee) = 0.4 MeV
√
Ee/MeV + 0.03Ee [321]. Here, Ee is the actual elec-

tron/positron energy, Evis the measured energy at detector and dΦνe/dEν the neutrino flux orig-

inated from the galactic DM annihilation in Eq.(7.13). We use the NLO analytical expression for

the IBD cross section, dσν̄ep/dEe, in [338] and extract dσνeO/dEe and dσνeO/dEe from [339, 340].

For the latter, we assume the electron energy is mono-energetic, e.g. dσνeO/dEν(Eν , Ee) =

σνeO(Eν) δ(Ee − Eν − 15.4 MeV), and determine σνeO(Eν) from Fig.2 of [340].

There are four main backgrounds in the signal region Ee = [16, 88] MeV. The first one is

an electron from the Michel decay of a muon that is produced by the CC interaction of the

atmospheric muon neutrino in the water of the detector. If the momentum of the produced

muon is lower than the Cherenkov threshold, this muon is invisible and its decay electron

cannot be removed. This is called the invisible muon background. This has a kinematical edge

at Ee ' 60 MeV. The second one comes from the CC interaction of the atmospheric electron

neutrino, producing the monotonically increasing events with the increasing Ee. This dominates

the background above the kinematical endpoint of the invisible muon. The third one is an

electron produced via the neutral current (NC) interaction of the atmospheric neutrinos. This

is increased at the low energy bins. The last grouping of the background is due to heavy charged

particles, pions and muons, created in the NC reactions. Some of them survive the pion and

Cherenkov angle cut, and enter in the signal region. These backgrounds are shown in Fig. 7.4.

To derive the 90% confidence level (C.L.) limit, we first introduce a likelihood function,

Li(Ni,sig) =
(Ni,bkg +Ni,sig)Ni,obs

Ni,obs!
e−(Ni,bkg+Ni,sig), (7.31)

for each bin and each SK phase. With this likelihood, we define the test statistic (TS) as

TS = −2
∑
i

ln

(
Li(Ni,sig)

Li(0)

)
. (7.32)

where the summation runs over 18 energy bins and from SK-I to SK-III. The 90% C.L. limit

is obtained by solving TS ≤ 2.71. Since TS is a function of the DM mass and annihilation

cross section TS(mψ, σv), we obtain an exclusion curve in the (mψ, σv) plane. To estimate the

HK sensitivity, we consider the 374 kton fiducial volume and 10 yrs livetime with the same

efficiency and energy resolution as the SK. The HK detector has an option of doping Gd to

reduce the backgrounds. In our analysis, it is assumed that the doped Gd reduces the invisible

muon background by 50% or 80%. The sensitivity curves are obtained by solving TS = 2.71

with Nobs = Nbkg.

7.4.3 SK bounds and HK sensitivity

We compare the DM signal events with the observed events at the SK-I (1,497 days) in Fig. 7.4.

The left panel corresponds to ψψ̄ → νν̄ and the right panel to ψψ̄ → XX with mX/mψ = 0.5.

106



signal+bkg
(mψ=50MeV)

signal+bkg
(mψ=70MeV)

total bkg

νe CC

νμ CC

NC elastic

μ/π

20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

Ee [MeV]

N
um
be
r
of
ev
en
ts

signal+bkg
(mψ=50MeV)

signal+bkg
(mψ=70MeV)

total bkg

νe CC

νμ CC

NC elastic

μ/π

20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

Ee [MeV]

N
um
be
r
of
ev
en
ts

Figure 7.4: The DM signal events measured in the SK-I (1,497 days) for ψψ̄ → νν̄ (left) and
for ψψ̄ → XX (right). The cross section is fixed such that TS = 2.71. Solid (dashed) red and
blue curves correspond to the expected signal events with (without) backgrounds. Black points
correspond to the observed number of events in the bins with the error bars. The other colored
lines correspond to various kinds of background events that are taken from figure 14 of [331].

We assume 100 % branching fraction for the corresponding annihilation and fix the cross section

such that TS = 2.71. The red and blue curves represent the number of events in presence of the

DM annihilation. The dashed one is the signal and the solid one is the sum of the signal and

backgrounds.

The monochromatic flux predicts the distinct event shape, which is peaked at Ee ' mψ

for 50 MeV DM. The shape is broader for 70 MeV DM, on the other hand. This is because

there are three reactions that produce the electron/positron with different energy: the IBD with

Ee ' Eν − 1.3 MeV and νe(ν̄e) + 16O scattering with Ee ' Eν − 15.4 (11.4) MeV. The cross

sections for the latter two scatterings are still smaller at 50 MeV than the former, while these

become comparable at 70 MeV. Thus, another peak appears at an energy 10 MeV below the

DM mass. The resulting event shape takes a flatter form. The bowl-shape flux induced by

the secluded annihilation produces the broader event shape. The event excess in each bin is

not sizable, but it equally contributes to multiple bins, not losing sensitivity. The center of the

neutrino spectrum is at half of DM mass. On the other hand, the peak appears at slightly higher

energy because the cross section grows as the energy.

We show the 90% C.L. upper limits on the annihilation cross section and the future HK

sensitivity in Fig. 7.5. For the ψψ̄ → νν̄ annihilation, we illustrate the similar limits derived

in the previous works [324, 325] for comparison. Our SK limit is consistent with their results
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Figure 7.5: The 90% C.L. upper limits on and the future HK sensitivity to the annihilation
cross section for ψψ̄ → νν̄ (left) and ψψ̄ → XX (right) cases. The black solid (dashed) line
corresponds to the limit on the annihilation cross section from SK (HK). The results given in
[324, 325] are shown for reference and are shown in turquoise and brown lines.

below mψ = 50 MeV, while it is a little aggressive for higher mass. We guess the disagreement

originates from the difference in modeling the νe
16O cross section. We just assume the mono-

energetic electron in the reaction, but in general, the electron has a broad energy distribution.

This will weaken the signal strength and decrease sensitivity. For the secluded annihilation, the

limits depend on the mass degeneracy. When ψ and X are highly degenerate (mX/mψ = 0.99),

the spectrum has a very narrow width and looks the line shape within the detector resolution, so

that the structure of the exclusion curve resembles the monochromatic one. On the other hand,

the curve is stretched, which reflects the spectral shape that has the center at Eν = mψ/2.

As ψ and X are less degenerate, the curve is shifting to the lighter mass. Interestingly, the

exclusion curves extend to the high mass region above 300 MeV due to the wide spectrum. The

sensitivity in this mass region is rapidly decreasing as the lower energy cut of the neutrino flux,

E− = y−mψ, exceeds about 100 MeV. For instance, E− ' 0.28mψ with mX/mψ = 0.9, so that

mψ ∼ 350 MeV is the boundary. In the high mass region, the sensitivity may be increased

by combining other observations, such as measurements of the atmospheric neutrino flux by

the SK [333]. In both annihilation modes, the current SK limits are much above the canonical

thermal relic cross section, but the future HK sensitivity may reach down to it. We would like

to add that Ref. [325] also studies the reach of DUNE [341] and JUNO [257] experiments, that is

more sensitive than the HK in the same mass range. These sensitivity plots are shown in Fig. 7.6

(left). Also, the gray solid line shows in the left and right panels of Fig. 7.6 the canonical value
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of the DM annihilation cross section, 〈σv〉 ∼ 10−25 cm3/s 5 as a reference. We should note

that, for ψψ̄ → νν̄ case, if the U(1)Lµ−Lτ charge of DM is not large, the resonant enhancement

of DM annihilation cross section is required at the early Universe. Therefore, the annihilation

cross section at the present time can be smaller than that at the typical freeze-out time. We

also note that the difference in modeling the νeO cross section will affect the exclusion limits

in the secluded annihilation as well. Nevertheless, we expect that the modeling error is not so

large compared with the monochromatic case unless DM and X are highly degenerate. This is

mainly because the neutrino flux is basically broad in the secluded annihilation, in contrast to

the monochromatic one, and hence the electron event shape is also broad without the electron

energy distribution in the νeO reaction. Thus, the exclusion limits will not largely be changed

even if another modeling generates a broad electron distribution in the reaction. The detailed

study of modeling the νeO cross section and its potential error is beyond the scope of this paper

and will be followed in a future work.

It may be useful to comment on how large impact the polarizations of the intermediate state

have on the cross section limits in Fig. 7.5 (right). If the intermediate state in the secluded

annihilation is an unpolarized vector or a scalar, the neutrino flux is box-shape. We have

analyzed the neutrino signature and calculated the upper limit on the cross section for such

a neutrino spectrum. Comparing the results with those of the bowl-shape spectrum, we have

found the difference is at most 10–20%. Since in general the neutrino spectrum is a medium of

the box and bowl-shape, we expect the cross section limit to be comparable with the ones in

Fig. 7.5 (right), independently of the annihilation fraction into each polarization state.

7.4.4 Implication for U(1)Lµ−Lτ DM

In the above subsections, we have formulated the analysis of neutrino signature and evaluated the

experimental reach to the extra neutrino flux from the DM annihilation with neutrino telescopes.

In this subsection, we discuss the impact on the U(1)Lµ−Lτ DM.

In Fig. 7.6, we plot the predictions of the annihilation cross section for the parameter points

that can explain the observed DM abundance and the muon g − 2 as well as being consistent

with the experimental constraints in Fig. 7.2. The magenta and orange points give the cross

sections for mψ < mX and mψ > mX , respectively. The velocity of DM is assumed to be a

typical virial velocity in the galaxy, vrel ∼ 10−3. We also summarize various limits on the cross

section derived in the literature, in addition to our results (black lines with the ♦ mark). To

avoid the messy figure, however, we omit the similar limits that are already shown in Fig. 7.5.

The lines with the same mark (♣, ♥) are extracted from the same paper: ♣ Ando et al. [325],

5According to Ref. [309], the canonical value depends on the DM mass and 〈σv〉 ∼ 8-9× 10−26 cm3/s is more
precise for 10 MeV . mψ . 1 GeV.
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♥ Arguelles et al. [326] and SK20 [342]. In referring to these limits, we appropriately adjust the

neutrino flavor fraction to κ = 1/5.

We see in Fig. 7.6 (left) that for mψ < mX , the model predicts so large cross section that

the future experiments can reach. For some parameter points, the cross section is significantly

boosted to have even 〈σv〉 = 10−22 cm3/s. Such parameter points correspond to the resonant

mass region mψ ' mX/2. If the DM mass is fine-tuned to such values at or below % level,

the thermal history of the DM production is modified to delay the freeze-out. Such a delay

requires a larger cross section than the standard case to deplete the number density down to

the observed value. The mechanism for boosting the cross section in this way is discussed

in [343, 344]. We review the detail of this mechanism in the Appendix B.2. Interestingly,

some of such resonant parameter sets have already been excluded by the SK data. When the

mass tuning to mψ ' mX/2 is moderate, on the other hand, suppressed cross sections can

also be obtained. These are distributed over 〈σv〉 . O(10−26) cm3/s in the figure (magenta

points). The suppression is caused if the cross section is highly enhanced at the typical freeze-

out time due to the physical X boson resonance. In this case, the small DM charge is enough

to thermally produce the DM abundance. As a result, the late-time annihilation, e.g. in the

galaxy, is suppressed because the DM velocity in the galaxy is too small to produce the X boson

resonance. This region corresponds mainly to qψ = O(1). In the non-resonant region, the DM

thermal production works in the standard way, so that we have an almost constant canonical

cross section, 〈σv〉 ' 10−25 cm3/s. None of the current experiments can reach the canonical

value, but future experiments including DUNE and JUNO will be able to cover the DM mass

of 20–100 MeV.

In the secluded region (mψ > mX), the direct annihilation into a neutrino pair is suppressed

and the size of the cross section is at most ∼ 10−26 cm3/s. This tendency is more pronounced as

DM is heavier. In this case, however, the secluded annihilation can be large (see Fig. 7.6 (right)).

We see the model predictions distributed slightly below the canonical value, 〈σv〉 = 10−25 cm3/s.

There is no enhancement in this mass region. The cross section can be kinematically suppressed

in the mass degenerate case, because the phase-space of the produced X boson becomes small

for the low DM velocity. Thus, a moderate mass splitting is favored to observe the signal,

although the high degeneracy produces the sharp neutrino spectrum and leads the strong limits.

Indeed, we see some parameter points lying much below the canonical value, where DM and the

X boson have close mass. The current SK limit is over one order of magnitude larger than the

predicted cross section. The estimate of the future reach is above the prediction by a factor of

3 or more. We hope that some future updates or improvements of the analysis will grow the

experimental sensitivity and reach the thermal relic cross section. Compared the HK sensitivity

with the DUNE and JUNO ones in Fig. 7.6 (left), the latter ones have better sensitivity. If this

is the case for the secluded annihilation, it will be important to analyze the similar signals at
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Figure 7.6: The predicted annihilation cross section in the allowed region of the U(1)Lµ−Lτ DM
mass and U(1)Lµ−Lτ gauge coupling constant for ψψ̄ → νν̄ (left) and ψψ̄ → XX (right) cases.
The magenta and orange points correspond to mψ < mX and mψ > mX , respectively. The
various sensitivity curves presented in the literature are shown, in addition to our results (black
lines with the ♦ mark). The lines with the same mark (♣, ♥) are extracted from the same
paper: ♣ Ando et al. [325], ♥ Arguelles et al. [326] and SK20 [342]. To avoid being messy, we
omit the similar lines shown in Fig. 7.5.

these neutrino observatories, that will be pursued in the future.

It is worth mentioning other possibilities that predict significant neutrino flux from sub-

GeV DM. Indeed, a great deal of effort has been devoted to non-renormalizable DM-neutrino

interactions. The prime difficulty in embedding them in a renormalizable model is that the

model includes interactions with charged leptons, which are isospin partners of neutrinos. Such

interactions make DM or a mediator particle visible in terrestrial experiments and cosmological

observations and, hence, will strongly limit the categories that achieve the sizable DM-neutrino

interactions in a renormalizable manner. The model considered here is one of the simplest renor-

malizable models, that evades the experimental constraints and does not suffer from theoretical

requirements, such as gauge anomalies. The other type of possibility is realized by employing

a t-channel mediator. Examples of feasible renormalizable models incorporating a t-channel

mediator include [345–348].

7.5 Summary and Discussions of Chapter 7

In this chapter, we have discussed a simple Dirac fermion DM ψ with the U(1)Lµ−Lτ charge as

an example of low energy physics in the gauged U(1)Lµ−Lτ model. The gauged U(1)Lµ−Lτ model
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has the corresponding gauge boson X, and X boson has an attractive feature that X couples

to the muon, while not to electron and quarks. Therefore, X boson gives a contribution to the

muon magnetic moment through a one-loop diagram and can explain its discrepancy without

conflict with X boson search experiments. Moreover, the gauge U(1)Lµ−Lτ model plays several

important roles for the DM model. One is the contribution to the DM stability guaranteed by

an accidental U(1) symmetry. The other is a role as a mediator of DM and SM interactions.

Because of no coupling to electron and quark at tree level, elastic scattering cross section of

DM with them is suppressed, and the U(1)Lµ−Lτ charged DM and X are expected to avoid

severe constraints from the current direct detection experiments. However, the U(1)Lµ−Lτ gauge

coupling constant which explains the muon g − 2 discrepancy leads too small DM annihilation

cross section to realize the observed thermal relic DM abundance.

DM annihilation occurs through two kinds of processes. One is the s-channel ψψ̄ → ff̄

which is important for mX > mψ. The other is the t-channel ψψ̄ → XX. The latter is allowed

for mX < mψ and is more significant, in comparison with the former, as the DM U(1)Lµ−Lτ

charge qψ increases. We have found that, in both cases, large qψ allows DM thermal production

and explanation for the muon g − 2 simultaneously without the resonance of X boson mass

pole and conflict with the current bounds. This is pointed out for the first time by the author’s

work [35].

The DM annihilation leads to neutrino flux from the DM halo, and its energy spectrum

depends on which annihilation process is dominant. In the latter half of this chapter, we have

formulated the analysis of the indirect neutrino signal of DM in a model-independent way and

applied it to U(1)Lµ−Lτ DM model. From the ψψ̄ → νν̄ process, neutrinos with monochromatic

energy are predicted, while from the ψψ̄ → XX process followed by X → νν̄, the energy

spectrum of neutrinos is bowl-shape. Neutrinos produced in the DM halo can be detected by

neutrino telescopes. We have calculated the number of the signal events expected at SK and HK

detectors and estimated the upper limits from the future HK sensitivity to the DM annihilation

cross section. As we have shown in Fig. 7.6, the future sensitivity to the annihilation cross

section at HK almost reaches the canonical thermal relic cross section in the ψψ̄ → νν̄ case.

On the other hand, in the ψψ̄ → XX → 2ν2ν̄ case, the obtained future sensitivity is several

times larger than the canonical one. Further improvement of the experimental sensitivity is

necessary to cover the wide range of the model predictions. We hope that the analysis of, for

example, the scattering process between anti-electron neutrinos originated from DM annihilation

and electrons in detectors with directional information may help the background subtraction,

and it will be shown in the author’s future works.
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Chapter 8

Summary and Conclusion

U(1)Lµ−Lτ gauge symmetry is one of the extensions of the SM and can be introduced to the

SM without gauge anomaly. U(1)Lµ−Lτ gauge boson has couplings to µ and τ -type leptons

and does not interact with electron and quarks at tree level. Therefore, this gauge boson

avoids severe experimental and cosmological constraints and has been discussed in the context

of phenomenology relative to the muon, tau particle, and neutrinos. Muon g − 2 discrepancy is

one of the clues for exploring the BSM physics, and the U(1)Lµ−Lτ gauge boson can explain this

problem without conflicting with the current experimental bounds. Besides the muon g− 2, the

U(1)Lµ−Lτ gauge boson can play important roles because of its avoidance of interactions with

electrons and quarks.

Mediator which connects the DM to the SM sector is one possibility, and as an example, the

Dirac fermion DM model has been discussed in the author’s work [35]. This model is attractive

because not only the DM avoids the severe bounds from the current direct detection experiments,

but also the DM stability is guaranteed by an accidental symmetry. DM in U(1)Lµ−Lτ models

has been discussed so far in many previous works. However, it is difficult to obtain enough DM

annihilation cross section because of the smallness of the U(1)Lµ−Lτ gauge coupling constant to

explain the muon g−2. Therefore, in many cases, mass tuning between DM and U(1)Lµ−Lτ gauge

boson is needed to realize the DM relic abundance and explanation of muon g−2 simultaneously.

In chapter 7 of this thesis, the DM has a much larger U(1)Lµ−Lτ charge than the SM particles,

and then the above difficulty is avoided, and sub or several GeV DM mass is predicted. Moreover,

neutrinos are important for the indirect detection of such a DM. When the DM is heavier than

the U(1)Lµ−Lτ gauge boson, t-channel DM annihilation process ψψ̄ → XX gives dominant

contribution, and in this case, the predicted neutrino flux originated from DM annihilation is

different from that in the usual s-channel annihilation case. We study the energy spectrum of

neutrinos in the usual WIMP and secluded regimes and we calculate the number of the signal

events expected at SK and HK detectors and estimated the upper limits from the future HK
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sensitivity to the DM annihilation cross section. The future sensitivity to the annihilation cross

section at HK almost reaches the canonical thermal relic cross section in ψψ̄ → νν̄ case. On

the other hand, in the ψψ̄ → XX → 2ν2ν̄ case, the obtained future sensitivity is several times

larger than the canonical one. Further improvement of the experimental sensitivity is necessary

to cover the wide range of the model predictions. We hope that the analysis with directional

information may help the background subtraction.

Besides the U(1)Lµ−Lτ gauge boson, the U(1)Lµ−Lτ gauge symmetry itself performs an im-

portant function for the neutrino sector. The active neutrino mass matrix is restricted by

the U(1)Lµ−Lτ gauge symmetry and has the two-zero minor structure in the minimal gauged

U(1)Lµ−Lτ model. The nine parameters of the light neutrinos, such as one Dirac and two Ma-

jorana CP phases, a sum of the neutrino masses, three mixing angles, and two squared mass

differences, are related to each other by the two-zero minor conditions. In chapter 5, we analyze

these conditions and obtain the former four parameters as functions of the latter five neutrino

oscillation parameters. Moreover, using these predictions, we obtained the prediction of the

effective Majorana neutrino mass for the neutrinoless double beta decay, which value can be

within the reach of future neutrinoless double beta decay experiments. These predictions are

independent of the scales of the U(1)Lµ−Lτ -breaking and Majorana masses because two-zero

minor conditions are also independent of these scales.

In chapter 6, we study the non-thermal leptogenesis in the minimal gauged U(1)Lµ−Lτ model.

In this model, the neutrino CP phases are determined by the neutrino oscillation parameter.

Moreover, the heavy neutrino masses are also determined by them and three neutrino Dirac

Yukawa couplings. Therefore, this model can predict the baryon asymmetry generated by lep-

togenesis with less uncertainty. In this thesis, the U(1)Lµ−Lτ -breaking scalar is regarded as

inflaton, and we assume that the RHNs are produced by the decays of the inflaton. We find that

the observed value of baryon asymmetry can be explained in this scenario. In particular, the

correct sign of baryon asymmetry can be obtained in a wide range of parameter space. We recall

that our choice of δ > π, which is favored by the present neutrino oscillation data [109, 110, 294],

was crucial in obtaining this result; if we instead chose δ < π, we would obtain a wrong sign for

the baryon asymmetry in most parameter regions.

In this thesis, we explore novel possibilities of the U(1)Lµ−Lτ models, as written above. As

discussed in many previous works, the muon g − 2 discrepancy is one of the motivations for

introducing the U(1)Lµ−Lτ gauge symmetry. The theoretical calculations including the lattice

QCD have recently been developed. Moreover, the novel experiments to measure the muon g−2

discrepancy are being carried out and expected to release new results in the near future. These

results remain to be seen, however, regardless of whether the muon g − 2 discrepancy exists,

the U(1)Lµ−Lτ models offer rich phenomenology as studied in this thesis and have considerable

motivations. We look forward to further progress in the U(1)Lµ−Lτ models and experimentally
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testing them in the future.

115



Appendix A

Gauge Kinetic Mixing

The field strengths of the gauge fields are invariant under the gauge transformation. Therefore,

their mixing terms are also gauge invariant, and such terms are called gauge kinetic mixing 1.

Because of the existence of the gauge kinetic mixing, there are deviations of the physical gauge

bosons from ones without the mixing. In this appendix, we give a short review of these deviations

and their effects on the phenomenology.

A.1 Gauge Kinetic Mixing in the U(1)Lµ−Lτ model

Here, we consider the following Lagrangian relative to the kinetic terms of the gauge fields :

Lkin
gauge = −1

4
B̂λρB̂

λρ − 1

4
X̂λρX̂

λρ − sin ε

2
B̂λρX̂

λρ , (a.1)

where B̂λρ and X̂λρ are the field strengths of the U(1)Y and U(1)Lµ−Lτ gauge bosons, re-

spectively. By a linear transformation of the gauge fields, the above kinetic mixing can be

diagonalized

Lkin
gauge = −1

4
B̃λρB̃

λρ − 1

4
X̃λρX̃

λρ , (a.2)(
B̂λ

X̂λ

)
=

(
1 − tan ε

0 1
cos ε

)(
B̃λ

X̃λ

)
=

(
1 −ε
0 1

)(
B̃λ

X̃λ

)
+O(ε2) . (a.3)

1For further detail about gauge kinetic mixing in the U(1)Lµ−Lτ model, please see Ref. [304], for example.
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The physical states of the gauge fields (Aλ, Zλ, Xλ) are obtained by the following field redefini-

tion :

Lmass
gauge = +

1

2

(
B̂λ Ŵ3λ X̂λ

)
ŝ2
W m̂

2
Z −ŝW ĉW m̂2

Z 0

−ŝW ĉW m̂2
Z ĉ2

W m̂
2
Z 0

0 0 m̂2
X



B̂λ

Ŵ λ
3

X̂λ



= +
1

2

(
B̃λ W̃3λ X̃λ

)
ŝ2
W m̂

2
Z −ŝW ĉW m̂2

Z −ŝ2
W tεm̂

2
Z

−ŝW ĉW m̂2
Z ĉ2

W m̂
2
Z ŝW ĉW tεm̂

2
Z

−ŝ2
W tεm̂

2
Z ŝW ĉW tεm̂

2
Z ŝ2

W tεm̂
2
Z +

m̂2
X
c2ε



B̃λ

W̃ λ
3

X̃λ



= +
1

2

(
Ãλ Z̃λ X̃λ

)
0 0 0

0 m̂2
Z ŝW tεm̂

2
Z

0 ŝW tεm̂
2
Z ŝ2

W t
2
εm̂

2
Z +

m̂2
X
c2ε



Ãλ

Z̃λ

X̃λ



= +
1

2

(
Aλ Zλ Xλ

)
0 0 0

0 m2
Z 0

0 0 m2
X



Aλ

Zλ

Xλ

 , (a.4)


B̂λ

Ŵ λ
3

X̂λ

 =


1 0 −tε
0 1 0

0 0 1
cε



ĉW −ŝW 0

ŝW ĉW 0

0 0 1




1 0 0

0 ĉζ −ŝζ
0 ŝζ ĉζ



Aλ

Zλ

Xλ

 , (a.5)

where m̂Z = (g′2 + g2)v2/4 and m̂X = g2
Xv

2
µτ are the mass parameters, respectively, and vµτ is

the VEV of the U(1)Lµ−Lτ -breaking scalar. Here, we refer to sin ξ, cos ξ, and tan ξ as sξ, cξ, and

tξ, respectively, and assume m̂X < m̂Z . The physical mass of the Z and X bosons are given by

m2
Z/X =

1

2

m̂2 ±

√
m̂4 −

4m̂2
Zm̂

2
X

c2
ε

 , (a.6)

with

m̂2 = m̂2
Z

(
1 + ŝ2

W t
2
ε

)
+
m̂2
X

c2
ε

= m̂2
Z + m̂2

X +O(ε2) . (a.7)

ζ is the mixing angle that determines the rotation from the Z̃λ and X̃λ to the Zλ and Xλ fields

and defined by

tan ζ =
1− r2 −

√
(1− r)2 − 4ŝ2

W t
2
εr

2

2ŝW tεr2

=
ŝW ε

1− r2
+O(ε3) , (a.8)

with r = mX/mZ .
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A.2 Interactions between Gauge Bosons and Fermions

Interactions between the neutral gauge bosons and SM fermions are given by

Lint = −
∑
f

f̄γλ
{
g′ (YLPL + YRPR) B̂λ + gT3PLŴ3λ + gXYLµ−Lτ X̂λ

}
f

= −
∑
f

f̄γλ {eQAλ + (gfL,ZPL + gfR,ZPR)Zλ + (gfL,XPL + gfR,XPR)Xλ} , (a.9)

where

gfL,Z =
ecζ

ŝW ĉW

{
(1 + ŝW tεtζ)T3 −

(
ŝ2
W + ŝW tεtζ

)
Q
}

+ gX
sζ
cε
YLµ−Lτ , (a.10)

gfR,Z = −
ecζ

ŝW ĉW

(
ŝ2
W + ŝW tεtζ

)
Q+ gX

sζ
cε
YLµ−Lτ , (a.11)

gfL,X =
ecζ

ŝW ĉW

{
(ŝW tε − tζ)T3 +

(
ŝ2
W tζ − ŝW tε

)
Q
}

+ gX
cζ
cε
YLµ−Lτ , (a.12)

gfR,X =
ecζ

ŝW ĉW

(
ŝ2
W tζ − ŝW tε

)
Q+ gX

cζ
cε
Yx , (a.13)

and Q, T3, and YLµ−Lτ are the electroweak charge, weak isospin, and U(1)Lµ−Lτ charge of the

SM fermion f , respectively, and YL(R) is the weak hypercharge of the left (right)-handed SM

fermion fL(R). For ε, r � 1, the above interaction terms are simplified as follows :

Lint ' −
∑
f

f̄γλ
[
eQAλ +

{
e

ŝW ĉW

(
T3PL − ŝ2

WQ
)

+ εgX ŝWYLµ−Lτ

}
Zλ

+

{
−ε e
ĉW

(
4r2T3PL +Q

)
+ εgXYLµ−Lτ

}
Xλ

]
. (a.14)

A.3 Effect on the ρ-parameter

Lastly, we comment on the relation between the mixing parameter θ̂W and the physical weak

mixing angle θW . The physical θW is obtain by [304, 349]

s2
W c

2
W =

πα(mZ)√
2GFm2

Z

, (a.15)

with α(mZ) being the fine structure constant at the Z-pole. The mixing parameter θ̂W satisfies

the Eq. (a.15)-like relation with sW → ŝW , cW → ĉW , and mZ → m̂Z , and then, assuming

α(mZ) = α(m̂Z), θW and θ̂W satisfy the following relation :

s2
W c

2
Wm

2
Z = ŝ2

W ĉ
2
W m̂

2
Z . (a.16)

From Eqs. (a.16) and (a.6), we obtain

sin2 θW = sin2 θ̂W

(
1− sin2 2θ̂W ε

2

4 cos 2θ̂W (1− r2)

)
+O(ε4) . (a.17)
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Therefore, the ρ-parameter is corrected as follows :

ρ ≡
m2
W

m2
Zc

2
W

=
m̂2
W

m̂2
Z ĉ

2
W

s2
W

ŝ2
W

=
s2
W

ŝ2
W

. (a.18)

From Eq. (a.17), ρ-parameter is approximated for ε� 1 as follows :

ρ = 1− sin2 2θ̂W ε
2

4 cos 2θ̂W (1− r2)
+O(ε4) . (a.19)
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Appendix B

DM Relic Density and Indirect
Detection

In section 3.1, we discuss the thermal freeze-out mechanism and the Boltzmann equation that

gives the quantitative value of the DM relic density. In section 7.5, we mention the mechanism

for boosting the annihilation cross section of DM, so-called Breit-Wigner enhancement. In this

appendix, we explain these topics.

B.1 Boltzmann equation

Here, we show a brief review of the Boltzmann equation discussed in section 3.1. This is

important to evaluate DM relic density quantitatively, and here, we derive Eq. (3.1) in section 3.1.

The Boltzmann equation gives a solution of the time evolution of phase-space distribution

function and is written as follows :

L̂fDM(~p, T ) = C[fDM] , (b.1)

where the left-hand side is the drift term corresponding to change of the distribution function

by motions of particles and depends on the expansion of the Universe. The right-hand one is

called the collision term coming from interactions with the SM particles in the thermal bath,

and depends on the detail of particles. For non-relativistic particles, the operator L̂ in Eq. (b.1)

is the Liouville operator given by

L̂ = E
∂

∂t
−H|~p|2 ∂

∂E
, (b.2)

with E and ~p being energy and momentum of the particle, respectively. From Eq. (b.2), DM

number density

nDM(t) = gDM

∫
d3p

(2π)3
f(~p, t) , (b.3)
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with gDM being the internal degrees of freedom for the DM, satisfies

dnDM

dt
+ 3HnDM = gDM

∫
d3p

(2π)3

1

E(~p)
C[fDM] . (b.4)

When the thermal relic abundance of DM is realized by DM annihilation into SM particles,

like DM + DM → SM + SM, the collision term is written in terms of the distribution function

of particle i, fi, as follows :

gDM

∫
d3p

(2π)3

1

E(~p)
C[fDM]

= −
∫
dΠDM dΠDM dΠSM dΠSM (2π)4δ4(pDM + pDM − pSM − pSM)

×
{
|Mann|2fDMfDM(1± fSM)(1± fSM)− |Mpro|2fSMfSM(1± fDM)(1± fDM)

}
, (b.5)

where Πi ≡ d3pi /(2π)3(2Ei), and minus (plus) in parentheses is for boson (fermion). The

Dirac delta function comes from the conservation law for energy and momentum. Mann and

Mpro are amplitudes of annihilation and production process of DM pair. Here, we assume the

CP-invariance of annihilation and production processes. From the CP-invariance, |Mann|2 =

|Mpro|2 is derived because of the CPT-invariance. When Fermi degeneracy and Bose-Einstein

condensation do not occur, and the SM particles are in thermal equilibrium, Eq. (b.5) can be

rearranged as

gDM

∫
d3p

(2π)3

1

E(~p)
C[fDM] =−

∫
dΠDM dΠDM dΠSM dΠSM (2π)4δ4(pDM + pDM − pSM − pSM)

× |M|2
(
fDMfDM − f

eq
SMf

eq

SM

)
−
∫
dΠDM dΠDM dΠSM dΠSM (2π)4δ4(pDM + pDM − pSM − pSM)

× |M|2
(
fDMfDM − f

eq
DMf

eq

DM

)
. (b.6)

In the rearrange of Eq. (b.6), we used the relation, f eq
DM = f eq

SM, and this relation is guaranteed

by the conservation law of energy. The annihilation cross section averaged over the thermal

distribution is defined by

〈σannvrel〉 =
1

(neq
DM)2

∫
dΠDM dΠDM dΠSM dΠSM (2π)4δ4(pDM + pDM − pSM − pSM)

× |M|2fDMfDM , (b.7)

and, by assuming the relation, fDM = f eq
DMnDM/n

eq
DM, we eventually obtain Boltzmann equation

for DM number densty as follows :

dnDM

dt
+ 3HnDM = −〈σannvrel〉

(
n2

DM − (neq
DM)2

)
. (b.8)
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B.2 Breit-Wigner Enhancement

As shown in Fig. 7.6, there is a significant enhancement in indirect detection via the unphysical

X boson pole. In this appendix, we briefly review the effect. We consider the ψψ̄ → νν̄ process.

Assuming the initial state DM is non-relativistic, we express the center of mass energy and DM

mass as

s ' 4m2
ψ +m2

ψv
2
rel, 4m2

ψ = m2
X(1 + δ), (b.9)

where vrel denotes the relative velocity of DM. Then, the annihilation cross section is written by

(σv)νν̄ '
q2
ψg

4
X

π

1

m4
X

m2
ψ

(δ + v2
rel/4)2 + γ2

X

, (b.10)

where γX = ΓX/mX .

Let us consider how the DM freeze-out process is changed for δ � 1. First of all, we

approximate the cross section

(σv)νν ≈
q2
ψg

4
X

π

m2
ψ

m4
X

×

{
(Max[v2

rel/4, γX ])−2 (v2
rel > δ)

(Max[δ, γX ])−2 (v2
rel < δ)

(b.11)

It follows from this equation that as DM velocity decreases with the expanding universe, the

cross section becomes large as (σv)νν̄ ∝ v−4
rel . The increase of the cross section continues until

v2
rel . Max[δ, γX ] is satisfied. In this case, the DM number density does not freeze out at the

typical freeze-out temperature xf = mψ/Tf ∼ 20 (v2
rel ∼ 0.1), and continues to decrease via the

annihilation even at lower temperature. As a result, the actual freeze-out time is delayed and

the produced thermal abundance is modified to be

Ωh2 ∼ 0.1×
(

10−26 cm3/s

〈σv〉T=0

)
xb
xf
, (b.12)

where xf ' 20 is the typical freeze-out temperature and xb is the actual one. The actual

freeze-out temperature is given by [343, 344]

1

xb
' 1

〈σv〉T=0

∫ ∞
xf

〈σv〉
x2

dx ' Max[δ, γX ]. (b.13)

It suggests that the cross section is boosted by a factor of xb/xf . BF = xb/xf is called the boost

factor. We have γX ∝ g2
X . 10−6 in the model, the boost factor can be as large as 106 in a case.

Indirect detection experiments observe the neutrinos from DM annihilation in our Galaxy.

Since the DM velocity is vrel ∼ 10−3 at most, we can approximate (σv)νν ' 〈σv〉T=0 for e.g.

δ = 10−3. In this case, the boost factor is expected to have

BF ' 1

10 Max[δ, γX ]
∼ 100 (b.14)
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leading to the enhanced cross section,

(σv)νν̄ ∼ BF× 10−26 cm3/s. (b.15)

Before closing, we derive Eq.(b.12). In the standard way, the approximate solution of the

Boltzmann equation is obtained by integrating the equation,

dYDM

dx
' − λ

x2
Y 2

DM, (b.16)

over [xf ,∞], where xf is determined by appropriately matching the approximate solution with

the actual one. Above, we assumed the s-wave DM annihilation and introduced YDM = nDM/s

with s being the entropy density and

λ =

√
8π2

45
g∗MPmDM 〈σv〉T=0 . (b.17)

Taking into account the resonant behavior of the cross section, the equation is modified as

dYDM

dx
' − λ

x2

〈σv〉T
〈σv〉T=0

Y 2
DM. (b.18)

One can readily get Eq.(b.12) by solving this equation.
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Appendix C

Miscellaneous formulae in Chapter 5

In this appendix, we give formulae that are useful for the study of the neutrino mass structure

in the minimal gauged U(1)Lµ−Lτ model discussed in chapter 5.

C.1 Mass Matrix for Active Neutrinos

From Eq. (2.37), the mass matrix for the active neutrinos are written in terms of the parameters

of the Lagrangian in Eq (5.3) as follows :

MνL =
v2

2(MeeMµτ − 2heµheτ 〈σ〉2)

×


−λ2

eMµτ λeλµheτ 〈σ〉 λeλτheµ 〈σ〉

λeλµheτ 〈σ〉 −λ2µh
2
eτ 〈σ〉

2

Mµτ

λµλτ (−MeeMµτ+heµheτ 〈σ〉2)
Mµτ

λeλτheµ 〈σ〉 λµλτ (−MeeMµτ+heµheτ 〈σ〉2)
Mµτ

−λ2τh
2
eµ〈σ〉

2

Mµτ

 . (c.1)

The determinant of MνL is given by

det(MνL) =
λ2
eλ

2
µλ

2
τv

6

8Mµτ (MeeMµτ − 2heµheτ 〈σ〉2)
. (c.2)

From Eq. (c.2), the determinant is equal to be zero for λα = 0(α = e, µ, τ), and then MνL

is block-diagonal. Therefore, the PMNS matrix is also block-diagonal, and this result conflicts

with the observed neutrino mixing. From the above discussion, the determinant ofMνL should

not be zero, and this statement is the same as the lightest mass eigenvalue of the active neutrinos

should not be zero.

124



C.2 R2 and R3

The explicit expression for R2 and R3 defined in Eqs. (5.10) are written in terms of the neutrino

oscillation parameters as

R2(δ) = − 2 sin2 θ12 cos 2θ23 + sin 2θ12 sin 2θ23 sin θ13e
iδ

2 cos2 θ12 cos 2θ23 − sin 2θ12 sin 2θ23 sin θ13eiδ
, (c.3)

R3(δ) = −sin θ13e
2iδ[2 cos 2θ12 cos 2θ23 sin θ13 − sin 2θ12 sin 2θ23(e−iδ + sin2 θ13e

iδ)]

cos2 θ13[2 cos2 θ12 cos 2θ23 − sin 2θ12 sin 2θ23 sin θ13eiδ]
. (c.4)

C.3 Cubic Equation for cos δ

Here, we show a cubic equation whose real solution in terms of x gives cos δ:

s2
13

[
4s2

13 cos2 2θ12 cos2 2θ23 − s13 sin 4θ12 sin 4θ23(1 + s2
13)x

+ sin2 2θ12 sin2 2θ23

(
c4

13 + 4s2
13 x

2
)][

2
(
2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 x

)]
− ε
[
4s4

12 cos2 2θ23 + s2
13 sin2 2θ12 sin2 2θ23 + 4s3

12c12s13 sin 4θ23 x
]

×
[
4 cos2 2θ23(c4

12c
4
13 − s4

13 cos2 2θ12)− s13 sin 4θ23{4c4
13c

3
12s12 − s2

13 sin 4θ12(1 + s2
13)}x

− 4s4
13 sin2 2θ12 sin2 2θ23 x

2
]

= 0 , (c.5)

where

ε ≡ δm2

∆m2 + δm2/2
. (c.6)

In the limit of ε→ 0, the above equation leads to

4s2
13 cos2 2θ12 cos2 2θ23 − s13 sin 4θ12 sin 4θ23(1 + s2

13)x+ sin2 2θ12 sin2 2θ23

(
c4

13 + 4s2
13 x

2
)

= 0 ,
(c.7)

or

2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 x = 0 . (c.8)

The discriminant of the quadratic equation (c.7) is given by

8c4
13s

2
13 sin2 2θ12 sin2 2θ23(cos 4θ12 + cos 4θ23) , (c.9)

which is negative as cos 4θ12+cos 4θ23 ' −1.68 < 0. Thus, Eq. (c.7) does not give a real solution.

On the other hand, Eq. (c.8) gives

x =
cot 2θ12 cot 2θ23

sin θ13
, (c.10)

which agrees to Eq. (5.17). From the above derivation, we see that the solution (c.10) approxi-

mates the real solution of the cubic equation (c.5) with an accuracy of O(ε) = O(δm2/∆m2).
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