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Abstract

In this thesis, I describe a theoretical study on parameter estimation of physical models using
Bayesian inference. With the development of observation technology in recent years, enormous
and diverse observation data have been obtained in various fields of natural science. The purpose
of analyzing observational data in the natural sciences is to extract physical information in order
to clarify the physical phenomenon of the observation target. To clarify more realistic phenom-
ena, the observation data has become large-amount and high-dimensional, and it has become
difficult to extract physical information. Experts in each field confirm the data and analyzed it
using physical models to estimate the physical quantities, but the complexity of the observed
data caused three problems. First, manual analysis could not make full use of the data. Second,
the physical models became complicated and it became difficult to evaluate the models. Finally,
it became difficult to evaluate the reliability of the estimated physical quantities. Therefore, We
deal with these problems by using Bayesian inference. Bayesian inference has evolved in the
field of information science. It infers the model parameters from the observed events as an in-
verse problem. In Bayesian inference, large-amount data can improve the estimation accuracy,
and the format of the data does not matter by setting appropriate models. In addition, Bayesian
free energy can be used to evaluate the suitability of complex models for data. Furthermore,
since the estimation obtained by Bayesian inference is a distribution estimation, the physical
quantities can be estimated with reliability by regarding the spread of the distribution as the
reliability. In this thesis, we propose a method for estimating physical parameters for disper-
sion relation observation data obtained in scattering experiments. Furthermore, we show the
solvability of the Markov random field model that corresponds to the diffusion equation when
it does not have the boundary conditions, and propose a method for estimating the parameters
analytically. Finally, since the computational cost of Bayesian inference is generally high, we
propose a high-speed estimation method that reduces the computational cost.
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Chapter 1

Introduction

1.1 Data analysis and Bayesian inference
In this thesis, we describe a theoretical study on parameter estimation of physical models using
Bayesian inference. With the development of observation technology in recent years, enormous
and diverse observation data have been obtained in various fields of natural science. The pur-
pose of analyzing observational data in the natural sciences is to extract physical information
in order to clarify the physical phenomenon of the observation target. In neuroscience, neural
activity is observed by calcium imaging[1, 2]. Calcium imaging can visualize the calcium ion
concentration in cells and tissues by using a fluorescent substance that reacts with calcium ions.
In geoscience, geoscientists use seismic tomography to study the subsurface of the earth[3, 4, 5].
Seismic tomography is a method of imaging the inside of the earth using the property that the
velocity of seismic waves differs depending on the internal state. In order to know the fluid
distribution and dynamics inside the crust, the diffusion of the fluid is analyzed using seismic
waves. In condensed matter physics, various physical responses are observed in terms of ele-
mentary excitations. Dispersion relation of bosonic excitations has been observed by neutron
scattering or X-ray scattering. The dispersion relations are also essential to understand sound
propagation, specific heat, thermal conductivity, superconductivity, and so on. To clarify more
realistic phenomena, the observation data has become large-amount and high-dimensional, and
it has become difficult to extract physical information. Experts in each field confirm the data
and analyzed it using physical models to estimate the physical quantities. Information could be
obtained from intuitive knowledge for a small number of data and low-dimensional data, but
three problems arose due to the complexity of the observation data. First, the manual analysis
could not make full use of the data. When the amount of data is large, it is difficult to analyze by
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considering all the data. When the data is high-dimensional, it is difficult to obtain knowledge
unless the data is reduced to low dimensions. Second, the physical models became complicated
and it became difficult to evaluate the models. With the development of observation technology,
it became necessary to consider more complicated physical models. Therefore, it is necessary
to evaluate the physical models itself. Finally, it became difficult to evaluate the reliability of
the estimated physical quantities. As the model becomes more complicated, the estimated pa-
rameters correlate with each other because the model has multiple parameters. As a result, it is
difficult to evaluate with the error bars.

To address these problems, we propose methods by using Bayesian inference for the physical
parameters from data of inelastic scattering experiment and image data. Our goal is to estimate
model parameters from the data, which is an inverse problem. To solve the inverse problem, we
use Bayesian estimation. When there is a forward simulation model that generates data from
parameters, the conditional probability distribution of the parameters can be computed given
the data. This probability distribution is a solution to the inverse problem, and the estimated
value of the parameters and the reliability of the estimation can be obtained from the probability
distribution.

There have been many previous studies that solve inverse problems using Bayesian estima-
tion. Nagata et al. proposed Bayesian spectral decomposition to analyze spectral data using
Bayesian estimation [6]. In Bayesian spectral decomposition, the spectral shape parameters can
be estimated: center position, width, and intensity of the basis function. The model parameters
to be estimated in this study are deeper parameters because they determine the spectral shape
parameters. Previous studies that have analyzed deep parameters include a study that deals with
NMR spectral data [7] and one that deals with time-series spectral data [8]. Local optimization
is often a problem when searching for spectral shape parameters or deeper parameter solutions.
In a previous study by Nagata et al., the replica exchange Monte Carlo method (REMC) was
used to get out of the local solution and approach the global optimal solution. We also used
REMC in this study.

When dealing with natural science data, it is important to evaluate the reliability and perfor-
mance of the estimation and to support the influence of various conditions on the estimation.
Stochastic information processing based on the framework of Bayesian inference is a process-
ing method suitable for theoretical analysis of estimation. Bayesian inference is a framework
widely used in stochastic information processing, and prior knowledge can be incorporated into
estimation by modeling prior knowledge as a probability distribution[9]. Especially in the case
of natural science data, the method based on Bayesian estimation is effective because there is
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usually prior knowledge about the data. In Bayesian inference, large-amount data improves the
estimation accuracy, and the format of the data does not matter by establishing an appropriate
probabilistic model. In addition, the Bayesian free energy calculated by Bayesian inference can
be used to evaluate the suitability of the stochastic model for the data. Furthermore, the relia-
bility of the estimation can be evaluated by interpreting the spread of the distribution as an error
bar of the estimated values of the physical quantities by estimating the parameter distribution by
Bayesian inference.

1.2 Dispersion relation
In condensed matter physics, dispersion relation spectrum data has been well analyzed for esti-
mation of elastic constant. Since spectrum analysis usually involves human processes, it was not
possible to analyze all data. The validity of the physical model is not evaluated statistically. In
previous study[10], we assumed that the observation data generation model has two processes:
a physical process that generates a dispersion relation and an observation process by superim-
posing noise and Lorentz functions. Then, they made it possible to estimate the distribution of
the elastic constant by Bayesian inference, using the observed noise as Gaussian noise. The
fluctuation of event numbers often follows the Poisson process. In this thesis, we improve the
method for estimating the model parameter distributions by introducing the Poisson noise into
the observation process.

1.3 Markov random field model
In this thesis, we analyze the Gaussian Markov random field (MRF) model as the model of im-
age data. The MRF model is a probabilistic model often used in image processing, and is applied
to many image processing methods such as image restoration and region division[11, 12, 13, 14,
15, 16, 17]. The MRF model was formulated as a stochastic model by Geman, Derin et al. based
on the continuity of pixel values between adjacent pixels in an image[18, 19]. Geman, Derin et
al. modeled image generation by two stochastic processes: an original image generation process
with continuity between adjacent pixels and an observation process in which observation noise
is added. The generation process and observation process of the original image are character-
ized by parameters called hyperparameters, respectively. The hyperparameter of the generation
process indicates the smoothness of the image, and the hyperparameter of the observation pro-
cess indicates the magnitude of the observation noise. In the MRF model, it is pointed out
that the hyperparameters that represent the smoothness of the image correspond to the diffusion
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coefficient[20]. Conventionally, the optimum value of hyperparameters has been estimated as a
secondary factor for improving the performance of image processing[13, 21, 22, 23]. However,
Nakanishi, Sakamoto et al. showed that the hyperparameters that represent the smoothness of
the MRF model correspond to the diffusion coefficient and estimated the hyperparameters of the
Gaussian MRF model, including the reliability of the data[20, 24]. They mean the spread of
the distribution as an error bar for the estimated value of the diffusion coefficient. As a result,
the hyperparameters are essential values as latent variables of images, and the reliability needs
to be estimated. Previous research by Nakanishi, Sakamoto et al. has made it possible to ex-
tract information on important latent variables from image data and evaluate the reliability of
estimation.

1.4 Bayesian inference
Since Bayesian inference is a framework equivalent to statistical mechanics, stochastic informa-
tion processing based on the Bayesian inference framework has been the subject of statistical
mechanics analysis. In particular, the MRF model was introduced in relation to the spin system
in statistical mechanics[18, 19]. The property that the values between adjacent pixels are close
to each other is the same as that of the ferromagnetic spin, and in fact, their formulation corre-
sponds to the Ising model, which is a typical model of the ferromagnetic spin. In the analysis
of the MRF model using statistical mechanics, Nishimori et al. have evaluated the performance
of image restoration using the MRF model of binary images as a previous study[25]. There
is a Gaussian MRF model as a model for grayscale images and color images, and an image
restoration method has been proposed by Nishimori, Tanaka and others[22, 26, 27].

The information that humans need to give in Bayesian inference are prior distributions and
probability models. Information can be estimated accurately by avoiding the introduction of
arbitrary assumptions in the prior distribution and probability models to eliminate as much an-
thropogenic effects as possible when making the estimation[28, 29]. However, by incorporating
a complex structure into the prior distribution and probability model, it becomes difficult to cal-
culate the posterior distribution, and you have to rely on the numerical approximation method.
Variational inference methods, belief propagation, Markov chain Monte Carlo methods, etc.
have been proposed as approximate calculation methods[16, 30, 31, 32]. Since the variational
inference method and belief propagation are approximation methods, there is no guarantee that
the estimated posterior distribution will match the true posterior distribution. Since the Markov
chain Monte Carlo method is a sampling method, it converges to a true posterior distribution by
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sufficient sampling. However, since the Markov chain Monte Carlo method requires repeated
numerical calculations, the amount of calculation is large and high-speed analysis cannot be
performed. Therefore, it is necessary to reduce the calculation cost and improve the calculation
efficiency.

1.5 Our Focus and Contribution
We focus on parameter estimation for physical models by using Bayesian inference. Our targets
are event data obtained from inelastic scattering experiments and observed image data. We
construct this thesis as follows (as shown in Fig. 1.1)

Bayesian Parameter Estimation for Dispersion Relation Observation Data

with Poisson Process

In chapter 2, we present a practical analysis method for physical quantity estimation for dis-
persion relation observation data, and discuss the effect of the noise model on estimation. In
the previous study[10], we assumed that Gaussian noise was added to the dispersion relation
observation data, and proposed Bayesian estimation method for model parameters. However,
Gaussian noise is usually not suitable for event data in physical measurement. Gaussian noise
takes continuous values, but raw count data is integer data that does not take negative values.
Furthermore, assuming that Gaussian noise with constant noise intensity is added over the entire
data, the difference in noise intensity in the energy and momentum space cannot be considered.
Therefore, we propose an estimation method that introduces Poisson noise that is more suitable
for event data into the estimation model, and compare the proposed method with the method
of previous study by numerical experiments. As a result, it was confirmed that the proposed
method improved the accuracy of the estimation for the observation data with Poisson noise by
about 100 times on the time scale compared to the method of the previous study. From this, it
was clarified that whether the noise mechanism in the observed data and the noise model of the
estimation model match or not has a great influence on the estimaton of model parameters.

Gaussian Markov Random Field Model without Boundary Conditions

In chapter 3, we propose the analytical method of hyperparameter estimation for Gaussian MRF
model without boundary condition. In general, Bayesian posterior probabilities are difficult to
evaluate analytically, but in previous studies[20, 24], periodic boundary conditions were intro-
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duced into the generative model of images, and Bayesian posterior probabilities were calculated
analytically. However, many natural images do not have periodicity, and when analyzing an
image to obtain local hyperparameters of the image or for image segmentation, the image data
is divided into small pieces and it is necessary to analyze small-sized image data that does not
have periodicity. In that case, the method assuming periodic boundary conditions will result in
incorrect inference. In order to make accurate inferences, it is necessary to rely on numerical
calculations such as REMC, which have high calculation costs. To solve these problems, we
show that Bayesian posterior probabilities of image data without periodic boundary conditions
can be evaluated analytically, and propose a method for analytically estimating hyperparameters.
We confirm that the proposed method works properly by numerical experience.

Bayesian Hyperparameter Estimation using Gaussian Process and Bayesian

Optimization

In chapter 4, we propose a high-speed hyperparameter distribution estimation method for mod-
els that are difficult to calculate analytically. We apply Bayesian optimization and Gaussian
processes used in the field of information science to efficient evaluation of Bayesian posterior
probabilities. We use the Gaussian process to estimate the hyperparameter distribution from
a small number of grid samplings. We search for the optimum value of hyperparameters by
Bayesian optimization with a small number of samplings. Furthermore, we show a method for
estimating the distribution using Bayesian optimization as a sampler for the Gaussian process.
We evaluate the performance of the proposed methods by numerical experiments using the hy-
perparameter distribution of the Gaussia MRF model, which can be analyzed and calculated. The
distance between the true distribution and the estimated distribution was evaluated using several
metrics. As a result, it was clarified that Bayesian optimization and Gaussian process work
well for Bayesian posterior probability evaluation and that the proposed method can efficiently
estimate the hyperparameter distribution as a probability distribution from a small number of
samplings.
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Fig. 1.1: Structure of this thesis
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Chapter 2

Bayesian Parameter Estimation for

Dispersion Relation Observation

Data with Poisson Process

In condensed-matter physics, various physical responses are described in terms of elementary
excitations. Each elementary excitation is characterized by its energy (frequency) and momen-
tum (wave vector). The energy and momentum are connected by a dispersion relation, which is
one of the more important characteristics of the elementary excitation. The dispersion relations
are also essential to understand sound propagation, specific heat, thermal conductivity, super-
conductivity, and so on. Dispersion relations of bosonic excitations are observed by neutron
scattering or X-ray scattering in general. The phonon dispersion relation was first observed in
an inelastic neutron scattering measurement of germanium by Brockhouse and Iyengar[33, 34].
Since then, the inelastic neutron scattering technique has been widely used for studying phonons.
In the early days of inelastic neutron scattering, a reactor-based neutron source was utilized. The
obtained data were of a small size and could be analyzed in a simple way, irrelevant to the type
of spectrometer. First, peak positions in the inelastic scattering spectrum at a certain momentum
transfer q were estimated and regarded as the eigenfrequencies of phonons. Then, the obtained
dispersion relation was fitted to a theoretical model with variable parameters. The validity of
the model was evaluated rather intuitively. The establishment of high-power accelerator-based
neutron sources like ISIS, SNS, J-PARC, and CSNS changed the situation. The combination
of a high-power pulsed source and two-dimensional position-sensitive detectors remarkably im-
proved the data acquisition efficiency. A time-of-flight neutron spectrometer designed for in-
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elastic scattering measurements like MAPS [35], MERLIN [36], HYSPEC [37], ARCS [38],
4SEASONS [39], AMATERAS [40], and HRC [41] produces a large amount of event data in
the four-dimensional (4D) frequency (ω)–momentum (q) space that can be obtained within a
couple of days. At present, the analysis of the event data are visualized as two-dimensional con-
tour plot of one-dimensional spectrum for specified regions in the 4D space. Then, the physical
model parameters are inferred to fit the estimated dispersion relations. However, the fitting is
usually performed only for the visualized specified regions on experience. As far as the anal-
ysis is limited for the visualized data, it is impossible to perform the inference of the physical
parameters by considering all the event data effectively.

To address these problems, we proposed a method to estimate the distribution of model pa-
rameters directly from high-dimensional event data. In the previous study[10], we assumed
Gaussian noises in the observation process for the inference. The fluctuation of event numbers
often follows the Poisson process. In this study, we improve the method for estimating the model
parameter distributions by introducing the Poisson noise into the observation process.

We conduct numerical experiments using a simple model and artificial data. The dispersion
relations are calculated as the vibration eigenmodes of the classical harmonic-oscillator lattice
model of the body-centered cubic type. We assume that each eigenmode is expressed as a
Lorentzian with identical peak height and width as a function of energy. Some sets of artificial
histogramm data are generated from the Poisson process of the obtained spectral intensities. We
show that the proposed method is superior to the method of the previous research for the data
with a short observation time in terms of accuracy and reliability of Bayesian estimation.

2.1 Formulation of data generation process
In this study, we propose a method to estimate lattice parameters from the event data of historam,
the analysis target is a body-centered cubic harmonic lattice model.

2.1.1 Dispersion relation

Let u(r, t) be the displacement vector and the variable a be the lattice constant. In addition, the
elastic constants for the first, second, and third nearest neighbors are set to α1,α2, and α3. The
eigen equation of motion is expressed as

−ω2Mu(q) = Du(q). (2.1)
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where, u(q) is the Fourier transformation of the displacemment vector

u(r, t) = u(q)ei(q·r−ωt), (2.2)

M is the mass of the atom and the coefficient matrix D is a q-dependent real symmetric matrix
of 3 × 3.

The diagonal component dii and the off-diagonal component di j of D are

dii =
8
3
α1

(
cos

(aqx

2

)
cos

(aqy

2

)
cos

(aqz

2

)
− 1

)
(2.3)

+ 2α2 (cos(aqi) − 1) + 2α3
(
cos(aqi)(cos(aq j) + cos(aqk)) − 2

)
(2.4)

di j = −
8
3
α1 sin

(aqi

2

)
sin

(aq j

2

)
cos

(aqk

2

)
− 2α3 sin(aqi) sin(aq j) (2.5)

Here, λ1(q), λ2(q), andλ3(q), are three eigenvalues of the matrix D The dispersion relation
can be described as

ωi =

√
−λi(q)

M
(i = 1, 2, 3) (2.6)

2.1.2 Observation process of data

The dispersion relation is observed as 4D histogram data including statistical noises. In this
section, we introduce the observation process into the dispersion relation.

In general, every eigenmode has a life time. Thus the spectrum profile is represeted by a
Lorentzian. The intesity for energy Ei and momentum q j can be written as

I(Ei, q j;α) =
3∑

k=1

ηk(q j)φk(Ei; q j,α, γ(q)), (2.7)

φk(E; q,α, γ) ∝ 1
π

γ2

(E − !ωk(q;α))2 + γ2 . (2.8)

γk(q) is the width of Lorentzian, ηk(q) is the intensity of each mode basis, which is determined
by the measurement system, the momentum q, temperature, and so on. γk is also dependent
on the momentum q and temmperature, in general. Θ = {α,η,γ} are considered as model
parameters and α = {α1,α2,α3}

In this study, for simplicity, we assume that γk and ηk are constants.

I(Ei, q j;Θ) =
3∑

k=1

ηkφk(Ei; q j,α, γk) (2.9)
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Assuming that the observation process follows Poisson distribution, and
The observed average of spectral intensities ȳi j for the observation time T is represented as

ȳi j = (I(Ei, q j;Θ) + B)T. (2.10)

If the observation process follows Poisson distribution, the acquired spectral data Y = {yi j} can
be

P(yi j|I(Ei, qj ;Θ) =
ȳyi j

i j exp(−ȳi j)

yi j!
. (2.11)

Here, we introduce uniform background B independent of energy or momentum.

2.1.3 Previous study: Observation process of data

In previous study[10], we assume that the observation process follows a Gauss distribution, the
acquired spectral data Y = {yi j} can be

P(yi j|I(Ei, qj ;Θ) = N
(
I(Ei, qj ;Θ,σ2

REMC

)
(2.12)

where σREMC is the lower bound noise intensisity for REMC. In this study, since it is generally
impossible to know the noise intensity of data, noise estimation[42] is performed by giving the
noise lower bound.

2.2 Analysis

2.2.1 Bayesian Inference

In this section, we show a method to estimate model parameters by Bayesian inference from the
obtained observation data. The observation point is X = {xi j|xi j = (Ei, q j)}, and the observation
value is Y = {yi j}, We can write observation dataD = {X,Y}.

The number of data is N = |D|. Then, assuming that each observation follows the same
independent distribution, the probability distribution of Y is
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P(Y |X,Θ) =
∏

i, j

P(yi j|I(Ei, qj ;Θ) (2.13)

=
∏

i, j

ȳyi j
i j exp(−ȳi j)

yi j!
(2.14)

= exp (−NE(Θ)) (2.15)

E(Θ) ≡ 1
N

∑

i j

(
ȳi j − yi j ln ȳi j + ln yi j!

)
(2.16)

From Bayes’ theorem, the posterior probability of the model parameter Θ is

P(Θ|D) =
P(Y |X,Θ)ϕ(Θ)

P(Y |X)
(2.17)

=
1

P(Y |X)
ϕ(Θ)

∏

i, j

P(yi j|I(Ei, qj ;Θ) (2.18)

=
1

Z(D)
exp (−NE)ϕ(Θ), (2.19)

where ϕ(Θ) is the prior distribution, Z(D) is the marginal likelihood or normalization constant,

Z(D) =
∫

exp (−NE(Θ))ϕ(Θ)dΘ (2.20)

We use the prior distributions ϕ(Θ) = ϕα(α)ϕγ(γ)ϕη(η). Each distribution is written as half-
Cauchy distributions ϕα(α) =

∏3
k=1 C(αk; ια), ϕη(η) =

∏3
k=1 C(ηk; ιη), and the inverse gamma

distribution ϕγ(γ) =
∏3

k=1 G(γk; aγ, bγ), where the half-Cauchy distribution is

C(η; ιη) =




1
π
ιη
η2+ι2η

(η ≥ 0),

0 (η < 0),
(2.21)

and the inverse gamma distribution is

G(γ; aγ, bγ) =
∏

i

baγ
γ

Γ(aγ)
γ
−(aγ+1)
i e−bγ/γi . (2.22)

2.2.2 Posterior Probability Calculation: Exchange Monte Carlo Method

When computing Bayes posterior probabilities, computing the partition function is unavoidable.
The partition function is often computationally difficult to calculate, and the numerical cost is
also enormous. In previous research[6, 10], the exchanged Markov chain Monte Carlo (REMC)
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method [43] was utilized. The REMC method is a sampling method that reduces the amount
of calculation by approximately calculating expected values. Here, we explain the exchange
REMC method using the Bayesian framework.

For convenience, we introduce the inverse temperature β and define the function z(β):

z(β) =
∫

exp (−NβE(Θ))ϕ(Θ)dΘ (2.23)

The partition function can be expressed as Z(θ|D) = z(1). Therefore, L inverse temperatures
β = {β1, β2, · · · , βL|0 = β1 < β2 < · · · < βL = 1}, then z(0) = 1

z(1) =
z(βL)

z(βL−1)
× z(βL−1)

z(βL−2)
× · · · × z(β2)

z(β1)
=

L−1∏

l=1

z(βl+1)
z(βl)

(2.24)

=

L−1∏

l=1

∫
exp (−Nβl+1E(Θ))ϕ(Θ)dΘ

∫
exp (−NβlE(Θ))ϕ(Θ)dΘ

(2.25)

=

L−1∏

l=1

∫
exp (−N(βl+1 − βl)E(Θ)) q(Θ; βl)dΘ∫

q(Θ; βl)dθ
(2.26)

=

L−1∏

l=1

〈
exp (−N(βl+1 − βl)E(Θ))

〉
q(×;βl) (2.27)

q(Θ; β) ∝ exp (−NβE(Θ))ϕ(Θ) (2.28)

where, 〈·〉q(Θ;β) is the expected value for q(Θ; β).
From the formula (3.9), the marginal likelihood Z(D) can be represented by the expected value

that can be calculated by REMC method. In this case, the expected value for the probability
density for different inverse temperatures is calculated, so it can be calculated in parallel.

2.3 Numerical experiment
In this section, we evaluate the performance of model parameter estimation method using
Bayesian inference. We show numerical experiments comparing the performances of the
proposed method and the previous method using the same synthetic data.

First, we generated the dispersion relation data of the body-centered cubic lattice model ac-
cording to the Eq (2.11). The parameters used to generate the synthetic data are shown in Table
2.1. We choose points with high symmetry in the first Brillouin zone of momentum space, and
sample the straight line connecting each point Γ[0, 0, 0] → H[0, 0, 2π/a] → N[0, π/a, π/a] →
P[π/a, π/a, π/a] → Γ[0, 0, 0]. Examples of the synthetic data are shown in Fig 2.1. Figure 2.1
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(a)-(d) is the spectrum data when the observation time is T = 100, 10, 1, 0.1. Model parameter
estimation is obtained as a posterior probability of the spring constant sampled by the REMC
method.

Table 2.1: Parameters of synthetic data.

N 50

(α1,α2,α3)[N/m] (300, 200, 100)

(η1, η2, η3) (1, 1, 1)

(γ1, γ2, γ3)[meV] (0.0025, 0.0025, 0.0025)

Matom[kg] 2 × 10−26

B 0.8

* Note that the phonon energy is independent of
the lattice constant a. The lattice constant is
relevant only to the size of the first Brillouin
zone.

Table 2.2: Parameters of the priors and REMC conditions for parameter estimation.

L 48

M 120,000

Burn In Step 60,000

ια 150

ιη 0.5

aγ 4.001

bγ[meV] 0.01001

ξ 1.4

Figure 2.2–2.5 show examples of spring constant estimations. The posterior probability dis-
tributions for the synthetic data with observation time T = 100, 10, 1, 0.1 (Fig. 2.1 (a)–(d)) are
Fig. 2.2–2.5.

Since the spread of the distribution is evaluated as the reliability in the numerical experiments
in this study, the estimated mean and the spread of the estimated distribution are shown statis-
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tically. For simplicity, we consider the variance as the spread of the estimated distribution. In
order to statistically evaluate the mean and variance obtained by each inference, Tables 2.3 and
2.4 show the average values and its variances obtained with 10 inferences and their standard
deviations.

(a) T = 100 (b) T = 10 (c) T = 1 (d) T = 0.1

Fig. 2.1: Observation data of generated dispersion relation. (a)-(d) are spectrum data when
T = 100, 10, 1, 0.1 respectively.

Table 2.3: Descriptive statistics values of posteriors by Poisson EMC.

Time Posterior Mean Posterior Std.

α1 [N/m] α2 [N/m] α3 [N/m] α1 [N/m] α2 [N/m] α3 [N/m]

1000 300.00 ʶ 0.11 200.01 ʶ 0.09 100.03 ʶ 0.07 0.09 ʶ 0.00 0.11 ʶ 0.01 0.08 ʶ 0.01

100 299.93 ʶ 0.26 199.92 ʶ 0.40 100.07 ʶ 0.26 0.26 ʶ 0.01 0.33 ʶ 0.01 0.24 ʶ 0.02

10 300.33 ʶ 1.02 199.88 ʶ 1.05 99.69 ʶ 0.46 0.85 ʶ 0.09 1.10 ʶ 0.11 0.81 ʶ 0.08

1 301.72 ʶ 3.04 200.41 ʶ 4.46 98.65 ʶ 2.70 3.30 ʶ 1.39 3.67 ʶ 0.99 2.69 ʶ 0.96

0.1 1101.65 ʶ 924.92 1219.80 ʶ 2014.31 1056.90 ʶ 814.90 12382.66 ʶ 15656.31 9369.42 ʶ 19538.85 9769.06 ʶ 12901.07

Table 2.4: Descriptive statistics values of posteriors by Gaussian EMC.

Time Posterior Mean Posterior Std.

α1 [N/m] α2 [N/m] α3 [N/m] α1 [N/m] α2 [N/m] α3 [N/m]

1000 300.00 ʶ 0.06 199.99 ʶ 0.06 100.01 ʶ 0.03 0.08 ʶ 0.00 0.10 ʶ 0.00 0.07 ʶ 0.00

100 299.88 ʶ 0.39 199.98 ʶ 0.63 100.09 ʶ 0.35 0.89 ʶ 0.42 1.24 ʶ 0.40 0.95 ʶ 0.32

10 2869.40 ʶ 4335.94 1288.29 ʶ 685.08 1037.25 ʶ 327.82 75030.23 ʶ 182473.8 18510.97 ʶ 19274.41 10078.06 ʶ 8481.60

1 1092.83 ʶ 793.79 1469.85 ʶ 1518.43 973.71 ʶ 344.36 28949.34 ʶ 54884.65 41824.27 ʶ 78722.12 18154.27 ʶ 26247.32

0.1 4154.65 ʶ 9067.73 1409.29 ʶ 1107.07 1061.90 ʶ 235.39 325395.19 ʶ 898216.3 45478.45 ʶ 74316.54 24386.52 ʶ 17130.80
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Fig. 2.2: Posterior distributions of α of for the observation data generated by T = 100. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true α.The parameters used for
the REMC method for estimation of α are shown in Table 2.1.
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Fig. 2.3: Posterior distributions of α of for the observation data generated by T = 10. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true α.The parameters used for
the REMC method for estimation of α are shown in Table 2.1.



2.3 Numerical experiment 25

Fig. 2.4: Posterior distributions of α of for the observation data generated by T = 1. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true α.The parameters used for
the REMC method for estimation of α are shown in Table 2.1.



26 Chapter 2 Bayesian Parameter Estimation for Dispersion Relation Observation Data with Poisson Process

Fig. 2.5: Posterior distributions of α of for the observation data generated by T = 0.1. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true α.The parameters used for
the REMC method for estimation of α are shown in Table 2.1.
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2.4 Discussion
In the numerical experiments in Sect. 2.3, we compared the proposed method with the method
from the previous study and evaluated the performance of estimating physical model parameters
from dispersion relation observation data. Since the observation data is supposed to be physical
event measurement data, it was generated by the Poisson process.

From Figs. 2.2–2.5, it can be seen that the proposed method has superior accuracy compared
to the method of the previous study. In addition, Tables 2.3 and 2.4 show that the proposed
method improves the inference performance by about 100 times with respect to the observation
time compared to the previous research.

This difference in inference performance is affected by whether the model and the likelihood
function match. The likelihood function of the model of the proposed method has a Poisson
distribution, and the model and the generation process of observation data match. However,
in the method of the previous research, the likelihood function of the model has a Gaussian
distribution, which does not match the generation process of the observation data. It was clarified
that the estimation performance could be significantly reduced because the noise model of the
estimation model does not match the noise mechanism of the observed data. Introducing an
appropriate noise mechanism into the estimation model is necessary to improve the estimation
performance.

In this study, we constructed a model for inelastic scattering experimental data of neutrons,
and since the acquired data is stochastically measured count data, we introduced the Poisson
noise model. Poisson noise can basically be used for the count data of stochastic events. In
the Poisson distribution, the mean and variance are the same value, but in actual data, there are
cases where the mean and variance of the distribution are not the same value even for count
data. This is because there are noise factors that cannot be expressed by the Poisson distribution
alone, such as the characteristics of measuring instruments or physical phenomena from other
systems. In actual operation, if multiple noise models are possible, it is necessary to evaluate the
noise model by model selection. In Bayesian inference, the appropriateness of the estimation
model for the data can be measured by using the Bayesian free energy. First, the free energy is
calculated for each model, and the model with the minimum free energy can be considered as
the model most suitable for the data.

In our method, it is not necessary to estimate the noise level as in the case of the previous re-
search method because our method does not include noise parameters in the observation model.
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Therefore, the uncertainty due to noise estimation does not affect the parameter estimation, and
stable analysis results can be obtained by our method.

In event measurement, it is desirable to keep the data as raw count data. In the fields of
physical measurement and information measurement, measurement data is often processed and
not retained as raw count data. Since our method is probabilistically modeled using a Poisson
process on Bayesian inference and treats the data as raw count data, the accuracy is dramati-
cally improved. The properties of count data may lead to improvement in estimation accuracy.
Therefore, in event measurement, the data should be retained as raw count data.

2.5 Conclusion
In this study, we proposed a method for estimating the interaction parameters of the crystal lattice
from the dispersion relation observation data, conducted numerical experiments using artificial
data, and discussed performance evaluation. In the proposed method, the Poisson process, which
is a physical observation process, was introduced into the inference model. Therefore, the pro-
posed method has better inference accuracy than the conventional method, and it was possible
to infer physical parameters with high accuracy from short-time measurement data.

As a future subject, we will perform more practical Bayesian modeling for actual data anal-
ysis. The shell model [44] can be handled as a more practical model for the calculation of the
dispersion relation of lattice vibration. By extending our model, it is expected that it will be ap-
plied to more accurate model parameter estimation and optimization of experimental observation
conditions.
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Chapter 3

Gaussian Markov Random Field

Model without Boundary Conditions

In this chapter, we deal with image data that does not have boundary conditions, and investigate
the estimation method of latent variables of images and image restoration on Bayesian inference.
In addition, we calculate the Bayesian free energy or Bayesian posterior probability to evaluate
the reliability of the estimation.

In the natural sciences, various image data have come to be obtained with the development of
observation technology. Image processing is an important technique for analyzing such image
data, as images are obtained to examine the information to be observed. In neuroscience, calcium
imaging is used to observe neural activity. In calcium imaging, fluorescent molecules that binds
to calcium ions is introduced into the cells, and the concentration of calcium ions is detected by
the change in fluorescence intensity. In earth science, seismic tomography is used to investigate
the state inside the earth. In seismic tomography, the inside of the earth is imaged by utilizing the
fact that the velocity of seismic waves depends on the state inside the earth. Seismic tomography
makes it possible to analyze the diffusion of fluids inside the Earth and estimate the distribution
and dynamics of fluids in the crust[3, 4, 5].

In this chapter, we study the Markov random field (MRF) model, which is a stochastic genera-
tive model of images. The MRF model is applied to image processing such as image restoration
and image segmentation[19, 18, 11, 12, 13, 21, 14, 15, 16, 17, 22, 23]. Nishimori used the
Gaussian MRF model to the monochrome image to restore the image using Fourier transform.
The results and image restoration results by the Wiener filter are equivalent[45]. MRF models
are stochastic generative models of images based on Bayesian inference. Therefore, stochastic
observation noise can be naturally introduced into MRF models. The MRF model describes the
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properties of image data using two hyperparameters, which represent the smoothness of the im-
age and the magnitude of the observation noise. The MRF model has two hyperparameters for
images. Its hyperparameters represent the intensity of the observed noise and the smoothness of
the image. It is necessary to estimate the hyperparameters of the MRF model in order to improve
the performance of image processing[13, 21, 22].

MRF models are known to correspond to physical models It was pointed out that the hyper-
parameter that can be interpreted as the smoothness of the image corresponds to the diffusion
coefficient[20]. Therefore, when interpreting the smoothness hyperparameter as the diffusion co-
efficient, it is necessary to estimate not only the value but also the reliability. It was shown that
the hyperparameter distribution can be calculated analytically for the MRF model with periodic
boundary conditions[20, 24]; hence, hyperparameter distribution can be estimated analytically
from observed images without using numerical calculations. Since many natural images do not
satisfy the periodic boundary conditions, it is necessary to investigate a method for estimating
the hyperparameter distribution of the MRF model that does not have the periodic boundary con-
ditions. In this chapter, we propose an analytical hyperparameter distribution estimation method
and image restoration method for MRF models without periodic boundary conditions. We also
confirm by numerical experiments that the proposed method works properly compared to the
conventional method with periodic boundary conditions.

3.1 Formulation
We consider images of a d-dimensional square lattice with N pixels using the MRF model.
Let us denote the original image as u = {u1, u2, · · · , uN} ∈ RN and the observed image as
v = {v1, v2, · · · , vN}, where N is the number of pixels.

Each pixel value vi is given by

vi = ui + ni, (i = 1, 2, · · · ,N), (3.1)

where ni represents the observation noise. We assume that n = (n1, n2, · · · , nN) ∈ RN are
independent and identically distributed random variables that follow a normal distribution whose
mean and variance are respectively 0 and b [denoted as N(0, b)]. Then the observed image v

follows a multivariate normal distribution:

p(v|u, b) =
1

Z1(b)
exp


−

1
2b

N∑

i=1

(vi − ui)2


 , (3.2)

where the function Z1 is a partition function and defined by Z1(b) = (2πb)N/2. The variable b is
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a hyperparameter representing the magnitude of the observation noise.
By considering the smoothness of the original image, we assume that the original image u

follows p(u|a) defined by

p(u|a) =
1

Zpri(a)
exp


−

1
2a

∑

〈i, j〉
(ui − u j)2


 , (3.3)

where 〈i, j〉 represents two adjacent sites and the function Zpri is a partition function defined by

Zpri =

∫
du exp


−

1
2a

∑

〈i, j〉
(ui − u j)2


 . (3.4)

In this distribution, the closer the values of adjacent pixels are, the greater the probability be-
comes. Variable a is also a hyperparameter. This hyperparameter represents the smoothness of
images.

3.2 Image Restoration and Hyperparameter Estimation

3.2.1 Image restoration

Methods of analytical image restoration are already known for images with periodic boundary
conditions.[24, 45] Here, for images without boundary conditions, we describe analytical image
restoration.

According to Bayes’ theorem, the posterior distribution of the original image is written by

p(u|v, â, b̂) =
p(v|u, b̂)p(u|â)

p(v|â, b̂)
, (3.5)

where â and b̂ are the estimated values of the hyperparameters a and b. The denominator is a
normalized constant and is generally intractable, but in this case we can calculate it. From Eqs.
(4.2), (4.3), and (3.5),

p(u|v, â, b̂) ∝ exp(−E), (3.6)

where the exponent is defined as an energy function:

E =
1

2b̂

N∑

i=1

(vi − ui)2 +
1

2â

∑

〈i, j〉
(ui − u j)2. (3.7)

We will restore images analytically by maximum a posteriori (MAP) estimation. Since MAP
estimation is equivalent to minimizing the energy function, we will describe below the method
to minimize the energy function.
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For simplicity, we consider the energy function E of the one-dimensional MRF model. The
energy function of the original image u with respect to the observed image v is expressed as

E(u) =
1

2b̂

N∑

i=1

(vi − ui)2 +
1

2â

N−1∑

i=1

(ui+1 − ui)2. (3.8)

With the N × N matrix Λ,

Λ =




1 −1 0

−1 2 −1
. . .

0 −1 2 −1
. . . 0

. . . −1 2 −1
0 −1 1




, (3.9)

the energy function E is represented as

E(u) =
1
2b̂
|v − u|2 + 1

2â
uTΛu, (3.10)

To analytically obtain the minimum value of this energy function, we will diagonalize Λ with a
unitary matrix K whose elements are

Ki j =




1√
N

( j = 1)
√

2
N cos

{(
i − 1

2

) ( j−1)
N π

}
( j ! 1)

. (3.11)

Therefore, the energy function E is rewritten as follows:

E(ũ) =
1
2b̂
|ṽ − ũ|2 + 1

2â
ũT Λ̃ũ, (3.12)

where ṽ = Kv, ũ = Ku, and Λ̃ = KTΛK is an N × N diagonal matrix that has eigenvalues

λi = 4 sin2
( π
2N

(i − 1)
)
. (3.13)

Therefore,

E(ũ) =
N∑

i=1

[
1
2b̂

(ṽi − ũi)2 +
1

2â
λiũ2

i

]
(3.14)

=

N∑

i=1

(
1

2b̂
+
λi

2â

) 
ũi −

(
1 +

b̂
â
λi

)−1

ṽi




2

+
1
2

(
b̂ +

â
λi

)−1

ṽ2
i . (3.15)
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From Eq. (3.15), the original image can be analytically estimated as

ũi =

(
1 +

b̂
â
λi

)−1

ṽi. (3.16)

In the case of periodic boundary conditions, the above calculation is the same except for eigen-
values since the matrixΛ is different from Eq. (3.9) in thatΛ11 = ΛNN = 2 andΛ1N = ΛN1 = −1.
It is described in Sect. 3.5 that the eigenvalues are equal to Eq. (3.13) for N → ∞.

Next, we will extend the one-dimensional MRF model to two dimensions. It can be extended
to d-dimensional by the following procedure. Let us denote the original image as u = {ui, j}
(i, j = 1, 2, · · · ,N) and the observed image as v = {vi, j}. Then, the energy function E is written
as

E(u) =
1

2b̂

N∑

i, j=1

(vi, j − ui, j)2 +
1

2â

N−1∑

i, j=1

{
(ui+1, j − ui, j)2 + (ui, j+1 − ui, j)2

}
. (3.17)

By using a matrix Λ′

Λ′ = I ⊗ Λ + Λ ⊗ I, (3.18)

where I is an N ×N identity matrix, Λ is the matrix given by Eq. (3.9), and ·⊗ · is the Kronecker
tensor product[46], the energy function E is rewritten by

E(u) =
1
2b̂
|v − u|2 + 1

2â
uTΛ′u, (3.19)

where ui = (ui1, ui2, · · · , uiN), u = (u1,u2, · · · ,uN)T , vi = (vi1, vi2, · · · , viN), and
v = (v1,v2, · · · ,vN)T . We will diagonalize Λ′ to analytically obtain the minimum value
of this energy function. This is accomplished by applying a unitary transformation

U = K ⊗ K, (3.20)

to this system.

UTΛ′U = UT (K ⊗ ΛK + ΛK ⊗ K) (3.21)

=
(
KT K ⊗ KTΛK + KTΛK ⊗ KT K

)
(3.22)

=
(
I ⊗ Λ̃ + Λ̃ ⊗ I

)
. (3.23)

Therefore, the eigenvalue of Λ̃′ = UTΛ′U for ũi, j is

λi, j = λi + λ j (3.24)

= 4 sin2
( π
2N

(i − 1)
)
+ 4 sin2

( π
2N

( j − 1)
)
. (3.25)
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From this, the posterior distribution of the original image is obtained as

p(ũ|ṽ, â, b̂) ∝ exp




N∑

i, j=1

(
1
2b̂
+
λi, j

2â

) ũi, j −
(
1 +

b̂
â
λi, j

)−1

ṽi, j




2 , (3.26)

where ṽ = Uv, and ũ = Uu. From Eq. (3.26), in two dimensions, the original image can be
analytically estimated as

ũi, j =

(
1 +

b̂
â
λi, j

)−1

ṽi, j. (3.27)

3.2.2 Hyperparameter estimation

Since the image restoration depends on the hyperparameters, those hyperparameters need to be
estimated correctly. It is known that a hyperparameter corresponds to the diffusion coefficient
as a physical quantity.[20] Therefore, to evaluate the confidence of estimation, the distribution
of hyperparameters needs to be estimated. The distribution estimation of a model with periodic
boundary conditions has already been calculated.[20, 24] Here, we will perform analytically
estimate the distribution of the model without boundary conditions.

The marginal likelihood is represented by

p(v|a, b) =
∫

du p(v|u, b)p(u|a) (3.28)

∝
∫

du exp


−




1
2b̂

N∑

i=1

(vi − ui)2 +
1

2â

∑

〈i, j〉
(ui − u j)2





 . (3.29)

This can be computed analytically by transformation with a unitary matrix and using Gaussian
integration.

In the one-dimensional MRF model, by using the unitary matrix K, the marginal likelihood
can be computed as

p(ṽ|a, b) ∝
∫

du exp


−

N∑

i=1

(
1
2b
+
λi

2a

) 
ũi −

(
1 +

b
a
λi

)−1

ṽi




2

+
1
2

(
b̂ +

â
λi

)−1

ṽ2
i


 (3.30)

∝
∏

i

(
b +

a
λi

)−1/2

exp

−

1
2

(
b +

a
λi

)−1

ṽ2
i


 . (3.31)
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Similarly, in the case of the two-dimensional MRF model, by using the unitary matrix U,

p(ṽ|a, b) ∝
∫

du exp


−

N∑

i, j=1

(
1

2b
+
λi, j

2a

) 
ũi, j −

(
1 +

b
a
λi, j

)−1

ṽi, j




2

+
1
2

(
b̂ +

â
λi, j

)−1

ṽ2
i, j


 (3.32)

∝
∏

i, j

(
b +

a
λi, j

)−1/2

exp

−

1
2

(
b +

a
λi, j

)−1

ṽ2
i, j


 . (3.33)

3.2.3 Expectation value of free energy

The marginal likelihood depends on probabilistically generated observation images. To conduct
a theoretical evaluation, we will use an expectation value of free energy based on a statistical
mechanics analogy.

Let us define the free energy F of the one-dimensional MRF model as follows:

F(a, b;v) ≡ − ln p(v|a, b) (3.34)

= −1
2

∑

k


ln

1
a
λk
+ b
− |ṽk |2

a
λk
+ b


 , (3.35)

where λk is the eigenvalue of the coefficient matrix in the generative model. Note that the equals
sign between the first and second lines means that both sides are equal up to a constant. We
calculate the configurational average of F with respect to data:

〈F(a, b;v)〉v|a0,b0
=

∫
dudvF(a, b;v)p(v|u, b0)p(u|a0) (3.36)

≡
〈
〈F(a, b;v)〉v|u,b0

〉
u|a0
, (3.37)

where 〈· · · 〉v|a0,b0 and 〈· · · 〉u|a0 are the expectation values by probability distribution p(v|b0) and
p(u|a0). a0 and b0 are true hyperparameters. The subscripts are omitted below. From Eq. (3.35),
this is rewritten as

〈F(a, b;v)〉 = −1
2

∑

k




ln
1

a
λk
+ b
−

〈〈
|ṽk |2

〉〉

a
λk
+ b



. (3.38)

Therefore, to obtain the expectation value of free energy,
〈〈
|ṽk |2

〉〉
needs to be calculated. When

the unitary transformations are applied to the model, the original image and the observed im-
age are written as ūk ∼ N(0, a0

λ̄k
) and v̄k ∼ N(ūk, b0), respectively. λ̄i is the eigenvalue of the
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coefficient matrix in the estimation model. We will denote the unitary transformations that di-
agonalize the coefficient matrix of the generative model and estimation model as K1 and K2,
respectively. Then, the observed image is represented as v = K−1

1 v̄ and the observed image after
unitary transformation of estimation model is represented as ṽ = K2v. Therefore,

〈〈
|ṽ2

k |
〉〉
=

〈〈∑

i, j

A∗kiAk jv̄iv̄ j

〉〉
(3.39)

=
∑

i

|Aki|2
〈〈
|v̄2

i |
〉〉

(3.40)

=
∑

i

|Aki|2
(

a0

λ̄i
+ b0

)
, (3.41)

where A = K2K−1
1 . Therefore, from Eqs. (3.38) and (3.41), the expectation of free energy can

be obtained as

〈F(a, b;v)〉 = −1
2

∑

k


ln

1
a
λk
+ b
− 1

a
λk
+ b

∑

i

|Aki|2
(

a0

λ̄i
+ b0

)
 . (3.42)

3.2.4 Noiseless hyperparameter

Here, we derive hyperparameter from Eq. (4.3) in the case of the observed image without noise.
For simplicity, we consider the one-dimensional MRF model. The extremization condition with
respect to a is

∑

i

(u∗i − u∗i+1)2 =

∫
du

∑

i

(ui − ui+1)2P(u|â), (3.43)

where â is the estimated values of the hyperparameter a, and u∗ is the observed original image.
Gaussian integration of Eq. (3.43) yields

â =
1
N

∑

i

(u∗i − u∗i+1)2. (3.44)

Regardless of the boundary conditions, this result is the same except for the range of sum.
Without boundary conditions, i = 1, · · · ,N − 1. On the other hand, with periodic boundary
conditions, u∗1 = u∗N+1 and i = 1, · · · ,N. Thus, in the case of the observed image without noise,
boundary conditions affect the hyperparameter a.

3.2.5 Boundary conditions for a large system

Here, we indicate that the free energy of Eq. (3.42) for a large system becomes the same ir-
respective of boundary conditions. The eigenvalues with periodic boundary conditions can be
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shown in ascending order as

λi = 4 sin2
(
π

N

⌈
i − 1

2

⌉)
, (3.45)

where 1· · · 2 is the ceil function. For infinite limits of N,

λi = 4 sin2
(
π

N

⌈
i − 1

2

⌉)
−−−−→
N→∞

4 sin2
( π
2N

(i − 1)
)
. (3.46)

Thus, eigenvalues with periodic boundary conditions is equal to those without boundary condi-
tions for N → ∞ . Considering that the matrix A is an unitary matrix, this means that, regardless
of the boundary conditions, the free energy is the same for a large system.

3.3 Numerical Experiment
An image is generated from a generative model with and without periodic boundary conditions
formulated by Eqs. (4.2) and (4.3). For each image, hyperparameter estimation is performed
by minimizing the free energy using the proposed method (which is an estimation model with-
out boundary conditions) and the existing method (which is an estimation model with periodic
boundary conditions). Furthermore, we confirm that the image is actually restored by using the
estimated hyperparameter. We also compare the reliability of each method from the expectation
value of free energy.

3.3.1 One-dimensional model

We consider the one-dimensional model where the number of pixels is N = 256. The true
hyperparameter values were set to (a, b) = (1.5, 1.5). Figure 3.1 (a) shows an example of an
observed image generated by a generative model without boundary conditions. Figures 3.1
(b), and 3.1 (c) show the hyperparameter distributions for the image estimated by the proposed
method and the existing method, respectively. The intersection of the lines indicates the value
of the true hyperparameter. From Figs. 3.1 (b) and 3.1 (c), compared to the existing method, the
proposed method shows that the distribution appears near the true hyperparameter for the image
without boundary conditions.

Figure 3.1 (d) shows an example of an observed image generated by a generative model with
periodic boundary conditions. Figures 3.1 (e) and 3.1 (f) show the hyperparameter distributions
for the image estimated by the proposed method and the existing method, respectively. The
intersection of the lines indicates the value of the true hyperparameter. From Figs. 3.1 (e)
and 3.1 (f), for images with periodic boundary conditions, we can see that the hyperparameter
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Fig. 3.1: Hyperparameter estimation (N = 256, a = 1.5, b = 1.5). Panels (a)–(c) generative
model without boundary conditions. Panel (a) shows original and observed images. Panels (b)
and (c) are hyperparameter distributions estimated by proposed method and existing method, re-
spectively. Panels (d)–(f) generative model with periodic boundary conditions. Panel (d) shows
original and observed images. Panels (e) and (f) are hyperparameter distributions estimated by
proposed method and existing method, respectively.[47]

distributions of both the proposed method and the existing method are distributed near the true
hyperparameters. From the above, it can be seen that the existing method can be used only when
the image data is sufficiently periodic.

In addition, image restoration was performed using estimated hyperparameters by minimizing
the free energy. Figures 3.2 (a) and 3.2 (b) show images restored by the proposed method and the
existing method, respectively, in the case of the generative model without boundary conditions.
Figure 3.2 (a) shows that the image can be restored. However, as shown in Fig. 3.2 (b) in the
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Fig. 3.2: Image restoration by estimated hyperparameters. In upper column, results for original
images generated by generative model without boundary conditions. In lower column, results
for original images generated by generative model with periodic boundary conditions. Panels
(a) and (c) show restored images by proposed method. Panels (b) and (d) show restored images
by existing method. [47]
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Fig. 3.3: Scatter diagram of hyperparameter estimate for 1000 images. Panels (a) and (b) are ob-
tained by generative model with and without periodic boundary conditions, respectively. Panel
(c) is RMSE between true images and restored images. Left and right bars show RMSE for
original images with and without periodic boundary conditions. Bars I and III show RMSE for
results restored by existing method. Bars II and IV show RMSE for results restored by proposed
method. [47]
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vicinity of the boundary, the restored image is separated from the original image by the effect of
the assumption of the periodic boundary conditions.

Figures 3.2 (c) and 3.2 (d) show images restored by the proposed method and the existing
method in the case of the generative model with periodic boundary conditions. As can be seen
from Figs. 3.2 (c) and 3.2 (d), for images with periodic boundary conditions, each method can
perform image restoration. From the results of hyperparameter estimation and image restoration,
it was suggested that the proposed method is applicable regardless of the boundary conditions.

Furthermore, with N = 256, a = 1.5, and b = 1.5, 1000 images with no boundary conditions
and 1000 images with periodic boundary conditions were generated. Hyperparameter estimation
for those images was performed using each method, and the distributions of the estimated values
was examined.

Figures 3.3 (a) and 3.3 (b) are scatter plots of hyperparameter estimation values by minimizing
the free energies for images with and without periodic boundary conditions, respectively. The
intersection of the lines indicates the value of the true hyperparameter. Figure 3.3 (c) shows the
root mean square error (RMSE) between the true images and restored images. The left and right
bars show RMSE for the original images with and without periodic boundary conditions. The
bars I and III show RMSE for the results restored by the existing method, and the bars II and IV
show RMSE for the results restored by the proposed method.

As can be seen from Fig. 3.3 (a), for images with periodic boundary conditions, hyperparam-
eters are estimated in the vicinity of true hyperparameter values for each method. On the other
hand, as shown in Fig. 3.3 (b), while the proposed method can estimate true hyperparameter
values for images without boundary conditions, the existing method cannot estimate the true
hyperparameter values. From comparing the bars I and II in Fig. 3.3 (c), we can see that RMSEs
are about the same when the proposed and existing methods were applied to the images with pe-
riodic boundary conditions. On the other hand, the RMSE of the existing method for the image
without boundary conditions was 10% worse than the RMSE of the proposed method for the
image with boundary conditions. From this fact, the existing method degrades the performance
for image restoration without boundary conditions, while the proposed method does not degrade
the performance regardless of the boundary conditions.

Figures 3.4 (a) and 3.4 (b) are expectation values of free energy of the proposed method and
the existing method, respectively, for the generative model without boundary conditions. It can
be seen that for the generative models without boundary conditions, the existing methods cannot
accurately estimate hyperparameters. This corresponds to the scatter diagram of the hyperpa-
rameter estimation of Fig. 3.3 (b). Figures 3.4 (c) and 3.4 (d) are expectation values of free
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energy of the proposed method and the existing method, respectively, for the generative model
with periodic boundary conditions. For generative models with periodic boundary conditions,
hyperparameters can be estimated correctly for each method. This corresponds to the scatter
diagram showing minimizing the free energy in Fig. 3.3 (a).

3.3.2 Two-dimensional model

We consider the two-dimensional model where the number of pixels is N = 32 × 32. The true
hyperparameter values were set to (a, b) = (1.5, 1.5). Figure 3.5 (a) shows an example of an ob-
served image generated by a generative model without boundary conditions. Figures 3.5 (b) and
3.5 (c) show the hyperparameter distributions for the image estimated by the proposed method
and the existing method. The intersection of the lines indicates the value of the true hyperpa-
rameter. From Figs. 3.5 (b) and 3.5 (c), compared to the existing method, the proposed method
shows that the hyperparameter estimation distribution appears near the true hyperparameter for
the image without the boundary condition.

Figure 3.5 (d) shows an example of an observed image generated by a generative model
with periodic boundary condition. Figures 3.5 (e) and 3.5 (f) show the distributions of the
hyperparameters estimated by the proposed method and the existing method, respectively. The
intersection of the lines indicates the value of the true hyperparameter. From Figs. 3.5 (e) and
3.5 (f), for images with periodic boundary conditions, we can see that the distributions of both
the proposed method and the existing method are distributed near the true hyperparameters.
From the above, it can be seen that the existing method can be used only when the image data is
sufficiently periodic.

In addition, image restoration was performed using the estimated hyperparameters. Figures
3.6 (a) and 3.6 (b) are the original image and the observed image generated by a generative
model without boundary conditions. Figures 3.6 (c) and 3.6 (d) show images restored by the
proposed method and the existing method in the case of the generative model without boundary
conditions. Figure 3.6 (c) shows that the image can be restored. However, as shown in Fig. 3.6
(d) in the vicinity of the boundary, the restored image is separated from the original image by
the effect of the assumption of the periodic boundary condition.

Figures 3.6 (e) and 3.6 (f) are the original image and the observed image, respectively, gener-
ated by a generative model with periodic boundary conditions. Figures 3.6 (g) and 3.6 (h) show
images restored by the proposed method and the existing method,respectively, in the case of the
generative model with periodic boundary conditions. As can be seen from Figs. 3.6 (g) and 3.6
(h), for images with periodic boundary condition, each method can perform image restoration.
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From the results of hyperparameter estimation and image restoration, it was suggested that the
proposed method is applicable regardless of the boundary condition.

Furthermore, with N = 32 × 32, a = 1.5, and b = 1.5, 1000 images with no boundary
conditions and 1000 images with periodic boundary conditions were generated. Hyperparameter
estimation for those images was performed using each method, and the distributions of the values
was examined.

Figures 3.7 (a) and 3.7 (b) are scatter plots of hyperparameter estimation values by minimizing
the free energy for images with and without periodic boundary conditions, respectively. The
intersection of the lines indicates the value of the true hyperparameter. Figure 3.7 (c) shows the
root mean square error (RMSE) between the true images and restored images. The left and right
bars show RMSE for the original images with and without periodic boundary conditions. The
bars I and III show RMSE for the results restored by the existing method, and the bars II and IV
show RMSE for the results restored by the proposed method.

As can be seen from Fig. 3.7 (a), for images with periodic boundary conditions, hyperparam-
eters are estimated in the vicinity of true hyperparameter values for each method. On the other
hand, as shown in Fig. 3.7 (b), while the proposed method can estimate true hyperparameter
values for images without boundary conditions, the existing method cannot estimate true hyper-
parameter values. From comparing the bars I and II in Fig. 3.7 (c), we can see that RMSEs
are about the same when the proposed and existing methods were applied to the images with
periodic boundary conditions. On the other hand, the RMSE of the existing method for the im-
age without boundary conditions was 4% worse than the RMSE of the proposed method for the
image with boundary conditions. From this fact, it can be seen that the image restoration by
the existing method degrades the restore performance for images without boundary conditions,
while the proposed method does not degrade the restore performance regardless of the boundary
conditions.

Figures 3.8 (a) and 3.8 (b) are expectation values of free energy of the proposed method
and the existing method, respectively, for the generative model without boundary conditions. It
can be seen that for the generative models without boundary conditions, the existing methods
cannot accurately estimate hyperparameters. This corresponds to the scatter diagram of the
hyperparameter estimation of Fig. 3.8 (b). Figures 3.8 (c) and 3.8 (d) are expectation values
of free energy of the proposed method and the existing method, respectively, for the generative
model with the periodic boundary condition. For generative models with periodic boundary
conditions, hyperparameters can be estimated correctly for each method. This corresponds to
the scatter diagram showing the hyperparameter estimation in Fig. 3.7 (a).
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3.4 Discussion
In Sec. 3.3, it was shown that the proposed method can analytically estimate hyperparameters
with the reliability from one-dimensional and two-dimensional image data that do not have
periodic boundary conditions. The proposed method is effective for hyperparameter estimation
from small image data. Large-sized image data can be analyzed by the conventional method
with periodic boundary conditions as described in Sec. 3.2.5. In the proposed method and the
conventional method, the hyperparameters are constant in the observation space. Therefore, both
the proposed method and the conventional method work for large-sized images that have uniform
hyperparameters. However, in many actual observation images such as seismic tomography and
calcium imaging, hyperparameters are not uniform and depend on the observation space. When
the hyperparameters of an image are not globally uniform but locally uniform, it is necessary
to divide the image into small areas and analyze small images. Since the divided image data
does not always have periodicity, the proposed method works effectively and accurately on the
image data. Moreover, since the distribution estimation can be interpreted as the reliability of
the estimation, it can be expected that the estimated distribution of the proposed method can be
treated as an index of whether the division of the image data is appropriate.

3.5 Conclusion
In this study, we proposed a method to estimate latent variables from image data without bound-
ary conditions and analytically restore the image. The proposed method, which is an estimation
model without boundary conditions, is applicable to wider kinds of images than the existing
method. The numerical experiments and analytical solutions showed that the hyperparameter
estimation by the existing method can be used only for images with periodic boundary con-
ditions. For images without boundary conditions, the estimated hyperparameters are different
from the true values. On the other hand, the proposed method, which is an estimation model
independent of boundary conditions, showed that hyperparameters can be estimated regardless
of the boundary conditions.

A future topic of discussion is the estimation accuracy of hyperparameters of each method
depending on the size of image data. It is generally known that the effect of boundary conditions
decreases as the size of data increases. For sufficiently large image data, it is expected that there
will be no difference in the hyperparameter estimation by the proposed method and the existing
method. It is important to investigate the dependency of hyperparameter estimation accuracy of
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each method on the scale of image data.
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(a) (b)

(c) (d)

Fig. 3.4: Expectation value of free energy (N = 256, a = 1.5, b = 1.5). In upper column, re-
sults for original images generated by generative model without boundary conditions. In lower
column, results for original images generated by generative model with periodic boundary con-
ditions. Panels (a) and (c) show expectation values of free energy by proposed method. Panels
(b) and (d) show expectation values of free energy by existing method. [47]
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(a)
(b) (c)

(d) (e) (f)

Fig. 3.5: Hyperparameter estimation (N = 32 × 32, a = 1.5, b = 1.5). Panels (a)–(c) generative
model without boundary conditions. Panel (a) shows observed images. Panels (b) and (c) are
hyperparameter distributions estimated by proposed method and existing method, respectively.
Panels (d)–(f) generative model with periodic boundary conditions. Panel (d) shows observed
images. Panels (e) and (f) are hyperparameter distributions estimated by proposed method and
existing method, respectively. [47]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.6: Image restoration by estimated hyperparameters. In upper column, results for original
images generated by generative model without boundary conditions. In lower column, results
for original images generated by generative model with periodic boundary conditions. Panels
(a) and (e) show original images. Panel (b) and (f) show observed images. Panels (c) and (g)
show restored images by proposed method. Panels (d) and (h) show restored images by existing
method. [47]
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Fig. 3.7: Scatter diagram of hyperparameter estimate for 1000 images. Panels (a) and (b) are ob-
tained by generative model with and without periodic boundary conditions, respectively. Panel
(c) is RMSE between true images and restored images. Left and right bars show RMSE for
original images with and without periodic boundary conditions. Bars I and III show RMSE for
results restored by existing method. Bars II and IV show RMSE for results restored by proposed
method. [47]
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(a) (b)
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Fig. 3.8: Expectation value of free energy (N = 32 × 32, a = 1.5, b = 1.5). In upper column,
results for original images generated by generative model without boundary conditions. In lower
column, results for original images generated by generative model with periodic boundary con-
ditions. Panels (a) and (c) show expectation values of free energy by proposed method. Panels
(b) and (d) show expectation values of free energy by existing method. [47]
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Chapter 4

Bayesian Hyperparameter

Estimation using Gaussian Process

and Bayesian Optimization

With the development of observation technology, it has become possible to obtain information
on observation targets from image data acquired in the natural sciences. The MRF model[19, 48,
49] used for image processing, which is also dealt with in Chapter 3, is often used for extracting
physical information from images[50, 51, 4]. The MRF model corresponds to the lattice gas
model[52] and has been analyzed and developed by statistical mechanics[53].

The MRF model is modeled on the hypothesis that adjacent pixels in images generally have
similar values[19, 18, 22, 25], and a hyperparameters representing the smoothness of an image
are introduced into the model. The MRF model corresponds to physical models such as the
diffusion equation and the lattice gas model, and its smoothness hyperparameters correspond to
the diffusion coefficient[20] and the coupling constant[52]. By estimating the hyperparameter of
the MRF model from images, the physical features of the observation target can be inferred.

Many frameworks for estimating hyperparameters have been proposed for applications such
as image restoration and domain segmentation. In information science, Bayesian optimization
is known as an efficient method for optimizing model parameters[54]. In information statistical
mechanics, the mean field approximation, the Bethe approximation, and the variational Bayes
method are known as the approximate analysis methods to obtain hyperparameters[53]. These
methods are point estimates, that is, they only estimate the valuesof the model’s hyperparam-
eters. The hyperparameters correspond to physical quantities such as diffusion coefficient and
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coupling constant[20, 52]. In the estimation of physical quantities, not only the optimum value
of the parameter but also the reliability of the estimation must be discussed. The distribution
of hyperparameters can be interpreted as the error bar for parameters in the physical system,
and the reliability of parameter estimation can be evaluated from the distribution. Therefore, the
distribution of hyperparameters must be determined, but it is necessary to calculate the Bayesian
posterior probability, which is also handled in Chapter 2 and Chapter 3, and the Bayesian poste-
rior probability is generally difficult to calculate analytically. The hyperparameter distribution is
often calculated numerically using the exchanged Markov chain Monte Carlo (REMC) method
[43], but the method has a high calculation cost. To address these problems, we focus on algo-
rithms to efficiently estimate hyperparameter distribution from a small number of samples.

We propose methods of applying Bayesian optimization and Gaussian process to estimate hy-
perparameter valuesand hyperparameter distributions. We estimate the hyperparameter distribu-
tion from a small number of samples using the Gaussian process. We estimate the hyperparam-
eter values from a small number of samples using the Bayesian optimization. We also apply the
Bayesian optimization as a sampler for the Gaussian process and estimate the distribution from
a small number of samples. In numerical experiments, we use a Gaussian Markov random field
(G–MRF) model[49, 11], which can analytically calculate a hyperparameter distribution[20, 24],
and evaluate the efficiency of our method to estimate the values of hyperparameters and the hy-
perparameter distribution by comparing the true and estimated hyperparameter distributions.

In this chapter, our two main results are as follows. The first is that the distribution can be
estimated with high accuracy from a small number of samples by using the Gaussian process.
Bayesian optimization has the potential to be applied as a sampler for Gaussian processes to
estimate the distribution of hyperparameters with high accuracy and low standard error from a
smaller number of samples. The proposed method can estimate Bayesian posterior probability
of the MRF model efficiently, and can be applied to not only the G–MRF model discussed here
but also the general MRF model and other Bayesian frameworks.

4.1 Methods
This section explains the theories of the G–MRF model, which is used to test the effectiveness
of the proposed methods; the Gaussian process[55, 56, 9], which is a technique to estimate the
outputs of the objective function for unknown inputs; and Bayesian optimization[57, 58], which
is an algorithm for searching for the optimal values of the objective function. In this work, the
objective function is proportional to the Bayesian posterior probability distribution. This section
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also explains the method of estimating the objective function from a small number of samples
using Bayesian optimization as a sampler for the Gaussian process.

4.1.1 Bayesian estimation using G–MRF model

Here, we explain the theory of the 1-dimension G–MRF model used to test the proposed meth-
ods. We consider image data of a 1-dimensional square lattice with N pixels. Let us denote an
original image as u = {u1, u2, · · · , uN} ∈ RN and an observed image as v = {v1, v2, · · · , vN} ∈ RN .
Each pixel value vi is given by

vi = ui + ni, (i = 1, 2, · · · ,N), (4.1)

where ni represents the observation noise. We assume that n = (n1, n2, · · · , nN) ∈ RN are
independent and random variables, respectively, that follow a normal distribution whose mean
and variance are 0 and b, respectively. Then, the observed image v follows a multivariate normal
distribution:

p(v|u, b) =
1

Z1(b)
exp


−

1
2b

N∑

i=1

(vi − ui)2


 , (4.2)

where the function Z1 is a partition function and defined by Z1(b) = (2πb)N/2. The variable b is
a hyperparameter representing the magnitude of the observation noise.

Considering the smoothness of the original image, we assume that the original image u fol-
lows p(u|a) defined by

p(u|a) =
1

Zpri(a)
exp


−

1
2a

∑

〈i, j〉
(ui − u j)2


 , (4.3)

where 〈i, j〉 represents two adjacent sites, and the function Zpri is a partition function defined by

Zpri =

∫
du exp


−

1
2a

∑

〈i, j〉
(ui − u j)2


 . (4.4)

In this distribution, the closer the values of adjacent pixels, the greater the probability of the
original image. Variable a is also a hyperparameter and this hyperparameter represents the
smoothness of the images.

According to Bayes’ theorem, the posterior distribution of hyperparameters can be written as

p(a, b|v) ∝ p(v|a, b)p(a, b) (4.5)

∝
∫

du p(v|u, b)p(u|a), (4.6)
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where the prior probability distribution of the hyperparameter is

p(a, b) = const.. (4.7)

This posterior distribution means that there is no prior knowledge of hyperparameters. The
posterior distribution of hyperparameters is represented by

p(a, b|v) ∝
∫

du p(v|u, b)p(u|a) (4.8)

∝
∫

du exp


−




1
2b

N∑

i=1

(vi − ui)2 +
1

2a

∑

〈i, j〉
(ui − u j)2





 . (4.9)

This can be computed analytically using the Fourier transform and Gaussian integration. Finally,
the hyperparameter distribution of the G–MRF model with a periodic boundary condition can
be analytically derived in the following form[20, 24]:

F(a, b|v) ≡ − ln (p(a, b|v)) (4.10)

= −1
2

N∑

k=1


ln

1
a
λk
+ b
− 1

a
λk
+ b
|ṽk |2


 (4.11)

ṽk =
1√
N

N∑

j=1

exp
(
2πi

jk
N

)
v j (k = 1, 2, · · · ,N), (4.12)

where λk = 2− 2 cos(2πk/N) is an eigenvalue, i represents the imaginary unit, and ·̃ signifies the
Fourier transform.

4.1.2 Gaussian process regression

Here, we explain the theory of Gaussian process regression[55, 56]. We consider M training
data with D-dimensional input vector xi and output value yi, denoted byDM = {(xi, yi)}Mi=1. We
consider the objective function f to be proportional to the Bayesian posterior distribution. We
assume that the objective function f satisfies the following input-output relationship:

yi = f (xi) + εi f (xi) = φ(xi)Tw, (4.13)

where the observation noise εi follows the normal distribution of the average 0 (the variance σ2),
the weight vector w follows the normal distribution of the average 0 and the variance covariance
matrix Σ, and φ is the function that maps the input vector x to the N-dimensional feature space.
Given the input vector x, the objective function f is a random variable that follows the normal
distribution.
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The mean of f (x) is E[ f (x)], and the covariance Cov[ f (x), f (x′)] is

E[ f (x)] = φ(x)T E[w] = 0 (4.14)

Cov[ f (x) f (x′)] = φ(x)T E[wwT ]φ(x′) (4.15)

= φ(x)TΣφ(x′) (4.16)

≡ k(x,x′), (4.17)

where k(x,x′) is a kernel function. Given a new input vector x∗, the conditional probability
distribution p( f∗|x∗,DM) of f∗ ≡ f (x∗) for DM follows the normal distribution. The prob-
ability distribution followed by the outputs of unknown inputs can be derived in the form of
a normal distribution. To derive the conditional probability distribution p( f∗|x∗,DM), we cal-
culate the posterior distribution of the output and weight vectors. The output is denoted as
y = (y1, y2, · · · , yM)T . The posterior distribution is

p(y|Φ,w) =
M∏

i=1

1√
2πσ

exp
(
− (yi − φ(xi)Tw)2

2σ2

)
(4.18)

= N(ΦTw,σ2I), (4.19)

where Φ = (φ(x1),φ(x2), · · · ,φ(xM)), and I is an N-dimensional unit matrix. From Equation
(4.19) and Bayes’ theorem, the posterior distribution of the weight vector w is

p(w|y,Φ) =
p(y|Φ,w)p(w)

p(y|Φ)
(4.20)

∝ p(y|Φ,w)p(w) (4.21)

∝ exp
(
− 1

2σ2 (y − ΦTw)T (y − ΦTw)
)

× exp
(
−1

2
wTΣ−1w

)
(4.22)

∝ exp
(
−1

2
(w − w̄)T A−1(w − w̄)

)
(4.23)

∝ N(w̄, A−1), (4.24)

where A = σ−2ΦΦT + Σ−1 and w̄ = σ−2A−1Φy. The conditional probability distribution
p( f∗|x∗,DM) is derived as

p( f∗|x∗,DM) =
∫

p( f∗|φ∗,w)p(w|y,Φ)dw (4.25)

= N
(

1
σ2 φ

T
∗ A−1Φy,φT

∗ A−1φ∗

)
, (4.26)
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where φ∗ ≡ φ(x∗). The average and variance of f∗|x∗,DM obtained in Equation (4.26) can be
rewritten below using the kernel function defined in Equation (4.17):

E[ f∗|x∗,DM] = kT
∗ (K + σ2I)−1y (4.27)

Cov[ f∗|x∗,DM] = k(x∗,x∗) − kT
∗ (K + σ2I)−1k∗ (4.28)

where Ki, j = k(xi,x j),k∗ = (k(x1,x∗), · · · , k(xM ,x∗))T . In other words, the estimate of the
output of the objective function f for the unknown input vector x∗ is kT

∗ (K + σ2I)−1y, and the
reliability is k(x∗,x∗) − kT

∗ (K + σ2I)−1k∗. By using these results, the outputs of the objective
function for unknown inputs can be predicted. In this study, we assume a smooth posterior
distribution and use a radial basis function (RBF)

k(xi,x j) = θ exp
(
− |xi − x j|2

2β

)
(4.29)

as a kernel function[9]. When an RBF is used as a kernel function, prediction with a Gaussian
process can be conducted by specifying hyperparameters σ, θ, β. The values of hyperparameters
have a largely affect the estimation accuracy, so the hyperparameters must be optimized. In our
numerical experiments, we maximize the log-likelihood function

ln p(y|σ, θ, β) = −1
2

ln |K + σ2I| − 1
2
y(K + σ2I)−1y − N

2
ln(2π) (4.30)

by Bayesian optimization, explained below, and optimize the hyperparameters[9].

4.1.3 Bayesian optimization

Here, we explain the theory of Bayesian optimization[57, 58]. We consider a situation wherein
one is searching for the maximum value of the objective function F that is proportional to the
Bayesian posterior distribution. Let us denote the space of the parameter being searched as
X ⊂ Rd(d ≥ 1). The procedure of the search algorithm is as follows.

Depending on how the acquisition function is chosen, the type of Bayesian optimization will
differ. Here, we use the expected improvement (EI) algorithm, which uses the expectation of
the improvement function as the acquisition function[58]. This algorithm has been proven to
converge to the optimal value[59]. The improvement function I is defined as follows:

I(x|Dn) = max{0,F (x) − F (x+)} (4.31)

where x+ = arg maxxi∈x1:n
f (xi). The improvement function is positive when the prediction ex-

ceeds the maximum value so far; otherwise, it is 0. The acquisition function by the EI algorithm
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Algorithm 1 Bayesian optimization
Step 1:

Select x1 ∈ X at random and set the training dataD1.

Step 2:

Train the Gaussian process by the training dataDn−1 to estimate the mean and covari-
ance from Equations (4.27), (4.28).

Step 3:

Take x ∈ X as xn where the acquisition function a(x|Dn−1) defined by Equation
(4.36) is maximized.

Step 4:

Add the new searched point xn to the training dataDn−1 and update the training data
Dn = {Dn−1, (xn, yn)}.

Step 5:

Steps 2–4 are repeated.

Step 6:

Finally, determine the maximum value of the objective function F that is proportional
to the Bayesian posterior distribution from the training dataDn.

is
a(x|Dn) = E[I(x|Dn)]. (4.32)

This can be advanced analytically to

E[I(x|Dn)] =
∫ I=∞

I=0
I 1√

2πσ(x)
×

exp
(
− (µ(x) − F (x+) − I)2

2σ2(x)

)
dI (4.33)

= σ(x)
[
µ(x) − F (x+)
σ(x)

C
(
µ(x) − F (x+)
σ(x)

)

+P
(
µ(x) − F (x+)
σ(x)

)]
(4.34)
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where
µ(x) = E[F (x)|x,Dn], σ(x) = Cov[F (x)|x,Dn]. (4.35)

Therefore, the acquisition function can be calculated as

a(x|Dn) =




(µ(x) − F (x+))C(Z) + σ(x)P(Z) (σ(x) > 0)

0 (σ(x) = 0)
. (4.36)

Here, Z = (µ(x) − F (x+))/σ(x)ɼP(·) is the probability density function, and C(·) is the cumu-
lative distribution function of the standard normal distribution:

P(Z) =
1√
2π

exp
[
−Z2

2

]
, (4.37)

C(Z) =
∫ Z

−∞

1√
2π

exp
[
− t2

2

]
dt. (4.38)

We use the EI algorithm in our numerical experiments. To maximize the acquisition function,
thousands of points were first extracted from parameter space X, and some of the best points
to maximize the acquisition function were selected. In addition, a local search was performed
around the selected points, and the best point was selected from among them.

4.1.4 Bayesian optimization for Gaussian process

Here, we explain a method for using Bayesian optimization as a sampler for the Gaussian pro-
cess. Bayesian optimization takes samples from the search space X in the process of searching
for the optimal value of the objective function F . We estimate the shape of the objective func-
tion F that is proportional to the Bayesian posterior distribution using the points sampled with
Bayesian optimization from the Gaussian process. The algorithm flow is almost the same as that
of Bayesian optimization, but the goal is to estimate the objective function F , not its maximum
value.

4.2 Numerical Experiment
We tested the effectiveness of the methods for estimating the Bayesian posterior probability
distribution and its maximum value using the Gaussian process and Bayesian optimization.
Bayesian posterior probabilities are generally difficult to calculate analytically. Here, to eval-
uate the performance of the methods, we used the G–MRF model, where the Bayesian posterior
probability can be calculated analytically. We generated observation image v with the number
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Algorithm 2 Bayesian optimization for Gaussian process
Step 1:

Sample the training dataDn = {(xi, yi)}ni=1 by using Bayesian optimization (Algorithm
1, steps 1–5).

Step 2:

Estimate the objective function F proportional to the Bayesian posterior distribution
by using the Gaussian process (Equations (4.27), (4.28)) fromDn .

Fig. 4.1: Generated observation image with
number of pixels N = 64 × 64 and hyperparam-
eters a = b = 1.5, according to Equations (4.2),
(4.3).

of pixels N = 64 × 64 (Fig. 4.1) and the hyperparameters a = b = 1.5, in accordance with
Equations (4.2) and (4.3). Figure 4.1 is the generated observation image. Then, we calculated
the hyperparameter distribution of the generated image numerically using Equation (4.11). We
evaluate the performance of the methods using the hyperparameter distribution.
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(a) (b)

(c) (d)

Fig. 4.2: Hyperparameter distribution with different number of grid points. We used numerical
calculation to generate observation image v with pixel number N = 64 × 64, a = b = 1.5, and
output hyperparameter distribution. (a) Distribution with 128 × 128 number of grid points, (b)
distribution with 64 × 64 number of grid points, (c) distribution with 32 × 32 number of grid
points, and (d) distribution with 16 × 16 number of grid points.

4.2.1 Distribution interpolation using Gaussian process

The distribution and optimum values of hyperparameter estimation are often obtained by the
grid search method. Here, we estimate the distribution from a small number of samples by the
grid search method using the Gaussian process. We calculated the hyperparameter distribution
for Fig. 4.1 in 0.5 ≤ a, b ≤ 3.5 by the grid search method. Each distribution shown in Fig.
4.2 is a hyperparameter distribution with different number of grid points. Figure 4.2 (a)–(d)
show the distribution with 128 × 128, 64 × 64, 32 × 32, and 16 × 16 number of grid points
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(a) (b)

Fig. 4.3: Hyperparameter distribution with 128 × 128 number of grid points interpolated using
hyperparameter distribution (Fig. 4.2 (d)) with 16 × 16 number of grid points as input. (a)
Hyperparameter distribution interpolated by Gaussian process. (b) Hyperparameter distribution
interpolated by spline interpolation.

respectively. We call the distribution with with 128 × 128 number of grid points (Fig. 4.2 (a))
the original distribution. We interpolated the distribution with 16 × 16 number of grid points
(Fig. 4.2 (d)) by using the Gaussian process (Equations (4.27) and (4.28)) to estimate the true
distribution. The distribution with 16 × 16 number of grid points (Fig. 4.2 (d)) was interpolated
by the spline function[60] for performance comparison. Figure 4.3 is the result of interpolating
the distribution with 16× 16 number of grid points to the distribution with 128× 128 number of
grid points. Figure 4.3 (a) and 4.3 (b) are the interpolated distributions by Gaussian process and
the spline function respectively.

Here, we evaluated the similarity between the distributions by the root-mean-square error
(RMSE), Kullback–Leibler (KL) divergence, and Hellinger distance. In the evaluation by
RMSE, we uses th estimated distribution of free energy (Equation (4.11)). On the other
hand, since KL divergence and Hellinger distance can be calculated only for the probability
distribution, we convert the free energy into the probability distribution for evaluation.

The each similarity between each distribution and the original distribution (Fig. 4.2 (a)) is
shown in Table 4.1. From Tab. 4.1, the distribution estimated by the Gaussian process (Fig.
4.3 (a)) has better accuracy than the distribution with 64 × 64 number of grid points (Fig. 4.2-
(b)). In particular, the distribution estimated by the Gaussian process was improved in the KL
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Table 4.1: Similarity between distribution of number of grid points and hyperparameter distribu-
tion of 128×128 number of grid points (Fig. 4.2 (a)). Fig. 4.3 (a) is a distribution with 128×128
number of grid points estimated by Gaussian process using hyperparameter distribution (Fig. 4.2
(d)) with 16 × 16 number of grid points. Fig. 4.3 (b) is a distribution with 128 × 128 number
of grid points estimated by Spline function using hyperparameter distribution (Fig. 4.2 (d)) with
16 × 16 number of grid points.

Grid points 64 × 64 (Fig. 4.2 (b)) 32 × 32 (Fig. 4.2 (c)) 16 × 16 (Fig. 4.2 (d)) GP (Fig. 4.3 (a)) Spline (Fig. 4.3 (b))

RMSE 11.7 31.9 75.6 0.08 0.63

KL 4.79 × 10−2 2.62 × 10−1 8.87 × 10−1 8.38 × 10−6 1.34 × 10−5

Hellinger 2.41 × 10−2 1.08 × 10−1 3.97 × 10−1 4.19 × 10−6 6.71 × 10−6

divergence and the Hellinger distance.
Gaussian process works well for interpolation of distributions. The peak of hyperparameter

distribution is in the search area of the grid search. When the hyperparameter distribution is
treated as free energy, the value of the hyperparameter distribution increases as the distance
from the peak increases. Therefore, the result of RMSE which evaluated the hyperparameter
distribution as free energy has a small improvement compared to other metrics. On the other
hand, the evaluations by KL divergence and Hellinge distance evaluate use the free energy after
converting it into the probability distribution. As a result, the error at points away from the
center of the distribution is evaluated small KL divergence and Hellinge distance.

From these facts, it can be seen that the distribution estimation around the peak worked well
for the target data. We found that the hyperparameter distribution can be estimated from small
number of grid points by using the Gaussian process.

4.2.2 Hyperparameter estimation using Bayesian optimization

The optimum values of hyperparameter estimation are often obtained by the grid search method.
Bayesian optimization also searches for the optimum value at high speed in consideration of the
evaluation value of the sampling point. Here, we verify that Bayesian optimization (Algorithm
1) works effectively in the search for optimal values of hyperparameters using the hyperparam-
eter distribution calculated analytically. We confirm the behavior of Bayesian optimization in
comparison with simple random sampling. We calculated the hyperparameter distribution of the
generated image (Fig. 4.1) numerically using Equation (4.11). We estimated the optimal value
for the hyperparameter distribution using Bayesian optimization. We searched for the optimal
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Fig. 4.4: Hyperparameter estimation by Bayesian optimization and random sampling. We gen-
erated observation image v with number of pixels N = 64×64 and hyperparameters a = b = 1.5
and we calculated hyperparameter distribution of generated image (Fig. 4.1) numerically us-
ing Equation (4.11). We searched for the optimal value of hyperparameter distribution in
0.5 ≤ a, b ≤ 3.5 using the EI algorithm with 100 sampled points. We denoted minimum value
of hyperparameter distribution among sampled points as pmin. Solid and dashed lines represent
result Bayesian optimization (EI algorithm) and random sampling[61].

value of the hyperparameter distribution of the generated image (Fig. 4.1) in 0.5 ≤ a, b ≤ 3.5
using the EI algorithm with 100 sampled points. Figure 4.4 shows the minimum value of the
hyperparameter distribution among the sample points against the number of sampled points.
The solid and dashed lines in Fig. 4.4 represent the results for Bayesian optimization and ran-
dom sampling, respectively. We compared the Bayesian optimization results with the random
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sampling results in terms of the number of sampled points required to converge to the true
hyperparameters. Hyperparameter estimation values with 10 samples showed no difference be-
tween sampling by Bayesian optimization and random sampling. Hyperparameter estimation by
Bayesian optimization converges to the true hyperparameters with 50 samples. However, hyper-
parameter estimation by random sampling does not converge with 100 samples. The standard
deviation of Bayesian optimization is smaller than one of random sampling. From the result,
Bayesian optimization works effectively for hyperparameter estimation and fluctuates little and
highly reliable.

4.2.3 Hyperparameter distribution estimation by Bayesian optimization and

Gaussian process

In the Bayesian optimization algorithm, sampling is performed from the search space. Here, we
verify whether the hyperparameter distribution can be estimated with a small number of points
sampled by Bayesian optimization using the Gaussian process. We also confirm the behavior
of Bayesian optimization in comparison with simple random sampling. We searched for the
optimal values of the hyperparameter distribution of the generated image (Fig. 4.1) in 0.5 ≤
a, b ≤ 3.5 using the EI algorithm with 250 sampled points. We also randomly sampled 250 points

(a) (b) (c)

Fig. 4.5: (a) RMSE, (b) KL divergence, and (c) Hellinger distance between estimated distri-
bution and original distribution (Fig. 4.2 (a)) against number ot sampled points for 10 trials.
We searched for optimal values of hyperparameter distribution of generated image (Fig. 4.1)
in 0.5 ≤ a, b ≤ 3.5 using EI algorithm with 250 sampled points and also randomly sampled
250 points from same domain of hyperparameter distribution. We estimated hyperparameter
distributions with the Gaussian process from sampled points by Bayesian optimization and ran-
dom sampling. Solid and dashed lines show results for the estimated distributions using points
sampled by Bayesian optimization and random sampling, respectively.
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from the hyperparameter distribution of the generated image (Fig. 4.1) in 0.5 ≤ a, b ≤ 3.5, and
estimated the hyperparameter distributions with the Gaussian process from the sampled points by
Bayesian optimization and random sampling. We evaluated the similarity between the estimated
distributions by RMSE, KL divergence, and Hellinger distance. The statistical results of 10 trials
are shown in Fig. 4.5. Figure 4.5 (a)–(c) show RMSE, KL divergence, and Hellinger distance
between the estimated distribution and the original distribution (Fig. 4.2 (a)) against number
ot sampled points respectively. The solid and dashed lines show the result for the estimated
distributions using points sampled by Bayesian optimization and random sampling, respectively.
Fig. 4.5, it can be seen that the hyperparameter distribution estimation fluctuated little and was
reliable by Bayesian optimization. In particular, the improvement in KL divergence and Helliger
distance is remarkable, indicating that the area around the peak of the distribution is improved. It
can be seen that the estimated distribution by Bayesian optimization is improved around the peak
of the distribution because the KL divergence and Helliger distances are significantly improved
compared to the estimated distribution by random sampling.

Figure 4.6 shows the sampling points obtained by Bayesian optimization and random sam-
pling in a trial. The upper column and lower column of Fig. 4.6 shows the sampling points by
Bayesian optimization and random sampling respectively. Sampling points are indicated by blue

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.6: Sampling points obtained by Bayesian optimization and random sampling in a trial.
Sampling points are indicated by blue dots. In upper column, sampling points by Bayesian
optimization. In lower column, sampling points by random sampling. Number of sampling
points in each panel is 50, 100, 150, 200 in order from the left.
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dots. The number of sampling points in each figure is 50, 100, 150, 200 in order from the left.
From Fig. 4.6, it can be seen that Bayesian optimization focuses on the area around the peak of
the distribution. Therefore, the estimated distribution with Bayesian optimization as a sampler
has a smaller KL distance and Helliger distances than the distribution estimated with random
sampling.

4.3 Discussion
In Sec. 4.2, we confirmed that Gaussian process and Bayesian optimization work effectively
using the Bayesian posterior probabilities of the MRF model that can be calculated analytically.
Since Bayesian optimization is an optimal value search method, the search is centered around
the peak of the distribution as shown in Fig. 4.6. KL divergence largely depends on distribution
shape around the peak of the distribution. Therefore, as you can see from Fig.4.6 (b) and Table
4.1, the estimation performances by Bayesian optimization in terms of KL divergence are high.
On the other hand, since, in the evaluation by RMSE, we treated the hyperparameter distribution
as free energy, the influence of the distribution shape around the distribution peak became small.
As you can see from Fig.4.6 (a), the estimation performance by Bayesian optimization was low
compared to the estimation performance by random sampling, which was extensively searched
around the distribution.

The hyperparameter distribution used in the numerical experiment was a single peak and
smooth distribution. Since Bayesian posterior probabilities are generally smooth, the proposed
methods work well in many cases. However, it is known that Bayesian optimization is difficult
to work when the search space for distribution parameters becomes high-dimensional or when
the distribution becomes densely multi-peaked. It is necessary to investigate such a distribution
as a future task.

4.4 Conclusion
We proposed a method to estimate hyperparameter distribution and its maximum value by using
the Gaussian process and Bayesian optimization for an Markov random field (MRF) model and
tested our method’s effectiveness through numerical experiments. We have shown that the hy-
perparameter distribution of the MRF model can be estimated from a small number of sampling
points. In other words, we showed that the reliability for the estimated value of the physical
quantities can be estimated from a small number of data points. By using the Gaussian process,
we found that the coarse-grained distribution can be interpolated and the resolution can be im-
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proved more than fourfold. In addition, hyperparameter estimation using Bayesian optimization
has faster convergence and higher accuracy from fewer samplings than random sampling. We
also demonstrated that Bayesian optimization can be used not only for optimal-value search-
ing but also as a sampler for the Gaussian process, so that hyperparameter distribution can be
estimated from fewer samples. From these results, we proposed a method to estimate the hyper-
parameter distribution with a small amount of computation and demonstrated its effectiveness.

These methods are expected to be applicable to material science. The model parameters of
materials are often estimated using Bayesian inference[62]. The posterior probability is esti-
mated using Markov chain Monte Carlo methods that generally have a high calculation cost.
The maximum a posteriori is estimated speedily using Bayesian optimization[63]. Not only the
optimum value but also the reliability of the determined value needs to be estimated quickly. The
proposed method can enable faster analysis of the posterior distribution. The forward calcula-
tions of physical system often have take a highly cost for computational resource. Our proposed
method enable you to reduce the cost in the experiment design.

The applicability of this method could possibly be broadened by discussing its effectiveness
for more complicated distributions. The hyperparameter distribution of the G–MRF model used
in this work has a single peak and one optimal value. To discuss this method’s applicability more
generally, the effectiveness of the method for distributions with multiple local solutions needs to
be investigated.
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Chapter 5

Conclusion

In this thesis, we focused on on parameter estimation for physical models by using Bayesian
inference. The target data are dispersion relation observation data and image data, and in each
chapter, we show the practical approach, the analytical approach, and the approximate approach
for the target data together with demonstrations.

In Chapter 2, we proposed a practical method for estimating the interaction parameters of the
crystal lattice from the dispersion relation observation data. In the proposed method, Poisson
noise was introduced as observed noise, and the interaction parameters were distribution esti-
mated. We demonstrated the estimation of interaction parameters using artificial data for various
measurement times. It was shown that parameters can be estimated from statistically accurate
data, which was difficult to estimate until now. Distribution estimation made it possible to dis-
cuss estimation accuracy and it became clear that the estimation performance was improved
compared to the previous method.

In Chapter 3, we proposed an analytical method for estimating hyperparameter of Gaussian
MRF model from image data. We showed that Bayesian posterior probabilities can be calculated
analytically for Gaussian MRF models with no boundary conditions, and this made it possible
to analytically estimate the hyperparameter distribution of images with no boundary conditions,
which had a high calculation cost and was difficult to calculate numerically. This made it pos-
sible to obtain parameters for more general image data at a lower calculation cost. With the
proposed method, parameters can be obtained exactly from more general image data at a lower
computational cost.

In Chapter 4, we proposed an approximate method for distribution estimation using Bayesian
inferece. In general, the Bayesian posterior probability has a high calculation cost even when
it is calculated numerically using sampling method such as REMC. Therefore, the optimum
value and distribution of Bayesian posterior probabilities were obtained from a small number of
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samplings by Gaussian process and Bayesian optimization. The performance of the proposed
method was verified by numerical experiments using the GMRF model. As a result, it was
confirmed that the true distribution shape can be obtained by interpolation from a small number
of samplings and that the optimum value can be searched by a small number of sampling.

In conclusion, we propose the method to physical parameter estimation of physical models
and evaluation of confidence of the data for the models. By utilizing the proposed method for
measurement, we can improve designs of the measurement and processing procedure of the data.
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A

Appendix

A.1 Modal analysis of monatomic body-centered cubic lattice

model
Here, the monatomic cubic lattice model, which is the object of the numerical experiments in
Chapter 2, is formulated as a classic spring model, and we analyze the model to obtain the
stiffness matrix in the model system. First, an equation of motion is derived in consideration of
the interaction of neighboring atoms in the model. Let the interatomic distance a. Eight first
nearest neighbors exist for a given atom, and the eight direction vectors to them are

h1 =
a
2
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(A.1)

hi = −hi−4 (5 ≤ i ≤ 8) (A.2)

Six second nearest neighbors exist for the atom, and the six direction vectors to them are

n1 = a




1
0
0




n2 = a




0
1
0




n3 = a




0
0
1




(A.3)

ni = −ni−3 (4 ≤ i ≤ 6) (A.4)
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12 third nearest neighbors exist for the atom, and the 12 direction vectors to them are

p1 = a




1
1
0




p2 = a




1
−1
0




p3 = a




1
0
1




(A.5)

p4 = a




−1
0
1




p5 = a




0
1
1




p6 = a




0
−1
1




(A.6)

pi = −pi−6 (7 ≤ i ≤ 12) (A.7)

Using these direction vectors, the equation of motion is written as

M
∂2u

∂t2 (r0) = α1

8∑

i=1

[
(u(r0 + hi) − u(r0)) · ĥi

]
ĥi

+ α2

6∑

i=1

[(u(r0 + ni) − u(r0)) · n̂i] n̂i

+ α3

12∑

i=1

[(u(r0 + pi) − u(r0)) · p̂i] p̂i (A.8)

= α1

4∑

i=1

[
(u(r0 + hi) + u(r0 − hi) − 2u(r0)) · ĥi

]
ĥi

+ α2

3∑

i=1

[(u(r0 + ni) + u(r0 − ni) − 2u(r0)) · n̂i] n̂i

+ α3

6∑

i=1

[(u(r0 + pi) + u(r0 − pi) − 2u(r0)) · p̂i] p̂i (A.9)

where u ∈ R3 is the displacement vector of the atom and r0 is the equilibrium position
of the mass point. hi, pi, and ni represent the relative position of neighboring atoms.
·̂ means a unit vector. Introducing the angular frequency ω ∈ R and the wave number
q = (qx, qy, qz) ∈ R3, we have the displacement vector proportional to the wave component such
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that u ∝ exp [i(q · r0 − ωt)]. Equation (A.9) is rewritten as follow

−ω2Mu =α1

4∑

i=1

{(
eiq·hi + e−iq·hi − 2

)
ĥi · ĥ5i

}
u

+ α2

3∑

i=1

{(
eiq·ni + e−iq·ni − 2

)
n̂i · n̂5i

}
u

+ α3

6∑

i=1

{(
eiq·pi + e−iq·pi − 2

)
p̂i · p̂5i

}
u (A.10)

= α1

4∑

i=1

{
2 (cos(q · hi) − 1) ĥi · ĥ5i

}
u

+ α2

3∑

i=1

{
2 (cos(q · ni) − 1) n̂i · n̂5i

}
u

+ α3

6∑

i=1

{
2 (cos(q · pi) − 1) p̂i · p̂5i

}
u (A.11)

= Du (A.12)

where D is the 3 × 3 stiffness matrix in the model system. From Eq. (A.11), we obtain the
stiffness matrix D = {di j} as

dii =
8
3
α1

[
cos

(aqx

2

)
cos

(aqy

2

)
cos

(aqz

2

)
− 1

]
(A.13)

+ 2α2
[
cos(aqi) − 1

]
+ 2α3

{
cos(aqi)

[
cos(aq j) + cos(aqk)

]
− 2

}
(A.14)

di j = −
8
3
α1 sin

(aqi

2

)
sin

(aq j

2

)
cos

(aqk

2

)
− 2α3 sin(aqi) sin(aq j) (A.15)

where, the suffix i, j, k ∈ {x, y, z} and i ! j ! k.

A.2 Estimation results of the spectrum parameters
Here, the estimation results of the other parameters of the proposed method in Chapter 2 are
described below.
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Fig. A.1: Posterior distributions of η of for the observation data generated by T = 100. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true η.The parameters used for
the REMC method for estimation of η are shown in Table 2.1.
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Fig. A.2: Posterior distributions of γ of for the observation data generated by T = 100. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true γ.The parameters used for
the REMC method for estimation of γ are shown in Table 2.1.
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Fig. A.3: Posterior distributions of η of for the observation data generated by T = 10. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true η.The parameters used for
the REMC method for estimation of η are shown in Table 2.1.
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Fig. A.4: Posterior distributions of γ of for the observation data generated by T = 10. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true γ.The parameters used for
the REMC method for estimation of γ are shown in Table 2.1.
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Fig. A.5: Posterior distributions of η of for the observation data generated by T = 1. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true η.The parameters used for
the REMC method for estimation of η are shown in Table 2.1.
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Fig. A.6: Posterior distributions of γ of for the observation data generated by T = 1. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true γ.The parameters used for
the REMC method for estimation of γ are shown in Table 2.1.
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Fig. A.7: Posterior distributions of η of for the observation data generated by T = 0.1. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true η.The parameters used for
the REMC method for estimation of η are shown in Table 2.1.
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Fig. A.8: Posterior distributions of γ of for the observation data generated by T = 0.1. The
results in the proposed method and previous method are shown on the upper and lower rows,
respectively. The intersections of the red dot lines represent the true γ.The parameters used for
the REMC method for estimation of γ are shown in Table 2.1.
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