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Abstract

As a starting point for describing our Universe in string theory, it is important to find
flux configurations with exponentially small superpotential W, so that one can enjoy
the tremendous success of the standard cosmology including the Big-Bang Nucle-
osynthesis, together with the supersymmetric gauge coupling unification in particle
physics. While such vacua are strongly believed to abound as we have exponen-
tially many choices of fluxes, it is extremely difficult to construct such vacua explic-
itly by specifying integer fluxes. In this work, we focus on a special class of complex
structure, called CM-type, and work out the condition for the complex structure to
support flux vacua with vanishing superpotential W = 0 in F-theory. We find that
the moduli space of the orbifolds of products of two K3 surfaces contains infinitely
many such vacua. Possible gauge groups and matter representations in those vacua
are also worked out.



iv

Acknowledgements

Throughout his Doctoral course, the author has been supported by a countless num-
ber of people around him. He can name only a tiny part of them below.

The foremost and deepest gratitude goes to his supervisor, Taizan Watari. His deep
insight into physics, both in phenomenology and string theory, and his clear-cut
discussion on mathematics, such as algebraic geometry or number theory, inspired
the author hugely. The author is privileged to spend his entire period of five years in
the graduate school to collaborate with Watari-san, which was a great adventure of
seeking the origin of matters. Without his kindness, patience, and encouragement,
the author could not stand and see what he is seeing now.

The author was so fortunate to have great staff members in the Kavli IPMU to learn
from. He especially thanks to Yuji Tachikawa for supporting his life in physics
since undergraduate years and for many discussions and advice, and to Tsutomu
T. Yanagida for sharing his insight and experience with the author during discus-
sions, among many excellent staff members who supported the author with physics
discussions and non-physics conversations. The author also thanks to the committee
members of the thesis, Kentaro Hori, Simeon Hellerman, Mitsuhiro Kato, Masahito
Yamazaki, and Masashi Yokoyama, for their questions, comments and suggestions,
which improved the final version of the thesis remarkably.

The author was financially supported by Advanced Leading Graduate Course for
Photon Science (ALPS) program and JSPS Research Fellowship for Young Scientists.
His academic life was supported by constant meetings, as part of the ALPS program,
with his gentle co-supervisor, Takaaki Kajita.

His gratitude is extended to all the friends, especially to Hajime Fukuda, Masataka
Watanabe, Masayuki Fukuda, Mocho Go, Nozomu Kobayashi, Yusuke Sakata, Take-
masa Yamaura, Shun-ichi Horigome, Yasunori Lee, and Yuichi Enoki for sharing the
intensive days with him, discussing and chatting with him, which motivated and
encouraged the author greatly.

The life during the Doctoral course was hugely supported by his family, and his
sincerest gratitude goes to his wonderful wife, Noriko.

The author finally thanks to God, who created the world so intrinsic, and made the
exploration of its origin so exciting.



v

Contents

1 Introduction 1

I Review 5

2 Phenomenology 7
2.1 Cosmological history and the moduli problem . . . . . . . . . . . . . . 7
2.2 Grand Unified Theories and the gravitino mass . . . . . . . . . . . . . . 9

3 Effective field theory of F-theory 11
3.1 F-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 F/M-duality and non-abelian gauge symmetry . . . . . . . . . . . . . . 13
3.3 Particle spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Charged matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Grand Unified Theories in F-theory . . . . . . . . . . . . . . . . 18

3.4 Requirements on Calabi-Yau fourfolds for F-theory . . . . . . . . . . . 18
3.4.1 Genus-one fibration . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 Non-flat fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Flux compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Flux landscape problem and arithmetic approaches 23
4.1 Flux landscape problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Arithmetic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Type IIB theory on CM-type Calabi-Yau threefolds . . . . . . . . . . . . 26

5 CM-type Calabi-Yau manifolds 27
5.1 CM-type Calabi-Yau manifolds . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 A frequently used property . . . . . . . . . . . . . . . . . . . . . 29
5.2 CM-type K3 surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 K3 surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 CM-type K3 surface . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 CM-type Calabi-Yau fourfolds and Borcea-Voisin orbifolds . . . . . . . 32

II Original work 37

6 Supersymmetric flux vacua on CM-type (K3×K3)/Z2 orbifolds 39
6.1 The conditions of supersymmetric fluxes for CM-type . . . . . . . . . . 39
6.2 H4((X(1) × X(2))/Z2; Q) and complex structure deformations . . . . . 41
6.3 Cases with a generic CM point in D(T0) . . . . . . . . . . . . . . . . . . 43

6.3.1 Tensor product of a pair of CM-type Hodge structures . . . . . 44
6.3.2 DW = 0 flux and DW = W = 0 flux, assuming TX = T0 . . . . 48



vi

6.3.3 Complex structure moduli masses with W = 0 . . . . . . . . . . 55
6.4 Cases with TX ( T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 General K3 × K3 orbifolds 63
7.1 K3 × K3 orbifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 K3 surfaces with non-symplectic automorphisms . . . . . . . . . . . . . 64

7.2.1 Discrete classification . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Period Domains for K3 Surfaces with Automorphisms . . . . . 66
7.2.3 K3 surfaces of CM-type and with non-symplectic automor-

phisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.4 Bonus symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Complex structure moduli masses with W = 0 . . . . . . . . . . . . . . 69

8 F-theory applications and particle physics aspects 71
8.1 Elliptically-fibered K3 surface with a non-symplectic involution . . . . 71
8.2 Borcea-Voisin manifold and Weierstrass model . . . . . . . . . . . . . . 73
8.3 Fibration and involution of Type 1 . . . . . . . . . . . . . . . . . . . . . 75

8.3.1 Construction of Ỹ, and gauge group and matter representations 75
8.3.2 More consequences in physics . . . . . . . . . . . . . . . . . . . 79

8.4 Fibration and involution of Type 2 . . . . . . . . . . . . . . . . . . . . . 81

9 Conclusion 85

A Number field theory 87
A.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1.1 Rings and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.2 Algebraic extension and algebraic number . . . . . . . . . . . . 87
A.1.3 Embeddings into C . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.4 Normal closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 CM fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Details of geometries 93
B.1 Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.1.1 Derivation of the Weierstrass equation . . . . . . . . . . . . . . . 93
B.1.2 Note on split, semi-split, and non-split fibers . . . . . . . . . . . 94

B.2 Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2.1 Definition of the geometry . . . . . . . . . . . . . . . . . . . . . . 95
B.2.2 Monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Relations among YW , ν∗(YW), ν∗(YW) and Y . . . . . . . . . . . . . . . . 97
B.3.1 Blow-up of ν∗(YW) . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.3.2 Canonical divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C Type IIB orientifold case 107

Bibliography 122



1

Chapter 1

Introduction

This thesis is devoted to a part of efforts studying string theory1 as the quantum
gravity theory of our Universe. Soon after the introduction of string theory as a
theory of the strong interaction, it was realized that it contains a spin-2 excitation,
that serves as a graviton in the low-energy effective theory, and that it may be the
quantum gravity theory of the Universe. Although it is not conclusive whether or
not the gravitational theory of the Universe is actually quantized [Car01], it would
be promising to explore the quantum gravity theory if there is a candidate, as an
experimental result excluded at least the most naïve version of a classical gravity
theory coupled to quantum matters [PG81].

The effort of describing our Universe in string theory is two-fold; the first direc-
tion is to show, by explicit constructions, that the Universe is described by string
theory, so that one can use string theory to solve quantum gravitational problems,
such as the black hole information problem or the initial singularity problem, with
confidence. The second direction is to impose some constraints on the low-energy
effective field theory, assuming that the Universe is described by string theory, to
guide the bottom-up studies in phenomenology. We will explore mainly the first
direction in this thesis, as we elaborate more in the following.

To achieve the ultimate goal of the first direction, a model of string theory that
predicts all the observed physical quantities must be constructed. The two im-
portant ingredients of the Universe, namely the particle physics and the cosmol-
ogy, are addressed in string theory, and a significant progress has been made, al-
though a complete understanding is yet to be achieved [CHSW85], [AKT00, AKT01],
[TW06, DW11, BHV09, HTT+09], [GKP02, KKLT03, CCQ08], [BM15]. Those studies,
though, have been done separately most of the time, i.e. a model of string theory that
gives the standard particle spectrum and the standard history of the Universe is yet
to be achieved. In this thesis, we will present a class of models in string theory that
has supersymmetry and small cosmological constant in 4-dimensional low-energy
effective theory, with a rich particle spectrum. Although the match to the Standard
Model is far from perfect, the result would be an important step for further investi-
gation.

The second direction is in a sense opposite to the first direction, as one is now assum-
ing, rather than testing, that the Universe is described by string theory, and also one
seeks what is not possible, rather than what is possible in string theory. The effort is
sometimes called the swampland program, introduced in [Vaf05]. The swampland
is defined as the space of theories that is consistent in itself but does not appear as
a low-energy effective theory of string theory, as opposed to the landscape, which

1Throughout the thesis, we call superstring theory simply as string theory.
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consists of the theories that is an effective theory of string theory. The aim of the
swampland program is to carve out the landscape by identifying the swampland in
terms of the effective theory, so that model building in terms of effective field theory
can be made less incompatible, if not perfectly compatible, with string theory. Note
that, although some swampland conjectures are argued to be valid for any quantum
gravity, others may be specific to string theory, and could be used to falsify string
theory. This is an arena of active research [Pal19], and there are definitely much more
to be explored, but we will not go further as it is beyond the scope of the thesis.

In this thesis, as already briefly mentioned, we explore mainly along the first direc-
tion. Among many intrinsic properties of the Universe, we will take the success of
the standard scenario of the early Universe, combined with the Grand Unified The-
ories (GUTs) with the celebrated gauge coupling unification as observational inputs,
and address the question of how to implement those in string theory. For a rich par-
ticle spectrum such as GUTs, F-theory would be the first choice as a framework, as
it accommodates a variety of gauge groups, matter representations, and interactions
among them, as we will review in Chapter 3. The (3 + 1)-dimensional low-energy
effective theory2 constructed in this way, however, has a problem: it generically has
light scalar degrees of freedom, often called moduli. This is not a problem particu-
lar to F-theory, but rather a generic property of string theory compactified down to
lower dimensions. The moduli is problematic mainly in the early part of the stan-
dard cosmological scenario, as we will review in Chapter 2. We will see in Chapter 4
that a certain kind of moduli, called complex structure moduli, can be stabilized, i.e.
can obtain masses of the order of the string scale, by turning on fluxes. This is still
problematic for phenomenology, as such solutions will generically result in the grav-
itino mass of the order of the string scale, at the same time; this means a high-scale
SUSY breaking, and we will lose the control of low-energy theory in string theory,
and also the gauge coupling unification.

The difficulty of finding a model with stabilized moduli and light gravitino origi-
nates in the fact that the fluxes are quantized. We thus cannot continuously tune the
fluxes so that the vacuum expectation value (vev) of superpotential W, to which the
gravitino mass is proportional, generated by the fluxes, are small. Hinted by the in-
tegrality of the fluxes, there are ideas of considering Calabi-Yau manifolds with cer-
tain arithmetic properties to compactifying the string theory on [Moo07, DGKT05a,
KW17a, KNY20]. We will explore the direction further in this thesis, and study the
F-theory on CM-type Calabi-Yau fourfolds Y. CM-type is a certain property of the
complex structure of Y, introduced in Chapter 5. We work exclusively on orbifolds
of the product of two K3 surfaces3, in this thesis; we can find CM-type complex
structures most easily in those cases, as we will briefly review in Section 5.3.

The main part of the thesis starts at Chapter 6, where we analyze the flux vacua with
vanishing superpotential from fluxes (3.12), in the simplest case of Z2-orbifolds of
K3× K3. We will extend the analysis in a more general orbifold in Chapter 7. We
work out the criteria for W = 0 vacua with non-trivial fluxes, and also examine the
mass terms, interactions and symmetries of the complex structure moduli. These
analyses should be understood as those of 3-dimensional vacua of M-theory, as we
will not care if there is an F-theory limit for each vacuum. In Chapter 8, we will
consider the F-theory limit of those vacua, focusing on their consequences for gauge
symmetries and particle spectra in 4 dimensions.

2We will say that a spacetime with 3 spatial dimensions and 1 temporal dimension is 4-dimensional.
3K3 surface is the Calabi-Yau twofold, and will be introduced in Section 5.2.1
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The thesis is based on the following article [KW20]

• Keita Kanno and Taizan Watari, “W = 0 Complex Structure Moduli Stabi-
lization on CM-type K3 × K3 Orbifolds:—Arithmetic, Geometry and Particle
Physics—,” arXiv:2012.01111 [hep-th]

and the original work is presented in the main part, Chapters 6, 7, and 8.

http://arxiv.org/abs/2012.01111
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Chapter 2

Phenomenology

2.1 Cosmological history and the moduli problem

This thesis is a part of the effort towards describing our Universe as a solution of
string theory, and thus as a quantum gravity theory, as we have already discussed
in Introduction. Such a model should match all the physical quantities that can
be observed. There is another big challenge of addressing the “uniqueness” of the
solution in some proper sense, but it is beyond the scope of the thesis.

As the observed fundamental physical quantities, one has two kinds of sources; tele-
scopes, and ground experiments like colliders. The ground experiments revealed
that the Standard Model of particle physics explains the fundamental physics very
well, although some hints exist, such as muon g− 2-anomaly [MdRRS12]. The Stan-
dard Model itself has problems of “naturalness”, such as the hierarchy between the
electroweak and the Planck scale, the smallness of the neutrino masses, and the lack
of the theta-term in QCD1, but they do not spoil the fact that the Standard Model
predicts what happens in the ground experiments perfectly.

The hierarchy of the electroweak and the Planck scale may be relaxed by introduc-
ing the supersymmetry. Then the gauge coupling unifies at around 1016 GeV, which
strongly suggests a new physics at the scale, such as SU(5) Grand Unified Theory
(GUT). The smallness of the neutrino mass can be explained by the seesaw mech-
anism, i.e. introduction of heavy right-handed neutrinos. Finally the strong CP
problem may be solved by introducing the QCD axion.

The telescopes, in a broad sense, offer much more about the unknowns of the Uni-
verse, including its history. The observation of the expansion rate of the Universe
throughout the history since the recombination strongly suggests that there exist
non-relativistic matter that we cannot observe by light, sometimes called the dark
matter, and an energy component that behaves like the cosmological constant, called
the dark energy. The dark matter could be made up of axion-like particles, or the su-
perpartners of the Standard Model particles, in the supersymmetric case. The dark
energy is often understood as the cosmological constant in string theory, although a
convincing explanation for its smallness is still missing.

Although the history before the recombination is ambiguous, an inflationary period
right after the beginning of the Universe beautifully explains the observational data
of the Cosmic Microwave Background (CMB). There are numerous scenarios of what

1Among those naturalness problems, the last one, known as the strong CP problem, may be the
worst because it is argued that even the anthropic principle cannot explain the smallness of the theta-
term [BDG04, Don04, Uba10, DSHUX18].
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has happened in that period, even in string theory [BM15], and it would be neces-
sary to wait for additional observational data. After the inflationary period, by the
reheating process the energy of the inflaton is converted to other particles, and then
the Universe experienced the electroweak transition and the QCD phase transition,
though the details of the scenario is yet to be understood. After such transitions,
though, there is a scenario that goes very well, called the Big-Bang Nucleosynthe-
sis (BBN), which tells us that if we have a certain amount of baryon number nb
compared to the total radiation density nγ at around 1 s after the inflation with the
temperature around 1 MeV, then the abundance of light nuclei D, 3He, 4He, and
7Li of the present Universe is beautifully explained. Surprisingly, the expected ratio
nb/nγ ∼ 6× 10−10 perfectly matches the one that is observed in the CMB; see [Z+20,
Chapter 24] for the state-of-the-art analysis.

The task for us is, then, to construct a model in string theory that contains all the
particles described above, and that can accommodate the standard inflation-BBN
scenario. However, when one constructs a 4-dimensional model in string theory, it
is in general expected that there are light scalar degrees of freedom in the low-energy
effective theory, which may spoil the standard scenario.

One might worry about the consistency between the presence of the light degrees
of freedom and the fifth force experiments. In the case of string compactifications,
though, this is not a serious problem. The real scalars will get a mass of the order
of the SUSY breaking scale, and the pseudo scalars will have almost vanishing con-
tributions to the fifth force experiment, because its coupling to the Standard Model
sector involves derivatives.

The more serious problem is the consistency with the BBN scenario. The moduli may
upset the standard BBN scenario mainly in two ways. Firstly, if the moduli decay
after the BBN into high energy particles, they may break the successfully produced
nuclei apart. Secondly, an over-production of the moduli may dilute the baryon
number density, which is generated by a mechanism like leptogenesis [FY86], as we
will see briefly in the following. Note that similar problems also applies to gravitino,
and is known as the gravitino problem [Wei82, KL84].

Firstly, let us analyze the decay of moduli after the BBN. For example, assuming the
decay rate of a modulus φ with mass mφ as

Γφ =
α

2π

m3
φ

M2
Pl

, (2.1)

with a dimensionless parameter α, the mass mφ should satisfy mφ & 30 TeV for Γφ &
1 s−1 when α = 1.

This problem may be avoided if the gravitino has the mass, say m3/2 ∼ 30 TeV, in
which case the moduli will get similar masses and satisfy mϕ & 30 TeV to escape
from the above problem. There is, however, the second problem; the dilution of the
baryon asymmetry. After the inflation, moduli are produced thermally and non-
thermally and will dilute the baryon number created during the reheating process;
especially, non-thermal production of moduli from the coherent oscillation around
the shifted minimum after the inflation is problematic [CFK+83, BKN94, dCCQR93].
There are two ways out: keep the moduli mass heavy so that it will decay at latest
during the reheating process, or recover the baryon asymmetry by a low-energy
mechanism such as the Affleck-Dine mechanism [AD85, MYY95].
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In conclusion, if one assumes that there is no mechanism above the SUSY breaking
scale to give moduli masses2, then one should make sure that the moduli are not
over-produced, especially non-thermally, and the baryon asymmetry is recovered
by some mechanism, if necessary. Some models along this line may survive, and
it is actually very interesting to explore in this direction as some of the moduli is
harder to give masses than others, but we will proceed to the safest way, giving the
masses of the string scale to as many of the moduli as possible.

2.2 Grand Unified Theories and the gravitino mass

An obvious solution to the above-mentioned problems is to set the gravitino mass
very heavy, and make the moduli heavy as a result. This is not desirable, both theo-
retically and phenomenologically. Firstly, since this is almost equivalent to take the
high energy SUSY breaking scenario, we will lose any control of the IR, i.e. low-
energy theory from the UV theory, i.e. the string theory in our case, because nothing
protects the physical parameters from quantum corrections. Secondly, we will lose
the explanation of the electroweak hierarchy and the gauge coupling unification, as
there is no mechanism that protects Higgs boson to acquire mass, and the gaug-
ino will acquire the mass contribution proportional to the gravitino mass from the
anomaly mediation [RS99, GLMR98, BMP00].

It is thus desirable to construct a model with a small gravitino mass. The gravitino
mass is described by the Kähler potential K and the superpotential W as

m3/2

MPl
= e

K
2M2

Pl
W

M3
Pl

, (2.2)

normalized by the reduced Planck scale MPl ' 2.4× 1018 GeV. For a small gravitino
mass, there are basically two strategies: take the vev of the Kähler potential K largely
negative, or take the vev of the superpotential W small. The former choice was
taken by the so-called Large Volume Scenario [CCQ08], where the volume of the
compact manifold is taken to be large, resulting in a large negative vev of K. This
is, however, hardly compatible with a standard F-theory GUT scenario. Using the
expressions given in [TTW09, eq. (21)-(23)], we can determine the compactification
scale M6 := (Vol(X))−1/6,

M6 = (4π)1/6c−4/3MPl

(
MGUT

MPl

)4/3

α−1/3
GUT (2.3)

' 2× 1016 GeV
c4/3

(
MGUT

2× 1016 GeV

)4/3 (1/24
αGUT

)1/3

, (2.4)

where c is a O(1) constant relating GUT scale MGUT to the volume of the 7-brane
supporting the GUT gauge group, and we have put a typical value of MGUT and
the coupling constant αGUT at the GUT scale in the parentheses. The Large Volume
Scenario typically requires M6 ∼ O(109 GeV), and is, at least naïvely, hardly com-
patible with the standard F-theory GUT scenario. Thus in what follows, we will
explore models with small superpotential vev and in particular, models with van-
ishing contribution to the superpotential from the fluxes (3.12); any correction to the

2Note that we are assuming the unstable gravitino scenario, i.e. gravitini are expected to decay
before BBN. There is another scenario where the gravitino is extremely light and stable, but since this
scenario is much more difficult to achieve in our setup, we will not take it into account.
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superpotential (3.12) will give rise to W 6= 0 contribution, resulting in non-zero grav-
itino mass, in accord with the current observation. Throughout the thesis, especially
in the main part, we will often denote by W (the vev of) the term (3.12) in the entire
superpotential, ignoring other terms.

Let us finally comment on the relation of the requirement of small superpotential vev
and the cosmological constant problem. We are concerned with the F-term potential

VF = e
K

M2
Pl

(
Kij(DiW)(DjW)− 3

|W|2

M2
Pl

)
, (2.5)

where K is the Kähler potential, Kij is the inverse of the Kähler metric, and Di denotes
the covariant derivative ∂i + (∂iK)/M2

Pl with respect to a chiral multiplet. Obviously
a supersymmetric solution W = 0 and DiW = 0 for all i results in a supersymmetric
Minkowski solution VF = 0, and thus the title of the thesis. In some compactifica-
tions of supergravity theories, though, a Kähler potential of special kind, called “no-
scale type” arises, and in that case, VF = 0 is automatically satisfied regardless of the
vev of W, because of a cancellation between a part of an F-term |(∂iK)W|2 and |W|2
for some i, often the overall volume moduli of the internal compact space. While
one has to make sure that such a special form is maintained even after Kaluza-Klein,
string, quantum and non-perturbative corrections are taken into account, we cannot
say that W being small is a necessary condition to solve the cosmological constant
problem. This is why we have motivated the small W solution using the gravitino
mass and its consequence to the gauge coupling unification, although small W will
definitely help to keep the cosmological constant small, even in the presence of any
kind of corrections.
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Chapter 3

Effective field theory of F-theory

In this thesis, we will explore the possibility that our Universe is described as a
solution of F-theory. F-theory is a framework that can generate solutions of string
theory. It can produce the Type IIB orientifold solutions, and also the “fibrations” of
those solutions. F-theory can also be understood as a certain limit of M-theory, and
the two pictures are thought to be equivalent, at least in non-exotic cases.

In this chapter, we will review how to construct a 4-dimensional field theory as a
solution of F-theory. This is by no means an exhaustive review of 4-dimensional
effective theory of F-theory; we will mainly focus on what is relevant to the main
part, and omit several important aspects entirely, in addition to the details of the
reviewed topics. For a pedagogical review of the F-theory, see e.g. [Wei18].

3.1 F-theory

For constructing a consistent model of our Universe in string theory, F-theory is
considered as one of the best frameworks; it has a large solution space containing
the whole Type IIB orientifolds, it accommodates a variety of matter representations
such as the spinor representation of SO(10), and it provides the couplings for those
matters, which is sometimes absent in the perturbative string theories. One of the
best things about F-theory is that most of those features are embedded in the geom-
etry; by simply specifying a geometry, one can construct an F-theory model with an
intrinsic configuration of 7-branes, which is guaranteed to satisfy at least part of1 the
consistency conditions.

In this section, we will introduce F-theory [Vaf96] as an extension of Type IIB super-
string theory and then see in the next section that it corresponds to a certain limit
of M-theory. We will assume that the two pictures are consistent, and use the two
pictures interchangeably for convenience. See [Wei18] for details of the discussion
below.

As is well known, the Type IIB supergravity action is invariant under an SL(2; R)
group action [Sch83], which breaks down to the SL(2; Z) subgroup in the perturba-
tive Type IIB superstring theory [GS84]. Assuming that the SL(2; Z) duality group
holds in the full Type IIB superstring theory, it would be natural to seek solutions
with non-trivial SL(2; Z) background configurations. Such non-trivial configura-
tions indeed exist, with non-trivial monodromies generated by 7-branes. 7-branes
can generate any of the SL(2; Z) monodromies because there is a corresponding
[p, q] 7-brane for any of the monodromies.

1See e.g. [GG98] for additional requirements.
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There is another object that is acted on by SL(2; Z): the modular parameter τ of an
elliptic curve2. F-theory can be described as an ambitious identification of the axio-
dilaton φ in the Type IIB theory with the modular parameter τ of an elliptic curve;
both of them are at least acted on by SL(2; Z) in the same way. More formally, let
B be a complex n-dimensional3 variety4, on which we will compactify our Type IIB
theory. Let φ vary holomorphically over B, so that a part of the supersymmetry is
preserved. Then one can define an elliptic fibration (Y, B, π), where Y is complex
(n + 1)-dimensional variety, π : Y → B is a regular5 map and the inverse image of
a generic point p ∈ B, i.e. the fiber over the point p, π−1(p), is an elliptic curve.
B is called the base of the elliptic fibration. We say that Y is elliptically-fibered or
elliptic when such set (B, π) exists. F-theory on an elliptically-fibered variety Y with
base B is defined to be a theory that is equivalent to the Type IIB superstring theory
compactified on B with its axio-dilaton varying in exactly the same way as in Y. It
can be also shown that the Einstein equation is satisfied if the total space Y has the
vanishing first Chern class [BCM11], which can be understood as a consequence of
preserved supersymmetry, in M-theoretic picture.

Note that, although F-theory compactified on complex (n + 1)-dimensional variety
gives rise to (12− 2(n + 1))-dimensional low-energy effective theory, it is not a the-
ory that has 12-dimensional spacetime. The two additional dimensions should be
considered as an auxiliary geometry that represents the value of axio-dilaton φ. The
variety Y will be, though, part of the spacetime in M-theoretic picture, in some sense;
see the discussion in the next section.

In Y, the fiber torus enjoys a monodromy as the axio-dilaton does around a 7-brane.
At the center of the monodromy, the fiber degenerates; the center in the base is called
the discriminant locus; the reason is explained later. The possible singular fiber over
a (complex) codimension-1 discriminant locus in the base, after the resolution6, is
classified in [Kod63, Nér64]; see Table 3.1. The classification is similar to the ADE
classification of Lie algebra, with some additional cases. The relation to the gauge
symmetry can be inferred by looking at the monodromy action in SL(2; Z), or by
M-theory, as we review in the next section.

Before moving on, though, let us introduce the Weierstrass model of an elliptically-
fibered variety. In general, an elliptic curve can be defined as a sub-variety of the

2An elliptic curve Eτ with complex structure τ is defined as

Eτ := C/(Z⊕Z 〈τ〉) = {z ∈ C | z ∼ z + (n + mτ) for n, m ∈ Z} , (3.1)

which is a torus with a marked point z = 0.
3One often counts the complex-dimensions, which is half of the real-dimensions, when a compact

space in F-theory is concerned, as the compact spaces we deal with in F-theory often have well-defined
complex structures. B is 2n-dimensional in the usual sense.

4We often use the term variety to specify a geometry, especially when the geometry is not guaranteed
to be smooth, because the term manifold sometimes implies that the geometry is non-singular.

5π is said to be regular when the coordinates of B can be expressed as polynomials of coordinates
of Y.

6A resolution of a singular variety Y is to find a smooth, or at least less singular, variety Ỹ with a
regular map ν : Ỹ → Y, that is an isomorphism except the singular locus in Y.
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weighted projective space7 8 WP2
2,3,1 with coordinates (x, y, z), satisfying

y2 = x3 + axz4 + bz6 (3.2)

for some a, b ∈ C. We often take the open patch where z 6= 0, where one can take
z = 1 by the scaling relation. One can uplift the coordinates x, y, z and the param-
eters a, b to be functions, or more precisely sections of line bundles, over a complex
variety B, in which case the geometry is an elliptically-fibered variety Y with base
B. For example, a K3 surface, which will be introduced in detail in Section 5.2.1, has
always the 1-dimensional complex projective space P1, which is a 2-sphere S2 as a
real manifold, as a base, when elliptically-fibered. It is defined by functions f and g,
which are degree-8 and -12 polynomials, respectively, in the homogeneous coordi-
nates [s : t] of P1. One can take, say s = z = 1 patch, where the defining equation
is

y2 = x3 + f (t)x + g(t), (3.3)

which covers the whole geometry except s = 0 and z = 0. The fiber degenerates
where the discriminant of the right hand side

∆ := 4 f 3 + 27g2 (3.4)

vanishes, and thus the name discriminant locus. The vanishing orders of f , g and
∆ is used to classify the singular fibers; the f , g and ∆ columns in Table 3.1 shows
the vanishing orders of f , g and ∆ for each singular fiber type. The definition of
vanishing order involves some subtleties in higher dimensions, but it is simply the
degree of the leading term in the case of elliptic complex surfaces. In the case of
K3 surface, ∆ is a degree-24 polynomial over the base, and thus has 24 I1 fibers
generically. Note that the Weierstrass model is not smooth in general. One can tune
f and g so that the K3 surface contains more non-trivial singularities and one can get
non-trivial singular fibers after resolution, as shown in Table 3.1.

3.2 F/M-duality and non-abelian gauge symmetry

In this section, we introduce another formalism of F-theory, which will be used
mainly in this thesis. Take a Calabi-Yau manifold Y with an elliptic fibration. The
F-theory on Y ×R3,1 can be formulated as an M-theory on Y ×R1,2 with vanishing
fiber volume. The basic idea is the following. Consider the fiber torus as a product
of two circles, S1

A and S1
B. One can go to the Type IIA picture by taking the radius

of S1
A small. Then, take the T-dual along the S1

B. The resulting theory is a Type IIB
theory with 4-dimensional non-compact space when the radius of S1

B is taken to be
zero. We will elaborate the correspondence in the following.

Firstly, at a generic point in the base, i.e. a base point with a smooth fiber torus,
one can find an explicit correspondence; see [Den08, pp.23-24] for details. Start with

7A weighted projective space WPn
w1,...,wn+1

is defined as Cn+1 \ {(0, . . . , 0)} with a scaling relation
(x1, . . . , xn+1) ∼ (λw1 x1, . . . , λwn+1 xn+1), where (x1, . . . , xn+1) is an element of Cn+1 \ {(0, . . . , 0)}. A
projective space is a weighted projective space with all the weights are equal, w1 = · · · = wn+1 = 1.
We denote the n-dimensional projective space by Pn following the convention of algebraic geometry,
but it always denotes the complex projective space, which is sometimes denoted by CPn elsewhere.

8One can relate this construction to the previous definition, E = C/(Z ⊕ Z 〈τ〉); for a concise
presentation, see [Wei18, §2.2].
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M-theory on T2 × B6 ×R1,2 with some 6-dimensional manifold B6 with metric

ds2
M =

v
τ2

(
(dx + τ1dy)2 + τ2

2 dy2)+ ds2
6, (3.5)

where T2 has total area v and modular parameter τ = τ1 + iτ2, x and y is periodic
with periodicity 1, and ds2

9 is the metric of B6 ×R1,2. By the correspondence to Type
IIA theory using the A-cycle (x-direction) and further T-dualizing in the B-cycle (y-
direction), we get a Type IIB theory with metric, RR 0-form field, and the coupling
constant

ds2
IIB =

l4
s
v

dy2 + ds2
9, C0 = τ1,

1
gIIB

= τ2. (3.6)

Now it is visible that, by taking v → 0 while keeping the string length ls constant,
one can recover R1,3 × B6 as the spacetime. The argument holds even when τ varies
over B6, and we have successfully obtained a Type IIB theory with τ being the axio-
dilaton φ = C0 + ie−Φ with

〈
eΦ〉 = gIIB, as we have formulated previously, at least

when the fiber torus is non-degenerate. Note that the Calabi-Yau condition imposed
on Y is more apparent, as Y itself consists the spacetime in M-theory and Y needs to
be Calabi-Yau for supersymmetry. It also makes sense to take v→ 0, as we were only
concerned with the complex structure of the fiber torus, and not with the volume of
it, in the previous Type IIB formalism.

The discussion above assumed that the fiber torus is not degenerate. Although it
is hard to discuss the duality at the discriminant locus for all cases, let us at least
see what happens at a codimension-1 discriminant locus. We focus on the In singu-
lar fiber, which corresponds to the resolution of An−1 singularity and is related to
SU(n) gauge symmetry, as we will see. The In fiber is a chain of P1’s, as shown in
Table 3.1. It can be argued [Tow95], at least in the supergravity theories, that the
geometrical configuration in M-theory and a 6-brane solution in Type IIA theory are
equivalent, when the direction normal to the chain is taken as the IIA-cycle S1

A; the
“pinching” points, i.e. the intersection points of a pair of P1’s, in M-theory corre-
sponds to the 6-brane locus. There are n 6-branes, which become 7-branes extending
to the T-dualized direction in addition to the (6 + 1) spacetime directions. In Type
IIA, taking the T-dual cycle infinitely small corresponds to making the 6-branes co-
incident, resulting in SU(n) gauge symmetry, while keeping the cycle finite enables
us to explore the Coulomb branch of the theory, which is parametrized by the sepa-
rations between the 6-branes along the S1. See [Sen97] for details and the discussion
for D-type singularities. It is also possible to understand the appearance of the gauge
symmetry in purely M-theoretic language [Wit95]. The gauge boson in the effective
theory is an M2-brane wrapping some of the P1’s for non-Cartan elements, and is
a zero-mode of C3 field corresponding to a harmonic 2-form corresponding to one
of the P1’s. This picture is also powerful in analyzing the matter representation at
codimension-2 discriminant loci [MT12, EY13], although the wrapping rule is am-
biguous in some cases [AKM00].

It is in general not true, however, that an In fiber corresponds to SU(n) gauge sym-
metry [BIK+96, AKM00], when the codimension-1 loci is not 0-dimensional, i.e. the
base is complex n-dimensional with n > 1. In those cases, the singular fiber may
experience a monodromy around a codimension-2 locus in the codimension-1 locus,
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TABLE 3.1: Possible singular fibers at codimension-1 discriminant
locus. The columns f , g, ∆ shows the vanishing order of them, sin-
gularity shows the singularity that is present in the total space, G is
for the possible gauge groups in the low-energy effective theory, and
components shows the number of irreducible curves in the fiber, and
the last column shows the fiber structure; each line represents a irre-
ducible complex curve, and a blue cross means an intersection with

the zero section.

type f g ∆ singularity G components fiber

I0 ≥ 0 ≥ 0 0 none – 1

I1 0 0 1 none – 1

I2 0 0 2 A1 SU(2) 2

In (n ≥ 3) 0 0 n An−1

Sp(b n
2 c)

or
SU(n) n

II ≥ 1 1 2 none – 1

III 1 ≥ 2 3 A1 SU(2) 2

IV ≥ 2 2 4 A2

Sp(1)
or

SU(3) 3

I∗0 ≥ 2 ≥ 3 6 D4

G2 or
SO(7) or

SO(8) 5

I∗n (n ≥ 1) 2 3 n + 6 Dn+4

SO(2n + 7)
or

SO(2n + 8) n + 5

IV∗ ≥ 3 4 8 E6 F4 or E6 7

III∗ 3 ≥ 5 9 E7 E7 8

II∗ ≥ 4 5 10 E8 E8 9



16 Chapter 3. Effective field theory of F-theory

and the M2-branes wrapped around the 2-cycles that are exchanged by the mon-
odromy are in a sense “identified” to each other. A singular fiber that enjoys a non-
trivial monodromy is said to be of non-split type, and split type otherwise. The
resulting gauge symmetry is Sp(k) for In with n = 2k, and it is argued in [AKM00]
that it is also Sp(k) for n = 2k + 1. There are also other reductions [BIK+96]

Dn → Bn−1, E6 → F4, D4 → G2; (3.7)

see the column G of Table 3.1. The reduction of the gauge symmetry often results
in matter fields, as the adjoint representation of the original gauge group becomes
reducible under the reduced gauge group [AKM00, GM00].

3.3 Particle spectrum

3.3.1 Charged matter

In the last section, we have seen how the non-abelian gauge symmetry arises from
the codimension-1 degenerations of the elliptic fibration. When these codimension-1
loci in the base intersect, the singularity enhances at the codimension-2 intersection
locus, and localized matters arises in the effective theory, in general. The classifica-
tion of those enhancements is yet to be achieved, both in mathematics and in physics
[Mir83, GM00, MT12, EY13].

However, we will be only interested in the case of normal-crossings in our study, i.e.
the codimension-1 loci can be defined as x = 0 and y = 0 in an open patch with
coordinates (x, y, . . . ), and two loci intersect, or “collide”, along x = y = 0; this case
is relatively well-understood. Among the ADE-type singular fibers, in the case of
A× A collision or A× D collision, it is well known that the collision results in a bi-
fundamental matter, e.g. chiral multiplets in 4 dimensions, in the effective field the-
ory; this can be understood as open-strings stretched between the two intersecting
7-branes [BVS96, BDL96, BCLS05], or M2-brane wrapping the extra P1 cycles which
are present in the fiber of the codimension-2 locus of the base [KV97, MT12, EY13].

When the collision is among D-types and E-types, i.e. D× D, D× E, or E× E, there
is no known flat9 and crepant10 resolution of the codimension-2 singularity, at least
to the author’s knowledge. One can, however, change not only the fiber of Y, but
also its base, to get a resolution of Y. The procedure is introduced in [Mir83] and
applied to F-theory in [BJ97a].

The procedure can be described locally as follows. Consider, for example, a Weier-
strass model Y with base C2 with coordinates s, t

y2 = x3 + s2t2x + s3t3, (3.8)

where x, y can be thought of as non-homogeneous coordinates of WP2,3,1 with the
third homogeneous coordinate set to 1. This is the collision of D4 ×D4. By blowing-
up11 at s = t = 0, the base is now covered by two patches, with coordinates (st, t)

9A flat resolution is a resolution of elliptically-fibered variety Y, which has an elliptic fibration
where the fiber is always 1-dimensional; see Section 3.4.2 for detail.

10A resolution ν : X → X0 is said to be crepant when the canonical divisor of X is equal to the
pullback of the canonical divisor of X0.

11Blow-up is an algebro-geometric prescription to obtain a resolution of a singular variety. Roughly
speaking, one replaces a singular point with a projective space, and leaves the non-singular locus as it
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TABLE 3.2: Possible collisions [BJ97a]. Each entry corresponds to
the number of blow-ups required to get a flat resolution, and “−”
means that the blow-up process is non-crepant. Only the collisions

with same j-invariant is considered.

I∗0 I∗n>0 In II∗ II IV∗ IV III∗ III

I∗0 , J =any 1 1 0 4− 0 1 0 2 0

I∗n>0, J = ∞ 1 1 0

In, J = ∞ 0 0 0

II∗, J = 0 4− 13− 1 6− 3−
II, J = 0 0 1 3− 0 1−

IV∗, J = 0 1 6− 0 3 1

IV, J = 0 0 3− 1− 1 3−
III∗, J = 1 2 5 1

III, J = 1 0 1 1

and (s, ts). The regular map to the original base C2 is defined by s = stt and t = tss,
while t in the first patch and s in the second patch is mapped identically. The pull-
back of Y to the new base is, in, say, the first patch,

y2 = x3 + s2
t t4x + s3

t t6. (3.9)

Now the model is more singular than before, but by considering the coordinate
change y′ = y/t3 and x′ = x/t2, one can get, as one of the irreducible components,

y′2 = x′3 + s2
t x′ + s3

t , (3.10)

which is less singular and has a flat and crepant resolution. For a more global treat-
ment of the procedure, including the (x, y) = (∞, ∞) locus of Y, can be found in
Appendix B.3. One can find there that, for example, the resulting geometry is not
a resolution of Y because the map from the resulting geometry to Y is not regu-
lar but rational. The Calabi-Yau condition for the resulting geometry is also ad-
dressed in [BJ97a] and summarized in Table 3.2. Note that, although the procedure
is found to be extremely effective for constructing non-trivial superconformal field
theories when the volume of the exceptional locus in the base is taken to be zero
[HMV14, HR19], we will keep the volume finite so that the effective theory is more
suitable for phenomenology.

3.3.2 Moduli

In addition to the charged matters, there are neutral matters, i.e. moduli, in the
4-dimensional effective field theory of F-theory compactified on a Calabi-Yau four-
fold Y4. In particular, there are h3,1(Y4) of complex scalars, which accounts for the
complex structure of Y4, and corresponds to complex structure moduli, D7-brane
deformation moduli, and axio-dilaton in Type IIB theory. These complex structure
moduli in F-theory can be stabilized using 4-form fluxes G4, as we will see later in

is. For more details, see standard textbooks of algebraic geometry, or [BJ97b] for a presentation specific
to our setup. The projective space is called the exceptional locus of the blow-up.
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this chapter. In addition, there are h1,1(Y4)− 1 of real scalars called Kähler moduli,
and 6ND3 of real scalars, accounting for the position of spacetime-filling M2-brane
(or D3-brane in F-theory.) There are also axions arising from the dimensional reduc-
tion of C3 and C6 gauge fields, but we will not consider the moduli other than the
complex structure moduli in this thesis.

3.3.3 Grand Unified Theories in F-theory

F-theory is of particular interest for phenomenology, as it can accommodate varieties
of Grand Unified Theories (GUTs); it can generate up-type Yukawa couplings in the
SU(5) GUT model, which is perturbatively vanishing in Type IIB theory [TW06], and
spinor representation in SO(10) GUT models. Implementations of SU(5) GUT in F-
theory is addressed in [DW11, BHV09, HTT+09] and many subsequent papers. As
we have already reviewed how gauge symmetry and matter spectrum arises from
codimension-1 and -2 singularities in the base of the elliptic fourfold Y4, there re-
mains one more ingredient: interactions among matters. Yukawa couplings are ac-
tually known to be generated at each codimension-3 singularity. At a codimension-3
singularity, three 7-branes intersect and three matter curves, i.e. codimension-2 sin-
gularities where matters are localized, collide. The structure of the geometry can
be used to explain some of the flavor structures [HKTW10]. In this work, though,
there is no such intrinsic structure, and thus we will not review the details of the
topic here. There is, though, some chance to generate Yukawa couplings from gauge
interaction [TW06].

3.4 Requirements on Calabi-Yau fourfolds for F-theory

The definition in terms of M-theory enables us to explore more exotic situations.
In this section, we review two of such situations; genus-one fibration and non-flat
fibration. As we will not consider such exotic situations in the main part, the review
here will remind ourselves what we may loose by excluding such cases.

3.4.1 Genus-one fibration

In the physics literature, when we say that a Calabi-Yau manifold Y has an elliptic
fibration, it is often assumed that Y has a section, i.e. a divisor12 that is isomorphic to
the base; in other words, the origin of the fiber torus is globally well-defined. Math-
ematicians, on the other hand, say that such manifolds have an elliptic fibration with
section, and do not assume that the manifold has a section when simply state that
the manifold has an elliptic fibration. Manifolds with an elliptic fibration without
section is said to have a genus-one fibration in the physics literature, and we will
follow the convention.

Let us consider the case of an F-theory on a genus-one fibered Calabi-Yau manifold.
Although this is well-defined at least in the M-theoretic picture, the situation is not
that exciting at first sight, as any genus-one Calabi-Yau manifold Y has a Jacobian
fibration Y J that has an elliptic fibration (with section), identical base as Y, and the
same τ parameter at generic points in the base, which indicates that F-theory on
Y gives exactly the same physics as the elliptic Calabi-Yau manifold Y J , in a naïve
Type IIB picture. However, it is possible that for certain Y J a standard analysis is not
applicable because of singularities, while Y is smooth. It is actually often the case,

12A divisor is a codimension-1 subvariety that is algebraically defined.
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as pointed out in [BM14]. It is argued that a genus-one Calabi-Yau threefold with
2-section, i.e. has two points in the fiber that may be interchanged by monodromy
but are globally well-defined as two points, gives rise to a Z2 gauge symmetry in
the 6-dimensional effective field theory [BM14], which can also be understood as a
Higgsing of U(1) gauge symmetry by a charge-2 matter [MT14]. A similar statement
holds for Calabi-Yau fourfolds [MT14], and examples with 3-section leading to Z3
discrete gauge symmetry is also known [KMPO+15, CDK+15]. Phenomenological
application of the discrete gauge symmetry is explored in [GEGK14, MPTW14] and
subsequent papers.

The Z2 discrete gauge symmetry can actually be understood in the Jacobian fibration
Y J ; it is shown in [MPTW15] that for a genus-one fibered Calabi-Yau threefold Y with
2-section, its Jacobian fibration Y J has a torsional cohomology Tor(H3(Y; Z)) ' Z2,
which results in Z2 discrete gauge symmetry in the effective theory, as expected. In
this sense, we may keep generality even if we focus on elliptic fibration with section.

In this thesis, though, we will focus on non-singular elliptic Calabi-Yau fourfolds Y
with section, and it is important to keep in mind that we may loose some generality
in this case.

3.4.2 Non-flat fibration

In this thesis, we will also require that the elliptic fibration of the Calabi-Yau fourfold
Y is flat, i.e. the fiber is always (complex) 1-dimensional. One often faces a non-flat
fibration when exploring a general elliptic Calabi-Yau manifolds [CDF+02, LSN13,
BGK13, BMPW14, AZGEM19].

In the Type IIB picture, it is not clear what we should expect from theories with
non-flat fibration, but in the M-theoretic picture, one can get the idea of what will
happen; at a point where the fiber is a (complex) surface, an M5-brane can wrap
around the 4-cycle, leaving one spatial dimension. The remaining dimension will be
seen as a tensionless string, when the F-theory limit is taken, i.e. the volume of the
4-cycle becomes zero. There is no inconsistency as a theory, but such objects are not
acceptable for a phenomenological model.

However, non-flat geometry does not always imply the existence of tensionless strings,
as there is a situation where an M5-brane cannot wrap the 4-cycle due to the exis-
tence of flux [FW99, AZGEM19] for example. As we will require that the elliptic
fibration of Calabi-Yau fourfold Y is flat in the main part, we may lose some phe-
nomenologically viable models.

3.5 Flux compactification

Up to this point, we have dealt with the geometry of the F-theory model, and seen
how it encodes a rich structure, containing gauge symmetries and matter spectrum.
There are, however, some additional ingredients that must be specified to identify a
vacuum. Among them, we are interested in the background value of the 4-form flux
G4 in M-theory. The flux G4 can be, when appropriately chosen, present in F-theory
limit, and a part of the fluxes can be thought of as a generalization of 3-form fluxes
H3 and F3 in Type IIB theory, giving masses of the order of the string scale to the
complex structure moduli in F-theory. The complex structure moduli in F-theory
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may be interpreted as a composition of complex structure moduli, the axio-dilaton,
and 7-brane moduli in Type IIB language.

To begin with, the flux G4 is half-integer quantized such that

G4 +
1
2

c2(Y4) ∈ H4(Y4; Z) (3.11)

as argued in [Wit97, CS12a, CS12b], but we will simply assume, in the main work of
the thesis, that13 G4 ∈ H4(Y4; Q).

The flux G4 induce several terms in the action of the 3-dimensional effective theory.
Firstly, there is Gukov-Vafa-Witten superpotential [GVW00, HL01]

WGVW ∝
∫

Y4

G4 ∧ΩY4 , (3.12)

where ΩY4 is the (4, 0)-form of Y4. Let us decompose G4 according to the Hodge
decomposition,

G4 = G4,0
4 + G3,1

4 + G2,2
4 + G1,3

4 + G0,4
4 , Gp,q

4 ∈ Hp,q(Y4; C). (3.13)

By the F-term conditions14 DαW = 0 with respect to the complex structure moduli
zα, together with the supersymmetric condition W = 0, we obtain the condition

G4 = G2,2
4 , (3.14)

i.e. G4 is purely of (2, 2)-type in the Hodge decomposition, G4 ∈ H2,2(Y4; C) ∩
H4(Y4; Q). This is because W = 0 requires G0,4

4 = 0, and then DαW =
∫

G4 ∧
(DαΩY4) = 0 forces G1,3 = 0, because DαΩY4 is a sum of (4, 0)-component and (3, 1)-
component in general. When the Kähler potential is in the form of the large volume
limit, it is actually purely (3, 1)-type, and we will assume this hereafter. Finally, the
reality of G4 requires that it is purely of (2, 2)-type. We will investigate this term
further in this thesis. In particular, when we say a flux G4 satisfies W = 0, it means
that the term (3.12) vanishes, i.e. G0,4

4 = 0 and when we say a flux G4 satisfies the
F-term conditions, or simply DW = 0, it means that the flux satisfies DαW = 0 for
all the complex structure moduli zα, i.e. G1,3

4 = 0. Note that, for a rational 4-form
G4 ∈ H4(Y4; Q), it is extremely non-trivial to satisfy such constraints concerning a
Hodge decomposition. When one takes a random complex structure for Y4, then
there will be no non-trivial horizontal fluxes allowed.

The complex structure moduli are stabilized by this term (3.12); the Hodge decom-
position is defined by the complex structure on Y4, and when one deforms the com-
plex structure, the DW = 0 condition is no longer satisfied, which implies that there
is a potential against the complex structure deformation. The flux in fact generates
mass terms in the superpotential, because a second order fluctuation of ΩY4 with

13G4 ∈ H4(Y4; Q) roughly means that G4 is assumed to be parametrized by rational numbers, rather
than integers. Note that, if one finds a vacuum with G4 ∈ H4(Y4; Q), then one can multiply the
solution by an integer and get G4 ∈ H4(Y4; Z), although the solution may be excluded by the tadpole
cancellation condition (3.15). The shift by c2(Y4) does not spoil the argument in our case; c2(Y4) is
purely of Hodge (2, 2)-type, so one can turn on additional flux in W(20|02) ⊂ H4(Y4; Q) to cancel the
shift in the horizontal part; the notion of the horizontal part will be introduced later in this section, and
the component W(20|02) will be introduced in the main part of the thesis.

14Recall that the covariant derivative Dα is defined as ∂α + (∂αK)/M2
Pl, where K is the Kähler poten-

tial.
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respect to the complex structure deformation contains Hodge (2, 2)-component, and
will have non-trivial inner-product with G2,2

4 , which is nothing but the mass term
for the fluctuation. We will see explicitly the mass terms generated in our setup,
in the main part. Conversely, when one specifies a flux configuration G4 first and
lets the dynamics find the vacuum, then the complex structure moduli will adjust
themselves to satisfy the F-term conditions; it is non-trivial if they can find such con-
figuration or not, but at least the number of constraints is equal to the number of
degrees of freedom. When the dynamics find the vacuum in that way, the vev of W
is expected to be random; i.e. the vev of W is expected to be O(1) in string scale for
a generic flux vacuum, implying that the gravitino mass is also of order of the string
scale. This is the problem that we will attack in this thesis.

Secondly, the Chern-Simons term in the 11d supergravity action implies the tadpole
cancellation condition

− 1
2

∫
Y4

G4 ∧ G4 +
1

24
χ(Y4)− ND3 = 0. (3.15)

ND3 denotes the number of spacetime-filling M2-branes, which is spacetime-filling
D3-branes in F-theory picture, and its positivity poses an upper-bound on the flux
G4. In the main part, though, we will not consider the tadpole condition.

Finally, there is a term corresponding to the primitivity condition JY4 ∧G4 = 0, where
JY4 is the Kähler form of Y4, corresponding to D-term conditions in the effective field
theory of F-theory. This term constrains the Kähler structure of the geometry Y4,
rather than the complex structure, and it has little relevance to the main result of the
thesis.

The cohomology H4(Y4; C) can be decomposed into three orthogonal components
[Str90, GMP95, BW15]:

H4(Y4; C) = H4
hor(Y4; C)⊕ H2,2

ver(Y4; C)⊕ H2,2
rem(Y4; C). (3.16)

The first term is called the horizontal component, and is spanned by the unique
(4, 0)-form ΩY4(z + δz) of Y4 with deformed complex structures z + δz but with the
Hodge decomposition at z. The second term is the vertical component, which is
generated by the product of (1, 1)-forms, i.e.

H2,2
ver(Y4; C) =

{
x ∧ y | ∀x, y ∈ H1,1(Y4; C)

}
, (3.17)

and the third term is the remaining component, which is known to exist in some
cases.

Physically, the horizontal part has a non-vanishing inner-product with the (4, 0)-
form and its fluctuations, while others are not. We are thus mainly concerned with
the horizontal part of the flux, as our motivation is to fix the complex structure mod-
uli, and other will not contribute to the job, and will not contribute to the vev of
WGVW either. Although other parts are important, e.g. to give the chirality to the
matter spectrum, or to compensate the difference of χ(Y4) before and after Higgs-
ing involving topology change in the condition (3.15), these topics are beyond the
scope of the thesis, and we will focus on the horizontal part in this work. Note also
that the primitivity condition is irrelevant to our study in this sense, as the condition
constrains the vertical part of the flux.
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In order to make the flux G4 compatible with the F-theory limit, there are the transver-
sality conditions [DRS99]

[G4] · [S0] · π∗[DB
α ] = 0, [G4] · π∗[DB

α ] · π∗[DB
β ] = 0, (3.18)

For every [DB
α ], [DB

β ] ∈ H1,1(B3; Z), where B3 is the base of the elliptic fibration of
Y4, and [S0] denotes the class of the section of the elliptic fibration15. This constraint
mainly constrains the vertical part of the flux, so it has little relevance to our main
analysis.

15or the class of the multi-section in the case of genus-one fibrations [LMTW16]
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Chapter 4

Flux landscape problem and
arithmetic approaches

As we have seen in Chapter 2, it would be nice to have all, or at least most, of the
moduli to acquire masses of the order of the Planck scale, so that we can keep the
standard scenario involving the Big-Bang Nucleosynthesis (BBN) and the gauge cou-
pling unification. Fluxes will fix the complex structure moduli, while giving a large
gravitino mass in generic cases, as explained in Section 3.5. In this chapter, we will
review some trials to reconcile the apparent contradiction, and their problems.

4.1 Flux landscape problem

Since we are trying to construct one explicit model of our Universe, it is actually
not a problem in principle that we have a heavy gravitino in generic cases, if one
can construct a non-generic solution with a small gravitino mass. One can also ar-
gue that there could be a solution for |W| < ε with ε sufficiently small for phe-
nomenology [Dou03, DD04, Den08]. The idea is very simple; as a Calabi-Yau four-
fold typically has more than O(1000) 4-cycles1 where 4-form fluxes can be turned
on, i.e. b4 := dimZ H4(Y4; Z) & O(1000) typically, and the flux for each 4-cycle is
parametrized by an integer, there are exponentially many flux configurations, even
under the tadpole condition (3.15). Since |W| cannot be exponentially large, we ex-
pect that there is a good chance to find solutions with exponentially small W. More
subtle questions, such as if the number of solutions satisfying F-term conditions is
exponentially suppressed, is addressed in the original articles with some assump-
tions, and turned out not to bother the naïve argument.

Constructing an explicit example is, though, not easy, essentially due to the integral-
ity of the fluxes. Since the fluxes are parametrized by integers, it is not possible to
solve the equations DW = 0 and W = 0 analytically, in terms of fluxes. Also, it is dif-
ficult to solve the problem numerically; it is actually shown in [DD07] that the prob-
lem without moduli, i.e. without DW = 0 conditions, is classified as NP-Complete,
which is a class of problems which are believed, but not proved, to require exponen-
tial time to solve2. Even a quantum computer cannot solve the problem efficiently,
i.e. in polynomial time, at least with known algorithms [DD07]. The problem with

1A Calabi-Yau fourfold with b4 = 1, 819, 942 and the Euler character χ = 1, 820, 448 is reported in
[TW15].

2In [BBJL17] it is argued that a heuristic algorithm can find a vacuum with small cosmological
constant with some probability when there is no moduli. It would be interesting to work along this
line to take the moduli into account.
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moduli is even harder; for a given flux configuration, one needs to solve the F-term
conditions to obtain the complex structure, which determines the value of W.

4.2 Arithmetic idea

As we have seen in previous sections, although vacua with |W| < ε is expected to
abound in the flux landscape, it is quite difficult to explicitly construct such vacua
by specifying a flux G4; after deforming the complex structure so that it satisfy the
F-term conditions, one will end up with a generically O(1) vev of W.

For constructing an explicit example of vacua with small 〈W〉, it is useful to think
in the other way around [DGKT05a]: fix the complex structure first, and then check
if there is a flux configuration that satisfies the F-term conditions. This idea will
fail if one chooses a generic point in the complex structure moduli space, but there
is a chance if one can properly select “special points” in the moduli space. There
will be a variety of choice for the “special points”, and there are indeed numer-
ous works on the subject [Moo07, DGKT05b, DGKT05a, DeW05, KW17a], [Dim08,
GLV20, DKMM20].

The authors of [DGKT05a] defines3 the “special points” in terms of the complex
numbers called periods. Periods of ΩY4 in the basis

{
γi}

i of H4(Y4; Z) is defined as

Πi =
∫

γi
ΩY4 ∈ C with i = 1, . . . , b4(Y4), (4.1)

where b4(Y4) is the dimension of H4(Y4; Z). We will assume the normalization of
ΩY4 such that Π1 = 1. The authors of [DGKT05a] chose the “special points” where
the periods take special values that we will specify below.

Before going into the details of [DGKT05a], let us also express the flux G4 in the basis
{ei}i of H4(Y4; Q) where each ei is Poincaré dual to γi, i.e.

∫
Y4

α ∧ ei =
∫

γi α,

G4 = ∑
i

niei, ni ∈ Q. (4.2)

Then we can rewrite the superpotential as a linear combination of complex numbers
with rational coefficients, ∫

Y4

G4 ∧ΩY4 = ∑
i

niΠi. (4.3)

One can also define the periods of (3, 1)-forms, such that

ξa
i =

∫
γi

Ξa
Y4

, a = 1, . . . , h3,1(Y4), (4.4)

where
{

Ξa
Y4

}
a

is a basis of H3,1(Y4; C).

To solve the problem, the authors of [DGKT05a] considered Calabi-Yau manifolds4

with the following property: for all periods of the (4, 0)-form and (3, 1)-forms, {Πi}i
and

{
ξa

i
}a

i ,
Πi ∈ F, ξa

i ∈ F for some number field F ⊂ C. (4.5)

3The authors of [DGKT05a] deal with the vacuum counting problem in Type IIB theory, rather than
in F-theory, but we will review their ideas applied to F-theory.

4threefolds in the paper, but fourfolds in our review
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We will introduce the notion of fields5 in a more mathematical fashion in Appendix
A.1, but let us introduce them briefly.

A field F is defined to be, roughly speaking, a set on which the four arithmetic oper-
ations are defined consistently. For example, the set of rational numbers Q is a field,
but the set of integers Z is not a field because the division operation sometimes leads
to a number which is outside of Z. In particular, a number field is a field that con-
tains Q as a subset, with consistently extended four arithmetic operations of Q. We
are particularly interested in number fields that are sub-fields of C in this section,
but a number field is a much broader concept, as we will see in the next chapter; see
also Appendix A.1. The best thing about the number fields in our problem is that
most of the number fields can be regarded as a finite-dimensional vector space over
Q. For example, Q(i

√
2) defined as

Q(i
√

2) :=
{

p0 + p1i
√

2 | p0, p1 ∈ Q
}

(4.6)

is a number field and is a 2-dimensional vector space over Q with
{

1, i
√

2
}

being the
basis; one can check that it is actually closed under the four arithmetic operations.
In general, if α is a root of degree-n polynomial with Q-coefficients, Q(α), defined as

Q(α) :=
{

p0 + p1α + · · ·+ pn−1αn−1 | ∀i, pi ∈ Q
}

, (4.7)

is a number field and is an n-dimensional vector space over Q. The dimension as a
vector space is called the extension degree of the extension Q(α)/Q and is denoted
by [Q(α) : Q]. Furthermore, any finite-dimensional number field can be expressed
in the form of Q(α) for some α, as formally stated in Lemma A.1.

Now let us get back to our problem. Our starting point is a Calabi-Yau fourfold
Y4 with the periods of the basis ΩY4 and Ξa

Y4
of H4,0(Y4; C) and H3,1(Y4; C) taking

their values in a number field F = Q(α) ⊂ C. Denote the extension degree by
nF := [F : Q]. Now we can demand the DW = 0 conditions for complex structure
moduli, and also the W = 0 condition, in a form that we can solve in terms of fluxes,
in the following sense. Consider, as an example, the W = 0 condition

∑
i

Πini = ∑
i

nF−1

∑
k=0

πi,kαkni = 0. (4.8)

The first equality expands Πi with respect to the basis of Q(α), which is regarded as
a vector space over Q. Now the W = 0 condition is equivalent to demanding

∑
i

πi,kni = 0 (4.9)

for all k. This equality involves rational numbers only, and we can solve each equal-
ity in terms of a flux ni ∈ Q for some i, if there is enough degrees of freedom for
fluxes. The counting goes as follows: for each condition DW = 0 or W = 0, we need
nF fluxes to satisfy the equality, and there are h3,1 + 1 conditions. The number of
total fluxes equals b4(Y4), so the degrees of freedom left after demanding DW = 0

5In Japanese, fields are called “体（たい）”. French, German and many other languages also call
the object “body” in their own words.
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and W = 0 NDW,W is

NDW,W = bH
4 − nF(h3,1 + 1) = (2− nF)(h3,1 + 1) + h2,2

H , (4.10)

where the sub/superscript H signifies that we are focusing on the horizontal part
of the flux. For example, if nF = 2, which is minimal for having ΩY4 6= ΩY4 , there
are nontrivial solutions if h2,2

H > 0. In the examples described in [BW15, Tables 1-3],
one can observe that h2,2

H /h3,1
H ∼ 4, so in that case, larger nF up to nF = 6 may have

W = 0 vacua.

Although this direction seems promising, there is a caveat in the assumption; it is
in general difficult to engineer a Calabi-Yau fourfold with its periods Πi and ξa

i tak-
ing values in a number field F; we will elaborate on this later in Section 5.3, but
the reason is roughly because the space of periods has larger dimension b4 − 1 than
that of the complex structure moduli space h3,1 and thus one cannot choose the pe-
riods freely. The situation does not change in the situation of the original article
[DGKT05a], where the Type IIB counterpart of what we have discussed is consid-
ered, although they present some examples including the mirror quintic.

4.3 Type IIB theory on CM-type Calabi-Yau threefolds

There is, however, a class of Calabi-Yau fourfolds that satisfies the condition (4.5),
which is called CM-type6 Calabi-Yau fourfolds. We will introduce CM-type Calabi-
Yau manifolds in Chapter 5, and the flux counting on CM-type Calabi-Yau fourfolds
in F-theory is one of our main topic in this thesis, but there is a previous work of flux
counting on CM-type Calabi-Yau manifolds in Type IIB theory, done by the author
and his supervisor [KW17a]. There, it was found that one can construct infinitely
many W = 0 vacua of the form (K3× T2)/Z2. The caveat is that, as the analysis
is restricted to the Type IIB theory, it is difficult to construct a model with a realistic
particle spectrum. The aim of the main part of the thesis is to generalize the anal-
ysis of [KW17a] to F-theory, and work out the possible gauge groups and matter
representations in such a setup. Since our F-theory analysis contains the orientifold
analysis of [KW17a], we review the relation in Appendix C.

6CM stands for Complex Multiplication, as will be explained later.
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Chapter 5

CM-type Calabi-Yau manifolds

5.1 CM-type Calabi-Yau manifolds

In this section, we introduce CM-type Calabi-Yau n-folds. Let us start with one of
the simplest Calabi-Yau manifolds, the elliptic curve, to see why it is called CM
(Complex Multiplication)-type.

Definition 5.1 (CM-type elliptic curve). Take an elliptic curve E with a modular
parameter τ. E is of CM-type if and only if τ = p + i

√
q for some p, q ∈ Q. We will

also call E a CM-type elliptic curve.

CM-type elliptic curves are special because of the following property. Take τ =
p + i
√

q for some p, q ∈ Q. τ satisfies

τ2 − 2pτ + p2 + q = 0 (5.1)

and the (1, 0)-form ΩE of the elliptic curve E, expressed in an integral basis, has a
rational map T

T :
(

1
τ

)
7→
(

0 1
−p2 − q 2p

)(
1
τ

)
= τ

(
1
τ

)
. (5.2)

T acts as a multiplication by τ ∈ C on ΩE, i.e. ΩE 7→ τΩE, whereas it is defined
as a rational map1 T : H1(E; Q) → H1(E; Q); The action of T is called complex
multiplication and thus the name CM-type. Note that the action of T , combined
with a scalar multiplication by Q, generates a field

K := {p0 I + p1T | p0, p1 ∈ Q} , (5.3)

where I is an identity operator. This field turns out to be equal to the endomorphism
algebra of H1(E; Q) that preserves the Hodge decomposition

K = EndHdg(H1(E; Q)) :=
{

ϕ ∈ EndQ(H1(E; Q)) | ϕ(Hp,q(E; C)) ⊂ Hp,q(E; C)
}

.
(5.4)

We will extend this final form to general CM-type Calabi-Yau manifolds, after sev-
eral definitions. The concepts that will be introduced in the following are important
not only for defining general CM-type Calabi-Yau manifolds, but also in the main
analysis of flux counting.

We first define the Hodge structure on a general vector space over Q, and its simple-
ness.

1We will assume that, for a Calabi-Yau n-fold Yn, Hn(Yn; Z) ⊗Z Q ' Hn(Yn; Q) throughout the
thesis.



28 Chapter 5. CM-type Calabi-Yau manifolds

Definition 5.2 (rational Hodge structure). Let VQ be a vector space over Q. A de-
composition of the vector space VQ ⊗Q C over C into the form of

VQ ⊗Q C ∼= ⊕p+q=nVp,q
C

(
Vp,q

C
= Vq,p

C

)
(5.5)

of vector subspaces Vp,q
C

for non-negative integers p, q, and n, is called a rational
Hodge structure of weight n. For a smooth compact Kähler manifold M, the coho-
mology group Hn(M; Q) has a rational Hodge structure of weight n given by the
complex structure of the Kähler manifold M, for example.

Definition 5.3 (simple rational Hodge structure). A rational Hodge structure on a
vector space VQ is said to be simple, if there is no vector proper subspace WQ ⊂ VQ

over Q so that ⊕p,q(V
p,q

C
∩ (WQ ⊗ C)) reproduces (WQ ⊗ C). When such a proper

subspace WQ exists, VQ [resp. WQ] is said to have [resp. to support] a rational
Hodge sub-structure. When a vector space VQ with a rational Hodge structure is
decomposed into vector subspaces over Q, VQ

∼= ⊕a∈AWa, and each Wa supports a
rational Hodge sub-structure that is simple, we say that it is a simple component
decomposition of the rational Hodge structure.

Definition 5.4 (level of simple rational Hodge structure). A simple component Wa in
such a decomposition is said to be level-`, when ` := Max(|p− q|; Vp,q ∩ (Wa⊗C) 6=
0).

We will see an example of such decomposition when we introduce the K3 surface.

We now define a rational Hodge structure of CM-type, which will be used to define
CM-type Calabi-Yau manifolds.

Definition 5.5 (rational Hodge structure of CM-type). When a vector space VQ over
Q has a rational Hodge structure that is simple, then the algebra of endomorphisms
of the simple rational Hodge structure

L := EndHdg(VQ) := {ϕ ∈ EndQ(VQ) | ϕ(Vp,q) ⊂ Vp,q} (5.6)

is always a division algebra2. When L contains a number field K such that [K : Q] =
dimQ VQ, we say that the simple rational Hodge structure is of CM-type. We will
call the field K the endomorphism field of VQ. A rational Hodge structure that is
not necessarily simple is said to be of CM-type if all of its simple rational Hodge
components are of CM-type.

We finally define CM-type Calabi-Yau manifolds.

Definition 5.6 (CM-type Calabi-Yau manifold). Let Y be a Calabi-Yau manifold with
a complex structure z ∈ M[Y]

cpx str in the complex structure moduli spaceM[Y]
cpx str of

Y. Y is said to be of CM-type if every simple Hodge component of Hn(Y; Q) is of
CM-type. The corresponding point z in the moduli space is called a CM point.

The definition turns out to be equivalent to the previous one, Definition 5.1, in the
case of elliptic curves, i.e. Calabi-Yau 1-folds.

2Roughly speaking, a division algebra is an algebra over a field in which division is always possi-
ble, except by zero. A rigorous definition is not necessary for our purpose.
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5.1.1 A frequently used property

We will now show that any CM-type Calabi-Yau manifold satisfies the condition
(4.5). It actually satisfies a much more non-trivial condition, which will be frequently
used in this thesis.

We first introduce several notions of number field theory to state the afore-mentioned
non-trivial condition. An embedding of a number field K over Q is an injective ho-
momorphism K ↪→ C. As is shown in Lemma A.1, K is always of the form K = Q(α)
for some α ∈ K, so an embedding ρ can be specified by the image ρ(α) of α, which
should be one of the roots in C of the minimal polynomial3 of α over Q. As there are
[K : Q] different roots for the minimal polynomial of α, there are also [K : Q] distinct
embeddings. We consider the minimal field Knc ⊂ C that contains the image of any
of the embeddings of K, and call it the normal closure4 of K. Now we are ready to
state the non-trivial property of CM-type Hodge structure.

Proposition 5.1. Let VQ be a vector space over Q, and K ⊂ EndQ(VQ) is a field
with extension degree nK := [K : Q] = dimQ VQ. Then, firstly, the action of K ⊂
EndQ(VQ) on VQ ⊗Q Knc can be diagonalized simultaneously; to be more specific,
VQ ⊗Q Knc has a diagonalization basis

VQ ⊗Q Knc = SpanKnc{va | a = 1, · · · , dimQ VQ}, (5.7)

there is a 1-to-1 correspondence between those dimQ VQ basis elements and the set
of all the nK embeddings ΦK := HomQ(K, Q), and

x · va = vaρa(x), ρa ∈ ΦK, ∀x ∈ K. (5.8)

Moreover, when we express the eigenvectors va as Knc-coefficient linear combina-
tions of a Q-basis {ei | i = 1, · · · , dimQ VQ} of VQ, va = ∑i eici

a, there exists, up to a
normalization of each va, a basis {yi | i = 1, · · · , nK} of the vector space K over Q so
that

ci
a = ρa(yi). (5.9)

Proof. To show the first part, recall that K can be regarded as a simple extension of Q,
i.e. K = Q(α) for some α ∈ EndQ(VQ). α has nK distinct eigenvalues, which are the
roots in C of the minimal polynomial of α over Q. As the roots are in Knc, eigenvec-
tors {va}a of α are in VQ ⊗Q Knc. The nK roots are in 1-to-1 correspondence with the
nK embeddings in ΦK, so the eigenvectors are also in 1-to-1 with the embeddings.
Note that any element in x ∈ K is diagonalized using the eigenvectors, as x can be
written as sum of powers of α.

For the second statement, let {xp=1,··· ,nK} be a Q-basis5 of K. Denoting the matrix
representation of x ∈ K in the Q-basis {ei}i of VQ by Aji(x),

Aji(xp)ci
a = cj

aρa(xp). (5.10)

3The minimal polynomial of x ∈ K over Q is the Q-coefficient polynomial of which x is a root. See
Definition A.7.

4See Appendix A.1.4 for details.
5One can take xp = αp−1.
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This relation holds for any j, so one can pick some j = ja for a fixed a such that
cja

a 6= 0 and reorganize the relations; one can write

[
Ajai(xp)

]
pi

[
ci

a

cja
a

]
i

=
[
ρa(xp)

]
p , (5.11)

where a Q-valued matrix [· · · ]pi is multiplied to a C-valued vector [ ]i to be a C-
valued vector [ ]p on the right-hand side. We see that the Q-valued matrix must be
invertible; this is because xp’s in K (and hence ρa(xp)’s in ρa(K)) should be linearly
independent over Q. We replace the Q-basis of K {xp=1,··· ,nK} by the one, denoted by

{y(a)
i=1,··· ,nK

}, obtained by multiplying the inverse of the Q-valued matrix [Ajai(xp)]pi
on xp’s. In this new basis, we have the relation[

ci
b

]
i
=
[
ρb(y

(a)
i )cja

b

]
i

(5.12)

for any b = 1, . . . , nK. This implies that cja
b 6= 0 for any b; otherwise vb = 0 will

follow. After normalizing the vectors such that cja
b = 1 for all b, we have the relation

(5.9), denoting the basis
{

y(a)
i

}
i

for the fixed a simply by {yi}i.

In the context of this thesis, we will use the property above for VQ as a rational Hodge
component of CM-type. In that context, each one of the eigenvectors, say, va, belongs
to a definite Hodge (pa, qa) component, as the endomorphism field K preserves the
Hodge decomposition. This means that, when a Calabi-Yau fourfold Y is of CM-
type, the condition (4.5) holds in a stronger form (5.9); Eq. (5.9) implies6 not only
that each of Πi and ξa

i in Eq. (4.5) takes values in some number field F = Knc, where
K is the endomorphism field, but also that the difference of any pair of them entirely
comes from the difference of the embeddings ρa, if both of the pair are contained in
the same simple rational Hodge component.

Let us make the relation among va’s more precise; one can map va to vb for any a, b,
by an action of a Galois group, in the following sense. When the field F := ρ1(K)
is Galois, i.e. F ∼= Knc, then ρa(K) = F for any a and ρa ◦ (ρb)

−1 ∈ Gal(F/Q) maps
the algebraic number ci

b ∈ F ⊂ Q to ci
a ∈ F ⊂ Q for all i = 1, · · · , nK simultane-

ously; this phenomenon is observed in [DGKT05a]. Even when the field F is not a
Galois extension over Q, an isomorphism ρa ◦ (ρb)

−1 : ρb(F) → ρa(F) extends to an
isomorphism from Q to itself (Thm. 2.19, [Fuj91]), which can be restricted to an au-
tomorphism of a normal extension Fnc over Q. Thus, ρa ◦ (ρb)

−1 : ρb(F)→ ρa(F) can
be realized by restricting some elements in Gal(Fnc/Q). Therefore, the simultaneous
map of algebraic numbers ci

b ∈ ρb(F) to ci
a ∈ ρa(F) can be regarded as an action in

Gal(Fnc/Q).

6ci
a is related to Πi by a multiplication by the intersection matrix. Let us fix some a such that va is a

(4, 0)-form, i.e. ΩY = va. Then

Πi =
∫

γi
ΩY =

∫
γi

cj
aej =

∫
Y

ci
aej ∧ ei =: ci

a Mji, (5.13)

where Mji is the intersection matrix and we have assumed that
{

γi
}

i
is Poincaré dual to {ei}i. Because

Mji is a Q-valued matrix, Πi being contained in a number field is equivalent to ci
a being contained in a

number field. The same argument applies for ξ i
a.
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It can be shown that, when7 dim VQ > 1 and the Hodge structure is non-trivial, then
K is always a CM field. The rigorous definition and some properties of CM fields are
reviewed in Appendix A.2, but a CM field K is a field on which complex conjugation
is consistently defined, its the extension degree [K : Q] is even, and the embeddings
of K into C are in pairs, such that the complex conjugation maps an embedding to
its partner within the pair.

5.2 CM-type K3 surface

In the subsequent chapters, we will use CM-type K3 surfaces to construct our F-
theory vacua. In this section, we introduce the K3 surface, its CM-type complex
structure, and their properties that is relevant to our analyses.

5.2.1 K3 surface

We introduce one of the simplest examples of Calabi-Yau manifolds, K3 surface.
K3 surface is defined to be a Ricci-flat 2-dimensional complex manifold which has
h1,0 = 0. The integral cohomology H2(X; Z) of a K3 surface X endowed with the
intersection form ( , ) is known to be isomorphic to the lattice

H2(X; Z) ∼= E8 ⊕ E8 ⊕U ⊕U ⊕U. (5.14)

Here, E8 is the negative definite root lattice8 of E8, and U is the hyperbolic plane
lattice. This is the signature (3, 19) unimodular lattice, often denoted by II3,19. In this
sense, the K3 surface is unique. An intuitive presentation of each 2-cycle is given in
[Asp98].

Although unique in the homological sense, K3 surface has a rich structure, when one
considers its complex structure. The complex structure of a K3 surface X is specified
by the (2, 0)-form ΩX, which is unique up to rescaling. We can use ΩX to define the
Néron-Severi lattice SX

SX :=
{

x ∈ H2(X; Z) | (x, ΩX) = 0
}

(5.15)

and the transcendental lattice TX as its orthogonal complement

TX :=
{

x ∈ H2(X; Z) | (x, y) = 0 for all y ∈ SX
}

, (5.16)

where TX has a signature (2, 20− ρ) and SX a signature (1, ρ − 1). As can be seen
explicitly, the decomposition into SX and TX is determined by the (2, 0)-form ΩX,
and it turns out that each element in SX represents algebraic complex curves, i.e.
curves defined by algebraic equation(s), related by the Poincaré duality. For exam-
ple, a 2-dimensional sub-lattice isomorphic to U in SX can be thought of as a set of
elliptic fiber and a section, and if there is ADE negative root lattices orthogonal to U
in SX, it signifies that there is a singular fiber of corresponding ADE type. Taking TX
large, i.e. ΩX generic, corresponds to deforming the singularity that gives rise to the
singular fibers, which results in SX with lower rank.

It can be further shown that there is one-to-one correspondence between the choice
of ΩX ∈ H2(X; C) and a complex structure of K3 surface. More precisely, let us

7If VQ is 1-dimensional, then its Hodge structure is trivial, i.e. VQ = Vp,p for some p, and its
endomorphism field is Q.

8The lattice is sometimes denoted by E8[−1].
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define the period domain D(Λ) of a lattice Λ:

D(Λ) :=
{

Ω ∈ P(Λ⊗Z C) | (Ω, Ω) = 0, (Ω, Ω) > 0
}

. (5.17)

The conditions in the brace is the properties that the (n, 0)-form of a Calabi-Yau n-
fold Y should satisfy, where Λ is taken to be Hn(Y; Z) or its sub-lattice. Let us choose
TX as a sub-lattice of H2(X; Z) with signature (2, 20− ρ). Then, it turns out that the
space D(TX) parametrizes the complex structure of K3 surfaces which has TX as the
transcendental lattice [PSS71]; see [BKW14, §3.1], [Huy16] for review. Note that this
is not true for Calabi-Yau n-folds with n ≥ 3, as the dimension of period domain is
larger than that of the complex structure moduli space.

5.2.2 CM-type K3 surface

Now let us apply the definition of CM-type to K3 surfaces. Note first that SX is
purely of Hodge (1, 1)-type, and thus it is decomposed to 1-dimensional Hodge sub-
structures. It has an endomorphism field Q and thus it is, in a sense, a trivial CM-
type simple Hodge structure. There is one non-trivial simple Hodge component,
TX. If TX were not simple, then one of the simple Hodge components that does
not contain the (2, 0)-form should be contained in SX, thus TX must have a simple
Hodge structure. We will simply say that a K3 surface X is of CM-type with the
endomorphism field K, meaning that the simple Hodge component TX is of CM-
type with the endomorphism field K.

5.3 CM-type Calabi-Yau fourfolds and Borcea-Voisin orbifolds

In this section, we review how the CM-type manifolds are distributed in the complex
structure moduli space, and discuss how to construct CM-type Calabi-Yau fourfolds.

In the case Y = E is an elliptic curve, a one-dimensional Calabi-Yau manifold, The
set of CM points M[E]

CM in the moduli space of complex structure of elliptic curves

M[E]
cpx str

∼= H/SL(2; Z) is completely understood; CM points in the upper complex
half-plane H are the set of the roots of any quadratic polynomial of one variable
with coefficients in Q. They are labeled by the imaginary quadratic fields K; the CM
points sharing the same imaginary quadratic field form an orbit under the action of
GL(2; Q) = GSp(2; Q). In the case Y = X is a K3 surface with a transcendental lattice
TX, it is also known that any CM point in the moduli space M[X(TX)]

CM is associated
with a CM field K of degree [K : Q] = rank(TX); the CM points sharing the same
CM field K form orbits under the action of the group9 GO(TX; Q) on M[X(TX)]

CM ⊂
M[X(TX)]

cpx str = Isom(TX)\D(TX); here, Isom(TX) is the group of integral isometries of
TX. In particular, we know that there are infinitely many CM points in the moduli
space of the complex structure of elliptic curves and K3 surfaces.

When it comes to the case Y = M is a Calabi-Yau threefold, or a Calabi-Yau fourfold
Y, however, much less is known. It is believed that the Calabi-Yau threefolds M re-
alized by rational CFT’s have complex structure of CM-type [GV04a], but they are
nothing more than a small number of isolated points in the moduli space. Although
the group Sp(b3(M)) is a symmetry of some of the relations that the Hodge struc-
ture of a Calabi-Yau threefold M satisfies, yet the action of the group takes a point in

9The groups GSp and GO consist of linear transformations that preserve skew-symmetric and sym-
metric bilinear forms, respectively, up to overall scalar multiplications.
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M[M]
cpx str outside ofM[M]

cpx str in general; the latter observation also holds true in the
case Y is a Calabi-Yau fourfold, when the group Sp(b3(M)) is replaced by the isom-
etry group of the lattice H4(Y; Z). So, in particular, we do not have an argument in
the case Y is a threefold or a fourfold that infinitely many CM pointsM[Y]

CM show up
in the form of orbits of GSp(b3) or GO(b4(Y)).10 Indeed, the André-Oort conjecture
and Coleman-Oort conjecture hint that there are not so many CM points available in
M[Y]

cpx str in those cases. For more information, see [KW17b, §2.2].

For a special class of topological types of Calabi-Yau threefolds [Y = M] or of four-
folds [Y], however, it is possible to identify systematically a set of points (〈z〉’s)
of M[Y]

cpx str where H3(Y〈z〉; Q) or H4(Y〈z〉; Q) has a CM-type rational Hodge sub-
structure.11 An idea, originally given in [Bor92, Voi02], is to take a product of a
CM-type elliptic curve E and a CM-type K3 surface, or of a pair of CM-type K3 sur-
faces, first, and then to take an orbifold that preserves the Calabi-Yau condition. Not
all the topological types available for a Calabi-Yau three/four-fold will be realized
in this construction. The moduli space M[Y]

cpx str of a three/four-fold Y constructed

in that way contains an orbifold locusM[Y]BV
cpx str where the orbifold singularity of Y〈z〉

is not deformed in complex structure;12 as long as the building block E or K3 sur-
faces are of CM-type, and the vacuum choice 〈z〉 of the complex structure of Yz is
in the orbifold locusM[Y]BV

cpx str, then H3(Y〈z〉; Q) or H4(Y〈z〉; Q) has a rational Hodge
sub-structure of CM-type indeed.

The simplest class of Calabi-Yau fourfolds Y being K3 × K3 orbifolds is of the form
Y = (X(1) × X(2))/Z2. Both of the K3 surfaces X(1) and X(2) are assumed to have
a non-symplectic automorphism of order two, σ(1) and σ(2), respectively; an auto-
morphism is said to be non-symplectic when the holomorphic (2,0)-forms ΩX(1) or
ΩX(2) acted non-trivially, σ∗(i)(ΩX(i)) = −ΩX(i) for i = 1, 2. By choosing the generator
σ of the orbifold group Z2 to be (σ(1), σ(2)), the orbifold Y becomes Calabi-Yau be-
cause (ΩX(1) ∧ΩX(2)) is invariant under the generator σ, yet ΩX(i) ’s are not. We call
such fourfolds Y = (X(1) × X(2))/Z2 as Borcea-Voisin K3 × K3 orbifolds, or simply
as Borcea-Voisin orbifolds, in this thesis; more general orbifolds will be called gen-
eralized Borcea-Voisin K3 × K3 orbifolds. Until the end of Chapter 6, we deal with
M-theory compactifications on a Borcea-Voisin fourfold with an F-theory application
in mind.

Reference [Nik81] provides a theory of topological classification of a pair (X, σ) of
a K3 surface X and an automorphism σ ∈ Aut(X) of order two (σ2 = IdX) acting
non-symplectically (σ∗ΩX 6= ΩX) on the holomorphic (2, 0)-form ΩX. To be more
precise, it classifies (S0, T0, σ) modulo isometry of H2(X; Z), where S0 and T0 are
mutually orthogonal primitive sub-lattices of H2(X; Z) of signature (1, r − 1) and
(2, 20− r), respectively, and σ an isometry of H2(X; Z) that acts trivially on S0 and
as (−1)× on T0. The lattice is completely classified by three integers (r, a, δ); r is

10This argument still does not rule out infinitely many CM points; in fact infinitely many CM
points are contained in the 101-dimensional moduli space of the quintic Calabi-Yau threefolds (e.g.,
see [KW17b, footnote 18] for references). The Fermat sextic fourfold [BV20] is CM-type (e.g., [Yui03]).

11It is a stronger condition for a rational Hodge structure on H4(Y; Q) to be of CM-type than for it
to have a rational Hodge sub-structure that is of CM-type. See the discussion at the end of Section 6.2.
Whether the Coleman-Oort conjecture is relevant in the current context (whether supersymmetric flux
is available for moduli stabilization) should also be reconsidered along this line.

12We will not discuss the choice of Kähler moduli in this thesis. Whether the orbifold singularity is
resolved or not, discussions in this work are valid.
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the rank of S0, as already used, and the other two also characterizes the sub-lattices.
See Figure 5.1. This lattice-theory classification of (S0, T0, σ) is regarded as that of
non-symplectic automorphisms of order two, because one may choose CΩX from
D(T0)/Isom(T0). For such a complex structure, the transcendental lattice TX is con-
tained within T0, and σ∗ΩX = −ΩX; the Néron-Severi lattice SX contains S0. The
list of [Nik81] consists of 75 choices of (S0, T0, σ). Therefore, we have 75 choices of
(S(i)

0 , T(i)
0 , σ(i)) for each one of i = 1, 2; for a given choice, a topological family of

Borcea-Voisin orbifolds is available for M-theory compactification. In the next chap-
ter, supersymmetric flux configurations are studied for a vacuum complex structure
in

M[X(T(1)
0 )]

CM ×M[X(T(2)
0 )]

CM ⊂M[X(T(1)
0 )]

cpx str ×M
[X(T(2)

0 )]
cpx str =M[Y]BV

cpx str. (5.18)

Here is a remark before moving on. One may also construct a Calabi-Yau fourfold
as an orbifold of two elliptic curves Eφ, Eτ, and a K3 surface X(2), instead of a pair of
K3 surfaces:13

Y =
(

Eφ ×
(

Eτ × X(2)
)

/Z2

)
/Z2 =:

(
Eφ ×M

)
/Z2, (5.19)

=
((

Eφ × Eτ

)
/Z2 × X(2)

)
/Z2 =:

(
X(1) × X(2)

)
/Z2.

This is for Type IIB Calabi-Yau orientifold compactification, where the Calabi-Yau
threefold is M = (Eτ × X(2))/Z2. This construction is nothing more than a special
case of the Borcea-Voisin K3 × K3 orbifolds; we can see the combination X(1) =
(Eφ × Eτ)/Z2 =: Km(Eφ × Eτ) as the K3 surface X(1); along with an involution σ(1)
that multiplies (−1) to Eτ, the pair (X(1), σ(1)) becomes one of the 75 topological
types classified by Nikulin,the one with T0 = U[2]⊕U[2]. For this reason, we do not
loose generality at all by thinking only of K3 × K3 orbifolds.

13In Chapters 6 and 7, we do not distinguish a pair of fourfolds that are mutually birational and have
the same number of complex structure and Kähler deformations. configuration and complex structure
moduli effective field theory.

For example, an orbifold (Eφ × Eτ × X(2))/(Z2 ×Z2) has C3/(Z2 ×Z2) singularity along a curve
Z(2) ⊂ X(2); the fourfold (Eφ× [(Eτ ×X(2))/Z2])/Z2 in the first line and ([(Eφ× Eτ)/Z2]×X(2))/Z2

in the second line are regarded as different resolutions of the C3/(Z2 ×Z2) singularity (cf [DDF+05]).
Two flops convert one to the other. For this reason, we do not even make a clear distinction between an
orbifold with singularity and a non-singular manifold obtained as a crepant resolution of the orbifold
in Chapters 6 and 7.
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FIGURE 5.1: Classification of K3 surfaces with non-symplectic involu-
tion by Nikulin [Nik83]. Dots and circles corresponding to a possible
combination of (r, a, δ), with black dots representing δ = 1 and circles

δ = 0.
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Chapter 6

Supersymmetric flux vacua on
CM-type (K3×K3)/Z2 orbifolds

As we have reviewed in the previous part, F-theory is a promising framework to
construct a model of our Universe in string theory, while it is hard to construct a
model with W ' 0, which is phenomenologically favored. CM-type Calabi-Yau
fourfolds is a well-motivated candidate for such solution, and exists densely in the
moduli space of K3 × K3 orbifolds. In this part, we will work out the condition
for W = 0 vacua, and discuss its implications to the particle spectrum in the 4-
dimensional theory. We will start in this chapter by working out the condition for
W = 0 flux vacua in the case of K3×K3/Z2.

6.1 The conditions of supersymmetric fluxes for CM-type

As we have already reviewed in the Chapter 4, there are two different perspectives
in describing the way a topological flux G ∈ H4(Y; Q) in a Calabi-Yau fourfold Y
stabilizes the complex structure moduli of Y. One is more physical, and the other
more mathematical, as we repeat them shortly. Either way, the condition for super-
symmetry is stated concisely by the F-term condition1

DW = 0 : G(1,3) = 0 (6.1)

and the additional condition for the Minkowski spacetime and m3/2 = 0 after com-
pactification,

W = 0 : G(0,4) = 0. (6.2)

In the more physical perspective, we think that a topological flux2 G is specified
as a part of data of compactification first, and then the superpotential (3.12) gives
rise to non-trivial scalar potential of the complex structure moduli fields of Y; the
expectation value of those fields adjust themselves in the early period of time in the
universe to arrive at a potential minimum, where the resulting complex structure of
Y is such that the Hodge (1, 3) component of the topological G ∈ H4(Y; Q) must be

1Here, we use the superpotential (3.12) and the Kähler potential obtained in the large volume limit,
as we have already stated in Section 3.5. All kinds of corrections expected in an effective theory of four
supersymmetry charges are not taken into account. Also, the F-term conditions are considered only
for complex structure moduli.

2In this part, we will denote the 4-form flux by G, rather than G4, as we will later introduce some-
thing called Gk.
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absent when measured in that complex structure. For such a topological G and the
complex structure of Y so determined, it is a non-trivial question whether the Hodge
(0, 4) component of G vanishes (the condition (6.2) is satisfied) or not.

In the more mathematical perspective, on the other hand, we pose questions that
are concerned about classification of flux vacua, forgetting about cosmological time
evolution before the complex structure moduli fields come down the potential to
their vacuum value. We pick up one point in the complex structure moduli space
z ∈ M[Y]

cpx str, and ask if there is any topological flux G ∈ H4(Yz; Q) whose H1,3(Yz; C)

component vanishes; here, Yz = Y is the fourfold of the topological type [Y] with
the complex structure corresponding to the point z ∈ M[Y]

cpx str, emphasizing the z-
dependence. The condition (6.2) can also be phrased in the same way. At a generic
point z ∈ M[Y]

cpx str, only the trivial flux G = 0 ∈ H4(Yz; Q) satisfy the conditions

(6.1). Points inM[Y]
cpx str where non-trivial fluxes G ∈ H4(Y; Q) satisfy the condition

(6.1) form a special sub-locus ofM[Y]
cpx str. This is a Noether-Lefschetz problem in a

Calabi-Yau fourfold [Y]. In this work, we exploit the latter perspective.

In the rest of this Section 6.1, we will state the conditions of supersymmetric flux on
CM-type Calabi-Yau fourfolds, using the notion of simple components of the Hodge
structure, which we have introduced in Definition 5.3.

First, let us assume that Yz is of CM-type, and let

H4(Yz; Q) ∼= ⊕k∈A

(
H4(Yz; Q)

)
k

(6.3)

be the simple component decomposition of the rational Hodge structure of H4(Yz; Q)

at z ∈ M[Y]
cpx str. Accordingly, one can decompose a flux G as G = ∑k∈A Gk such that

Gk ∈
(

H4(Yz; Q)
)

k. Whether G satisfies the DW = 0 condition or the DW = W = 0
condition for the complex structure z can be discussed separately for individual com-
ponents Gk.

Let us further decompose Gk as Gk = ∑a g(k)a v(k)a by the diagonalization basis
{

v(k)a

}
a

of
(

H4(Yz; Q)
)

k ⊗Q C, which diagonalizes the action of the endomorphism field
EndHdg

((
H4(Yz; Q)

)
k

)
as in Eq. (5.7). As presented in the last part of Section 5.1.1,

any Galois group action σ acts on the embeddings {ρa}a and the basis elements{
v(k)a

}
a

as permutation and transitively; σ · ρa =: ρσ(a), and σ(v(k)a ) = v(k)
σ(a). Gk

should be invariant under any of the Galois group action σ as it is a rational element
Gk ∈

(
H4(Yz; Q)

)
k, so we obtain σ(g(k)a ) = g(k)

σ(a). In particular, if g(k)a = 0 for some a,

then g(k)b = 0 for all b = 1, · · · , dimQ((H4(Yz; Q))k), i.e. Gk = 0.

Therefore, the condition that a topological flux G ∈ H4(Yz; Q) does not have the
Hodge (1, 3)-component is translated as follows:

∀Gk ∈
(

H4(Yz; Q)
)

k
if
((

H4(Yz : Q)
)

k
⊗Q C

)
∩ H1,3 = 0,

Gk = 0 if
((

H4(Yz : Q)
)

k
⊗Q C

)
∩ H1,3 6= 0. (6.4)

In particular, if all the simple components have non-zero Hodge (1, 3)-components,
then only the trivial flux G = 0 is consistent with the DW = 0 condition at z ∈ M[Y]

CM.
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Similarly, the condition that the topological flux G ∈ H4(Yz; Q) has neither the (1, 3)-
component nor (0, 4)-component is translated as:

∀Gk ∈
(

H4(Yz; Q)
)

k
if
((

H4(Yz : Q)
)

k
⊗Q C

)
∩
(

H1,3 ⊕ H0,4
)
= 0,

Gk = 0 if
((

H4(Yz : Q)
)

k
⊗Q C

)
∩
(

H1,3 ⊕ H0,4
)
6= 0. (6.5)

The DW = W = 0 condition, and hence this last condition, is further translated as
follows: Gk = 0 in all the simple components with the level ` > 0.

Note that the condition (6.5) is still necessary, not only sufficient, for a flux with
DW = W = 0 on a Calabi-Yau fourfolds not necessarily of CM-type; if there is a
Gk 6= 0 with Gk = G(2,2)

k , it generates a 1-dimensional simple Hodge structure, and
thus is automatically in the first line of Eq. (6.5). By exactly the same argument, the
condition (6.4) is necessary for a level-2 simple Hodge substructure of H4(Yz; Q), as
G(1,3)

k = 0 implies Gk = G(2,2)
k in this case.

The D-term condition, or equivalently the primitivity, also needs to be satisfied for
a flux on Y to be supersymmetric. The F-term condition (6.1) and the D-term condi-
tion are almost3 independent, however, because the F-term [resp. D-term] condition
constrains the purely horizontal [resp. purely vertical] part of the flux (cf. [GMP95],
[BCV12, MSN11, KMW12], [BW15]) as we have briefly mentioned in the review part.
In Chapters 6 and 7, we do not deal with the purely vertical part of the flux (or the
D-term condition), because they are not relevant to the gravitino mass.

6.2 H4((X(1) × X(2))/Z2; Q) and complex structure deforma-
tions

Having stated the conditions for supersymmetric flux configuration in the case of
general CM-type Calabi-Yau fourfolds, we now apply this thinking framework to a
Borcea-Voisin orbifold Y = (X(1)×X(2))/Z2 with both X(1) and X(2) being a generic
CM-type K3 surface in the moduli space D(T(1)

0 ) and D(T(2)
0 ), respectively, i.e. T(i)

X =

T(i)
0 for i = 1, 2. To start off, however, we need to remind ourselves of a bit of math

of the cohomology group of this fourfold Y.

The fourfold Y = (X(1) × X(2))/Z2 would remain singular4, if it stays precisely at
the orbifold locus without complex structure deformation or Kähler parameter res-
olution. Because we do not assume anything about the vacuum value of the Kähler
parameter, we do not need to think that Y is singular, and moreover, we can always
take a limit from non-zero resolution to the orbifold limit, if we wish. Thus the
topology of the fourfold Y is well-defined.5

To describe the topology of Y, we need one more preparation. The non-symplectic
automorphism σ(i) : X(i) → X(i) may have fixed points (for i = 1, 2 individually),
and the locus of fixed points are denoted by Z(i) for i = 1, 2. The set Z(i) of fixed

3As we have already stated, we treat fluxes in this thesis as elements in the Q-coefficient cohomol-
ogy, not in the Z-coefficient, and the upper bound on the D3-brane charge is not imposed. At this level
of analysis, fluxes in the purely vertical part and purely horizontal parts can be regarded completely
independent.

4Y has C2/Z2 singularities at the fixed locus
5In Chapter 8, we will use YBV for the non-singular fourfold after resolution, and Y0 the orbifold

without deformation or resolution of the C2/Z2 singularity.
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points in X(i) consists of curves whose irreducible components are disjoint from one
another, when σ(i) acts non-symplectically and is order 2 [Nik81]. Among the 75
choices of6 (S0, T0, σ) in [Nik81], this subset Z of fixed points is empty in just one
choice, where7 S0 = U[2]⊕ E8[2]. The subset Z consists of two disjoint elliptic curves
in the choice with S0 = U ⊕ E8[2]. For all other 73 choices,8 the set Z consists of one
curve C(g) of genus g = (22− r− a)/2 in addition to k = (r− a)/2 rational curves
P1 [Nik81]:

Z = C(g) q∪k
p=1Lp; g(C(g)) = (22− r− a)/2, Lp ' P1; (6.6)

see also g and k axis in Figure 5.1. The subset Z(4) ⊂ X(1)×X(2) of fixed points under
the action of σ = (σ(1), σ(2)) is Z(4) = Z(1)× Z(2). The topological cohomology group
H4(Y; Q) of [Y] is [Voi02, Thm. 7.31], as an abelian group,

H4(Y; Q) '
[

H4(X(1) × X(2); Q)
]σ
⊕ H2(Z(4); Q); (6.7)

the superscript σ in the first term extracts the part invariant under the action of σ. A
2-form on Z(4) has a corresponding 4-form in Y; the 2-form on Z(4) is pulled back to
the exceptional divisor of the resolved Y, and then is taken a wedge product with the
Poincaré dual of the exceptional divisor, i.e. mapped by the Gysin homomorphism.

In the family of fourfolds [Y], the horizontal component of H4(Y; Q) is

H4
hor(Y; Q) =

(
T(1)

0 ⊗ T(2)
0

)
⊗Q⊕ H1(Z(1); Q)⊗ H1(Z(2); Q), (6.8)

where the first term is from [H4(X(1)×X(2); Q)]σ, and the second term from H2(Z(4); Q).
The vertical component is

H4
ver(Y; Q) =

(
S(1)

0 ⊗ S(2)
0

)
⊗Q

⊕ H4(X(1); Q)⊗ H0(X(2); Q)⊕ H0(X(1); Q)⊗ H4(X(2); Q)

⊕ H2(Z(1); Q)⊗ H0(Z(2); Q)⊕ H0(Z(1); Q)⊗ H2(Z(2); Q), (6.9)

where the first to second line and the third line come from [H4(X(1) × X(2))]σ and
H2(Z(4)), respectively. The entire cohomology group H4(Y; Q) is covered by the
direct sum of the horizontal component and the vertical component in the case of
the family of [Y] overM[Y]

cpx str. The holomorphic 4-form ΩYz varies for z ∈ M[Y]
cpx str,

but it does so only within H4
hor(Y; Q) ⊗Q C. When the point z is in the subvariety

M[Y]BV
cpx str ⊂M

[Y]
cpx str, ΩYz remains within (T(1)

0 ⊗ T(2)
0 )⊗Z C.

At any point z ∈ M[Y]
cpx str, a (z-dependent) Hodge structure is introduced in the

6Recall the definition of S0, T0 in Section 5.3.
7 In this thesis, negative definite root lattices of An, Dn and En type are denoted by An, Dn and En.

For a lattice L, L[n] stands for a lattice where L ∼= L[n] as free abelian groups, and the intersection form
of the latter is n times that of the former.

8The discriminant group G0 := T∨0 /T0 ∼= S∨0 /S0 is always isomorphic to (Z2)
⊕a for some a ∈ Z≥0,

because the order-2 non-symplectic automorphism σ is assumed to act trivially on S0 in [Nik81]. The
pair of integers a and r = rank(S0) capture the geometry of the set Z of (X, σ) associated with (S0, T0, σ)
[Nik81]. In this work, the values of a, r, k and g for i = 1, 2 are denoted by a(i), r(i), ki and g(i),
respectively.
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vector space H4
hor(Y; Q); the vertical subspace H4

ver(Y; Q) contains only the level-

0 Hodge structure. For a vacuum complex structure 〈z〉 withinM[Y]BV
cpx str, the vector

subspace H1(Z(1); Q)⊗H1(Z(2); Q) supports a rational Hodge sub-structure of level
2, and (T(1)

0 ⊗ T(2)
0 )⊗Q a rational Hodge sub-structure of level-4. Linear fluctuation

δz in the complex structure from 〈z〉 are in the Hodge (3, 1) component of (T(1)
0 ⊗

T(2)
0 )⊗C (there are (20− r(1))+ (20− r(2)) such deformations) and also in the vector

space H1,0(Z(1); C)⊗ H1,0(Z(2); C) (there are g(1)g(2) of them); the former group of

fluctuations are withinM[Y]BV
cpx str and the latter group ventures out fromM[Y]BV

cpx str into

M[Y]
cpx str. At the quadratic order in the deformation of complex structure, ΩYz '

ΩY〈z〉 + (δz)aψa + (δz)a(δz)bψab for z = 〈z〉+ δz, the quadrature of the (40− r(1) −
r(2)) complex structure deformations do not bring ΩYz out of (T(1)

0 ⊗ T(2)
0 )⊗C. The

quadrature involving g(1)g(2) complex structure deformations, however, may be in
the entire H4

H(Y〈z〉; C).

The observation above on the Hodge sub-structures on H4(Y〈z〉; Q) and finitely per-

turbed ΩYz on them indicates that a non-trivial flux is necessary at least in the (T(1)
0 ⊗

T(2)
0 )⊗Q component in order to generate mass terms of the (40− r(1) − r(2)) mod-

uli fields.9 The g(1)g(2) moduli fields may also acquire mass terms from a flux in

(T(1)
0 ⊗ T(2)

0 )⊗Q, or they may not. We take it out of the scope of this thesis to study
ΩYz at the quadratic order in δz including those g(1)g(2) moduli. THerefore it is not a
necessary condition. at this moment. for all the complex structure moduli stabiliza-
tion that H1(Z(1); Q)⊗H1(Z(2); Q) contains a level-0 rational Hodge sub-structure.10

In this work, therefore, we assume that the Hodge structure on (T(1)
0 ⊗ T(2)

0 )⊗Q is
of CM-type, and study when and how supersymmetric flux is admitted in this com-
ponent; we do not ask whether the Hodge structure on H1(Z(1); Q)⊗ H1(Z(2); Q) is
CM-type, or has a level-0 Hodge sub-structure.

6.3 Cases with a generic CM point in D(T0)

In Sections 6.3 and 6.4, we will work out the conditions (6.4, 6.5) for existence of a
non-trivial supersymmetric flux in the (T(1)

0 ⊗ T(2)
0 ) ⊗Q component for a vacuum

complex structure in (5.18). It is done by translating the conditions (6.4, 6.5) into
arithmetic characterizations on the vacuum complex structure.

In this Section 6.3, we deal with the cases where complex structure of X(1) and X(2)

are CM-type but otherwise generic in the period domains D(T(1)
0 ) and D(T(2)

0 ); this
means that T(i)

X = T(i)
0 . Analysis in Sections 6.3.1 and 6.3.2 reveals that the condition

(6.4) for a DW = 0 flux is translated to Eq. (6.39), and the condition (6.5) for a DW =
W = 0 flux to Eq. (6.38); readers may choose to skip the analysis and proceed to the
recap in p. 54 at the end of Section 6.3.2. The effective field theory (including mass
matrices and symmetries) of complex structure moduli fields is studied in Section
6.3.3.

9Comments on the r(1) = r(2) = 20 case, where there is no complex structure moduli, will be found
later.

10 This condition is equivalent to existence of an algebraic curve in Z(1) × Z(2) other than a copy of
Z(1) × pt or pt× Z(2).
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6.3.1 Tensor product of a pair of CM-type Hodge structures

For a complex structure in (5.18) generic enough to have T(i)
0 = T(i)

X , the rational
Hodge structure on Vi := T(i)

0 ⊗Q is simple and CM-type (by assumption) for both
i = 1, 2; let K(i) denote their endomorphism fields. It is then known [Bor92, Prop.
1.2] that the rational Hodge structure on V1 ⊗V2 = (T(1)

0 ⊗ T(2)
0 )⊗Q is also of CM-

type. The rational Hodge structure on (T(1)
0 ⊗ T(2)

0 ) ⊗Q is not necessarily simple,
however.

In fact, the non-simple nature of a rational Hodge structure of H4(Y; Q) (or its three-
fold counterpart H3(M; Q)) is an essential ingredient for 〈W〉 = 0 [DGKT05a]. In
Ref. [KW17a], for example, M = (Eτ × X(2))/Z2 with a CM elliptic curve Eτ and a
CM-type K3 surface X(2) is used for a Type IIB orientifold; the authors of [KW17a]
found DW = W = 0 fluxes by exploiting a case the rational Hodge structure is not
simple on V1 ⊗ V2 with V1 = H1(E; Q) and V2 = T(2)

X ⊗Q. We will also do so on
V1 ⊗V2 = (T(1)

0 ⊗ T(2)
0 )⊗Q in this work.

It was not difficult to work out the simple component decomposition of (V1 ⊗ V2)
in [KW17a], when V1 = H1(T2; Q) is 2-dimensional, and we know that K(1) is an
imaginary quadratic field, i.e. Q(

√−q) for some q ∈ Q. For a general V1 = T(1)
X ⊗Q

and K(1) of a CM-type K3 surface X(1), however, we need to be equipped with an
understanding on general structure of the simple component decomposition of V1⊗
V2. That is what we do in Section 6.3.1 (by exploiting [ST61, §5]), and we will arrive
at Eqs. (6.11), (6.16), (6.18) and (6.27).

Step 1: The endomorphism fields K(1) ⊂ EndHdg(V1) and K(2) ⊂ EndHdg(V2) give
rise to an algebra of Hodge endomorphisms of the vector space (V1 ⊗Q V2); K(1) ⊗Q

K(2) ↪→ EndHdg(V1 ⊗Q V2). Similarly to the fact that the rational Hodge structure on
(V1 ⊗Q V2) is not necessarily simple, the algebra (K(1) ⊗Q K(2)) of endomorphisms
of (V1 ⊗Q V2) is not necessarily a field. The first step is to look at the structure of the
algebra K(1) ⊗Q K(2).

First, let us introduce11 the decomposition (6.11). Recall that the field extension K(1)

over Q is always expressed in the form of K(1) = Q(α) for some α ∈ K(1). Let
fα/Q ∈ Q[x] be a minimal polynomial of α ∈ K(1) over Q, which means that12 K(1) =
Q(α) ∼= Q[x]/( fα/Q), and

K(2) ⊗Q K(1) ∼= K(2) ⊗Q Q[x]/( fα/Q) ∼= K(2)[x]/( fα/Q). (6.10)

Although the minimal polynomial fα/Q is irreducible in the ring Q[x], it may in
principle be factorizable in the ring K(2)[x]; let fα/Q(x) = ∏r

i=1 gi(x) be an irreducible
factorization, where gi(x) ∈ K(2)[x]. The Chinese remainder theorem is used to
obtain

(K(1) ⊗Q K(2)) ∼= K(2)[x]/( fα/Q) ∼= ⊕r
i=1 K(2)[x]/(gi) =: ⊕r

i=1Li. (6.11)

11Any introductory textbook on field theory, such as [Fuj91, Rom05], will be useful in following the
discussions in Sections 6.3.1 and 6.3.2.

12see Theorem A.3
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The algebra K(1)⊗Q K(2) is decomposed into a direct sum of number fields K(2)[x]/(gi);
each component is a degree [Li : K(2)] = deg(gi) extension field over K(2).

Second, let us spell out the relation between the sets of embeddings of K(1) and K(2),

ΦK(1) := HomQ(K(1), Q) and ΦK(2) := HomQ(K(2), Q), (6.12)

respectively, and those of the number fields Li; remember that the set of embeddings
of the CM fields play an important role in describing a Hodge structure of CM-type
(Section 5.1.1). The set of embeddings ΦK(1) × ΦK(2) of the algebra K(1) ⊗Q K(2) is
decomposed into

ΦK(1) ×ΦK(2) = qr
i=1ΦLi , ΦLi =

{
(ρ(1), ρ(2)) | ρ(1)(α) is a root of (ρ(2)(gi))(x)

}
;

(6.13)

obviously individual ΦLi consist of deg(gi) × [K(2) : Q] distinct embeddings of
the number field Li (so the notation ΦLi is appropriate), and the subsets ΦLi for
i = 1, · · · , r are mutually exclusive in ΦK(1) ×ΦK(2) , because the polynomial fα/Q is
separable. Now, both the algebra K(1)⊗Q K(2) and its set of embeddings ΦK(1) ×ΦK(2)

have decompositions, (6.11) and (6.13), respectively. The two decompositions are
compatible in fact, in that the embeddings in ΦLi are trivial on the other direct sum
components, Lj with j 6= i, as follows. As a part of the Chinese remainder theorem,
there exists ai ∈ K(2)[x]/(gi) for i = 1, · · · , r so that

1 = ∑
i

ai f ′i ∈ K(2)[x]/( fα/Q), f ′i := ∏
j 6=i

gj, (6.14)

in line with the decomposition K(2)[x]/( fα/Q) ∼= ⊕iK(2)[x]/(gi). An element in Lj

can thus be regarded as a polynomial in K(2)[x] times aj f ′j (mod fα/Q), whose image
by any embedding in ΦLi with i 6= j vanishes because f ′j contains the factor gi.

It is useful to note that the Galois group Gal((K(1)K(2))nc/Q) acts on the set ΦK(1) ×
ΦK(2) ; a Galois transformation σ ∈ Gal((K(1)K(2))nc/Q) converts an embedding
ρ(1) ⊗ ρ(2) ∈ ΦK(1) ×ΦK(2) to another embedding given by σ · (ρ(1) ⊗ ρ(2)) : K(1) ⊗Q

K(2) → Q → Q. The decomposition (6.13) can be regarded as the orbit decomposi-
tion under this group action. This observation further indicates that the decomposi-
tion (6.13) is independent of the choice of the primitive element α of K(1) ∼= Q(α).

Instead of exploiting the structure of K(1) as Q(∃α), we could have exploited the
same structure of K(2); K(2) is regarded as K(2) ∼= Q(α′) for an appropriate choice of
α′ ∈ K(2); find its minimal polynomial over Q, and factorize the polynomial over K(1)

to find another decomposition of K(1) ⊗Q K(2) into a direct sum of number fields, so
yet another decomposition of the set ΦK(1) ×ΦK(2) also follows. This decomposition
must be the orbit decomposition of the action of Gal((K(1)K(2))nc/Q) on ΦK(1) ×
ΦK(2) , where the same group acts on the same set precisely in the same way as before.
Thus the decomposition of the embeddings should be independent of whether we
exploit K(1) ∼= Q(α) or K(2) = Q(α′), and so is the decomposition of the algebra
K(1) ⊗Q K(2) ∼= ⊕r

i=1Li. It also follows that [Li : Q] is divisible by both [K(2) : Q] and
[K(1) : Q].

Step 2: In general, when a simple rational Hodge structure V is of CM-type with
endomorphism field K, there is an isomorphism i : V ∼= K as vector spaces over
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Q which is compatible with the action of K on V, that is, for v ∈ V and x ∈ K,
(i ◦ x)(v) = x · i(v). The choice of v1 ∈ V such that i(v1) = 1 ∈ K is arbitrary, so the
isomorphism is not unique. In other words, V1 can be regarded as a 1-dimensional
vector space over K1, and the isomorphism between V1 and K1 is unique up to a
scalar multiplication. Choose such isomorphisms i1 : K(1) ∼= V1 and i2 : K(2) ∼= V2.
Then the isomorphism

i1 ⊗ i2 : (K(1) ⊗Q K(2)) ∼= V1 ⊗Q V2 (6.15)

combined with Eq. (6.11) introduces a decomposition of the vector space

V1 ⊗Q V2 ∼= ⊕r
i=1Wi. (6.16)

Individual components Wi in V1 ⊗V2 are vector subspaces over Q; by the definition
of the isomorphisms between Vi and K(i) for i = 1, 2, the number field Li acts on
Wi, [Li : Q] = dimQ Wi, and each one of the simultaneous eigenstates va ∈ Wi ⊗Q

(K(1)K(2))nc of the action of Li is in a definite Hodge (p, q) component (Section 5.1.1),
so all the elements in Li are in EndHdg(Wi). Thus, the decomposition (6.16) over Q is
compatible with the rational Hodge sub-structure, and each Wi has a rational Hodge
structure of CM-type13.

Step 3: We have not done yet, because each component Wi of the decomposition
(6.16) is not guaranteed to be a simple Hodge component; in fact, as we will see in
a discussion later, Wi can be of level-0, and in that case Wi is not simple unless it
is 1-dimensional, which is not the case in our setup. In this Step 3, we will discuss
the general property of CM-type Hodge structures, and then apply the discussion
in Step 4 to show a relation (6.27), that will be used to show that the decomposition
(6.16) is sufficiently fine for our discussion.

One may consider a simple component decomposition of a not necessarily CM-type
rational Hodge structure of VQ:

VQ
∼= ⊕k∈AVk. (6.17)

Combining this structure (6.17) and the structure theorem of semi-simple algebras,
one can state—as we do in the following—the structure of the entire algebra EndHdg(VQ);
as a reminder, K(1) ⊗Q K(2) is a part of EndHdg(VQ).

For any pair of simple components Vk and Vl in Eq. (6.17), any φ ∈ HomHdg(Vk, Vl) is
either a zero map or an invertible Hodge morphism.14 One can think of grouping the
simple components {Vk | k ∈ A} into Hodge-isomorphism classes based on whether
the set HomHdg(Vk, Vl) is non-trivial (i.e., a Hodge isomorphism exists). The set of
Hodge isomorphism classes of the simple components in VQ is denoted by A, and
one can think of the decomposition

VQ
∼= ⊕κ∈A

(
⊕k∈A;[k]=κVk

)
=: ⊕κ∈AVκ. (6.18)

13This is because V1 ⊗V2 is of CM-type.
14If φ is not surjective, then Vl has a rational Hodge sub-structure, which contradicts against the

assumption that the rational Hodge structure on Vl is simple. If φ has a non-trivial kernel, that implies
that Vk has a rational Hodge sub-structure, which is a contradiction once again. Thus, φ must be an
isomorphism between the vector spaces Vk and Vl over Q.
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The algebra of Hodge endomorphisms of VQ has the structure

EndHdg(VQ) ∼= ⊕κ∈AMnκ×nκ (Dκ), Dκ=[k] = EndHdg(Vk), (6.19)

where nκ is the number of simple components Vk that fall into a given Hodge-
isomorphism class κ, [k] = κ. Dκ is a division algebra over Q, because all the non-
zero element is invertible. Therefore, EndHdg(VQ) is a semi-simple algebra over Q,
and the factor Mnκ×nκ (Dκ) for a Hodge-isomorphism class κ ∈ A is a simple alge-
bra.15

Now, we can invoke a few known facts about semi-simple algebras. One is that Vk
is regarded as an irreducible module of Dκ=[k], and further

dimQ Vk = dimQ Dκ. (6.20)

As another fact ([TN87, Thm. II.4.11] or [GS06, Cor.2.2.3]),

dimQ Dκ = q2
κ[Kκ : Q] (6.21)

for some qκ ∈N>0, where Kκ is the center of the division algebra Dκ.

Step 4: The general structure of EndHdg(VQ) in Step 3 is for a general rational Hodge
structure not necessarily of CM-type, whereas the CM-type nature of the Hodge
structure on V1 ⊗V2 has been exploited in Steps 1 and 2. Let us see in the following
(by following [ST61, §5]) how the decomposition (6.16) is related to (6.18) in Step 3,
and how K(1) ⊗ K(2) with the structure (6.11) fits into the general structure (6.19) of
EndHdg(VQ) in Step 3, when VQ = V1 ⊗Q V2.

First observation is that one κ ∈ A is assigned to each label i ∈ {1, · · · , r} in the
decomposition (6.11, 6.16); the corresponding κ is denoted by κ(i). To see this corre-
spondence, think of

Li ↪→ (K(1) ⊗ K(2)) ↪→ EndHdg(VQ)→ Mnκ×nκ (Dκ) (6.22)

for a given i ∈ {1, · · · , r} and an arbitrary κ ∈ A. The image of Li must be non-
trivial at least for one κ ∈ A; now we wish to see that that is the case for only one
Hodge isomorphism class κ in A, so that κ(i) is consistently defined.

Suppose that the image of Li is non-zero for κ0 ∈ A. Then the vector space Vκ0

contains a vector subspace isomorphic to Li, and the algebra Li ↪→ Mnκ0×nκ0
(Dκ0)

is represented on this copy of the vector space Li as a full set of ΦLi . If there were
distinct κ0, κ′0 ∈ Awhere Li is embedded non-trivially, then the set of representations
ΦLi would appear more than once in Vκ0 ⊕ Vκ′0

⊂ VQ = (V1 ⊗ V2); that contradicts
against the fact that all the representations in ΦK(1) × ΦK(2) appear just once on VQ.
We have thus established a claim that there is just one κ ∈ A where the image of Li
in Mnκ×nκ (Dκ) is non-trivial.

Second, we will see how Li fits into the algebra Mnκ×nκ (Dκ) with κ = κ(i) by exploit-
ing the CM nature of the Hodge structure on Vκ. The following argument (built on
Step 3) is almost16 a copy of the logic of §5 of [ST61].

15It is a simple algebra in the sense that it does not have a non-trivial two-sided ideal.
16The original version [ST61, §5] is for VQ = H1(A; Q) for an abelian variety A. cf [Zar83, vG08,

Huy16] for VQ = TX of a K3 surface X.



48 Chapter 6. Supersymmetric flux vacua on CM-type (K3×K3)/Z2 orbifolds

For a given κ ∈ A, now consider a set of the label i in {1, · · · , r} with κ(i) = κ. Due
to the CM nature, the relation

∑
i s.t. κ(i)=κ

[Li : Q] = dimQ Vκ (6.23)

holds for individual κ’s in A. Furthermore, general arguments in Step 3—(6.20) and
(6.21)— implies that

dimQ Vκ = nκ dimQ Vk ([k]=κ) = nκq2
κ[Kκ : Q]. (6.24)

On the other hand, the algebra

L′ =

 ⊕
i s.t. κ(i)=κ

Li

 · (Kκ1nκ×nκ ) ⊂ Mnκ×nκ (Dκ) (6.25)

remains to be a commutative sub-algebra, and any commutative sub-algebra of a
central simple algebra Mnκ×nκ (Dκ) is bounded in its dimension by

∑
i s.t. κ(i)=κ

[Li : Q] ≤ dimQ L′ ≤ nκ × qκ × [Kκ : Q]. (6.26)

Therefore, by combining Eqs. (6.23) and (6.24) against Eq. (6.26), we can see that
qκ = 1 (which means that Dκ = Kκ), and also that Kκ1nκ×nκ is contained in⊕i;κ(i)=κ Li.
The latter statement further indicates17 that those Li can be regarded as an extension
of Kκ(i). For the field Li to be a non-trivial extension of Kκ(i), at least some of the en-
domorphisms in Li ⊂ Mnκ×nκ (Kκ) must mix multiple different simple components
Vk with [k] = κ.

To summarize,

Vκ
∼=

⊕
i s.t. κ(i)=κ

Wi. (6.27)

Kκ is the endomorphism field of the CM-type simple rational Hodge structure of
Vk (such that [k] = κ), Li is an extension of Kκ(i), and ⊕(κ(i)=κ)

i s.t. Li ↪→ Mnκ×nκ (Kκ) =
EndHdg(Vκ).

Note that the vector space Wi ⊗ Q has a well-motivated basis; basis elements are
in one-to-one with the embeddings ρ(1) ⊗ ρ(2) in ΦLi . This is just a special case of
Section 5.1.1 with F = Li and VQ = Wi. Each one of the basis elements are also
associated with a particular Hodge (p, q) type, so each embedding ρ(1) ⊗ ρ(2) of Li
has its corresponding Hodge type (p, q). This correspondence will be exploited in
the following analysis.

6.3.2 DW = 0 flux and DW = W = 0 flux, assuming TX = T0

Toward the end of Section 6.1, we used the language of the simple Hodge component
decomposition to write down the conditions for the presence of a non-trivial super-
symmetric flux. Whether a non-trivial flux with those conditions exists or not can be

17This is because Kκ1 3 1 · 1 = ∑i εi ∈ ⊕i Li; Kκ1 · (0, · · · , εi, · · · , 0) ⊂ Li ⊂ ⊕jLj is a sub-field of Li
and is isomorphic to Kκ .
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studied for individual simple rational Hodge components. For simple Hodge com-
ponents that are mutually Hodge-isomorphic, say, φ : Vk

∼= Vl , [k] = [l] = κ ∈ A,

hp,q[Vk] = hp,q[Vl ] (6.28)

holds for all (p, q). We can thus talk of the level of individual Hodge-isomorphism
classes, κ ∈ A, and we can also study whether fluxes with DW = 0 and/or W = 0
exists for individual Hodge-isomorphism classes.

• In a Vκ of level 0, there are only Hodge (2,2) components (by definition). Any
rational flux here satisfies both of the DW = 0 and W = 0 conditions.

• In a Vκ of level 2, any non-zero rational flux breaks the DW = 0 condition
(although W = 0 would be satisfied).

• There is just one level-4 simple rational Hodge component of H4(Y; Q) of
a Calabi-Yau fourfold Y, so this simple component alone forms one Hodge-
isomorphism class of the simple components in H4(Y; Q). This simple com-
ponent admits a rational flux with DW = 0 if and only if h3,1 = 0 holds in
this simple component. Let us say that a simple component is (3, 1)-free if the
component has h3,1 = 0. Even when this condition is satisfied, such a flux does
not satisfy the W = 0 condition.

Let us continue to focus on a Borcea-Voisin orbifold Y = (X(1) × X(2))/Z2 of a pair
of CM-type K3 surfaces with T(1)

X = T(1)
0 and T(2)

X = T(2)
0 . We have seen in Section

6.3.1 that the Hodge structure on V1 ⊗ V2, where V1
∼= T(1)

X ⊗Q and V2 ∼= T(2)
X ⊗Q,

has the decomposition (6.16), which is compatible with the Hodge-isomorphism-
class decomposition (6.18), although Eq. (6.16) may be a finer classification18 than
(6.18). Therefore, we can rephrase the criteria for the existence of non-trivial super-
symmetric fluxes, which is stated above, by simply replacing Hodge-isomorphism
classes of simple components by individual components Wi in Eq. (6.16), thanks to
the relation (6.27).

In the decomposition (6.16) of the Hodge structure on V1⊗Q V2, the individual com-
ponents Wi are either level-4, level-2, or level-0. We will see, first, that there are at
most only two Wi’s that are not level-2 (so, a DW = 0 flux is possible only in those at
most two Wi’s); this is the Step 1 below. In Step 2, we work out the conditions on the
CM fields K(1) and K(2) for those one or two component(s) to be (3, 1)-free, so that a
DW = 0 flux is indeed available. A physics recap (Step 3) comes at the end of this
Section 6.3.2.

Step 1: To show that there are at most two Wi’s, let us introduce some notations.
We denote the extension degrees of K(1) and K(2) over Q by n1 := [K(1) : Q] and
n2 := [K(2) : Q], respectively. The embeddings of K(i) with i = 1, 2 are denoted by
Hom(K(i), Q) =

{
ρ
(i)
(20), ρ

(i)
(02), ρ

(i)
3 , . . . , ρ

(i)
ni

}
, where ρ

(i)
(20) and ρ

(i)
(02) correspond to the

(2, 0) component and (0, 2) component of H2(X(i)), respectively, in the sense of a
remark at the end of Section 6.3.1; the action of x ∈ K(i) on the (2, 0)-form Ω(i)

X of X(i)

is x : Ω(i)
X 7→ ρ

(i)
(20)(x) ·Ω(i)

X for any x ∈ K(i). Let us denote by L(20|20) the number field

Li for which ΦLi contains ρ
(1)
(20) ⊗ ρ

(2)
(20), and by L(20|02) the number field Lj for which

ΦLj contains ρ
(1)
(20) ⊗ ρ

(2)
(02). For those i and j, the vector spaces Wi and Wj are denoted

18because of Eq. (6.27)
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by W(20|20) and W(20|02), respectively. Note that both i 6= j and i = j are possible. We
claim that these (at most) two components have a chance to be different from level-2,
and that all other Wk’s in Eq. (6.16) are level-2.

Obviously, W(20|20) is always the unique level-4 component. ΦL(20|20)
contains ρ

(1)
(20) ⊗

ρ
(2)
(20).

To see that all other Wk’s except W(20|02) are level-2, note first that every Hodge (3, 1)
component in (V1 ⊗V2)⊗C corresponds to an embedding of the form

ρ
(1)
(20) ⊗ ρ

(2)
b with 3 ≤ b ≤ n2 or (6.29)

ρ
(1)
a ⊗ ρ

(2)
(20) with 3 ≤ a ≤ n1, (6.30)

because a (3, 1)-form in (V1 ⊗V2)⊗C is always a product of a (2, 0)-form in V1 ⊗C

and a (1, 1)-form in V2 ⊗ C, or vice versa. On the other hand, each set of em-
beddings ΦLk contains at least one element of the form ρ

(1)
(20) ⊗ ρ

(2)
β for some β in

{(20), (02), 3, . . . , n2}, because ΦLk forms an orbit under the Galois group action.
Therefore, ΦLk for k 6= (20|20), (20|02) contains ρ

(1)
(20) ⊗ ρ

(2)
β with β ∈ {3, · · · , n2},

and the corresponding Wk is of level 2. We conclude that a DW = 0 flux is possible
only within W(20|20) and W(20|02).

Step 2: Now let us work out the conditions for non-trivial fluxes to exist in W(20|20)

and W(20|02) in terms of the CM fields K(1), K(2), and their actions on T(1)
X and T(2)

X .
The analysis will take several pages, but the conclusion can be summarized quite
simply; a non-trivial flux with DW = 0 exists if and only if Eq. (6.39) is satisfied. A
stronger condition (6.38) is necessary and sufficient for a non-trivial DW = W = 0
flux.

We first study the level-4 component W(20|20). Recall that a non-trivial flux in a
level-4 component preserves the DW = 0 condition if and only if the component
is (3, 1)-free, i.e. free of Hodge (3, 1) components.19 We are thus interested in
when the component is (3, 1)-free. Since we know all the elements in ΦK(1) × ΦK(2)

that correspond to Hodge (3, 1) components, (6.29) and (6.30), our task reduces
to finding out whether or not ΦL(20|20)

contains such embeddings. This is equiva-
lent to working out whether or not there exists an action of Gal((K(1)K(2))nc/Q)

that maps ρ
(1)
(20) ⊗ ρ

(2)
(20) to one of such embeddings that correspond to (3, 1) compo-

nents, since ΦL(20|20)
is generated by Gal((K(1)K(2))nc/Q) acting on ρ

(1)
(20) ⊗ ρ

(2)
(20) (see

p. 45). Such a map must be contained in G(1)
(20) := Gal((K(1)K(2))nc/ρ

(1)
(20)(K

(1))) or

G(2)
(20) := Gal((K(1)K(2))nc/ρ

(2)
(20)(K

(2))), since either ρ
(1)
(20) or ρ

(2)
(20) must be held fixed

by the map. Thus the component W(20|20) is (3, 1)-free, if and only if the following
two conditions are satisfied simultaneously:

(i) There is no element σ(1) ∈ G(1)
(20) such that σ(1) ◦

(
ρ
(1)
(20) ⊗ ρ

(2)
(20)

)
= ρ

(1)
(20) ⊗ ρ

(2)
b ,

for any 3 ≤ b ≤ n2.

(ii) There is no element σ(2) ∈ G(2)
(20) such that σ(2) ◦

(
ρ
(1)
(20) ⊗ ρ

(2)
(20)

)
= ρ

(1)
a ⊗ ρ

(2)
(20),

for any 3 ≤ a ≤ n1.

19Note that any non-trivial flux in a level-4 component violates the W = 0 condition.
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Let us work out in turn when each one of these conditions is satisfied. We first focus
on the condition (i). We define N1 to be the extension degree20 N1 := [L(20|20) : K(1)].

There are N1 − 1 non-trivial actions in G(1)
(20), which map ρ

(1)
(20) ⊗ ρ

(2)
(20) to ρ

(1)
(20) ⊗ ρ

(2)
β

for some β = (02), 3, . . . , n2. Except for the one element that maps to β = (02),
which may or may not exist, each one of them will violate the condition (i). We thus
immediately conclude that the condition (i) is violated whenever N1 > 2.

There are two ways to satisfy the condition (i) when N1 ≤ 2, i.e. W(20|20) does not
contain Hodge (3, 1) components of the form (6.29):

(i-1) When N1 = 1, the condition (i) is always satisfied. This is because there are no
non-trivial action in G(1)

(20). Note that this also means that W(20|20) 6= W(20|02) in

this case, because ΦL(20|20)
does not contain ρ

(1)
(20) ⊗ ρ

(2)
(02).

(i-2) When N1 = 2 and ΦL(20|20)
contains ρ

(1)
(20) ⊗ ρ

(2)
(02), then the condition (i) is satis-

fied. This is because the only non-trivial action of G(1)
(20) maps ρ

(1)
(20) ⊗ ρ

(2)
(20) to

ρ
(1)
(20) ⊗ ρ

(2)
(02). At the same time this means that W(20|20) = W(20|02).

Note that, even when N1 = 2, if ΦL(20|20)
does not contain ρ

(1)
(20) ⊗ ρ

(2)
(02), the condi-

tion (i) is violated; the only non-trivial element in G(1)
(20) will map ρ

(1)
(20) ⊗ ρ

(2)
(20) to an

embedding of the form (6.29).

Similarly, defining N2 := [L(20|20) : K(2)], one can argue that there are only two ways
to satisfy the condition (ii), i.e. W(20|20) does not contain Hodge (3, 1) components of
the form (6.30):

(ii-1) When N2 = 1, the condition (ii) is satisfied, since there are no non-trivial action
in G(2)

(20). This means that W(20|20) 6= W(20|02) in this case, because ΦL(20|20)
does

not contain ρ
(1)
(02) ⊗ ρ

(2)
(20), which is the complex conjugate of ρ

(1)
(20) ⊗ ρ

(2)
(02) and

must be contained in ΦL(20|02)
.

(ii-2) When N2 = 2 and ΦL(20|20)
contains ρ

(1)
(02) ⊗ ρ

(2)
(20), then the condition (ii) is again

satisfied. At the same time this means that W(20|20) = W(20|02).

Now we are ready to see when the conditions (i) and (ii) are simultaneously satisfied.
In order to satisfy both (i) and (ii), there seems to be four choices for not having a
Hodge (3, 1) component in W(20|20), i.e. two choices for the condition (i) and another
pair of choices for the condition (ii). However, two of them, (i-1)-(ii-2) and (i-2)-(ii-1)
cannot happen; (i-1) or (ii-1) imply W(20|20) 6= W(20|02), whereas (i-2) or (ii-2) imply
W(20|20) = W(20|02), thus contradiction.

In summary, there are two cases, (i-1)-(ii-1) and (i-2)-(ii-2), where the level-4 compo-
nent W(20|20) is (3, 1)-free. For these two cases, let us leave the list of embeddings in
ΦL(20|20)

for clarification, and also rephrase these conditions on the Gal((K(1)K(2))nc/Q)

action in terms of K(1), K(2) and their actions.

20Strictly speaking, L(20|20) is defined to be an abstract extension field of K(2), L(20|20) = K(2)[x]/g(x)
for some g ∈ K(2)[x] and the endomorphism field K(1) is not a sub-field of it, so the extension de-
gree [L(20|20) : K(1)] does not make sense. However, since we know that L(20|20) is isomorphic to

K(1)[x]/h(x) with some h ∈ K(1)[x], we abuse the notation and define [L(20|20) : K(1)] := [ϕ(L(20|20)) :

K(1)] with an isomorphism ϕ : K(2)[x]/g(x)→ K(1)[x]/h(x).
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• Firstly, let us choose (i-2) and (ii-2), i.e. [L(20|20) : K(1)] = [L(20|20) : K(2)] = 2
(so, n1 = n2 =: n) and W(20|20) = W(20|02), to satisfy the conditions (i) and (ii).
The contents of ΦL(20|20)

are

ΦL(20|20)
=
{

ρ
(1)
(20) ⊗ ρ

(2)
(20), ρ

(1)
(20) ⊗ ρ

(2)
(02), ρ

(1)
(02) ⊗ ρ

(2)
(20), ρ

(1)
(02) ⊗ ρ

(2)
(02)

}
∪
{

ρ
(1)
a ⊗ ρ

(2)
b | 3 ≤ a ≤ n, 3 ≤ b ≤ n, each a, b appears twice

}
.

(6.31)

The second line means that, for any fixed a, there are two corresponding b such
that ρ

(1)
a ⊗ ρ

(2)
b is contained in ΦL(20|20)

, and vice versa. This is so because L(20|02)

is a degree-2 extension of K(1), so when the embedding of K(1) is fixed, there
are still two choices left to embed L(20|02) into C. There are 4+ 2× (n− 2) = 2n
embeddings of L(20|20) = L(20|02); 2n− 2 embeddings among them correspond
to Hodge (2,2) components, and the other two are the (4,0) and (0,4) Hodge
components; indeed there are no Hodge (3,1) or (1,3) components. This case
turns out to happen if and only if

ρ
(1)
(20)(K

(1)
0 ) = ρ

(2)
(20)(K

(2)
0 ) ⊂ Q and ρ

(1)
(20)(K

(1)) 6= ρ
(2)
(20)(K

(2)), (6.32)

where K(1)
0 and K(2)

0 are the maximal totally real sub-fields of K(1) and K(2),
respectively.21

• Alternatively, we can choose (i-1) and (ii-1) to satisfy the conditions (i) and (ii).
In this case, [L(20|20) : K(1)] = [L(20|20) : K(2)] = 1 and W(20|20) 6= W(20|02). This
happens if and only if

ρ
(1)
(20)(K

(1)) = ρ
(2)
(20)(K

(2)) ⊂ Q. (6.33)

21Let us formally state the claim and prove it here. The claim is that if and only if [L(20|20) : K(2)] = 2

and ΦL20|20)
contains both ρ

(1)
(20)⊗ ρ

(2)
(20) and ρ

(1)
(02)⊗ ρ

(2)
(20), then ρ

(1)
(20)(K

(1)
0 ) = ρ

(2)
(20)(K

(2)
0 ) and ρ

(1)
(20)(K

(1)) 6=

ρ
(2)
(20)(K

(2)).

Recall that L(20,20) = K(2)[x]/g(x), where g ∈ K(2)[x] and is a degree-2 polynomial. The two roots

of ρ
(2)
(20)(g(x)), α+ and α−, must correspond to a simple generator α of K(1), i.e. K(1) = Q(α), such that

α+ = ρ
(1)
(20)(α) and α− = ρ

(1)
(02)(α). This means that α+ and α− are complex conjugate to each other.

Let us explicitly define g(x) = x2 + a1x + a0 with a1, a0 ∈ K(2). Then from the explicit form of the

roots, one can conclude that a0, a1 ∈ R. This implies that Q(α+) = ρ
(1)
(20)(K

(1)) is a degree-2 extension

of a totally real field ρ
(2)
(20)(K

(2)
0 ), which must equal to ρ

(1)
(20)(K

(1)
0 ). Note that ρ

(2)
(20)(K

(2)) 6= ρ
(2)
(20)(K

(1))

because α+ 6∈ ρ
(2)
(20)(K

(2)).

Conversely, let us assume ρ
(2)
(20)(K

(2)
0 ) = ρ

(1)
(20)(K

(1)
0 ) and ρ

(2)
(20)(K

(2)) 6= ρ
(2)
(20)(K

(1)). Denoting the to-

tally real field ρ
(2)
(20)(K

(2)
0 ) = ρ

(1)
(20)(K

(1)
0 ) by K0, the composite field ρ

(1)
(20)(K

(1))ρ
(2)
(20)(K

(2)) can be rewrit-

ten as ρ
(1)
(20)(K

(1))ρ
(2)
(20)(K

(2)) = K0(η
(1), η(2)) for some η(1) ∈ ρ

(1)
(20)(K

(1)) and η(2) ∈ ρ
(2)
(20)(K

(2)). The

Galois action that maps η(1) to its complex conjugate and leaves everything else will map ρ
(1)
(20) ⊗ ρ

(2)
(20)

to ρ
(1)
(02) ⊗ ρ

(2)
(20), so the latter is also contained in ΦL(20|20)

. One can also see that [ρ(1)
(20)(K

(1))ρ
(2)
(20)(K

(2)) :

ρ
(2)
(20)(K

(2))] = 2, so [L(20|20) : K(2)] = 2.
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The contents of ΦL(20|20)
are

ΦL(20|20)
=
{

ρ
(1)
(20) ⊗ ρ

(2)
(20), ρ

(1)
(02) ⊗ ρ

(2)
(02)

}
∪
{

ρ
(1)
a ⊗ ρ

(2)
b | 3 ≤ a ≤ n, 3 ≤ b ≤ n, each a, b appears once

}
,

(6.34)

where the second line means that for each a, there is a corresponding b; L(20|20)

is isomorphic to K(1). There are 2 + (n − 2) = n embeddings of L(20|20); two
of them correspond to the Hodge (4, 0) and (0, 4) components, and the rest
correspond to (2, 2) components. There are no (3, 1) or (1, 3) components.

Let us move on to the W(20|02) component. This component is level-4 when W(20|20) =

W(20|02), and is level-0 or level-2 otherwise. We are interested in how K(1), K(2) and

their actions on T(1)
X and T(2)

X controls whether this component is (3,1)-free, especially
whether it is level-0, or not. Almost the same analysis as above can be carried out,
and there turn out to be only two cases where the component becomes (3, 1)-free:

• The first case is where [L(20|02) : K(1)] = [L(20|02) : K(2)] = 2 and W(20|20) =
W(20|02) holds. The component is level-4, and this case has already been con-
sidered in the analysis of W(20|20) as the (i-2)-(ii-2) case.

• The component is also (3, 1)-free when [L(20|02); K(1)] = [L(20|02) : K(2)] = 1
holds. This is equivalent to

ρ
(1)
(20)(K

(1)) = ρ
(2)
(02)(K

(2)) ⊂ Q (6.35)

and in this case, W(20|02) 6= W(20|20) holds, which means that the W(20|02) com-
ponent is level-0. The contents of ΦL(20|02)

are

ΦL(20|02)
=
{

ρ
(1)
(20) ⊗ ρ

(2)
(02), ρ

(1)
(02) ⊗ ρ

(2)
(20)

}
∪
{

ρ
(1)
a ⊗ ρ

(2)
b | 3 ≤ a ≤ n, 3 ≤ b ≤ n, each a, b appears once

}
,

(6.36)

and all the embeddings are associated with Hodge (2, 2) components, and thus
the component W(20|02) is indeed level-0. Note that ρ

(1)
(20)(K

(1)) = ρ
(2)
(02)(K

(2)) is

equivalent to ρ
(1)
(20)(K

(1)) = ρ
(2)
(20)(K

(2)), since ρ
(2)
(02)(K

(2)) is the complex con-

jugate of ρ
(2)
(20)(K

(2)), which is ρ
(2)
(20)(K

(2)) itself because it is a CM field. This
means that, when W(20|02) 6= W(20|20), W(20|20) is (3,1)-free if and only if W(20|02)
is level-0.

The analysis of the Hodge structures of W(20|20) and W(20|02) in the last pages can be
summarized in a very simple way:

A). When22

ρ
(1)
(20)(K

(1)
0 ) = ρ

(2)
(20)(K

(2)
0 ) ⊂ Q and ρ

(1)
(20)(K

(1)) 6= ρ
(2)
(20)(K

(2)), (6.37)

22Let us remind ourselves that K(i)
0 is defined to be the maximal totally real sub-field of K(i) for

i = 1, 2.
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the component W(20|20) = W(20|02) in Eq. (6.16) is level-4 and (3, 1)-free. All
other Wi components in Eq. (6.16) are level-2.

B). When
ρ
(1)
(20)(K

(1)) = ρ
(2)
(20)(K

(2)) ⊂ Q, (6.38)

then there are two components in Eq. (6.16) that are not level-2: W(20|20) is
level-4 and (3, 1)-free, and W(20|02) is level-0. All other components are level-2.

C). When neither Eq. (6.37) nor Eq. (6.38) is satisfied, none of the component Wi
in Eq. (6.16) is (3,1)-free.

Before getting into the recap of the physical consequences, it is worth while to take
a slightly different view on cases A) and B): A non-trivial flux satisfying DW = 0
condition is possible only when the condition (6.37) or (6.38) is satisfied. Noticing
that ρ

(1)
(20)(K

(1)) = ρ
(2)
(20)(K

(2)) implies ρ
(1)
(20)(K

(1)
0 ) = ρ

(2)
(20)(K

(2)
0 ), it is clear that such

flux configurations exist if and only if

ρ
(1)
(20)(K

(1)
0 ) = ρ

(2)
(20)(K

(2)
0 ) =: K0 (6.39)

holds. Let us call the situation case A+B), since it combines the cases A) and B).
Introducing some generators η(1), η(2) ∈ Q such that K0(η(1)) = ρ

(1)
(20)(K

(1)) and

K0(η(2)) = ρ
(2)
(20)(K

(2)), one can see that the case B) is a non-generic situation where

K0(η(1)) coincides with K0(η(2)), and the case A) is the generic situation comple-
mentary to it. The condition (6.4) for a DW = 0 flux has been translated into an
arithmetic characterization (6.39), and a stronger condition (6.5) for a DW = W = 0
flux into a stronger characterization (6.38).

Step 3 (a physics recap): Now let us discuss the physical consequences, although
most of what follows is included in the discussion so far. As a first physical conse-
quence, one can see that there is no topological flux satisfying the DW = 0 condi-
tion, if n1 := [K(1) : Q] is not equal to n2 := [K(2) : Q]; as we have been assuming
T(1)

X = T(1)
0 and T(2)

X = T(2)
0 in this Section 6.3.2, this condition is equivalent to

rank(T(1)
0 ) = rank(T(2)

0 ). Furthermore, a non-trivial supersymmetric flux exists only
in either one of these:

• In case A), with the condition (6.37), the component W(20|20) = W(20|02) is level-
4 and a 2× (n = n1 = n2)-dimensional subspace of the n2-dimensional vector
space V1 ⊗Q V2. Any flux in this component satisfies the DW = 0 condition
but always violates the W = 0 condition.

• In case B), with the condition (6.38), W(20|02) is an n-dimensional subspace of
V1 ⊗Q V2 and is level-0. One has n-dimensional degrees of freedom to turn on
the flux in this component without violating DW = 0 or W = 0 conditions.
Another n-dimensional subspace W(20|20) is also free of (3, 1)-components, but
since it contains the (4, 0) component by definition, turning on any flux in this
component violates the W = 0 condition. In summary, non-trivial flux vacua
with DW = 0 and W = 0 is possible, if and only if (6.38) is satisfied.

As a reminder, we did not study arithmetic characterization for the H1(Z(1); Q) ⊗
H1(Z(2); Q) component of Eq. (6.8) to support a DW = 0 flux, while W = 0 is
automatic.
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The conclusion above is similar23 to, and also a generalization of the study by Aspinwall-
Kallosh [AK05]. They chose the pair of K3 surfaces X(1) and X(2) to be attractive,
that is, rank(T(1)

X ) = rank(T(2)
X ) = 2, and studied topological fluxes satisfying the

DW = 0 condition as well as ones satisfying both of the DW = 0 and W = 0 condi-
tions. Note that attractive K3 surfaces are always of CM-type with endomorphism
fields being imaginary quadratic fields. The condition (6.39) follows immediately
from their set-up because K(1)

0 = K(2)
0 = Q with K(1) = Q(

√
−d1), K(2) = Q(

√
−d2)

in this case. The condition (6.39) for non-trivial fluxes with DW = 0 is regarded as a
generalization of the rank(T(1)

X ) = rank(T(2)
X ) = 2 setup in [AK05]. For fluxes with

DW = W = 0 to exist, [AK05] concluded that K(1) = Q(
√
−d1) should be isomor-

phic to K(2) = Q(
√
−d2); we have seen that this condition should be generalized to

Eq. (6.38). See also footnote 39 in Section 6.4.

6.3.3 Complex structure moduli masses with W = 0

Now that we have worked out the conditions for non-trivial supersymmetric flux to
exist in terms of arithmetic of the endomorphisms fields K(1) and K(2), let us move on
to see whether such fluxes generate mass of complex structure moduli of M-theory
compactification on Y = (X(1) × X(2))/Z2. In this Section 6.3.3, we assume that the
vacuum complex structure of the pair of K3 surfaces X(1) and X(2) are of CM-type,
generic enough in D(T(i)

0 ) so that T(i)
X = T(i)

0 , and satisfy the condition (6.38); low-
energy effective field theory (including the the mass matrix) of the fluctuation fields
around the vacuum complex structure is studied in the following.24

At the vacuum, a holomorphic (2,0) form ΩX(i) of the K3 surface X(i) can be chosen

to be v(i)
(20) (by choosing the normalization of ΩX(i)). Over the moduli spaceM[X(T(i)

0 )]
cpx str

around the vacuum
〈

z(i)
〉

, the 2-form ΩX(i)(z(i)) that is holomorphic and purely of

Hodge (2,0)-type in the complex structure of z(i) ∈ M
[X(T(i)

0 )]
cpx str is parameterized by

ΩX(i) = v(i)
(20) + t(i) −

(t(i), t(i))
T(i)

X ⊗C

2C(i)
v(i)
(02) (6.40)

where t(i) collectively denotes25 the local coordinates of the moduli spaceM[X(T(i)
0 )]

cpx str

around the vacuum
〈

z(i)
〉

, i.e. the moduli field fluctuations around the vacuum, and

is regarded as an element of [T(i)
0 ⊗C](1,1)—the (1,1) Hodge component with respect

to
〈

z(i)
〉

; v(i)
(20) and v(i)

(02) are also fixed against T(i)
X ⊗Q and provide a fixed frame26

23References [AK05, BKW14] considered compactification by Y = X(1) × X(2), but since they did
not take an orbifold, their set-up is different from the one in this work. When it comes to the study of

supersymmetric fluxes within (T(1)
X ⊗ T(2)

X )⊗Q, however, their case can be regarded as a special case
of the study in this section.

24We restrict our attention to the fields of complex structure deformation withinM[Y]BV
cpx str, not to the

full deformation inM[Y]
cpx str. Nothing is lost when g(1)g(2) = 0, because there is no complex structure

moduli deforming away from the orbifold limit then. For cases g(1)g(2) 6= 0, we do not have something
to add to what we have already written in Section 6.2.

25See below (6.46) for a component description of the moduli fluctuation fields.
26We could use an integral basis of the lattices T(i)

0 for a fixed frame, but the choice in the main text
is obviously much more convenient for the discussion here.



56 Chapter 6. Supersymmetric flux vacua on CM-type (K3×K3)/Z2 orbifolds

with which we describe deformation of complex structure of X(i); finally, C(i) =

(v(i)
(20), v(i)

(02)). The 4-form ΩY = ΩX(i) ∧ΩX(2) to be fed into the flux superpotential
(3.12) is

ΩY = v(1)
(20)v

(2)
(20) +

(
v(1)
(20)t

(2) + t(1)v(2)
(20)

)
(6.41)

− v(1)
(20)v

(2)
(02)(2C(2))−1(t(2), t(2))

T(2)
X
− v(1)

(02)v
(2)
(20)(2C(1))−1(t(1), t(1))

T(1)
X

+ t(1)t(2) +O(t3).

Suppose that a non-trivial flux is in the W(20|02) component; the condition (6.38) is
implicit now. Then the contributions to ΩY in the first line of Eq. (6.41) do not
yield any terms in the effective superpotential, so both of the DW = 0 and W = 0
conditions are satisfied at the vacuum, as designed. A flux in W(20|02) gives rise to
terms that are quadratic in the fluctuation of the 2(n1,2− 2) = 2(20− r(i=1,2)) moduli

fields—t(i=1,2)—that would deform the complex structure of Y (withinM[Y]BV
cpx str) from

the CM-type vacuum complex structure 〈z〉. Note also that a flux in W(20|02) does
not generate a cubic or quartic terms of those moduli fields t(i=1,2), but just yields
the mass terms.

With a closer look, one finds that the mass matrix is Dirac type, and that the product
of the mass eigenvalues is real. As a first step to see this, we write down the mass
terms using the following notations, so that we can keep track of Galois-conjugate
relations among the coefficients in the effective superpotential. Under the condition
(6.38), we can fix one isomorphism from K(2) to K(1),

(ρ
(1)
(20))

−1 ◦ ρ
(2)
(02) : K(2) → Q→ K(1); (6.42)

this isomorphism can be used to set up a 1-to-1 correspondence between the embed-
dings of K(1) and those of K(2);

ρ
(2)
β(α)

:= ρ
(1)
α ◦

(
(ρ

(1)
(20))

−1 ◦ ρ
(2)
(02)

)
, α ∈ {(20), (02), 3, · · · , n}. (6.43)

Then ΦL(20|02)
= {ρ(1)α ⊗ ρ

(2)
β(α)
| α = (20), (02), 3, · · · , n} in this notation. The fact that

a flux must be in the Q-coefficient cohomology, rather than in the R or C-coefficient
cohomology groups, is translated into the condition nij ∈ Q defined below, when
we use v(1)α ⊗ v(2)β ’s for a basis of the cohomology:∫

Y
G ∧ (v(1)α ⊗ v(2)

β(α)
) =: ∑

i,j
nijρ

(1)
α (y(1)i ) ρ

(2)
β(α)

(y(2)j ) =: Gαβ(α), α ∈ {(20), (02), 3, · · · , n},

(6.44)

where {y(1)i | i = 1, · · · , n} and {y(2)j | j = 1, · · · , n} are the basis of K(1) and K(2),
respectively, over Q, as introduced in Section 5.1.1. G(20)(02) is an algebraic number

within ρ
(1)
(20)(K

(1)) = ρ
(2)
(02)(K

(2)). Other Gαβ(α)’s are Galois conjugate of G(20)(02):

σα(G(20)(02)) = Gαβ(α), (6.45)
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where σα ∈ Gal((ρ(1)
(20)(K

(1)))nc/Q) that brings ρ
(1)
(20) to σα · ρ(1)(20) = ρ

(1)
α and ρ

(2)
(02) to

σα · ρ(2)(02) = ρ
(2)
β(α)

. Thus the mass matrix is of the form

W ∝ −
G(20)(02)

2C(2)
(t(2), t(2))

T(2)
X
−

(G(20)(02))
c.c.

2C(1)
(t(1), t(1))

T(1)
X

+
n

∑
a=3

σa(G(20)(02))t
(1)
a t(2)a ,

(6.46)

when we parametrize the moduli by t(1) = ∑n
a=3 t(1)a v(1)a and t(2) = ∑n

a=3 t(2)a v(2)
β(a).

The Dirac structure of the mass matrix becomes manifest only after examining the
mass terms ∝ (t(2), t(2)) and ∝ (t(1), t(1)) that are apparently Majorana. A key ob-
servation is that (v(i)

(20), v(i)γ ) = 0 for any γ ∈ {(20), 3, · · · , n}. Applying the Galois

transformations,27 we see that

(v(i)α , v(i)α ) = σα(C(i)), (v(i)α , v(i)γ ) = 0 for γ 6= α. (6.47)

Using this property, the moduli effective superpotential is written in the following
form:28

{2,··· ,n/2}

∑
a′∈

(t(1)
a′

, t(2)a′ )

 −(G(20)(02))
c.c. σa′ (C

(1))

C(1) σa′(G(20)(02))

σa′(G(20)(02)) −G(20)(02)
σa′ (C

(2))

C(2)

( t(1)a′

t(2)
a′

)
. (6.48)

This mass matrix is obviously Dirac type, and is furthermore split into (n/2 − 1)
blocks of 2× 2 matrices.

The product of all the mass eigenvalues is in R. This is so even at the level of the
individual 2× 2 mass matrices; the product is the determinant of the mass matrix
above, which is

(C(1)C(2))−1
(
|G(20)(02)|2σa′(C(1)C(2))− |σa′(G(20)(02))|2C(1)C(2)

)
, (6.49)

which takes values in R because C(1), C(2) ∈ R ∩ ρ
(1)
(20)(K

(1)). Also note that the
product is not expected to vanish generically. To see this, one only needs to check
if there is a cancellation between the two terms, as each of the two terms should be
non-zero generically. Let us focus on the case where K(1) is Galois, and the Galois
action σa′ is an order-two automorphism, where a cancellation seems to be most
likely to be present; in this case,

σa′
(
|G(20)(02)|2σa′(C(1)C(2))

)
= |σa′(G(20)(02))|2C(1)C(2), (6.50)

27Note that the map ΦK(i) 3 ρ
(i)
γ 7→ σα · ρ(i)γ ∈ ΦK(i) is one-to-one map, and that the basis vectors vγ

have a component description (5.9) for a Q-basis of T(i)
0 .

28Here is a little more set of notations. The n embeddings ΦK(i) form n/2 pairs under the complex

conjugations in Q (and also in the CM fields K(i)); ρ
(i)
α′ is paired with cc · ρ(i)α′ = ρ

(i)
α′ · conj., which is

denoted by ρ
(i)
α′

; the set ΦK(i) can be grouped into two {ρ(i)α′ | α′ ∈ {(20), 2, · · · , n/2}} and {ρ(i)
α′
| α′ ∈

{(20), 2, · · · , n/2}}; a separation into two in this way is not unique. Note also that β(α) = β(α).
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so the first term is mapped to the second one by the Galois action. This means that
the cancellation occurs if and only if the equality

σa′
(
|G(20)(02)|2σa′(C(1)C(2))

)
= |G(20)(02)|2σa′(C(1)C(2)) (6.51)

holds. We will see that the cancellation does not happen in generic cases under our
assumptions. Note first that |G(20)(02)|, C(1) and C(2) are generic in R ∩ ρ

(1)
(20)(K

(1));

G(20)(02) takes generic values in ρ
(1)
(20)(K

(1)) as it is defined to be an inner-product
with the (2, 0) ⊗ (0, 2)-form, which is a linear combination of the basis elements
of ρ

(1)
(20)(K

(1)) because of the CM-type nature of the W(20|02) component, and also

there is no structure to constrain the value C(i) = (v(i)
(20), v(i)

(02)) to a smaller field

than R ∩ ρ
(1)
(20)(K

(1)). Then the quantity |G(20)(02)|2σa′(C(1)C(2)) also takes generic

values in R∩ ρ
(1)
(20)(K

(1)), and if the quantity is invariant under the action of σa′ , i.e. if

R∩ ρ
(1)
(20)(K

(1)) is invariant under the action of σa′ , then the action is unique, because

ρ
(1)
(20)(K

(1)) is a degree-2 extension of R∩ ρ
(1)
(20)(K

(1)). The unique action is actually the

complex conjugation on ρ
(1)
(20)(K

(1)), because the unique Galois action of imaginary

degree-2 extension of a sub-field of R always is the complex conjugation29. The
action is denoted by σ(02) in our notation, but σa′ in Eq. (6.49) cannot be σ(02); σ(02)
does not appear in Eq. (6.46). Thus the product of masses (6.49) does not vanish
generically, under our assumptions of K(1) being Galois and σa′ being order-two.
One can confirm the latter part of the argument explicitly30, and one would not
expect the product of masses to vanish in more complicated setups.

To summarize, for a given vacuum complex structure inM[X(T(1)
0 )]

CM ×M[X(T(2)
0 )]

CM satis-
fying the condition (6.38), each choice of a flux from W(20|02) ' Qn is consistent with
the DW = 0 and W = 0 conditions, and the (n− 2) Dirac mass eigenvalues (all the
values in Q) can be computed systematically. As a reminder, n = [K(1) : Q] = [K(2) :
Q] = rank(T(i)

X ) = 22− r(1,2). The Dirac type mass matrix and the real nature of the
product of the mass eigenvalues are a common (and unexpected!)31 consequence
the class of flux vacua under consideration.

29In other words, the two roots of a quadratic polynomial with coefficients in R are always complex
conjugate to each other, when they have non-zero imaginary parts.

30For a very explicit example, take K(1) ∼= K(2) ∼= Q(i
√

p, i
√

q). Assume that

G(20)(02) = g1 + g2i
√

p + g3i
√

q + g4
√

pq, (6.52)

C(1)C(2) = c1 + c4
√

pq. (6.53)

Also assume that σ1 acts as a multiplication by −1 on i
√

p and acts trivially on i
√

q. Then the determi-
nant of the mass matrix is given by

− 2
√

pq
(

c4

(
g2

1 + g2
2 p + g2

3q + g2
4 pq
)
− 2c1(g1g4 + g2g3)

)
. (6.54)

There are several cases where the determinant vanishes, e.g. c4 = 0 and g0 = g1 = 0, but generically it
does not vanish.

31The vacuum complex structure of the pair of K3 surfaces being CM-type does not imply at all such
things as period integrals being real, or the field of moduli having embedding into R. Here, we pay
attention to the product of the mass eigenvalues as an exercise problem for potential applications to
the strong CP problem.
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The moduli stabilization discussed above (with rk(T(1)
X ) = rk(T(2)

X ) = 2) appears
similar to the one in [AK05, BKW14].32 Direct comparison with [AK05, BKW14]
is easier in the cases we discuss in Section 6.4 (see footnote 39). When we take
T(i)

X = T(i)
0 (as in this Section 6.3) and set rank(T(i)

X ) = 2 (as in [AK05, BKW14]),
all the complex structure moduli fields of Y = (X(1) × X(2)) whose mass discussed
in [AK05, BKW14] are now projected out in the orbifold Y = (X(1) × X(2))/Z2 here.

The moduli mass from fluxes (with 〈W〉 = 0) above is closer to the one in [KW17a].
Discussion there corresponds to a special case of the above result in this thesis; Ref.
[KW17a] was for X(1) = Km(Eφ × Eτ), the Type IIB orientifold set-up. Although
[KW17a] only argued that the complex structure moduli of Type IIB Calabi-Yau
threefold M = (Eτ × X(2))/Z2 and the axi-dilaton chiral multiplets are stabilized
along with 〈W〉 = 0, the discussion above shows that the moduli fields of D7-brane
positions are also stabilized along with 〈W〉 = 0.

Having studied the mass terms in (6.46) and (6.48), let us now have a look at the
whole low energy effective theory superpotential of the complex structure moduli
fields t(1,2) from the perspective of symmetry. The superpotential have U(1)

n
2−1 ×

U(1)R symmetry. All the moduli fields t(i)a have +1 charge under the R-symmetry;
there is also one U(1) symmetry for each one of a′ ∈ {2, · · · , n/2}, where the chiral
multiplets t(1)a′ and t(2)

a′
have charge +1, and the chiral multiplets t(1)

a′
and t(2)a′ charge

−1. This symmetry is a part of the symmetry of the Kähler potential,33 which is

K = −
2

∑
i=1

ln
(
(ΩX(i) , ΩX(i))

)
, (6.56)

= −
2

∑
i=1

ln

C(i) +
3∼n

∑
a

σa(C(i))t(i)a (t(i)a )† +
2∼n/2

∑
a′,b′

(
σa′(C(i))t(i)a′ t(i)

a′

) (
σb′(C(i))(t(i)b′ t(i)

b′
)†
)

C(i)

 .

To understand the origin and nature of the U(1)
n
2−1 symmetry in the moduli effec-

tive field theory, it helps to reflect more upon the symmetry of the Kähler potential,
the non-linear sigma model metric (6.56). The target space M[Y]BV

cpx str is a homoge-
neous space with the symmetry group

GUIsom(T(1)
X ; C)×GUIsom(T(2)

X ; C), (6.57)

where

GUIsom(L; C) :=
{

g ∈ Isom(L⊗C) | (g† x̄, gx)L = ∃cg × (x̄, x)L for ∀x ∈ L⊗C
}

(6.58)

32The relation to [DDF+05] is discussed in Section 8.3. For other references dealing with a similar
setup, see [BHLV09, BBGnL20]

33Recall that we use the Kähler potential obtained in the large volume limit, i.e.

K = − ln
(∫

Y
ΩY ∧ΩY

)
, (6.55)

as already stated in Section 3.5.
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for a lattice L; cg can be any constant independent of x. For any (not necessarily

CM) point inM[Y]BV
cpx str chosen as a vacuum, the isotropy group—the symmetry group

linearly realized on the fluctuations fields—is

SO(n1 − 2)× SO(n2 − 2); (6.59)

we have seen that n1 = n2 =: n under the condition (6.38). The U(1)n/2−1 symmetry
of the full moduli effective theory (including the moduli mass terms due to fluxes)
is the Cartan part of the diagonal SO(n− 2). They are global symmetries.34

It is worth noting that the presence of the symmetry U(1)n/2−1 in the non-linear
sigma model in R2,1 in M-theory (R3,1 in F-theory) is essentially due to the nature
of the period domain of a K3 surface35 rather than that of a Calabi-Yau manifold of
higher dimensions. As already briefly referred to36 in Section 5.3, one could think
of the space of rational Hodge structures on H3(M; Q) for a family of Calabi-Yau
threefolds [M], which is a homogeneous space just like D(T(i)

0 )’s are; the complex
structure moduli space of [M] is only a subspace of the homogeneous space, so the
symmetry of the non-linear sigma model of the complex structure moduli of [M]
cannot be simply stated by just referring to the vector space H3(M; Q) and the skew-
symmetric intersection form on it. The same discussion applies also to Calabi-Yau
fourfolds.

Furthermore, those continuous symmetries—either U(1)n/2−1 or SO(n− 2)×SO(n−
2)—of the non-linear sigma model in R2,1 or R3,1 cannot be attributed to a symmetry
of the geometry X(1) × X(2). A symmetry transformation on X(i) would manifest it-
self as a symmetry action on H2(X(i); Q); a transformation on H2(X(i); C) that cannot
be derived from one on H2(X(i); Q) does not have an interpretation as an X(i) → X(i)

map. Those continuous symmetries are not symmetries of the geometry X(1) × X(2),
but are symmetries of their moduli spaces. They are accidental symmetry in the
low-energy effective theory.

The continuous U(1)
n
2−1×U(1)R symmetry in the moduli effective theory are likely

not to be an exact symmetry apart from its possible non-trivial discrete subgroup
(cf footnote 34). This expectation is from general arguments in quantum gravity;
as for the U(1)R part,37 one may also argue this by computing triangle anomalies
against the Standard Model gauge groups (e.g., [EIKY12]). The source of explicit

34 A non-trivial discrete subgroup in U(1)
n
2−1 may be gauged, in the sense that a discrete subgroup

of the symmetry of a vacuum complex structure may be regarded as a part of the isotropy group of the

form Isom(T(1)
X )Hdg Amp× Isom(T(2)

X )Hdg Amp, which induces automorphisms (unphysical difference)
of X(1) × X(2).

35The complex structure moduli effective superpotential (6.46) is of very specific—purely
quadratic—form also essentially due to this.

There is an argument on the ground of genericity that 〈W〉 = 0 must be associated with some discrete
R-symmetry (more than Z2), and then the moduli superpotential must be of the form W ∼ ∑i Xi fi(φ),
where Xi are chiral fields that transform the same way as W under the R-symmetry, and φ’s other
moduli fields that are neutral under the R-symmetry [DOS05, Sun12]. It then follows in this regime
when all those fields have masses. The moduli superpotential on K3× K3 orbifolds in this thesis is not
within this genericity regime.

36Interested readers are referred to [Bor92, Ker15, GGK12].
37There are tight constraints on how R-symmetry charge is assigned on the particles in supersym-

metric Standard Models. On the other hand, we need to know how the moduli fields t(i)a couple to the
Standard Model particles to find out how (or whether) the U(1)n/2−1 symmetry can be extended to
the whole low-energy effective theory.
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breaking of the symmetry may be the anomalies with gauge fields, stringy non-
perturbative effects, or just stringy perturbative corrections to the approximation
K = − ln(

∫
Y ΩY ∧ ΩY) and W ∝

∫
Y G ∧ ΩY. Better understanding on the source

of explicit breaking38 will give us better hint on a discrete exact symmetry in the
effective theory containing all of moduli, the supersymmetric Standard Model and
anything else. In the case the discrete exact symmetry is larger than the symmetry
acceptable at TeV scale (such as a subgroup of U(1)R larger than Z2 R symmetry),
the domain wall problem sets constraints on inflation and the thermal history after
that. If the explicit breaking leaves only the Z2 subgroup of the U(1)R symmetry,
then the source of the explicit breaking also determines the gravitino mass.

6.4 Cases with TX ( T0

Think of a case where the vacuum complex structure of X(i) is still of CM-type, but
not generic enough to have T(i)

X = T(i)
0 for at least one of i = 1, 2; T(i)

X ( T(i)
0 and

S(i)
0 ( S(i)

X then. Put differently, the vacuum complex structure of X(i) is in a Noether-

Lefschetz locus of D(T(i)
0 ), where there must be an element of H2(K3; Z) (Poincaré

dual of a 2-cycle) that becomes algebraic. Now, the rank of T(i)
X is still even (because

of its CM nature), but T(i)
0 in Nikulin’s list may be of odd rank. We will see below that

much the same story unfolds for a DW = 0 flux, and also for a DW = W = 0 flux;
one difference, though, is that there is one more way (without the relation (6.38))
to stabilize moduli in M[Y]BV

cpx str by a DW = W = 0 flux, when T(i)
X ( T(i)

0 for both
i = 1, 2.

Let T(i)
0 be the negative definite lattice [(T(i)

X )⊥ ⊂ T(i)
0 ], so that

T(i)
0 ⊗Q ∼= (T(i)

X ⊗Q)⊕ (T(i)
0 ⊗Q). (6.60)

The (T(1)
0 ⊗ T(2)

0 )⊗Q component of H4
hor(Y; Q) is then expanded as follows:

(T(1)
0 ⊗ T(2)

0 ) = (T(1)
X ⊗ T(2)

X )⊕ (T(1)
X ⊗ T(2)

0 )⊕ (T(1)
0 ⊗ T(2)

X )⊕ (T(1)
0 ⊗ T(2)

0 ). (6.61)

The two components (T(1)
X ⊗T(2)

0 ) and (T(1)
0 ⊗T(2)

X ) with rational Hodge sub-structure

are always level-2, and the (T(1)
0 ⊗ T(2)

0 ) component always level-0, if it is non-
zero. The component T(1)

X ⊗ T(2)
X contains a level-4 component; whether the rational

Hodge structure on this component is simple or not depends.

Suppose that the condition (6.38) is satisfied. Then any rational flux in T(1)
0 ⊗ T(2)

0 ⊗
Q and the i = (20|02) component of T(1)

X ⊗ T(2)
X ⊗ Q satisfies the DW = 0 and

W = 0 conditions.39 When a flux is non-zero only in the W(20|02) component within

T(1)
X ⊗ T(2)

X , the moduli effective theory superpotential (6.46) remains as it is if it is in-
terpreted as follows; the third term of Eq. (6.46) only involves the moduli fluctuation
fields within D(T(1)

X )× D(T(2)
X ), while (t(2), t(2)) and (t(1), t(1)) in the first two terms

38Alternatively, one may focus on the common subset of Isom(T(i)
X ) × Isom(T(2)

X ) and U(1)n/2−1,
which will be a more mathematical study, to infer what the discrete gauged symmetry is.

39 This mechanism is quite close to the one in [AK05, BKW14]; the flux in (T(1)
0 ⊗ T(2)

0 )⊗Q corre-

sponds to a part of G0-flux, and the one in (T(1)
X ⊗ T(2)

X )⊗Q to G1-flux in [AK05, BKW14].
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of Eq. (6.46) are meant to include all the fluctuations fields in D(T(1)
0 ) × D(T(2)

0 ).

When a non-zero flux is in the T(1)
0 ⊗ T(2)

0 ⊗ Q, there is one more term in the ef-
fective superpotential, which is the Dirac-type mass term of the moduli fluctuation
fields in N

D(T(1)
X )|D(T(1)

0 )
(normal directions) and N

D(T(2)
X )|D(T(2)

0 )
. Because the (stabi-

lizing) mass terms for the fluctuations within D(T(1)
X )× D(T(2)

X ) rely on the flux in
W(20|02), the condition (6.38) is necessary (apart from the caveat mentioned below).
This moduli effective theory has an U(1) R-symmetry, where all the moduli fluctua-
tion fields have +1 R-charge; to see this, we almost have to repeat the argument in

Section 6.3.3, and the fact that a flux in T(1)
0 ⊗ T(2)

0 also generates only the mass term.
There is no additional non-R U(1) symmetry where the moduli fluctuation fields in
N

D(T(1)
X )|D(T(1)

0 )
and N

D(T(2)
X )|D(T(2)

0 )
are charged, however. This is because there is no

Dirac-like structure for those moduli fields in the (t(2), t(2)) and (t(1), t(1)) in the first
two terms in the superpotential (6.46).

One caveat in the argument above is the case there is no moduli fluctuation fields
within D(T(1)

X )×D(T(2)
X ), which is when both X(1) and X(2) are attractive (rank(T(i)

X ) =

2, rank(S(i)
X ) = 20) K3 surfaces. Even when the condition (6.38) is not satisfied,

a flux in T(1)
0 ⊗ T(2)

0 provide a mass term for all the moduli fluctuation fields in
D(T(1)

0 )× D(T(2)
0 ) if the condition

rank(T(1)
0 ) = rank(T(2)

0 ) (6.62)

is satisfied. The mass matrix is Dirac type then. This is because the mass matrix from
the flux here is always Dirac type.
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Chapter 7

General K3 × K3 orbifolds

The Borcea-Voisin orbifold (X(1)×X(2))/Z2 in the previous chapter is a way to con-
struct a Calabi-Yau variety of higher dimensions by using K3 surfaces (and/or el-
liptic curves), and there is an obvious generalization; think of any supersymmetry-
preserving orbifold of a product of K3 surfaces (and/or elliptic curves); the orbifold
group Γ is not necessarily Z2 [Dil12]. In this Chapter 7, we bring known materials
together from the literature, to have a broad brush picture of possible variety in the
construction, to identify open math problems for a complete classification, and to
repeat the same study as in Sections 6.3 and 6.4 for the cases with Γ 6= Z2.

7.1 K3 × K3 orbifold

Consider an orbifold Y0 = (X(1) × X(2))/Γ, where X(1) and X(2) is a pair of K3
surfaces. The orbifold group Γ should be a subgroup of Aut(X(1))×Aut(X(2)), first
of all. For the action of the orbifold group Γ to preserve supersymmetry, one more
condition needs to be imposed. To state the condition, we prepare some notations.

Under the projection pi : Aut(X(1))×Aut(X(2))→ Aut(X(i)), let Gi := pi(Γ). Let α′i :
Aut(X(i))→ Isom(T(i)

X )Hdg Amp be the projection that fits into the exact sequence1

1→ AutN(X(i))→ Aut(X(i))→ Isom(T(i)
X )Hodge Amp → 1. (7.1)

Because the elements of Isom(T(i)
X )Hdg Amp acts on the holomorphic (2,0) form ΩX(i)

faithfully, α′i(σ(i)) ∈ Isom(T(i)
X )Hdg Amp for σ(i) ∈ Aut(X(i)) may well be identified

with the complex phase αi(σ(i)) in σ∗(i)ΩX(i) = αi(σ(i))ΩX(i) . With those preparations,
the supersymmetry condition is written as

∀σ ∈ Γ, α1(p1(σ)) α2(p2(σ)) = 1 ∈ C. (7.2)

We will discuss only the cases that the group Γ has a finite number of elements.2

1In this section, we use the same notation as in [BKW13, BKW14] without spelling out their defini-
tions. Reviews in [Asp96, Huy16, BKW13, BKW14] will also be useful.

2It sounds like an orbifold (X(1) × X(2))/Γ with |Γ| = ∞ would yield a pathological “Calabi-Yau
fourfold”, although we are not absolutely sure if such possibilities should be completely ruled out.
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An equivalent way to state the supersymmetry condition is that there is a group ∆,
so that3,4

α′i(Gi) ∼= ∆, Γ ⊂ G1 ×∆ G2. (7.3)

When we impose the Calabi-Yau condition (hp,0(Y0) = 0 for p = 1, 2, 3 in addition to
h4,0(Y0) = 1), the group ∆ needs to be something other than5 the trivial group {1}.

The two K3 surfaces X(1) and X(2) for an M-theory/F-theory compactification come
with one Kähler form for each one of them. The orbifold group action by Gi for
i = 1, 2 should preserve the Kähler form on X(i) (so the orbifold defines a consistent
theory).

7.2 K3 surfaces with non-symplectic automorphisms

7.2.1 Discrete classification

Just like we used Nikulin’s classification in the previous section, one can think of a
similar classification problem whose answer can be used for this generalized form
of the Borcea-Voisin orbifolds. Here is how we formulate the problem: how many
different choices of (S⊕ T, G) there are modulo Isom(II3,19), subject to the conditions

• G is a finite subgroup of Isom(II3,19), and S and T are mutually orthogonal
primitive sub-lattices of II3,19

∼= H2(K3; Z) such that (S⊕ T)⊗Q ∼= II3,19 ⊗Q,

• g(T) = T (and also g(S) = S) for any g ∈ G,

• for any g ∈ G whose g|T is non-trivial, g|T is not identity on any vector sub-
space of T ⊗Q.

• S and T have signature (1, r− 1) and (2, 20− r) (with 1 ≤ r ≤ 20),

• for any g ∈ G, the sub-lattice Sg := {x ∈ S | g · x = x} contains 1 signature-
positive direction.

The first three conditions characterize G, T and S as a set of automorphism group,
transcendental lattice and Néron-Severi lattice of a K3 surface.6 The last two condi-
tions reflect7 the Calabi-Yau condition of Y0 (∆ 6= {1}) and the Γ-invariance of the
Kähler parameter discussed in Section 7.1.

For one choice (S⊕ T, G), we can determine two groups

Gs := Ker (G → Isom(T)) , (7.4)
∆ := Im (G → Isom(T)) . (7.5)

3The isomorphism α′1(G1) ∼= α′2(G2) should be such that their representations α1 and α2 are complex
conjugate.

4Complete classification of (S(i), T(i), Gi; Gs,i, ∆) for i = 1, 2 and Γ ⊂ G1×∆ G2 will be redundant for
classification of variety in the generalized Borcea-Voisin fourfolds for compactification. For example,
in a case Γ has a structure of Γ ∼= Γ0×G′1×G′2 with Γ0 ⊂ Aut(X(1))×∆ Aut(X(2)) and G′i ⊂ Auts(X(i))

for i = 1, 2, one may replace a compactification by (X(1) × X(2))/Γ with a compactification by (X(1)
cr ×

X(2)
cr )/Γ0, where X(i)

cr is a crepant resolution of X(i)/G′i .
5It can be shown ([Nik80] Thm. 0.1 (a), Thm. 3.1 (a) and Cor 3.2) that a K3 surface with ∆ 6= {1} is

always algebraic.
6See [Nik80, Thm. 3.1 (b)] for the third condition.
7See [Nik80, Thm. 0.1 (a) and 3.1 (a)] for the fourth condition, and [Nik80, Lemma 4.2 (a)] for the

fifth condition.
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11 21 42 84 168 3216
32 62 124 248 4816
96 186 3612

2718 5418

11 54 76 1110 1312 1716 1918 2520
21 104 146 2210 2612 3416 3816 5020
32 158 2112 3320
42 208 2812 4420
62 308 4212 6620
84 4016
124 6016

TABLE 7.1: The list of m := |∆| and the corresponding ϕ(m). The
mϕ(m)’s with an m of the form of m = 2p3q are shown in the table on
the left, while the table on the right lists up m’s that are not divisible

by 24, 32, or 24. m = 1, 2, 3, 4, 6, 8, 12 overlap in the two Tables.

Therefore, the classification of (S ⊕ T, G) may well be regarded as classification of
the data (S⊕ T, G; Gs, ∆). Furthermore, one may state the result of the classification
by listing up all possible choices 1→ Gs → G → ∆ → 1 first, and then by listing up
of all possible lattice pairs S⊕ T for (G; Gs, ∆). Nikulin’s classification implies that
the case Gs ∼= {1} and G ∼= ∆ ∼= Z2 contains 75 different choices of S ⊕ T, as we
have referred to in Chapters 5 and 6.

There are at most 41 different choices of the group ∆ including ∆ ∼= {1} ([Nik80, Cor
3.2] and [MO98]); all the possible group ∆’s are cyclic groups Zm for some m ∈N>0
([Nik80, Thm. 3.1 (b,c)], [Ste85, Lemma 2.1], [Huy16, Cor 3.3.4]), and the list of 41
m’s (Table 1 of [MO98]) are reprinted explicitly in Table 7.1 here for convenience of
the readers. The rank (22− r) of the lattice T should be divisible by ϕ(m).

There are at most 82 different choices of Gs including Gs ∼= {1}. They should be
a subgroup of 11 different finite groups listed in [Muk88] (two of them are A6 and
S5; see [Muk88] for nine others). See [Xia96] for the list of those all those 82 finite
groups.8 It is also known that if Gs has an element g of order n > 1, then it must be9

that n ≤ 8 first of all, and secondly, rank(S) ≥ 9 if n = 2, rank(S) ≥ 13 if n = 3,
rank(S) ≥ 15 if n = 4, rank(S) ≥ 17 if n = 5, 6, and rank(S) ≥ 19 if n = 7, 8 [Huy16,
Cor 15.1.8].

Therefore, there can be at most [82× 41] different choices of the finite groups Gs and
∆; the choice Gs ∼= {1} and ∆ ∼= Z2 in Chapter 6 is one of this [82 × 41] choices.
In fact, not all the 82 × 41 choices can be realized. A group ∆ ∼= Zm with larger
m requires that the lattice T has a larger rank because ϕ(m)|rk(T), whereas a larger
group Gs requires S with a larger rank (and T with a smaller rank). Using the data
available in [Xia96], the range of mϕ(m) can be narrowed down for each choice of Gs;
Table 7.2 is the summary (cf. also [Keu15, Keu16]).

For ∆ ∼= Zm with m = 66, 44, 33, 50, 25, 40, and 60, for which Gs = {1} (and G ∼= ∆)
is the only option, all the possible S ⊕ T’s have been worked out by using lattice
theory and a bit of geometry [MO98, Lemma (1.2)]. It turns out that there is just one
choice of S⊕ T for each one of m = 66, 44, 33, 50, 25, 40, and that G ∼= ∆ happens to

8 Among the 82 of them are 15 abelian groups (including {1}) worked out by [Nik80, Thm 4.5]. If
we are to demand that |Aut(X)| < ∞ (not just |G| < ∞), then just the three in the list, Gs = {1}, Z2
and S3, are possible [Kon89, Kon86].

9An immediate consequence of this fact is that, if we are to choose a finite subgroup G ⊂ Aut(X),
then any element in G has an order not larger than 8 · 66; in fact there is no such an element of order
8× 66 because the unique K3 surface admitting ∆ ∼= Z66 does not have symplectic automorphisms.
The true upper bound is known to be 66 [Keu16].
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Gs in [Xia96] c ∆ ∼= Zm
{1} any 41 m’s

#1 (c = 8) 26 mϕ(m)’s with ϕ(m) ≤ 12
#2, 3 (c = 12) 18 mϕ(m)’s with ϕ(m) ≤ 8

# 4,6,9,10,21 c = 14, 15 13 mϕ(m)’s with ϕ(m) ≤ 6
17 Gs’s c = 16, 17 9 mϕ(m)’s with ϕ(m) ≤ 4
56 Gs’s c = 18, 19 mϕ(m) ∈ {11, 21, 32, 42, 62}

TABLE 7.2: The range of mϕ(m) such that ∆ ∼= Zm can be combined
with a given Gs to form G. The 82 choices of Gs are grouped into six
by their value of some integer c listed in Table 2 of [Xia96]. For those
six groups of Gs’s, the possible range of mϕ(m) is determined by the

condition ϕ(m) ≤ 21− c, shown on the right.

act on S trivially. There is no choice of S⊕ T where m = 60 [Zha05]. For ∆ ∼= Zm
with m = 17 and 19, see [OZ00].

For general (G; Gs, ∆), complete classification of the choices of S⊕ T is not available
yet. For cases with Gs = {1} (so G ∼= ∆), all the possibilities of (S⊕ T) with G ∼=
∆ ∼= Zm acting trivially on S have been classified, however. For cases with an m that
is divisible by two (or more) prime numbers (such as m = 6, 10, 15, · · · ), it turns out
that both S and T have to be unimodular; see [Kon92] for the list of S ⊕ T for the
m’s that are not in the form of m = pk for a single prime number p. For cases with
m = pk, this is an immediate generalization of the classification of Nikulin [Nik81].
See [Tak12, Sch10, TST14] for the m = 22 case (there are 12 S ⊕ T), the m = 23

case (there are 3 S⊕ T), and the m = 24 case (S = UD4 unique), while there is no
choice of S⊕ T for the case m = 25 [Vor83, Kon92]. For the cases with m = 3k, and
m = 5, 7, 11, 13, 17, 19, see [AS08, Tak11, Tak10] and [AST11], respectively.

For the cases with Gs = {1} (so G ∼= ∆ ∼= Zm), one may think of the classification
of (S ⊕ T)’s where G may act on S non-trivially. Only partial results are known.
Results for m = 17, 19, 40, 25, 50, 33, 44, 66, 60 have been quoted earlier already. The
m = 25 case has just one choice of S⊕ T, where G ∼= Z32 acts on the rank-6 S = UD4
(the same as the unique choice for the m = 24 case) non-trivially on a 2-dimensional
subspace through a quotient Z32 → Z4 (and trivially on a 4-dimensional subspace)
[Ogu93, Tak14]. For a similar study in the case of Gs = {1} and G ∼= ∆ ∼= Zm with
m = 24, m = 23, and m = 22, see [TST14, AT15, TS16, AS15].

Just like there is only small number of choices of (S⊕ T) is available for a large ∆,
it is also known that there are tight constraints on the possible choices of (S ⊕ T)
when Gs is large. See such references as [Nik80, Thm. 4.7], [Has12], [GS07], [GS09],
[Kon99], and [OZ02].

This Section 7.2.1 is a literature survey, relying mostly on [Huy16] as a guide. We
wished to learn what is known as well as what has not been known about how
much the Z2 orbifold in Chapter 6 can be generalized.

7.2.2 Period Domains for K3 Surfaces with Automorphisms

The period integrals (complex structure) of a K3 surface X should be in the period
domain D(T) for one of the choice (S⊕ T), when X has an automorphism (G; Gs, ∆),
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but the converse is not true. For a complex structure to be consistent with the au-
tomorphism group (G; Gs, ∆) with ∆ 6= {1}, G|T = ∆ ∼= Zm needs to be a Hodge
isometry.

The subspace in D(T) consistent with such a non-symplectic automorphism group
is specified as follows. Note that the action of ∆ ∼= Zm on T ⊗Q is always of the
form of

T ⊗Q ∼= (Nm)
⊕` with ` := rk(T)/ϕ(m) (7.6)

where Zm acts as Q-valued matrices on a ϕ(m)-dimensional vector space Nm over
Q; the generator [[σ]] of Zm has the set of eigenvalues {ζa

m | a ∈ [Zm]×}. Thus T⊗C

is divided into ϕ(m) distinct eigenspaces of Zm, ⊕a∈[Zm]×Va, where [[σ]]|Va = ζa
m.

Individual Va’s are `-dimensional over C. Thus, the complex structure should be in

D(Va) := P[Va] ∩ D(T) (7.7)

for some a ∈ [Zm]×. The subvariety D(Va) of D(T) is determined only by ∆ ∼= Zm,
independent of the symplectic subgroup of the automorphism Gs.

This extra condition on the complex structure moduli space was absent in the case
of Z2 orbifold in the previous section, because ϕ(m = 2) = 1, and T ⊗Q ∼= Va=1.
For the cases with m > 2, however, Va ( T ⊗ C, and D(Va) ( D(T). In fact, there
is just one pair of D(Va) and D(Va′) with a, a′ ∈ [Zm]× and a′ = −a ∈ Zm; that
is because the intersection matrix remains non-zero only between Vb–Vb′ pairs with
b′ = −b ∈ Zm (remember that [[σ]] is an isometry of T), and the 2-dimensional
positive signature directions must be contained only in one of those pairs. In that
non-zero pair D(Va0) and D(V−a0), the Ω2 = 0 condition is automatically satisfied
in P(Va0) and P(V−a0), so D(Va0) and D(V−a0) are open subspace of P`−1 specified
by the (Ω, Ω) > 0 condition [DK07, AST11].

In the cases with ϕ(m) = rk(T), so ` = 1, the subvarieties D(Va) are 0-dimensional,
so they are isolated points.10 This is consistent with the fact that a CM-type K3
surface corresponds to an isolated point on the moduli space, as discussed later.

7.2.3 K3 surfaces of CM-type and with non-symplectic automorphisms

Not all the points in the moduli space D(Va0) of K3 surfaces with non-symplectic
automorphisms correspond to K3 surfaces of CM-type as one may expect, but there
is some correlation. The subspace of D(Va0) corresponding to CM-type K3 surfaces
is characterized as in the discussion in the following. We focus on the cases with
∆ ∼= Zm for m > 2, but some parts of the discussion applies to the cases of involution,
m = 2.

In the cases with ` = 1 and ϕ(m) = rk(T), the one point D(Va0) corresponds to a
CM-type K3 surface (cf [LSY10]). This is because the algebra SpanQ{[[σ]] ∈ ∆} is a
part of the endomorphism algebra End(T)Hdg, and already dimQ(SpanQ{[[σ]]}) =
rk(T). The endomorphism field is isomorphic to Q(ζm).

In the cases with ` := rk(T)/ϕ(m) > 1, if a CM point is contained D(Va0) outside
of Noether-Lefschetz loci, then the CM field K must be an extension of Q([[σ]]) ∼=

10Those isolated points are further subject to identification by a certain finite index subgroup of
Isom(T). More is known in the literature about the identification of those isolated points (e.g., [Kon92,
§5]).
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Q(ζm). Beyond that, however, the author have not been able to find a comprehensive
and concise statement about how to find out all possible K’s for a given lattice T.

7.2.4 Bonus symmetry

By construction, the K3 surfaces X(1) and X(2) to be used in the orbifold construction
have certain amount of automorphisms, G1 and G2, respectively. It happens to be
the case for some (S, T, G; Gs, ∆), though, that a K3 surface X with a generic complex
structure in D(T) has Aut(X) larger than G.

For example, think of (G; Gs, ∆) = (Zm; {1}, Zm) with an mϕ(m) in Table 7.1 such
that ϕ(m) divides either one of 4, 12, 20. Then (S, T) can be unimodular lattices of
rank (18, 4), (10, 12) and (2, 20). For a unimodular T, a K3 surface with a generic
complex structure in D(T) has a Z2 purely non-symplectic11 automorphism (gen-
erated by the combination of (−1) multiplication on T and id. on S) [Kon92]. This
automorphism is a part of the symmetry ∆ ∼= Zm that we imposed, if m is even. For
an odd m, namely m = 5, 7, 11, 13, 25, 3, 21, 33, 9, however, we have more automor-
phisms (Z2m ⊂ Aut(X)) than we imposed for orbifold construction (G = ∆ = Zm).
See also [GS13], where similar enhancement of automorphism groups are discussed
in the case (S, T) are not necessarily unimodular.

As another class of examples, we may think of a case of (G; Gs, ∆) with Gs 6= {0}, Z2, S3.
It is then known that |Auts(X(i))| = ∞ (see footnote 8 and also [Nik14]). Thus there
are more automorphisms than we impose in this class of examples.

Those bonus automorphisms are available for any point in the period domain D(T);
this means that they act trivially on D(T). The automorphisms can be realized lin-
early in the effective theory (not a broken symmetry), because a choice of a com-
plex structure in D(T) is not shifted by the automorphisms. This observation also
indicates that the fluctuation fields of complex structure within D(T) are neutral
under these symmetry transformation.12 Because those bonus automorphisms13 act
on X(i), and are non-trivial transformation on the orbifold geometry Y0 = (X(1) ×
X(2))/Γ, they are still non-trivial information on the effective field theory.14 When
one considers F-theory applications (where the orbifold Y0 and its crepant resolu-
tions are replaced by a birationally equivalent fourfold Ỹ and some Kähler parame-
ters are brought to zero (see Chapter 8)), one will be interested in working out how
the symmetry acts15 on fluctuation fields other than the complex structure moduli
in D(T). That is beyond the scope of this thesis, however.

11An automorphism is said to be purely non-symplectic when G ' ∆.
12Discussion here focuses on automorphisms available for a generic point in D(T), once (G; Gs, ∆)

and (S, T) are given. For special loci in D(T), there can be larger group of automorphisms.
We will see in Section 7.3 in the case of ∆ ∼= Zm with m > 2 that D(T) moduli are stabilized

by a DW = W = 0 flux only in the case the vacuum complex structure minimizes the rank of the
transcendental lattice TX to ϕ(m). Thus the question of real interest is not necessarily about a generic
point in D(T).

13Besides the bonus automorphisms (Aut(X(1)) × Aut(X(2)))/(G1 × G2), there are also automor-
phisms (G1 × G2)/Γ acting non-trivially on the orbifold Y0 = (X(1) × X(2))/Γ by construction. Note
that Γ ⊂ G1 ×∆ G2 ( G1 × G2 (because ∆ 6= {1}). Both of the bonus automorphisms and the by-
construction automorphisms present themselves as symmetries of the low-energy effective theory.

14Some of those bonus automorphisms (symmetries) may be broken by a non-trivial flux in
H4(Y; Q). It is the symmetry respected by the flux that matters in the low-energy effective theory
and cosmology after inflation.

15Choices of configuration of metric and other fields that become equivalent under automorphisms
are regarded as one and the same point in the space of path integral. Therefore, an automorphism may
be regarded as a gauge symmetry.
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7.3 Complex structure moduli masses with W = 0

For a general choice of the orbifold group Γ ⊂ G1 ×∆ G2, we do not try to say what
the cohomology H4(Y; Q) is like, e.g. a statement analogous to Eq. (6.7) or Eq. (6.8),
for Y, a minimal crepant resolution, if exists, of the orbifold (X(1) × X(2))/Γ. In the
cases Γ ∼= G1

∼= G2 ∼= ∆ = Zm, the cohomology group H4(Y; Q) contains [CR04]

[(T(1)
0 ⊗ T(2)

0 )⊗Q][[σ]] ⊕
(

H2(Z(1) × Z(2); Q)
)⊕(m−1)

⊕ (· · · ) , (7.8)

where Z(1) and Z(2) are curve loci of points in X(1) and X(2), respectively, fixed under
the group ∆. The last term stands for possible contributions from fixed loci Z(1) ×
(isolated pts), (isolated pts)×Z(2), and (isolated pts)× (isolated pts) in X(1)×X(2).
The second term has a Hodge structure of level 2 (for a vacuum complex structure
within M[Y]BV

cpx str). The H2(Z(1) × Z(2); Q) component may contain a level-0 rational
Hodge structure in some cases (see footnote 10 in Section 6.2). Possible contributions
(· · · ) are also level 0. Thus W = DW = 0 flux are available in those level-0 com-
ponents. Those fluxes may (or may not) give rise to the complex structure moduli
fluctuation fields that move away fromM[Y]BV

cpx str intoM[Y]
cpx str, but they do not gen-

erate a mass term or interaction term of moduli fluctuation fields withinM[Y]BV
cpx str.

Let us now focus on supersymmetric fluxes available within the [(T(1)
0 ⊗ T(2)

0 ) ⊗
Q][[σ]] component; only such fluxes can stabilize (generate mass terms) of the (`(1) −
1) + (`(2) − 1) moduli fluctuation fields16 in M[Y]BV

cpx str. In the case of 〈[[σ]]〉 = ∆ ∼=
Z2, we have nothing to modify17 in the discussions in Sections 6.3 and 6.4. In a
case of ∆ ∼= Zm with m > 2, let us start our discussion with an assumption that
T(i)

X = T(i)
0 , i.e., a generic CM complex structure available within D(Va0)× D(V−a0).

A few observations to be added to the discussions in Sections 6.3.1 and 6.3.2 are the
following.

First, only a proper subspace of (T(1)
0 ⊗ T(2)

0 ) ⊗Q survives the orbifold projection,
as we consider a case with m > 2 now. Second, the decomposition (6.16) of the
vector space (T(1)

0 ⊗ T(2)
0 )⊗Q is still useful; keeping in mind the fact that individual

components Wi in Eq. (6.16) are in one-to-one with the orbits ΦLi under the action
of Gal((K(1)K(2))nc/Q), and also the fact that both K(1) and K(2) contain a sub-field
Q([[σ]]), one concludes that [[σ]] acts on each one of Wi’s either trivially entirely or
non-trivially entirely on that Wi. We thus have

[(T(1)
0 ⊗ T(2)

0 )⊗Q][[σ]] ∼=
⊕

i∈∆neut)⊂{1,··· ,r}
Wi, (7.9)

where only the subset of {1, · · · , r}where Wi is neutral under ∆—denoted by ∆neut—
is retained on the right hand side. Finally, the component with i = (20|20) is in the
subset (∆neut), but the component i = (20|02) is not.18

It makes sense to study non-trivial representations of those automorphisms (gauge symmetries) on
field fluctuations instead of throwing away all the modes in non-trivial representations, because two
particle excitation state can be gauge-symmetry neutral, while each particle is not.

16(`(i) − 2) instead of `(i) − 1 in the case of m = 2.
17The cohomology group H4(Y; Q) outside of the [(T(1)

0 ⊗ T(2)
0 )⊗Q][[σ]] should be modified, when

Γ acts non-trivially on S(i)
0 := [(T(i)

0 )⊥ ⊂ H2(X(i); Z)], for i = 1 or 2.
18Note that ζ2a0

m = 1 and a0 ∈ [Zm]×, only when m = 2 and a0 = 1.
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We can review the conclusions in Section 6.3.2 with those three observations in mind.
Now (for m > 2), the case-A in page 53 is not logically possible. Besides the case-C,
where there is no flux with the DW = 0 condition available, the only possibility for
a supersymmetric flux is the case-B in page 53, where all but one components Wi in
Eq. (7.9) are level-2, and the remaining W(20|20) is simple and level-4. Therefore, to

conclude (when m > 2 and T(i)
X = T(i)

0 ), a DW = 0 flux is possible if and only if
the condition (6.38) is satisfied; such a flux is in the level-4 W(20|20) component, so

〈W〉 6= 0. There is no chance for a DW = W = 0 flux in [(T(1)
0 ⊗ T(2)

0 )⊗Q][[σ]] when
m > 2 and T(i)

X = T(i)
0 , because the level-0 W(20|02) component does not survive the

orbifold projection when m > 2.

A DW = W = 0 flux is possible within [(T(1)
0 ⊗ T(2)

0 )][[σ]] if and only if T(i)
x ( T(i)

0 for
both i = 1, 2; it is not enough to have T(i)

X ( T(i)
0 for just one of i = 1, 2. To see this,

remember that

[(T(1)
0 ⊗ T(2)

0 )][[σ]] (7.10)

∼= [(T(1)
X ⊗ T(2)

X )][[σ]] ⊕ [(T(1)
X ⊗ T(2)

0 )][[σ]] ⊕ [(T(1)
0 ⊗ T(2)

X )][[σ]] ⊕ [(T(1)
0 ⊗ T(2)

0 )][[σ]];

the middle two components on the right-hand side are level-2, and the first compo-
nent consists only of level-2 and level-4 Hodge components; the latter statement is
obtained by repeating the argument above (for T(1)

0 ⊗ T(2)
0 with T(i)

X = T(i)
0 there).

Thus a DW = W = 0 flux can only be in the last component. Such a flux can-
not generate a mass term for the moduli field fluctuations in D(T(1)

X ) ∩ D(Va0) and
D(T(2)

X ) ∩ D(V−a0), however.

Therefore, the only possibility for a DW = W = 0 flux stabilizing all the complex
structure moduli, if m > 2, is when

rank(T(1)
X ) = rank(T(2)

X ) = ϕ(m) (7.11)

so that there is no moduli within [(T(1)
X ⊗ T(2)

X )⊗C][[σ]]. The condition (6.38) is sat-
isfied automatically then (K(1) ∼= K(2) ∼= Q(ζm)), but there is no W(20|02) component
to support a DW = W = 0 flux when m > 2. The (`(1) − 1) + (`(2) − 1) moduli

field fluctuations have Dirac type mass terms from a flux in the (T(1)
0 ⊗ T(2)

0 ) ⊗Q

component. Thus, for all those moduli fields to have masses,

`(1) = `(2) (7.12)

is also necessary, just like the condition (6.62) in Section 6.4. Just like in Sections
6.3.3 and 6.4, this moduli effective field theory has an approximate U(1) × U(1)R
symmetry.
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Chapter 8

F-theory applications and particle
physics aspects

In the earlier chapters, we have discussed the supersymmetry conditions, (6.1) and
(6.2), of fluxes on CM-type Borcea-Voisin Calabi-Yau fourfolds Y = (X(1)×X(2))/Z2,
and also stabilization of the complex structure moduli. The analysis in Chapters 6
and 7 can be read in the context of M-theory compactification on such fourfolds
down to (2 + 1) dimensions; the orbifold geometry Y0 = (X(1) × X(2))/Z2 is sin-
gular, but the study in Chapters 6 and 7 in that M-theory context should be read1

as that for a fourfold YBV which is the minimal and crepant resolution of Y0, with
positive values of Kähler parameters for the exceptional cycles.

To think of an F-theory compactification down to 4 dimensions, we need a Calabi-
Yau fourfold Ỹ that has a flat2 elliptic fibration.3 When F-theory is compactified on Ỹ

such thatM[Ỹ]
cpx str is contained inM[Y]BV

cpx str, the analysis for presence of a non-trivial

supersymmetric flux and stabilization of moduli inM[Ỹ]
cpx str is still valid.

In a large fraction of this chapter, we will be concerned about when and how one
can find such Ỹ birational to YBV . When a Ỹ is available, its geometry should de-
termine gauge groups and possible matter representations in the effective theory on
4 dimensions, motivated by the constraint 〈W〉 ' 0. We will take steps to read out
those implications.

8.1 Elliptically-fibered K3 surface with a non-symplectic in-
volution

One of the technical problems that we face in the context of F-theory compactifica-
tion is to find, for a given Calabi-Yau variety Y for an M-theory compactification, a
set of (Y, B, π), where π : Y → B is a flat elliptic fibration and B a base manifold.
For our setup, we will assume that the elliptic fibration of Ỹ is inherited from that
of X(1). In that case, nearly a complete classification of (Y = X(1), B = P1

(1), π
f
X(1)) is

available ([CG15, GS18] and references therein) for K3 surfaces X(1) associated with

1For example, Eq. (6.7) is justified for smooth manifolds Y = YBV .
2As we have reviewed in Section 3.4.2, this condition is for absence of an exotic particle spectrum

on R3,1. This is thus a phenomenological constraint.
3Recall that, as we have already seen in Eq. (3.18), we also need to take the limit in the Kähler

moduli so that the volume of the elliptic fiber vanishes, and to keep some part of the purely vertical
part of H4(Y; Q) free from fluxes, in order to restore the SO(3, 1) symmetry.
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the 75 choices of (S(1)
0 , T(1)

0 , σ(1)) of Nikulin, as we will review briefly in this Sec-

tion 8.1. Such an elliptic fibration (X(1), P1
(1), π

[ f ]
X(1)) is used in Sections 8.3 and 8.4 to

construct a fourfold Ỹ birational to a Borcea-Voisin orbifold Y0 = (X(1) × X(2))/Z2
where there is a flat elliptic fibration morphism π : Ỹ → B3.

We begin with recalling known facts about how we find elliptic fibration morphisms
from an algebraic K3 surface to P1. There exists a genus-one fibration4 morphism
from a K3 surface X(1) to P1 if and only if there exists a divisor class [ f ] ∈ S(1)

X

with [ f ]2 = 0 [PSS71]. The corresponding fibration morphism is denoted by π
[ f ]
X(1) :

X(1) → P1
(1). For a genus-one fibration morphism π

[ f ]
X(1) : X(1) → P1

(1) to be an ellip-

tic fibration morphism,5 there must exist another divisor class [s] ∈ S(1)
X satisfying

(s, f ) = +1 and (s, s) = −2. The primitive sub-lattice generated by [ f ] and [s] within
S(1)

X is isomorphic to U then. To repeat, existence of an elliptic fibration is equivalent
to existence of a factor U in S(1)

X .

In the context of F-theory applications, when we write S(1)
X = U ⊕W, the lattice W

contains the information of non-Abelian 7-brane gauge groups, the number of U(1)
gauge fields, and also the spectrum of charges under those gauge groups in 8 di-
mensions. Therefore, a well-motivated classification of elliptic fibration morphisms
of X(1) is equivalent to classifying6 primitive embeddings of U into S(1)

X modulo
isometry of the lattice S(1)

X . One and the same K3 surface X(1) (with a common S(1)
X

and T(1)
X ) may have multiple different types of elliptic fibration morphisms in this

classification; one of the most famous examples is the case SX = U ⊕ E⊕2
8
∼= II1,17

∼=
U ⊕ (D16; Z2). An F-theory limit takes the volume of a fiber elliptic curve class
[ f ] ∈ U to zero, so different choices of U ⊂ S(1)

X correspond to different F-theory
limits.

In general, S(1)
0 ⊂ S(1)

X ; when the complex structure of the K3 surface X(1) is not fully
generic in the period domain of the lattice T(1)

0 , S(1)
X is strictly larger than S(1)

0 (and
T(1)

X is strictly smaller than T(1)
0 ). Although it is enough to find a factor U within S(1)

X
in constructing an elliptic fibration πX(1) : X(1) → P1

(1), we wish to use the elliptic fi-
bration morphism to construct an elliptic fibration πY : Y → B3 with some threefold
B3 (which is to be constructed in the following). We thus need to be concerned with
how the elliptic fibration morphism πX(1) : X(1) → P1

(1) behaves under the generator
σ of the Z2 orbifold. We stick to the simplest case where the U sub-lattice is within
S(1)

0 ⊂ S(1)
X , which means that

σ∗(1) : [ f ] 7→ [ f ], σ∗(1) : [s] 7→ [s]. (8.1)

There are two types in the way the involution σ(1) acts on a K3 surface with elliptic

fibration (X(1), P1
(1), π

f
X(1)) [GS18, Prop. 2.3]. It always maps the zero section s to

itself, but it may be either an identity σ(1)|s = ids (Type 1 (referred to as type b
in [CG15])), or a non-trivial holomorphic involution (Type 2 (referred to as type a
in [CG15])). An involution of Type 1 acts on individual fiber elliptic curves, while

4Recall the definition in Section 3.4.1.
5As we have stated in Section 3.4.1, we will constrain ourselves to the case with an elliptic fibration.
6A review addressed to string theorists is found in [BKW13].
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an involution of Type 2 exchanges two fiber curves (except the fibers over the two
σ(1)|s-fixed points in the base P1

(1)).

Let us take a few examples from the 75 choices of (S(1)
0 , T(1)

0 , σ(1)) of [Nik81]. For

S(1)
0 = U[2] ⊕ E8[2], there is no primitive embedding of U into S(1)

0 , so there is no
elliptic fibration [GS18, Thm. 2.6.(i)]. For S(1)

0 = U, there is unique elliptic fibration,
which is Type 1. Think of the case S(1)

0 = U ⊕ E8[2], next. An obvious primitive
embedding of U into S(1)

0 corresponds to an elliptic fibration of Type 2; this em-
bedding is actually the only one available for this S(1)

0 [GS18, Thm. 2.6.(ii)]. For the
choice (S(1)

0 , T(1)
0 ) for T0 = U[2]⊕2, which is for X(1) = Km(E× E′) for mutually non-

isogenous elliptic curves E and E′, there are 11 different elliptic fibrations (modulo
Isom(S(1)

0 )) [Ogu89]; three out of the 11 elliptic fibrations (J1,2,3 in [Ogu89]) are Type
2, and the remaining eight (J4,··· ,11) are Type 1. In the study of [CG15, GS18], it turns
out that more than 60 choices out of the 75 in [Nik81] admit at least one elliptic fi-
bration; choices with larger [resp. smaller] g(1) = (22− r(1) − a(1))/2 tend to have

less [resp. more] inequivalent primitive embeddings U ↪→ S(1)
0 and inequivalent el-

liptic fibrations consequently. A pair (π f
X(1) , σ(1)) of Type 2 is rare relatively to one of

Type 1, and is possible only for the choices with g(1) ≤ 1. For more information, see
[CG15, GS18] and references therein.

8.2 Borcea-Voisin manifold and Weierstrass model

For an F-theory compactification, we need a Calabi-Yau fourfold Y that has an ellip-
tic fibration π : Y → B3 and its section σ : B3 → Y. It is not obvious in F-theory
(due to the lack of its theoretical formulation) which one of Y and Y′ should be
regarded as input data of compactification, when there is a birational pair of Calabi-
Yau varieties Y and Y′ with no difference in cycles of finite volume or the num-
ber of complex structure deformation parameters. This work deals with F-theory
compactification on such an equivalence class7 of Calabi-Yau fourfolds that is repre-
sented by a non-singular model Ỹ with a flat elliptic fibration, Ỹ → B3. Although the
Borcea-Voisin manifold YBV—the minimal resolution of the Borcea-Voisin orbifold
Y0 = (X(1) × X(2))/Z2—is non-singular, it is hard, or even seems to be impossible
for some choices8 of (S(1)

0 , T(1)
0 , [ f ]), to find a flat elliptic fibration on YBV . There-

fore, for F-theory applications, let us find Ỹ that is birational to YBV , along with a
threefold B3 so that there is a flat elliptic fibration9 Ỹ → B3.

7Although we attempted to write down the equivalence relation explicitly above, the choice of the
relations may have to be refined or corrected from the version written there.

8 Suppose that a singular fiber of π
f
X(1) : X(1) → P1

(1) contains both an irreducible component in

Z(1) and also P1 not in Z(1)——(**). Then the fibration Blσ−fixed(X(1) × X(2))→ P1
(1) is not flat, where

BlZ denotes a blow-up along Z. Apart from the choice of S(1)
0 = U ⊕ E8[2], which has an elliptic

fibration of Type 2, all other Type 2 elliptic fibrations available in K3 surfaces with a non-symplectic
involutions fall into the category (**). Elliptic fibrations of Type 1 that stay out of the category (**) is

when S(1)
0 = U ⊕W0, with W0 containing only A1’s and the Mordell-Weil group, but no other ADE-

type lattices. Such S(1)
0 = U ⊕W0 constitutes a small fraction of the tables in [GS18].

9Ỹ may be different from YBV in the sense of the equivalent class discussed above, in order to avoid
exotic spectrum, as we will discuss in this chapter.
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We will find such Ỹ and B3 in Sections 8.3 and 8.4 as a resolution of a Weierstrass
model fourfold YW ; see (8.6) and (8.8). As a first step for that purpose, consider
an orbifold10 YW

0 = (X(1)W × X(2))/Z2. X(1)W is the Weierstrass model of a non-
singular K3 surface X(1), which is obtained from (X(1), P1

(1), π
[ f ]
X(1)) discussed in Sec-

tion 8.1 by collapsing (−2)-curves in the singular fibers of π
[ f ]
X(1) except those that

intersect the section s of π
[ f ]
X(1) . The Z2 quotient is by (σ(1)W , σ(2)), where σ(1)W is

described below.

A K3 surface X(1) of interest in this thesis is in a family parameterized by the (CM
points in the) period domain D(T(1)

0 ) characterized by the pair (S(1)
0 , T(1)

0 ), where
σ(1) acts identically on S(1)

0 and by [(−1)×] on T(1)
0 . Its Weierstrass model X(1)W ,

however, can be regarded as X(1) with S(1)W
0 = U in the Type 1 case11, and the

period domain D(T(1)
0 ) as a special subspace in D(T(1)W

0 ); T(1)W
0 = U⊕2 ⊕ E⊕2

8 now.
The involution σ(1)W on X(1)W is that of X(1) with12 S(1)

0 = U, which multiplies (−1)
to the y coordinate of the Weierstrass equation y2 = x3 + f (t)x + g(t) [CG15, GS18].

In the Type 2 case, its Weierstrass model X(1)W is regarded as X(1) with S(1)W
0 =

U⊕ E8[2], and the period domain D(T(1)
0 ) as a special subspace in D(T(1)W

0 ); T(1)W
0 =

U⊕2⊕ E8[2] now. The involution σ(1)W on X(1)W is that of X(1) with S(1)
0 = U⊕ E8[2],

which multiplies (−1) to the inhomogeneous coordinate t of the base P1
(1), where

the Weierstrass equation is y2 = x3 + f (t2)x + g(t2) [CG15, GS18].

The orbifold YW
0 is now well-defined; we claim now that there is a regular map

Y0 → YW
0 , and that this map is birational. To see that they are birational, note first

that there is a field isomorphism C(X(1)W)C(X(2)) ∼= C(X(1))C(X(2)) because of the
birationality between X(1) and X(1)W . The action of (σ(1)W , σ(2)) on the left and that
of (σ(1), σ(2)) on the right are compatible with this field isomorphism, so we have

C(YW
0 ) ∼=

[
C(X(1)W)C(X(2))

]Z2 ∼=
[
C(X(1))C(X(2))

]Z2 ∼= C(Y0). (8.2)

They are birational indeed. The regularity of the map Y0 → YW
0 follows from

(C[Ui]C[V])Z2 ↪→
(

C[X(1)
i ]C[V]

)Z2
(8.3)

for open patches V of X(2); here, Ui’s are open patches of X(1)W and X(1)
i ’s those of

X(1) so that X(1)
i ’s are mapped to Ui’s under the regular map X(1) → X(1)W .

Construction of YW
0 from Y0 or YBV , the resolution of Y0, is essentially the same for

both Type 1 and Type 2. From this point on, however, we need to deal with the Type

10 It is likely that the constructions of (Ỹ, B3, π) starting from here are not the most general ones with

a moduli space containing D(T(1)
X ) × D(T(2)

X ). The author is not yet ready to write down a broader
class of constructions, however.

11One may convince oneself by thinking that the singularities of X(1)W are infinitesimally deformed,
rather than resolved.

12Complex structure can be tuned continuously from the bulk of D(T(1)W
0 ) to D(T(1)

0 ), but the pro-
cess of blowing-up singularity of X(1)W (or collapsing (−2)-curves of X(1) in the other way around) is
not a continuous process; the involution on the cohomology group H2(K3; Z) changes in this discon-
tinuous process.
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(a) (b) (c) (d)

FIGURE 8.1: Schematic picture of the singular fiber geometry for a
generic point in [Z(2)] in (a) YW

0 , (b) YW ′ , (c) YW ′′ , and (d) YW .

1 and 2 cases separately in the construction of a non-singular model Ỹ with a flat
fibration over a base threefold B3, which are what we are after.

8.3 Fibration and involution of Type 1

8.3.1 Construction of Ỹ, and gauge group and matter representations

In the case of a pair of fibration and involution of Type 1, a Weierstrass model YW is
obtained by once blowing up YW

0 (YW ′ → YW
0 ), and then blowing it down (YW ′ →

YW), as we elaborate a bit more in the following. The procedure is very much similar
to the case of [Sen96]; see Figure 8.1.

Construction of YW ′ from YW
0 is as follows. The Z2-orbifold YW

0 has a two-dimensional
locus of singularity that is A1-type for each isolated component of [Z(2)] ⊂ B(2),
where B(2) denotes X(2)/Z2. The two transverse directions are the transverse di-
rection of [Z(2)] in B(2) and also the elliptic fiber direction. For a generic point in
[Z(2)] ⊂ B(2), the locus of A1-singularity consists of two pieces of curves, one of
which is a three-fold cover over P1

(1) and the other a one-fold cover. The proper
transform of YW

0 in a blow-up centered along the latter singular locus (the one-fold
covering one) is denoted by YW ′ ; one may also think of the blow-up along both of
the singular loci, where the proper transform is denoted by YW ′′ . See (8.6) and Fig.
8.1.

The Weierstrass model YW is obtained from YW ′ by collapsing the divisors over
[Z(2)]×P1

(1) that are non-exceptional in the blow-up YW ′ → YW
0 (see Fig. 8.1). This

variety YW has a projection π : YW → Bw := (P1
(1) × B(2)), and is given by

ỹ2 = x̃3 + V2 f (t)x̃ + V3g(t) (8.4)

in one of its Affine patch. See Appendix B.1.1 for the detail. The Affine coordinates
(x̃, ỹ, t, V, u) of YW are related with the coordinates (x, y, t, v, u) of X(1)W and X(2)

through

t = t, u = u, V = v2, x̃ = xv2, ỹ = yv3, (8.5)
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𝑡

𝑉

𝑢 𝑡′

𝑉′ 𝑢′

FIGURE 8.2: A schematic figure of the base Bw of ỸAn . Each vertical
blue plane represents the I∗0 locus ∆b associated with an irreducible
curve in Z(2), while the horizontal orange planes represents the dis-
criminant locus associated with the singular fiber in X(1). We should
have different coordinate patch for each irreducible curve in Z(2),
(t, u, V) and (t′, u′, V′) in the figure, where t and t′ denote the co-
ordinates of the base of X(1), V and V′ the coordinates normal to Z(2)

in B(2), and u and u′ tangent to Z(2).

and the involution σ(1)W acts trivially on t, u, and x, and by [(−1)×] on y and v. Here
is a summary (all the arrows between Y’s are regular and birational):

YBV

��

YW ′′

��

ỸAn

��

ỸDn,E6

��
Y0 // YW

0 YW ′oo // YW

��

ν∗(YW)oo

��

ν∗(YW)oo // Y

ttBw B̃woo

(8.6)

See the following discussions for B̃w = Blpt∗×[Z(2)](Bw), ν∗(YW), Y, ỸAn and ỸDn,E6 .

So long as complex structure of X(1) is that of a generic one in D(T(1)W
0 ) = D(II2,18),

which means that S(1)
X = S(1)

0 = U, there is no difference between Y0 and YW
0 ; YW ′′ is

nothing but YBV ; the projection π : YW ′′ = YBV → (P1
(1) × B(2)) yields a flat elliptic

fibration, so one can take Ỹ = YW ′′ and B3 = Bw in this case. The discriminant locus
∆discr of the elliptic fibration YW → Bw is of the form13

∆discr = ∆ f + ∆b, ∆ f = (24pts)× B(2), and ∆b = 6(P1
(1) × [Z(2)]). (8.7)

On a generic point in ∆b, the singular fiber in Ỹ = YW ′′ is the I∗0-type in the Kodaira
classification [CGP19], and Eq. (8.4) is completely in the non-split type14 over P1

(1)

13The multiplicity 6 of ∆b comes from the vanishing order 6 for I∗0 fiber.
14Recall the definition in Section 3.2. See Appendix B.1.2 for detail.
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(and also over P1
(1) × [Z(2)]) [BIK+96]. The N = 1 supersymmetric effective the-

ory on R3,1 thus has one vector multiplet with the gauge group G2 for each one
of the isolated components15 of [Z(2)]. The 7-branes ∆ f do not yield a massless
vector multiplet on the effective theory on R3,1. There may be massless N = 1
chiral multiplets (matter fields) charged under those G2 gauge groups, possibly in
the adjoint representation, and also possibly in the 7-representation, because mat-
ter hypermultiplets in those two representations can be present in F-theory com-
pactifications to 6 dimensions [BIK+96, AKM00]. None of them must be charged
under multiple G2’s, because all the irreducible components of [Z(2)] ⊂ B(2) are
disjoint from each other [Nik81]. All those matter fields are in self-real represen-
tations, so there is no such things as a formula for the net chirality. Although the
(20− r(1)) + (20− r(2)) = 38− r(2) complex structure moduli of YW ′′ = YBV remain
to be gauge-group neutral moduli chiral multiplets in the effective theory on R3,1,
the g(1)g(2) = 10g(2) complex structure moduli of YBV are likely to be part of G2-
charged matter chiral multiplets; an evidence for this statement can be provided by
studying F-theory compactification on a threefold MBV as the crepant resolution of
(X(1) × Eτ)/Z2.

Now, let us turn to cases where X(1) and X(1)W are not isomorphic. In terms of the
lattice, let S(1)

X =: U ⊕W, and let R denote the sub-lattice of W generated by the
norm-(−2) elements of W; X(1) and X(1)W are not mutually isomorphic if and only
if R is non-trivial. YBV and YW ′′ are not mutually isomorphic either in such cases.
A flat elliptic fibration (Ỹ, B3, π) is constructed as reviewed below by starting from
YW → Bw, or from YW ′′ → Bw.

Suppose first that the lattice R contains only An’s, not Dn’s or En’s; see Figure 8.2. It
is then known that we can take Bw as B3; YW has singularity of An type over the 7-
brane (n + 1)(pt∗ × B(2)) ⊂ ∆ f , so those codimension-2 singularity from the I∗0–In+1
collision is resolved canonically; after a small resolution, a non-singular Calabi-Yau
fourfold Ỹ is obtained in this case [Mir83, BJ97b]16. The fourfold Ỹ in this case is de-
noted by ỸAn in (8.6). The gauge group on the 7-brane pt∗ × B(2) becomes Sp-type17

in the effective theory on R3,1 (and a product of G2’s is from P1
(1) × [Z(2)] as before).

The matter fields must be in the bifundamental representation of G2 and Sp [KV97],
besides those in the adjoint representations, G2-7, and the Sp rank-2 antisymmetric
representation [BJ97b, AKM00] (consistent with the Type IIB brane constructions).
All the fourfolds YBV , Y0, YW ′ , YW ′′ and Ỹ are Calabi-Yau and are birational, and no
cycles of finite volume are added or removed. The (20− r(1) − rk(R)) + (20− r(2))
complex structure moduli remain neutral chiral multiplets on R3,1; other complex
structure moduli of YBV will remain massless chiral multiplets on R3,1, but as a part
of gauge-charged matter fields (they are the g(1)g(2) = 10g(2) moduli deforming the

15There are k2 + 1 isolated components for all the (75− 2) choices of (S(2)
0 , T(2)

0 ) from Nikulin’s list.
16 In the construction of Ỹ in the main text, we consider choosing a complex structure of X(1) from

D(T(1)
0 ) = D(II2,18) in such a way that S(1)

X is enhanced from S(1)
0 = U to U ⊕W with W containing

An’s. When we consider a complex structure so that S(1)
0 = U ⊕W0, W0 = W, and R ⊂ W0 contains

only A1’s (cf footnote 8), however, one may think of another construction of (Y, B3, π). That is to
choose YBV as the fourfold, and B3 = P1

(1) × B(2); this is a flat elliptic fibration [CGP19, Prop. 3.1] in

such a case. It is a question of interest whether YBV is isomorphic to Ỹ in the main text and whether
the matter spectra are the same or not.

17The gauge symmetry is reduced to Sp because the collision with the G2 7-brane induces a mon-
odromy for the In+1 fiber.
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FIGURE 8.3: A schematic figure of the base B̃w of ỸDn ,E6 . The mean-
ing of the vertical and horizontal components are the same as that in
Figure 8.2, except that they are not intersecting to each other anymore
because we have blown-up the intersection locus. The green compo-
nents represent the exceptional loci, on which a singular fiber may or

may not exist.

C2/Z2 singularity of Y0 and the rk(R) moduli of X(1) that reduces18 S(1)
X back to

S(1)
0 ).

Suppose next that the lattice R contains a factor Dn or E6, corresponding to a singular
fiber of I∗n−4 type or IV∗ in X(1) over pt∗ ∈ P1

(1). The known prescription19 is, as

already introduced in Section 3.3.1, to set20 21 B3 = Blpt∗×[Z(2)]Bw =: B̃w, and think

of ν∗(YW) with a Weierstrass fibration over B3 for a moment; ν : B̃w → Bw is the
blow-up map. The fourfold ν∗(YW), which corresponds to Eq. (3.9), has a parabolic
singularity at {ỹ = x̃ = 0} in the fiber of the exceptional locus E of B3 = B̃w. The
ambient space of ν∗(YW) is blown-up three times with the center in the fiber of E,
and now the proper transform ν∗(YW) has only An−5 singularity (assuming an even
n > 4; none for I∗0 or IV∗). The fourfold ν∗(YW) is not Calabi-Yau due to the non-
trivial morphisms ν∗(YW) → ν∗(YW) → YW , but there is a morphism ν∗(YW) → Y
to a fourfold Y, which corresponds to Eq. (3.10), ramified along the canonical divisor
of ν∗(YW), so Y is a Calabi-Yau fourfold. There is also a projection morphism Y → B3
(see (8.6)). The fourfold Y has D4 singularity in the fiber of ∆b (the proper transform
of ∆b under ν : B3 → Bw). See also Appendix B.3 for the detail of the process.

In the case of I∗n−4, the fourfold Y also has D4+n singularity in the fiber of pt∗ × B(2),
there is also An−5 singularity (if n > 4) in the fiber of the exceptional divisor E

18 It is desirable to carry out the Higgs cascade analysis [MV96b, BIK+96] of all those kinds of con-
structions in Sections 8.3 and 8.4, where F-theory prediction including matter multiplicity information
is compared against symmetry breaking processes in the effective field theory on 4 dimensions (or on
6 dimensions). Such a study will uncover much more aspects of F-theory compactification on K3 × K3
orbifolds (or on Borcea-Voisin orbifolds) than those presented in Sections 8.3 and 8.4.

19The prescription of Ref. [BJ97b] is to replace ν∗(YW) by the Affine part of Y and then to add
the zero section by hand, without discussing birational map between them. In that prescription, the
Calabi-Yau condition of Y had to be tested independently from the Calabi-Yau nature of YW .

20We have in mind that the Kähler parameter is such that the exceptional divisor in the blow-up
B̃w → Bw has a non-zero positive volume.

21BlZX denotes a blow-up of X along Z ⊂ X.
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(statements in the rest of this paragraph is for an even n); see Figure 8.3. Those
singularities in Y should be resolved canonically; further small resolution in the fiber
of codimension-2 loci in B3 yields Ỹ that has a flat elliptic fibration over B3 [Mir83]
and Ỹ in this case is denoted by ỸDn,E6 in (8.6). The 7-brane pt∗ × B(2) yields SO(2n)
gauge group in the effective theory on R3,1; the effective theory also has an (Sp((n−
4)/2))k2+1 gauge group (for an even n > 4).22 A I∗0–I∗n−4 collision may yield chiral
multiplets of 4DN = 1 supersymmetry in the G2–Sp((n− 4)/2) bifundamental, and
in the Sp((n− 4)/2)–SO(2n) bifundamental representations (in the case n = 4 there
is no matter fields associated particularly with the I∗0–I∗0 collision) [BJ97b]. Cases with
an odd n > 4 are less trivial, but remain similar [BIK+96, AKM00].

In the case of IV∗, we have an F4 vector multiplet on R3,1 from the brane pt∗ × B(2)

[BIK+96, BJ97b]; see also Appendix B.2.2. Chiral multiplets may arise from the I∗0–
IV∗ collision, which are in the fundamental representations of G2 and F4, but there
is no matter in a mixed representation [BJ97b, AKM00]. The types of matter rep-
resentations available are the same for all (k2 + 1) singularity collisions along the
(k2 + 1) disjoint components of pt∗ × [Z(2)]. Details of the massless spectrum may
be different due to a choice of a 4-form flux in the non-horizontal part of H4(Ỹ; Q).

In the case the lattice R ⊂ W contains a factor E7, B3 is obtained by blowing-up Bw
twice; Ỹ is also obtained in a similar procedure, although it is not contained in the
diagram (8.6). The gauge group on R3,1 becomes (G2 × SU(2))k2+1 × E7. There can
be matter chiral multiplets charged under (G2× SU(2))k2+1 [BJ97b], but it is unlikely
that there is a localized matter charged under the E7 at the collision locus, as there
seems to be no enhancement of singularity there after the two blow-ups.

8.3.2 More consequences in physics

In all those cases23 where R involves Dn, E6 or E7, birational morphisms between the
two Calabi-Yau’s YBV and Y in (8.6) can be constructed for any choice of moduli in
D([(S(1)

X )⊥])× D(T(2)
0 ). Therefore, those deformation degrees of freedom and their

corresponding cohomology groups (i.e., T(1)
X ⊗ T(2)

0 ) will remain to be there for Y
and Ỹ. The g(1)g(2) complex structure moduli of YBV (and the H2(Z(1) × Z(2); Q)

component in H4(YBV ; Q)) may or may not be present in Ỹ, but even when they
are present, they will be part of G2-charged matter fields. The rk(R) moduli fields
necessary in enhancing the Dn, E6 or E7 singularity in YW may either be part of
gauge-charged matter fields, or be absent as massless degrees of freedom in the F-
theory compactification.

If there is any chance of accommodating grand unification of the Standard Model
in this Type 1 framework, a GUT gauge group such as SU(5), SO(10), E6, and E7
at the level of 8 dimensions should be from ∆ f , because those gauge groups do not
fit within G2, or even within SO(8). We have seen above that implementing A4 =
SU(5) or E6 in R ⊂ W of X(1) does not result in an SU(5) or E6 gauge group on 4
dimensions due to the monodromy at the I∗0–R collision.24 Even when we require D5

22Sp(n) = USp(2n) in this notation.
23 One may think of a case a complex structure is tuned in D(T(1)

0 = II2,18) so that (S(1)
X , T(1)

X ) just
happens to be identical to one of (S0, T0) in Nikulin’s list. It is a question of interest whether there is
an isomorphism between YBV and Ỹ constructed as in the main text.

24An exception is when S(2)
0 = U[2]⊕ E8[2] in the list of Nikulin, because Z(2) is empty and there

is no I∗0–R collision; this scenario is still not suitable for GUT, however, because there is no massless
matter chiral multiplets charged under R.
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within R ⊂ W, there is no chance having a matter field in the spinor representation
of SO(10). The remaining option is to assume E7 within R ⊂ W. A gauge flux in E7

must be non-trivial on the divisor pt∗ × B(2), so the gauge symmetry is broken down
to that of the Standard Model. As there is no massless adjoint chiral multiplets of
E7 because h0,1(B(2)) = h0,2(B(2)) = 0, the origin of quarks and leptons25 should be
the E7-56 representation, which is also not likely to be present in our setup, at least
generically.

The conditions for a DW = W = 0 flux (or a DW = 0 flux) and study of com-
plex structure moduli stabilization in Sections 6.3 and 6.4 can be recycled without
modifications for F-theory, as we see below. We stick to the Type 1 case available
for S(1)

0 = U and T(1)
0 = II2,18. For a CM-type vacuum complex structure such that

T(1)
X = T(1)

0 , then T(2)
X should26 also be of rank 20, so that T(2)

X has a CM point in
D(T(2)

X ) with the CM field K(2) satisfying the condition (6.38) (or (6.37)). This means
that rank(T(2)

0 ) is either 20 (when rank(S(2)
0 ) = 2) or 21 (when rank(S(2)

0 ) = 1); there
are three such pairs (S(2)

0 , T(2)
0 ) in Nikulin’s list (S(2)

0 = 〈+2〉 , U, U[2]). For any one
of the three choices of (S(2)

0 , T(2)
0 ), all the 18+(19 or 18) complex structure fluctuation

fields in D(T(1)
0 )× D(T(2)

0 ) are valid Calabi-Yau deformations of Ỹ = YW ′′ , not just
of YBV . A DW = W = 0 flux provides large supersymmetric masses to all those
complex structure moduli fluctuations.

For a CM-type vacuum complex structure with T(1)
X ( T(1)

0 , for example, when
S(1)

X ⊃ U ⊕ E7, the CM field K(1) has a degree [K(1) : Q] = rank(T(1)
X ) < 20.

Therefore the necessary condition rank(T(1)
X ) = rank(T(2)

X ) for (6.38), which is also
for a non-trivial DW = W = 0 flux, allows a choice of (S(2)

0 , T(2)
0 ) from a broader

subset of Nikulin’s list, Figure 5.1. The complex structure deformation fields in
D(T(1)

X ) × D(T(2)
0 ) obtain large supersymmetric masses by a DW = W = 0 flux,

which one can see by repeating the same discussion as in Section 6.4.

The complex structure moduli stabilization in [DDF+05] can be regarded as a spe-
cial case of the general discussion above. Our interpretation is that the fourfolds
for F-theory in [DDF+05] correspond to (S(1)

0 , T(1)
0 ) = (U, II2,18) as stated above,

(S(2)
0 , T(2)

0 ) that of a Kummer surface (r(2) = 18, a(2) = 4, k2 = 7 and g(2) = 0),

T(1)
X = U[2]⊕2 ( T(1)

0 and T(2)
X = T(2)

0 = U[2]⊕2. The discussion above further indi-
cates that there should be a flux with the vev 〈W〉 = 0, when we choose the vacuum
complex structure of all the tori in X(1) ∼ (T2 × T2)/Z2 and X(2) ∼ (T2 × T2)/Z2
so that they all have complex multiplication, and the condition (6.38) is satisfied.

25 If we are to assume that the Yukawa couplings of quarks and leptons are from the perturbative
E7 gauge interaction [TW06], then all those quarks and leptons should be on just one of the (k2 + 1)
irreducible components of the curve pt∗ × [Z(2)]. This implies that the contrast between the small
mixing angles of qL’s and the large mixing angles of `L’s cannot be attributed to geometry of their
matter curves [HKTW10].

26It is known that this rank(T(2)
X ) = [K(1) : Q] condition is only a necessary condition for an existence

of such a CM point. At least in the case of T(2)
0 = T(1)

X , we are sure that D(T(2)
0 ) contains a CM point

whose CM field is isomorphic to the CM field K(1) of a CM point in D(T(1)
X ).
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8.4 Fibration and involution of Type 2

In the Type 2 case, we start from the projection map YW
0 → Bw0, which is in between

singular varieties; Bw0 :=
(

P1
(1) × X(2)

)
/Z2. Consider the canonical resolution of

the A1-singularity of Bw0, ν : Bw := B̃w0 → Bw0, and set YW := ν∗(YW
0 ). Now the

projection YW → Bw is a Weierstrass model over a non-singular threefold Bw. The
fourfold YW satisfies the Calabi-Yau condition because ν : Bw → Bw0 is crepant; see
Figure 8.4 and also Appendix B.2 for detail.

YBV

��

ỸA2n−1,D4

��

ỸE6

��
Y0 // YW

0

��

YWoo

��

ν
′∗(YW)oo

��

ν′∗(YW)oo // Y

uuBw0 = (P1
(1) × X(2))/Z2 Bw = B̃w0oo B̃woo

(8.8)

See the following discussions for ν′, Y, ỸA2n−1,D4 , ỸE6 and B̃w.

So long as complex structure of X(1) corresponds to a generic point in D(T(1)W
0 ) =

D(U⊕2 ⊕ E8[2]), which means that S(1)
X = S(1)

0 = U ⊕ E8[2], the Weierstrass model
YW is already non-singular; the projection YW → Bw is a flat elliptic fibration, so we
can set Ỹ = YW and B3 = Bw. The base threefold B3 is a P1-fibration over27 B(2);
the P1-fiber degenerates into three irreducible pieces (P1 + 2P1 + P1) over [Z(2)] ⊂
B(2). Note that there is no difference between Y0 and YW

0 , and that YBV and YW

are identical in this generic complex structure. The discriminant locus ∆discr of the
elliptic fibration YW → Bw consists of 12 isolated components; there are 24 I1 fibers
in X(1), consisting 12 pairs of them, and within each pair, two fibers are exchanged
by the involution to each other; see Figure 8.4. Each one of the 12 components is a
double cover over B(2) ramified over [Z(2)], i.e. each piece is isomorphic to the K3
surface X(2). Here, we assume on the ground of genericity that the 12 pairs of I1
fibers of X(1) stay away from the two fixed points of P1

(1) under the action of σ(1).
There is no non-abelian gauge group in the effective theory on R3,1 then.

When the vacuum complex structure of X(1) is tuned so that some of the 12 pairs of
I1 fiber come on top of each other (but remain distant from the σ(1)-fixed locus), S(1)

X

may be different from S(1)
0 = U ⊕ E8[2], and in particular, the sub-lattice R of W in

S(1)
X =: U ⊕W may contain a pair of copies of an ADE-type root lattice. Because the

discriminant locus of the ADE-type fiber forms a single irreducible component, the
effective theory on R3,1 will have a gauge group of that ADE type, with one chiral
multiplet in the adjoint representation (because h0,2(X(2)) = 1). A non-trivial gauge
flux on these 7-branes may reduce the ADE symmetry further down to a smaller
non-abelian gauge group, but we cannot obtain a chiral spectrum on R3,1 in this
way; note that c1(X(2)) = 0, to which the chirality is proportional.

Consider instead an X(1) that has a singular fiber at a fixed point of σ(1) in P1
(1),

represented by blue and dashed line in Figure 8.4. Suppose that the singular fiber

27Recall the definition B(2) := X(2)/Z2.
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𝑍(2)

𝑡

𝐵(2)

FIGURE 8.4: A schematic figure of the base Bw, which is a P1-fibration
over B(2). The horizontal axis is the coordinate in B(2) normal to Z(2)

and the vertical axis corresponds to the base of X(1). A generic P1-
fiber is represented as a vertical curve, while over Z(2) the fiber is orb-
ifolded by Z2 and becomes reducible after the resolution. Among the
three irreducible components over Z(2), the top and the bottom com-
ponent is from the blow-up of the A1 singularity dut to the orbifold-
ing, while the middle component is denoted by double line to signify
that it is multiplicity 2 compared to the generic fiber. There are three
types of discriminant loci, originated in X(1). The orange and dot-
ted component comes from a generic point in the base of X(1), which
must be paired because the involution acts on the base non-trivially.
The pair is connected over Z(2), so they consist one component in Bw.
There may be multiple of these pairs, up to 12. The other two com-
ponent comes from the fixed point of the involution σ(1) in the base
of X(1); the blue and dashed component has the same singular fiber
as in X(1), while the green and dash-dotted component has a reduced

singular fiber.
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is I2n [resp. IV∗ or I∗0],28 and all the other singular fibers of X(1) are of I1 type and
are away from the σ(1)-fixed points. The discriminant ∆discr consists of three distinct
groups of components; see Figure 8.4. One of them, depicted by a blue dashed curve
in the figure, consists of a section of the P1-fibration over B(2), which yields the
SU(2n) [resp. E6, or SO(7) (due to monodromy)] gauge group on R3,1. Another
group of 7-branes, shown in green in the figure, is the (k2 + 1) isolated pieces of the
exceptional divisors associated with the σ(1)-fixed point in P1

(1) where X(1) has the
singular fiber. The last group, shown as a dotted orange curve in the figure, consists
of (12− n) [resp. 8 or 9] copies of X(2) that do not yield a non-abelian gauge group
on R3,1. Each one of those 7-branes yields a gauge group SU(n) [resp. SU(3) or
SU(2) (monodromy is absent)] on R3,1.

In the case of I2n [resp. I∗0], we can set B3 = Bw, and Ỹ as the canonical resolution
of YW for its codimension-2 singularities followed by a small resolution in the fiber
of I2n–In collision [resp. I∗0–III collision], as we have denoted by ỸA2n−1,D4 in (8.8).
The projection Ỹ → YW → B3 is flat [Mir83]. In the case of IV∗, on the other hand,
we need to blow up the base for a flat fibration; we can use as B3 the blow-up of
Bw, B̃w, centered at the intersection of the E6 (Kodaira type IV∗) 7-brane and the
SU(3) (Kodaira type IV) 7-branes. YW is pulled backed to be ν

′∗(YW) fibered over
B3; it is possible to construct birational and regular maps ν′∗(YW) → ν

′∗(YW) and
ν′∗(YW) → Y, as in Section 8.3, where Y is Calabi-Yau [BJ97b], and Ỹ is obtained as
a canonical resolution of the codimension-2 singularities of Y.

If there is any chance of accommodating a GUT gauge group, one might first con-
sider SU(5) as a part of SU(6). In this case, there may be 4D N=1 chiral multiplets
in the SU(6)–SU(3) bifundamental representation localized at the I6–I3 collision mat-
ter curves. But, there is no matter in the rank-2 anti-symmetric representation. The
other possibility is E6, but there seems to be no matter fields in the E6-27 repre-
sentation, as there is no singular enhancement point over the E6 7-brane, at least
generically. There may be E6-adjoint chiral multiplets from the E6 7-brane, but its
irreducible decomposition to SU(5) subgroup cannot yield a reasonably successful
phenomenology [TW06]. Also note that, even if there are matter fields in 27 repre-
sentation, it is not possible to generate Yukawa couplings [TW06]. To summarize, it
is not possible to implement GUT phenomenology in any one of the constructions
considered in this Section 8.4.

There is not much to add particularly for the Type 2 case on the flux-induced su-
persymmetric mass terms of the complex structure moduli fields. The discussion
at the end of Section 8.3 can be repeated with minimal changes;29 the only differ-
ence from the Type 1 case is that (S(1)

0 , T(1)
0 ) = (U ⊕ E8[2], U⊕2 ⊕ E8[2]) rather than

(U, U⊕2 ⊕ E⊕2
8 ).

For a K3 surface X(1) that corresponds to S0 = U ⊕ E8[2], there automatically exist
two non-symplectic involutions. One acts on the base, and the other on the fiber,

28There is a rule on the Kodaira type of a singular fiber that can appear over the base point of P1
(1)

fixed by the Type 2 involution [KLO06, CG15, GS18]. Those Kodaira types are consistent with the rule.
29The C2/Z2-deforming moduli of YBV and corresponding deformations in Ỹ are localized in the

fiber of non-abelian 7-branes in the case of Type 1, but that is not the case generically for a Type 2
fibration and involution. Therefore, there are gauge-neutral moduli fields whose stabilization / mass
term is not discussed in this work (cf. discussion at the end of Section 6.2).
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so their combination also yields a non-trivial symplectic subgroup of the automor-
phisms. This means that all the compactifications in a Type 2 case has an extra Z2
symplectic (=non-R) symmetry in the effective theory (unless the flux breaks it).
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Chapter 9

Conclusion

This work is motivated by the tremendous success of the standard cosmology in-
cluding the Big-Bang Nucleosynthesis, the Standard Model and Grand Unified The-
ories of particle physics, in combination with the needs for a quantum gravity theory
for deeper understanding of our Universe. We investigated a scenario in F-theory
where we can construct a quantum gravity theory while preserving all these ingre-
dients.

In particular, we have studied flux vacua in F-theory on CM-type Calabi-Yau four-
folds of the form K3×K3/Zm. The case of m = 2 is intensively studied in Chapter
6, where we found that, when there is at least one modulus for one of the K3 sur-
faces, the condition (6.38) is necessary and sufficient for non-trivial DW = W = 0
vacua with all the moduli having masses, with an additional option (6.62) when the
complex structure is non-generic. The condition is not at all restrictive, as any two
identical copies of a CM-type K3 surface will satisfy the conditions. We have found
families of non-trivial flux vacua with DW = W = 0, i.e. vacua with massless grav-
itino, supersymmetry, and vanishing cosmological constant, when no correction to
the superpotential (3.12) or to the Kähler potential is taken into account1. In the case
of m > 2, it is found in Chapter 7 that conditions (7.11) and (7.12) are necessary and
sufficient for non-trivial and stabilized DW = W = 0 flux vacua.

The low-energy effective theory of such F-theory vacua with m = 2 is addressed
in Chapter 8. We intensively studied the case where one of the K3 surfaces has an
elliptic fibration, and the fourfold inherits the elliptic fibration. There are two types
of involutions, i.e. Z2-actions on the K3 surfaces, namely that non-trivially acts on
the fiber (Type 1) and on the base (Type 2). We have found a varieties of gauge
groups and (bi)fundamental matters charged under those groups in those vacua,
but it seems to be unlikely that a Grand Unified Theory that explains our Universe
is in this setup.

There are several ways to explore further along the line of this work. The first
would be to investigate the effective theory in the case of m > 2, as we have found
DW = W = 0 vacua there too. Although there is an issue concerning singulari-
ties with no crepant resolution [Dil12], there is no obvious reason that we should
exclude those geometries from our consideration, as we can think of M-theory com-
pactification on such geometries and we can keep the volume of a cycle that breaks
the Calabi-Yau condition to be infinitesimally small; see e.g. [AGW18] for a related
analysis. The cases with m = 3, 4 are of particular interest, as the resolution of
(E×C)/Zm where E is an elliptic curve yields IV∗- and III∗-type fibers, which means

1Note, though, that the case DW = W = 0 holds if there is no correction to the superpotential (3.12),
regardless of the corrections to the Kähler potential.
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that in a case analogous to Type 1 in m = 2, the G2 gauge group may replaced by
E6 or E7, which can accommodate Grand Unified Theories. Secondly, one may look
for another moduli space that contains many, hopefully infinitely many, CM points.
In the case of threefolds, the famous quintic has such moduli space, so there may
be a good chance of finding such moduli space for a Calabi-Yau fourfold. It is in
particular desirable to develop a systematic way to find a CM-type complex struc-
ture for arbitrary Calabi-Yau fourfolds constructed as a toric hypersurface, because
countless numbers of interesting models are constructed in this way. The condition
for general CM-type fourfolds, Eqs. (6.4) and (6.5), will be useful in those studies. Fi-
nally, CM-type manifolds are known to be related to rational conformal field theories
[Moo98, GV04b]. The current and future works along the line (see [KW19b, KW19a]
and references therein) may shed light on what we have assumed in this work, in
terms of the string worldsheet theory.
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Appendix A

Number field theory

A.1 Basics

In this section, we review some of the basic definitions and properties of fields. See
standard textbooks such as [Rom05, Fuj91] for more information.

A.1.1 Rings and fields

Definition A.1 (Ring). A ring is a nonempty set R, with two binary operations on it,
called addition and multiplication, which satisfy the following properties.

1. R is an abelian group under the addition.

2. (xy)z = x(yz) for all x, y, z ∈ R.

3. For all x, y, z ∈ R,

(x + y)z = xz + yz and x(y + z) = xy + xz. (A.1)

On a ring R, there are three operations: + and × are included by definition, and −
operation is always possible because any element in R has an inverse of the addi-
tional operation. A ring with a ÷ operation is called a field:

Definition A.2 (Field). A ring F is called a field if the nonzero element of F form an
abelian group under multiplication, and if the multiplicative identity 1 ∈ F and the
additional identity 0 ∈ F are different, 1 6= 0.

The second condition excludes the trivial field F = {0}. In the following, rings and
fields are assumed to be of characteristic zero, i.e. nr := r + r + · · ·+ r 6= 0 for any
positive integer n.

A.1.2 Algebraic extension and algebraic number

Definition A.3. A nonempty subset F of a field E is called a sub-field of E if it is a
field with the same operations as in E.
If F is a sub-field of a field E, we call E an extension field of F. This extension is
denoted by E/F.

Definition A.4. Let E/F be an extension and S be a subset of E. The smallest sub-
field of E containing both F and S is denoted by F(S). If S = [α1, . . . , αn] is a fi-
nite set, then the extension F(S)/F is said to be finitely generated and denoted by
F(α1, . . . , αn). An extension of the form F(α)/F is said to be simple and α is called a
primitive element.
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Definition A.5. Let F be a field and E be an extension field of F. If an element x ∈ E is
a root of some polynomial with all the coefficients in F, then x is said to be algebraic
over F. Otherwise x is said to be transcendental over F. An extension E/F is called
an algebraic extension if every element in E is algebraic over F.

Definition A.6. An extension field E of a field F can be viewed as a vector space
over F. The dimension of the vector space is called the degree of the extension and
denoted by [E : F]. If [E : F] is finite, then E/F is called a finite extension.

Theorem A.1. Let a field K be an extension field of a field F. Then the following
conditions are equivalent:

1. K is a finite extension field of F, i.e., [K : F] < ∞.

2. K is a finitely generated algebraic extension field of F.

Theorem A.2. Let E/F and K/E be extensions. Then

[K : F] = [K : E][E : F]. (A.2)

If {αi | i = 1, . . . , [E : F]} is a basis of the vector space E over F, and {β j | j =
1, . . . , [K : E]} that of K regarded as a vector space over E, then the set of products
{αiβ j | i = 1, . . . , [E : F], j = 1, . . . , [K : E]} is a basis of the vector space K over F.

........................................................

Definition A.7. For a field F, F[x] denotes the ring of polynomials in a single vari-
able x with all the coefficients in F. For a finite algebraic extension E/F, and for an
element α ∈ E, non-zero polynomials pα(x) ∈ F[x] satisfying pα(α) = 0 ∈ E with
the smallest degree possible are called minimal polynomials of α over F. Such a
polynomial always exist (because α is algebraic over F), and is unique up to over-
all multiplication of elements in F×. Minimal polynomials are always irreducible in
F[x].

Theorem A.3. Let K/F be an extension and let α ∈ K be algebraic over F. Then the
sub-field F(α) of K has a structure

F(α) ' F[x]/(pα(x)), (A.3)

where pα is a minimal polynomial of α over F.

In fact, a finite algebraic extension K/F—not just a sub-field K(α) ⊂ K—always has
a structure like that, when char(F) = 0; this useful property is stated as follows:

Lemma A.1. When char(F) = 0, any finite extension K/F is a simple extension; that
is, there exists an element θ ∈ K so that K = F(θ). Using a minimal polynomial of θ
over F, therefore, the field K has a structure K ∼= F[x]/(pθ(x)). It is always possible
to take {1, θ, θ2, · · · , θ[K:F]−1} as a basis, when K is regarded as a [K : F]-dimensional
vector space over F.

Example A.1. This theorem states that even a field that is generated by multiple
elements can be thought of as a simple extension. For example, Q(i

√
2, i
√

3) =
Q(i
√

2 + i
√

3).

........................................................

All the definitions and theorems on algebraic extension so far are for fields that are
defined abstractly by the laws of addition and multiplication among their elements.
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We may sometimes have a little more specific interest, however, in a field K that is
defined as a sub-field of C. For such a field K, char(K) = 0 by definition.

Definition A.8. A complex number α ∈ C is called an algebraic number, if there is
a non-zero polynomial pα(x) ∈ Q[x] satisfying pα(x = α) = 0 ∈ C. It is known that
all the algebraic numbers form a sub-field of C; this sub-field is denoted by Q. Any
finite extension field K of Q that is defined as a sub-field of C is called a number
field.

Any number field is always a sub-field of Q. While Q/Q is an algebraic extension,
it is not a finite extension. Thus, Q itself is not a number field.

A.1.3 Embeddings into C

Here is a summary of results on embeddings of a finite extension field K over Q into
a sub-field of C. We begin, however, with the following preparation.

Theorem A.4. Let K be an algebraic extension over Q, and α ∈ K. For a minimal
polynomial pα(x) of α over Q, there are deg(pα) solutions to pα(x) = 0 in C. It is
known that all the roots of pα(x) = 0 come with multiplicity 1.

This property is valid for any algebraic extension over F, in place of Q, as long as
char(F) = 0, and is called separability.

Theorem A.5. Let K be a finite extension over Q. Then there are [K : Q] distinct
embeddings (isomorphism onto the image) ρ : K ↪→ C over Q. Since all the elements
in K are algebraic, the image of such an embedding is always contained within Q;
ρ(K) ⊂ Q ⊂ C.

This is because K can always be regarded as a simple extension over Q by a prim-
itive element θ ∈ K (Lemma A.1); let pθ(x) be its minimal polynomial over Q, and
{ξi=1,··· ,[K:Q]} ⊂ C be the roots of pθ(x) = 0 in C. Then ρi : K ↪→ C is given by
ρi : K 3 θ 7→ ρi(θ) = ξi ∈ C for i = 1, · · · , [K : Q]. Note that all the [K : Q] roots {ξi}
are distinct from one another (separable), and hence the corresponding embeddings
are distinct from one another.

............................................

Definition A.9. Now let K/F be a finite extension with degree m = [K : F]. For any
element x ∈ K, then, A(x) : y 7→ x · y for y ∈ K is an F-linear transformation on
the vector space K over F. TrK/F(x) denotes the trace of the F-valued m×m matrix
representation of A(x), and is called the trace of x ∈ K.

A.1. Let {ωi=1,··· ,m} be a basis of K as a vector space over F. Then

x ·ωi = ωj[A(x)]ji, (A.4)

where [A(x)]ji is the F-valued m×m matrix representation of A(x). Now, let us take
F = Q. The relation (A.4) among elements in K still holds as one among their images
under the embeddings of K into Q ⊂ C.

ρa(x)ρa(ωi) = ρa(ωj)[A(x)]ji. (A.5)

Since there are m distinct embeddings ρa=1,··· ,m : K → Q ⊂ C, ρa(ωi), ρa(ωj) and
ρa(x) can be regarded as C-valued m × m matrices (the matrix ρa(x) is diagonal),



90 Appendix A. Number field theory

and the following relation is obtained:

TrK/Q(x) = trm×m [A(x)] =
m

∑
a=1

ρa(x); (A.6)

each contribution on the right-hand side is an algebraic number in Q ⊂ C, but their
sum should be in Q, because the left-hand side is, by definition.

A.1.4 Normal closure

Definition A.10. Let K be a number field, i.e., a sub-field of Q ⊂ C that is a finite
extension over Q. Let θ be a primitive element (i.e., K = Q(θ)), pθ(x) be its minimal
polynomial over Q, and {ξ1 = θ, ξ2, · · · , ξ[K:Q]} be the roots of pθ(x) = 0 in C. The
field Q(ξ1, · · · , ξ[K:Q]) ⊂ Q is called the smallest splitting field of pθ(x) ∈ Q[x] in
Q.

A.2. Thinking of a number field K as an abstract finite extension field over Q, we see
that there must be [K : Q] embeddings ρi : K ↪→ Q ⊂ C, i = 1, · · · , [K : Q] (Thm
A.5). The embedding ρi=1 : K ↪→ Q is a trivial identification, and ρ1(K) = K ⊂ Q.
For other ρi’s, however, it is not guaranteed that ρi(K) = K.

A.3. The field Q(ξ1, · · · , ξ[K:Q]) can be regarded as the minimal sub-field of Q that
contains all the images ∪i=1,··· ,[K:Q]ρi(K) of the [K : Q] embeddings from K to Q.
Because of this characterization, the smallest splitting field Q(ξ1, · · · , ξ[K:Q]) ⊂ Q of
pθ(x) in Q does not depend on the choice of a primitive element θ.

Theorem A.6. For a sub-field Knc := Q(ξ1, · · · , ξ[K:Q]) of Q for a number field K,
any one of the embeddings ρ : Knc ↪→ Q over Q maps Knc to Knc ⊂ Q, not outside
of Knc (though not necessarily as a trivial map on Knc)—(*). This is because such an
embedding ρ has to send ξi’s to ξi’s, possibly with a permutation among them, and
cannot do anything more than that.

A.4. A sub-field E of C is said to be a normal extension of Q, if it has the property (*)
referred to above. The minimum sub-field in C of a number field K that is a normal
extension over Q is called the normal closure of K/Q in C, and is denoted by Knc, as
we have done already above. For a number field K, therefore, the smallest splitting
field Q(ξ1, · · · , ξ[K:Q]) ⊂ Q of a primitive element θ such that K = Q(θ) is the normal
closure of K.

For a finite extension field E over Q that is defined as an abstract field, one can pick
any one of embeddings ρ : E ↪→ Q ⊂ C. The normal closure of ρ(E) in Q does not
depend on which one of [E : Q] embeddings is used. So, we use a notation Enc for
(ρ(E))nc in this article.

The definition of a normal extension E ⊂ Q over Q is generalized to extensions
E ⊂ Q over an arbitrary number field F by replacing Q in A.6 and A.4 with F.

Definition A.11. An algebraic extension E/F is said to be Galois, if it is a separable
and normal extension. Note that the separability is always guaranteed, when F has
char(F) = 0.

Example A.2. The normal closure Knc of a number field K is always a Galois exten-
sion over Q, by definition. Not all the number fields K are Galois over Q, however.
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Cyclotomic fields K = Q(ζN) are examples of Galois extensions over Q; the num-
ber field K = Q[x]/(x3 − 2), on the other hand, is not Galois; another example of
non-Galois extension is found in Example A.5.

A.2 CM fields

We introduce CM fields in this section, which plays a crucial role in the main text.

Definition A.12. A finite extension field K over Q is said to be totally real if ρi(K) ⊂
R for all the [K : Q] embeddings ρi=1,··· ,[K:Q] : K ↪→ C. On the other hand, a finite
extension field K over Q is said to be totally imaginary if ρi(K) is not contained
within R for any one of the [K : Q] embeddings ρi=1,··· ,[K:Q] : K ↪→ C.

Example A.3. Let n ∈ Z and suppose that |n| is not the square of an integer. K =
Q[x]/(x2 − n) is totally real [resp. totally imaginary] if n > 0 [resp. n < 0]. This
field K has two embeddings into C; ρ± : x 7→ ±

√
n ∈ C. On the other hand,

K = Q[x]/(x3− 2) is neither totally real nor totally imaginary; the three embeddings
of K to C send x ∈ K to one of the three roots of x3 − 2 = 0 in C.

Now, here is the definition of a CM field.

Definition A.13. A finite extension field K over Q is said to be a CM field, if (i) it
contains a sub-field K0 that is totally real, (ii) K is a degree-2 extension of K0, and
(iii) K itself is totally imaginary. Therefore, [K : Q] = [K : K0][K0 : Q] = 2[K0 : Q] is
always an even integer.

Proposition A.1. Let K be a CM field with [K : Q] = 2n. Its 2n embeddings to C can
be grouped into n pairs, (ρi, ρ̄i) for i = 1, · · · , n, so that ρ̄i(x) = (ρi(x))cc, where the
superscript cc is the complex conjugation operation in C. To see this, let K = Q(θ)
for some primitive element θ ∈ K. For a minimal polynomial pθ(x) ∈ Q[x] for θ,
all the 2n roots of pθ(x) = 0 have non-zero imaginary parts, and are grouped into
n pairs, (ξi, ξcc

i ) with i = 1, · · · , n. The embedding ρi : θ 7→ ξi forms a pair with
ρ̄i : θ 7→ ξcc

i .

Example A.4. Because the extension degree of a CM field is always even, the sim-
plest CM field is a quadratic extension over Q; quartic extensions come next.
CM fields K with [K : Q] = 2 are always in the form of K ∼= Q[x]/(x2 + d) ∼=
Q(
√
−d), where d is a positive integer that is not divisible by the square of an inte-

ger. Fields defined by K = Q[x]/(ax2 + bx + c) for a, b, c ∈ Q with 4ac− b2 > 0 can
always be brought into the form of Q[x]/(x2 + d) by redefining x. Such fields are
called quadratic imaginary fields. Two embeddings ρ± send x to ±i

√
d ∈ C. For

quadratic imaginary fields, Knc ∼= K.

Example A.5. A CM field K with [K : Q] = 4 is always in the form of K ∼= K0[x]/(x2−
p− qη), K0 = Q[η]/(η2 − d) for a positive square free integer d, and p, q ∈ Q, sat-
isfying p ± q

√
d < 0. The last condition needs to be imposed both for + and −,

because the condition (iii) would not be satisfied if p + q
√

d < 0 but p− q
√

d > 0 (or
vice versa).

CM fields K with [K : Q] = 4 are not always Galois over Q. It is Galois (i.e., Knc ∼=
K) if and only if (p2 − dq2) = r2 for some ∃r ∈ Q, or (p2 − dq2) = ds2 for some
∃s ∈ Q. When q = 0, in particular, K is Galois, K = Q(

√−p,
√

d) and Gal(K/Q) ∼=
Z/(2Z)×Z/(2Z). See Ex. 8.4 (2) of [ST61, Shi98] for more information.
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Example A.6. Any cyclotomic field K = Q(ζm) is a CM field. K0 = Q(ζm + ζ−1
m ).

A.5. When K is a CM field, its normal closure Knc is also a CM field (Prop. 5.12,
[Shi71]).
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Appendix B

Details of geometries

Details of geometrical analysis in the main text are gathered in this Appendix B.

B.1 Type 1

B.1.1 Derivation of the Weierstrass equation

In this section, we derive the Weierstrass equation (8.4) for YW . Let us assume that
X(1),W is given by a Weierstrass equation

PW = −y2 + x3 + x f (t) + g(t) = 0, (B.1)

where t is a coordinate of the base P1 of X(1),W . We will focus on an affine patch
U0 ∈ X(1),W × X(2), where X(1),W is given by the above Weierstrass equation and the
involution on X(2) acts as (u, v) 7→ (u,−v), where u and v are the coordinates of a
patch of X(2). The ring of regular functions on U0 is given by

C[U0] := C[x, y, v, t, u]/PW . (B.2)

After the Z2 quotient that acts as (y, v) 7→ (−y,−v) and identity for others, the ring
on U1 ∈ Y1, where Y1 is the singular geometry after the quotient, is given by

C[x, Y = y2, V = v2, W = yv, t, u]/
{
(−Y + x3 + x f (t) + g(t)), YV = W2} , (B.3)

which is equivalent to

C[U1] = C[x, V, W, t, u]/(W2 = V(x3 + x f (t) + g(t))). (B.4)

There are three A1 singularities along W = V = 0 at the three roots of the cubic
polynomial in x. The other A1 singularity is not visible in this patch. To construct
YW ′ , we blow-up the invisible A1 singularity, so nothing happens in this patch. In
order to get the Weierstrass model YW , let us "blow-down" the geometry. Namely,
we consider a geometry with the following ring of functions

C[x̃, ỹ, V, t, u]/(ỹ2 = x̃3 + x̃V2 f (t) + V3g(t))). (B.5)

Let us denote the new geometry by U2. The geometry U1 can then be regarded as a
(proper transform of) a blow-up at x̃ = ỹ = V = 0 of the new geometry U2 with the
map (x̃, ỹ, V, t, u) = (xV, WV, V, t, u). We have successfully derived a Weierstrass
model that is birational to YW

0 , which should be called as YW .
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A1 A2 A3 A4 A6 ∆
I∗ns
0 1 1 2 2 3 6

I∗ss
0 , I∗s0 1 1 2 2 4 6

TABLE B.1: Conditions on the order of vanishing along C of the co-
efficients in the generalized Weierstrass equation (B.6).

B.1.2 Note on split, semi-split, and non-split fibers

In this section, we will see that the ∆ f of YW of Type 1 induces a generically G2
gauge symmetry. To this end, let us first consider a three-fold X that is an elliptic
fibration over a surface B. The elliptic fiber may degenerate on a curve C in the base
surface B; we review what kind of X over a generic point of C is of Kodaira I∗0 type,
and how the generically-I∗0 degenerate fiber behave over the curve C, depending on
more detailed conditions on X. After that, we will apply the analysis to YW . Let us
start from X given by

y2 + A1(u, v)xy + A3(u, v)y = x3 + A2(u, v)x2 + A4(u, v)x + A6(u, v) (B.6)

where the order of vanishing of the coefficients along C (whose normal coordinate is
v) is those in the first row of the Table B.1. u is the tangential coordinate along C. The
condition in the first row of Table B.1 is weaker (more general) than the one in the
second row, so we can study what happens when the condition in the second row is
satisfied as a special case of analysis that assumes only the condition in the first row.

After the first blow-up, let us have a look at an open affine patch with the coordinates
(v, ξ, η); (x, y, v) = (ξv, ηv, v) is the blow-up map. The proper transform of X is
given by

η2 + b5vηξ + b3vη = vξ3 + b4vξ2 + b2vξ + b0v, (B.7)

η(η + b5vξ + b3v) = v(ξ3 + b4ξ2 + b2ξ + b0). (B.8)

where the normal coordinates have been factorized from the coefficients Ar(u, v)’s
by Ar(u, v) = vordv(Ar)b6−r(u, v) (for r = 1, 2, 3, 4, 6). The exceptional divisor is
the s = 0 locus, where η = 0 also has to hold. In the three dimensional space
(s, ξ, η) (with an irrelevant u direction), the equation above still leaves singularity
at η = s = 0 and any one of the three roots of ξ3 + b4(u)ξ2 + b2(u)ξ + b0 = 0.
By resolving those codimension-2 singularities, we obtained a three-fold that has
Kodaira-I∗0-type singular fiber at a generic point in C. Note that the three roots of the
cubic polynomial ξ3 + b4(u)ξ2 + b2(u)ξ + b0(u) = 0 are in one to one correspondence
with the three non-central nodes of the Dynkin diagram of D4.

Along the curve C, where u is the tangential coordinate, the value of b4(u), b2(u),
and b0(u) change, and three roots of the cubic polynomial mix up as we track them
over C. The 7-brane gauge group in the effective theory of F-theory compactification
on X is therefore reduced from D4 to G2; the three nodes of the Dynkin diagram of
D4 merge into one node, and the three edges of the diagram turn into three-fold edge
between the two nodes that correspond to the D4-central and D4-non-central ones.
For just the two of the nodes to mix up over C and one node stay distinct from the
two others, the cubic polynomial just need to factorize into a linear polynomial and a
quadratic polynomial. When this condition is satisfied, then we can always redefine
ξ by shifting it to ξ ′ to turn the linear piece into just ξ ′. So, the cubic polynomial must
look like ξ(ξ2 + b4ξ + b2) = 0. This is equivalent to A6 having order of vanishing
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higher, as in the second row of Table B.1. The two nodes out of the three nodes of
the Dynkin diagram now merge into one node, and the edge joining this merged
node and the D4-central node become two-fold. That is for SO(7). For all the three
non-central nodes of the Dynkin diagram of D4 to stay distinct without mixing up
over the entire curve C, the cubic polynomial ξ3 + b4(u)ξ2 + b2(u)ξ + b0(u) = 0 just
needs to factorize completely. So, it is better to say that the distinction between I∗ns

0 ,
I∗ss
0 and I∗s0 depend on whether the cubic polynomial [X3 + (A2/v)X2 + (A4/v2)X +
(A6/v3)]v=0 factorize globally over C, or not.

Now let us go back to our problem, YW . By blowing-up YW once, we get the ge-
ometry U1 in (B.4). There are three A1 singularities, away from the zero section, as
roots of the cubic polynomial x3 + x f (t) + g(t). As the cubic cannot be factorized in
general, one expects that the three roots are interchanged among them, which im-
plies that the gauge symmetry is reduced to G2. Note that there can be cases where
f and g are non-generic and there are not enough monodromies to reduce the gauge
symmetry to G2.

B.2 Type 2

B.2.1 Definition of the geometry

We first define the geometry. Locally, it can be defined using the coordinates (v, w) of
X(2) and the Weierstrass equation y2 = x3 + f (t2)x + g(t2) of X(1)W . The involution
on X(2) acts as (v, w) 7→ (−v, w). f and g can only depend on the even powers of
the base coordinate t, since the involution acts as t 7→ −t. YW

0 can be defined by the
following two equations

y2 = x3 + f (T)x + g(T), TV = S2. (B.9)

Here, the relation to the original coordinate (t, v, w) is T = t2, V = v2, S = tv. We
blow-up the A1 singularity canonically to get

y2 = x3 + f (T)x + g(T), VT = S2
T (T, VT, ST) (B.10)

y2 = x3 + f (S2
VV)x + g(S2

VV), TV = S2
V (TV , V, SV) (B.11)

y2 = x3 + f (TSS)x + g(TSS), TSVS = 1 (TS, VS, S), (B.12)

where we have listed the coordinates on the right and notation such as VT = V/T
is used. Note that in the last patch the fiber is only singular along S = 0 and not
TS = 0, since TS 6= 0 from the second equation. The blue component in Figure 8.4
corresponds to SV = 0 in (B.11) and the green component corresponds to V = 0 in
the same patch.

B.2.2 Monodromy

The singular fiber of X(1) at t = 0 must be either I2n, I∗0 , IV, or IV∗, which are the only
ones that can be made out of even order f and g 1. We will analyse the monodromy

1One can understand geometrically why I2n+1, I∗n>0, III∗, II∗ are not allowed. For an illuminating
example, let us first see why III∗ is excluded from the list. The III∗ fiber has eight rational curves. Let
us denote the one that intersects with zero-section by C0, the branched one by C7, and others so that
Ci.Ci+1 = 1 for i = 0, . . . , 5. There can be no nontrivial automorphism for E7, so each curve class
must be mapped to itself by the involution of X(1), and for each neighboring pair of curves, exactly
one of them must be fixed (point-wisely) by the involution. This is roughly because the involution is
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around SV = V = 0 for the four cases in turn.

I2n fiber: We consider the general collision In × Im so that one can see the mon-
odromy of not only I2n along SV = 0 but also that of In along V = 0. The
model is

y2 = z2(z + 3c) + tnsm, (B.13)

where c is a constant near t = s = 0 and z = x− c. Blow-up at z = y = t = 0
to get

y2
t = z2

t (ztt + 3c) + tn−2sm. (B.14)

The exceptional locus is yt = ±zt
√

3c if n > 2 and y2
t = 3z2

t c + sm if n = 2.
There seems to be no monodromy in any case. Note that in the literature one
can see statements like I1 × I2k+1 does not admit a small resolution [GM00,
AGW18], although those cases do not occur in this work.

I∗0 fiber: The model is
y2 = x3 + s2tx + s4t2. (B.15)

Blow-up once at x = y = s = 0 to get

y2
s = x3

s s + stxs + s2t2 = s(x3
s + txs + st2). (B.16)

Around xs = ys = s = 0, the rhs reduces to

sxs(x2
s + t). (B.17)

So it has three A1 singularities along s = ys = 0, at xs = 0,±i
√

t. The last two
A1 singularities are exchanged around t = 0, so there is a monodromy for the
I∗0 fiber. III fiber does not admit any monodromy.

IV∗ fiber: The model would be

y2 = x3 + s4t2x + s4t2. (B.18)

In this case, one should further blow-up the base according to [Mir83, BJ97a].
Over the new exceptional locus, the vanishing order of ( f , g, ∆) is (2, 0, 0), so
there is no singularity over the exceptional locus. Thus there is no chance that
the IV or IV∗ have monodromies.

Still, we can analyze the monodromy. To analyze the monodromy of IV∗, blow-
up twice along y = x = s = 0 to get

y2
ss = x3

sss
2 + t2xsss2 + t2. (B.19)

non-symplectic; see [GS18, Proposition 2.2]. Now, as we have assumed that the zero-section is acted
by the involution non-trivially, C0 must be a fixed curve. Then, C2, C4, and C7 must be a fixed curve,
but this leads to a contradiction because C3 is acted by the involution non-trivially with at least three
fixed points. The case of type I∗n>0 and II∗ can be excluded by a similar reasoning, while I∗0 is allowed;
let us denote the curve in I∗0 that intersects with the zero-section by C0 and others so that C1.Ci = 1 for
i = 0, 2, 3, 4. There can be an involution that fixes C0 and, say, C4, but exchanges C2 and C3. C1 has
two fixed points at the intersections with C0 and C4, and this is a perfectly consistent involution, so
I∗0 is allowed. I2n+1 has odd number of curves, so it has no consistent non-symplectic involution that
fixes each curve class. The automorphism cannot be used in this case, since the automorphism is not
compatible with the fact that the curve C0 that intersects with the zero-section is a fixed curve. We thus
have excluded I2n+1, I∗n>0, III∗ and II∗ type fibers.
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The exceptional locus is given by s = 0, which corresponds to

y2
ss = t2, (B.20)

i.e. yss = ±t. We do not have the monodromy around t = 0.

The monodromy of IV can be analyzed by blowing-up at y = x = t = 0. We
get

y2
t = x3

t t + s4txt + s4. (B.21)

The exceptional locus is given by yt = ±s2 and There is no monodromy for IV
either.

IV fiber: In this case, the author is not sure if II× IV does not admit a flat resolution.
Ref. [BJ97a] tries to find a resolution by blowing-up the base and concludes
that the process is non-crepant.

B.3 Relations among YW , ν∗(YW), ν∗(YW) and Y

In this section, we will make the argument in the final part of Section 3.3.1 refined
and global, in the sense that we take care of whole elliptic fiber including the Z = 0
locus, i.e. the origin of the elliptic curve. We will start from a model of ν∗(YW).

B.3.1 Blow-up of ν∗(YW)

We start from the geometry Y0, which corresponds to ν∗(YW) in the main text2. Y0 is
defined by

Y2 = X3 + f (t, st)t4XZ4 + g(t, st)t6Z6 (B.22)

in the ambient space A0 = WP2
2,3,1 ×C2 with coordinates [X : Y : Z]× (t, st).

Let us perform three, blow-ups in turn:

1st 2nd 3rd
X X → tX X → tX
Y Y → tY Y → tY Y → tY

ambient space A1 A2 A3

We define UX̆ by X 6= 0 and UZ̆ by Z 6= 0. These two patches are sufficient to cover
Y0 entirely, as X = Z = 0 implies X = Z = Y = 0, which is absent in WP2

2,3,1.
The singularity is along X = Y = 0, so we take UZ̆ to perform a blow-up, leaving
UX̆. In what follows, we use the inhomogeneous coordinate in UZ̆, x = X/Z2 and
y = Y/Z3. Let us first blow-up at x = y = t = 0 to get A1. We will use notations
such that xt in A1 corresponds to x/t in A0.

patch in A1 coordinates defining polynomials
Ut̆ (xt, yt, t) t2(−y2

t + tx3
t + f xtt3 + gt4)

Ux̆ (x, yx, tx) x2(−y2
x + x + f t4

xx3 + gt6
xx4)

Uy̆ (xy, y, ty) y2(−1 + yx3
y + f xyt4

yy3 + gt6
yy4)

2Y0 is a model of ν∗(YW), in the sense that we are taking C2 as the base, rather than a compact
threefold as in the main text. What will be called Y3 corresponds to ν∗(YW). We will eventually end
up with Y′, which will correspond to Y in the main text.
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We define the proper transform to be Y1. The canonical divisor is

KY1 = (KA1 + Y1)|Y1 = (K∗A0
+ 2E1 + Y∗ − 2E1)|Y1 = K∗Y|Y1 . (B.23)

The only singular locus is xt = yt = t = 0 in Ut̆, so we blow-up this locus. Note that
the locus is completely invisible in other patches since tx = 1/xt and ty = 1/yt on
overlaps.

We will keep Ux̆ and Uy̆ and blow-up Ut̆, which we will call A2.

patch in A2 coordinates def. pol. of Y∗1
Ut̆t (xtt, ytt, t) t2(−y2

tt + t2x3
tt + f xttt2 + gt2)

Ut̆x (xt, ytxt , txt) x2
t (−y2

txt
+ txt x2

t + f t3
xt

x2
t + gt4

xt
x2

t )
Ut̆y (xtyt , yt, tyt) y2

t (−1 + tyt x3
tyt

y2
t + f xtyt t3

yt
y2

t + gt4
yt

y2
t )

We take Y2 = Y∗1 − 2E2. The canonical divisor is

KY2 = (KA2 + Y2)|Y2 = (K∗A1
+ 2E2 + Y∗1 − 2E2)|Y2 = K∗Y1

|Y2 , (B.24)

so the process is crepant. Here, in Ut̆t, ytt = t = 0 is singular. This locus corresponds
to ytxt = xt = 0 in Ut̆x. We cannot see the locus in Ut̆y since tyt = 1/ytt, so we leave
the patch. Note that the singular locus is identical to E2|Y2 .

By blowing-up the singular locus, we get the geometry

patch in A3 coordinates def. pol. of Y∗2
U ˘ttt (xtt, yttt, t) t2(−y2

ttt + x3
tt + f xtt + g)

(U ˘tty) (xtt, ytt, tytt) y2
tt(−1 + t2

ytt
x3

tt + f xttt2
ytt

+ gt2
ytt
)

U ˘txx (xt, ytxtxt , txt) x2
t (−y2

txtxt
+ txt + f t3

xt
+ gt4

xt
)

(U ˘txy) (xtyx , ytxt , txt) y2
txt
(−1 + txt x2

tyx
+ f t3

xt
x2

tyx
+ gt4

xt
x2

tyx
)

We define Y3 as Y3 = Y∗2 − 2E3. We denoted the first coordinate in the last patch
by xtyx because xtytxt

= x/(ty/x) at generic points. We have completely resolved
the singularity, when f , g are generic. Note that U ˘tty and U ˘txy can be dropped, since
tytt = 0 and xtyx = 0 are, respectively, missing in Y3. The canonical divisor is

KY3 = (KA3 + Y3)|Y3 = (K∗A2
+ E3 + Y∗2 − 2E3)|Y3 = (K∗Y2

− E3)|Y3 , (B.25)

so the process is not crepant. Since the previous two blow-ups were crepant, we
have

KY3 = (K∗Y − E3)|Y3 . (B.26)

Summary so far

We have constructed a geometry Y3

Y3 = Y∗ − 2(E∗1 + E∗2 + E3)|Y3 . (B.27)

The canonical divisor of Y3 is,

KY3 = (K∗Y − E3)|Y3 . (B.28)

Patches and defining polynomials are
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𝑌0 𝑌3

𝐶0

𝐶1

𝐶3

𝑌′
FIGURE B.1: A schematic figure of the fiber over t = 0, along the

regular transformation denoted by the two arrows.

patches coordinates def. pol. of Y3

UX̆ (B = yz, C = z2, t) B2 = C(1 + f t4C2 + gt6C3)
Ux̆ (x, yx, tx) −y2

x + x + f t4
xx3 + gt6

xx4

Uy̆ (xy, y, ty) −1 + yx3
y + f xyt4

yy3 + gt6
yy4

Ut̆y (xtyt , yt, tyt) −1 + tyt x3
tyt

y2
t + f xtyt t3

yt
y2

t + gt4
yt

y2
t

U ˘ttt (xtt, yttt, t) −y2
ttt + x3

tt + f xtt + g
U ˘txx (xt, ytxtxt , txt) −y2

txtxt
+ txt + f t3

xt
+ gt4

xt

Fiber structure at t = 0

Let us study the fiber at t = 0. For a schematic figure of the t = 0 fiber, see Figure
B.1

patches coordinates t = 0
UX̆ (B = yz, C = z2, t) t = 0⇒ B2 = C: curve C0
Ux̆ (x, yx, tx) tx = 0⇒ −y2

x + x = 0: curve C0
x = 0⇒ y2

x = 0: curve C1
Uy̆ (xy, y, ty) ty = 0⇒ 1 = yx3

y: curve C0

y = 0⇒ empty
Ut̆y (xtyt , yt, tyt) tyt = 0⇒ empty

yt = 0⇒ empty
U ˘ttt (xtt, yttt, t) t = 0⇒ y2

ttt = x3
tt + f xtt + g: curve C3

U ˘txx (xt, ytxtxt , txt) txt = 0⇒ y2
txtxt

= 0: curve C1
xt = 0⇒ y2

txtxt
= txt + f t3

xt
+ gt4

xt
: curve C3

The curves are identified by analyzing the overlaps of the patches. One can also see
that C0 ∩ C1 = 1, C1 ∩ C3 = 1, and C0 ∩ C3 = 0.

Regular map from Y3 to Y′

Let us construct a regular map from Y3 to Y′. Y′ defined globally by the homoge-
neous equation

Y′2 = X′3 + f (t′, s′t)X′Z′4 + g(t′, s′t)Z′6. (B.29)
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with an ambient space isomorphic to A0 with primes on the coordinates. The ge-
ometry is covered by two patches VX̆′ and VZ̆′ , but we also use another patch VY̆′ .
We first try to construct a regular map patch by patch. We then check the consis-
tency over the overlaps. The defining equations and coordinates for each patch is as
follows3:

patches coordinates def. eq. of Y′

VX̆′ (B′ = Y′Z′, C′ = Z′2, t′) B2 = C(1 + f t4C2 + gt6C3)
VY̆′ (E′ = Z′3, F′ = X′Z′, t′) E′ = F′3 + f E′F′2 + gE′3

VZ̆′ (x′, y′, t′) y′2 = x′3 + f x′ + g

U ˘ttt patch This is the easiest one. Take

x′ = xtt, y′ = yttt, t′ = t. (B.30)

This is simply an isomorphism.

U ˘txx patch Take

B′ = ytxtxt , C′ = txt , t′ = txt xt (B.31)

Then (the pullback of) the defining equation of Y′ is

(−y2
txtxt

+ txt(1 + f t2
xt
+ gt3

xt
)) = 0 (B.32)

and the image of the regular map is in Y′.

Ux̆ patch Take

B′ = yxtx, C′ = t2
xx, t′ = txx (B.33)

Then the defining equation of Y′ is

t2
x(−y2

x + x(1 + f t4
xx2 + gt6

xx3)) = 0, (B.34)

so the image is in Y′.

UX̆ patch Take

B′ = tB, C′ = t2C, t′ = t, (B.35)

then
− B′2 + C′( f C′2 + gC′3) = t2(−B2 + C( f t4C2 + gt6C3) (B.36)

so the image is in Y′.

Ut̆y patch This patch is mapped to VY̆. Now take

E′ = t2
yt

yt, F′ = xtyt tyt yt, t′ = tyt yt (B.37)

Then the defining equation of Y′ is

t2
yt

yt(−1 + tyt x
3
tyt

y2
t + f xtyt t

3
yt

y2
t + gt4

yt
y2

t ) = 0, (B.38)

3To derive the equation for VX̆′ , for example, one needs to Z2 redundancy after setting X = 1. By
setting A′ = Y′2 and B′, C′ as shown in the table, and by imposing A′C′ = B′2 in addition to the
Weierstrass equation, we get the shown equation.
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so the image is in Y′.

Uy̆ patch Take

E′ = y2t3
y, F′ = xyyty, t′ = tyy, (B.39)

then the defining equation E′ = ... is

− y2t3
y(−1 + x3

yy + f xyy3t4
y + gy4t6

y) = 0 (B.40)

so the image is in Y′.

Now let us check the consistency. First, note that the map to VX̆′ , VY̆′ , and VZ̆′ are
consistently defined in terms of x, y, t among the maps that maps to the same patch.
Namely, they are defined so that

x′ = x/t2, y′ = y/t3, t′ = t (B.41)

B′ = yt/x2, C′ = t2/x, t′ = t (B.42)

E′ = t3/y, F′ = xt/y, t′ = t. (B.43)

Next we check that they are consistent with the isomorphism between any two of
the three patches of Y′; one can prove this using the isomorphisms like

x′ = F′/E′, y′ = 1/E′, (B.44)

x′ = 1/C′, y′ = B′/C′2... (B.45)

Now the consistency of the whole regular map is almost trivial, since the isomor-
phisms between the U patches can be deduced from the relation between their coor-
dinates and the original (x, y, t) coordinates. The case of UX̆ is a bit trickier, but still
one can check that the regular map is consistent with the isomorphism between UX̆
and Ux̆.

Regular map to Y′ and pullback of the canonical divisor

It is not easy to describe the map Y3 → Y′ as a sequence of blow-ups, so we take
different approach to compute its canonical divisor. Using the ramification divisor
RY′ of the regular map Y3 → Y′, we have the equation

KY3 = K∗Y′ + RY′ . (B.46)

Let us compute RY′ and see if it is compatible with KY3 , computed from the sequence
of blow-ups of Y, and KY′ = 0. To this end, let us note that the above relation holds
for the ambient spaces

KA3 = K∗A′ + RA′ . (B.47)

Here, the ambient space A′ for Y′ is defined for each patch, and not necessarily
defined globally. Combined with the adjunction formula, we have

RA′ − RY′ = (KA′3
− KY′3

)− (K∗A′ − K∗Y′) = Y′∗ −Y3 (B.48)

when restricted to Y3. We will compute

RY′ = RA′ − (Y′∗ −Y3) (B.49)
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for each patch.

We summarize the regular map, the pullback of Y′, the pullback of KY′ , and RY′ .
Note that RA′ can be read off from the coefficient of the pullback of the holomorphic
3-form in A′.

U ˘ttt patch

x′ = xtt, y′ = yttt, t′ = t. (B.50)

− y′2 + x′3 + f x′ + g = −y′2ttt + x3
tt + f xtt + g (B.51)

dx′dy′dt′ = dxttdytttdt, RY′ = 0 (B.52)

RY′ is empty in this patch. Note that this implies that RY′ does not contain C3,
since in this patch the curve is visible.

U ˘txx patch

B′ = ytxtxt , C′ = txt , t′ = txt xt (B.53)

− B′2 + C′( f C′2 + gC′3) = −y2
txtxt

+ txt(1 + f t2
xt
+ gt3

xt
) (B.54)

dB′dC′dt′ = txt(dxtdytxtxt dtxt), RY′ = (txt) (B.55)

RY′ is C1 in this patch. C3 is not contained, as expected.

Ux̆ patch

B′ = yxtx, C′ = t2
xx, t′ = txx (B.56)

− B′2 + C′( f C′2 + gC′3) = t2
x(−y2

x + x(1 + f t4
xx2 + gt6

xx3)) (B.57)

dB′dC′dt′ = t3
xx(dxdyxdtx), RY′ = (t3

xx)− (t2
x) = (txx) (B.58)

RY′ is C0 and C1 in this patch.

UX̆ patch

B′ = tB, C′ = t2C, t′ = t, (B.59)

− B′2 + C′( f C′2 + gC′3) = t2(−B2 + C( f t4C2 + gt6C3)) (B.60)

dB′dC′dt′ = t3x(dBdCdt), RY′ = (t3)− (t2) = (t) (B.61)

RY′ is C0 in this patch.

Ut̆y patch

E′ = t2
yt

yt, F′ = xtyt tyt yt, t′ = tyt yt (B.62)

− E′ + F′3 + f F′E′2 + gE′3 = t2
yt

yt(−1 + tyt x
3
tyt

y2
t + f xtyt t

3
yt

y2
t + gt4

yt
y2

t ), (B.63)

dE′dF′dt′ = t3
yt

y2
t (dxtyt dytdtyt), RY′ = (t3

yt
y2

t )− (t2
yt

yt) = (tyt yt) (B.64)
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RY′ is empty in this patch when restricted to Y3.

Uy̆ patch

E′ = y2t3
y, F′ = xyyty, t′ = tyy, (B.65)

− E′ + F′3 + f F′E′2 + gE′3 = y2t3
y(−1 + x3

yy + f xyy3t4
y + gy4t6

y) (B.66)

dE′dF′dt′ = t4
yy3(dxydydty), RY′ = (t4

yy3)− (t3
yy2) = (tyy) (B.67)

RY′ is ty = 0, i.e. C0 in this patch, when restricted to Y3.

Up to here, everything is compatible with RY′ = C0 + C1, globally.

Map to Y

The same procedure can be done with the map to Y to confirm (B.28).

U ˘ttt patch

x = xttt2, y = ytttt3, t = t. (B.68)

− y2 + x3 + f t4x + gt6 = t6(−y2
ttt + x3

tt + f xtt + g) (B.69)

dxdydt = t5dxttdytttdt, RY = (1/t) (B.70)

RY is −C3 in this patch.

U ˘txx patch

x = x2
t txt , y = ytxtxt x

3
t txt , t = txt xt (B.71)

− y2 + x3 + f t4x + gt6 = x6
t t2

xt
(−y2

txtxt
+ txt(1 + f t2

xt
+ gt3

xt
) (B.72)

dxdydt = x5
t t2

xt
(dxtdytxtxt dtxt), RY = (1/xt) (B.73)

RY is −C3 in this patch, and also implies that the coefficient of C1 in RY is 0,
since C1 is visible in this patch.

Ux̆ patch

x = x, y = yxx, t = txx (B.74)

− y2 + x3 + f t4x + gt6 = x2(−y2
x + x(1 + f t4

xx2 + gt6
xx3)) (B.75)

dxdydt = x2(dxdyxdtx), RY = 0 (B.76)

RY is empty in this patch, which implies that C0 and C1 are not contained in
RY.

One needs to check the consistency, but these three computations supports that RY =
−C3.
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B.3.2 Canonical divisor

Let us follow how the canonical divisor varies along the rational maps

YW → ν∗(YW)→ ν∗(YW)→ Y, (B.77)

going back to the notation in the main text. Let us denote the discriminant locus of
YW by its irreducible components Di,

∆(YW) = 12 ∑
i

aiDi = 12(a1D1 + a2D2) + ∆̂(YW). (B.78)

Here, D1 and D2 are the support of the colliding singularities we are concerned.

Let us assume that the canonical divisor K(YW) of YW vanishes, K(YW) = 0. Then
we have4

K(Bw) = −∑
i

aiDi. (B.79)

Moving on to ν∗(YW), we have

K(ν∗(YW)) = π∗(K(B3) + ∑
i

a′iD
′
i) = π∗(K∗(Bw) + E + aE + ∑

i
aiD̂i), (B.80)

where π always denotes the elliptic fibration morphism, D̂i is the irreducible com-
ponent of D∗i that does not contain E and aiD′i denotes the irreducible components
of ∆(ν∗(YW)). On the other hand, we have

K∗(YW) = π∗(K∗(Bw) + ∑
i

aiD∗i ), (B.81)

so
K(ν∗(YW)) = K∗(YW) + π∗((a + 1)E− (a1 + a2)E) = π∗(E). (B.82)

We used a = a1 + a2.

After the blow-up, if f , g of the Weierstrass equation is of the form

f (t, st) = t4 f ′(t, st), g(t, st) = t6g′(t, st), (B.83)

in the patch spanned by (t, st) (or similarly in that of (ts, s)), then by following the
sequence of rational maps ν∗(YW)→ ν∗(YW)→ Y, one can finally see that

K∗(Y) = K(ν∗(YW))− C0 − C1 = π∗(E)− C3 − C0 − C1 = 0, (B.84)

i.e. Y is Calabi-Yau. Note that Ci are divisors in ν∗(YW).

In the case of I∗0 × I∗0 , I∗0 × I∗n and I∗0 × IV∗ collisions, this procedure yields Y, which is
locally defined as the Weierstrass model

y2 = x3 + f ′(t, st)x + g′(t, st), (B.85)

which has a flat and crepant resolution, including at the new collision point t = st =
0.

4See, for example, [MV96a]. We will ignore the "error term" entirely.
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In the case of I∗0 × III∗, one needs to repeat the procedure since the new geometry Y
has the collision III× III∗, but after repeating the procedure once, one gets a Weier-
strass model over a blow-up of B3, which has a flat resolution.

The case of I∗0 × II∗ is more subtle; it is said that by repeating the procedure, one gets
a non-crepant resolution. This is because if one blows-up the II× IV collision, the
factorization f = f ′t4 and g = g′t6 is not possible over the exceptional locus, and
thus the procedure is non-crepant. It is not clear how one can see that the collision
has no flat fibration without changing the base.
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Appendix C

Type IIB orientifold case

As a special case of the analysis of supersymmetric flux configurations for M/F-
theory in Section 6, the case of Type IIB orientifold compactification on a Borcea-
Voisin threefold M = (Eτ × X(2))/Z2 is covered (see (5.19)); X(1) = Km(Eφ × Eτ)

corresponds to a choice of (S(1)
0 , T(1)

0 , σ(1)) from [Nik81] where T(1)
0 = U[2]U[2],

r(1) = 18, a(1) = 4 and g(1) = 0. The conditions (6.37, 6.38) for the case of X(1) =

Km(Eφ×Eτ) should therefore be equivalent1 to the conditions worked out in [KW17a].
The two sets of conditions do not look similar at first sight (as reviewed below), but
we confirm in the following that they are equivalent indeed. This appendix can thus
be regarded as a supplementary note to [KW17a]; consistency check in this appendix
also gives confidence in the study in Section 6 in this thesis.

Let us start off by recalling the Type IIB conditions in [KW17a] for a non-trivial su-
persymmetric flux. K(2) and KE are the endomorphism fields of the CM-type Hodge
structure on T(2)

X and H1(Eτ; Q), respectively. n := rank(T(2)
X ).

When the untwisted sector T(2)
X ⊗Q H1(Eτ; Q) is itself a simple component of the

rational Hodge structure,2 it is level-3 and K(2) ⊗Q KE is the endomorphism field. A
non-trivial DW = 0 flux exists if and only if(

K(2) ⊗Q KE

)r ∼= Q(φ), [Q(φ) : Q] = 2. (C.1)

The half set3

Φ =
{

ρ
(2)
(20) ⊗ ρτ

(10), ρ
(2)
a=1,··· ,n−2 ⊗ ρτ

(01), ρ
(2)
(02) ⊗ ρτ

(10)

}
(C.2)

of all the 2n embeddings K(2) ⊗ KE → Q is used in determining the reflex field.4

When T(2)
X ⊗Q H1(Eτ; Q) is not a simple component, instead, K(2) has a structure

of K0Q(ξS) for its totally real sub-field K0 and an imaginary quadratic field Q(ξS)

1 In Section 3.3 of [KW17a], the authors worked out orientifold projection on the moduli of the
threefold M, and found that the twisted sector moduli of the complex structure of M are projected out.
In this work, the absence of such moduli is understood as the absence of the H1(Z(1); Q)⊗H1(Z(2); Q)
component; it is of g(1)g(2) = 0 dimension.

2Then there is no chance for a non-trivial flux with W = 0.
3Recall that we always consider the reflex field in the sense of Weil intermediate Jacobian, i.e. the

Jacobian JW(M) associated with H0,3(M)⊕ H2,1(M).
4Note that we started out in F/M-theory analysis in Section 6 in this thesis by assuming that X(1) =

Km(Eφ × Eτ) is of CM type (that both Eτ and Eφ are CM elliptic curves). In the analysis of [KW17a],
however, the CM nature of Eφ, namely [Q(φ) : Q] = 2, follows from the CM nature of X(2) and Eτ and
the supersymmetry conditions on a non-trivial flux.
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isomorphic to KE, and T(2)
X ⊗Q H1(Eτ; Q) has a structure K(2)⊕K(2) under the action

of the algebra K(2) ⊗Q KE (KE acts through an isomorphisms Q(ξS) ∼= KE). For a
non-trivial DW = 0 flux to exist, it is necessary and sufficient that

(K(2))r ∼= Q(φ) ∼= Q(τ). (C.3)

A few more words are necessary for this condition to have a clear meaning. Let
θa=1,··· ,n/2 be the embeddings K0 → Q, and θ±a those of K(2) so that their restriction
on K0 are θa, and θ+a (ξS) [resp. θ−a (ξS)] is in the upper [resp. lower] complex half
plane. The reflex field (K(2))r in the condition (C.3) should be for the half set5{

θ+a=1, θ−a=2,··· ,n/2

}
. (C.4)

The case T(2)
X ⊗ H1(Eτ; Q) is simple: Now, we begin with making the condition

(C.1) more explicit. To this end, a set of notations is introduced in order to capture
the structure of the fields K(2) and KE. As a general property of CM fields, K(2) has
a structure of K0(x) where K0 is the totally real sub-field of K(2), and x an element
of K(2) with the following properties: x2 ∈ K0, and the element Q := −x2 in K0 is
mapped onto the real positive axis by all the [K0 : Q] = n/2 embeddings K0 → Q.
Similarly, KE = Q(τ) for some τ ∈ KE such that p := −τ2 ∈ Q>0. The vector space
K(2) ⊗Q KE is regarded 4-dimensional over K0 generated by {1, x, τ, xτ}; the totally
real sub-field of K(2) ⊗ KE—denoted by Ktot

0 —is 2-dimensional over K0 generated by
{1, xτ}.

The condition that the reflex field in (C.1) is an imaginary quadratic extension of Q

is equivalent to existence of η ∈ K(2) ⊗ KE such that its images by the n embeddings
in Φ are all identical η ∈ Q which generates an imaginary quadratic field Q(η). For

η = A + Bx + Cτ + Dxτ ∈ K(2) ⊗ KE, A, B, C, D ∈ K0, (C.5)

the condition η2 ∈ Q is equivalent to

AC = QBD, AB = pCD, AD + BC = 0, (A2 −QB2 − pC2 + pQD2) ∈ Q.
(C.6)

This leaves five distinct possibilities: i) none of A, B, C, D is zero, ii-A) A 6= 0, and
B = C = D = 0, ii-B) B 6= 0 and three others are zero, ii-C) C 6= 0 and three others
are zero, and ii-D) D 6= 0 and three others are zero.

In fact, only the possibility ii-C) is viable. The possibility i) runs into a contradic-
tion: (B/D) is a well-defined element of the totally real field K0 in this possibil-
ity, and yet one can derive that (B/D)2 = −p ∈ Q<0. In the possibilities ii-A)
and ii-D), the element η = A or η = Dxτ would not generate a totally imaginary
extension over Ktot

0 . The possibility ii-B) cannot be consistent with the condition
that the images of η = Bx under the n embeddings in Φ should be all identical;

ρ
(2)
(20)(Bx) = −ρ

(2)
(02)(Bx) 6= 0.

5It was not clearly stated in [KW17a] which half set of the n embeddings of K(2) should be used in
determining the reflex field in (C.3).
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Let us focus on the remaining ii-C) possibility. The condition (C.6) implies that C2 ∈
Q. There are two cases, (*1) C6=0 ∈ Q, and (*2) C/∈Q whose square is a positive
rational number r ∈ Q>0 that is not a square.

In the case (*1), the condition that all the n images of η = Cτ are identical is satisfied

if and only if n = 2; if n > 2, then ρ
(2)
a>2(η) = Cρτ

(01)(τ) cannot be the same as

the images ρ
(2)
(20)(C)ρ

τ
(10)(τ) and ρ

(2)
(02)(C)ρ

τ
(10)(τ). Therefore, K(2) = Q(x) must be

some imaginary quadratic field, and the reflex field (K(2)⊗KE)
r must be Q(

√−p) ∼=
KE. It follows that Eφ also has the endomorphism field Q(

√−p), Eτ and Eφ are
isogenous (and are both CM), and X(1) = Km(Eφ × Eτ) has a rank-20 Néron-Severi
lattice. Therefore, to conclude, the case (*1) solution to the condition (C.6) implies
that T(1)

X ( T(1)
0 , K(1) ∼= Q(φ) ∼= KE ∼= Q(

√−p), K(2) is an imaginary quadratic field
(and is not isomorphic to Q(

√−p) as assumed before (C.1)), and the condition (6.37)
is satisfied; both ρ

(1)
(20)(K

(1)
0 ) = ρ

(2)
(20)(K

(2)
0 ) = Q.

In the case (*2), the totally real field K0 must be a real quadratic field. To see this, note
that K0 contains Q(C) ∼= Q(

√
r), which means that n/2 ≥ 2. The condition that all

the n images of η = Cτ should be the same now implies that ρ
(2)
a>2(C) = −ρ

(2)
(20)(C).

Because the n/2 embeddings of K0 should yield the same number of two different
embeddings of the sub-field Q(C), (n− 2)/2 must be equal to 2/2; n = 4. Therefore,
K(2) ∼= Q(x, C), its totally real sub-field must be K(2)

0
∼= Q(C), and (K(2) ⊗ KE)

r ∼=
Q(
√−pr). Now, the remaining condition in (C.1) is Q(φ) ∼= Q(

√−pr). Therefore,
it turns out that K(1) ∼= Q(

√−p,
√−pr), and K(1)

0
∼= Q(

√
r). Thus, to summarize,

the case (*2) solution to the condition (C.1) implies that T(1)
X = T(1)

0 , K(1)
0
∼= K(2)

0
∼=

Q(
√

r), and hence the condition (6.37), in particular.

The case T(2)
X ⊗Q H1(Eτ; Q) is not simple: Let us now turn to the case T(2)

X ⊗Q

H1(Eτ; Q) is not itself a simple component of the rational Hodge structure. The
condition that the reflex field (K(2))r with respect to the half set (C.4) should be imag-
inary and quadratic implies in fact that n/2 = 1, so K(2) also needs to be an imag-
inary quadratic field. To conclude, the condition (C.4) implies K(1) ∼= Q(φ) ∼= KE,
T(1)

X ( T(1)
0 , and K(2) is also isomorphic to Q(φ); the condition (6.38) is satisfied.

To wrap up, here is what we learned in this appendix, stated in a colloquial lan-
guage. Although it is not apparent from the Type IIB conditions (C.1, C.4) in [KW17a],
only small classes of CM fields K(2) can satisfy either one of those conditions; the
analysis in this appendix left [K(2) : Q] = 2, 4 as the only possibilities, in particu-
lar. The M/F-theory condition (6.37, 6.38) in the main text of this thesis also imply
[K(2) : Q] = 2, 4, because the CM field K(1) for X(1) = Km(Eτ × Eφ) can only be
degree-4 or degree-2 extension over Q. Thus both perspectives led us to the same
result.
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