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Abstract

The prediction and control of evolution is a crucial topic for both evolutionary biology and tackling
antibiotic resistance. Although the lack of sufficient data has long hindered the mechanism of evolution,
laboratory evolution experiments equipped with high-throughput sequencing/phenotyping are now grad-
ually changing this situation. The emerging data from recent laboratory evolution experiments revealed
repeatable features in evolutionary processes, suggesting the existence of constraints which could lead
to actual predictions of evolutionary outcomes. These results also paint an upbeat picture of evolution:
biologically feasible states and evolutionary trajectories could be distributed on a low-dimensional man-
ifold within the high-dimensional space spanned by biological features. However, previous laboratory
evolution experiments were performed on a limited number of environments and we thus lack a sys-
tematic investigation of evolutionary constraints leading to the low-dimensional dynamics. In addition,
fine-grained approaches for predicting and controlling evolutionary trajectories were out of the reach.
This dissertation is dedicated to solve these problems through the utilization of laboratory evolution
combined with machine learning based techniques.

First, we study the evolutionary constraints of Escherichia coli through the multi-omics data acquired
from a large-scale laboratory evolution experiment. In biological data, it is often the case that the
dimensionality p is much larger than the number of samples N which makes it difficult to perform
statistical analyses such as covariance estimation. We will show how the the utilization of machine
learning such as random forest regression and supervised principal component analysis could overcome
this p ≫ N problem and contribute to probe the low-dimensional manifold of E. coli’s phenotypes. Our
analyses also identify the genotype-phenotype map, revealing the mutations that lead to the different
strategies of stress resistance. We further discuss how our analyses could decipher the evolutionary
constraints of E. coli.

We next develop a novel method for predicting and controlling stress resistance evolution by inferring an
empirical fitness landscape based on phenotypes of E. coli. The concept of the fitness landscape has been
influential in many areas of research on evolution since they provide information on the predictability
of evolution. However, the high-dimensionality of the genotypic space kept us from constructing an
empirical genotype-fitness landscape capable of predicting evolution. Focusing on the fact that evolution
leads to low-dimensional phenotypes rather than genotypes, we infer the phenotype-fitness landscape
based on the stress resistance profiles. To do so, unlike typical laboratory evolution experiments, we
monitor the resistance levels to multiple stresses during the course of evolution which allows the dense
sampling of phenotypes and the corresponding fitnesses along evolutionary trajectories. We show that
the structure of the inferred landscapes corresponds with the resistance acquiring mechanisms of E. coli
and provide information of the directionality of evolution. We discuss how the inferred landscapes could
be utilized for predicting and controlling evolution.
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Chapter 1

Introduction

The nontrivial and eye-catching features of Life have always stimulated scientists to investigate the
underlying mechanisms and theories at the interface of physics and biology [1–3]. Hypothesizing that
life is driven by electricity, Luigi Galvani performed the renowned ‘frog leg experiment’ which later led
to the invention of batteries and opened the door to what is now called electrophysiology [4]. Based
on the rules of chemical bonding and X-ray diffraction, James Watson and Francis Crick presented the
theory of base pairing [5] and the theoretical hypothesis which led to the well known central dogma
of molecular biology [6]. Our passion to understand biological systems have expanded the horizons
of physics, and vice versa, theoretical ideas based on physical intuitions have provided new avenues in
biology. However, it is also true that we are still far from a general theory of biological systems which
has the level of predictive power that has been realized in other fields in physics.

How can we construct a predictive theory of biological systems given their overall complexity and
large degrees of freedom? To survive in nature, biological systems have to solve an immense number of
tasks including and not limited to sensing/reacting to external stimuli [7–13], metabolizing intracellular
resources [14–17], transmitting information from one to another (including their offsprings) [18–22], etc.
Although it is not easy to elucidate all of these relevant processes, we strongly expect that they are subject
to the laws of physics and thus constrained in a certain manner. In other words, biological systems should
be distributed on a low-dimensional manifold which lies within the immense parameter space [23–27].
Therefore, if we could find out the constraints that separate this low-dimensional manifold from the other
parts of the parameter space, we could be able to build a predictive theory of biological systems. For
example, general principles such as conservation laws and symmetries have led to theoretical predictions
of flocking which has recently been observed experimentally in the long-wavelength behavior of living
(and non-living) motile matter1 [36–44].

In this dissertation, we focus on one of the most fascinating features of biological systems: evo-
lution [45–50]. We especially explore the dynamics of stress resistance evolution of microbial sys-
tems [51–53]. Evolution, adaptation and learning work on different but overlapping time scales, and they
all aim to tune the parameters of a biological system to solve the problems living things face when trying
to survive and reproduce. Of course, the dynamics of evolution should also be subject to (evolutionary)
constraints, keeping the relevant parameters on a low-dimensional manifold. Thus, our ultimate goal here
is to construct a framework for predicting and controlling microbial evolution by elucidating these rele-
vant constraints. Predicting evolution has long remained a difficult task due to the lack of experimental
data which kept us from directly comparing theory and experiments. Recently, however, the situation is
changing where laboratory evolution experiments combined with high-throughput sequencing/phenotyp-

1 Although it is out of the scope of this dissertation, the field of Active Matter which is the framework for mechanical and
statistical properties of motile living/non-living matter, has grown rapidly within the past 25 years and is still actively
expanding [28–35]
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ing has started to provide us an unprecedented amount of data on evolutionary dynamics [46,50,54–60].
In addition, recent progress in machine learning methods [61–69] and theoretical/empirical modelling in-
cluding the works on fitness landscapes [47,70–77] have allowed us to investigate the relevant constraints
which underlie the massive and high-dimensional data. Given these recent developments in experiment,
theory and data analysis, it is fair to say that the time is ripe for building a framework for predicting and
controlling evolution [49, 78].

We mainly discuss the following questions in this dissertation:

• What are the evolutionary constraints which underlie the dynamics of stress resistance evolution
of Escherichia coli?

• How can we elucidate the relevant constraints from the high-dimensional data from laboratory
evolution and how could these constraints be understood in the two different high-dimensional
spaces spanned by gene expression and stress resistance profiles?

• How can we utilize the evolutionary constraints to predict and control the dynamics (trajectories)
of stress resistance evolution?

In Chapter 2, we review the recent progress in laboratory evolution experiments and empirical fitness
landscape modelling. Recent laboratory evolution experiments have revealed repeatable patterns in
especially the phenotypic changes through evolutionary processes. Together with the recent attempts to
construct fitness landscapes from experimental data, we discuss the evolutionary constraints underlying
the data, and their implications for the predictability in evolution.

In Chapter 3, we give the prerequisites for machine learning techniques used in high-dimensional
data analysis. Not limited to laboratory evolution experiments, recent biological experiments are often
associated with high-dimensional data such as transcriptome data. However, it is often the case that
the number of samples N are far less than the dimensions of the data p which makes statistical analysis
difficult. We review the recent advances in the field of machine learning to solve such p ≫ N problems.

In Chapter 4, we elucidate evolutionary constraints from a multi-omics dataset consisting genotypes,
gene expression levels and stress resistance profiles which was acquired via a large-scale laboratory
evolution experiment. To do so, we utilize a method called Supervised PCA which is based on random
forest regression and principal component analysis. We will show that supervised PCA provides a near
optimal representation in the gene expression space which corresponds with the constraints given in the
high-dimensional space spanned by stress resistance profiles.

In Chapter 5, we propose a methodology to predict and control stress resistance evolution through
the utilization of a empirical fitness landscape based on the data from laboratory evolution experiments.
Building on the fact that phenotypes show better convergence than genotype changes, we construct a
fitness landscape based on the stress resistance profiles to eight different stresses. We will discuss how
our empirical fitness landscape based on stress resistance phenotypes could contribute to the prediction
and control of resistance evolution.

In Chapter 6, we conclude this dissertation and discuss possible future directions of research.
Throughout the dissertation, we will show how the interplay of microbial laboratory evolution and

machine learning techniques could decipher the evolutionary constraints underlying stress resistance
evolution. We believe this work adds substantially towards the prediction and control of evolution.
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Chapter 2

Searching for principles of
stress resistance evolution

The evolution and spread of antibiotic resistance in bacterial pathogens is an increasing public health
concern [51, 52, 79]. Although the development of novel antibiotics might help in the short run, history
suggests the high likelihood of pathogens evolving resistance to novel antibiotics as they have done to
existing antibiotics [79, 80]. Recently, alternative strategies have been carried out to combat antibiotic
resistance through the investigation of mechanisms/predictability of resistance evolution [52, 78, 81].
Specifically, laboratory evolution combined with high-throughput sequencing/phenotyping has changed
the game of understanding evolution by allowing us to repeatedly replay life’s tape of evolution and
investigate underlying mechanisms [45, 46, 50, 82]. In addition, considerable effort has been devoted
in understanding the properties of empirical fitness landscapes which provide information on the pre-
dictability of resistance evolution [47]. Building on the increasingly accumulating knowledge in the field,
we are entering the age where it is possible to discuss the predictability of evolution in a data-driven
manner [49, 78].

Here in this chapter, we review the findings of laboratory evolution experiments / empirical land-
scapes mainly concerning antibiotic/stress resistance evolution. In Sect. 2.1, we review recent advances
in laboratory evolution specifically focusing on the observed genotypic/phenotypic changes and their
repeatability. Next in Sect. 2.2, we discuss experiments that reconstructed small regions of fitness
landscapes and their implications to the predictability of evolution. Finally in Sect. 2.3, tracing the
recent efforts in laboratory evolution and empirical fitness landscapes, we discuss possible directions for
constructing a framework of predicting stress resistance evolution.

2.1 The state of the art in microbial laboratory evolution

2.1.1 Basic protocols for laboratory evolution
Laboratory evolution combined with high-throughput sequencing/phenotyping provides an unprece-

dented amount of evolutionary information of bacteria through the direct observation of evolution. Serial
transfer is a popular method where cultures are grown in flasks / microwell plates, and a small portion of
the grown cells are transferred to fresh medium at a fixed time interval. A pioneering work of microbial
laboratory evolution is the long-term evolution experiment (LTEE) performed by the Lenski group where
they have evolved Escherichia coli with limited nutrients for more than 70,000 generations [82–84]. The
LTEE provided rich information of microbial evolution and their genetic bases. For example, it has been
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a b

c d

Fig. 2.1 a, The spectra of mutations, mapped along the E. coli B chromosome, in 114 independently
evolved clones of E. coli under heat stress (42.2°C) for 2,000 generations (left panel). One strain
was excluded from the analysis due to its increased mutation rate caused by the mutL gene. The
colors of the spectra correspond to the histograms on the right. b, The number of lines sharing the
same mutational types. c, The average fraction of shared derived allele among the 114 clones. d, The
number of different mutations for subsets of the clones. The colors represent the levels of organization,
as defined in (c). Figures reproduced from [54].

shown that E. coli could digest citrate1 with the contribution of several potentiating mutations that did
not themselves have a benefit in fitness [50, 85]. Starting from 1988, the LTEE is still ongoing.

The evolution of antibiotic (or stress) resistance could be observed through laboratory evolution
experiments with increasing antibiotic concentration. For example, Toprak and his colleagues developed
an automated culture device, which they call a morbidostat, that could dynamically adjust the drug
concentration to maintain nearly constant growth inhibition [55, 86]. A similar drug concentration
adjustment protocol was used by a robotic system in [87]. Another popular way to observe resistance
evolution is to expose bacterial populations to varying concentrations of drugs and to transfer the
population which grew in the highest concentration to fresh medium2 [57, 59, 89]. In both methods, an
increase in resistance could be observed through the time course of laboratory evolution. Combined with
subsequent genotype/phenotype analysis, the evolved strains could provide information of the underlying
mechanisms for resistance evolution. In the following subsections, we review the seminal works on
resistance evolution that have been driven by laboratory evolution experiments3.
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Fig. 2.2 a, The identified mutations in [55] and their corresponding functional groups. The thickness
of the arrows show the mutation frequency for each functional group. b, The resistance profiles of the
sequenced clones which evolved in TMP, DOX and CHL, respectively. Figures reproduced from [55].

2.1.2 Convergence and divergence in microbial evolution

Molecular diversity underlying adaptation to heat stress
Tenaillon and his colleagues performed an extensive genotype profiling where they sequenced 115

replicate populations of E. coli that evolved under high temperature [54]. These E. coli were serially
propagated for 2,000 generations in Davis minimal medium with 25 mg/L glucose at a constant temper-
ature of 42.2°C. They have detected 1258 molecular changes in total with an average of 11.0 events per
clone where they estimate that ∼ 80% of the intergenic and non-synonymous mutations were beneficial.
Through the sequencing results, they found that the convergence of mutations varied by mutational type
where 69% of large (> 30 ∼bp) deletions were identical between at least two lines while most of the
point mutations were not shared (Fig. 2.1b). Although the convergence of exact mutations could not be
observed, Fig. 2.1a clearly shows that there exists an extent of convergence in a more coarse grained
level such as the gene/operon level or the level of functional units. For example, rpoB and other genes
which encode the RNA polymerase complex were commonly mutated. Tenaillon et al conclude that
their extensive experiment of 115 copies was not sufficient to capture all possible mutations, while the
discovery of affected genes, operons and functional units could be captured with ∼30 replicates (see
Fig. 2.1c,d)4. These results suggest that while E. coli have a large mutational target when evolving against
stresses, the diverse mutations show convergence at the level of coarse grained modules.

Specific and shared mutations for antibiotic resistance
Toprak et al performed laboratory evolution of E. coli under antibiotic concentrations that were

dynamically adjusted to maintain growth inhibition [55, 86]. Here, the drug concentration is adjusted
adaptively so that the bacterial growth is always inhibited by 50% by observing the time course of
optical density (OD). They exposed the bacteria to three antibiotics separately: chloramphenicol (CHL),
doxycycline (DOX) and trimethoprim (TMP). The laboratory evolution experiment was performed for

1 It has been known that E. coli could ‘eat’ citrate under anaerobic conditions through the utilization of citT which is turned
on under the absence of oxygen. Blount et al have found that one of their evolved populations could grow in citrate rich
environments under the presence of oxygen by landing a duplicated citT sequence downstream of the rnk gene. We refer the
interested readers to [48] which gives an illustrative description of the LTEE experiments for beginners.

2 Of course, there are also studies that observe resistance evolution under a fixed concentration of drugs [56, 88].
3 It should be noted that along with mutations, horizontal gene transfer is a major mechanism for bacteria to acquire drug

resistance [52,53]. Mostly because of its simplicity, past laboratory evolution experiments focus on the effects of mutations
and these studies will be the main target of this review. However, there exists studies that try to evaluate the impact of
horizontal gene transfer on drug resistance evolution [90].

4 In Fig. 2.1c, we could see that the number of different point mutations / mutations grows linearly against the number
of sequenced lines while the genes / operons / functional units grow in a logarithmic-like manner in the range of 1 <

number of sequenced lines < 115. This scaling is informative when thinking of the sufficient number of replicates for
laboratory evolution.
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a b

c

Fig. 2.3 a, The network of cross-resistance interactions. An arrow from antibiotic A to B indicates
that adaptation to A decreased sensitivity to B in at least 50% of the evolved populations. b, Heatmap
of the average mutation profile similarity of two strains adapted to different and identical antibiotics.
Mutation profile similarity between each pair of evolved lines was measured by the Jaccard’s coefficient
between their sets of mutated genes. c, Mutational profiles of the 12 antibiotic selection regimes.
Figures reproduced from [58].

five isogenic populations per antibiotic for 25 days, resulting in a ∼ 870, ∼ 10 and ∼ 1, 680 fold
increase in resistance for CHL, DOX and TMP, respectively. Isogenic clones were selected from each
population of the final day and sequenced to observe their unique and common genetic changes (Fig. 2.2a).
The identified single-nucleotide polymorphisms (SNPs) were classified to three functional groups: (i)
transcription and translation, (ii) folic acid biosynthesis, and (iii) membrane transport. Interestingly,
strains resistant to DOX and CHL involved a wide variety of mutations in transcription/translation and
membrane proteins, indicating the large genetic target for adaptation. DOX and CHL evolved strains
showed cross resistance to DOX and CHL respectively, which is consistent with the fact that they both
have mutations in similar functional units. On the other hand, the mutations in strains resistant to TMP
were strictly localized to DHFR and its promoter. In addition, the observed amino acid substitutions were
shared among the independent clones. They further sequenced the transient populations of TMP evolved
strains and found that the appearance and fixation of the confirmed mutations were mostly sequential.
These results suggest the small mutational target for TMP resistance and that the observed sequential
fixation of mutations were caused by this small number of beneficial mutations. The constraints for TMP
resistance are discussed further in [71].

Genetic determinants underlying cross antibiotic resistance
Lázár and her colleagues have performed laboratory evolution for E. coli under 12 different antibi-

otics: Ampicillin (AMP), Cefoxitin (FOX), Ciprofloxacin (CPR), Nalidixic acid (NAL), Nitrofurantoin
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a b c

Fig. 2.4 a, The correlation between the predicted and observed resistance profiles for the evaluation
of the prediction model. The predictions were made by a linear model based on the gene expression
levels of N genes selected by a genetic algorithm. The evaluation was done over a test dataset which
was not used for parameter optimization. b, The comparison between the predicted and observed
resistance profiles. The data points have been slightly randomized to avoid the overlapping of points.
Here, the resistance was predicted by a linear model based on eight genes shown in c. c, The
coefficients for gene expression levels in the linear model. Figures reproduced from [59].

(NIT), Kanamycin (KAN),Tobramycin (TOB), Tetracycline (TET), Doxycycline (DOX), Chlorampheni-
col (CHL), Erythromycin (ERY), and Trimethoprim (TRM) [58]. They evolved 10 independent replicates
for ∼240 generations for each antibiotic and performed whole genome sequencing for 5 – 6 strains per
antibiotic (63 strains in total). They also measured the frequency of cross resistance, where the resistance
acquisition to a certain stress leads to resistance in other stresses, within the 12 antibiotics they used
(Fig. 2.3a). Interestingly, they observe asymmetry in the cross resistance network which was especially
observed for NIT evolved strains (only 3% of the strains evolved in other environments reached NIT
resistance). For the sequenced 63 strains, they measure the similarity in mutation profiles among the
strains that evolved in the same environment (Fig. 2.3b). This correlation matrix, together with the
individual mutation profiles (Fig. 2.3c) imply that the similarity in mutation profiles differs between
different antibiotics. For example, strains evolved in AMP show a wide variety of mutated genes while
6/6 NAL evolved strains had a mutation in gyrA. However as a overall trend, the authors observe that
several genes and functional modules were mutated repeatedly throughout the resistant strains (e.g. the
AcrAB/TolC efflux system). Given that 66% of the shared mutated genes occurred in lines adapted to
different antibiotics, Lázár et al claim that the ultimate targets of antibiotic selection are relatively limited
functional modules. Their study suggests that antibiotic resistant phenotypes, which should be at least
partially driven by these functional modules, may not have much variety.

Antibiotic resistance could be predicted by a few number of gene expression profiles
Suzuki, Horinouchi and Furusawa performed laboratory evolution for E. coli under 11 antibiotics:

cefoperazone (CPZ), cefixime (CFIX), amikacin (AMK), neomycin (NM), doxycycline (DOXY), chlo-
ramphenicol (CP), azithromycin (AZM), trimethoprim (TP), enoxacin (ENX), ciprofloxacin (CPFX),
colistin (CL). They evolved four independent replicates for 90 days for each antibiotic. For each of
the evolved strains, they measured the resistance profiles for 25 antibiotics including the ones used for
laboratory evolution, the transcriptome profiles, and the mutation profiles. The unique part of their work
is that they measured not only the mutation profiles, but also the gene expression profiles for the evolved
strains. In addition, they constructed a linear model to predict the stress resistance profiles based on
the gene expression profiles of a limited number of genes. To prevent overfitting, they split the data of
the resistance profiles into a training/test set and performed cross validation to optimize the number of
genes N to use in the linear model5 (Fig. 2.4a). As a result, N = 8 was optimal for their data with
the predictions showing high correlation of R = 0.66 (R: Pearson’s correlation coefficient) with the
observed resistance profiles (Fig. 2.4b,c). The fact that resistance profiles could be predicted by a small

5 This regression method was also applied for E. coli evolved under acids, alcohols, detergents, etc. [91].
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a b c

Fig. 2.5 a, The results of principal component analysis of the resistance profiles of the evolved P.
aeruginosa strains, performed on the resistance profiles of 24 antibiotics. b,c, The distribution of the
parent and evolved strains of the PAO1 strain and isolated DK2 strains which evolved in ciprofloxacin
(b) and aztreonam (c), respectively. Figures reproduced from [60].

number of gene expression levels suggest that gene expressions changes that are responsible for resistance
do not have much degrees of freedom. In other words, their result suggests convergence in the level of
gene expression levels. They further investigated the mutations underlying the resistance profiles and
found that while mutations in several genes were shared among the evolved strains, there was a certain
extent of diversity in the mutation profiles. Consistent with previous laboratory evolution experiments,
the work by Suzuki et al show the phenotypic convergence and genotypic diversity underlying resistance
evolution6.

Phenotype convergence in clinically isolated P. aeruginosa
Imamovic et al performed laboratory evolution for a Pseudomonas aeruginosa strain (PAO1) under 24

different antibiotics for 10 days (e.g. Amikacin (AMI), tobramycin (TOB), ampicillin (AMP), aztreonam
(AZE), ciprofloxacin (CIP), etc. See Table 1 in [60] for the full list of antibiotics) [60]. They measured
the resistance profiles of the evolved PAO1 strains and further performed principal component analysis
(PCA). As a result, 75% of the variance in the drug resistance profiles could be expressed in the first two
components of the PCA space, and the 24 evolved PAO1 strains could be classified to four distinct clusters
(Fig. 2.5a). This implies phenotypic convergence in the drug resistance profiles even when the strains
are exposed to different antibiotics. They further evolved five clinical isolates of P. aeruginosa (DK2)7

from cystic fibrosis patients and evolved them under the 24 antibiotics. Interestingly, the drug resistance
profiles of the evolved clinical isolates exhibited high correlation with the PAO1 strains evolved under
the same stress (Fig. 2.5b,c, see also Fig.S3A in [60]). These results suggest the phenotypic convergence
in the level of drug resistance profiles even for strains with different genetic starting points.

2.1.3 Collateral sensitivities and their applications

Determining collateral sensitivity networks underlying resistance evolution
Using the same evolved strains in [58], Lázár et al determined the networks of collateral sensitivity

interactions [57]. Here, collateral sensitivity refers to the phenomenon where the resistance to a certain
stress leads to sensitivity to another different stress. They especially found that the adaptation to
aminoglycosides (KAN, TOB) led to the sensitivity of many other antibiotics (Fig. 2.6a). The authors
further investigated the genotypes of the evolved strains and found that all sequenced clones resistant to
aminoglycosides had a mutation in genes that influence the membrane electrochemical potential (e.g.
trkH, hemA, cyoB, cyoC). Building on these observations, they propose that aminoglycoside resistance
is achieved by altering the proton-motive force (PMF) across the inner membrane which leads to a
reduced uptake of aminoglycosides (Fig. 2.6bc)8. On the other side, the majority of the antibiotics
showing collateral sensitivity against aminoglycosides were substrates for the AcrAB/TolC and other

6 Although we focus on the convergence of the end points of evolution here, low dimensional evolutionary trajectories in the
phenotype space were observed for laboratory evolution experiments in [92, 93].

7 DK2 and PAO1 share a common ancestor, but have diverged during the years of isolation.
8 The authors further measured the membrane potential for the strains adapted to aminoglycosides and confirmed a reduction

in membrane potential (see Fig. 4A in [57]).
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a b c

Fig. 2.6 a, The determined collateral sensitivity network from laboratory evolved strains. b, The
suggested molecular mechanisms underlying collateral sensitivities between aminoglycosides and
other antibiotics. The alteration of the membrane potential leads to reduced uptake of aminoglycosides
and also reduced activity of PMF-dependent efflux pumps such as the AcrAB/TolC efflux pump. c,
Mutations that lead to the alteration of the membrane potential. Figures reproduced from [57].

a b

Fig. 2.7 a, The collateral sensitivity network elucidated from E. coli evolved in 23 antibiotics. b,
The changes in resistance (minimal inhibitory concentration, MIC) for the CFP-labelled E. coli (wild
type, WT) and the YFP-labelled WT that was mixed in the population when the drug was switched
from gentamicin to cefuroxime. Figures reproduced from [56].

efflux pumps which are dependent on the PMF. These results suggest that the balance of the membrane
potential underlies the observed collateral sensitivity between aminoglycosides and other antibiotics that
are substrates of PMF-dependent efflux pumps. This collateral sensitivity between aminoglycosides and
other stresses was also observed in [56, 59] and other studies as well.

Drug cycling utilizing collateral sensitivities
Imamovic et al performed a 10 day laboratory evolution of E. coli under 23 antibiotics using LB plates

with drug gradients [56]. They measured the drug resistance profiles for the evolved strains and revealed
the collateral sensitivity network between these 23 antibiotics (Fig. 2.7a). One of the main claims of their
work was that collateral sensitivity relations could be utilized for clinical drug cycling strategies. To show
this, the authors performed a drug cycle two antibiotics, gentamicin (aminoglycoside) and cefuroxime (β-
lactam) which exhibit collateral sensitivity. They initially evolved CFP-labelled E. coli under gentamicin
for eight days and then switched the drug environment to cefuroxime. When switching drugs, unadapted
E. coli (wild type, WT) labeled with YFP were mixed by 1 : 1. As a result, the gentamicin adapted E.
coli were dominated by the WT E. coli which adapted to cefuroxime (Fig. 2.7b). Importantly, the authors
claim that this drug cycling was not caused by fitness costs since both resistant strains could be recovered
from the mixed populations under the absence of drugs. The results of Imamovic et al suggest clinical
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a

b c

Fig. 2.8 a, The distribution of resistance for the mutants selected by OXA (red) and NOV (blue),
respectively. b, c, The phenotype changes of five replicates under a OXA-NOV drug cycle starting
from NVO (b) and OXA (c), respectively.　 The grayscale shading on the right shows the genotypic
changes observed in each population. Figures reproduced from [94].

applications of the collateral sensitivity relations elucidated from laboratory evolution experiments.

2.1.4 The influences of adaptation history on resistance phenotypes

Drug cycling jeopardized by population diversity
Jiao and her colleagues investigated a mutant library of 3317 Staphylococcus aureus strains resistant

to oxacillin (OXA), novobiocin (NOV), and four other drugs, respectively. The authors first observed
the resistance profiles of strains resistant to OXA and NOV and find that most mutants resistant to OXA
show sensitivity to NOV and vice versa (Fig. 2.8a). Since the results above suggest that mutants showing
resistance to both OXA and NOV are rare, the authors hypothesized that drug cycling with OXA and
NOV would be successful (would not lead to cross resistance to the two drugs) if the population size was
kept small (tight bottleneck) at each step of propagation. To test this hypothesis, they performed a daily
cycle of OXA and NOV, transferring 106 or 107 cells at each selection. Intriguingly, although the cells
showed collateral sensitivity at the first step, they gradually found a path to acquire resistance to both
OXA and NOV (Fig. 2.8b,c). In other words, the drug cycling method based on collateral sensitivities
had been jeopardized by the diversity of resistance acquiring mechanisms of bacteria (this scenario has
also been pointed out in [53]). The authors concluded that small population size is necessary, but not
sufficient to maintain the collateral sensitivity relations during drug cycling. This is one of the seminal
examples how the direction of drug resistance evolution (here in the two dimensional resistance space of
OXA and NOV) could be altered by the history of adaptation (i.e. the genotypic background).

Drug-order specific effects in adaptation dynamics
Yen and Papin performed laboratory evolution for Pseudomonas aeruginosa under piperacillin (PIP),

tobramycin (TOB) and ciprofloxacin (CIP). The unique part of this work was that the authors conducted
a drug cycle of 20 days each, which allowed them to investigate how the adaptation to a certain drug
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b ca

Fig. 2.9 a, A schematic picture describing the design of the laboratory evolution experiment. b,
Stress resistance to TOB for strains that directly evolved under TOB for 20 days and strains that
evolved under TOB after evolution to PIP for 20 days. c, The number of unique mutations in a gene of
a specific functional class, shown by the color intensity. For the Day 40 strains, the acquired mutations
during day 21 – 40 are shown and not those that were acquired until day 20. Figures reproduced
from [95].

affects resistance acquisition to a different drug (Fig. 2.9a). For example, TOB resistance was more
difficult to acquire for the strains that initially adapted to PIP (Day 40 PIPR TOBR)compared to the
strains that directly evolved in TOB (Day 20 TOBR) (Fig. 2.9b). The effects of the adaptation history
was observed not only in the resistance profiles but also in the mutation profiles of the evolved strains.
For instance, the Day 40 PIPR TOBR strain had kept their mutations related to the MexAB-OprM efflux
pump, while the Day 20 TOBR strain did not acquire any mutations related to this functional unit,
which supposedly led to the observed difference in PIP resistance9. Interestingly, the authors suggested
that the established collateral sensitivity relation concerning aminoglycosides [56, 57, 59] might not be
observed for P. aeruginosa10. These results of Yen and Papin imply the effect of an initial adaptation
to a certain drug on future evolutionary dynamics. In other words, the collateral sensitivity networks
observed in laboratory evolution experiments might depend heavily on the starting point (i.e. the initial
genetic/phenotypic background).

2.2 Inferring fitness landscapes from experimental data
Along with laboratory evolution experiments, a complementary approach to evaluate evolutionary

dynamics stems from the idea of the fitness landscape. The fitness (or adaptive) landscape was first
introduced by Sewall Wright where he coined the problem of evolution as “a mechanism by which the
species may continually find its way from lower to higher peaks” in the landscape [97,98] (Fig. 2.10). In
the fitness landscape, each inner state (e.g. genotype) of an organism is associated with a fitness value
(e.g. growth rate) in a fixed environment. By assuming that the organism continually optimizes its fitness,
we would be able to predict the direction of evolution and also the predictability from the “ruggedness”
of the landscape. Since the introduction of fitness landscapes, considerable theoretical efforts have been
devoted to understand the relation between landscape properties and evolutionary outcomes [99–103]. In
addition, starting with the pioneering work of Weinreich et al, the investigation of empirical landscapes
based on mutation libraries and massive genotype sequencing have led to our understanding of accessible
evolutionary trajectories and the underlying epistatic interactions [70, 71, 104–108]. In this section, we
review the experimental studies which construct empirical fitness landscapes based on genotypes and
discuss their implications.
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a b

Fig. 2.10 a, A schematic image of the genotype space constituted by 2 – 5 genes. The dimensionality
of the genotype space increases as the number of genes increase, resulting into a hypercube of
genotypes. b, A representation of a high dimensional (∼ O(103)) fitness landscape projected on a two
dimensional plane. The dotted lines represent the contours with respect to fitness. Figure reproduced
from [97].

Fig. 2.11 The genotype-fitness landscape for β-lactamase. Genotypes that do not contribute to high
probability mutational trajectories are omitted. The +/− for each node represents the presence/ab-
sence of the following mutations on β-lactamase: g4205a, A42G, E104K, M182T, and G238S. The
numbers on each node indicate cefotaxime resistance (µg/mL) for each genotype. The thickness and
color of the arrows show the relative transition probabilities. Figure reproduced from [70].

The β-lactamase landscape reveals constrained mutational pathways to fitter proteins
Weinreich and his colleagues constructed a fitness landscape for β-lactamase a protein that mediates

resistance to β-lactam antibiotics, based on its genotype [70]. Five point mutations (g4205a, A42G,
E104K, M182T, and G238S)11 for the TEM-1 β-lactamase were selected and all 25 = 32 possible E.
coli mutants were constructed. The fitness of these mutants were measured through their resistance to
cefotaxime. Assuming that the time for mutation fixation is far less than the time between mutations,
the authors were able to estimate the probabilities of 120 mutational trajectories from TEMwt to TEM∗

(the genotype with all five mutations). Interestingly, this analysis suggested that only a few mutational
trajectories are accessible for improving TEMwt for cefotaxime resistance (Fig. 2.11). Although only

9 The effects of adaptation history on resistance acquisition were also recently discussed in [96].
10 At the same time, the authors note that they only used one antibiotic per drug class. For reference, in [60] where they

also use P. aeruginosa (PAO1), TOB adapted strains rarely exhibited collateral sensitivity to other drugs. However, strains
that evolved in ciprofloxacin, erythromycin, doxycycline and other stresses showed sensitivity to tobramycin and other
aminoglycosides indicating an asymmetric tradeoff relation.

11 These five mutations jointly increase resistance to cefotaxime by a factor of ∼ 100, 000.
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Fig. 2.12 The genotype-fitness landscape for the DHFR gene and its promoter. The landscape is
based on the trimethoprim resistance of mutants with the combinations of five mutations for DHFR
(P21L, A26T, L28R, I94L and W30G/R) plus one for its promoter (-35C>T). Figure reproduced
from [71].

five mutations are considered, this work highlights how epistatic interactions could constrain accessible
paths in protein evolution12. Note, Fig. 2.11 which shows the mutational trajectories from TEMwt to
TEM∗ could be considered as a fitness landscape provided by genotypes. Since every genotype (except
TEMwt) has at least one mutation that increases resistance, there are no local optima in this landscape
which makes it single-peaked.

Epistatic interactions expand the number of indirect paths in the DHFR landscape
Fitness landscapes are not always single-peaked. Palmer and his colleagues constructed the fitness

landscape of trimethoprim spanned by the genotypes of DHFR [71]. The genotypes (-35C>T (promoter),
P21L, A26T, L28R, I94L and W30G/R (two different mutations)) were selected from a previous labora-
tory evolution for trimethoprim resistance [55], and were recombined to E. coli resulting in 25 × 31 = 96

DHFR mutants. Fitness was quantified through the resistance to trimethoprim. This comprehensive in-
vestigation of mutants and fitness produced a ‘rugged’ fitness landscape with 11 peaks where no gain/loss
of a mutation is able to increase trimethoprim resistance (Fig. 2.12). Interestingly, the authors point out
that this ‘ruggedness’ is generated by higher order interactions than pairwise interactions since every
possible pair of mutations coexists in at least one adaptive peak. One of the main claims of this paper
was that indirect paths, where the loss of an initially advantageous mutation leads to higher resistance,
provide escape pathways from evolutionary ‘dead-ends’ and increase the number of genotypes that could
access to a certain peak.

Cryptic genetic variation increases accessible mutational trajectories
Zheng et al studied the effect of cryptic genetic variation, standing genetic variation that does not

normally contribute to phenotypic variation, on accessible pathways to fitter phenotypes. They first
performed four rounds of directed evolution subject to stabilizing selection for E. coli with YFP, where
the cells were subject to PCR mutagenesis and 20% of the cells with yellow flourescence within a
narrow range around the median were selected for the next round. They next performed four rounds of
directed evolution on the population with increased cryptic variation through stabilized selection and
the population with zero cryptic variation towards green flourescence. As a result, they found that the
populations that evolved from populations with cryptic variation (VC

1−4) tended to acquire higher green

12 Ever since this pioneering work by Weinreich et al, many subsequent studies have been performed investigating the details
of the TEM-1 β-lactamase landscape [109–111].
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Fig. 2.13 The map of genotypes observed in the evolution experiment in [107]. Nodes represent
genotypes and are connected if they differ in a single amino acid. The size of circles represent
the genotype’s frequency, and the color represents the four population replicates where VC

1−4 and
V0

1−4 represent the evolved populations that evolved from populations with/without cryptic variation,
respectively. T1, T2, T3 represent the dominating genotypes for the populations that evolved green
flourescence directly from V 0. A1, A2, A3, A4 represent the dominating genotypes for the populations
that evolved from V C

4 . Figure reproduced from [107].

flourescence than those that evolved from populations with no cryptic variation (V0
1−4). To find out how

cryptic genetic variation facilitated evolution, the authors used single-molecule real-time sequencing to
genotype 500 to 1,000 evolved variants for each population (Fig. 2.13). The authors found that genotypes
that led to high green flourescence were constituted with genotypes that were not readily accessible from
the populations with zero cryptic variation (e.g. one of the strains acquired high flourescence by the
combination of mutations that were only beneficial when combined). However, the the populations with
cryptic variation already had intermediate genotypes that mediate paths to higher flourescence which led
to accelerated evolution.

The map of genotypes in Fig. 2.13 is similar to a fitness landscape spanned by the relevant genotypes
for green flourescence evolution. The colors correspond to the final generations of the populations
which could be thought as surrogate values for fitness. However, because the map is projecting the
high-dimensional genotype space to a 2D plane, the structure of the landscape (e.g. ‘ruggedness’) could
not be handled readily.

2.3 Why can we expect evolution to be predictable?
The predictability (i.e. chance and necessity) of evolution is a classic topic in evolutionary biology [45,

48,49]. Because evolutionary processes involve a certain level of stochasticity, many have been skeptical
about the predictability in evolution. In addition, the lack/sparseness of experimental data kept us from
directly comparing theories with experiments. This situation is now changing due to the emergence of
massive evolutionary information from laboratory evolution experiments combined with high-throughput
sequencing/phenotyping and the construction of empirical fitness landscapes. As we have seen in the
previous sections, these experimental approaches give us several reasons to be optimistic of predicting
evolution [49, 78].

First, the empirical fitness landscapes in section 2.2 have shown that epistatic interactions, where the
fitness effect of a certain mutation depends on the presence/absence of other mutations, could constrain
possible mutational trajectories to fitter phenotypes. Fitness effects brought by individual genes are not
always additive and thus, epistatic interactions could sculpt fitness landscapes so that only a limited
number of evolutionary trajectories are possible [70,112]. However, it should also be noted that epistatic
interactions could also bring “ruggedness” (i.e. multiple local optima) to the fitness landscape [71,107],
leading to multiple probable outcomes for evolution [108]. Although rugged landscapes lead to sequence
level stochasticity, it is fair to say that epistatic interactions could constrain possible evolutionary pathways
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within the high-dimensional genotype space, leading to predictability in evolution. Indeed, several studies
suggest that diminishing-returns epistasis could lead to predictable trajectories in fitness evolution despite
the sequence level stochasticity [113,114].

Second, the massively parallel laboratory evolution experiment by Tenaillon et al and other studies
suggest that despite the diversity in the sequence level, evolution could lead to convergence in coarse
grained units such as genes, operons and functional units [54, 55, 58, 59]. Biological networks such as
metabolic/regulatory networks have redundancies and thus, different single nucleotide and amino acid
changes could lead to similar functional effects. What is interesting is that evolution somehow leads
to repeatable outcomes in the high level features such as phenotypes. These repeatable features are
important building blocks for predicting evolution. Studies of antibiotic resistance evolution show that
evolution to a certain drug leads to repeatable collateral sensitivity relations between different drugs. One
such example is the tradeoff between aminoglycosides and drugs which are pumped out the cell by efflux
pumps [56,57,59]. We have seen that this tradeoff could be explained by the balance of the PMF across
the inner membrane [57]. These interactions between drugs could be supported by the changes in the
gene expression space. In fact, Suzuki et al show that the changes in drug resistance (including collateral
sensitivities) for strains that evolved in various stress environments could be accurately predicted using
only ∼ 8 genes. These results suggest the existence of evolutionary constraints which limit possible
phenotypic outcomes through evolution. In addition, we might be able to elucidate such constraints
by extensively studying the relation between gene expression profiles and resistance profiles of diverse
stresses. This is what we aim to do in Chapter 4 where we study evolutionary constraints through the
multi-omics data acquired from E. coli strains adapted to a diverse range of stresses.

However, recent studies also suggest that collateral sensitivities between drugs are not so simple. The
laboratory evolution experiments of Yen and Papin suggest that collateral sensitivities between drugs
depend on the mutational background of the strain [95]. The study by the Kishony group also supports
this idea where they observe that bacteria could find a narrow mutational path to cross resistance between
drugs that initially showed sensitivity to each other [94]. These studies suggest that in order to acquire a
full understanding of evolutionary constraints for resistance evolution, we need to study the progression of
phenotypes from different mutational backgrounds. This is the motivation for Chapter 5 where we study
resistance evolution from multiple starting points and seek to infer the structure of the underlying fitness
landscape. Overall, laboratory evolution experiments and empirical fitness landscapes have revealed
the existence of constraints which lead to repeatable features in evolution. The identification of such
evolutionary constraints would be essential for constructing a framework for predicting evolution.
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Chapter 3

Machine learning methods for
high-dimensional biological data

Here, we briefly review the recent advances in the field of machine learning and its applications for
high-dimensional data acquired in biological studies. In Section 3.1, we explain the basic and popular
dimension reduction methods for analyzing and visualizing high-dimensional data. Next in Section 3.2,
we discuss effective approaches for cases where the number of features p is much larger than the number of
samplesN , which is a typical situation in biology. Finally in Section 3.3, we briefly review methodologies
using artificial neural networks for analyzing biological data.

3.1 Dimension reduction techniques for high-dimensional
biological data

3.1.1 Principal Component Analysis
Principal Component Analysis (PCA) was first introduced by Karl Pearson in 1901 where he seeked

to represent a high-dimensional system with a “best-fitting” straight line or plane [115]. The method was
later independently developed and named as principal components by Harold Hotelling in 1936 [116].
In PCA, we first consider N observations in the Rp space as an input N × p matrix X1. Here we assume
x̄i = 0 for the mean of observations xi ∈ Rp, otherwise we replace all observations with their centered
versions x̃i = xi − x̄i. The singular value decomposition of X is given by

X = UDVT , (3.1)

where U and V are N × p and p × p orthogonal matrices with the columns of U and V spanning the
column and row space of X, respectively. D is a diagonal matrix with entries of d1 ≥ d2 ≥ . . . dp ≥ 0

which are called the singular values of X. Following from eq. (3.1), we have

XTX = VD2VT (3.2)

which gives us the eigen decomposition of XXT . Since the covariance matrix of the observations
are given as S = XTX/N , eq. (3.2) also provides the eigen decompositions of S as well. Here, the
eigenvectors vj (columns of X) are called the principal components directions of X. Importantly, the
first principal component defined as z1 = Xv1, has the largest variance amongst all normalized linear

1 Here, we basically follow the math introduced in [61].
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a b

Fig. 3.1 a, LDA axes separate E. coli populations which have grown in different environments, in
the Raman spectra space. Figure reproduced from [118]. b, The schematic representing the strategy
to recover independent regulons (the set of genes regulated by a given regulator) from transcriptome
datasets using ICA. Figure reproduced from [119].

combinations of X where Var(z1) = Var((Xv1)) = d21/N . The subsequent principal components zj
have ordered variance of d2j/N and are orthogonal to the earlier ones. It should be noted that linear
regression with L2 regularization also projects the data on the principal components and shrinks the
components with low-variance more than those with high-variance. Thus, the principal components
could be considered as the “best-fitting” linear approximations for the observed data X.

PCA is widely used for reducing the dimensions of high-dimensional biological data. Since it can
preserve the majority of variance, it is also often used for preprocessing before applying other methods (for
example see [117]). In the context of laboratory evolution, PCA has been used to probe the convergence
in high-dimensional transcriptome profiles [93] and stress resistance profiles [60] (see Fig. 2.5). One
caveat of PCA is that it does not necessarily provide the optimal projections when trying to predict a
independent target vector y ∈ Rp from X. We will discuss in details how to obtain a linear combination
of features with both high variance and significant correlation with the target y in section 3.2.

3.1.2 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) provides a linear method for the classification of K classes.

LDA models class densities as multivariate Gaussian distributions and it assumes that all classes have
a common covariance matrix Σk = Σ for all k. When K = 2, the decision boundary provided by
LDA corresponds with that provided by linear regression optimized via least squares. Simply put, LDA
provides the linear boundaries which separate the K classes the most under the assumption of Gaussian
distributed classes with the same covariance. For example, LDA with PCA preprocessing has been used
in [118] to find the most discriminatory bases which separate different populations in the Raman spectra
space (Fig. 3.1a).

Note that vanilla LDA for K > 2 classes do not provide orthogonal axes. It should also be noted that
since LDA depends on all of the data, it becomes sub-optimal when the data is distributed in a broad
non-Gaussian manner. In such cases, the optimal separating hyperplane could be acquired from linear
support vector machines or logistic regression.

3.1.3 Independent Component Analysis
Multivariate data is often viewed as mixed signals from individual latent sources which typically

cannot be observed directly. Independent Component Analysis (ICA) aims to recover these latent signals
by assuming that the latent sources are statistically independent2. To do so, ICA tries to find an orthogonal
A such that the independent sources S could be recovered from the observations X by S = ATX. This
is often done through the minimization of mutual information of I(S) = I(ATX) which leads to the
identification of orthogonal sources which are far from Gaussian and have the most independence3. For
example, Sastry et al applied ICA to RNA-seq datasets of E. coli to find independently regulated modules

2 When we assume that the latent sources are uncorrelated rather than statistically independent, the latent sources correspond
to principal components.

3 When applying ICA, it is important that the data is pre-whitened so that Cov(X) = I.
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a b

Fig. 3.2 a, A schematic illustration of t-SNE. xi corresponds to the original data points in the
high-dimensional space while yi corresponds to the low-dimensional points embedded by t-SNE.
Figure reproduced from [63]. b, t-SNE was used to classify five different macroscopic phases within
a swarm of Bacillus subtilis. Observables such as cell density, aspect ratio, speed, etc. were used for
applying t-SNE. Figure reproduced from [122].

in the transcriptional regulatory network (Fig. 3.1b)4 [119].

3.1.4 Non-linear methods: t-SNE, UMAP, PHATE and others
t-distributed Stochastic Neighbor Embedding (t-SNE), proposed by Maaten and Hinton in 2008 [65],

aims to construct a low-dimensional embedding that preserves local neighbor relations while repelling
points that were far apart in the original space. In t-SNE, the two-point neighbor relations are associated
with the following probability distribution,

pi|j =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )
, (3.3)

where xi, xj .xk ∈ Rs are the points in the original space and σi is a free parameter (usually set by the
‘perplexity’ parameter). The N points in the original space are embedded in a low-dimensional space
where the neighbor relations are associated as

qij =

(
1 + ∥yi − yj∥2

)−1∑
k ̸=j (1 + ∥yi − yk∥2)−1 , (3.4)

where yi, yj , yk ∈ Rt (t < s) are the points embedded in the low-dimensional space. Importantly, qij is
set to a probability distribution with a long tail which keeps close neighbors even closer while repelling
the points that were far apart (Fig. 3.2a). t-SNE tries to find a qij that has similar neighbor relations to
the original space by minimizing the following Kullback-Leibler divergence:

KL(p∥q) ≡
∑
ij

pij log

(
pij
qij

)
, (3.5)

where pij = (pi|j + pj|i)/2N is the symmetrized distribution of pi|j .
t-SNE is often used to visualize the high-dimensional structures of the data in a two- or three-

dimensional space. For example, Jeckel et al applied t-SNE to distinguish five different macroscopic
phases in Bacillus subtilis swarms (e.g. biofilm phase, high-density rafting phase) via 14 observables
extracted from microscope images, in an unsupervised manner (Fig. 3.2b) [122]. t-SNE is also often
used to visualize the variation within single-cell RNA-seq data [123, 124].

Although t-SNE is widely used for visualizing high-dimensional data in low-dimensional spaces, it
should be noted that the nonlinear transformation in t-SNE makes it hard to interpret the metric and

4 Recently, the Palsson group has also used Non-negative Matrix Factorization (NMF) for finding potential regulons from
transcriptome data of E. coli [120]. NMF was also used to find differentially expressed gene regions within single-cell
RNA-seq data in [121].
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global relations in the low-dimensional space. Recently, alternative methods such as Uniform Manifold
Approximation and Projection (UMAP) [125, 126] and Potential of Heat-diffusion for Affinity-based
Transition Embedding (PHATE) [68], are emerging in the field. These methods typically convert
transcriptome measurements into a connected graph and then perform mathematical operations (e.g.
solve diffusion equations) over this inferred graph [127, 128]. Interestingly, several studies suggest that
methods such as UMAP and PHATE tend to preserve both global and local structures of the dataset.
However, as long as these methods ‘flatten’ the original data into low-dimensional representations,
there always exists a risk that the structure in the original high-dimensional space gets distorted. Low-
dimensional visualizations are convenient, but ideally, they should serve only as aids for other (more
powerful) analyses in the high-dimensional space.

3.2 Handling the p ≫ N problem
In biological data, it is often the case that the number of features p is much larger than the number of

samples N (p ≫ N )5. For such settings, high variance and overfitting becomes a severe problem. One
might think that regularization methods such as LASSO (least absolute shrinkage and selection operator)
and ridge regression [129,130] would be effective. Although these typical regularization methods could
capture sufficient correlations between the features when p < N , the lack of information to efficiently
estimate the high-dimensional covariance matrix keeps us from finding the sufficient features in a p ≫ N

setting (for example, see Fig. 18.1 in [61]). In this section, we will review ‘supervised principal
components’ which is a simple approach to overcome this p ≫ N problem. This method will be the key
for our analyses in Chapter 4.

3.2.1 Supervised principal components
Supervised principal components was introduced by Bair, Tibshirani and their colleagues [66,67]. The

idea of supervised principal components is to find a latent variable that represents the effective degrees
of freedom for the target in interest6. For example, Bair et al aimed to find a linear combination of gene
expressions that efficiently describes the latent cell type responsible for lymphoma [67]. The question is,
how can we find this latent variable?

Principal component analysis is an effective way to find latent variables that exhibit large variance
in the dataset. However, the problem here is that the components with the largest variables are not
necessarily the ones that have significant correlation with the target in interest. Supervised principal
components seeks to find a linear combination of features that exhibits both large variance and significant
correlation with the target. To do so, we use the following algorithm:

1. First, we restrict the model’s attention to features that have a sizable correlation with the target.
This can be done by calculating univariate regression coefficients for the target as a function of
each feature. For example, Bair et al used the Cox’s proportional hazards regression model to
calculate the univariate regression coefficients7 [66, 67]. This results in p regression coefficients
θ1 . . . θp for the p features.

2. We next set a threshold θ and compute the first m principal components using only the features
that satisfy θi > θ.

3. We finally optimize θ and m through cross validation by using the m principal components in a
regression model (e.g. linear regression) to predict the target.

Fig. 3.3a shows the calculated supervised principal component for the survival time of lymphoma
patients [67]. The calculated supervised principal component shows good correspondence with the
survival time of the patients. Bair et al further compare this method with partial least squares (PLS) and

5 For example, the transcriptome dataset we use in Chapter 4 is a dataset of p = 4492 ≫ N = 192.
6 If we use a naive fully supervised approach, we would be able to acquire the genes that have the strongest correlation with the

outcome. However, these genes would partially but not perfectly correlate with the underlying effective degrees of freedom
that are responsible for the target dynamics. The idea here is that a latent variable as a combination of multiple genes might
do a better job in predicting the target dynamics than using individual genes.

7 This is because Bair et al were solving a survival problem in [66,67]. The details of the regression model is not an essential
ingredient for the construction of supervised principal components. Different regression models such as random forest
regression could be used instead as we will see in Chapter 4.
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a

b

Fig. 3.3 a, The survival time of lymphoma patients (top row) and the values of the first supervised
principal component (bottom row) for each patient (top panel). The principal component was calcu-
lated based on the 25 genes with the top Cox scores. The bottom panel shows the top 25 genes that
have significant correlation (high Cox score) with the survival time. Figure reproduced from [67].
b, Test errors for the lasso, supervised principal components, pre-conditioned lasso for a simulated
dataset with N = 100 samples and p = 5000 features. Each model is indexed by the number of
nonzero features. Figure reproduced from [61].

ridge regression in [67], and show that supervised principal components could significantly reduce the test
error while other methods suffer from the very high dimensions under a p ≫ N setting. In Fig. 3.3b, the
comparison of lasso and supervised principal components is shown for a different simulated dataset [61].
We can see that lasso starts to overfit before it can reach the prediction level of supervised principal
components under a p ≫ N setting8.

3.2.2 Random Forest
The original work concerning supervised principal components uses Cox’s proportional hazards

regression model for calculating univariate regression coefficients for each feature. Since the Cox’s
regression model is for predicting the survival time for patients, we use the random forest regression
model instead in Chapter 4. Here in this section, we give a brief introduction for random forest regression
models.

To explain random forests, we must explain the concept of a ‘decision tree’. Decision tree models
partition the feature space into a set of ‘rectangles’ and fit a constant in each one of them in order to
perform classification/regression. In Fig. 3.4, we show an example of regression using a single decision
tree. The maximum depth (max_depth) of the tree is the most important hyperparameter. The more
deep the tree is, the more vulnerable it becomes to overfitting (see Fig. 3.4d,g). A tree with a maximum
depth of one, introduces a partition at X = 0.403 and fits -1.322 and 1.108 for the left and right points of
the partition, respectively. The position of the partition is computed based on the decrease of the mean
squared error (MSE)9. If the dataset has multiple features, the decision tree looks for the feature which

8 Pre-conditioned lasso also shows remarkable results in Fig. 3.3b. In pre-conditioned lasso, we first predict the targets using
supervised principal components. We then train a lasso-regularized linear model to predict the predictions given by the
supervised principal components. This pre-conditioning using supervised principal components is considered to remove the
unneeded noise that typical lasso models tend to overfit on. Pre-conditioned lasso is also useful for reducing the number of
features in a p ≫ N setting, which is important for interpretational uses. For more details, consult chapter 18 in [61].

9 For classification tasks, one can use the Gini impurity instead of the MSE.



22 Chapter 3 Machine learning methods for high-dimensional biological data

max_depth = 1 max_depth = 2 max_depth = 6

X <= 0.403
mse = 1.84

samples = 25
value = -0.156

mse = 0.27
samples = 13

value = -1.322

True

mse = 0.468
samples = 12
value = 1.108

False

X <= 0.403
mse = 1.84

samples = 25
value = -0.156

X <= 0.099
mse = 0.27

samples = 13
value = -1.322

True

X <= 0.72
mse = 0.468
samples = 12
value = 1.108

False

mse = 0.033
samples = 2

value = -2.248

mse = 0.129
samples = 11
value = -1.154

mse = 0.062
samples = 7

value = 0.598

mse = 0.163
samples = 5

value = 1.822

X <= 0.403
mse = 1.84

samples = 25
value = -0.156

X <= 0.099
mse = 0.27

samples = 13
value = -1.322

True

X <= 0.72
mse = 0.468
samples = 12
value = 1.108

False

X <= 0.039
mse = 0.033
samples = 2

value = -2.248

X <= 0.183
mse = 0.129
samples = 11

value = -1.154

mse = 0.0
samples = 1

value = -2.428

mse = -0.0
samples = 1

value = -2.068

X <= 0.148
mse = 0.051
samples = 4

value = -1.334

X <= 0.292
mse = 0.145
samples = 7

value = -1.051

mse = 0.0
samples = 1

value = -1.001

X <= 0.156
mse = 0.019
samples = 3

value = -1.445

mse = 0.0
samples = 1

value = -1.634

X <= 0.169
mse = 0.001
samples = 2

value = -1.351

mse = 0.0
samples = 1

value = -1.315

mse = 0.0
samples = 1

value = -1.387

X <= 0.252
mse = 0.171
samples = 3

value = -0.821

X <= 0.37
mse = 0.056
samples = 4

value = -1.224

X <= 0.198
mse = 0.002
samples = 2

value = -1.113

mse = 0.0
samples = 1

value = -0.238

mse = 0.0
samples = 1

value = -1.072

mse = 0.0
samples = 1

value = -1.153

X <= 0.335
mse = 0.002
samples = 3

value = -1.359

mse = 0.0
samples = 1

value = -0.817

mse = 0.002
samples = 2

value = -1.376

mse = -0.0
samples = 1

value = -1.326

X <= 0.444
mse = 0.062
samples = 7

value = 0.598

X <= 0.782
mse = 0.163
samples = 5

value = 1.822

mse = 0.0
samples = 1

value = 1.117

X <= 0.49
mse = 0.02
samples = 6

value = 0.512

mse = 0.0
samples = 1

value = 0.211

X <= 0.6
mse = 0.002
samples = 5

value = 0.572

X <= 0.562
mse = 0.001
samples = 2

value = 0.618

X <= 0.66
mse = 0.0

samples = 3
value = 0.54

mse = 0.0
samples = 1

value = 0.645

mse = -0.0
samples = 1

value = 0.592

mse = 0.0
samples = 2

value = 0.553

mse = 0.0
samples = 1

value = 0.515

mse = 0.0
samples = 1

value = 2.208

X <= 0.849
mse = 0.158
samples = 4

value = 1.725

mse = 0.0
samples = 1

value = 1.063

X <= 0.96
mse = 0.015
samples = 3

value = 1.946

X <= 0.908
mse = 0.007
samples = 2
value = 2.02

mse = -0.0
samples = 1

value = 1.799

mse = 0.0
samples = 1

value = 1.938

mse = -0.0
samples = 1

value = 2.102

a b c d

e f g

Fig. 3.4 An example of regression based on a decision tree with different depths. a, We use randomly
distributed points around y = 4(X − 0.5) as target values to predict. b,c,d, The results of regression
(red) using a decision tree with maximum depths of 1, 2, 6, respectively. e,f,g, The branching structure
for each decision tree model responsible for the results in b, c and d, respectively.

can lower the MSE the most. The decision tree continues to set partitions until (i) the depth of the tree
reaches the max_depth, (ii) the MSE can no longer decrease10. Importantly, the importance of each
feature can be calculated through its total contribution to the decrease of MSE. For example, the first
branch in the decision tree in Fig. 3.4e reduces the MSE by 36.874 = 25×1.84−(13×0.27+12×0.468).

The Random forest model, which is basically an ensemble of decision trees, were introduced by
Breiman in 2001 [64]11. It is based on the idea of bagging or bootstrap aggregation12 which aims
to improve the model’s performance by averaging many noisy, but approximately unbiased models.
Ensembles work poorly if the noise in the individual models are correlated. Thus, there are basically
two randomization processes through the construction of random forests. First, each decision tree is
trained on different subsets of the data (bootstrapped data). Second, only a random subset of features
could be used at each split of each decision tree. These two randomization processes reduce correlations
between the decision trees and leads to an improvement in performance when averaged. This is especially
important in the p ≫ N setting since there should exist multiple models in the hypothesis space H that
all give the same performance on the training data, and by averaging these models, we would be able
to reduce the risk of choosing the wrong hypothesis [132]. As we have seen for individual decision
trees, random forest models can also compute the contribution of each feature for prediction (feature
importance)13. This makes the random forest model a popular choice not only for prediction but also
feature selection. In Chapter 3, we will see how the feature selection by random forest models could
contribute to downstream analysis (in our case, supervised PCA).

3.3 Artificial neural networks and biological data
The recent advances in artificial neural network models (deep learning) has expanded the range of

problems we can deal with biological data. While this big wave of artificial neural networks started
from the breakthrough in image classification [133], its applicability now is not limited to image data.
Artificial neural networks can now be used in a much broader range of tasks / data domains including
and not limited to:

• cell segmentation tasks [134]
• aligning single-cell RNA-seq data with mass cytometry (proteome) data [135] through the utiliza-

10 As we can see in Fig. 3.4d, decision trees easily overfit when the maximum depth is too large. The maximum depth of the
decision tree is a hyperparameter and can be decided through cross validation.

11 However, the term “random forest” and the essence of building multiple trees in randomly selected subspaces of the feature
space, was first introduced in [131].

12 The term bootstrap comes from the saying “pull oneself up with one’s bootstrap”. Although this saying is often referred to the
story in “The Surprising Adventures of Baron Munchausen”, there is actually no reference to bootstraps in the Munchausen
tales where Baron pulls himself up using his pigtail (and not his bootstrap).

13 The theoretical characterization of the feature importance in random forests has been performed in [132].
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tion of generative adversarial networks (GAN) [136]
• identifying new cell types in single-cell RNA-seq data through meta-learning [137]
• constructing a latent space for shape variations in cultured cells [138] and 3D mandibles [139]
• efficiently sampling statistically independent states of folded proteins from Boltzmann distribu-

tions [140]
• identifying mutations that have large biological impact and are also biologically viable [141,142]

using an analogy with natural language processing

and other miscellaneous tasks.
Although neural networks are emerging in a wide range of topics, the preparation of sufficient data

still remains as a hurdle to overcome, especially in biology. Recently, self-supervised learning has
been suggested as an effective pre-training method for natural language processing [143] and image
classification [144, 145]. The idea of self-supervised learning is to utilize unlabeled data to improve
task performance when only a few labeled data is available. In image based tasks, for example, self-
supervised methods formulate pre-training tasks such as predicting the representation of one part of an
image from those of other parts of the image [144, 145]. It has also been shown that these methods can
be used as auxillary tasks for regularizing segmentation models in the small labeled data regime [69].
Self-supervised learning might be the key for a broader and more effortless usage of artificial neural
networks for biological data.
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Chapter 4

Probing evolutionary constraints from
high-dimensional multi-omics data

Biological data is often acquired as high dimensional data. However, there is accumulating evidence in
the field that hints us the existence of a low dimensional manifold which underlies the dynamics of living
things. One of the origins of this low dimensional manifold are understood as evolutionary constraints:
biases and limitations of the genotypes or phenotypes that arise in biological systems. In the context of
drug resistance evolution, evolutionary constraints appear as cross-resistance/sensitivity relations in the
acquired drug resistance profiles for example. These evolutionary constraints are expected to contribute
to enabling the prediction and control of microbial evolution. Although previous works have shed
light on several constraints for drug resistance acquirement, we still lack a systematic understanding of
evolutionary constraints. In this chapter, we will focus on the drug resistance evolution of Escherichia
coli by analyzing a multi-omics dataset acquired from laboratory evolution in a variety of 48 conditions in
total. We will see how the utilization of machine learning such as random forest regression and supervised
PCA can contribute to probing the low dimensional manifold of E. coli’s phenotypes. We will also discuss
how our analyses could contribute to deepen our understandings of evolutionary constraints.

Related publications by author:
Tomoya Maeda*, Junichiro Iwasawa*, Hazuki Kotani, Natsue Sakata, Masako Kawada, Takaaki Hori-

nouchi, Aki Sakai, Kumi Tanabe, and Chikara Furusawa, "High-throughput laboratory evolution reveals
evolutionary constraints in Escherichia coli". Nature Communications 11, 5970 (2020). bioRxiv doi:
10.1101/2020.02.19.956177 (*co-first authors)

Contribution:
The author (J.I.) conducted all data analyses under the advice and supervision of C.F.. Biological
interpretation of the analyses was done by J.I., T.M., and C.F.. All experiments and data acquisition were
performed by T.M. with the support of H.K., N.S., M.K., T.H., A.S., and K.T., under the supervision of
C.F..
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4.1 Introduction
The emergence of antibiotic resistance and multidrug-resistant bacteria is a growing global health

concern [51, 52, 79]. Since bacteria can easily acquire resistance even to novel drugs, the development
of novel antibiotics is not necessarily an effective approach to combatting antibiotic resistance [53,
146]. Thus, it is important to understand the mechanism itself of antibiotic (or stress) resistance
evolution [55–59,147]. One promising approach to understand the mechanism to evolution is to identify
the evolutionary constraints, “a bias or limitation in genotypic or phenotypic variation that a biological
system produces” [148], which shape resistance evolution [46, 52]. Although genotypic/phenotypic
variations have a high dimensional nature, evolutionary constraints could keep the dynamics on a low
dimensional manifold within the high dimensional space, making the evolutionary dynamics predictable
and maybe even controllable [49,78,81,149]. Notably, previous studies have revealed that the acquisition
of resistance to a certain drug is often associated with resistance/sensitivity to a different drug which
is coined as cross resistance / collateral sensitivity, and that such phenomena could be widely observed
among different drugs [55–60]. As one can easily imagine, this interconnectedness of cross-resistances
and collateral sensitivities could be interpreted as the scars of evolutionary constraints on accessible
phenotypes. Thus, it is crucial to reveal the network of cross-resistances and collateral sensitivities
over a wide variety of drugs (or stresses) and elucidate the biological mechanisms which underlie such
networks to understand evolutionary constraints1. In other words, the investigation of the relations
between the phenotypic space describing the cross resistance / collateral sensitivity networks (i.e. the
resistance space) and the space describing the internal biological processes (i.e. the gene expression
space, genotypic space) are crucial for understanding drug resistance evolution (Fig. 4.1). If we could
find a latent space in the gene expression space which corresponds to the low dimensional dynamics in
the resistance space (i.e. a gene expression – resistance mapping), we would be able to investigate the
origins of evolutionary constraints which would lead to the basis for making an effective framework for
predicting evolution.

However, elucidating the relations between the resistance space and the gene expression space leads to
a two-fold problem. One is that the variety of constraints underlying drug resistance evolution would be
hindered if we only investigate the resistance acquisition network based on a limited number of stresses.
Although an extensive exploration of the network of cross-resistances / collateral sensitivities is crucial for
investigating evolutionary constraints, we still lack such exploration over a wide range of stresses mainly
due to the experimental cost. Another problem is that when we acquire omics data (e.g. transcriptome
data) to investigate the relation between resistance acquisition and the underlying biological processes, it
is usually difficult to find corresponding signals in the omics data due to the p ≫ N problem where the
dimensionality of the dataset p is much larger than the number of samples N [61]. Unless we figure out
how to find the signals in the high dimensionality dataset, we will not be able to find an effective latent
space for investigating evolutionary constraints.

In this chapter, we will provide an approach to the problems above by combining high-throughput

Gene expression space
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Gene B

Gene C

evolved strains

Resistance space 

Stress X

Stress Y
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Fig. 4.1 One of the central questions in this chapter is the following: How can we relate the gene
expression space to the stress resistance space?

1 The understanding of the network of cross-resistances and collateral sensitivities are important not only for the understanding
of evolutionary constraints, but also for clinical reasons. For example, the cyclic use of two drugs with collateral sensitivity
were demonstrated to suppress resistance evolution [56]. Thus, the investigation of drug interactions might provide alternative
strategies for such clinical approaches to antibiotic resistance.
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9024 IC50 measurements

Automated Culture System
for Laboratory Evolution

576 strains in 96 environments

a b

Fig. 4.2 a, Schematic image of the automated culture system for laboratory evolution [151]. Ex-
amples for the time series for resistance evolution and resistance (IC50) measurements are shown
together. b, A photograph of the automated culture system taken by Junichiro Iwasawa in RIKEN,
Osaka. a was reproduced from [150].

laboratory evolution and machine learning based analyses. We first performed high-throughput laboratory
evolution by using an automated culture system which allowed us to explore drug resistant phenotypes
in a unprecedented scale. In details, we performed laboratory evolution of Escherichia coli under 47
stressors with a wide variety of action mechanisms (Fig. 4.2, Table 4.1)2. For each of the evolved
strains, we collected their genome, transcriptome3, and resistance profiles resulting to a multi-omics
dataset. Next, to avoid the p ≫ N problem, we utilized a method called “Supervised PCA” [61, 66, 67]
which allowed us to extract a latent space in the gene expression space that maximizes the dependency
between gene expression and stress resistance. Through the analysis using supervised PCA, we were
able to find low dimensional structures within the distribution of the evolved strains, suggesting the
existence of constraints underlying resistance evolution dynamics. We further validate our analyses of
the low dimensional structures by reconstructing commonly observed mutations in the parent strain. We
also report an interesting phenomenon coined as “decelerated evolution”, in which the resistance of the
evolved strains under β-lactams are overtaken by strains evolved in different stressors. Our analyses show
how that the combination of high-throughput laboratory evolution and machine learning can open new
avenues to the investigation of evolutionary constraints.

4.2 Basic statistics of the dataset acquired from high-throughput
laboratory evolution

High-throughput laboratory evolution was performed using an automated culture system (Fig. 4.2, 4.3)
[151] for 47 stressors covering a wide range of action mechanisms (Table 4.1, Fig. 4.4a) to systematically
investigate drug-resistant phenotypes. Originally, six independent culture lines were propagated in
parallel for each stressor to evaluate the reproducibility of the stress resistance evolution dynamics. In
total, 288 independent culture series were maintained (47 stressors plus a control without any stressor ×
six replicates) for 27 daily passages corresponding to approximately 250–280 generations4. Figures 4.2a

2 In the original work [150], laboratory evolution was performed under 95 stressors. However, due to the limitation in
experimental capacity, we have picked up 47 stressors for further analysis. In this dissertation, we focus on the 47 stressors
from the very beginning to avoid confusion.

3 It should be noted that although there exist several previous works investigating drug resistance using laboratory evolution,
most just collect the drug resistance profiles with the evolved strains’ genotypes, and not gene expression profiles. However,
as other studies of microbial populations suggest, phenotypic changes such as changes in regulatory or metabolic pathways
are much more repeatable than changes in the genotype space [49]. The investigation of these repeated phenotypic changes
is what we really need when we desire to build a framework for predicting evolution, and thus, the collection of the
transcriptome is an essential feature of our study.

4 Here, the initial OD is set to OD = 0.00015 which corresponds to ∼ 7, 500 cells per 50 µL. In the current system, the
minimum threshold for transferring cells is set to OD = 0.09 which corresponds to a 600-fold growth of cells in 24h. On
the other hand, the OD of full growth is OD = 0.2 which corresponds to a 1333-fold growth of cells in 24h. Therefore, the
generations of cells Ngen could be bound as, 27× log2 600 < Ngen < 27× log2 1333 ⇒ 249 < Ngen < 280.
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Fig. 4.3 Time series for the resistance over the 27 days of the laboratory evolution experiment for
tetracyclin (TET), kanamycin (KM) and norfloxacin (NFLX). The time series for all 48 environments
are shown in Fig. 4.23 and 4.24. Figures were modified and reproduced from [150].

a

c

b

Fig. 4.4 a, Categories of the mechanism of action for the 47 stresses selected for resistance (IC50)
measurements. The 47 stresses are given in Table 4.1. b, Distribution of mutation events for the
evolved strains according to its mutation type, except for strains evolved in GAH, NQO, and MMC.
Other point mutations include mutations in intergenic/noncoding regions. c, The mean number of
identified mutations for the four evolved strains in each environment are shown. The error bars
represent the standard deviation. The blue dashed line is a guide to the eye showing the level of five
mutations. Figures reproduced from [150].

and 4.3 show examples of the time course of transferred concentrations (which could be considered
close to the minimal inhibitory concentration, MIC) during laboratory evolution. Here, the strains are
named by combining the abbreviations of the stressor (e.g. MMC) and its replication number (E1 – E6).
The time courses of transferred concentrations for all stressors are shown in Fig. 4.23, 4.24. Among
the 47 stressors, a significant increase in the transferred concentrations was observed for all 47 stressors
(Mann-Whitney U-test, false discovery rate (FDR) < 5%). For further phenotypic and genotypic analyses,
the top four evolved strains showing higher IC50values among the six, isolated from each stressor (and
the control), resulting to (47 + 1)× 4 = 192 evolved strains, were selected.

4.2.1 Genotypic changes
To investigate genetic alterations underlying the observed resistance, genome resequencing analyses

of the 192 evolved strains were performed (Fig. 4.4). To show the variation in the number of mutations
among strains evolved in the same environment, the mean number and standard deviation of mutations
for the four strains are shown in Fig. 4.4c, where we can see that most of the strains had less than five
mutations. In fact, 147/192 (76.6%) of the evolved strains had less than five mutations. Among the 47
stressors, the highest number of mutations were observed in stresses such as glutamic acid γ-hydrazide
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Abbreviation Stress name Biological target
5-FOA 5-Fluoroorotic Acid Monohydrate DNA
5-FU 5-Fluorouracil DNA
6-MP 6-Mercaptopurine monohydrate DNA
ABU DL-2-Aminobutyric acid Unknown in bacteria
AF Acriflavine DNA
ATP Amitriptyline Hydrochloride Unknown in bacteria
AZT Aztreonam Peptidoglycan
BSD Blasticidine S hydrochloride Protein translation
BZ Benserazide Hydrochloride Aromatic-L-amino-acid
CBPC Carbenicillin Sodium Salt Peptidoglycan
CCCP Carbonyl cyanide 3-chlorophenylhydrazone Oxidative phosphorylation
CMZ Cefmetazole sodium salt Peptidoglycan
CP Chloramphenicol 50S ribosome
DCS D-Cycloserine Peptidoglycan
DVAL D-Valine Extracellular polysaccharide
EM Erythromycin 50S ribosome
FOS Fosfomycin disodium salt Peptidoglycan
GAH L-Glutamic acid gamma-hydrazide Glutamate decarboxylase
H2O2 Hydrogen peroxide Oxidative stress
HSE L-Homoserine Glutamate dehydrogenase
KM Kanamycin Sulfate 30S ribosome
K2TeO3 Potassium Tellurite (IV)　　 Oxidative stress
MEC Mecillinam Peptidoglycan
MMC Mitomycin C DNA
NFLX Norfloxacin DNA gyrase
NiCl2 Nickel(II) Chloride Oxidative stress
NMNO N-methyl-N-octylamine Unknown in bacteria
NQO 4-Nitroquinoline 1-oxide DNA
NVA DL-3-hydroxynorvaline Aspartate and homoserine kinase
PLM Phleomycin DNA
PMZ Promethazine Hydrochloride Histamine H1 receptor
PUR Puromycin Dihydrochloride Protein translation
RFP Rifampicin RNA polymerase
SDC Sodium Dichromate Dihydrate Oxidative DNA damage
SHX DL-Serine hydroxamate Serine-tRNA ligase
SS Sodium salicylate Metal chelater
SXZ Sulfisoxazole Folic acid biosynthesis
TET Tetracycline 30S ribosome
VCM Vancomycin Hydrochloride Peptidoglycan

Table 4.1 Full names of the stresses used in this study. This table was reproduced from the supple-
mentary information of [150].

(GAH) with 157± 67 mutations, 4-nitroquinoline-1-oxide (NQO) with 23± 5 mutations, and mitomycin
C (MMC) with 27 ± 4 mutations. Although GAH has not been previously recognized as a mutagen,
the results show that GAH has a higher mutagenic activity than known mutagens such as NQO and
MMC. To estimate the ratio of beneficial mutations among the evolved strains, we calculated the ratio
of nonsynonymous to synonymous mutations per site (dN/dS) for the evolved strains. Excluding the
strains which evolved in GAH, NQO, and MMC, 21 and 307 mutations were identified as synonymous
and nonsynonymous mutations, respectively (Fig. 4.4b)5. For strains evolved in stresses other than GAH,
NQO and MMC, the ratio of nonsynonymous to synonymous mutations per site was 5.26, implying that

5 Here, we excluded the strains which evolved in GAH, NQO, and MMC, since the inclusion of mutagens leads to a lower-biased
estimate of dN/dS.
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Resistance (log2) 
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Fig. 4.5 Identified combinations of stresses that exhibited either cross-resistance or collateral sen-
sitivity for each of the four strains which evolved in the same environment. Figure reproduced
from [150].

approximately 80% of the nonsynonymous mutations were beneficial6.

4.2.2 Stress-pairs exhibiting cross-resistance / collateral sensitivity
The exploration of stress pairs exhibiting cross-resistance / collateral sensitivity, a phenomenon where

an evolved strain in a certain stress gains resistance / sensitivity to another stress, is important for clinical
purposes such as drug cycling [56]. It is also important for the control of stress resistance evolution
since cross resistances and collateral sensitivities can be considered as scars of evolutionary constraints.
The changes in stress resistance profiles were quantified by measuring the half-maximal inhibitory
concentration (IC50)7 of all 47 chemicals for each evolved strain (9024 measurements in total), relative
to the parent strain (details of this quantification are given in ??). These IC50measurements allowed us to
study how common cross-resistance / collateral sensitivity occur. By comparing the four strains evolved
in the same stress and 13 independent IC50measurements of the parent MDS42 strain, we found that
336 and 157 pairs of stressors exhibited cross-resistance and collateral sensitivity, respectively, within
the possible 2162 combinations (Mann-Whitney U-test, double-sided, FDR < 5%, Fig. 4.5). These
information provide a basis for the prediction and control of stress resistance evolution. However, it
should be noted that the measurements here are based on the strains evolved only from a single genetic
background (the parent MDS42 strain). What is really needed is an extensive investigation of stress
pairs exhibiting cross-resistance / collateral sensitivity based on strains evolved from different genetic
backgrounds8. We will discuss this in more details in the next chapter.
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Fig. 4.6 Schematic image of the procedure of the analyses in this study. The IC50changes were
predicted through the random forest regression model using the gene expression profiles. The genes
with high importance for the regression model were used for Supervised PCA and LDA for extracting
the underlying biological processes for stress resistance acquisition.

4.3 Supervised PCA bridges gene expression and stress resistance
To investigate the changes in gene expression which underlie stress resistance acquisition, we performed

transcriptome analysis on the 192 evolved strains (for the whole dataset, see Supplementary Data 4
in [150]). Note, all evolved strains were cultured without addition of stressors to standardize the culture
condition for the transcriptome analysis9. To explore the latent space in the gene expression space
which corresponds to resistance evolution, we will perform dimension reduction on the gene expression
data using Supervised Principal Component Analysis (PCA) [66, 67]. As we have seen in Chapter 3,
Supervised PCA allows us to extract a subspace in which the dependency between gene expression and
stress resistance is maximized, which is not assured by vanilla PCA.

4.3.1 Preprocessing for Supervised PCA using random forest regression
The essence of supervised PCA is to construct a latent space that exhibits both large variance and

significant correlations with the target in interest (e.g. stress resistance). In order to do so, we need to
estimate the correlation between each feature and stress resistance and restrict the attention of PCA to
features that have a sizable correlation. We thus constructed a random forest regression model10 that
predicts the relative IC50s for each of the 47 stresses from the 4,492 log10-transformed gene expression
levels for all 192 evolved strains (Fig. 4.6, 4.7) 11. Because the changes in IC50varied within the 47
stresses, we normalized the IC50changes by multiplying 1, 0.5, or 0.25 depending on the maximum fold

6 The ratio of beneficial mutations of the evolved strains could be estimated through the ratio of nonsynonymous to synonymous
mutations per site (dN/dS) which was calculated as 5.26 for the current experiment [54]. Under the assumption that dN/dS

should be 1.0 under strict neutrality, the ratio of beneficial mutations y can be calculated as y = (5.26−1.0)/5.26 = 0.810.
7 The genotypic and phenotypic analyses here are performed against a isolated single clone. It has been confirmed that

the IC50s of the single clones were nearly identical to that of the corresponding endpoint cultures. In fact the mean of
IC50(isolated clones) - IC50(endpoint cultures) was 0.18± 0.22 (95% confidence interval).

8 A pioneering work in this direction was recently conducted in [95].
9 Of course, the expression of some genes would only be induced or suppressed in the presence of a stressor. In this study,

we neglected the environment-dependent expression changes and collected the gene expression profiles in the no-drug
condition, to compare expression profiles of the evolved strains without environmental-dependent biases. However, it would
be interesting to collect the gene expression profiles under various environmental conditions, e.g., 192 strains × 47 stress
environments = 9024 conditions, to unveil both the environment-specific regulatory responses and their evolution

10 Ensembling methods including the random forest model are now one of the most powerful tools in machine learning. The
reasons underlying this success is explained by Louppe in his PhD dissertation as follows [132]:

“The first reason is statistical. When the learning set is too small, a learning algorithm can typically find several models in
the hypothesis space H that all give the same performance on the training data. Provided their predictions are uncorrelated,
averaging several models reduces the risk of choosing the wrong hypothesis. The second reason is computational. Many
learning algorithms rely on some greedy assumption or local search that may get stuck in local optima. As such, an ensemble
made of individual models built from many different starting points may provide a better approximation of the true unknown
function than any of the single models. Finally, the third reason is representational. In most cases, for a learning set of
finite size, the true function cannot be represented by any of the candidate models in H. By combining several models in an
ensemble, it may be possible to expand the space of representable functions and to better model the true function.”

11 Here, we used the scikit-learn implementation sklearn.ensemble.RandomForestRegressor.
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Fig. 4.7 a, Negative mean squared error from the 4-fold cross validation for the random forest
model. Two hyperparameters (n_estimators: number of trees, max_depth: max depth of each tree
in the forest) were optimized through a grid search. The following values for hyperparameters were
obtained: n_estimators = 300, max_depth = 18. b, The predicted IC50 values predicted from the
whole gene expression dataset using the random forest with n_estimators = 300, max_depth = 18.
c, The sorted gene importance levels computed through the random forest model. The top 213 genes
(orange) were used for supervised PCA. c was reproduced from [150].

changes of the IC50s12. To avoid overfitting, a grid search over the number of trees (16 values between 10
and 40) and the max depth of each tree (60 values between 20 and 1,200) was performed using a 4-fold
cross validation method (Fig. 4.7a). The set of hyperparameters, (number of trees, max depth) = (300,
18), which provided the lowest mean squared prediction error averaged over the 4-fold validation sets,
was selected for further analysis. Using these hyperparameters, we trained the random forest regression
model using the 4,492 gene expression levels as features and the resistance changes for all 47 stresses as
targets. Through this procedure, we were able to extract the feature importance for each gene (Fig. 4.25)13.
The number of genes to use in the latter PCA process were coarsely chosen by looking at the inflection
point of the decay curve for feature importance (Fig. 4.7b). To fine-tune the number of genes N to use,
we calculated the class dissimilarity W15 (explained below) in the 47 dimensional resistance space based
on the expression profiles of the top N genes with high feature importance (Fig. 4.12c).

4.3.2 Performing Supervised PCA

Supervised PCA and hierarchical clustering
To explore the latent space for stress resistance, we performed Supervised PCA [66, 67] based on the

213 genes extracted by the random forest regression model14. Supervised PCA based on the expressions
of these genes revealed the existence of clusters of evolved strains in the dimension reduced gene
expression space (Fig. 4.8). Especially, when observing the supervised PCA space through tSNE [65]
and PHATE [68], the existence of several distinct clusters can be clearly observed (Fig. 4.9). To
clarify these clusters, we performed hierarchical clustering in the supervised PCA space. The nontrivial
procedure of hierarchical clustering is how to define the resulting number of clusters. One heuristic
method is called the elbow method where you compute the class dissimilarity Wn for each number of

12 This normalization corresponds to the chemical gradient step size used for the determination for IC50changes.
13 Here, the feature importance (gene importance) is evaluated by the decrease of the mean squared prediction error at each

branch of each decision tree through the feature_importance attribute of the RandomForestRegressor function. The 213
genes and their feature importances computed by the random forest model is given in Fig. 4.25.

14 Note that in the original work, feature selection prior to PCA was performed through the Cox score which measures the
correlation between the gene’s expression and patient survival.
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classes and choose the number of clusters n where Wn −Wn−1 takes its maximum. Here, Wn is defined
as

Wn =
∑
k

∑
i∈ck

|ri − µck |
2
, (4.1)

where k, ck, µck is the class’s index, the set of elements for each class, and class k’s centroid, respectively,
and ri, i represents the location of each strain, and its index, respectively. For each number of classes n,
we calculated Wn, and its derivative (Wn −Wn−1) in the 47 dimensional resistance space and searched
for the number of classes where Wn −Wn−1 sharply decreased (Fig. 4.12a,b)15. As a result, the optimal
number of classes was determined to be 15. The results of hierarchical clustering including all 15 classes
are given in Fig. 4.10 and a simplified version omitting one class and three singletons are shown in
Fig. 4.11.

Finding genes underlying the modular classes via LDA
Hierarchical clustering in the supervised PCA space resulted in the elucidation of modular classes

of expression profiles (Fig. 4.10, 4.11, )16. Strikingly, strains in the same class were those that did
not necessarily evolve in the same stress, nor stress category. Similar phenotypic convergence of
drug-resistant strains has previously been observed in clinically isolated strains of Pseudomonas aerug-
inosa [60]. To elucidate characteristic gene expression for each class, we applied linear discriminant
analysis (LDA), which allowed us to extract the most discriminative set of genes for each class, through
the observation of each decision boundary (Fig. 4.10b, 4.11b). Here, LDA was performed by using
the LinearDiscriminantAnalysis function from the scikit-learn package. The strains were given
binary labels for LDA: one for the strains which belonged to the class of interest, and zero for the other
strains. To extract the important genes which characterized each class, we looked for the top weighted
genes in each LDA axis, which corresponded to the genes which contributed to the decision boundary
for the binary labeled strains. 　 Due to the nature of LDA, the top weighted genes sometimes showed
the characteristic genes not for the class in interest, but for the other classes. Thus, we further selected
the genes which had more than a two-fold change in gene expression compared with the parent strain,
within the top weighted genes in each LDA axis.

Evaluating the correspondence between the Supervised PCA space and Stress resistance space
To investigate how the classes of gene expression profiles correspond to stress resistance, we observed

the relative IC50for each of the 47 stresses of each evolved strain sorted based on the hierarchical
clustering in the supervised PCA space (Fig. 4.10c, 4.11c). As shown in the figures, the classes in the
supervised PCA space correspond well with the stress resistance patterns. To quantitatively evaluate
the correspondence between the resistance space and the supervised PCA space17, we used the class
dissimilarity (Wn) measure. In details, we computed W15 in the resistance (IC50) space based on the
clustering results in the resistance space18, supervised PCA space, genotypic (mutation) space, and the
whole expression space, respectively (Fig. 4.13a)19. Wn is a measure of the sum of “compactness” of
each cluster in the space of interest. Because W15 in Fig. 4.13a is measured in the IC50space, it is natural
that W15 based on the IC50space takes a minimum among the others. Interestingly, W15 based on the
supervised PCA space takes the next smallest value, which is smaller than that based on the genotypic
space nor the whole expression space. This suggests that the supervised PCA space is offering good
representations in the expression space that corresponds well with the resistance space. In other words,
the topological relationships between the strains in the resistance space could be accurately represented

15 Because we wanted to explore the underlying biological mechanisms for resistance acquisition in detail, we limited the lower
bound of n to 10. When we computed Wn for n > 0, Wn −Wn−1 took its maximum at n = 8.

16 Here, hierarchical clustering was applied to the 36 dimensional supervised PCA space which corresponds to 90% of the
total variance. The Ward’s method was used for clustering.

17 Here, we considered the neighboring (or topological) relations in each space as a measure of correspondence.
18 For the resistance space, hierarchical clustering was applied based on the 47 relative IC50s, to cluster the 192 strains to 15

classes.
19 For the resistance space, hierarchical clustering was applied based on the 47 relative IC50s, to cluster the 192 strains to

15 classes. For the mutation space, hierarchical clustering was applied based on the one-hot encoding which reflects the
information of the presence of a mutation. For the expression space, hierarchical clustering was applied to the whole 4,492-
dimension gene expression space. To construct a baseline, the class dissimilarity was calculated for randomly clustered
classes in the resistance space as well.
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Fig. 4.8 a,b, Distribution of the 192 evolved strains and the parent strain in the supervised PCA
space. The four principal components are shown and the colors denote the evolved environment for
each strain. c,d, The same data as in a,b with colors denoting the classes defined by hierarchical
clustering. Figures reproduced from [150].

in a subspace of the gene expression space20.
One might wonder what happens if we performed our analyses based on the results of hierarchical

clustering in the resistance space. Because we are looking for a representation that bridges the gene
expression space and the resistance space, clustering directly in the resistance space might also provide
us nice representations. However, direct clustering in the resistance actually breaks apart some of the
important gene expression clusters (e.g. the cluster with high acrR expression, the cluster with high prlF
expression) (Fig. 4.26). We can also see that direct clustering in the resistance space is not a good strategy
through the calculation of W15 measured in the whole gene expression space (Fig. 4.13b). Here, we
computed W15 in the whole gene expression space based on the clustering results in the whole expression
space, supervised PCA space, resistance space, and the genotypic (mutation) space, respectively. We
can see that although clustering in the supervised PCA space leads to low W15 close to that of the
whole expression space, W15 based on clustering in the resistance space leads to a high value. These
results might suggest that the effective degrees of freedom in the resistance space is not sufficient to
recover necessary information in the gene expression space, while the supervised PCA space obtains
good representations conserving information for both the expression and resistance space21. Overall,
our results suggest that the supervised PCA space, preserving sufficient information, bridges the gene
expression space and the stress resistance space.

20 Of course, the results of Fig. 4.13a might differ slightly when we have more experimental samples. It is important to be
aware that the awful results of W15 based on the genotypic space and the whole expression space partially stems from the
p << N problem, where the high dimensionality of the data hinders important signals of the data. However, as in [59,93],
there is growing evidence in the field that microbial evolution can be well represented in a low dimensional space, and we
can consider this result as a consequence of the manifold hypothesis.

21 Indeed, when we performed PCA for the IC50space, supervised PCA space, and the whole expression space, the number of
dimensions corresponding to 90% variance was 18, 36, and 70, respectively.
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Fig. 4.9 a, The distribution of the evolved strains in the 36 dimension supervised PCA space
embedded to a two-dimensional space using tSNE. Colors denote the evolved environment. b, The
same data as in a with colors denoting the classes defined by hierarchical clustering. c, The distribution
of the evolved strains in the 36 dimension supervised PCA space embedded to a two-dimensional
space using PHATE. Colors denote the evolved environment. d, The same data as in c with colors
denoting the classes defined by hierarchical clustering. a, b were reproduced from [150].
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Fig. 4.10 Overview of the phenotypic clusters obtained from hierarchical clustering in the supervised
PCA space. a, Dendrogram of the hierarchical clustering performed in the supervised PCA space. b,
Gene expression profiles for the evolved strains. The genes were selected by selecting genes that had
the highest weight for separating each specific class from the others via LDA and had more than a
two-fold difference in average compared to the parent strain. c, The stress resistance (IC50) profiles for
the evolved strains. The colors for the ticks correspond to the action mechanisms of the stresses which
are shown in the bottom of the figure. d, Mutation profiles for characteristic genes for each cluster.
Genes that were enriched in each cluster were selected through the Fisher exact test (double-sided,
p < 0.01). Genes that were mutated in more than seven strains are also shown.
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Fig. 4.11 The overview of the phenotypic clusters obtained from hierarchical clustering in the
supervised PCA space omitting one cluster and three singletons for visibility. a, Dendrogram of the
hierarchical clustering performed in the supervised PCA space. b, Gene expression profiles for the
evolved strains. The genes were selected by selecting genes that had the highest weight for separating
each specific class from the others via LDA and had more than a two-fold difference in average
compared to the parent strain. c, The stress resistance (IC50) profiles for the evolved strains. The
colors for the ticks correspond to the action mechanisms of the stresses which are shown in the bottom
of the figure. d, Mutation profiles for characteristic genes for each cluster. Genes that were enriched
in each cluster were selected through the Fisher exact test (double-sided, p < 0.01). Genes that were
mutated in more than seven strains are also shown. Figures reproduced from [150].



38 Chapter 4 Probing evolutionary constraints from high-dimensional multi-omics data

ba c

Fig. 4.12 a, Class dissimilarity Wn for different number of classes: n when clustering in the
supervised PCA space constructed from 213 genes. b, The difference in class dissimilarityWn−Wn−1

when clustering in the supervised PCA space constructed from 213 genes. c, Class dissimilarity W15

for the results of hierarchical clustering in the supervised PCA spaces constructed by different number
of genes. The genes are sorted in the order of gene importance given by the random forest model. c
was reproduced from [150].

a b

Fig. 4.13 a, Class dissimilarity Wn in the IC50 space for the 15 classes which were defined by
hierarchical clustering based on the supervised PCA expression space, IC50 space, mutations, and
full gene expression space, respectively, are shown. The mean and standard deviation for the class
dissimilarity for ten runs of randomly clustered results in the IC50 space are also shown. b, Class
dissimilarity W in the 4492 dim. gene expression space for the results of hierarchical clustering in
other spaces are shown. The mean and standard deviation for the class dissimilarity for ten runs
of randomly clustered results in the gene expression space are also shown. Figures reproduced
from [150].
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4.3.3 Relation between the supervised PCA space and the genotypic space
Up to now, we have focused on the relations between the supervised PCA space and the stress resistance

space, and have seen that the modular classes in the supervised PCA space corresponds well with the
resistance space. We will next look into the relations between the classes in the supervised PCA space and
the genotypic (or mutation) space. To our surprise, relatively clear relationships between the genotypic
space and the supervised PCA space was observed (Fig. 4.11d) As shown, the patterns of fixed mutations
coincided well with the modular classes in the supervised PCA space (Fig. 4.11a,b). This is a nontrivial
correspondence since no genotypic information was used for the hierarchical clustering, suggesting that
the identified mutations play a meaningful role in the modular gene expression classes. For example,
all evolved strains in class 1 had mutations in mprA which encodes a repressor for multidrug resistance
pump EmrAB. On the other hand, all class 11 strains had a mutation in prlF which encodes the antitoxin
for the PrlF (SohA)-YhaV toxin-antitoxin (TA) system.

However, interestingly, the correspondence between the genotypic space and supervised PCA space
was not perfect. This could be seen where strains in the same class gene expression class did not
necessarily share the same mutations. For example, the evolved strains in class 5 exhibited an increased
expression of acrB which encodes a component of the AcrAB/TolC multidrug efflux pump, and most
of the class 5 strains (26/28) had a mutation in acrR, a repressor for acrAB (Fig. 4.11b,d). However,
the other two strains also showed an increase in acrB expression without an acrR mutation. Another
example could be seen in class 8 where the five strains consistently had increased expression of tnaA
which encodes tryptophanase, whereas four out of the five strains had mutations in genes encoding DNA
gyrase subunit A or B (gyrA or gyrB, Fig. 4.11b,d)22. Here, NVAE5, which did not have a mutation
in gyrA nor gyrB, also showed an increased expression of tnaA. These two results seen in class 5 and
8 suggest the existence of multiple paths in the genotypic space for E. coli to reach desired expression
and resistance levels. In other words, the convergence through evolution in the genotypic space is not as
good as the phenotypic space. This leads to the motivation of Chapter 5.

In class 2, 9, and 10, where strains exhibited resistance to cell wall inhibitors and other stresses, a
decreased expression of ompF was commonly observed. ompF encodes the outer membrane porin and
decrease in ompF expression can be caused by either inactivation of the OmpR/EnvZ two-component
system or RssB, which is a regulator of the alternative sigma factor RpoS [153–155]. Indeed, all strains
in class 2 and class 10 had mutations in either ompR or envZ, and four out of nine strains in class
9 had mutations in rssB. Although these strains commonly had a decreased ompF expression, their
expression levels for genes such as ompC and rygB differed (Fig. 4.11b)23. These differences in the
gene expression profile could be guessed as one of the reasons for the diversification of the three ompF
classes. Interestingly, although all three classes showed resistance to β-lactams such as carbenicillin
(CBPC) and cefmetazole (CMZ)), resistance levels to stresses such as sulfisoxazole (SXZ) and DL-3-
hydroxynorvaline (NVA) differed between classes (e.g. strains in class 2 and 10 exhibited resistance to
SXZ, while strains in class 9 did not, Fig. 4.10c, 4.11c). These results suggest that different classes in the
supervised PCA space correspond to different internal cell states, leading to different stress resistance
mechanisms.

A certain level of stochasticity was also observed where the four strains which evolved under the
same stress were not always categorized in the same class. For example, none of the four SXZ evolved
strains shared the same class (SXZE2 in class 1, SXZE4 in class 2, SXZE1 in class 4, and SXZE5 in
class 11). Moreover, each SXZ evolved strain showed different gene expression and resistance patterns,
indicating a rugged fitness landscape with multiple local peaks. Not only SXZ, but also none of the
four norfloxacin (NFLX) evolved strains shared the same class. Intriguingly, these local peaks were
accessible not only by SXZ and NFLX evolved strains, but also by strains which evolved in other stresses
(for example, see class 2 where strains evolved in NFLX, SXZ, AF, TET, and FTD share the same
class24). These results suggest that evolution under the same selection pressure does not necessarily
lead to the same phenotype [94, 108], and that these local peaks in the fitness landscape are reachable
through the evolution under different stresses. Overall, the phenotypic classes in the supervised PCA

22 The relation between the gyrB mutation and increased TnaA production was previously discussed in [152].
23 ompC encodes a porin and rygB encodes a small RNA involved in the regulation of the outer membrane composition.
24 It should be noted that these drugs do not share the same mechanism of action. This suggests that constraints leading to the

modular gene expression classes do not necessarily depend on the mechanism of action of the stresses.
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space, loosely corresponded with the genotypic space, while we could observe the existence of multiple
genotypic pathways to reach an optimum in the fitness landscape. In addition, these optima were shared
by strains evolved in diverse stresses suggesting that evolutionary constraints do not necessarily rely on
the drug action mechanisms.

4.4 Commonly mutated genes underlie the evolutionary
constraints for stress resistance

As we have seen in the previous section, several genes were commonly mutated within the 192 evolved
strains, and some showed good correspondence with the classes in the supervised PCA space. However,
up to now, we have only been focusing on correlations in the dataset and not causality. Thus, to verify the
effects of the commonly mutated genes, 64 of the representative mutations within the 192 evolved strains
were introduced to the parent strain using multiplex automated genome engineering (MAGE) [156]
(Table 4.2, 4.3)25. To compare the phenotypes of the mutant strains with the 192 evolved strains, we
quantified the changes in the 47 dimensional IC50space for the 64 reconstructed mutant strains.

We first asked whether the cross-resistance and collateral sensitivities observed within the evolved
strains could be reproduced by the 64 reconstructed mutant strains. Accordingly, we calculated the
Pearson’s correlation coefficient R between the IC50s of all 47 stresses within the 192 evolved strains.
We recognized that some stress pairs showed high positive correlation suggesting cross resistance. For
example, evolved strains resistant to CBPC tended to exhibit resistance to aztreonam (AZT) as well
(R = 0.95, Fig. 4.14a), both of which constitute β-lactam stresses. On the other hand, there existed pairs
that showed negative correlation suggesting collateral sensitivity (e.g. TET and B-Cl-Ala, Fig. 4.14c).
We then calculated correlation coefficients for the reconstructed mutant strains. Interestingly, many of the
correlations observed in the 192 evolved strains were also observable within the 64 mutant strains, even
though each mutant has only been introduced a single mutation. For example see the correlations between
CBPC & AZT and TET & B-Cl-Ala (Fig. 4.14b,d). To quantify the generality of this correspondence, we
compared the pair correlation coefficients for the mutant strains Rmutant and the evolved strains Revolved

and measured the correlation between those coefficients (R = 0.66, Fig. 4.15a,b). Since transporters and
porins are major stress resistance mechanisms and a significant portion of the representative mutations
included genes related to such mechanisms (e.g. acrR, ompF), one might think that the high correlation
between the evolved strains and mutant strains are also caused by them. To answer this question, we
calculated the pair correlation coefficients within the mutant strains, excluding 18 strains that are related
to transporters and porins (dctA, uraA, sstT, livM, potA, oppA, cycA, yhjE, glpT, ompF, glnP, metN, ptsP,
frlA, gabP, potH, mprA, and acrR). Interestingly, we could still observe a high correlation between the
mutant strains and the evolved strains with a correlation of R = 0.57 (Fig. 4.15c). These results indicate
that the observed cross resistance / collateral sensitivity patterns (i.e. evolutionary constraints) are rooted
in the representative mutations. In the following subsections, we will investigate the mechanisms of
resistance through a portion of the representative mutations and the corresponding reconstructed mutants
(Fig. 4.16). We show a schematic figure with the resistance mechanisms described below, in Fig. 4.17.

4.4.1 Biological mechanisms responsible for the phenotypic classes

Class 1 and the EmrAB/TolC efflux pump
All strains in class 1 had a mutation in mprA and had high expression levels for mprA and emrA

(Fig. 4.11b,d). The activation of EmrAB/TolC which is an efflux pump, is regulated by mprA and results
in resistance to a previously identified substrate CCCP (uncoupling agent) [157]. The resistance profiles
of both the evolved strains and the reconstructed mutant suggest that the mprA mutation leads not only
to CCCP resistance, but also to substrates such as chloramphenicol (CP, protein synthesis inhibitor) and
phleomycin (PLM, DNA intercalator).

25 Here, we focused on the genes that were commonly mutated in more than two strains. Exceptionally, genes that shared the
same operon (e.g. cyoA, cyoB, cyoE), were included even if they were confirmed in a single strain. For mutations that
seemed to have disabled the genes, a NheI site containing a TAG stop codon was introduced immediately downstream of its
start codon and one base was inserted to introduce a frameshift mutation. See Supplementary Data 3 in [150] for details of
the introduced mutations.
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Fig. 4.14 Examples of pair relations of stress resistance acquisition. a, b, Relationship between the
IC50 values of CBPC/AZT for the 192 evolved strains and 64 site directed mutant strains, respectively.
R denotes Pearson’s correlation coefficient. c, d, Relationship between the IC50 values of TET/B-Cl-
Ala for the 192 evolved strains and 64 site directed mutant strains, respectively. a and d were modified
and reproduced from [150].

Class 2,10 and the OmpF porin
All strains in class 2 and 10 had a mutation in either ompR or envZ which are both regulators for the

OmpF porin, and these strains all had a decreased expression of ompF. We identified that the inactivation
of the OmpF porin results in resistance not only to previously described substrates such as CBPC (cell wall
synthesis inhibitor) [158, 159], but also novel substrates such as 1,10-phenanthroline (PHEN, chelator),
puromycin (PUR, protein synthesis inhibitor), and other chemicals.

Class 5 and the AcrAB/TolC efflux pump
Al strains except PURE2 amd PURE5 in class 5 had a mutation in acrR which is a regulator for

the AcrAB/TolC efflux pump. Indeed, all strains in class 5 exhibited an increased expression of acrB
(Fig. 4.11b,d). We identified that the inactivation of the repressor AcrR results in resistance not only to
previously described substrates such as tetracycline (TET) and erythromycin (EM) [160–162], which are
both known as protein synthesis inhibitors, but also to substrates that have not been reported yet such as
NVA (threonine analog) and NQO.

Class 9 and rssB
The strains in class 9 showed a tendency of sensitivity to metabolic inhibitors such as L-valine

(LVAL), β-chloro-L-alanine (B-Cl-Ala), 6-mercaptopurine monohydrate (6-MP), GAH, and 3-amino-
1,2,4-triazole (3-AT) (Fig. 4.11c, 4.16a). Since 4/9 strains in class 9 had a mutation in rssB (Fig. 4.11d),
we speculated that this rssB mutation could be one of the reasons for the observed collateral sensitivities.
Indeed, we have been able to observe a two to five-fold change in sensitivity to the stresses noted above in
the reconstructed rssB mutant strain (Fig. 4.16c). Since class 9 strains and the reconstructed rssB strain
both show resistance to cell wall inhibitors and other stresses (AZT, CBPC, TET), our results indicate a
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Pairwise correlation between mutant strains

Pairwise correlation between evolved strains

Fig. 4.15 a, Pearson’s correlation coefficient for all pairwise combinations for the stress resistance
acquisition over the 192 evolved strains (upper right) and 64 mutant strains (lower left), respectively.
The order of stresses were determined through hierarchical clustering on the mutant’s stress resistance
profiles. b, The relation between the correlation coefficients for stress resistance acquisition of the
64 mutant strains and the 192 evolved strains. R denotes Pearson’s correlation coefficient. c, The
relation between the correlation coefficients for stress resistance acquisition of the 46 mutant strains
and the 192 evolved strains. Here, 18 mutants with transporter related mutations (dctA, uraA, sstT,
livM, potA, oppA, cycA, yhjE, glpT, ompF, glnP, metN, ptsP, frlA, gabP, potH, mprA, and acrR) were
excluded from the calculation for correlation. Figures reproduced from [150].

trade-off between these stresses and metabolic inhibitors. It has been reported that while E. coli strains
with higher rpoS levels show increased resistance to several external stresses [163], they also exhibit
decreased carbon source availabilities and poor competitiveness for low concentrations of nutrients due
to the competition between RpoS and the house-keeping sigma factor RpoD (sigma 70) [164]. Since
RssB facilitates the degradation of RpoS, the collateral sensitivities to several metabolic inhibitors in
class 9 evolved strains could also be caused by the sigma factor competition.

Class 11 and the PrlF/YhaV toxin-antitoxin system
All evolved strains in class 11 carried the same mutation in prlF (sohA), a duplication of TTCAACA

sequences located 272 bp downstream of the start codon. Although the contribution of PrlF-YhaV to
stress resistance has not yet been reported, We found that these evolved strains, and the reconstructed
prlF mutant strain, commonly exhibited resistance to CBPC, AZT, and DVAL (Fig. 4.11c, 4.16a). All 11
strains in class 11 showed a decreased expression of ompF (Fig. 4.11b), which was also confirmed in the
reconstructed prlF mutant strain through qRT-PCR analysis. These results suggest that cross-resistance
to CBPC, AZT, and DVAL by the prlF mutation is at least partially caused by decreased expression of
ompF. Since YhaV is a translation-dependent RNase [165], this decrease in ompF expression might be
caused through the alteration of global gene expression. Class 11 strains and the prlF mutant strain also
showed sensitivity to hydrogen peroxide (H2O2), benserazide (BZ), and NQO (Fig. 4.11c, 4.16b). These
results suggest that DVAL, CBPC resistance, acquired through the prlF mutation, leads to a trade-off for
H2O2, BZ, and NQO. Previous studies reported that E. coli mutant strains lacking superoxide dismutase
showed increased susceptibility to H2O2 mediated killing [166]. Indeed, all strains in class 11 and the
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b c

Fig. 4.16 a, Combinations of stresses which exhibited either cross-resistance or collateral sensitivity
for the strains in each class in the supervised principal component analysis (PCA) space. The
combinations were detected by the Mann-Whitney U-test (false discovery rate, FDR < 0.05), and the
colors indicate the resistance to the stress relative to the parent strain. b,c, Stress resistance relative
to the parent strain for strains in class 11 and class 9, respectively. Resistance levels for the rssB and
prlF mutant are also shown for comparison. Figures reproduced from [150].

reconstructed prlF mutant strain consistently exhibited a 0.45± 0.11-fold decrease in sodB expression26.
This suggests that the observed H2O2 sensitivity is caused by the degradation of sodB through the YhaV
toxin.

4.4.2 Are single mutations sufficient to explain drug resistance?
Although the correlation coefficients of the stress pairs in Fig. 4.15 between the mutant and evolved

strains showed a good correspondence, there did exist some cases where the resistance profiles of the single
mutant strains differed from that of the evolved strains with the corresponding mutations. For example,
all evolved strains in class 1 (Fig. 2) had mutations in mprA and no other common mutations, strongly
suggesting the contribution of this mutation to the common phenotypic changes in class 1. However, the
reconstructed mutant strain of mprA exhibited a similar, yet significantly different resistance profile for
certain stresses, such as SXZ (Fig. 4.18). Interestingly, the majority of the reconstructed mutant strains
showed smaller phenotypic changes compared to the evolved strains. For example, this could be seen in
Fig. 4.19a, where we show the distance from the parent strain for all mutant and evolved strains. These
results suggest that the single mutant strains are not sufficient to express the distances in the resistance
space although they can roughly explain the direction of the phenotypic changes as we see in Fig. 4.15
and Fig. 4.19c. These differences between the evolved strains and reconstructed mutant strains might
suggest the contribution of epistatic interactions between the multiple mutations to the resistance changes
since most of the evolved strains had more than two mutations [167]. There may also be a non-genetic
contribution, which will be difficult to explain simply by the phenotype-genotype mapping presented in
this study [168]. It would be interesting to identify the effects of multiple mutations and non-genetic
adaptations on stress resistance, which is a promising direction of future work.

4.5 Decelerated evolution against β-lactam antibiotics
In the adaptive evolution to β-lactams (i.e., CMZ and CBPC), we found that certain strains, evolved

under specific stresses, acquired higher resistances to β-lactams than strains that were directly selected
by β-lactams. For example in Fig. 4.20a, we can observe that strains evolved in TET acquired higher

26 sodB encodes (Fe) superoxide dismutase.
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Fig. 4.17 A schematic image of the stress resistance mechanisms responsible for the elucidated
clusters in the supervised PCA space. Typical stresses which the strains showed resistance (red)
and sensitivity (blue) are shown. The schematics are used by courtesy of Tomoya Maeda. Figures
reproduced from [150].
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Fig. 4.18 The IC50values relative to the parent MDS42 strain are shown for the class 1 evolved
strains and the mprA reconstructed mutant. It could be observed that the mprA mutant shows a lower
resistance level than the class 1 evolved strains for stresses such as SXZ and CCCP.

resistance levels to CBPC than the strains that directly evolved in CBPC. The same tendency could
be observed between NFLX and CMZ evolved strains (Fig. 4.20b). We coined this phenomenon as
“decelerated evolution” to β-lactams, and this phenomenon seemed to be reflected in the difference in the
mutation profile among the evolved strains. Especially, we found that the evolved strains that exhibited
the highest resistances to CBPC and CMZ (the overtakers) tended to have mutations in genes related
to the membrane porin protein OmpF, i.e., ompF, ompR and envZ (Fig. 4.20c). In contrast, the strains
evolved under CBPC or CMZ had fewer mutations in OmpF related genes (one out of eight evolved
strains) in comparison with the overtaking strains with high β-lactam resistance (p = 0.04, Fisher’s exact
test, Fig. 4.20c). This result might suggest that in the current laboratory evolution setup, the fixation of
mutations related to OmpF is suppressed under the addition of β-lactams, even though they can increase
their resistance to the drug.

Several explanations could be thought for this “decelerated evolution”.
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a b c

Fig. 4.19 a, The distances in the 47 dim. resistance space for the 64 mutants and 192 evolved strains.
b, The normalized inner product in resistance space: vevolved · vmutant/|vevolved|, where vevolved,
vmutant denotes the difference from the parent strain as a 47 dim. vector in the resistance space for
the evolved and mutant strains, respectively. The inner products were calculated between the single
mutant strains and the evolved strains which had a mutation in the same gene. c, Pearson’s correlation
coefficients in the 47 dim. resistance space calculated between single mutant strains and the evolved
strains which had a mutation in the same gene.

(i) The ompF mutation might lead to a fitness cost under β-lactams.
(ii) Negative epistasis might exist between a ompF related mutation and a common mutation among

the β-lactam evolved strains.
(iii) The mutation rate under β-lactams might be suppressed, making it hard for the strains to find

ompF related mutations although they are beneficial.

To test hypothesis (i), we measured the growth rate of the parent MDS42 strain and the ompF mutant27

under various concentrations of CMZ and CBPC (Fig. 4.20a,b). However, the growth rate for the ompF
mutant strain was the comparable with (or even higher than) the parent MDS42 strain at all CMZ and
CBPC concentrations, suggesting that there is no fitness cost associated with the ompF mutation. To
test hypothesis (ii), we compared the IC50values of the ompF mutant strain with that of the ompF+prlF
mutant strain. The prlF mutation was observed in 4/8 strains of the CMZ and CBPC strains which was
the most common mutated gene within the eight strains. Thus, if somehow prlF was mutated in the
early stage of evolution and there existed a negative epistatic interaction between prlF and ompF related
mutations, the frequency of ompF mutations could be suppressed. However, we found that the IC50values
of the ompF+prlF mutant strain has the same level of IC50to CMZ and CBPC compared to the ompF
mutant strain (Fig. 4.21c). For the last hypothesis (iii), we measured the mutation frequency for the
parent MDS42 strain under β-lactam stresses: CBPC, CMZ and stresses that frequently had overtakers:
CP, NFLX, TET28. Since the mutation frequency did not differ between β-lactams and other stresses, we
concluded that the mutation frequency could not explain the observed decelerated evolution (Fig. 4.21d).
Since the three possible explanations were all denied, we suggest another possible hypothesis which
suggests that the contributions of the ompF mutation might not be observable when the cell wall state
is not stable, especially under cell wall inhibitors such as β-lactams. Since the addition of β-lactams
reportedly induces bulge formation leading to cell lysis [169], a decrease in ompF expression and the
disruption of OmpF function may not contribute to β-lactam resistance. However, we have not been
able to test this hypothesis sufficiently, and the explanation of this interesting phenomenon “decelerated
evolution” is left for future work.

27 Here, the ompF mutant was made by inserting a NheI sequence to disable OmpF production.
28 Here, the mutation rate was measured as the number of colonies growing on rifampicin after a overnight culture under the

addition of each stress.
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a b c

Fig. 4.20 a,b, Decelerated evolution observed within the evolved strains. Relative log2 (IC50) for
evolved strains in CBPC and TET (a), and relative log2 (IC50) for evolved strains in norfloxacin
(NFLX) and cefmetazole (CMZ) (b). c, Relative IC50 values for CBPC and CMZ for all 192 evolved
strains. Many of the strains which exhibit resistance higher than the CBPC and CMZ evolved strains
had a mutation in ompF or its regulators ompR and envZ (orange). The CBPC and CMZ resistance of
the ompF introduced strain also exhibited higher resistance (green, green arrow) than the CBPC and
CMZ evolved strains (blue, cyan, denoted by a blue arrow). Figures reproduced from [150].

a b

c d

Fig. 4.21 a,b, Growth rates for the parent strain, ompF mutated strain, and the prlF mutant. Growth
rates were measured in 24 concentration levels of cefmetazole (CMZ) and carbenicillin (CBPC),
respectively. c, IC50 levels measured for different stresses for the parent strain, ompF mutated strain,
prlF mutated strain, and the prlF/ompF doubled mutated strain, respectively. d, Mutation frequencies
for MDS42 strains under addition of IC50 concentrations of β-lactam stresses (i.e. CBPC, CMZ) and
other antibiotics in which the evolved strains acquired high resistance to β-lactam stresses (i.e. CP,
NFLX, TET). Error bars represent the standard deviation of three independent experiments. Figures
reproduced from [150].
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Fig. 4.22 Our study indicates that topological (neighboring) relations in the stress resistance space
can be accurately represented by the supervised PCA space which is a subspace of the whole gene
expression space.

4.6 Discussion
In this study, we performed laboratory evolution of E. coli under various heterogenous stress condi-

tions which allowed us to elucidate the molecular mechanisms associated with resistance acquisition to
antibiotics and non-antibiotics stressors. Our analysis using supervised PCA revealed the existence of
modular phenotypic classes both in the gene expression space and the stress resistance space, suggesting
close interactions between changes in gene expression and stress resistance (Fig. 4.11). Using the class
dissimilarity measure Wn, we have shown that the supervised PCA space represents the topological
relationships in the stress resistance space better than the whole 4492 dimensional gene expression space
(Fig. 4.13a). This suggests that the supervised PCA space, which is a subspace of the whole gene ex-
pression space, is constituted by representations that accurately express the stress resistance phenotypes
(Fig. 4.22). In other words, the supervised PCA space could be interpreted as the latent space for stress
resistance.

The distribution of the evolved strains in the supervised PCA space revealed that the drug resistant
phenotypes could be classified into a few number of classes. This indicates that E. coli only arm a
few number of strategies for stress resistance, suggesting that resistance acquiring dynamics could be
predictable. Interestingly, strains in the same phenotypic class did not necessarily evolve in the same
stress nor stresses with similar mechanisms of action suggesting that evolutionary constraints could be
constituted by different mechanisms (e.g. the chemical properties of drugs). It has also been observed
that strains that evolved in the same stress did not necessarily belong to the same phenotypic class,
suggesting the stochasticity in evolution. We believe that our analyses, together with the data provided
in this study, provide the basis for understanding evolutionary constraints and the stochasticity which
underlie stress resistance evolution.

Note, our analyses based on supervised PCA in the gene expression space has several caveats. First,
the identification of distinct classes in the supervised PCA space (Fig. 4.10, 4.11) was based on gene
expression changes, and thus, our analysis could not detect resistance acquiring mechanisms with little
if any gene expression changes. For example, three out of four evolved strains in 6-MP had mutations
in the hpt gene, encoding hypoxanthine phosphoribosyltransferase, which suggests a contribution of this
hpt mutation to the 6-MP resistance phenotype. However, these 6-MP resistant strains exhibited little
expression changes compared to the parent MDS42 strain which kept us from identifying the phenotypic
class the 6-MP evolved strains belong to. Such evolved strains with minor expression changes were
assigned to class 12 (Fig. 4.10)29.

29 As we can see from Fig. 4.10c, the strains in class 12 exhibit local changes in their IC50profiles. While there is a possibility
that these localized changes might be an artifact caused by the bias in the selected 47 stresses, this observed locality suggest
that the class 12 strains acquire resistance by changing their phenotype in a limited manner.
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Another limitation of our study is caused by the limitation of the conditions used for the transcriptome
analysis. It is true that some genes will only be induced or suppressed in the presence of a stressor, and
these genes could also contribute to stress resistance [170]. However, due to the expensive experimental
cost, we neglected environment-dependent gene expression changes and measured the transcriptome
only in the no-stress environment. It would clearly be interesting to collect the transcriptome profiles
under the presence of each drug for the parent strain and all evolved strains. In this case, we would be
able to measure how long-term evolution would bias the direction of short-term adaptation which would
definitely contribute to constructing a theoretical framework for evolution.
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Fig. 4.23 Time series for the resistance over the 27 days of the laboratory evolution experiment for
all 48 environments. The resistance is measured as the highest concentration of the drug which the
strain could grow in each day. The strain which grew in this highest concentration was selected and
transferred to a fresh medium each day. Figures modified and reproduced from [150].
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Fig. 4.24 Continued from Fig. 4.23. Figures modified and reproduced from [150].
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Fig. 4.25 Gene importances calculated by the random forest regression model. The 213 genes that
were used for supervised PCA are shown.
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a

b

c

Fig. 4.26 a, Dendrogram of the hierarchical clustering performed in the resistance space. Ward’s
method was applied for clustering using the log2 resistance levels for all 47 stresses. b, Stress
resistance profiles sorted based on hierarchical clustering in the resistance space. c, Gene expression
profiles sorted based on hierarchical clustering in the resistance space. The same genes in Fig. 4.10b
are shown.
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Genes Strains with a mutation in the corresponding gene
acrR CPE6, CPE2, CPE3, AFE3, AFE2, AFE4, AFE6, NFLXE1, MMCE6, MMCE4, MMCE1, MMCE5, ATPE3, ATPE1, ATPE5, PHENE2, PHENE5,

PHENE6, PHENE1, TETE4, TETE1, TETE2, TETE6, NQOE5, NQOE6, NQOE4, NQOE3, PMZE1, PMZE4, PMZE6, FTDE4, FTDE1, FTDE3, EME3, PURE3, PURE1

apt 3.ATE1, 3.ATE4
baeS AZTE3, CBPCE1
corA NiClE1, NiClE6, NiClE2, BZE2
cyaA KME4, FOSE5, FOSE1, BZE2, ATPE3, PLME5, PHENE6
cycA KTeE2, DCSE4, DCSE3, DCSE5, GAHE2, HSEE4, HSEE2, HSEE1, ABUE6
cyoA KME5
cyoB KME6, PLME3, PLME5, PLME6, PLME1
cyoE KME1
dacA MMCE5, VCME2, VCME5, GAHE1
dadA DCSE2, DCSE5, GAHE2
dctA 5.FOAE4, 5.FOAE6, 5.FOAE3
folM SDCE6, SDCE2, SDCE3, SXZE2, SXZE4, SXZE1
frlA SDCE2, SDCE3, GAHE3
gabP SHXE3, SHXE1, SHXE5, SHXE4
gadB GAHE1, GAHE4
glnP GAHE1, GAHE4
glpT FOSE3, FOSE6
glyT NVAE1, NVAE2
gshA DCSE2, GAHE3, GAHE1, DVALE6, DVALE2
gyrA AZTE3, NFLXE1, NFLXE6, NFLXE4
hisR 3.ATE4
hisS 3.ATE3, GAHE2
hrpA MMCE4, MMCE1, NQOE5
ilvL AFE6, SSE1, GAHE4
iscR PLME6, PLME1
livM B.Cl.AlaE1, B.Cl.AlaE6
lon GAHE2, 5.FOAE3, NMNOE6, NMNOE4

metN GAHE3, GAHE2, GAHE4
mipA AFE6, NFLXE1, NFLXE4
mprA SXZE2, SXZE5, NITE3, NITE1, GAHE3, GAHE2, GAHE4, CCCPE4, CCCPE5, CCCPE6, CCCPE3

Table 4.2 The full list of the 64 representative mutated genes which were introduced to the MAGE mutant strains.
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Genes Strains with a mutation in the corresponding gene
msbA GAHE2, NMNOE5, NMNOE1
nfsA NITE3, NITE2, NITE1, NITE5, FTDE4, FTDE1, FTDE2, FTDE3
nuoG KME4
ompF CPE5, CBPCE5, NFLXE1, NFLXE6, NFLXE5, NFLXE4, MMCE4, MECE6, TETE1, GAHE4, FTDE2, FTDE3

oppA KME5, KME6, PLME3, BSDE2, BSDE6
oxyR H2O2E3, H2O2E2, PURE2
potA PLME3, PLME6, PLME1, BSDE5, BSDE2, BSDE6
potH MMCE1
prlF CMZE6, B.Cl.AlaE6, AZTE5, AZTE4, CBPCE5, CBPCE1, CBPCE2, SXZE5, DCSE2, DCSE5, MECE5, CCCPE5, DVALE1, DVALE5

ptsP KME5, PLME5, PLME6, PLME1
purR 6.MPE6, 6.MPE4, GAHE3
rfe KME4, NiClE3, VCME4, PLME5, PLME6
rhlB 5.FUE2, LVALE3, LVALE4, LVALE5, SDCE2, SDCE3
rne LVALE6, KTeE5
rob AFE4, TETE4, TETE6, PMZE4
rplM H2O2E5, EME6, EME2, NMNOE5
rpoB B.Cl.AlaE6, KME5, MMCE6, PLME5, NVAE6, TETE4, TETE2, NQOE4, PMZE2, NITE1, GAHE3, HSEE2, ABUE4

rpoC B.Cl.AlaE1, B.Cl.AlaE2, AZTE5, FOSE5, MMCE5, PLME1
rssB CPE6, CPE2, AZTE6, AZTE5, 5.FOAE4
sdaA GAHE3, GAHE2, GAHE1, GAHE4
sdhA PHENE6, NITE5, SSE6, SSE1, SSE4
serA MMCE5, SHXE1, SHXE4
sodB NQOE5, NQOE4
soxR AFE3, MMCE4, MMCE5, PHENE2, FTDE1, PURE2, PURE3
sstT B.Cl.AlaE1, B.Cl.AlaE2, NVAE1, NVAE2, GAHE2
sulA MMCE6, MMCE4, MMCE1, MMCE5, GAHE3
uraA 5.FUE4, 5.FUE3, 5.FUE1
ybjK AFE3, AFE2, AFE4, AFE6
ycbZ NVAE5, M9E3, EME3, EME6, EME1, ABUE6, NMNOE5, NMNOE6
ycfQ KTeE2, FTDE4
yhjE DVALE6, DVALE5
yjcO MMCE6, MMCE4
zupT NQOE6, NQOE3, NITE5, GAHE4

Table 4.3 Continued from Table 4.2.
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Chapter 5

Dynamical multi-stress data reveal the
phenotypic fitness landscape of
Escherichia coli

Methods for predicting and controlling trajectories of evolution are crucial not only for tackling drug
resistance bacteria, but also for extending our horizons of evolutionary biology. Among the various
concepts around evolution, the concept of the fitness landscape has been frequently invoked since it
offers information on the predictability (e.g. directions, convergence) of evolution. Thus, constructing
empirical landscapes from experimental data is an effective approach to develop methods for predicting
evolution. Although previous studies have constructed fitness landscapes based on a comprehensive
study of mutations on specific genes, the high dimensionality of the genotypic space keeps us from
building a fitness landscape that is capable for predicting evolution for the whole cell which is constituted
by a complex network of O(103) genes in the case of Escherichia coli. Here, we tackle this problem
by inferring the fitness landscape for stress resistance evolution based on the phenotypic space which
has much fewer effective dimensions than the genotypic space. By using stress resistance along the
trajectories of evolution as a probe for both phenotypes and fitness, we infer the fitness landscape which
underlies the resistance evolution dynamics. We show how the structures of the inferred landscapes
correspond with biological mechanisms and tradeoffs for resistance evolution. We further discuss how
the inferred phenotype-fitness landscapes could contribute to the prediction and control of evolution.

Related publications by author:
Junichiro Iwasawa, Tomoya Maeda, Hazuki Kotani, Masako Kawada and Chikara Furusawa, "Dynam-

ical multi-stress data from laboratory evolution reveals the phenotypic landscape for Escherichia coli".
Manuscript in preparation.

Contribution:
The author (J.I.) conducted all laboratory evolution experiments and the acquisition of stress resistance
profiles under the advice of T.M.. The genotype data for the evolved strains were acquired by T.M., H.K.,
and M.K. All data analyses were performed by J.I. under the supervision of C.F..
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本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 6

Conclusion and Outlook

I will not follow where the path may lead,
but I will go where there is no path, and I will leave a trail.

from Muriel Strode, “Wind-Wafted Wild Flowers” (1903)

Throughout this dissertation, we have investigated the dynamics of stress resistance evolution for
Escherichia coli through laboratory evolution and machine learning. As we have seen in Chapter 2,
recent studies concerning massively parallel laboratory evolution experiments with high-throughput
sequencing/phenotyping have provided an unprecedented amount of data on evolutionary dynamics. The
main theme running through these studies was that despite the diversity in the sequence level, evolution
could lead to convergence in coarse grained features such as phenotypes, suggesting the existence of
evolutionary constraints. However, it is not always easy to decipher the evolutionary constraints from
the acquired high-dimensional data. This is why we reviewed the recent advances in machine learning,
especially the methods applicable to biological data where the p ≫ N problem is prevalent in Chapter 3.
Equipped with the right tools, we would be able to identify the essential signals which is in our case the
responsible evolutionary constraints, from the noisy high-dimensional data.

In Chapter 4, utilizing supervised PCA, we have seen that the E. coli which evolved under 48 various
conditions converge into a few number of phenotypic classes. We have elucidated the underlying
biological processes for each class through LDA, and further confirmed them by observing the resistance
profiles of the reconstructed single mutant strains. In addition, consistent with previous studies, the
elucidated phenotypic classes suggested that the phenotypes show better convergence than the genotypes,
although the genotypes also showed a certain level of correspondence between the phenotypic classes.
Importantly, we have shown that the supervised PCA space, a subspace of the whole gene expression
space, corresponds well with the stress resistance space. This suggests that stress resistance dynamics of
E. coli could be represented by a low-dimensional manifold within the high-dimensional gene expression
space, and that supervised PCA could be an effective method to elucidate this manifold. Overall, our
supervised PCA based analysis revealed the existence of evolutionary constraints in stress resistance
evolution and the underlying biological mechanisms, providing the bases for the prediction and control
of evolution.

Interestingly, the constraints underlying the stress resistance profiles did not necessarily depend on the
action mechanisms of the stresses. Thus it is natural to ask, what are the origins of the evolutionary
constraints for stress resistance evolution? We believe that chemical properties of the stresses could
be one candidate. Several studies suggest that the occurrence of cross resistance between two stresses
correlates with the similarity of their chemical fingerprints [58, 171]. Consistent with these reports,
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we found that strains with decreased expression of ompF tended to become resistant to chemicals with
large molecular weight and/or high hydrophobicity. These results suggest that chemical properties of
the stresses could be a factor that constrains resistance evolution. However, it should be noted that there
exist cases that chemical properties solely cannot explain the observed constraints. Yen and Papin report
that Pseudomonas aeruginosa with different adaptation histories acquired different resistance profiles
through evolution [95], suggesting that not only chemical properties, but also the genetic background
influences the patterns in resistance acquisition (see also [96]). Further investigation on how genetic
backgrounds and chemical properties influence stress resistance acquisition could be a key to unravel the
origins of evolutionary constraints for resistance evolution.

In Chapter 5, we proposed the phenotype-fitness landscape based on stress resistance profiles as a
method for predicting and controlling evolution. Although fitness landscapes visualize the evolutionary
constraints and provide information on the predictability of evolution, the high-dimensionality of the
genotype space kept us from drawing a comprehensive genotype-fitness landscape capable of predicting
evolution. We thus focused on the resistance profiles instead of genotypes since (i) evolution leads to
better convergence on the phenotypic level, (ii) stress resistance profiles correspond with the subspace of
the gene expression space making it an appropriate candidate for probing evolutionary dynamics. The
directions of evolution predicted by the inferred fitness landscapes showed agreement with the observed
experimental trajectories, suggesting that the landscapes are capable for predicting evolution. We further
demonstrated that trajectories of evolution could be controlled in a fine-grained manner by utilizing the
information from the inferred fitness landscapes. Indeed, the data we have used for inferring the fitness
landscapes is based on a limited number of stresses and initial states (genetic backgrounds). Thus, there is
a possibility that the structure of the landscapes changes when using different stresses or/and the genetic
background of the strain changes. It is important to detect such changes since they indicate the existence
of novel evolutionary constraints, and it should be noted that we will be able to actively investigate such
novel constraints by using the inferred landscapes as hypotheses. We believe that the inferred fitness
landscapes could accelerate the investigation of evolutionary constraints and lead to the true control of
evolution.

Our results in Chapter 4 and 5 revealed the evolutionary constraints underlying evolution, providing
an upbeat picture for predicting evolution. Nevertheless, our understanding of evolutionary constraints
including its dependence on different genetic backgrounds is not complete and further studies are still
needed for a comprehensive theory of evolution. Naively, this would lead to an exhausting investigation
through an immense number of experimental combinations and thus, this might be where we could make
use of theory. Theories could inform us of what we should be looking for and the possible structures of the
data we collect. This is especially important when living in an era where we have access to exponentially
more data than we had before. In the case of evolution, I personally believe theoretical studies of the
genotype-phenotype map and their consequences for the phenotype-fitness landscape should pave the
way for an efficient investigation of evolutionary constraints. Intense collaborations between theory,
experiment and data analysis should lead to a systematic understanding of constraints and a predictive
theory of biology.

Physics is a framework of explaining a phenomenon by “identifying details that matter” [172]. We
are often cast on the curse to believe that we simply do not have enough data for a general theory.
In the context of stress resistance evolution, for instance, there indeed are many unknown molecular
mechanisms underlying the evolutionary dynamics which seem to keep us from building a unifying
theory. While it may be true that we lack sufficient data, it still would be worth to take a look back at the
1800s when thermodynamics was constructed. Thermodynamics is one of the most successful examples
where physicists were able to coarse grain and acquire a macroscopic theory of a many body system.
The interesting part about thermodynamics is that it was formulated without knowing the microscopic
details of the system. If we were not able to construct thermodynamics in the 1800s, we might have
continued to dig into the microscopic details and might have been standing hopeless in front of the
complex microscopic world [173]. Of course gases and living things are different, but still, we should
sometimes recall the importance of taking a step back and try to construct a theory by identifying the
coarse grained, macroscopic variables that matter for the system. We hope that our study could be one
of the stepping stones for constructing such a macroscopic theory of biological systems.
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