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Abstract
In this thesis, we explore various theoretical aspects of conformal field theories with boundaries
and defects to better classify and understand these theories. Wewould like to compute conformal
anomaly coefficients, the sphere free energy, and the entanglement entropy, all of which contains
considerable dynamical information of theories.

In the former half of the thesis, we specifically consider the scalar O(N) symmetric field
theory with (φ2)3 interactions in R2 × R+. This theory exhibits an approximate conformal
symmetry inN →∞ limit where we can do explicit calculations. We first study possible phases
associated with boundary conditions and argue their relative stabilities. We then compute stress
tensors correlation function in Dirichlet boundary condition, further decomposing it into bulk
and boundary conformal blocks to gain the operator spectrum underlying this theory. We finally
elucidate boundary conformal anomaly coefficients. We find all of these quantities depend on a
quasi-marginal coupling.

In the latter half of the thesis, we investigate the sphere free energy and the entanglement
entropy of conformal field theories in the presence of the boundary or the defect, since these two
numbers can be means to count effective degree of freedom under RG flows. Establishing the
universal relation between them, we find the sphere free energy and the entanglement entropy
are equivalent with a suitable ultraviolet regularization in the case of codimension-1 defects
and boundaries, however, they differ due to the contribution from the defect when we consider
higher codimensional defects. We then propose the monotonicity theorem (termed C-theorem)
stating that the sphere free energy, not the entanglement entropy, should monotonically decrease
under any RG flows. This proposal can unify all known C-theorems in the literature and also
provides the new series of them in general dimensions of the spacetime and defects. We confirm
that our proposal holds in various models. In some holographic models, we are able to prove
our conjecture with the assumption of the null energy condition.
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Chapter 1

Introduction

1.1 Space of quantum field theories
A quantum field theory (QFT) is a powerful mean to study a number of aspects in physics.
One of the successful triumphs is the well known standard model in particle physics, but it’s
been widely used to describe other interesting systems from in cosmology to in condensed
matter physics. Despite the fact that QFTs have a lot of applications and successfully find new
phenomena, we know next to nothing about its definition. Instead, we have a collection of facts
that provide us how QFTs should look like.

Among them is the renormalization group (RG) flow as one of the characteristics in QFTs,
meaning that every QFT is defined at some energy or length scales, and flow into an effective
theory by coarse graining the microscopic degree of freedom which have higher scales than that
we are interested in [1, 2]. It is equivalent to say that varying the energy scale causes a QFT
to change into another QFT. In the long distance limit, or equivalently low energy limit, the
theory exhibits scale invariance in general 1. It is also widely expected that such scale invariant
QFT becomes conformal invariant rather than scale invariant [3] under the assumptions of
unitarity and Poincaré invariance. This class of field theories is called conformal field theories
(CFTs). As this emergent symmetry requires no additional information, CFTs appear in many
physical systems. For instance, critical phenomena in statistical mechanics are often described
as CFTs because at a second-order phase transition the correlation length becomes infinity,
which is of course much bigger than the typical scale of the system. A CFT does not necessarily
have microscopic description, since such information is coarse grained along the RG flows.
Because of this, it is almost always the case that the same CFT can describe different physical
systems, which gives rise to a notion of universality. As a specific example, let us consider
three-dimensional Ising model defined by the following hamiltonian,

H = −
∑
<ij>

Jsisj , (1.1)

where si = ±1 is a spin variable defined at each site and < ij > means site i and site j are the
nearest neighbors. Remarkably, for a special value of the coupling J , in the long distance limit
the Ising model is equivalent to the scalar field theory with φ4 interaction with the following

1There are in principle two other possibilities: One is a theory with a mass gap, e.g. Yang-Mills theory. The
other is a theory with massless particles, e.g. QED. We will focus on scale invariant theories in this thesis.

1



1 Introduction 2

lagrangian:

L =
1

2
(∂φ)2 +m2φ2 + gφ4 . (1.2)

In addition, the sameCFT arise at the vapour-liquid transition in thewater. Hence these examples
show that CFT appears in many different contexts and is of very importance in QFTs.

Getting back to RG flows, since the set of coupling constants of a QFT is also affected by
such renormalization transformations, we can regard the RG flow as a trajectory in the QFT
parameter space where the coordinate is characterized by a set of coupling constants. Looking
into such a parameter space, we may realize there are special points characterized by invariant
points under scale variance, namely fixed points where CFTs can live. As for long distance limit
we mentioned earlier, it corresponds to the infrared (IR) fixed point. Then in the RG flow we can
begin with a certain ultraviolet (UV)-complete QFT. Mostly, we consider a CFT at the UV fixed
point as a starting point2. We can trigger the RG flow by perturbating the UV CFT, which cause
the theory to end up with some other CFT at the IR fixed point. In general, it is possible to have
multiple RG flows depending on which kind of perturbations we consider, meaning that the UV
CFT can flow into several IR CFTs (see fig 1.1). We want to ask whether we have to consider
all the possible RG flows, or whether there is a way to prevent some of RG flows from existing.
Finding such a constraint enables us to carve out some domains of space of QFTs, providing us
a part of ways how to classify them. The idea to make this statement concrete comes from the
intuition that along RG flows the effective degree of freedom must be decreasing because we
integrate out massive degrees of freedom once the energy scale of RG flow becomes below the
scale set by their masses.

In 1986, Zamolodchikov established a very well known theorem [4] stating that in two-
dimensional QFTs there is a function, which depends on coupling constants and the energy
scale, such that it monotonically decrease under any RG flows. Such a function is broadly
named a C-function. Similarly, the corresponding theorem is named a C-theorem. In two
dimensions, C-function is constructed from the two-point function of stress tensors Tµν , and
its monotonicity follows from positivity conditions of the Hilbert space. At fixed points,
this C-function corresponds to central charges of associated two-dimensional CFTs. After
this celebrated discovery, many researchers have attempted to extend his theorem into other
spacetime dimensions [5–10]. A physical guiding principle to construct such C-functions is
that the anomalous trace of stress tensors characterizes CFTs in even dimensions. In a flat
space, the trace of the stress tensor vanishes; however, putting a CFT on a curved background
causes nonzero trace of the stress tensor quantum mechanically. Actually in two dimensions,
the coefficient of the stress tensor trace corresponds to the central charge. Similarly, in four
dimensions there are two terms in the trace and one of them serves as a C-function [6, 7, 11].
On the other hand, as there is no such an anomaly in odd dimensions, the universal term of the
sphere free energy was proposed as a C-function [8, 9].

Another candidate forC-functions is the entanglement entropy, which measures the quantum
entanglement between two subsystems where we have to specify. The entanglement entropy
provides not only an alternative proof of Zamolodchikov’s theorem [12] but also the nonper-
turbative proof of C-theorem in three dimensions [13]. Even when C-functions can be well
established only at the endpoints in RG flows, these functions offer a promising way to better
understand the space of QFTs.

2Of course it does not need to be CFT, but we assume it as a useful framework to study.
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Figure 1.1: a)Schematic picture of RG flow. The UV CFT can flow into several IR theories.
b) The idea of monotonically decreasing function along the RG flow. The degree of freedom
should be the case.

1.2 QFT meets boundary and defect
A part of the reason why it is hard to understand the definition of QFT comes from a fact that
we haven’t been fully aware of the roles of boundaries and defects in QFTs. Defects are in
general extended objects, such as lines, surfaces, branes inserted in the spacetime. Let us first
realize boundaries play central roles in many aspects of physics. In experimental physics, a
boundary allows us to model finite size effects of a sample. In theoretical physics, it offers a
number of applications. In string theory, D-branes are described by two-dimensional conformal
field theories with boundary [14]. In particular, boundary conditions on such theories describe
associatedD-branes, fromwhichwemay classify possibleD-brane configurations. Furthermore,
string theory provides a striking hypothesis, namely holographic duality stating that (d + 1)-
dimensional quantum theories of gravity should be equivalent to d-dimensional quantum field
theories which live on the boundary of (d + 1)-dimensional gravity [15]. A concrete example
of holographic duality is the AdS/CFT correspondence where (d + 1)-dimensional quantum
theories of gravity in Anti de Sitter spacetime should be equivalent to d-dimensional CFT, which
strongly motives us to study CFT in order to understand quantum gravity. As for condensed
matter physics, we encounter topological insulators where Weyl fermions live on the boundary
of metals. In particular, in recent developments about ’t Hooft anomaly the boundary plays a
cornerstone role.

As for defects, condensed matter physicists do not need convincing how defects are of
importance: there are impurities, domainwalls, vortices... For high energy physicists, significant
examples are Wilson line or ’t Hooft line operators in gauge theories. From their expectation
values, we can extract the information which we do not access without such objects. In case
of Wilson line operators, we can diagnose whether the gauge theory is confined or deconfined.
The entanglement entropy in QFT is another essential application of defects, in which we have
to specify entangling regions to measure the entanglement between in and out, causing the
introduction of boundary conditions.

So boundaries and defects are ubiquitous in QFTs, and can be regarded as probes to classify
them, but how can these topics be trivial once we fully understand the roles of boundaries and
defects? This question may sound subtle, so we make it clear as follows: What characterizes
QFTs with boundary and defect in order to classify them? To answer such a question, this thesis
is dedicated to exploring theoretical aspects of quantum field theories with boundaries and
defects. In particular, we are interested in fixed point theories in RG flows, where QFTs become
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CFTs. In the presence of boundaries or defects, such fixed point CFTs are called boundary
conformal field theories (BCFTs) or defect conformal field theories (DCFTs).

As for BCFTs, while it provides us ways of classification of D-branes in two dimensions,
it is also used to describe critical phenomena in the presence of a boundary, named surface
critical phenomena in general dimensions. When a boundary exists, the relevant coupling on the
boundary causes boundary RG flows, resulting in the rich phase structure compare to only bulk
interactions. These boundary relevant couplings also control the boundary conditions associated
with corresponding phase transitions. In CFT point of view, uncovering boundary conditions
can be seen as the way of classifying BCFTs. Mostly studied cases of surface critical models are
scalar O(N) field theory with a quartic interaction in the bulk when we consider ε expansion in
d = 4− ε or large N limit. They successfully estimated surface critical exponents and matched
the experimental data of some materials. The simple variant of this quartic theory is a scalar
field theory with φ6 interaction in three dimensions, which can be described tricritical fixed
points that appear in various physical systems, such as 3He-4He mixture [16], NH4Cl [17] and
polymer physics [18, 19]. Despite the variety of its application, the analysis of φ6 theory with a
boundary was less investigated and, to our knowledge, there is no literature about large N limit
in the presence of a boundary. It is the first goal of this thesis that revealing the largeN structure
of the tricritical theory with the boundary, which provides us the controllable BCFT and allows
to extract its dynamical information.

The next topic that we would like to study is the more broad dynamics of BCFTs and DCFTs
under RG flows, though there are several difficulties in studying these theories. One is that
CFT itself is in general strongly coupled: we may have no Feynman diagram calculations, or no
lagrangian description. Another is that apart from free field theories it is not easy to find tractable
examples of interacting BCFTs and DCFTs in higher dimensions than d = 2 as interactions may
violate such superior properties of them. Therefore, instead of studying particular theories, we
explore the very quantities to classify RG flows of BCFTs and DCFTs in general settings. Given
Zamolodchikov’s celebrated theorem and its extensions, one way to characterize RG flows of
BCFTs and DCFTs is again to find monotonically decreasing functions under RG flows. Here we
mean RG flows of BCFTs and DCFTs by the RG flows triggered by perturbations localized on
boundaries and defects. Compared to the case without boundaries or defects, it is less explored
to establish such monotonicity theorems in BCFTs and DCFTs [20–27]. In analogous to CFTs,
there can be two types of quantities, which contain dynamical information about these RG flows:
One is an anomalous trace of the stress tensor in even dimensions, or a sphere free energy in
odd dimensions. The other is the entanglement entropy across the spherical entangling region.
While they are equivalent to each other [28] in the absence of boundaries or defects, it is less
clear if it still holds in the case of BCFTs and DCFTs. Our task is to make it clear what is
the relation between the sphere free energy and the entanglement entropy as well as to find
C-functions in BCFTs and DCFTs.

1.3 Organization and summary of the thesis
The main body of this thesis begins with the introductory review of (Euclidean) CFTs in d > 2
dimensions in chapter 2. After collecting basic properties of CFTs, such as radial quantization,
state/operator correspondence, reflection positivity, and operator product expansion, we then
briefly argue the implication of introducing boundaries and defects in the spacetime of CFTs.

In chapter 3, we next study the specific example of BCFTs. The model we study is the very
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simple one: O(N) symmetric scalar field theory with the sextic interaction in three dimensions
with a planar boundary. The key feature of this theory is that it exhibits approximate conformal
symmetry at large N limit, which allows us to compute physical quantities analytically as
a function of a coupling constant. We compute the large N effective potential and analyze
possible phase structures of this theory, depending on which boundary condition we take. We
then compute the two-point function of the stress tensors. Having these results, we try to
elucidate the anomalous trace coefficients of the stress tensor. In our model, these numbers can
be easily calculated from the effective potential and the stress tensor two-point function. We find
they rely on a quasi-marginal coupling. We also see that our model can be a counterexample of
a pair of conjectures proposed in [29, 30].

Chapter 4 is to study dynamical behaviors of BCFTs and DCFTs under RG flows. To
make it precise, we explore the sphere free energy and the entanglement entropy in BCFTs
and DCFTs as possible means to measure the physical degree of freedom. Using a specific
conformal transformation, we can map the entanglement entropy into the free energy, then find
universal relations between these two quantities. With this formula in our hands , we propose
the monotonicity theorem valid in BCFTs and DCFTs, stating that the sphere free energy, not the
entanglement entropy, should serve as a C-function. Various examples pass our conjecture and
using holographic duality we also present its proof in some models. Among these examples we
find the very models that the entanglement entropy does not monotonically decrease in, while
in all the examples the sphere free energy does decrease. The thesis ends with some closing
remarks and interesting open questions.

Chapter 3 is mainly based on the paper [31] in a collaboration of the author with Christopher
Herzog. Chapter 4 is also based on the work [32] in a collaboration of the author with Tatsuma
Nishioka, Yoshiki Sato, and Kento Watanabe.

1.4 Terminology and notation
Before going to the main body, We summarize our terminology and notation used in this thesis.

• A bulk space where the CFT lives is d-dimensional and is labeled by the Greek letters
µ, ν, · · · .

• A defect is p-dimensional, whose worldvolume coordinates are labeled by the Roman
letters a, b, · · · . The same labeling applies for boundary transverse coordinates. The
quantities on the defect or the boundary are hatted to distinguish from the ambient ones.
For example, a scalar operator localized on the defect is denoted by Ô(x̂).

• The transverse directions to the defect are labeled by the Roman indices i, j, · · · , while for
BCFT we use n which stands for the normal direction.

• A bulk space holographically dual to DCFT is (d+ 1)-dimensional whose coordinates are
labeled by the capital Roman lettersM,N, · · · .

• In some holographic models, the defect is introduced by a brane in the bulk. The
coordinates on the branes are labeled by the capital Roman letters A,B, · · · .
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Coordinate For BCFTs, we use xµ = (x, z)where

• xµ : the bulk space coordinate,

• x : the boundary tangential coordinate,

• z : the coordinate transverse to the boundary.

Similarly, in DCFTs we split the coordinates xµ = (x̂a, xi⊥) where

• xµ : the bulk space coordinate,

• x̂a : the defect worldvolume coordinate,

• xi⊥ : the coordinates transverse to the defect.

In the holography side, we use

• XM : the bulk (AdS) space coordinates,

• ηA : the brane coordinates.

Metric Todistinguish themetrics in the bulk, defectworldvolume, bulk and braneworldvolume
coordinates, we use

• gµν : the bulk space metric,

• ĝab = ∂xµ

∂xa
∂x̂ν

∂x̂b
gµν : the defect worldvolume metric (the induced metric on the defect), same

goes to boundary induced metric.

• GMN : the bulk (AdS) space metric,

• ĜAB : the induced metric on the brane in holographic models



Chapter 2

Basics of Conformal Field Theories and its
Extension

In this chapter, we briefly review the basic properties of conformal field theories in d > 2
dimension. Our discussion mainly focuses on Euclidean signature. We follow several nice
references [33,34]. First of all, we introduce conformal symmetry as a spacetime symmetry and
construct the associated algebra it forms. Next, we argue its representations in terms of local
operators. Having these in mind, conformal symmetry enables us to exploit special features in
CFTs and further to constrain correlation functions as we show in section 2.4, 2.5, and 2.6. We
then present the implication of boundaries in section 2.7. Section 2.8 explains significant objects
in CFTs, namely conformal anomalies. We also examine such anomalies in the presence of a
boundary. Finally in section 2.9 we introduce extended objects, defects in spacetime of CFTs.

2.1 Conformal Transformation and its algebra
Let us consider a d-dimensional Euclidean space Rd with a metric gµν = δµν . Conformal
transformation is defined as a coordinate transformation xµ → x′µ such that

g′µν(x
′) =

x′α

xµ
x′β

xν
gαβ(x) = Ω(x)gµν(x), (2.1)

which preserves the metric up to scaling factor Ω(x).
The set of conformal transformations forms a group. To see this, we consider the infinitesimal

conformal transformation with a vector field ε = εµ(x)∂µ,

x′µ = xµ + εµ(x), (2.2)

where |ε(x)| � 1 . In order to satisfy (2.1), εµ(x) must obey the following equation,

∂µεν + ∂νεµ = c(x)δµν (2.3)

with c(x) = 2(∂ ·ε)/d. It turns out that in d > 2 above equation has only four classes of solutions
and each corresponds to associated the generator of the group:

translation: εµ = aµ, → Pµ, (2.4)
rotation: εµ = ωµνxν , →Mµν , (2.5)

scale transform (dilatation): εµ = λxµ, → D, (2.6)
special conformal transform: εµ = x2bµ − 2xαbαx

µ, → Kµ. (2.7)

7



2 Basics of Conformal Field Theories and its Extension 8

Since rotation and dilatation manifestly preserve an angle between vectors, it motivates us to
call the transformation (2.1) "conformal", whose meaning is preserving angles.

We are now able to show that the generators in (2.4) satisfy the following commutation
relations:

[Mµν ,Mρσ] = −i(δµρMνσ ± permutations)
[Mµν , Pρ] = i(δνρPµ − δµρPν)

(2.8)

[D,Pµ] = −iPµ,

[D,Kµ] = iKµ,

[Pµ, Kν ] = 2i(δµνD − 2Mµν).

(2.9)

All other commutators vanish. (2.8) represents usual Poincaré algebra. We find here new
relations (2.9). The net commutation relations form the conformal group, which is isomorphic
to SO(d+ 1, 1) that we can show. We define a conformal field theory as a quantum field theory
which is classically invariant under the conformal group.

2.2 Representations of conformal group
The aim of this section is to classify local operators into representations of the conformal group.
As usual, an operator O(x) transforms under an infinitesimal conformal transformation for
U = ei

∑
gTg as follows,

O(x′) = UO(x)U−1 ∼ O(x) + i
∑

g[Tg,O(x)] +O(g2), (2.10)

where g is a parameter and Tg represents the generator of the conformal group. We would like
to derive the form of [Tg,O(x)]. Since x = 0 is invariant under dilatation, rotation, and special
conformal transformation, it is good for us to start with these actions on an operator at the origin.

First, we define transformation of local operators at the origin in irreducible representations
of rotation group SO(d),

[Mµν ,O(0)] = −i(Sµν)
a
b Ob(x), (2.11)

where Sµν is a spin matrix and a, b are labels for SO(d) representation of O. Noticing that D
andMµν commute, by Schur’s lemma, we find the action of dilatation,

[D,O(0)] = −i∆O(0) , (2.12)

which is characterized by a c-number ∆ that we call a scaling dimension. We come to know
here that local operators in CFT can be classified by a pair of (∆, ρ) where ρ represents some
SO(d) representation.

Next let us examine the remaining part of actions of the conformal group. Using (2.9), one
may find

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]] ,

= −i(∆− 1) [Kµ,O(0)] ,
(2.13)

[D, [Pµ,O(0)]] = [[D,Pµ],O(0)] + [Pµ, [D,O(0)]] ,

= −i(∆ + 1) [Pµ,O(0)] .
(2.14)
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These relations show that [Kµ,O(0)] decrease the scaling dimension of O(0) by 1, while
[Pµ,O(0)] increase it by 1. They are analogue of raising/lowering operators in harmonic
oscillator in quantum mechanics. ActingKµ onO(0) repeatedly, one can construct an arbitrary
lower dimensional operator. However, we expect (and later wewill show) that scaling dimensions
of local operators should be bounded below in physically meaningful theories, because of which,
we demand that there must be operators annihilated by Kµ,

[Kµ,O(0)] = 0. (2.15)

We call such operators primary. We also define a finite conformal transformation on primary
operators of the dimension ∆ and the irreducible representation ρ as follows:

Oa(x′) = Ω(x)−∆D(R(x))abO(x)b , (2.16)

where a, b are labels of ρ and D(R(x))ab represents finite rotation of O(x) with

∂x′µ

∂xν
= Ω(x)Rµ

ν (x), Rµ
ν (x) ∈ O(d) (2.17)

Given primary operators, one can build higher dimensional operators by acting Pµ,

O(x)→ [Pµ1 , · · · , [Pµn ,O(x)] · · · ], ∆→ ∆ + n (2.18)

which we call descendants, and the set of operators consisting of

{O(x)} = {O(x), [Pµ1 ,O(0)], [Pµ1 , [Pµ2 ,O(x)] · · · } (2.19)

form the conformal multiplet ofO. Notice that descendant operators are just given by derivatives
acting on O(x) because1

[Pµ,O(x)] = −i∂µO(x). (2.20)

Actions of conformal group on local operators at x 6= 0 can be derived by using the fact that
O(x) = eixµPµO(0)e−ixµPµ and commutation relations thereof.

2.3 Radial Quantization and State/Operator correspondence
In every QFTs, one must specify the foliation of the spacetime to define the Hilbert space and
states on it. In particular, it is in general convenient to choose the foliation with respect to the
symmetries that the theory has. For example, in Poincaré invariant theory we can choose the
foliation by surfaces of equal time. The states are defined on every time slices. Thanks to the
symmetry, we can move on to different surfaces by the time translation. In this foliation a state
|Φ〉 on some time slice are evolved by the time evolution operator U = eiP0t.

Since (euclidean) conformal field theories are rotationally invariant, here we have another
choice of the foliation. Namely, we can foliate the spacetime by Sd−1 spheres centered at the
origin. One can consider "time evolution" as moving from a smaller sphere to a larger sphere
by dilatation operator, which plays the role of the hamiltonian. The radii of spheres represent
the time component. This scheme of the foliation is called radial quantization.

1This action is easily derived by expanding (2.10) for infinitesimal translation x′µ = xµ + aµ.
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One can make heavy use of radial quantization in CFTs, leading to the remarkable feature
called the state/operator correspondence. Such correspondence states that there is an isomor-
phism between states and local operators. To make this statement precise, let us consider an
initial state and its evolution to a final state in path integral formulation. The wavefunction of
the initial state Ψi[φi(x), ri] ≡ 〈φi(x), ri|initial〉 is evolved to the wavefunction of the final state
Ψf [φf (x), rf ] ≡ 〈φf (x), rf |final〉 in radial quantization as follows,

Ψf [φf (x), rf ] =

∫
Dφi

∫ φ(rf )=φf

φ(ri)=φi

Dφe−S[φ]Ψi[φi(x), ri], (2.21)

where we integrate over all fields φi with fixed boundary conditions φ(ri) = φi and φ(rf ) = φf
on the two edges of the annulus which has radii ri and rf , respectively. Let us see if we take the
initial state "far past", which means ri → 0. In this case we integrate over the whole interior of
sphere r ≤ rf and the initial state is defined at a point of the origin. Since the wave functional
of origin is equivalent to some insertion of local operator, we obtain a state by inserting a local
operator O(x) at the origin:

Ψ[φf , r] =

∫ φ(r)=φf

Dφe−S[φ]O(0), (2.22)

whichmanifestly gives us themap between states and local operators. O(0)maybe an elementary
field or some composite operators. There exists a unique state that we can create in this map.
Such a state can be obtained by inserting the identity operator and named vacuum. We denote the
vacuum state as |0〉. To sum up, we can identify the local operators and the states as following:

O(0)↔ O(0) |0〉 ≡ |O〉 (2.23)

Along with a primary operator, we define a primary state such that

[Kµ, O(0)] = 0 ←→ Kµ |O〉 = 0 (2.24)
[D, O(0)] = −i∆O(0) ←→ D |O〉 = −i∆ |O〉 (2.25)

[Mµν , O(0)] = −iSµνO(0) ←→ Mµν |O〉 == iSµν |O〉 (2.26)

where we suppress labels for the irreducible representation of SO(d) for simplicity.

2.4 Conformal constraints on correlation functions
In quantum field theories, fundamental observables are correlation functions of local operators.
Below this section, we will see that conformal symmetry enables us to significantly constrain
correlation functions of primary operators.

2.4.1 Scalar primaries
Let us first consider the correlation function of scalar primary operators. Using transformation
rules, n-point function of scalar primaries transforms under a conformal transformation as below:

〈O1(x′1) · · · On(x′n)〉 =

(
n∏
i

Ω−∆k(xk)

)
〈O1(x1) · · · On(xn)〉 , (2.27)
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where ∆k represents scaling dimension ofOk. One may notice that Poincaré invariance (which
means Ω = 1) implies scalar n-point function only depends on mutual distance x2

ij ≡ (xi−xj)2

between n points. The trivial consequence of the above relation is the case of n = 1, where we
end up with the fact that one-point functions in CFT must be zero except the identity operator.

The first nontrivial constrain is the two-point function. If we consider dilatation x → λx,
we must have

〈O1(λx1)O2(λx2)〉 = λ−∆1−∆2〈O1(x1)O2(x2)〉 (2.28)

which can be reduced to

〈O1(x1)O2(x2)〉 =
κ

x∆1+∆2
12

, (2.29)

with the normalization constant κ. Here we denote x12 = |x1 − x2|. What is more, considering
special conformal transformations, we can conclude that two-point functions are non-zero only
when ∆1 = ∆2:

〈O1(x1)O2(x2)〉 =


κ

x2∆1
12

(∆1 = ∆2)

0 (otherwise)
(2.30)

By redefining the field, we can always take κ = 1. Similarly, three-point functions is highly
constrained as well. In summary, we have

〈O1(x1)O2(x2)O3(x)〉 =
c123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

, (2.31)

where c123 is called three-point coefficient, or OPE coefficient. The reason why it is named OPE
coefficient will be explained later.

Unfortunately higher-point functions are not uniquely determined only by conformal invari-
ance. Instead, they are functions of so called conformal cross ratios:

uijkl =
x2
ijx

2
kl

x2
ikx

2
jl

. (2.32)

When we, for example, consider four-point functions, we have two cross ratios,

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (2.33)

and for identical scalars, the correlation function is written as

〈O(x1)O(x2)O(x3)O(x4)〉 =
1

x2∆
12 x

2∆
34

F(u, v) , (2.34)

where the form of F(u, v) is theory-dependent.
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2.4.2 Spinning primaries
Next we would like to extend the results we obtain in the previous subsection to the case of
spinning operators. In such a case, we have a number of difficulties in computing correlation
functions due to complicated transformation laws on spinning primaries. The novel approach
to overcome them is so called embedding space formalism, where we embed the d-dimensional
spacetime into d+ 2-dimensional Minkowski spacetime in which the conformal transforms act
linearly [34–38]. In this thesis we do not use this formalism, but take a more straightforward
way.

Let us consider the two-point function of spin-1 symmetric traceless tensors Oµ of SO(d).
Following similar procedures as in scalar primaries, we find

〈Oµ(x1)Oν(x2)〉 = C
Iµν(x12)

x2∆
12

, (2.35)

where Iµν(x) is a bilocal tensor defined as

Iµν(x) = δµν −
2xµxν
x2

. (2.36)

Two-point functions of higher spin primaries can be computed similarly, because there appears
no additional covariant tensor except Iµν . For l = 2, we find

〈Oµν(x1)Oσρ(x2)〉 = C
Iµσ(x12)Iνρ(x12) + (µ↔ ν)− (trace)

x2∆
12

(2.37)

2.5 Reflection positivity and unitarity bound
Along the way to the definition of primary operators, we mentioned that scaling dimensions ∆
should be bounded below. Let us hereby make the statement clearer. In quantum mechanics,
we believe the theory must be unitary, otherwise it suffers from negative probabilities or the
violation of preserving them. The same is true for any QFTs, but the statement is for Lorentzian
signature. Since we are interested in Euclidean CFTs, we have to translate unitarity into a
Euclidean statement. Taking the vacuum state, unitarity means that correlation functions made
out of O1(x1) · · · On(xn) and their Hermitian conjugations with the following form must be
positive: 〈

(O1 (x1) . . .On (xn))†O1 (x1) . . .On (xn)
〉
≥ 0 , (2.38)

since it can be regarded as a norm in the Hilbert space. In Euclidean signature, Hermitian
conjugations are equivalent to (Euclidean) time reflections along the t = 0 plane, thus we call
unitarity in Euclidean signature reflection positivity. The immediate consequence of reflection
positivity in CFTs is the positivity of conformal multiplets, meaning that

〈O|Kµn · · ·Kµ1Pµ1 · · ·Pµn |O〉 ≥ 0 . (2.39)

For scalar primaries, by taking n = 1 we learn that ∆ ≥ 0. This condition can be further
restricted when considering n = 2. As for spin-l primaries, we can constrain scaling dimensions
in a similar manner at the first level n = 1. The net result is given by [39–42]

∆ ≥
{

d−2
2

(l = 0) ,
l + d− 2 (l > 0) ,

(2.40)
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which are called unitarity bounds. It turns out that the bounds are saturated when the conformal
multiplet becomes short in the sense that at some level descendants of the primary vanish,
resulting zero norm. As for l = 0, the saturation occurs in a freemassless field due to the equation
of motion, ∂2φ(x) = 0, while spinning bounds are saturated by conserved currents ∂µ1Oµ1···µl =
0. Though onemaywonderwhetherwe can get additional constraints by takingn large, there is no
possibility for such a case, which onemay convince themselves by straightforward computations.
A beautiful proof exists in Lorentzian signature by moving onto momentum space and using the
positivity condition for two-point functions. See, for example, [43].

2.6 Operator Product Expansion and conformal blocks
The idea of operator product expansion (OPE) has a long history. At first Wilson considered
that given two local operators sitting at points x and y respectively in any relativistic QFTs, in
the limit where x → y the product of them could be approximated by a superposition of other
local operators at y [44]:

O(x)O(y) ∼
∑
χ

Cχ(x− y, y)Oχ(y) , (2.41)

in correlation functions. HereCχ(x−y, y) represent some functions andχ labels local operators.
Of course such a expansion is generally asymptotic, however, in CFTs OPE has a finite radius
of convergence [45, 46].

We shall derive OPE in CFTs by using radial quantization. We consider the insertion of two
operators O1(x1) and O2(x2). We take the sphere centered at some point x and it has radius r
such that containing both of points x1 and x2 without any other operators. If we evolve radially
from x outwards, we can get some state at the sphere

|ψ12(r)〉 = O1(x1)O2(x2) |0〉 (2.42)

because state is in the vacuum at x (figure 2.1). This state would be some linear combination of
all of the states in the Hilbert space. By state/operator correspondence, there exists some local
operator such that

Oψ12(x) |0〉 = |ψ12(r)〉 = O1(x1)O2(x2) |0〉 (2.43)

Oψ12(x) cannot have definite dimension or representation of SO(d), however, we can express it
as the sum over all of the conformal multiplet and this gives the OPE,

O1(x1)O2(x2) =
∑
χ

λχCχ(x1 − x, x2 − x, ∂x)Oχ(x) , (2.44)

where λχ is a real number. We can fix the function Cχ(x1 − x, x2 − x, ∂x) by inserting Oχ(x′)
in both sides and evaluating the expecting values:

〈O1(x1)O2(x2)Oχ(y)〉 = λχCχ(x1 − x, x2 − x, ∂x)〈Oχ(x)Oχ(y)〉 , (2.45)

where we used the orthogonality of two-point functions. Since both forms of three-point
function and two-point functions are fixed by conformal symmetry, from above equation we can
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Figure 2.1: state |ψ12〉 is represented by two operator insertion from state/operator correspon-
dence.

completely determine the form of Cχ(x1 − x, x2 − x, ∂x) for the case of two scalars. And we
usually choose the expansion coefficient λχ so that it corresponds to the three-point coefficient,
λχ = c12χ, which is the reason why the three-point coefficient is called the OPE coefficient. It
is often the case that we take the sphere centered at x1 or x2 and the expansion take the form as
follows,

O1(x1)O2(x2) =
∑
χ

λχCχ(x12, ∂2)Oχ(x2) (2.46)

Using OPE we can decompose higher point functions into lower point functions. The central
objects to study are four-point functions. For identical scalars, we find,

〈O(x1)O(x2)O(x3)O(x4)〉 =
∑
χ

λχCχ(x12, ∂2)〈Oχ(x2)O(x3)O(x4)〉

=
∑
χ

∑
χ′

λχλχ′Cχ(x12, ∂2)Cχ′(x34, ∂4)〈Oχ(x2)Oχ′(x4)〉

=
∑
χ

λ2
χCχ(x12, ∂2)Cχ(x34, ∂4)〈Oχ(x2)Oχ(x4)〉

(2.47)

where we used the orthogonality of two-point functions. Compared with (2.34), we may notice

F(u, v) = x2∆
12 x

2∆
34

∑
χ

λ2
χCχ(x12, ∂2)Cχ(x34, ∂4)〈Oχ(x2)Oχ(x4)〉 , (2.48)

which gives us so called conformal block decompositions where each term represents the con-
formal block gχ(u, v) = Cχ(x12, ∂2)Cχ(x34, ∂4)〈Oχ(x2)Oχ(x4)〉. Notice also the right hand
side of above equation is completely fixed by conformal invariance. Thus conformal blocks are
purely kinematical objects. It is advantageous to realize that gχ(u, v) is the eigenfunction of the
Casimir equation of SO(d+ 1, 1) in order to derive its form. Unfortunately we can write down
the closed form of conformal blocks only in d = 2, 4 [47].
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2.7 Boundary Conformal Field Theories
In this section we would like to consider CFT with a planar boundary and its implication.
The immediate effect of introducing a boundary is that the full d-dimensional conformal group
breaks down into its subgroup. To see this, let us denote the coordinate xµ = (x, z) and define a
planar boundary along z = 0. Recall x represents tangential components to the boundary while
z represents the normal component. One may immediately realize that, for instance, translation
invariance along z direction breaks down, while on the boundary, conformal invariance remains,
resulting in a situation that only (d− 1)-dimensional conformal group SO(d, 1) preserves.

Under such restricted conformal transformations, onemay find that two points x, x′ transform
as

(x− x′)2 → (x1 − x′)2

Ω(x)Ω(x′)
z → z

Ω(x)
z′ → z′

Ω(x′)
, (2.49)

from which we can construct conformal invariant variables,

ξ =
(x− x′)2

4zz′
, v2 =

(x− x′)2

(x− x′)2 + 4zz′
=

ξ

ξ + 1
. (2.50)

These two variables are conformal cross ratios for BCFT, which are analogous to usual cross
ratios in CFT.We can build up correlation functions out of ξ, or equivalently v in similar fashion.
In physical region, we have 0 ≤ ξ ≤ ∞ and 0 ≤ v ≤ 1.

2.7.1 General properties of correlation functions with boundary
In CFT without a boundary, conformal symmetry completely fixes the form of two- and three-
point functions. On the other hand, the presence of a boundary makes the situation more
complicated. a one-point function of scalar primary O(x) can have non zero expectation value:

〈O(x)〉 =
a∆

(2z)∆
(2.51)

while for spinning operators one-point functions must be zero owing to conformal invariance.
For two-point functions, the story is similar to four point functions in CFT without a boundary.
The two-point function of scalar primaries can be written as a function of the cross ratios,

〈O1(x)O2(x′)〉 =
1

(2z)∆1(2z′)∆2
f12(ξ) =

(2z′)∆1−∆2

(x− x′)2∆1
F12(v) , (2.52)

where ξ∆
1 f12(ξ) = F12(v). One may notice that two-point functions of operators which have

different scaling dimensions or representations of SO(d) do not vanish unlike CFT without a
boundary. The computation of two-point function involving operators with spin becomes more
complicated. One may also use the embedding space formalism for BCFT to systematically
construct correlation functions, but here we follow the approach in [48] and take an alternative
steps to analyze them. The idea is to construct weight zero bilocal vector under O(d, 1)
transformations. For later convenience, we introduce a useful notation

s = x− x′ , s = x− x′ . (2.53)
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Then one may find that

Xµ ≡ z
v

ξ
∂ξ = v

(
2z

s2
sµ − nµ

)
,

X ′µ ≡ z′
v

ξ
∂′µξ = v

(
−2z′

s2
sµ − nµ

)
,

(2.54)

where nµ = (0, 1) is a unit normal vector to the boundary. These bilocal vector transform nicely
under restricted conformal group asXµ → Rµν(x)Xν ,X ′ν → Rµν(x

′)X ′ν withX ′µ = Iµν(s)Xν .
Now that we have conformally covariant tensors δµν , Iµν(x), Xµ, X ′µ, it is a straightforward
exercise to compute two-point functions for spinning fields. For our purpose, we present various
two-point functions involving conserved currents with dimension d − 1, stress energy tensors
with dimension d and scalar operators with dimension ∆:

〈Jµ(x)Jν(x
′)〉 =

1

s2(d−1)
(Iµν(s)P (v) +XµX

′
νQ(v)) (2.55)

〈Jµ(x)O(x′)〉 =
ξ1−d

(2z)d−1(2z′)∆
XµfJO(v) (2.56)

〈Tµν(x)Tσρ(x
′)〉 =

ξ−d

(2z)d(2z′)d
[
αµνα

′
σρA(v) + βµν,σρB(v) + Iµν,σρC(v)

]
(2.57)

〈Tµν(x)O(x′)〉 =
ξ−d

(2z)d(2z′)∆
αµνfTO(v) (2.58)

where we define

αµν =

(
XµXν −

1

d
δµν

)
, α′µν

(
X ′µX

′
ν −

1

d
δµν

)
, (2.59)

βµν,σρ =
(
XµX

′
σIνρ(s) +XνX

′
σIµρ(s) +XµX

′
ρIνσ(s) +XνX

′
ρIµσ(s)

−4

d
δσρXµXν −

4

d
δµνX

′
σX
′
ρ +

4

d2
δµνδσρ

)
, (2.60)

Iµν,σρ(s) =
1

2
(Iµσ(s)Iνρ(s) + Iµρ(s)Iνσ(s))− 1

d
δµνδσρ . (2.61)

We have implicitly used the fact that the stress tensor is traceless T µµ = 0, while we haven’t
yet imposed conservation laws, which gives us further constraints between conformal invariant
functions. Using ∂µJµ = 0 and ∂µT µν = 0 on (2.56) and (2.58) respectively, one can fix the
form of functions fJO and fTO:

fJO(v) = CJOv
d−1 , fTO(v) = CTOv

d , (2.62)

whose normalization constants CJO and CTO are fixed by Ward identities. If we apply same
strategy for (2.55) and (2.57), we instead obtain following relations:

v
d

dv
(P +Q) = (d− 1)Q , (2.63)(

v
d

dv
− d
)

(C + 2B) = −2

d
(A+ 2B)− dC , (2.64)(

v
d

dv
− d
)

[(d− 1)A+ 2(d− 2)B] = 2A− 2(d2 − 4)B . (2.65)
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With these relations in mind, we come to realize that two-point functions of conserved currents,
or stress tensors are fixed by single function of the cross ratio; other functions can be constructed
from (2.63),(2.64) and (2.65).

Though structures in (2.55) and (2.57) seems to be natural with respect to bilocal tensors
Iµν(x) and Xµ(x), it is sometimes useful to introduce another basis for 〈Jµ(x)Jν(x

′)〉 and
〈Tµν(x)Tσρ(x

′)〉. Such a new basis for the stress tensor two-point function can be given by [49]

α(v) =
d− 1

d2
[(d− 1)(A+ 4B) + dC] ,

γ(v) = −B − 1

2
C ,

ε(v) =
1

2
C .

(2.66)

which become transparent when we consider a special configuration x = (0, z) and x′ = (0, z′)
because we may find,

〈Tnn(0, z)Tnn(0, z′)〉 =
α(v)

s2d
, (2.67)

〈Tan(0, z)Tbn(0, z′)〉 =
γ(v)

s2d
δab , (2.68)

〈Tab(0, z)Tcd(0, z′)〉 =
δ(v)δabδcd + ε(v)(δacδbd + δadδbc)

s2d
. (2.69)

For the current two-point function, one can find

〈Jn(0, z)Jn(0, z′)〉 =
π(v)

s2(d−1)
, π(v) = P (v) +Q(v) (2.70)

〈Ja(0, z)Jb(0, z′)〉 =
P (v)

s2(d−1)
δab . (2.71)

Away from the boundary, we expect that they should be reduced to the usual two-point
functions in CFT without boundary. In terms of the cross ratio, we have the limit v → 0,
which corresponds to the usual OPE limit s → 0. In this limit operators are much closer to
each other than to the boundary; we call v → 0 the coincident or bulk limit. Let us consider
the coincident limit of the two-point function for two scalars O1 and O2. Since we know that
two-point functions for different scalars must vanish in usual CFT, we demand that

F12(0) = κδ∆1,∆2 . (2.72)

As for correlators involving conserved currents and stress tensors, referring to (2.35) and
(2.37), we also demand A(0) = B(0) = Q(0). P (0) and C(0) are fixed by the normalization
constants of two-point functions of Jµ or Tµν , which we denote P (0) = CJ and C(0) = CT .

Finally we comment on the other limit of the cross ratio, which is governed by v → 1. This
limit is archived by letting operators be much closer to the boundary and called the boundary
limit. The general behavior of F12(1) or other functions relies on the boundary condition of
fields, which we have to specify.
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2.7.2 Boundary Operator Expansion and Conformal block decomposi-
tions

We have written down the various structures of two-point functions in BCFTs. These two-point
functions are built up from conformal invariant functions of the cross ratio v. Like four-point
functions in CFT without a boundary, we can decompose these functions into conformal blocks,
which are the eigenfunctions of conformal Casimir. In the presence of a boundary, we have two
types of decompositions concerning the coincident limit and the boundary limit of two-point
functions.

First let us consider the decomposition for the coincident limit. As is the case with four-point
functions in CFT, conformal block decompositions can be derived by using OPE in two-point
functions. We remark that even with a boundary, OPE still remains valid in s→ 0 because OPE
is a local property of CFT. Thus for two identical scalars, we have

O(x)O(x′) =
κ

s2∆
+
∑
∆ 6=0

λ∆C∆(x− x′ , ∂′)O∆(x′) (2.73)

where the first term reflects the fact that in BCFT one-point functions of scalars are non zero.
For later convenience, we denote this expansion the bulk OPE. Conformal block decompositions
of two identical scalars for bulk OPE can be obtained by substituting (2.73) into (2.52),

FOO(v) = κ+
∑
∆ 6=0

λ∆a∆Gbulk(∆, v) (2.74)

where we used (2.51) and Gbulk(∆, v) are bulk conformal blocks. The form of Gbulk(∆, v) can
be fixed by expanding

C∆(x− x′, ∂′) 1

(2z′)∆
, (2.75)

or by solving bulk conformal Casimir equation for SO(d+ 1, 1) [50]. The result is written by a
hypergeometric function,

Gbulk(∆, v) = ξ∆/2
2F1

(
∆

2
,
∆

2
, 1− d

2
+ ∆ ;−ξ

)
(2.76)

One may find analogous expressions for spinning correlators. For Q(v) in (2.55) and A(v) in
(2.57), the decompositions take the following forms [30]:

Q(v) =
∑
∆6=0

a∆λ∆Qbulk (∆, v) ,

A(v) =
∑
∆ 6=0

a∆λ∆Abulk (∆, v) ,
(2.77)

where conformal blocks are given by

Qbulk (∆, v) = ξ
∆
2 2F1

(
1 +

∆

2
, 1 +

∆

2
, 1− d

2
+ ∆;−ξ

)
(1 + ξ) , (2.78)

Abulk (∆, v) = ξ
∆
2 2F1

(
2 +

∆

2
, 2 +

∆

2
, 1− d

2
+ ∆;−ξ

)
(1 + ξ)2 . (2.79)
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As for other conformal invariant functions, the decompositions can be obtained by (2.63),(2.64)
and (2.65).

Next let us investigate the decomposition for the boundary limit. In the presence of a
boundary, one can expand a bulk scalar operator O∆ by summing up boundary local operators,

O∆(x) =
a∆

(2z)∆
+
∑
∆ 6=0

µ̃∆Ĉ∆(z,∂)Ô∆(x) , (2.80)

which is called the boundary OPE in contrast to the bulk OPE. µ̃∆ is a boundary OPE coefficient,
which contains information of this expansion. Like the bulk OPE, the form of Ĉ∆(z,∂) is
completely fixed by conformal invariance. From the viewpoint of boundary local primaries,
they have (d − 1)-dimensional conformal symmetry, which implies the correlation functions
of them are constrained as same as ones in d-dimensional CFT. Therefore boundary conformal
invariance forbids one-point functions. The two-point function of identical scalars is fixed as

〈Ô∆(x)Ô∆(x′)〉 =
ĉ

(x− x′)2∆
, (2.81)

up to normalization constant. In order to obtain boundary conformal block decompositions, we
use (2.80) twice in (2.52) and (2.81), then we find

GOO = ξ∆

(
a2

∆ +
∑
∆ 6=0

µ2
∆Gbry(∆, v)

)
, (2.82)

where we redefine µ2
∆ = µ̃2

∆ĉ. Similarly, we can obtain the form of Gbry(∆, v) by expanding

Ĉ∆(z,∂)Ĉ∆(z′,∂′)
1

(x− x′)2∆
(2.83)

or solving the boundary conformal Casimir equation for SO(d, 1). One may find

Gbry(∆, v) = ξ−∆
2F1

(
∆, 1− d

2
+ ∆, 2− d+ 2∆;−1

ξ

)
. (2.84)

Regarding decompositions of spin-l conserved currents, there are extra subtleties that boundary
expansions contain spin s fields with s ≤ l due to angular momentum conservations. However,
thanks to restricted form of (2.56), (2.58) and 〈Tµν(x)Vρ(x)〉 where Vµ(x) represents some
vector field, it turns out that the number of exchanging fields with spin less than l are few.
Additional discussions constrain it further, see [30] for a lengthy explanation. For 〈Jµ(x)Jν(x

′)〉
and 〈Tµν(x)Tσρ(x

′)〉, we find the following decompositions:

π(v) = ξd−1
(∑

∆≥d−2 µ
2
∆π

(1)
bry(∆, v)

)
,

α(v) = ξd
(
µ2

(0)α
(0)
bry(v) +

∑
∆≥d−1 µ

2
∆α

(2)
bry(∆, v)

)
,

(2.85)

where superscripts (0), (2) denote spins of exchanging fields. We tabulate formulae for corre-
sponding boundary blocks:

π
(1)
bry(∆, v) = ξ−∆−1

2F1

(
1 + ∆, 1− d

2
+ ∆, 2− d+ 2∆;−1

ξ

)
, (2.86)

α
(0)
bry(v) =

1

4(d− 1)

(
v−1 − v

)d (
d
(
v−1 + v

)2 − 4
)
, (2.87)

α
(2)
bry (∆, v) = ξ−∆−2

2F1

(
2 + ∆, 1− d

2
+ ∆, 2− d+ 2∆;−1

ξ

)
. (2.88)
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Here α(0)
bry is a conformal block corresponding to so called displacement operator, i.e. a scalar

operator conjugate to the location of the boundary. No other scalar operators contribute. The
α

(2)
bry(∆, v) are spin two boundary operators with scaling dimension ∆. There is no spin one

contribution to the decomposition.

2.8 On trace of stress tensor
Stress tensor plays a special role in QFTs. For a while we consider a theory without boundaries.
The existence of stress tensor reflects spacetime symmetry, since stress tensor is one of conserved
currents. According to famous Noether’s theorem, One can construct conserved charges, for
example,

Pµ =

∫
Sd−1

dΣnνT
νµ , (2.89)

which is associated with translation. In similar manner one can write down other conserved
charges for the rest part of conformal group. For our purpose, let us consider the conserved
current for dilatation, Jµ = xνT

νµ. The conservation law for this current implies that

∂µJ
µ = 0 ⇒ δµνT

νµ + xν∂µT
νµ = 0 (2.90)

⇒ T µµ = 0 (2.91)

where we used ∂µT νµ = 0. We may naively think that in QFTs with conformal invariance the
trace of stress tensor vanishes, however, this statement holds true only for classical theories.
If we go on to quantum theories, stress tensor trace may not be zero, which is an example of
quantum anomalies.

Let us make the above statement more concrete. When a QFT has some symmetries, one
can couple conserved currents to classical background fields. For spin-1 current Jµ, we can
archive it by adding

∫
ddxJµ(x)Aµ(x) in the action where Aµ is a gauge field. For the case of

the stress tensor, which we are interested in, we put the theory on nontrivial background metric
gµν coupling to the stress tensor. In general, anomaly is a phenomenon of symmetry breaking
on nontrivial background fields. As for classically conformal invariant theories, one cannot
preserve diffeomorphism invariance and Weyl invariance simultaneously in some nontrivial
metrics. There are subtleties which invariance to preserve, but we always take diffeomorphism
invariance as we would like to have the conserved stress tensor. As a result, Weyl invariance is
broken, which we call conformal (Weyl) anomaly.

Conformal anomaly has a long history, but it has been still getting a certain attention for
its properties, providing us how to classify quantum field theories, and to constrain possible
RG flows. Before discussing its dynamical properties, we shall present formulae of conformal
anomaly. See [51–55] for details. A partition function on a background metric is given by

Z =

∫
Dφe−S[gµν ,φ] = e−W [gµν ] , (2.92)

where φ represents a matter field. Integrating out φ, we can obtain an effective action W [gµν ]
as a functional of the metric. As we mentioned above, conformal anomaly measures how non-
invariant a QFT becomes under Weyl transformation. More precisely, under an infinitesimal
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Weyl transformation,

δgµν = 2ω(x)gµν , (2.93)

we define the conformal anomaly A as a local functional,

δωW = −
∫

ddx
√
gωA . (2.94)

Recall that (an expectation value of) stress tensor is as always given by2

〈T µν(x)〉 =
2
√
g

δW [gαβ]

δgµν
, (2.95)

one may find

〈T µµ (x)〉 = −A , (2.96)

which relates trace of stress tensor to conformal anomaly. The general form of A can be
derived by solving so called the Wess-Zumino consistency condition [58], which states that two
repeated Weyl transformations must commute since the Weyl group is Abelian. We do not show
derivations for the explicit forms of these anomalies, but present final results. For conformal
field theories in even dimensions d = 2n+ 2 with n = 0, 1, 2, · · · , we find that

〈
T µµ
〉d=2n+2

= − 4

d! Vol (Sd)

[∑
i

ciIi − (−1)
d
2adEd

]
. (2.97)

Here Ed is the d-dimensional Euler density, whose integration over Sd yields d! Vol
(
Sd
)
, and Ii

denote local Weyl invariants of weight −d. The number of Ii counts on spacetime dimensions.
The first terms in (2.97) are called type-B anomalies and the second term type-A anomaly [59].
In odd dimensions, on the other hand, it turns out that we are not able to write down non-zero
invariants at all, resulting that we do not have trace anomalies in odd dimensions.

Let us consider explicit examples. for d = 2, we have

〈T µµ 〉d=2 = − a

2π
R (2.98)

where there is no type-B anomaly contributions. The coefficient a is related to the central charge
c of Virasoro algebra by a = c/12. For d = 4, we find

〈T µµ 〉d=4 = − 1

16π2
(cWµνρσW

µνρσ − aE4) , (2.99)

where Wµνρσ is a Weyl tensor. Both coefficients a and c can be extracted from correlation
functions of stress tensors. Similarly, we can obtain higher dimensional results.

Among anomaly coefficients in (2.97), it is revealed that type-A anomaly coefficient ad plays
a significant role in understanding RG flows of QFTs. In two-dimensional QFTs, it is proven that
the central charge c, or in our formula a, must monotonically decrease under RG flow, which is

2Remark that this definition of stress tensor may deffer up to the sign from standard reference, e.g. [30, 56, 57]
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celebrated Zamolodchikov’s c-theorem [60]. Specifically if we only look at the UV CFT with
the central charge cUV and the IR CFT with the central charge cIR, this theorem tells us that

cUV ≥ cIR . (2.100)

Therefore c-theorem forbids any RG flows that central charge does not monotonically decrease.
One may wonder if we can extend this theorem to higher-dimensional QFTs. Four-

dimensional version of c-theorem was proposed in [5] and further studied in [61,62], however it
had not been proven until [6, 7] gave a physically beautiful proof, which provides the inequality
between UV and IR a coefficients,

aUV ≥ aIR . (2.101)

This is referred to a-theorem 3. Though six- or higher-dimensional extension has not been proven
yet, we expect in general dimensions the type A-anomaly coefficients should monotonically
decrease under RG flows.

2.8.1 Boundary conformal anomalies
When there is a boundary, the situation changes drastically. In contrast to the case without the
boundary, the conformal anomaly can contain boundary localized contributions even in odd
dimensions and its geometric structure becomes much rich.

According to [30,63], conformal anomaly in even dimensional CFT with a boundary is given
by,

〈
T µµ
〉d=2n+2

= − 4

d! Vol (Sd)

[∑
i

ciIi + δ (x⊥)
∑
j

bjI
bry
j − (−1)

d
2ad
(
Ed + δ (x⊥)Ebry)] ,

(2.102)

where we denote the normal coordinate to boundary x⊥. There are bunch of boundary localized
terms including boundaryWeyl invariant terms Ibry and the boundary term of Euler characteristic
Ebry. As for CFT in odd dimensions d = 2n+ 1, we find that

〈
T µµ
〉d=2n+1

= − 2

(d− 1)! Vol (Sd−1)
δ (x⊥)

(∑
i

biIi + (−1)
(d+1)

2 adÊd−1

)
, (2.103)

where Êd−1 is the (d − 1)-dimensional Euler density on the boundary. Here ad is the type-A
anomaly coefficient associated with the boundary. As an explicit example, we can write down
the conformal anomaly in three dimensions as follows:

〈T µµ〉 = −δ(x⊥)

4π

(
a R̂ + b K̃abK̃

ab
)
, (2.104)

where K̃ab is the traceless part of the extrinsic curvature defined as

K̃ab = Kab −
ĝab
d− 1

K , (2.105)

3In the viewpoint of (2.97), the terminologies, c-theorem and a-theorem, may be confusing, which is because
c-theorem meant first for the central charge, not for the anomaly coefficient. Though one may complain that we
should unify both theorems as a-theorems, we will stick to using the original terminologies.
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with the induced metric ĝab and R̂ is the boundary Ricci scalar. With knowledge of c-theorem
or a-theorem in even dimensional CFTs, it is natural to ask whether a similar statement exists
for the boundary type-A anomaly coefficient. The authors in ref [20] showed by using similar
technique as in [6, 7] that the coefficient a in (2.104) monotonically decrease under RG flows:

aUV ≥ aIR . (2.106)

Remark that they refer to this theorem as b-theorem because in their notation the type-A anomaly
coefficient is represented by b, which may bring about some confusion.

2.9 Conformal defects
Defects collectively stand for non-local operators in QFT as exemplified by Wilson-’t Hooft line
operators. A certain class of defects has realizations by fundamental fields in a given QFT (e.g.,
Wilson lines) while some are rather defined by specifying boundary conditions around them on
the fundamental fields (e.g., ’t Hooft lines). One can also couple a lower-dimensional theory to
a higher-dimensional theory (e.g., the mixed-dimensional QED and the D3/D5 brane model).
Thus there are at least three different ways to introduce defects4 [23]:

1. Localize the bulk fields at the location of the defect.

2. Impose a boundary condition on the bulk fields around the defect [64, 65].

3. Introduce new degrees of freedom localized on the defect and couple them to the bulk
fields.

Its dimensions or codimensions also characterize a defect. We denote the former one as p, and
the latter as q with p + q = d. When p = d − 1, we can instead introduce a boundary or an
interface by gluing two different theories along a boundary.

In this thesis we restrict our attention to a special class of defects, called conformal defects,
which are planar or spherical to preserve the conformal symmetry on and the rotational symmetry
around the worldvolumes. Conformal defects of dimension p break the full d-dimensional
conformal symmetry SO(d + 1, 1) to the subgroup SO(p + 1, 1) × SO(d − p) as the case
of boundaries. We then define bulk conformal field theories with conformal defects as defect
conformal field theories (DCFTs).

Recalling that restricted conformal group allows us to have non-vanishing (bulk) one-point
functions in boundary CFTs, the same thing happens in DCFTs. What is more, one-point
functions of spinning primaries do not vanish, while they do in BCFTs. To illustrate this point
in detail, let us consider a (p-dimensional) planar defect in Rd and the stress-energy tensor
one-point function for later usage. The metric is then divided into the parallel and orthogonal
components:

ds2 = dx̂a dx̂a + dxi⊥ dxi⊥ , (a = 0, · · · , p− 1, i = p, · · · , d− 1) . (2.107)

First, we deal with the cases 1 and 3 in the classification we mentioned earlier. Assuming DCFT
has a Lagrangian description, the Lagrangian consists of the bulk part and the defect part,

IDCFT =

∫
ddx
√
gLCFT +

∫
dpx̂
√
ĝ L̂defect . (2.108)

4These constructions may be equivalent in certain cases while we are not aware of their precise relations.
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In the case 1, the defect part is absent, but a defect operatorD(p) should be inserted in evaluating
correlation functions [56]

〈O · · · O 〉D(p) ≡
〈O · · ·OD(p) 〉
〈D(p) 〉

. (2.109)

We are then allowed to regard − log D(p) as the defect part in the action. In either case the
stress-energy tensor follows from the partition function Z (DCFT)

5

T µνDCFT = − 2
√
g

δ logZ (DCFT)[gµν ]

δgµν
. (2.110)

It will be useful to split it into the bulk part T µνCFT and the defect localized part tµν

T µνDCFT = T µνCFT + tµν . (2.111)

tµν contains the contribution from the response to the induced metric [56]

tµν = δD(x⊥)
[
δµaδ

ν
b B

ab + · · ·
]

+
1

2
∂iδD(x⊥) δµaδ

ν
b C

abi + · · · , (2.112)

where δD(x⊥) is the delta function localized on the worldvolume of the defect and Bab and Cabi

are defined by the variation of the defect action (see [49, 56] for the detail). In what follows,
we ignore the higher derivative terms of the delta function as they vanish for the planar defect.
While the conservation and tracelessness of the bulk stress tensor are violated in the presence
of the defect, T µνDCFT is traceless and partially conserved

∂µT
µa
DCFT = 0 ,

∂µT
µi
DCFT = −δD(x⊥) Di ,

(TDCFT)µµ = 0 .

(2.113)

where Di are called displacement operators for each orthogonal directions against the defect.
These relations hold as the operator identities in DCFT.

In contrast to the cases 1 and 3, the Lagrangian and the stress-energy tensor in the case 2 are
the same as those in CFTs without a defect. However, careful treatment is required in evaluating
the one-point function of the stress-energy tensor as we will discuss later on.

Now consider the one-point function of the bulk stress-energy tensor, TCFT. TCFT is a
symmetric traceless tensor of dimension d and spin 2, hence the residual conformal symmetry
completely fixes the form of the correlator6

〈T abCFT(x) 〉 =
d− p− 1

d

aT
|x⊥|d

δab ,

〈T ijCFT(x) 〉 = − aT
|x⊥|d

(
p+ 1

d
δij − xi⊥x

j
⊥

|x⊥|2

)
,

〈T aiCFT(x) 〉 = 0 ,

(2.114)

5The definition differs in the sign from the one used in [56], so TDCFT equals −Ttot there.
6Our aT is −aT in [56].
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where aT is a constant characterizing the defect. While this one-point function does not vanish
in general, we recover the result in BCFTs, 〈T µνCFT 〉 = 0 by setting p = d − 1 in (2.114). More
generically, the one-point function of the bulk operator with non-zero spin vanish in BCFT and
DCFT with a defect of dimension d− 1 [49, 50, 66].

Furthermore, the one-point function of tµν vanishes

〈 tµν(x) 〉 = 0 . (2.115)

This is seen by writing tµν as

tµν(x) = δD(x⊥)
∂xµ

∂x̂a
∂xν

∂x̂b
t̂ab(x̂) , (2.116)

and define the defect stress-energy tensor t̂ab(x̂), which is a defect local operator of dimen-
sion p whose vev must be zero due to the invariance under the translation, rotation and scale
transformation on the defect.

When p is even, there exist conformal anomalies as we discussed in section 2.8 (the Graham-
Witten anomaly [67]), while we do not touch them for a while. In fact we can avoid these
anomalies by using dimensional regularization for both d and p.
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Chapter 3

Tractable models of Boundary CFT: the
case of scalar φ6 theory at large N

This chapter is heavily based on the author’s publication [31] in collaboration with Christopher
Herzog.

3.1 Opening remarks

So far we have discussed the basic properties of conformal field theories and their extensions
by introducing boundaries. In this chapter, we attempt to examine a specific model of BCFTs.
Despite its long history, it is not easy to find tractable models of BCFT away from free theories,
because interactions may violate conformal invariance. The possible simplest model of BCFT
is the O(N) model with the quartic interaction φ4 in d dimensions. We can perturbatively study
this model by using ε expansion in d = 4 − ε or large N expansion when N goes very large
as in [48, 49]. The motivation to study O(N) φ4 model comes from its connection to surface
critical phenomena in statistical mechanics as well. Researchers investigated estimations of
surface critical exponents and found successful correspondence to some experimental data.
See [18, 68, 69] for reviews.

There are of course other examples of BCFT: free theories in the bulk, supersymmetric
ones, and models constructed as gravitational theories via AdS/CFT correspondence. Though
the latter two parts seem to be artificial at first glance, they have rich and exciting properties
in their own right. There is much literature about them, see e.g., [22, 26, 27, 70–73]. As for
theories which are free in the bulk, we have those of a scalar field which interacts only through
a boundary. See refs. [74, 75] for recent investigations although such a theory provides an
important cross check already in [76]. Another important class of boundary CFTs that are free
in the bulk are graphene like: They have a 4d photon and 3d charged matter coupled on the
boundary (see e.g. [30] and its supersymmetric extensions [77, 78]).

Beside these examples, we are here interested in a simple extension of the scalar φ4 theory.
Namely, we consider a O(N) scalar model with the classically marginal (φ2)3 interaction in

27
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three dimensions, which is given by the following lagrangian:

L = Lbulk + δ(z)Lbry , (3.1)

Lbulk =
N

2

[
(∂µ~φ)2 +m2(~φ2) + r (~φ2)2 +

g

3
(~φ2)3

]
,

Lbry = N

[
h0
~φ∂z~φ+ h1

~φ2 +
h2

2
(~φ2)2

]
,

where φ is a scalar field with N components and m, r, g, and hi are coupling constants.
As in section 2.7, we place a boundary along z = 0. We include all classically relevant
and marginal couplings to preserve such that they preserve O(N)symmetry both in bulk and
boundary lagrangians.1,2 Since we are interested in conformal fixed points, we finely tune m
and r to be zero. For a while, we do not touch hi and regard them as free parameters, which
control boundary behaviors of φ.

The beta function for the marginal coupling g in absence of a boundary was calculated in
eighties [83] (see also [84, 85]):

β(g) = Λ
dg

dΛ
=

3g2

2π2N

(
1− g

192

)
+O(N−2) , (3.2)

which implies that in the large N limit, β(g) ∼ 0. We shall take advantage of the fact that the
beta function approximately vanishes, and treat g as a marginal coupling, to leading order in
1/N . The full story is much more involved and not completely settled.3 One might naively
think that in N → ∞ limit, there is a flow from an interacting UV fixed point with g = 192
to a free IR fixed point, which actually, turns out that the theory appears to be unstable for
g > 16π2 ≈ 158 [88–90]. We will find some additional evidence for this instability in the
following section.

The main subject in this chapter is to elucidate trace of stress tensor for this theory. As
discussed in section 2.8.1, boundary conformal anomaly contains rich dynamical information,
providing us the better way of classifying and understanding BCFTs. For our three-dimensional
theory, we again present the formula,

〈T µµ〉 = −δ(x⊥)

4π

(
a R̂ + b K̃µνK̃

µν
)
. (3.3)

The coefficient a must be monotonically decreasing function under boundary RG flows [20],
while the coefficient b is related to two-point function of displacement operators. As in (2.113),
for BCFT we have the modified conservation law,

∂µT
µn = Dδ (x⊥) ,

∂µT
µa = −∂bT̂ abδ (x⊥) ,

(3.4)

1Refs. [79,80] argue that the ~φ∂z~φ term is in some sense redundant, that having fixed a boundary condition for
the field, the coefficient of ~φ∂z~φ becomes scheme dependent and limited in effect to renormalizing the wavefunction
of the boundary field φ|z=0.

2The particular form of the large N limit we consider here may not be unique. Researchers have speculated
about the existence of other large N limits of this theory [81, 82].

3See [86, 87] for recent work about this subject.
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where scalar primary D is the displacement operator sourced by small perturbation around the
boundary. Using as same pill box argument as Gauss’s law, we find

T nn(x, z)|z=0 = D(x) . (3.5)

Thus in flat space with the planar boundary, the displacement operator is defined by the boundary
limit of the stress tensor.

To hold them in our hands, we adopt two different approaches. For coefficient a, we compute
it by placing the theory on three-dimensional hyperbolic space, which is related to flat space
with a boundary by conformal transformations, and by computing its partition function. Large
N limit allows us to evaluate the effective potential to leading order in 1/N explicitly, and as a
by-product we also find in section 3.2 a bunch of boundary ordered and disorderd phases, which
are separated by first and second order phase transitions.4 Thanks to approximate conformal
invariance, we see that effective potential is a function of quasi-marginal coupling g.

As for the number b, we compute it by taking the boundary limit of the two-point function
of stress tensors. Recall (3.5), we can compute the two-point function of the displacement
operators from that of the stress tensors.

This chapter is organized as follows. In section 3.2 we investigate the effective potential of
this theory by using the large N technique, finding the interesting collection of possible phases.
For later usage, we also examine propagators and Feynman rules of them. Section 3.3 is devoted
to computing the two-point function of stress tensors. Then in section 3.4 we extract anomaly
coefficients.

3.2 O(N) model with planar boundary at large N
Let us begin with the classification of boundary conditions of this theory. The relevant term
h1
~φ2 establishes the boundary conditions dominantly. The other two operators ~φ∂z~φ and (~φ2)2

are marginal. In the low energy limit, the effective value of h1/Λ becomes±∞ or zero. The case
h1 →∞ imposes Dirichlet (or named “ordinary” in the context of surface critical phenomena)
conditions on the field ~φ while the finely tuned h1 = 0 imposes Neumann (or “special”). The
case h1 → −∞ allows for the so-called extraordinary boundary conditions where φα ∼ z−1/2.
Given the Coleman-Mermin-Wagner Theorem, fluctuations should destroy this φα ∼ z−1/2

ordering behavior on our two-dimensional surface. We presumably see this behavior because
we are working in a large N limit where the fluctuations are suppressed.

As discussed in [19, 76], the Neumann case here is more subtle than in φ4 theory. At this
critical value, the marginal coupling h2 can become important. These references demonstrated
that there is a nonzero beta function for h2, proportional to g, in the 3− ε expansion. We do not
have much to say about this special case h1 = 0 in the present thesis, but it would be interesting
to examine it more thoroughly in the future.

Our starting point is (3.1). In order to do large N analysis, we follow Hubbard-Stratonovich
type transform [88] to rewrite the bulk lagrangian introducing two auxiliary fields χ and σ:

Lbulk =
N

2

[
(∂µ~φ)2 +

1

3
gχ3 + σ(~φ2 − χ)

]
. (3.6)

4Given the Coleman-Mermin-Wagner Theorem, it may seem surprising that we find boundary ordered phases
in our set-up. From the point of view of the, in general, nonlocal effective two dimensional field theory living on
the boundary, this theorem should prohibit surface ordering phase transitions. Presumably, we find such phases
because we are looking in a large N limit.
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It is easy to see that we can recover the original lagrangian (3.1) by integrating out χ and σ.
To proceed the large N computation, we divide these fields up into background plus fluctu-

ations:

φα = δα1
Φ

z1/2
+ δφα , (3.7)

σ =
Σ

z2
+ δσ , (3.8)

χ =
Ξ

z
+ δχ . (3.9)

We are taking advantage of the presence of a boundary at z = 0 to allow for a coordinate
dependence in the background values of the fields. To find a scale invariant solution, we are
assuming that at leading order in N , the scaling dimensions of φα, σ, and χ are given by
their classical values, and that Φ, Σ, and Ξ are constants. Note that a boundary ordered phase
corresponds to Φ 6= 0, i.e. an extraordinary transition, while a boundary disordered phase to
Φ = 0. In this section we consider general boundary conditions in order to study the phase
structure of the theory. In the latter half of this chapter, however, we focus on correlation
functions for Dirichlet boundary conditions, where Φ = 0.

Next we find an effective action for the fluctuations δφα:

N

2

[
(∂δφα)2 +

1

z2
Σ δφ2

α

]
. (3.10)

There is a cross term proportional to Φσ δφ1 which involves fluctuations only in the direction in
which φα is turned on, and thus is down by a power of 1/N compared to the expression above;
we ignore this cross term.

3.2.1 Feynman rules at large N
In what follows we analyze the Lagrangian density (3.10) which describes the behavior of a free
scalar field with a position dependent mass. TheO(N) symmetry restricts the form of two-point
functions to be 〈δφα(x)δφβ(x′)〉 = δαβGφ(x, x′), and then Gφ can be determined by[

�−
µ2 − 1

4

z2

]
Gφ(x, x′) = δ(x− x′) , Σ ≡ µ2 − 1

4
. (3.11)

As it is not more difficult, let us for a while work in general dimension d; We can set d = 3 at
the end of calculations. The symmetry implies that Gφ must take the form (see section 2.7.1),

Gφ(x, x′) =
F (v)

|x− x′|d−2
, (3.12)

where v is the conformal cross ratio (2.50), and we used the fact that at leading order the bulk
scaling dimension of δφα is given by ∆φ = d/2− 1. Substituting (3.12) into (3.11), we realize
that F (v) satisfies the differential equation,

(1− v2)2vF ′′(v)− (d− 3)(1− v2)2F ′(v)−
(
4µ2 − 1

)
vF (v) = 0 . (3.13)
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To have a well defined problem, we need to fix the boundary conditions in the coincident
v = 0 and boundary v = 1 limits. In the coincident limit, we expect to recover the usual
two-point function for a massless free field,

Gφ(x, x′) ∼ κ

|x− x′|d−2
, κ ≡ 1

N(d− 2) Vol(Sd−1)
, (3.14)

where the value of κ follows from the normalization of the kinetic term for δφα. That the
Lagrangian has an over-all factor of N means the propagators must all scale with 1/N .

In the boundary limit where v → 1, there are two possible behaviors F (v) ∼ (1 − v2)
1
2
±µ.

We keep the +µ behavior and set the other scaling behavior to zero; a linear combination would
force us to introduce a scale and break the conformal symmetry. Note the choice µ = 1

2
is the

usual Dirichlet boundary condition while µ = −1
2
is Neumann. With these boundary conditions,

the unique solution of (3.13) is

F (v) = κ
Γ(1

2
+ µ)Γ(d−1

2
+ µ)

Γ(d
2
− 1)Γ(1 + 2µ)

ξ−
1
2
−µ

2F1

(
1

2
+ µ,

d− 1

2
+ µ, 1 + 2µ, −1

ξ

)
, (3.15)

where ξ is a different expression of the cross ratio related to v as in (2.50). We can of course
recover the other boundary condition at z = 0 by changing the sign µ→ −µ.

Finally we comment on the propagators of auxiliary fields σ and χ. The equation of motion
for σ states that ~φ2 − χ = 0. Employing the Schwinger-Dyson equations, any correlation
function involving this equation of motion should vanish up to contact terms. In particular, we
have

N

2
〈σ(x)(~φ2(x′)− χ(x′))〉 = δ(x− x′) . (3.16)

We expect in the large N limit that the 〈σ(x)~φ2(x′)〉 piece of the expression dominates as there
are N identical components of ~φ. Furthermore, we can re-express this three point function
in terms of the corresponding propagators and the three point vertex N

2
σ~φ2 in the effective

Lagrangian.

〈φα(x1)φβ(x2)σ(x3)〉 = −δαβN
∫
Rd+

ddr Gφ(x1, r)Gφ(x2, r)Gσ(r, x3) . (3.17)

In particular, we learn that∫
Rd+

ddx′′G2
φ(x, x′′)Gσ(x′′, x′) = − 2

N3
δd(x− x′) . (3.18)

Given that Gφ is O(1/N), we conclude that Gσ is also O(1/N). We do not need the explicit
form of Gσ, but will make heavy use of (3.18) later.

The diagrams in figure 3.1 show the leading contributions to the stress tensor correlation
functions of our interest. We employ rules where every propagator comes with a factor of 1/N ,
every vertex and every loop with a factor of N . The black dots correspond to the inserted
operators and may influence the N counting. In section 3.3, we will use these Feynman rules to
compute the 〈T µν(x)T σρ(x′)〉 at leading order in N .
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a) b) c)

Figure 3.1: The Feynman diagrams needed for computing the 〈T µν(x)T λρ(x′)〉 correlation
functions at leading order in N . All three diagrams contribute an amount proportional to N .
The solid lines are φα propagators while the dashed line is a σ propagator.

3.2.2 Effective potential
Since the effective action for δφα is quadratic, which we can integrate out, the lagrangian gets
the one loop contribution:

L → L+
N

2
tr log

(
−� +

Σ

z2

)
. (3.19)

The trace log factor is the integral of the one-point function of the operator 〈δφ2
α〉. Such a

one-point function can be calculated by the regularizing coincident limit of the Green’s function
Gφ(x, x′). By a hypergeometric identity, the result (3.15) can be rewritten as

F (v) =κ(1− v2)
1
2
−µ

2F1

(
1

2
− µ, 3− d

2
− µ, 2− d

2
, v2

)
+ cv2(1− v2)

1
2
−µ

2F1

(
1

2
− µ, d− 1

2
− µ, d

2
, v2

)
, (3.20)

where

c = κ
Γ
(
1− d

2

)
Γ
(
d−1

2
+ µ
)

Γ
(
d
2
− 1
)

Γ
(

3−d
2

+ µ
) .

The first hypergeometric function has singularities that must be removed in the coincident limit
v → 0. The one-point function is then fixed essentially by the constant c:

〈δφ2
α(x)〉 =

κ

N

Γ
(
1− d

2

)
Γ
(
d−1

2
+ µ
)

2d−2Γ
(
d
2
− 1
)

Γ
(

3−d
2

+ µ
) 1

zd−2
, (3.21)

summation on α not implied.
Integrating this one-point function over µ gives the difference in effective potential between

theories with different values of µ:

Nκ

zd

∫ µ

0

Γ
(
1− d

2

)
Γ
(
d−1

2
+ x
)

2d−2Γ
(
d
2
− 1
)

Γ
(

3−d
2

+ x
)x dx . (3.22)

We followed [91] in this derivation but see also [48,92].5 Note we are using µ = 0 as a reference
value around which to compute the change in the potential.

5For (3.22) to be consistent with scale invariance, we must either be in d = 3 dimensions or the integral must
vanish. We are in d = 3, but it is useful to compare with the general d results of other authors. The largeN results
of Bray and Moore [93] and later McAvity and Osborn [48] correspond to setting the integrand to zero which
happens when µ = d−3

2 , d−52 , d−72 , etc. The first two cases are the “ordinary” (Dirichlet) and “special” (Neumann)
phase transitions close to d = 4. In general, the scaling µ means there is an operator on the boundary with scaling
dimension µ+ d−1

2 . The condition the integrand vanishes gives the series of dimensions d− 2, d− 3, d− 4, etc.
The unitarity bound cuts off this series at d− 3 in d = 4 and at d− 2 in d = 3.
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Figure 3.2: The various solutions to the equations (3.23). The potential V is calculated from
(3.25).

For us, setting d = 3, the expression (3.22) reduces to − Nµ3

12πz3 . Variational principle tells us
the following conditions on Φ, Σ, and Ξ:

Φ(3− 4Σ) = 0 ,

±
√

1 + 4Σ− 8π(Φ2 − Ξ) = 0 , (3.23)
Ξ2g − Σ = 0 ,

where the± in the second line corresponds to a choice of sign for µ. The boundary ordered and
disordered solutions to these three equations are summarized in figure 3.2. We will discuss how
to compute the potential V in this figure shortly.

There are boundary ordered phases with φα 6= 0. There are two such solutions with µ > 0.
The solution associated with negative Ξ exists only for g > 12π2 and corresponds to a local
maximum of the effective potential, as we will see shortly. For negative µ, there is only a single
ordered solution, and it exists only for g < 12π2. Note Σ = 3/4 corresponds to µ = ±1. The
value g = 12π2 is special for another reason, for here two of the three boundary ordered phases
become disordered, with φα = 0.

There are a pair of disordered solutions with φα = 0 for more general values of g, one for
each sign choice of µ. Note µ2 = (4 − g/4π2)−1 for these solutions. The dependence of Ξ on
g in the disordered phase, in particular that Ξ becomes imaginary for g > 16π2, suggests the
theory becomes sick for g > 16π2, consistent with the results [88–90] in absence of a boundary.

Moving onto the curved background

The fact that this theory has conformal symmetry at large N further gives us an advantage that
we can work in as conformally equivalent spacetime asR2×R+. For our purpose, we take three
dimensional hyperbolic space H3 with radius of curvature L. It is very straightforward to see
that H3 is related to the flat space only up to Weyl factor:

ds2 =
L

z2
(dz2 + δabdx

adxb) . (3.24)

A nice feature on this curved background is that the explicit z dependence in the lagrangian
disappears due to Weyl rescaling. On the other hand, what we have to pay in order to work in
H3 is that we must include the conformal coupling of φα to the curvature L → L+ N

2
d−2

4(d−1)
Rφ2

α
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Figure 3.3: Potential vs. coupling. The solid curves are disordered (φα = 0) and the dashed
curves are boundary ordered (φα 6= 0). The disordered phases cease to exist for g > 16π2 while
the ordered phases require g > 0. The disordered phases can join with the ordered phases at
g = 12π2. Dotted vertical lines are placed at g = 12π2 and g = 16π2 as a guide to the eye. The
inset plots show the qualitative shape of the potential as a function of Φ in the different regions
of the larger plot. There are two different branches of V (Φ): the upper branch corresponds to
µ < 0 and the lower branch to µ > 0.

where R = − 3
4L2 for our H3 background with the radius of curvature L. We find the following

effective potential for the fields

V =
N

2

[
1

3
gΞ3 + Σ(Φ2 − Ξ)− 3

4
Φ2 ∓

(Σ + 1
4
)3/2

6π

]
, (3.25)

which gives rise to the same conditions (3.23). The choice in sign refers to the choice of sign
of µ. From this hyperbolic viewpoint, we should keep the mass of the scalar field above the
Breitenlohner-Freedman bound [94], Σ− 3

4
> −1. In the disordered phase, for g in the allowed

range −∞ < g < 16π2, Σ satisfies the bound, while for g > 16π2, the fluctuations in the scalar
field will have a mass below the BF bound, which causes the theory to be unstable.

We would like to then understand relative stability of the different phases from the effective
potential V (see figure 3.3). The analysis has some familiar Landau-Ginzburg features, but is
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complicated by the dependence of the phases on boundary conditions. One can form an effective
potential V (Φ) of a single variable by first extremizing V (Φ,Σ,Ξ) with respect to Σ and Ξ.
We find that for g < 0, the potential has a single maximum, albeit with a curvature below the
BF bound. For 0 < g < 12π2, the potential has a classical Mexican hat shape, with minima
corresponding to the ordered phase and a maximum corresponding to the disordered phase.
Then for 12π2 < g < 16π2, there is a qualitative difference between the µ > 0 and µ < 0
cases. For µ > 1, the maximum at Φ = 0 develops a dimple that grows deeper and eventually
overtakes the minima associated with the ordered phase. In contrast, for µ < −1, the disordered
and ordered phases coalesce into a single minimum associated with a stable disordered phase.
Given that µ < −1 leads to a boundary primary below the unitarity bound, we could discard
this portion of the µ < 0 disordered phase based on unitarity. For g > 16π2 and either choice
of sign for µ, the effective potential V (Φ) is not defined for Φ close to the origin although there
are still critical points associated with the disordered phases.

Recall that we impose a boundary condition on the field ~φ by adding the relevant boundary
deformation h1

~φ2 δ(z). For h1 > 0, ~φ must vanish on the boundary. To be consistent with this
Dirichlet condition, the critical exponent for the fluctuation δφα must satisfy µ > −1/2. The
only phases that are consistent with these restrictions are the lower solid (red) curve in figure
3.3 and the portion of the upper solid (red) curve satisfying g < 0. As the lower curve has lower
potential V , it should represent the stable phase.

We next consider the choice h1 < 0, for which ~φ can blow up at the boundary – extraordinary
boundary conditions. In this case, as ~φ is already infinite, there is no restriction on µ of
the fluctuation field δφα. All of the curves in figure 3.3 are allowed. Based on energetic
considerations, the lower dashed (black) curve, corresponding to a boundary ordered phase, is
preferred in the range 0 < g < 3

2
(7 +

√
13)π2 ≈ 15.9π2. There is a first-order phase transition

to a boundary disordered phase at the upper end of the range. For 3
2
(7 +

√
13)π2 < g < 16π2,

the boundary disordered phase is preferred. In the regime g < 0, there are only boundary
disordered phases, while in the regime g > 16π2 there are only boundary ordered phases.
(Given the Coleman-Mermin-Wagner Theorem, we should of course keep in mind that we are
likely only seeing boundary ordered phases because of the large N limit.)

The last case is “Neumann” boundary conditions h1 = 0. In reality, at this point the marginal
couplings h0 and h2 become important, and the system needs a more thorough examination. For
this reason, we put “Neumann” in parentheses because the actual boundary conditions will be
determined by h0 and h2. We leave a more thorough examination of this case to the future.

We note before moving on that it is not clear to us that the theory makes sense outside the
range 0 ≤ g < 16π2. The potential is unbounded for g < 0 and missing pieces for g ≥ 16π2.

3.3 Two-point function of stress tensor at large N

In this section we compute the stress tensor two point function 〈T µν(x)T σρ(x′)〉 in the Dirichlet
boundary condition where Φ = 0. From (3.10), the stress tensor for a φ field at largeN is given
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by

1

N
Tµν =(∂µ~φ) · (∂ν~φ)− δµν

2

(
(∂~φ)2 +

(
µ2 − 1

4

) ~φ2

z2

)
− d− 2

4(d− 1)

(
∂µ∂ν − δµν∂2

)
~φ2

=− ~φ · Dµν~φ+
d

4(d− 1)
Dµν~φ2 − δµν

d

(
µ2 − 1

4

) ~φ2

z2
, (3.26)

where in the last line we used the equation of motion and introducedDµν ≡ ∂µ∂ν− 1
d
δµν∂

2. The
overall factor of N comes from the normalization of the Lagrangian. The last term represents
position depending coupling to the background σ field.

Using the usual Feynman rules adapted to this large N boundary situation, we divide up the
calculation of the stress-tensor two point function into a free part and an interaction part:

〈T µν(x)T σρ(x′)〉 = 〈T µν(x)T σρ(x′)〉free + 〈T µν(x)T σρ(x′)〉int . (3.27)

For the free part, we use the stress tensor (3.26) and Wick’s Theorem, albeit with the
propagator Gφ(x, x′) involving a nonzero µ. The two different ways of contracting the φ fields
give the t and u channel diagrams in figure 3.1. 〈T µν(x)T σρ(x′)〉free can be further decomposed
into a trace free part

1

N3
〈T µν(x)T σρ(x′)〉′free =GφDµνD′σρGφ + (DµνGφ)D′σρGφ

− d

2(d− 1)

(
Dµν(GφD′σρGφ) +D′σρ(GφDµνGφ)

)
+

d2

8(d− 1)2
DµνD′σρG2

φ , (3.28)

and a remainder

〈T µν(x)T σρ(x′)〉free − 〈T µν(x)T σρ(x′)〉′free = (3.29)

− 2

d

(
µ2 − 1

4

)(
δµν t̂σρ(x

′, x)

z2
+
δσρt̂µν(x, x

′)

z′2

)
+

2N3

d2
δµνδσρ

(
µ2 − 1

4

)2

(zz′)2
G2
φ(x, x′) ,

where we have defined

1

N3
t̂µν(x, x

′) ≡ −Gφ(x, x′)D′µνGφ(x, x′) +
d

4(d− 1)
Dµν(Gφ(x, x′))2 . (3.30)

The interaction contribution to the stress-tensor is dominated at leading order in N by
exchange of a σ field:

〈T µν(x)T σρ(x′)〉int =

∫
Rd+

ddr

∫
Rd+

ddr′ tµν(x, r)tσρ(x
′, r′)Gσ(r, r′) , (3.31)

where the unhatted tµν(x, x′) has a trace part,

tµν(x, x
′) = t̂µν(x, x

′)− δµν
d

µ2 − 1
4

z2
N3Gφ(x, x′)2 . (3.32)
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Thanks to the identity (3.18), the trace parts of the free contribution and the interaction contri-
bution cancel out and one is left with

〈T µν(x)T σρ(x′)〉 = 〈T µν(x)T σρ(x′)〉′free + 〈T µν(x)T σρ(x′)〉′int , (3.33)

where

〈T µν(x)T σρ(x′)〉′int =

∫
Rd+

ddr

∫
Rd+

ddr′ t̂µν(x, r)t̂σρ(x
′, r′)Gσ(r, r′) . (3.34)

It is not necessary to have an explicit form for Gσ(r, r′) to proceed. Instead, we recognize
the two-point function

〈Tµν(x)σ(x′)〉 = −N
∫
Rd+

ddr tµν(x, r)Gσ(r, x′) , (3.35)

is fixed by conformal symmetry and a Ward identity to have the form [48]

〈Tµν(x)σ(x′)〉 = −N 2d(4µ2 − 1)

(d− 1) Vol(Sd−1)

(2z′)d−2

s2d

(
XµXν −

1

d
δµν

)
vd . (3.36)

Changing between the hatted t̂µν and the unhatted tµν alters 〈Tµν(x)σ(x′)〉 by a contact term
proportional to 〈σ〉δ(x − x′), as can be seen from (3.18). In fact the two point function
〈Tµν(x)σ(x′)〉more generally is arbitrary up to contact terms of this form [48]. The stress tensor
itself is ambiguous up to a shift Tµν → T ′µν = Tµν + cλσδµν where λ is a position dependent
source for σ and c is an arbitrary constant. The stress tensor one point function is untouched
when λ = 0. Through this shift, however, we can adjust the contact term in the two point
function at will. We choose to regulate the two point function such that 〈T µµ (x)σ(x′)〉 = 0,
including distributional contributions of the form δ(x − x′). Through the identification (3.35),
we can then be sure that the stress-tensor two-point function 〈T µν(x)T σρ(x′)〉 is traceless.

We can also write t̂µν itself in terms of the Xµ. Inserting the form of Gφ into the definition
(3.30), we obtain

1

N3
t̂µν =

(2z′)2

s2d

(
XµXν −

1

d
δµν

)
f(v) , (3.37)

f(v) = − 2

d− 1
ξ(ξ + 1)

(
(d− 2)F (v)

d

dξ

(
ξ2 d

dξ
F (v)

)
− dξ2

(
d

dξ
F (v)

)2
)
. (3.38)

Assembling the pieces, we can write the trace free part of the interaction contribution to the
stress tensor two point function as

〈T µν(x)T σρ(x′)〉′int = (3.39)

N3 2d(4µ2 − 1)

(d− 1) Vol(Sd−1)

∫
Rd+

ddr

(
2zṽ

s̃2s̃′
2

)d
f(ṽ′)

(
X̃µX̃ν −

δµν
d

)(
X̃ ′ρX̃ ′σ −

δσρ
d

)
,

where we denote r = (r, y), s̃ = (x − r)2, ṽ2 = s̃2/(s̃2 + 4zy) and s̃′2, ṽ′2 similarly defined
with x→ x′.
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To organize the information in the stress-tensor two-point function, we again take advantage
of the conformal symmetry. Recall basis functionsα(v), γ(v) and ε(v) as defined in (2.67), (2.68)
and (2.69). We further impose tracelessness, which is reduced to α = (d− 1)((d− 1)δ + 2ε).
In addition, the conservation law reduces the information further, to a single function of a cross
ratio:

vα′(v)− dα(v) = 2(d− 1)γ(v) , (3.40)

vγ′(v)− dγ(v) =
d

(d− 1)2
α(v) +

(d− 2)(d+ 1)

d− 1
ε(v) . (3.41)

That 〈T µν(x)T σρ(x′)〉′free and 〈T µν(x)T σρ(x′)〉′int are independently traceless means that we can
completely specify their form by computing the functionsα, γ and ε for each structure. However,
they are not independently conserved. Only the total is conserved.

We first compute 〈T µν(x)T σρ(x′)〉′free, restricting to the case d = 3. From the definitions
(2.67), (2.68), (2.69), and plugging in the explicit form of Gφ into (3.28), we establish

αfree(v) =
N3κ2

9

(1− v)2µ−1

(1 + v)2µ+1

{
v
[
9µ+ v

(
32µ4v2 + 48µ3

(
v2 + 1

)
v + 44v2+ (3.42)

+ 4µ2
(
9v4 + 8v2 + 9

)
+ 3µ

(
3v4 + 5v2 + 5

)
v + 9

(
v2 − 3

)
v4 − 27

)]
+ 9
}
,

γfree(v) = −1

4
N3κ2

(
1− v
1 + v

)2µ

(3.43)

×
{
v
[
6µ+ v

(
3v4 + 8µ2

(
v2 + 1

)
+ 2µ

(
3v2 − 1

)
v − 2v2 + 8µ3v − 2

)]
+ 3
}
,

εfree(v) =
1

8
N3κ2 (1− v)2µ+1

(1 + v)2µ−1

(
v
(
21µ+ v

(
20µ2 + 6v2 + 21µv + 10

))
+ 6
)
. (3.44)

One can confirm when µ = ±1/2, they reproduce results [49] for the free scalar with Dirichlet
and Neumann boundary conditions.

Our next task is to calculate the interaction part (3.39). In our setup, with (3.15) in d = 3,
f(v) becomes relatively simple:

f(v) =
1

2
κ2v3(v + 1)−4µ

(
1− v2

)2µ−1 (
3µ+ v

(
4µ2 + 3µv + 2

))
. (3.45)

The integral in (3.39) is generally organized into∫ ∞
0

dy

∫
dd−1r

1

(2y)d
f1(ξ̃)f2(ξ̃′)

(
X̃µX̃ν −

1

d
δµν

)(
X̃ ′ρX̃ ′σ −

1

d
δσρ

)
, (3.46)

where we can identify f1 = [ξ(ξ + 1)]−d/2 and f2 = N2f(v)ξ−3. In Appendix D of [48], the
authors investigate a method how to compute (3.46) for the case that f2 ∼ [ξ(ξ + 1)]−n. We
review some aspects of their method in our Appendix A and further generalize it. The final
result is

εint(v) = cξd4G ′′(ξ) ,

γint(v) = cξd
[
4(1 + 2ξ)G ′′(ξ) + 8(1 + ξ)ξ

d

dξ
G ′′
]
,

αint(v) = cξd
[
−8

d
(d− 1)2(1 + ξ)ξ

(
(2ξ + 1)

d

dξ
+ 2

)
G ′′(ξ)

+
8

d
(d− 1)G ′′(ξ)− (d− 1)2

d3
Vol(Sd−1)f2(ξ)

]
,

(3.47)
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where
c = N

2d(4µ2 − 1)

(d− 1) Vol(Sd−1)

is a constant of proportionality. The function G ′′(ξ) for given f2 is a solution of the second order
differential equation (A.17).

Our strategy for finding G ′′(ξ) is somewhat different than [48]. Rather than pursuing a
solution via integral transforms, we solve the differential equation (A.17). In d = 3, defining
F(v) ≡ G ′′(ξ), the differential equation takes the form

F ′′(v) +
2(3 + 2v2)

v(1− v2)
F ′(v) +

20

(1− v2)2
F(v) = S(v) , (3.48)

where the source term is

S(v) = −(1 + v)−2µ+2(1− v)2µ+2(3µ+ v(2 + 3vµ+ 4µ2))

96πv5
. (3.49)

The expression (3.48) has two homogeneous solutions:

F1(v) =
(1− v2)5

v5
, (3.50)

F2(v) =
−3v + 14v3 − 14v7 + 3v9 + 3(1− v2)5 tanh−1(v)

128v5
, (3.51)

with Wronskian

W = F1(v)F ′2(v)−F ′1(v)F2(v) =
(1− v2)5

v6
. (3.52)

Our boundary conditions are that F(v) is less singular than v−5 in the coincident v → 0 limit
and vanishes faster than (v − 1) in the boundary v → 1 limit, leading to the solution of interest

F(v) = −F2

∫ 1

v

F1(v′)S(v′)

W(v′)
dv′ −F1

∫ v

0

F2(v′)S(v′)

W(v′)
dv′ . (3.53)

These boundary conditions are consistent with the behavior of the integral (A.11) in the v → 0
and v → 1 limits.

As the two point function satisfies a conservation Ward identity, all of the information in the
two point function is encoded in the single function α(v). With a solution for F(v) in hand, we
can plug it into (3.47) to obtain αint(v) and add to that the “free” contribution αfree(v) (3.42) to
obtain the net result. The remaining functions γ(v) and ε(v) can then be constructed from the
conservation relation (3.40) and (3.41). Alternatively and as a cross check, one can obtain γ(v)
and ε(v) from (3.47), (3.43) and (3.44). The result is the same.

Wehave not been able to find a closed formexpression for the integral (3.53), but nevertheless,
this presentation of the solution is very convenient. We will use it to analyze the limits α(0) and
α(1) next. In the subsections to come, we present closed form expressions in four special cases
µ = ±1

2
, 0, and 1. Figure 3.4 presents a graph of α(v) in these four cases. Finally in section

3.3.4, we decompose α(v) into bulk and boundary conformal blocks for general µ, which will
give us some information about the spectrum of bulk and boundary conformal primaries in this
theory.



3 Tractable models of Boundary CFT: the case of scalar φ6 theory at large N 40

The value of α(v) in the coincident limit is universal, α(0) = N/16π2 regardless of µ. The
interaction part αint(0) vanishes, and the answer is given just by the free part αfree(0), which is
equal to N/16π2. Without a boundary, the two-point function is fixed up to not just a function
but a constant. In the coincident limit of our theory with a boundary, we expect to recover this
constant, or central charge, α(0), also sometimes calledCT . This number should be independent
of boundary conditions. Here we find it is also independent of the quasi-marginal coupling g.

On the other hand, α(1) is very sensitive to µ and through µ, to the coupling g. It is known
that α(1) gives the normalization of the displacement operator two-point function and thus is
also related to a boundary central charge in the trace anomaly [30], a fact whose consequences
we will investigate in section 3.4. It is straightforward to analyze

α(1) = −64(4µ2 − 1)N

π

∫ 1

0

F2(v)S(v)

W(v)
dv , (3.54)

numerically for µ > 1/2 and also via saddlepoint approximation in the large µ limit. With a little
bit of effort, we can extend the region of validity of this formula to µ > −1 through a minimal
subtraction procedure, removing the power law divergences at the upper range of the integral
v → 1. Beyond µ = −1 (the unitarity bound for the boundary operators), the subtraction
procedure becomes ambiguous because of the presence of logarithms.

We provide plots of α(1) in figure 3.5. The saddlepoint approximation yields

α(1)

α(0)
∼ µ

8

15
e

1−
√

13
2

√
π

(
50 +

172√
13

)
∼ 2.54µ . (3.55)

Numerically, we see that for g < 0 (equivalently −1
2
< µ < 1

2
), α(1) satisfies the inequality

α(1) < 2α(0) while for the coupling in the domain 0 < g < 16π2 (equivalently |µ| > 1
2
),

we have instead α(1) > 2α(0). It is unclear to us whether the g < 0 cases are physical. On
the one hand, they correspond to an unbounded φ6 potential. On the other, from the point of
view of a Weyl equivalent hyperbolic space, the curvature at the maximum of the potential is
above the BF bound. In ref. [30], it was found that α(1) < 2α(0) in the case of a theory with
interactions confined to the boundary. Thus our “less physical” case agrees with the previous
study. Interestingly, the α(v) we find for the µ = 0 case is the same as that found in [48] for
d = 3 φ4 theory at large N with Dirichlet boundary conditions.

3.3.1 Perturbative expansion by small coupling
We begin with the small coupling limit. Recalling µ2 = (4− g/4π2)−1, in the small g limit, µ
can be expanded as

µ = ±
(

1

2
+

g

64π2

)
+O

(
g2
)
. (3.56)

To leading order, we are allowed to set µ = ±1/2 in f(v) due to the overall coefficient in the
interaction part (3.39). In these cases, we find

S(v) = ∓(1− v2)3

64πv5
. (3.57)
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Figure 3.4: We plot α(v) for various values of µ. All curves start with the same value at v = 0
while they end with different values at v = 1.
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Figure 3.5: A plot of α(1)/α(0) vs. µ. The solid blue line was computed numerically. The
dashed black lines are tangents at µ = ±1/2. The thick red line is the large µ saddle point
approximation. The black dots are analytically computed points. (b) zooms in on the small µ
region of (a). There is a minimum at approximately µ = −0.136.
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Enforcing the boundary conditions described above, we find a solution that in fact vanishes at
v = 0 and 1. We obtain

F(v) = ∓(1− v)5(1 + v)(v(3 + v(8 + 3v))− 3(1 + v)4 tanh−1(v))

1536πv5
. (3.58)

Writing F(v) = G ′′(ξ) in terms of ξ and using the relations (3.47), the interaction parts are
given as follows:

αint(v) = ± gN

64π2

v
(
(9v4 + 6v2 + 9) tanh−1(v) + v((4− 9v)v − 9)

)
48π2

+O(g2) , (3.59)

γint(v) = ± gN

64π2

(v − 1)v
(
3(v + 1)2 (v2 + 1) tanh−1(v)− v(v(3v + 4) + 3)

)
32π2(v + 1)

+O(g2) ,

(3.60)

εint(v) = ± gN

64π2

(v − 1)2v
(
3(v + 1)4 tanh−1(v)− v(v(3v + 8) + 3)

)
128π2(v + 1)2

+O(g2) . (3.61)

To combine with the free part, we also expand (3.42)-(3.44) in the small coupling limit. The net
result for α(v) is

α(v) =N

(
1 + v6

16π2
+

g

512π4
v
(
v + v3 + 3(1− v2)2 tanh−1(v)

))
±N

(
−3v(1− v2)2

32π2
+

g

1024π4

(
v(1 + (v − 3)v)(1 + v2)+

+ (−4 + 3v + 2v3 + 3v5 − 4v6) tanh−1(v)

))
+O(g2) , (3.62)

where the plus sign corresponds toDirichlet boundary conditions and theminus sign toNeumann.
As the total result satisfies the conservation Ward identities (3.40) and (3.41), we can easily
construct γ(v) and ε(v) from α(v).

The boundary limit of α(v) is interesting because it represents the normalization of the
displacement operator two point function. We find

α(1) =
N

8π2

(
1 +

2g ∓ g
64π2

)
+O(g2) , (3.63)

which suggests that α(1) starts as an increasing function of the coupling g. We also see that the
bulk limit of α is α(0) = N/16π2, which implies that α(1) > 2α(0) when g > 0.

3.3.2 µ = 0: strong coupling limit
The next example is the µ = 0 case, which corresponds to the g → −∞ limit. It is not clear that
the theory is stable in this limit, as the φ6 potential is unbounded below. We can nevertheless
naively proceed with the same analysis of the stress tensor two point function. In this case, we
have

S(v) = −(1− v2)2

48πv4
. (3.64)
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We discover a solution

F(v) =
1− v2

6144πv5

{
6(1− v2)4 tanh−1(v) log(v)

+ 2v(3− v2 + v4 − 3v6 − (1 + v2)(3− 14v2 + 3v4) log(v))

+3(1− v2)4(Li2(−v)− Li2(v))
}
,

(3.65)

where Lin(x) is a polylogarithm. This solution scales as v−3 in the coincident limit and (1− v)4

in the boundary limit.
Adding αint and αfree together, the information in the stress tensor two point function is

encapsulated in the single function

α(v) =
N

512π2

{
v
(
3v4 + 2v2 + 3

) (
4Li2(v)− Li2

(
v2
))

(3.66)

+4
(
8− 8v6 + 19v4 − 19v2 + v log(v)

(
3
(
v3 + v

)
−
(
3v4 + 2v2 + 3

)
tanh−1(v)

))}
,

from which we may construct γ(v) and ε(v) using the conservation equations (3.40) and (3.41).
We observe that

α(1) =
N

128
. (3.67)

As usual we find α(0) = N/16π2, and so it follows α(1) < 2α(0). While the inequality
α(1) < 2α(0) is consistent with results that were found for a theory with only boundary
interactions [30], it is not clear that the µ = 0 case studied here is physical – because of the
unbounded potential.

As mentioned already, this case was studied in [48]. The authors computed the two-point
function of the stress tensor in φ4 theory at large N , for general dimension d ≤ 4. In the
particular case d = 3 with “Dirichlet” boundary conditions, their two-point function reduces
to ours. Their answer, valid for general d, is written in term of a hypergeometric function 3F2.
With some effort, one can demonstrate that in fact the two solutions are the same at d = 3.

3.3.3 One more special case: µ = 1

For µ = 1, we have

S(v) = −(1− v)4(1 + v)2

32πv5
, (3.68)

and find that

F(v) = − 1− v2

6144πv5

(
−2v(1− v2)(−9 + v(16 + v(−6 + v(−32 + v(−9 + 16v)))))

+ 6(−3v + 11v3 + 11v5 − 3v7 + 3(1− v2)4 tanh−1(v)) log(v)

+ 9(1− v2)4(Li2(−v)− Li2(v))

)
, (3.69)
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with the same boundary conditions as before. This function diverges as v−3 in the coincident
limit and vanishes as (v − 1)5 in the boundary limit. Inserting the result for F(v) into (3.47)
and adding the free result, we obtain

α(v) = − N

256π2

{
9v
(
3v4 + 2v2 + 3

)
(Li2(−v)− Li2(v)) (3.70)

+ 18v log(v)
((

3v4 + 2v2 + 3
)

tanh−1(v)− 3
(
v3 + v

))
+2v(v(v(v(8v(v + 3) + 21) + 16)− 21) + 24)− 16} ,

from which we may construct γ(v) and ε(v) using the conservation relations (3.40) and (3.41).
Taking the boundary and bulk limit, we end up with

α(1) = N

(
9

128
− 1

2π2

)
, α(0) =

N

16π2
, (3.71)

which implies α(1) > 2α(0) in the case at hand µ = 1, and α(1)|µ=1 > α(1)|µ= 1
2
.

3.3.4 Conformal block decomposition
Thus far we have calculated the two-point function of the stress tensor. By using the operator
product expansion, we can re-express these correlation functions as sums over exchanged op-
erators. Given conformal symmetry, these sums naturally arrange themselves into conformal
blocks, where each block compactly represents the exchange of a conformal primary operator
and all its descendants, see section 2.7.2. Our task is to determine the OPE coefficients µ2

∆,
a∆λ∆, and scaling dimensions ∆ in our theory.

Boundary decomposition

Let us begin with the boundary decomposition of α(v) in 〈Tµν(x1)Tσρ(x2)〉. The decomposition
has the form

α(v) = ξd

(
µ2

(0)α
(0)
bry(v) +

∑
∆≥d−1

µ2
∆α

(2)
bry(∆, v)

)
, (3.72)

where α(0)
bry(v) and α(2)

bry(∆, v) are given in (2.87) and (2.88).
Before giving the general solution, let us recall what happens in the free case g = 0 [30,50].

In the free theory, one can make use of the following identity

1

2

(
1 + v2d

)
= ξd

(
α

(0)
bry(v) +

∑
j∈2Z∗

µ2
jα

(2)
bry(d+ j, v)

)
, (3.73)

where Z∗ is the set of non-negative integers and

µ2
j =

2−d−2j
√
πΓ(d+ j − 1)Γ(d+ j + 2)

Γ(d)Γ
(
d
2
− 1
)

Γ(j + 3)Γ
(
d+1

2
+ j
) . (3.74)

The full result is then obtained by tweaking the series representation of 1
2
(1 + v2d) slightly. For

Dirichlet conditions α(2)
bry(d, v) is removed while for Neumann conditions, its contribution is

doubled.
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While we cannot find a general closed form solution for α(v), it is straightforward to expand
(3.53) near v = 1 and from this integral representation, construct the first few terms in a series
expansion for α(v) near the boundary.

We find the dimensions of the spin-two boundary blocks are 4 + 2µ + 2j where j is a
non-negative integer and α(v) is expanded as

α(v) = ξ3

(
α(1)α(0)(v) +

∞∑
j=0

µ2
jα

(2)
bry(4 + 2µ+ 2j, v)

)
. (3.75)

The spectrum of dimensions is natural if we can associate the boundary limit of the field φα with
an operator Ôα of dimension µ + 1. we find spin-two operators of the form �j(∂µÔα)(∂νÔα)
with scaling dimension of 4 + 2µ+ 2j. The first few coefficients in this sum are

16π2N−1µ2
j

j µ µ = −1
2

µ = 0 µ = 1
2

µ = 1

0 (1+µ)(2+µ)
24µ−2(3+2µ)2 3 8

9
15
64

3
50

1 3(1+µ)(3+µ)
24µ+2(5+2µ)2

15
64

9
100

7
256

3
392

2 3(2+µ)(4+µ)(3+2µ)
24µ+5(5+2µ)(7+2µ)2

7
256

9
980

45
16384

25
32,256

3 5(2+µ)(5+µ)(5+2µ)
24µ+9(7+2µ)(9+2µ)2

45
16,384

125
145,152

33
131,072

35
495,616

4 15(3+µ)(6+µ)(5+2µ)
24µ+14(9+2µ)(11+2µ)2

33
131,072

75
991,232

91
4,194,304

735
121,831,424

(3.76)

while α(1) was given in (3.54). The µ = ±1
2
columns agree with the 1 + v2d decomposition

discussed above.

Bulk decomposition

In the case of bulk conformal decomposition, we consider A(v) instead of α(v). From (2.66),
we have

A(v) =
d2

(d− 1)2
α(v) + 4γ(v) +

2(d− 2)

d− 1
ε(v) . (3.77)

A(v) can be organized into the following form,

A(v) =
∑
∆ 6=0

a∆λ∆Abulk(∆, v) , (3.78)

where Abulk(∆, v) is given by (2.79). We find first few coefficients as below

16π2N−1 a∆λ∆

∆ µ µ = −1
2

µ = 0 µ = 1
2

µ = 1

1 −9µ
8

9
16

0 − 9
16

−9
8

2 2(4µ2 − 1) 0 −2 0 6
3 −5µ(4µ2 − 1) 0 0 0 −15
4 2(4µ2 − 1)2 0 2 0 18
5 −7

3
µ(4µ2 − 1)2 0 0 0 −21

6 a6λ6 6 − 16
525

(29 + 105 log(v)) 6 16
175

(123− 315 log v)
(3.79)
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where

a6λ6 = N
−29 + 1632µ2 − 3474µ4 + 2240µ6 − 105(4µ2 − 1)2 log(v)

525π2
. (3.80)

We can see that for general µ the bulk blocks with dimension ∆ ≥ 6 have logs in their
expansion. The appearance of a logarithm is a problem as it introduces a scale to what is
supposed to be a scale invariant theory. We can gain some insight from the µ = 0 case, where
our expression matches a result from [48]. In this older paper, the authors computed the stress
tensor two-point function for φ4 theory in a largeN limit and general dimension. In the specific
case d = 3, their expression matches ours, and so we see that their conformal block expansion
must also involve logarithms. Using their result to move away from d = 3, a scalar operator of
dimension 2d and a second of dimension 6 contribute to the conformal block decomposition.
The coefficients of these conformal blocks are equal and opposite in the d → 3 limit and scale
as 1/(d− 3). The collision and mixing of these two operators in d = 3 produces the logarithm.6
A similar degeneracy happens in integer dimensions d > 4 for operators of dimension 2d, but
not in d = 4 where the theory is free. Interestingly, the lack of positivity of the bulk conformal
block expansion allows these two diverging coefficients to cancel. We want to study how this
mixing is affected by 1/N corrections although it is essential to note that in our context at least,
there may be a problem that the theory is no longer conformal at subleading order in 1/N . (A
similar log in a one-point function was pointed out in [91], where it was likely related to an
anomaly in the trace of the stress tensor.)

3.4 Boundary anomaly coefficients
In this section we finally elucidate boundary anomaly coefficients. The remarkable feature of
our theory is that these two quantities a and b can be easily extracted. These quantities are
thus far known only in a few examples. One is the conformally coupled scalar. There are two
types of Weyl invariant boundary conditions: Dirichlet and Robin. The central charges for these
two choices are a(D) = − 1

96
[22], a(R) = 1

96
[20], and b(D) = b(R) = 1

64
[95]. The Robin

boundary condition involves an extrinsic curvature, and for a planar boundary reduces to the
Neumann condition. What motivates us to study this φ6 theory is to collect other examples of
these numbers.

The boundary type-A anomaly coefficient a can be extracted from the effective action of
the theory on hyperbolic space H3 as we mentioned in section 3.1. Given the potential density
V computed in section 3.2 (see figure 3.2), we can obtain the effective action at leading order
in N by integrating V over H3, resulting in W = V Vol(H3) because V does not depend on
spacetime coordinates. To compute the volume of H3, let us take the following line element

ds2 = L2[dτ 2 + sinh2 τ(dθ2 + sin2 θdφ2)] , τ > 0 , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π (3.81)

where L is the radius of curvature. We have the conformal boundary S2 at τ → ∞. Although
this volume diverges, we can regularize the integral by introducing a cutoff Λ at very close to
boundary such that eτmax = LΛ. Now that we integrate over 0 ≤ τ ≤ τmax, we find that

Vol(H3) = −2π log(LΛ) . (3.82)

6We would like to thank H. Osborn for discussion on this point. For readers interested in duplicating the result,
there is a typo in (5.34) [48]. A factor of vd multiplying a 2F1 hypergeometric function should be v2d.
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Since we introduced the scale Λ in the theory, the trace of stress tensor can be obtained by scale
variation of the partition function. For our H3 with S2 boundary, the second term in (3.3) does
not contribute and we obtain Λ∂ΛW = −2a logLΛ, indicating that

a = πV . (3.83)

Taking g → 0, which corresponds to the free Neumann and Dirichlet cases, we recover the
free field results a = ±N 1

96
. More generally, for nonzero g and φα = 0, we find the simple

scaling a = −N µ
48
. The result for the extraordinary boundary condition can be read off from

figure 3.2. Boundary unitarity (µ > −1) constrains the value of a as a < N/48.
The other coefficient b can be extracted from the two-point function of stress tensor, since

the displacement operator is the boundary limit of the T nn component of the stress tensor.
From [29], we have

b =
π2

8
α(1) . (3.84)

With these results (3.83) and (3.84) in mind, we can somehow falsify a pair of conjectures
about these coefficients a and b.

In ref. [29], it was proposed that a could be extracted from the stress tensor two point
function, in particular

a =
π2

9

(
ε(1)− 3

4
α(1) + 3C

)
, (3.85)

where C is the central charge of a decoupled 2d CFT living on the boundary. In our case, there
is no such decoupled CFT and C is zero. Moreover, ε(1) vanishes except in the special cases
µ = ±1

2
. Thus the conjecture boils down to the statement that a = −π2α(1)/12, which is

manifestly not true in the disordered case, comparing the actual result a = −µN/48 with figure
3.5, which is not linear in µ. Thus the conjecture appears to be wrong.

Another conjecture, this time concerning b and α(1), was discussed in ref. [30]. The authors
speculated that perhaps α(1) was bounded above by 2α(0) because that is what they observed
in a graphene like theory where the interaction was confined to the boundary. The value α(0) is
related to the coincident limit of the stress tensor two point function. From figure 3.5, it is clear
that this bound is satisfied only in the range |µ| < 1

2
, or equivalently g < 0. For g > 0, on the

other hand, α(1) > 2α(0).

3.5 Summary
In this chapter we consider a scalar O(N) field theory with φ6 interaction, which provides us a
tractable example of boundary conformal field theories. The primary motivation for studying
this model comes from the fact that we can extract the information of boundary conformal
anomaly in a simple setting. Though these anomaly coefficients are promising to give us a better
understanding boundary CFTs, the quantities are far known only in a few examples. We here
exploit them in a new playground. We also compute the effective potential and find surprisingly
rich phase structures. We see that all of these quantities are very sensitive to the quasi-marginal
coupling g.
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Chapter 4

Towards understanding RG dynamics of
Boundary and defect CFT

This chapter is heavily based on the author’s publication [32] in collaboration with Tatsuma
Nishioka, Yoshiki Sato, and Kento Watanabe.

4.1 Opening remarks
We have studied conformal field theories with boundaries. Saying that a boundary is a
codimension-one object, we can consider higher-codimensional ones in quantum field theo-
ries, such as strings, membranes, vortexes, all of which in general we call defects. Since we are
mostly interested in fixed point conformal theories, we would like to consider a defect preserving
conformal invariance on it, named conformal defects.

Of course, it is true that very properties of conformal defects rely on specific details of
theories, for instance, lagrangians. However we expect that restricted conformal invariance
enables us to extract some universal information in defect CFTs, hoping that it provides us a
certain answer to "what is defect CFT?" or "How defect CFT should behave?" Primarily, we
would like to understand the dynamical behaviors of defect CFTs in order to classify them.

4.1.1 C-theorems in general dimensions without defects
Without defects, we partially argue such a problem by considering c-theorem in two dimensions,
or a-theorem in four dimensions as in section 2.8. In both cases we find nice monotonically
decreasing functions under RG flows from the stress tensor trace. These theorems severely
constrain possible RG dynamics, providing us a theoretical tool to classify the space of QFTs.
Then what happens when we consider odd-dimensional theories where there is no conformal
anomaly? Can we find C-functions, which we recall are monotonically decreasing ones? In fact
it was proposed that in three-dimensions a sphere free energy defined as

F = − logZ[S3] (4.1)

should be monotonic under RG flows [8, 9],1 which is known as F -theorem. More broadly, the
way to interpolate type-A anomaly in even dimensions to sphere free energy in odd dimensions

1Of course Z[S3] has a collection of divergent pieces due to short distance effects, but there is a scheme-
independent term, which we call the universal part and we mean by a monotonic function.
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was proposed in [10] by introducing the following quantity:

F̃ ≡ sin

(
π d

2

)
log Z[Sd] , (4.2)

where d is continuous dimensions. One can convince themselves that in setting d = 2n+ ε with
ε→ 0, F̃ is reduced to the type-A anomaly coefficient. Then the authors of [10] claimed that F̃
is positive and decrease under any RG flows:

F̃UV ≥ F̃IR . (4.3)

This is a most general form of proposed C-functions, which, however, have not yet proven.
There is another way to propose C-theorems in general dimensions. The idea is to use the

entanglement entropy as a C-function. Let us briefly review what the entanglement entropy is.
Suppose the Hilbert space can be splitted into two parts asH = HA⊗HB and the entire system
is described by the density matrix ρ. Then we define the reduced density matrix by tracing out
HB,

ρA = trHB ρ , (4.4)

and entanglement entropy for the subsystemHA is given by the von Neumann entropy of ρA:

SA = − trHA ρA log ρA . (4.5)

In quantum field theories, the density matrix can be written in the path integral and the subsystem
corresponds to some spatial region on a fixed time slice. We call such a domain the entangling
region and denote Σ. For later usage, readers may refer figure 4.1 as our setup.

Instead of the entanglement entropy, it is useful to consider the Rényi entropy

Sn =
1

1− n
log ρnA , (4.6)

which is reduced to the entanglement entropy in n → 1 limit. This is because by using path
integral formalism and so called replica trick, we find that

Sn =
1

1− n
log

Zn
(Z1)n

, (4.7)

where Zn is a partition function on the n-fold cover Mn of the original manifold M. It is
often the case that the computation of (4.7) is easier than that of entanglement entropy itself. In
d-dimensional QFTs, the entanglement entropy generally take the following form,

S(QFT) =
Ad−2

εd−2
+
Ad−4

εd−4
+ · · ·+

{
a′ log

(
R
ε

)
, (d = even) ,

a0 , (d = odd) ,
(4.8)

where R is a typical size of the entangling region and ε is the UV cutoff. When the theory
is conformal and Σ is a sphere, a′ and a0 becomes universal quantities, meaning that they are
independent of regularization schemes. These numbers were conjectured to beC-functions each
in even and odd dimensions [96, 97] in the literature of holographic duality.
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Even though (4.8) and (4.2) looks very different, in case of CFT with spherical entangling
region, we have a remarkable relation between them as follows:

S(CFT ) = logZ[Sd] , (4.9)

up to UV divergence [28]. This map enables us to use the quantum information technique to
prove F -theorem [13] in three dimensions. Extending the proof in d = 3 (and d = 2 [12]) to
higher dimensions was attempted in [98], which amounts to a different monotonicity theorem
from (4.3) in d > 4 (see also [99]). It still remains open whether the F -theorem (4.3) in higher
dimensions follows from the quantum inequality of a certain entanglement measure.

4.1.2 C-theorems in general dimensions with defects
Having the intuition about C-functions in generic spacetime dimensions, let us switch gears to
our main interests, where quantum field theories contain defects. As discussed in section 2.8, we
have the monotonic theorem in case of three-dimensional QFT with boundary, or d-dimensional
QFT with codimension-two defect [20]. Again we remark that though it is referred to b-theorem,
the monotonic function is the type-A anomaly coefficient a in (2.104).

For other dimensions, it is known that in two-dimensional CFTs with boundaries the constant
term of the thermal entropy should be monotonic under boundary RG flows, which is so called
g-theorem. As is the case without defects, one can establish an alternative proof of g-theorem
by using the boundary entropy, which is difference between entanglement entropies in BCFT
and in CFT,

Sbry = SBCFT − 1

2
SCFT , (4.10)

which measures an increment of entanglement due to the boundary. The corresponding theorem
follows from the positivity of the relative entropy [21]. Conformal transformation allows us to
show that Sbry is equivalent to thermal entropy, resulting in the same g-theorem as the former
one.

To establish g-theorem in general dimensional BCFTs, there are several proposals for mono-
tonic quantities, the hemisphere partition function [22, 23], the boundary entropy [24] and the
holographic consideration [25–27] with varying degrees of evidence.2 The first two proposals
are not independent but the same statement as an analogous identity to (4.9) holds for BCFT.3

It is still unclear whether one can propose the generic C-functions in d-dimensional CFTs
with p-dimensional defects as in (4.2). See table 4.1 for the summary of the current status. The
aim of this chapter is to investigate possible candidates for C-functions for DCFTs in generic
dimensions. An important guiding principle is that the candidate C-function should reproduce
all the known conjectures and theorems by setting the appropriate dimensions, which gives us
logically sufficient conditions. We are then left with two possibilities: one is the defect free
energy, the additional contribution to the sphere free energy from the spherical defect,

log 〈D(p) 〉 = log Z (DCFT) − log Z (CFT) . (4.11)

2The holographic g-theorems are proven to be correct under any holographic boundary RG flow satisfying the
null energy condition, but their physical meanings are unclear unless the theory is at the fixed point as in the case
of the holographic c-theorem [100].

3The partition function of BCFT is defined on a hemisphere HSd, so Z (BCFT) ≡ Z[HSd].
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And the other is the defect entropy, the increment of the entanglement entropy across a sphere
due to the planar defect4

Sdefect = S(DCFT) − S(CFT) . (4.12)

One might ask if we can connect these two quantities as (4.9). When p = d − 1 they are
indeed equivalent up to UV divergences. On the contrary, they differ by a term fixed by the
one-point function of the stress-energy tensor for p < d − 1. Their precise relation will be
derived in (4.54) by using the conformal transform known as the Casini-Huerta-Myers (CHM)
map [28, 57], which is one of main results in this chapter.

This discrepancy suggests that either of themmay not be a good candidate for theC-function
generally. We try to check their behaviors under defect RG flows in various models, including
holographic ones. We find several examples where the defect free energy decreases while the
defect entropy increases along the RG flow. On the other hand, both of them always decreases
in all the holographic models that we study. These observations therefore lead us to propose a
C-theorem in DCFTs stating that the universal part of the defect free energy5

D̃ ≡ sin
(π p

2

)
log 〈D(p) 〉 , (4.13)

decreases along any defect RG flow

D̃UV ≥ D̃IR . (4.14)

The more precise statement is presented around (4.65). Note that this should be seen as the
counterpart to the generalized F -theorem (4.3) in CFTs. Our proposal here unifies known
proposals of C-functions as well as asserts a new family of C-theorems in defect CFTs (see 4.1
for the summary).

This chapter is organized as follows. In section 4.2 we study the CHM map in our setting
for DCFTs and calculate defect entropy as the thermal entropy, finding the universal formula
which relates defect entropy to the defect free energy. In the following section 4.3, we propose
our conjecture of C-theorem in DCFT and also study several field theoretic examples to confirm
our proposal true. Section 4.4 is devoted to the study of our proposal in holographic models.

4.2 Sphere free energy and entanglement entropy in DCFT
In this section we consider two quantities: the defect free energy and the defect entropy. The
former is the increment of the sphere free energy from a conformal defect in DCFT while the
latter is the additional contribution to the entanglement entropy of a spherical region. To argue
them, we first specify our configuration for the entanglement entropy and describe the conformal
transformation known as the CHM map which relates the entanglement entropy of a spherical
region to the thermal entropy of DCFT on a hyperbolic space in section 4.2.1. Establishing the
map between the flat space and the hyperbolic space, section 4.2.2 is devoted to computing the
defect entropy from the Rényi entropy. Along the way, we find the universal formula which

4The defect entropy has been conjectured to be a C-function for interface CFTs in [24] based on the studies of
several holographic models.

5Recall that the free energy in QFTs contains a number of UV divergences, from which we have to extract the
universal part independent of regularization scheme to make a meaningful statement.
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d = 2 d = 3 d = 4 d = 5

p = 1

p = 2

p = 3

p = 4

g-theorem
Proof [21, 101]

b-theorem
Proof [20]

bdy F -theorem
Proposal [22, 23]

Table 4.1: Summary of the conjectured and proved C-theorems in BCFTs and DCFTs. Our
proposal reduces to the known ones in the shaded regions and provides new ones in the region
colored in light blue.

expresses the defect entropy by the defect free energy and the one-point function of the stress
tensor. As conclusion remarks of this section, we investigate UV divergence structures of the
defect entropy and the defect free energy in section 4.2.3, which is necessary to study in order
to extract the universal numbers from them.

4.2.1 Setup and CHM map
The aim of this subsection is to make clear our setup to compute the entanglement entropy and
review the conformal map, named CHM map, which relates the entanglement entropy across a
sphere to thermal entropy in hyperbolic space. We begin with specifying our coordinate system.
we adopt the polar coordinates for R1,d−1 in Lorentzian signature,

ds2
R1,d−1 = ηµν dXµ dXν

= −dt2 + dr2 + r2 ds2
Sd−2 ,

(4.15)

where ηµν = diag(−,+, · · · ,+). We take the entangling surface Σ as a (d − 2)-dimensional
hypersphere of radius R located at t = 0 time slice:

Σ = {X0 = t = 0, r = R} . (4.16)

Wewant to introduce a conformal defectD(p) of dimension-p respecting the subgroupSO(p, 2)×
SO(d − p) of the conformal group SO(d, 2). Since conformal defects are either planar or
spherical, and we choose D(p) to be a hyperplane,

D(p) = {Xp = · · · = Xd−1 = 0} . (4.17)
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t D(1)

R
Σ

R1,d−1

A

t D(d−1) t D(d−1)

Figure 4.1: (Left) A dimension-one conformal defect D(1) in Lorentzian flat spacetime. The
spherical subsystem A of radius R surrounds the defect. (Center, Right) A codimension-one
defectsD(d−1) as an interface(Center) and a boundary (Right). The subsystem A intersects with
the defect in these cases.

Figure 4.1 shows our setups for p = 1 and p = d− 1.
We now turn to the discussion about the conformal map by which we can move into the

hyperbolic space from the flat space. As [28, 57] introduced, let us consider the following
coordinate transformation,6

xµ(X) = 4

[
Xµ − |X|2Cµ

1− 2X · C + |X|2 |C|2
+
R2

2
Cµ

]
, Cµ∂µ = − 1

R
∂1 . (4.18)

The resulting space is conformally flat with the metric,

ds2
R1,d−1 = Ω(x)2 ηµν dxµ dxν , (4.19)

with the conformal factor,

Ω =
1

4
(1− 2X · C + |X|2 |C|2)

=
1

1 + x · C + |x|2 |C|2/4
.

(4.20)

Under this conformal transformation, the causal domain r ± t ≤ R for the entangling region is
mapped to the (right) Rindler wedge x± ≡ x1 ± x0 ≥ 0 denotedR. The light cones r + t = R
and r − t = R on the boundary of the causal domain are mapped to the Rindler horizons,

r + t = R ⇒ x+ = 0 ,

r − t = R ⇒ x− = 0 ,
(4.21)

The entangling surface is mapped to the origin in the x0-x1 plane,

Σ = {x0 = x1 = 0} , (4.22)

while the defect is mapped to the hyperplane,

D(p) = {xp = · · · = xd−1 = 0} . (4.23)

6We will focus on the case with 1 ≤ p < d − 1 so that this map works, but the following results hold for
p = d− 1 with a slight change [57].
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We see that the vacuum state in the causal diamond of Σ is mapped to the vacuum state in the
Rindler wedge R, which results in the fact that the reduced density matrix for Σ is reduced to
the density matrix of the theory onR.

The point of this (inverse of) CHM map is that by famous Unruh’s argument [102] an
uniformly accelerator in theR should experience an effective thermal temperature. In our case,
it is easy to see this by introducing the new coordinates,

x± = z e±τ . (4.24)

The Rindler spacetime becomes

ds2
Rindler = dx+ dx− +

d−1∑
i=2

(dxi)2

= z2

[
−dτ 2 +

dz2 +
∑d−1

i=2 (dxi)2

z2

]
,

(4.25)

which is conformally equivalent to R×Hd−1 parametrized by τ and a hyperbolic space of unit
radius,

−y2
0 + y2

1 + y2
2 + · · ·+ y2

d−1 = −1 , (4.26)

in the Poincaré coordinates,

y0 =
z

2

[
1 +

1 +
∑d−1

i=2 (xi)2

z2

]
,

y1 =
z

2

[
1 +
−1 +

∑d−1
i=2 (xi)2

z2

]
,

yi =
xi

z
, (i = 2, · · · , d− 1) .

(4.27)

In these new coordinates, the entangling surface and the defect are located at7

Σ = {z = 0 , τ = 0} , D(p) = {xp = · · · = xd−1 = 0} . (4.28)

Now we can convince ourselves that the vacuum state in R is then corresponds to the thermal
state with temperature T = 1/2π by the Unruh effect.8 One may be able to realize this statement
by Wick rotation τ → iτ and compactification of τ direction with periodicity 2π.

For later convenience, we introduce the global coordinates of Hd−1 by

ya = coshx fa , (a = 0, · · · , p− 1) ,

yi = sinhx ei , (i = p, · · · , d− 1) .
(4.29)

7The position of Σ in the τ direction is ambiguous as the τ circle shrinks at z = 0. We thus choose a reference
point at τ = 0.

8For our case with boundaries or defects, it is not obvious to hold this argument true. See [57] for detailed
proofs.
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x

τ
x = 0

D(p)

Σ

τ = 0, x =∞

Sd−p−1

Hp−1

Figure 4.2: The locations of the entanglement surface Σ and the conformal defect D(p) in the
hyperbolic coordinates (4.34). The hyperbolic space Hp−1 is fibered on each point of the base.

where −f 2
0 +

∑p−1
i=1 f

2
a = −1 and

∑d−1
i=p e

2
i = 1. The resulting metric for R × Hd−1 takes the

form

ds2
R×Hd−1 = −dτ 2 + dx2 + cosh2 x ds2

Hp−1 + sinh2 x ds2
Sd−p−1 , (4.30)

where the entangling surface and the defect are situated at

Σ = {x =∞ , τ = 0} , D(p) = {x = 0} . (4.31)

4.2.2 Sphere free energy and defect entropy
We have shown the flat (Lorentzian) spacetime is conformally equivalent to R × Hd−1 as in
(4.30). Significantly, we concluded that the reduced density matrix for the spherical entangling
region Σ is equivalent to the thermal density matrix in the theory onR×Hd−1, implying that the
entanglement entropy with the spherical entangling region is equivalent to the thermal entropy
on the hyperbolic space. With this relation in our hands, we are now in a position to compute
the entanglement entropy in the presence of a conformal defect.

Recalling the definition of the Rényi entropy in the replica trick,

Sn =
1

1− n
log

Zn
(Z1)n

, (4.32)

the calculation of entanglement entropy ends up with deriving the partition function Zn ≡
Z[Mn] on the n-fold coverMn of the original manifold. Given equivalent between the entan-
glement entropy with Σ and the thermal entropy at temperature T = T0 = 1/2π, we can also
write down the Rényi entropy in terms of free energy f(T ):

Sn =
n

1− n
1

T0

(f(T0)− f(T0/n)) , (4.33)

where f(T ) ≡ −T logZ(T ) with the thermal partition function Z(T ) = tr[e−H/T ]. We here
adopt an alternative description for such a thermal theory by considering the Wick-rotated
Euclidean theory on the compactified manifold:

ds2
S1×Hd−1 = dτ 2 + dx2 + cosh2 x ds2

Hp−1 + sinh2 x ds2
Sd−p−1 , (4.34)
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where S1 has a unit radius. The entangling surface and the defect are located at

Σ = {x =∞ , τ = 0} , D(p) = {x = 0} , (4.35)

in (see figure 4.2). In our setup, it is not difficult to see that the n-fold cover of the original flat
space is conformally equivalent to the the n-fold cover S1

n ×Hd−1 along the τ coordinate of the
space (4.34),

ds2
S1
n×Hd−1 = n2 dτ 2 + dx2 + cosh2 x ds2

Hp−1 + sinh2 x ds2
Sd−p−1 , (4.36)

with the range 0 ≤ τ < 2π, which corresponds to the thermal theorywith temperatureT = T0/n.
Let us first discuss the Rényi entropy without defects. If there are no conformal anomalies, the
partition function of CFT is invariant under the conformal map,

Z[Mn] = Z[S1
n ×Hd−1] . (4.37)

Hence the Rényi entropy across a sphere in CFT is given by,

S(CFT)
n =

1

1− n
log

Z (CFT)[S1
n ×Hd−1]

(Z (CFT)[S1 ×Hd−1])n
. (4.38)

In order to obtain (4.9), we have to use additional transformations, taking sinhx = cot θ, whose
metric change from (4.34) to another coordinates,

ds2
S1×Hd−1 =

1

sin2 θ
ds2

Sd−p+1×Hp−1 , (4.39)

where resulting metric is just a d-dimensional sphere up to the conformal factor,

ds2
Sd−p+1×Hp−1 = dθ2 + sin2 θ dτ 2 + cos2 θ ds2

Sd−p−1 + ds2
Hp−1 ,

= dsSd−p+1 + dz2 + sinh2 zdsSp−2 ,

=
1

cos2 φ
(dφ2 + cos2 φ dsSd−p+1 + sin2 φ dsSp−2) .

(4.40)

Here we introduced a global coordinate for Hp−1 and again use the map sinh z = tanφ. In fact
what we have shown is nothing but the well-known fact of the conformal equivalence between
the flat space and a sphere.9 With such transformations in our mind, we can derive the fact that

9One can more directly find a conformal transformation [28],

t = R
sin τ sin θ

1 + sin θ cos τ
, r = R

cos θ

1 + sin θ cos τ
, (4.41)

which maps the Euclidean flat space to the spherical coordinates (4.40),

ds2Rd = Ω2(θ, τ) ds2Sd , (4.42)

with the conformal factor,

Ω(θ, τ) =
R

1 + sin θ cos τ
. (4.43)
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for CFT the sphere entanglement entropy equals to the free energy on a conformally flat space
up to UV divergences [28],10

S(CFT) = log Z (CFT)[Sd] = log Z (CFT)[S1 ×Hd−1] . (4.44)

In what follows we would like to then consider the situation with a conformal defect D(p)

of dimension-p for p ≤ d − 2, and separately discuss the case for p = d − 1 at the end of this
subsection. Specifically, We are interested in the defect entropy, which is given by the additional
entanglement entropy due to the existence of D(p) and defined from Rényi entropies as follows:

Sdefect ≡ lim
n→1

(
S(DCFT)
n − S(CFT)

n

)
. (4.45)

The Rényi entropy S(DCFT)
n in DCFT is defined in a similar manner to that in CFT, which takes

the same form as (4.38) for a spherical entangling region:

S(DCFT)
n =

1

1− n
log

Z (DCFT)[S1
n ×Hd−1]

(Z (DCFT)[S1 ×Hd−1])n
. (4.46)

It would be beneficial to rewrite the defect entropy as

Sdefect ≡ lim
n→1

1

1− n
log
〈D(p) 〉n
〈D(p) 〉n

, (4.47)

where 〈D(p) 〉n is the expectation value of the conformal defect operatorD(p) of dimension p on
S1
n ×Hd−1,

〈D(p) 〉n ≡
Z (DCFT)[S1

n ×Hd−1]

Z (CFT)[S1
n ×Hd−1]

. (4.48)

We also denote 〈D(p) 〉 ≡ 〈D(p) 〉1 to simplify the notation.
In order to derive a similar relation for the defect entropy as (4.9), we expand the partition

function Z (DCFT)[S1
n ×Hd−1] on the n-covered space (4.36) around n = 1,

log Z (DCFT)[S1
n ×Hd−1] = log Z (DCFT)[S1 ×Hd−1]

− 1

2

∫
S1×Hd−1

δgττ 〈 (TDCFT)ττ 〉(DCFT)S1×Hd−1 + · · · ,
(4.49)

where δgττ = (n2 − 1). Because · · · represent terms of higher order than (n − 1) and do not
contribute to the entanglement entropy, we obtain

Sdefect = log 〈D(p) 〉+

∫
S1×Hd−1

〈 (TDCFT)ττ 〉
(DCFT)
S1×Hd−1 . (4.50)

We call the first term in the right hand side the defect free energy, which can be written by the
sphere free energy,

log 〈D(p) 〉 = log
Z (DCFT)[Sd]
Z (CFT)[Sd]

, (4.51)
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S2

D(1)

τ

Figure 4.3: The conformal defect D(1) on Sd. For d = 2, it winds along the equator of S2

(τ -direction).

thanks to a further conformal transformation explained around (4.40) with the assumption that
there are no conformal anomalies. After such transformations, the defect which was originally
planar on flat space is mapped to a spherical defect on Sd (see figure 4.3).

Even if we are in S1×Hd−1, the one-point function of the stress-energy tensor is fixed merely
by imposing the conformal symmetry, tracelessness and conservation law and take the following
form:

〈 (TDCFT)µν 〉(DCFT)S1×Hd−1 dxµ ⊗ dxν

=
aT

sinhd x

[
d− p− 1

d

(
dτ 2 + dx2 + cosh2 x ds2

Hp−1

)
− p+ 1

d
sinh2 x ds2

Sd−p−1

]
,

(4.52)

where aT is the same as the one in (2.114). In principle the term localized on the defect
could appear in (4.52), but such a term vanishes due to (2.115) when DCFT has a Lagrangian
description. If the defect is defined as a boundary condition for the bulk local operators, there
is no defect localized part in the stress tensor, but the boundary condition still affects the bulk
stress tensor in the same way as (4.52). Inserting (4.52) into (4.50), with the following equation
are we eventually left:

Sdefect = log 〈D(p) 〉

+ 2πVol(Hp−1) Vol(Sd−p−1)

∫ ∞
0

dx coshp−1 x sinhd−p−1 x
d− p− 1

d

aT

sinhd x
(4.53)

where the factor coshp−1 x sinhd−p−1 x comes from the volume form of S1 ×Hd−1 (4.34).
Remark that when evaluating the integral in (4.53), one has to adopt some regularization

for the UV divergence arising from the integration near the defect. We follow the prescription
employed by [64, 104] and remove the tubular neighborhood of a defect in flat space whose
boundary is Rp × Sd−p−1, on which we impose a boundary condition for the bulk fields. After
performing the CHM map, this regularization means that we restrict the integration range of x
to ε ≤ x < ∞ for a small parameter ε and send ε → 0 in the end. One may realize that such a
prescription makes it manifest that we eliminate contributions from the defect localized term in
the stress tensor. By expanding in the small ε, one can read off the constant part of the integral,
but a more illuminating way is to employ the dimensional regularization in d after setting ε = 0.
Of course the two methods agree on giving the same universal constant.

10See, however, [103] where a variant of conformal anomalies was observed even in odd d dimensions.
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No matter which we may adopt, it is possible to evaluate the integral in (4.53) and to derive
the universal formula for the defect entropy:

In a DCFT with a conformal defect of dimension p ≤ d− 2 the defect entropy of a spherical
entangling surface is given, up to UV divergence, by

Sdefect = log 〈D(p) 〉 − 2(d− p− 1) πd/2+1

sin (πp/2) dΓ (p/2 + 1) Γ ((d− p)/2)
aT , (4.54)

which is one of our main results in this chapter. This formula is seen as a generalization of the
result for p = 1 [104]. For clarifying the validity of this formula, a few comments are in order:

• In deriving (4.54), we assume

(i) there are no conformal anomalies, i.e., we regard d as a continuous parameter,
(ii) the n-dependence is only through the metric,
(iii) the metric is coupled to the conformal stress-energy tensor.

The last two assumptions should be regarded as the “choice" of the Rényi entropy in QFTs,
and may vary depending on the situation. For instance, one can choose a boundary con-
dition around the entangling surface to respect supersymmetry [105]. The n-dependence
is not only through the metric, but also from the background fields of supergravity.

• The one-point function of the stress tensor in (4.52) is renormalized and the identity holds
up to UV divergences that can be removed by counterterms to a background gravitational
theory. Hence (4.54) holds only up to UV divergences.

• There are Graham-Witten type conformal anomalies [67] for even p, which we can mani-
festly see in (4.54) as a pole of the sine function and produces the logarithmic divergence.

Next let us consider the case for p = d− 1, where there can be two types of theories, BCFTs
and the others. For BCFTs we shall define the boundary entropy by

Sbdy ≡ lim
n→1

(
S(BCFT)
n − 1

2
S(CFT)
n

)
. (4.55)

As we saw in section 2.7.1, or just from (2.114), the residual conformal symmetry SO(d, 1)
restricts the one-point function of the bulk primary operators of non-zero spin to be zero. It is
also seen in (4.54) that for p = d− 1 there doesn’t exit the second term. It is straightforward to
repeat the same argument as before for BCFTs, and we are led to the results:

In a DCFT with a conformal defect of dimension d− 1 the defect entropy is given, up to UV
divergence, by

Sdefect = log 〈D(d−1) 〉 . (4.56)

In a BCFT, the boundary entropy is given, up to UV divergence, by

Sbdy = log Z(BCFT) − 1

2
log Z(CFT) . (4.57)
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These are the special cases of the universal formula (4.54) for the defect entropy. In BCFT, the
defect free energy is given by

log 〈D(d−1) 〉
∣∣
BCFT = log Z(BCFT) − 1

2
log Z(CFT) , (4.58)

while in an interface CFT consisting of two theories CFT+ and CFT− we define

log 〈D(d−1) 〉
∣∣
ICFT =

(
log Z(CFT+) + log Z(CFT−)

)
− 1

2
log Z(CFT) . (4.59)

4.2.3 Remarks on UV divergence
We have gotten to the point where we derive the universal formula (4.54). Since this equation
holds up to UV divergence as mentioned above, we need to specify the structure of the UV
divergences in the defect free energy and defect entropy to obtain better understanding of the
formula.

Recall that the defect free energy is a functional of the induced metric on a defect as well
as the background bulk metric. In a local QFT, the UV divergent terms in the vev of a defect
operator should consist of local diffeomorphism invariant functionals of the metrics on the
worldvolume of the defect. From the dimensional ground, the most general effective action for
the defect vev should take the following form (see e.g. [106, 107])

log 〈D(p) 〉 =

∫
D(p)

dpx̂
√
ĝ
[ap
εp

+
ap−2

εp−2
R̂ + · · ·

]
+ (UV finite non-local terms) , (4.60)

where R̂ is the Ricci scalar of the induced metric ĝ, ε is the UV cutoff, and ai are dimensionless
constants. The · · · terms are subleading UV divergent terms built out of the Riemann curvature
of the induced metric and the even power of the extrinsic curvatures.11 For instance, the order
of 1/εp−2i divergent term roughly takes the form

ap−2i

εp−2i

∑
l+m=i

R̂lK2m , (4.61)

where R̂lK2m are scalar polynomials of the Riemann curvatures and the extrinsic curvatures
on the defect of order l and 2m respectively. There are only power law divergences in odd p
dimensions while one can construct dimension p invariants out of R̂ and K such as the Euler
density and there is an additional logarithmically divergent term log ε.

Applying (4.60) to the defect free energy on a sphere, we find the structure of the UV
divergences depending on the dimensionality of the defect,

log 〈D(p) 〉 =
cp
εp

+
cp−2

εp−2
+ · · ·+

{
(−1)p/2B log ε+ · · · , (p : even) ,

(−1)(p−1)/2D , (p : odd) .
(4.62)

Here the sign factors in front ofB andD are chosen so that they are non-negative. It follows from
this structure that the coefficients ci (i = p, p− 2, · · · ) of the power law divergences depend on

11The odd powers of the extrinsic curvatures are absent as the vev of a defect operator does not depend on the
direction of the normal vectors.
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the choice of the UV cutoff and are regularization scheme dependent while the constants B and
D are invariant under the rescaling of ε, hence be scheme independent. The universal constant
B is an analog of the type-A central charge of the conformal anomaly which can be read off
from the sphere partition function in CFT. It is also known as the Graham-Witten anomaly [67].
SimilarlyD is an analog of the sphere partition function that is expected to measures the degrees
of freedom in odd-dimensional CFT [10,108].

On the other hand, the UV divergent terms of the defect entropy is also inferred from the
generic structure (4.60) with the standard argument of the replica trick [107, 109], resulting in
milder divergences than the defect free energy:

Sdefect =
c′p−2

εp−2
+
c′p−4

εp−4
+ · · ·+

{
(−1)p/2B′ log ε+ · · · , (p : even) ,

(−1)(p−1)/2D′ , (p : odd) ,
(4.63)

where B′ and D′ are universal constants different from B and D in general. The same UV
structure was also observed in a few holographic calculations in [24], where the universal
constants B′ and D′ were speculated to be C-functions in DCFTs.

4.3 Proposal for a C-theorem in DCFT
Now we have two candidates for a C-function in DCFT, the defect entropy and the defect
free energy, both of which are natural counterparts of the C-theorem in CFT employing the
entanglement entropy across a sphere or equivalently the sphere free energy as a C-function
[8, 9, 96, 97]. To make it more concrete, we should only look at the universal parts of them
because the other parts reckon on UV cutoff, or in other words, the regularization scheme. The
universal constants of the defect free energy B,D in (4.62) should be regarded as analogs of
the type-A central charge and the sphere free energy in CFT while the universal constants of
the defect entropy B′, D′ in (4.63) differ from B,D due to the relation (4.54). In order to be
consistent with b-theorem correctly, we hereby propose that the universal part of the defect free
energy be a C-function in DCFT:

Conjecture. In DCFTd with a defect of dimension p, the universal part of the defect free energy
(4.51) defined by

D̃ ≡ sin
(πp

2

)
log |〈 D(p) 〉| , (4.64)

does not increase along any defect RG flow

D̃UV ≥ D̃IR . (4.65)

Note that we take the absolute value |〈 D(p) 〉| to define the universal part. This is because
there is a phase ambiguity appeared in 〈D(p) 〉 such as the framing anomaly in the Chern-Simons
theory which should be removed to extract the universal part as we will encounter in section
4.3.2. As seen from the relations (4.57) and (4.58), our conjecture includes, as a special case,
the statement that the universal part of the boundary entropy defined by

D̃ ≡ sin

(
π(d− 1)

2

)
Sbdy , (4.66)
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does not increase along any boundary RG flow in BCFTd. Our conjecture is the most general
one because it is consistent with all the proposals stated in the literature as we will show in what
follows.

Let us clarify our conjecture in specific dimensions of the spacetime and the defect. We will
see that the claim is reduced to known statements and consequently produces new ones. We
multiply sin(πp/2) to the defect free energy to interpolate between B for even p and D for odd
p smoothly in the dimensional regularization as in the generalized F -theorem [10]. Compared
with the UV divergent structure (4.62), D̃ is nothing but the universal part of the defect free
energy for odd p

D̃ = D , (4.67)

while one finds a more nontrivial relation for even p

D̃ =
π

2
B . (4.68)

When p is odd, our conjecture states the monotonicity of the constant universal term,

DUV ≥ DIR . (4.69)

For BCFT2, this is just a weak form of the g-theorem [21, 101, 110], while as for BCFTd with
d ≥ 3, a similar conjecture was proposed by [22, 23] and examined holographically in [24, 27].
Accordingly our proposal states a new one for d ≥ 3 and p ≤ d− 2,.

For even p, our claim expresses

BUV ≥ BIR , (4.70)

which was speculated to hold in d = 3 based on the studies of the holographic models of BCFTs
and ICFTs [22,24]. For p = 2, this is equivalent to the b-theorem [20] stating the monotonicity12

bUV ≥ bIR , (4.71)

of the universal coefficient b of DCFT appearing in the trace of the stress-energy tensor on the
defect13 14

〈T µµ 〉 = − 1

24π

[
b R̂+ d1 K̃

(α)
ab K̃

(α) ab + d2Wabcd ĝ
ac ĝbd

]
δd−2(x⊥) , (4.72)

where K̃(α)
ab denotes similarly the traceless part of the extrinsic curvature for unit normal vectors

n
(α)
a (α = 1, · · · , d − 2), and Wabcd is the pullback of the bulk Weyl tensor. Remark that in
d = 3 the Weyl tensor vanish identically. B is proportional to b up to a positive constant. To fix
the proportional constant one may consider a spherical defect of radius l and see how the defect
free energy changes under the Weyl rescaling. Since K̃(α)

ab and Wabcd vanish on a sphere15 the
Weyl rescaling reads

l
d

dl
log 〈D(2) 〉 = −

∫
ddx
√
g 〈T µµ 〉 =

b

3
, (4.73)

12For comparison, we use their original notation only around here.
13Our convention of the stress tensor differs from the one in [20] up to the sign.
14The following trace anomaly has different normalization compared to (2.104).
15One can show K̃

(α)
ab = 0 by mapping the bulk sphere and the two-sphere to flat space and a two-sphere and

computing the extrinsic curvatures as K̃(α)
ab is conformal covariant [111].
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which fixes the logarithmic divergent term

log 〈D(2) 〉 = · · ·+ b

3
log

l

ε
+ · · · , (4.74)

where we recover the UV cutoff ε to make the argument of the logarithm dimensionless. Hence
compared with (4.62) we find

B =
b

3
. (4.75)

In conclusion, our conjecture not only unifies all the previous ones known to us, but also
generates a new family of C-theorems in DCFTs with higher-codimensional defects. In the rest
of this section to come, we test our conjecture in various concrete examples, including conformal
perturbation theory of DCFT andWilson loops in several gauge theories. We will find a number
of evidence to support the conjecture that the sphere free energy be the monotonically decreasing
function, while we will see that the defect entropy does not decrease under RG flows in a variety
of Wilson loops.

4.3.1 Conformal perturbation theory on defect
To examine the validity of our conjecture, we first consider the conformal perturbation theory of
DCFT on a sphere, which is a straightforward extension of the works for CFT on a sphere [5,9]
and BCFT on a hemisphere [22, 23]. Since the calculation is exactly the same as the bulk case,
just replacing the bulk dimension d with the defect dimension p, we will only give the outline.

We locate DCFT on a sphere of a radius R and perturb the theory by a defect relevant
operator Ô,

I = IDCFT + λ̂0

∫
dpx̂

√
ĝ Ô(x̂) . (4.76)

Let the conformal dimension of Ô be ∆̂ = p − ε and take ε be very small so that a nontrivial
fixed point can be reliably studied within the perturbation theory. Introducing the dimensionless
renormalized coupling λ̂ that is related to the bare coupling λ̂0 by

λ̂0 (2R)ε = λ̂+
πp/2

εΓ(p/2)
Ĉ λ̂2 +O(λ̂3) , (4.77)

the beta function is given by [5, 9]

β(λ̂) = −ε λ̂+
πp/2

Γ(p/2)
Ĉ λ̂2 +O(λ̂3) , (4.78)

where Ĉ is the coefficient appearing in the three-point function of defect local operators evaluated
at the unperturbed DCFT

〈 Ô(x̂1) Ô(x̂2) Ô(x̂3) 〉0 =
Ĉ

|x̂1 − x̂2|∆̂|x̂2 − x̂3|∆̂|x̂3 − x̂1|∆̂
. (4.79)
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Hence if Ĉ > 0 the theory flows to a nontrivial IR fixed point at

λ̂∗ =
Γ(p/2)

πp/2 Ĉ
ε+O(ε2) . (4.80)

The difference of the sphere partition function is calculated perturbatively

δ log Z(λ̂) ≡ log Z(λ̂0)− log Z(λ̂0 = 0) =
λ̂2

0

2
I2 −

λ̂3
0

6
I3 +O(λ̂4

0) , (4.81)

where

I2 =

∫
dpx̂1

√
ĝ

∫
dpx̂2

√
ĝ 〈 Ô(x̂1) Ô(x̂2) 〉0 =

πp+1/2 (2R)2ε

2p−1

Γ(−p/2 + ε)

Γ ((p+ 1)/2) Γ(ε)
, (4.82)

I3 =

∫
dpx̂1

√
ĝ

∫
dpx̂2

√
ĝ

∫
dpx̂3

√
ĝ 〈 Ô(x̂1) Ô(x̂2) Ô(x̂3) 〉0

=
8π3(p+1)/2R3ε

Γ(p)

Γ((−p+ 3ε)/2)

Γ((1 + ε)/2)3
Ĉ .

(4.83)

Written in terms of the renormalized coupling, one finds [9]

δ log Z(λ̂) =
2πp+1

sin(πp/2) Γ(p+ 1)

[
−1

2
ε λ̂2 +

1

3

πp/2

Γ(p/2)
Ĉ λ̂3 +O(λ̂4)

]
. (4.84)

Thus the difference between the universal part of the defect free energy at the IR fixed point
(4.80) and that at the UV fixed point is

D̃(λ̂∗)− D̃(0) = −1

3

π Γ(p/2)2

Γ(p+ 1)

ε3

Ĉ2
+O(ε4) , (4.85)

which is negative as consistent with our conjecture.

4.3.2 Wilson loop as a defect operator
Our next example to test the proposal is a circular Wilson loop operator,

WR[A] = trR exp

[
i

∫
dxµAµ

]
, (4.86)

which can be regarded as a p = 1 defect. We assume that the gauge group is SU(N) andR is a
representation of SU(N) for a moment. The Wilson loop can be regarded as an action localized
on the defect in the following way [112, 113].16 First we consider fermions localized on the
defect and coupled to the gauge field,

Iχ =

∫
dt χ† (i ∂t − A(t))χ , (4.87)

where χa is in the fundamental representation of SU(N). Then, the partition function on the
defect,

Zq[A] ≡ 1

q!

∫
Dχ†Dχχa1(+∞) · · ·χaq(+∞)χ†,a1(−∞) · · ·χ†,aq(−∞) e−Iχ , (4.88)

16See also a recent work [114] for a different formulation of a defect theory on Wilson loops.
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is equivalent to the Wilson loop up to a normalization factor

Zq[A]

Zq[0]
= WR[A] , (4.89)

where the representationR in theWilson loop relies on whether χ are fermions or bosons. When
χ are fermions (bosons), R is the qth anti-symmetric (symmetric) representation of SU(N).

Given this description, the defect theory can be flowed to the trivial theory without fermions,
or equivalently

WR[A]→ 1 , (4.90)

under the mass deformation

IM = −
∫

dtM χ†χ , (4.91)

by sendingM to the infinity.
In what follows, we assume that any Wilson loop has a realization as a defect theory of the

fermion and there exists a defect RG flow whose IR fixed point is a trivial theory without loops.
Under this assumption, our conjecture amounts to the following inequality

log 〈WR 〉|UV ≥ log 〈WR 〉|IR = 0 . (4.92)

We will provide shreds of evidence for our assertion by working out several examples of Wilson
loops.

U(1) gauge theory in 4d

Our first example is the Wilson loop in a four-dimensional U(1) gauge theory

W = exp

[
i e

∮
dxµAµ

]
, e ∈ R . (4.93)

The defect free energy is given by

log 〈W 〉 =
e2

4
, (4.94)

which is seen to be positive while the defect entropy vanishes [104]

Sdefect = 0 . (4.95)

It is expected that the Wilson loop becomes trivial under a defect RG flow,

log 〈W 〉 → 0 , (4.96)

so this is consistent with our conjecture. On the other hand, the defect entropy vanishes at both
the UV and IR fixed points. Hence, the defect entropy does not appear to capture degrees of
freedom on the defect.



67 4 Towards understanding RG dynamics of Boundary and defect CFT

Free scalar field in 4d

Instead of gauge theories, one can construct a Wilson loop from a free scalar field in four
dimensions [64],

W = exp

[
λ

∮
dt φ (xµ(t))

]
, λ ∈ C . (4.97)

The defect entropy is computed by evaluating the Gaussian integral, and shown to vanish

log 〈W 〉 = 0 . (4.98)

Reassuringly this result does not contradict with our assertion. On the other hand, the defect
entropy is given by [104]

Sdefect = −λ
2

12
, (4.99)

which can be negative for real λ at the UV fixed point while it is supposed to be zero at the IR
fixed point. Thus this is a counterexample for the defect entropy being a C-function.

Chern-Simons theory

Next wemove onto a more nontrivial example, namelyWilson loops in the Chern-Simons theory
in three-dimensions17

WR = trR P exp

[
i

∮
dxµAµ

]
. (4.100)

For SU(2) with level k, the Wilson loop in the representation Rj is labeled by the dimension
j = 1, · · · , k + 1, whose vev on S3 is [116, 117]

〈WRj 〉 =
sin (π j/(k + 2))

sin (π/(k + 2))
, (4.101)

which is greater than or equal to one.
More generally the vev of a Wilson loop in an arbitrary representation Rj on S3 is given

by [116]

〈WRj 〉 =
S0,j

S0,0

≡ dj , (4.102)

where Si,j is the matrix element of the modular group S-matrix. The vev or dj is called the
quantum dimension ofRj , which is known to be greater than or equal to one [118] (and see also
Appendix C in [119]),

dj ≥ 1 , (4.103)

which is consistent with our conjecture. Note that the defect entropy is also given by

Sdefect = log 〈WRj 〉 = log dj , (4.104)

as the stress tensor vanishes in Chern-Simons theory.18

17Note that our normalization forWilson loops are different from the one in [115] where the operators are divided
by the dimension of the representation.

18This result was previously obtained by [120–122].



4 Towards understanding RG dynamics of Boundary and defect CFT 68

1/2-BPS Wilson loop in 4d N = 4 SYM

We then consider 1/2-BPS Wilson loops in four-dimensional N = 4 super Yang-Mills theory
with gauge group U(N)

WR = trR P exp

[∮
dt (iAµ ẋ

µ + φI ẏ
I)

]
. (4.105)

For the fundamental representation, the exact result of the defect free energy is known [123]

log 〈W 〉 =
λ

8N
+ logL1

N−1

(
− λ

4N

)
, (4.106)

where Lmn (x) is the associated Laguerre polynomial. In the small λ region we find the expansion

log 〈W 〉 = logN +
λ

8
− 1

384

(
1− 1

N2

)
λ2 +O(λ3) , (4.107)

which is seen to be positive for any N and small λ. One can indeed check numerically that it is
always positive for any N and λ (see the left panel in figure 4.4).

On the other hand, the defect entropy can be calculated from the defect free energy through
the relation [104]

Sdefect =

(
1− 4

3
λ ∂λ

)
log 〈W 〉 . (4.108)

Then we find that the entropy is not necessarily positive in the small λ limit (see also the right
panel in figure 4.4)

Sdefect = logN − λ

24
+

5

1152

(
1− 1

N2

)
λ2 +O(λ3) . (4.109)

This example also serves as a supporting evidence for our conjecture and a nontrivial counterex-
ample for the defect entropy being a C-function.
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Figure 4.4: The defect free energy (Left) and the defect entropy (Right) of the 1/2-BPS Wilson
loop in 4dN = 4 SYM. The N = 2 cases are shown. The defect free energy is positive for any
λ while the defect entropy can be negative.
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1/6-BPS Wilson loop in ABJM

In the fundamental representation of the ABJM theory in three dimensions with gauge groups
U(N)k × U(N)−k is the 1/6-BPS Wilson loop,

W = tr P exp

[∮
dt (iAµ ẋ

µ +
2π

k
M I

J CI C
J |ẋ|)

]
, (4.110)

where CI(I = 1, 2, 3, 4) are the scalar fields in the bi-fundamental chiral multiplets andM I
J is a

constant matrix whose diagonalized form is diag(1, 1,−1,−1). The localization technique for
supersymmetric theories allows us to compute the vev of the m multiply-winding Wilson loop
W (m) by the matrix model [115]

〈W (m) 〉 =
1

Z

1

(N !)2

∫ N∏
i=1

dµi dνi
(2π)2

ei k(µ2
i−ν2

i )/4π

·
∏

i<j [4 sinh ((µi − µj)/2) sinh ((νi − νj)/2)]2∏
i,j [2 cosh ((µi − νj)/2)]2

∑
i

emµi ,

(4.111)

where Z is the partition function

Z =
1

(N !)2

∫ N∏
i=1

dµi dνi
(2π)2

ei k(µ2
i−ν2

i )/4π

∏
i<j [4 sinh ((µi − µj)/2) sinh ((νi − νj)/2)]2∏

i,j [2 cosh ((µi − νj)/2)]2
.

(4.112)

Though the exact computation of the integral is quite difficult in general, it is straightforward
for N = 1,

〈W (m) 〉 = cos−2
(πm
k

)
, (N = 1) . (4.113)

which is seen to be greater than or equal to one form = 1 and any k, hence consistent with our
conjecture.

The defect entropy can be read off from the vev of the winding Wilson loop by the formula

Sdefect = lim
m→1

(
1− 1

2
m∂m

)
log |〈W (m) 〉| , (4.114)

which is derived in [104] using the supersymmetric Rényi entropy [105]. Substituting (4.113)
into (4.114) we find

Sdefect = − log cos2
(π
k

)
− π

k
tan
(π
k

)
, (4.115)

which is always negative for positive integer k.
In the large N limit, the matrix model reduces to the integral [124]

〈W (m) 〉 =
N

2π2 iλ

∫ a

−a
dx emx arctan

√
α− 2 coshx

β + 2 coshx
, (4.116)
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where

ea =
2 + iκ+

√
κ(4i− κ)

2
, α = 2 + iκ , β = 2− iκ , (4.117)

and

λ =
N

k
=

κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
. (4.118)

In the small λ limit, we find the vev of the fundamental Wilson loop [124]

log |〈W 〉| = logN +
5π2λ2

6
+O(λ4) , (4.119)

and the defect entropy [104]

Sdefect = logN − π2λ2

6
+O(λ4) , (4.120)

both of which are dominated by logN , hence positive. They are also increasing function for λ
large enough.

U(N) N = 4 SYM with Nf hypermultiplets in 3d

Our final example is the Wilson loop in three-dimensional N = 2 supersymmetric theories
defined by

WR ≡ trR P exp

[∮
dt (iAµ ẋ

µ + σ |ẋ|)
]
, (4.121)

where σ is the adjoint scalar field in the vector multiplet.
To be more concrete, let us consider the Wilson loop in U(N)N = 4 supersymmetric gauge

theory with Nf hypermultiplets. The partition function in this theory is given by

Z =
1

N !

∫ N∏
i=1

dµi
2π

∏
i<j 4 sinh2 ((µi − µj)/2)∏

i [2 cosh (µi/2)]Nf
, (4.122)

and the expectation value of the Wilson loop in the representation labeled by the Young diagram
of the partition λ is

〈Wλ 〉 =
1

Z

1

N !

∫ N∏
i=1

dµi
2π

sλ(e
µ1 , · · · , eµN )∏

i [2 cosh (µi/2)]Nf

∏
i<j

4 sinh2 ((µi − µj)/2) , (4.123)

where sλ is the Schur polynomial. This integral can be performed exactly, resulting in the simple
formula [125],

〈Wλ 〉 =
sλ(1Nf/2) sλ(1N)

sλ′(1Nf/2−N)
, (4.124)
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where λ′ is the conjugate representation of λ and

sλ(1n) ≡ sλ(1, 1, · · · , 1) =
∏

1≤i<j≤n

λi − λj + j − i
j − i

. (4.125)

Then the Wilson loop in the fundamental representation becomes

〈W(1) 〉 =
Nf

Nf/N − 2
, (4.126)

which is greater than one when Nf > 2N . This regime corresponds to “good" or “ugly"
theories while N ≤ Nf < 2N corresponds to “bad" theories with unitarity violating monopole
operators. In the latter parameter region, the theory is proposed to be dual to the “good" theory
of U(Nf − N) gauge group with Nf hypermultiplet and 2N − Nf additional free (twisted)
hypermultiplets [126].

For a multiply-winding Wilson loop with winding number m, we replace eµi with emµi in
the argument of the Schur polynomial

〈W (m)
λ 〉 =

1

Z

1

N !

∫ N∏
i=1

dµi
2π

sλ(e
mµ1 , · · · , emµN )∏

i [2 cosh (µi/2)]Nf

∏
i<j

4 sinh2 ((µi − µj)/2) . (4.127)

This expression can be expanded by a linear combination of singly winding Wilson loops. For
instance, the Wilson loop with winding numberm in the fundamental representation

〈W (m)
(1) 〉 =

m∑
l=0

(−1)l 〈W (m−l, 1l) 〉 , (4.128)

which follows from the identity

s(1)(x
m
1 , · · · , xmN) =

m∑
l=0

(−1)l s(m−l, 1l)(x1, · · · , xN) . (4.129)

With the aid of the formula (4.124) we find

〈W(m−l, 1l) 〉 =
Γ(Nf/2 +m− l) Γ(N +m− l) Γ(Nf/2−N −m+ l + 1)

mΓ(m− l) Γ(l + 1) Γ(Nf/2− l) Γ(N − l) Γ(Nf/2−N + l + 1)
. (4.130)

It follows that the vev of the winding Wilson loop is given exactly for N = 1 by

〈W (m)
(1) 〉 =

Γ (Nf/2−m) Γ (m+Nf/2)

Γ (Nf/2)2 , (4.131)

and for N = 2 by

〈W (m)
(1) 〉 =

(Nf + 2m2 − 2) Γ (Nf/2−m− 1) Γ (Nf/2 +m− 1)

Γ (Nf/2− 1) Γ (Nf/2)
. (4.132)

Using the expression (4.114) for the defect entropy we obtain for N = 1

Sdefect =
N2
f − 4Nf + 2

(Nf − 2)2
, (N = 1) , (4.133)

which is negative for Nf = 3 > 2N , and

Sdefect =
2(N3

f − 10N2
f + 26Nf − 16)

(Nf − 4)2(Nf − 2)
, (N = 2) , (4.134)

which is also negative for Nf = 5, 6 > 2N . We thus conclude that the defect entropy does not
necessarily decrease under the defect RG flow to the trivial fixed point in this example.
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4.4 Holographic construction of DCFT
So far we have examined our conjecture in field theoretic examples. In this section we take a
detour to check if it holds by using exotic models of DCFTs – employing holographic duality,
or more precisely, AdS/CFT correspondence [15].

AdS/CFT correspondence states that a particular class of weakly coupled theories of quan-
tum gravity on AdSd+1 spacetime is equivalent to specific strongly coupled d-dimensional CFTs
which live on a boundary of AdS spacetime. While string/M theory gives top-down construc-
tions of such correspondence, one may assume it exit and establish bottom-up examples of
holographic theories dual to certain CFTs.19 Here we take the latter approach, in particular
consider holographic models that can be written in terms of Einstein theories of gravity. The
precise relation between the gravity theory in AdS and the dual CFT is given by so called GKP-W
relation [129,130]:

ZAdSd+1
[φ0] = 〈e−

∫
ddxφ0(x)O(x)〉CFTd , (4.135)

where ZAdSd+1
is a partition function of the theory on AdSd+1 with the bulk fields φ, which have

classical configurations φ0 at the boundary of AdSd+1,

ZAdSd+1
[φ0] =

∫
φ|bry=φ0

Dφe−SAdS[φ] . (4.136)

The right hand side of (4.135) denotes a generating functional of CFT with a operatorO sourced
by φ0. (4.135) enables us to compute CFT correlation functions by varying ZAdSd+1

with respect
to φ0:

〈O(x1) · · · O(xn)〉CFTd =
δ

δφ0(x1)
· · · δ

δφ0(xn)
ZAdSd+1

[φ0]|φ0=0 . (4.137)

In the following subsection, realizing the CHM map as a coordinate transformation in the
AdS spacetime [57] we calculate the defect entropy as the black hole entropy in the mapped
spacetime. Along the way we point out the difference between the defect entropy and the defect
free energy that is holographically given by minus the on-shell action. We then perform the
holographic calculations of the defect free energy and the defect entropy in these models. In
the viewpoint of holography, a defect RG flow can be triggered geometrically by a deformation
of the spacetime. We then establish the holographic C-theorem in DCFT by imposing the null
energy condition on the gravity duals of field theories, which provides further evidence for our
conjecture.

4.4.1 CHM map and defect entropy in holography
In usual AdS/CFT correspondence, a gravity dual of CFT is in general an asymptotically AdS
spacetime which manifests conformal isometry SO(d, 2) in Lorentzian signature. Since we
would like to study holographic model of CFT with defect, we consider general metric of an

19It isn’t always the case that every CFT has such a gravity description. The condition for CFT to have holographic
dual was investigated, for example in [127,128].
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asymptotically AdS space preserving the SO(p, 2)×SO(d−p) isometry which is the symmetry
of DCFT. Such a metric take the following form,

ds2 = L2
[
dρ2 + A(ρ)2 ds2

AdSp+1
+B(ρ)2 ds2

Sd−p−1

]
. (4.138)

where ds2
AdSp+1

and ds2
Sd−p−1 are the metrics of AdSp+1 and Sd−p−1 of unit radius respectively.

Here we denote the radius of curvature for the spacetime as L. For p < d− 1 the range of ρ is
0 ≤ ρ < ∞. A(ρ) and B(ρ) are arbitrary positive definite functions that have the asymptotic
forms near the boundary (ρ→∞)

A(ρ), B(ρ) → exp(ρ− cp)
2

. (4.139)

For p = d− 1, ρ ∈ (−∞,∞) and the conformal boundary sits at ρ→ ±∞.
It is easy to see that the boundary spacetime of (4.138) reached by the ρ → ∞ limit is

AdSp+1×Sd−p−1, which is conformally equivalent toR×Hd−1 by the CHMmap as expected. We
can tell this map directly in the AdS spacetime by taking the topological black hole coordinates
for the AdSp+1 subspace,

ds2
AdSp+1

= −f(V ) dτ 2 +
dV 2

f(V )
+ V 2 ds2

Hp−1 , f(V ) = V 2 − 1 , (4.140)

which is easily archived by changing slicing of AdS coordinates from Poincaré to hyperbolic.
The resulting net metric is an asymptotically AdS black hole solution with the horizon located
at V = 1 and with the Hawking temperature T0 = 1/2π,

ds2 = L2A(ρ)2

[
−f(V ) dτ 2 +

dV 2

f(V )
+ V 2 ds2

Hp−1

]
+ L2

(
dρ2 +B(ρ)2 ds2

Sd−p−1

)
, (4.141)

whose asymptotic boundary at ρ→∞ becomes R×Hd−1 as in (4.30) up to a conformal factor

ds2 → L2

4
e2(ρ−cp) f(V )

[
−dτ 2 +

dV 2

f(V )2
+

V 2

f(V )
ds2

Hp−1 +
1

f(V )
ds2

Sd−p−1

]
=
L2

4
e2(ρ−cp) f(V )

[
−dτ 2 + dx2 + cosh2 x ds2

Hp−1 + sinh2 x ds2
Sd−p−1

]
,

(4.142)

where we introduced the new coordinate x by V = cothx. Note that since the topological black
hole is just a patch of the AdSp+1 subspace, the horizon at V = 1 is artificial. There is neither
real singularity nor horizon.

Now let us evaluate the entanglement entropy of a spherical entangling region considered
in section 4.2 holographically. We have two options to calculate the entanglement entropy,
yielding the same answer: (1) use the Ryu-Takayanagi formula of the holographic entanglement
entropy [109], (2) use the CHM map and equate the entanglement entropy with the thermal
entropy.

We shall first explain the first method. Ryu-Takayanagi originally conjectured the holo-
graphic dual of the entanglement entropy with time-independent entangling region Σ in CFTs
by considering the time-independent codimension-two minimal surface that approaches Σ along
the boundary of AdS,

S(CFT) =
Amin
4GN

, (4.143)
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whereAmin is the area of the minimal surface andGN the (d+1)-dimensional Newton constant.
Many researchers accumulated a number of evidence to hold the formula true, and also tried to
extend it in more general settings. Readers who are interested in the whole story may refer to
the textbook [131] and references therein for details.

We apply this procedure for our setting. In the original coordinate (4.138), the Ryu-
Takayanagi minimal surface satisfies [57]

Z(r‖)
2 + r2

‖ = R2 . (4.144)

Moving into the topological black hole coordinates (4.141), one can realize this surface coincides
with the black hole horizon, meaning that the entanglement entropy is just given by the same
form of the Bekenstein entropy of the black hole,

S(DCFT) =
AH

4GN
, (4.145)

where AH is the area of the black hole horizon

AH = Ld−1 Vol(Sd−p−1)Vol(Hp−1)

∫ ∞
0

dρA(ρ)p−1B(ρ)d−p−1

= Ld−1 2πd/2

sin (πp/2) Γ (p/2) Γ ((d− p)/2)

∫ ∞
0

dρA(ρ)p−1B(ρ)d−p−1 ,

(4.146)

and we used the sphere volume and the regularized volume of the hyperbolic space20

Vol(Sd−p−1) =
2π(d−p)/2

Γ ((d− p)/2)
, Vol(Hp−1) =

πp/2

sin (πp/2) Γ (p/2)
. (4.147)

With these in mind, the holographic defect entropy can be easily obtained. As the holographic
entanglement entropy without defect is given by (4.145) withA(ρ) = cosh ρ andB(ρ) = sinh ρ,
one finds the holographic defect entropy as follows,

Sdefect =
Ld−1

4GN

2πd/2

sin (πp/2) Γ (p/2) Γ ((d− p)/2)

·
∫ ∞

0

dρ
(
A(ρ)p−1B(ρ)d−p−1 − coshp−1 ρ sinhd−p−1 ρ

)
.

(4.148)

Next let us consider the second approach, namely using the CHM map and computing the
thermal entropy holographically. To this end, we want to have solutions that are dual to DCFTs
with finite temperature T , not only at T = T0 as in (4.140). One may notice that (4.140) is just
one of a family of black brane solutions, thus we can replace the function f(V ) with

f(V ) = V 2 − 1− V p−2
H
V p−2

(V 2
H − 1) . (4.149)

The resulting geometry is an asymptotically AdS black hole whose boundary is R×Hd−1 that
the dual DCFT lives on at temperature

T =
1

4π

(
p VH −

p− 2

VH

)
. (4.150)

20Remark that in section 3.4 we use IR cutoff regularization for the volume of three-dimensional hyperbolic
space, while here we use dimensional regularization.
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The thermal entropy is obviously given by the black hole entropy

Sthermal(T ) = V p−1
H

AH

4GN
, (4.151)

from which we can recover (4.145) in T → T0 (VH → 1). The advantage of this approach is that
one can calculate the Rényi entropy holographically from the thermal entropy [132] as well:

S(DCFT)
n =

n

n− 1

1

T0

∫ T0

T0/n

dT Sthermal(T )

=
n

n− 1
(2− vp−2 − vp) AH

8GN
,

(4.152)

where v ≡
(

1 +
√

1 + p n2(p− 2)
)
/p n.

The thermal geometry also allows us to consider the difference between the defect entropy
and the on-shell action in a similar fashion as the case of field theories. Suppose the holographic
models of DCFT and CFT are described by the actions IDCFT[GMN ] and ICFT[G

(0)
MN ] respectively.

Here GMN is the backreacted metric of the form (4.141) with (4.149) and G(0)
MN is the one with

A(ρ) = cosh ρ and B(ρ) = sinh ρ. The thermodynamic relation tells us that the defect
contribution to the thermal entropy gives the defect entropy holographically,

Sdefect = lim
T→T0

[
− ∂

∂T
(T ∆I)

]
= lim

T→T0

[
−∆I − T ∂

∂T
∆I

]
. (4.153)

The first term in the right hand side is the difference of the on-shell actions

∆I ≡ IDCFT[GMN ]− ICFT[G
(0)
MN ] . (4.154)

Compared with the CFT result on the defect entropy (4.54), we find that the first term in
(4.153) should be identified with the defect free energy while the second term corresponds to
the integrated one-point function

∫
〈 (TDCFT)ττ 〉 in the dual DCFT through the GKP-W relation

[129, 130]. We note that there are some cases where IDCFT = ICFT. For example, a holographic
dual of a Janus interface CFT is described by the type IIB supergravity where the Janus interface
is implemented by a nontrivial profile of the dilaton field that backreacts to the metric. Hence∆I
is the difference between the same actions evaluated on the nontrivial and trivial profiles [133].

Domain wall defect RG flow

Having the holographic formula for the defect entropy, next let us consider a holographic
defect RG flow, which interpolate between two fixed points described by deforming the metric
(4.138) with the defining functions AUV(ρ), BUV(ρ) at the UV fixed point obeying the boundary
conditions

AUV(ρ), BUV(ρ) → exp(ρ− cUV)

2
, (4.155)
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while we impose AIR(ρ), BIR(ρ) at the IR fixed point obeying

AIR(ρ), BIR(ρ) → exp(ρ− cIR)

2
. (4.156)

This is the most general situation, but we restrict our attention to the RG flow with the IR fixed
point characterized by

AIR(ρ) = `AUV(ρ) , BIR(ρ) = `BUV(ρ) , (4.157)

for a positive dimensionless constant `. In this case the interpolating metric between the two
fixed points must respect the Poincaré symmetry on and the rotational symmetry around the
defect, resulting in the domain wall type ansatz

ds2 = L2

[
dρ2 +

AUV(ρ)2

f(w)
ds2

AdSp+1
+
BUV(ρ)2

f(w)
ds2

Sd−p−1

]
, (4.158)

where w is the radial direction in Poincaré coordinate of the sliced AdS space,

ds2
AdSp+1

=
dw2 − dt2 +

∑p−1
a=1 dx̂2

a

w2
. (4.159)

We regard w as the holographic renormalization scale ranging from the UV at w = 0 to the IR
at w =∞, and impose the boundary condition

f(w) → 1 , w → 0 , (4.160)

at the UV fixed point and

f(w) → `−2 , w → ∞ , (4.161)

at the IR fixed point.
In order to make the ansatz physically sensible in the Einstein gravity coupled to matters we

impose the null energy condition for the matters

TMNζ
MζN ≥ 0 , (4.162)

for any null vector ζM . Choosing ζM to be ζw = 1, ζt = 1 and ζM 6=w,t = 0 and using the
Einstein equation

8πGN TMN = RMN −
1

2
GMN R , (4.163)

we find

8πGN(Tww + Ttt) =
d− 2

2w2
√
f(w)

(
w2f ′(w)√
f(w)

)′
≥ 0 . (4.164)

Since f(w) > 0 for w > 0, we obtain the inequality

f ′(w) ≥ 0 , (4.165)
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which implies f(w) ≥ 1 for w > 0 or equivalently

` < 1 . (4.166)

In this model, it follows from (4.145) and (4.146) that the difference of the defect entropies
between the UV and IR fixed points is

Sdefect|UV − Sdefect|IR = (1− `d−2)Sdefect|UV , (4.167)

which suggests the monotonicity of the regularized defect entropy if the regularized value at
the UV fixed point is positive. On the other hand, one fails to calculate the defect free energy
without specifying the AdS action that allows the domain wall metric as a solution. Hence in
what follows, we consider more explicit models and examine our proposal for the monotonicity
of the defect free energy.

4.4.2 Probe brane model
As a concrete holographic model of DCFT, we consider a brane system embedded in the AdS
space. In Euclidean signature, the action of the system becomes

Id,p = IEH + Ibrane , (4.168)

where IEH is Einstein-Hilbert action with a cosmological constant

IEH = − 1

16πGN

∫
B
dd+1X

√
G

(
R+

d(d− 1)

L2

)
, (4.169)

and Ibrane is a brane action

Ibrane = Tp

∫
Q

dp+1η
√
Ĝ . (4.170)

with the brane tension Tp and the induced metric ĜAB on the brane. The bulk spacetime B is
fixed by solving the Einstein equation with the source from the brane on Q which is anchored
on the defect of dimension p on the boundaryM≡ ∂B.

When the tension is small, TpLp+1 � 1, the brane can be treated as a probe in the sense that
the defect free energy is given by minus the on-shell action of the brane

log 〈D(p) 〉 = −Ibrane . (4.171)

The on-shell action is simply the volume of the brane times the brane tension

Ibrane = Vol(Hp+1)TpL
p+1

= − 1

sin(πp/2)

πp/2+1

Γ(p/2 + 1)
TpL

p+1 .
(4.172)

We can similarly compute the leading contribution to the defect entropy in the probe limit.
For the spherical entangling region one finds [57]

Sdefect =
1

sin (πp/2)

p

d− 1 + δpd

πp/2+1

Γ(p/2 + 1)
TpL

p+1 , (4.173)
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which is valid for any d and p even when p = d, meaning that the spacetime is filled by the brane.
It is worthwhile to pointing out that the defect entropy is proportional to the on-shell action

Sdefect = − p

d− 1 + δpd
Ibrane . (4.174)

Moreover they coincide up to the sign when p = d− 1. The result (4.173) should be compared
with our field-theoretical result (4.54) relating the defect entropy to the on-shell action

Sdefect = −Ibrane −
1

sin (πp/2)

2(d− p− 1)

dΓ ((d− p)/2)

πd/2+1

Γ(p/2 + 1)
aT . (4.175)

Comparing (4.174) with (4.175) we can read off the stress tensor one-point function constant aT
for p < d− 1 in the probe brane model

aT =
d

2(d− 1) π(d−p)/2 Γ

(
d− p

2

)
TpL

p+1 . (4.176)

In the case of a codimension-one defect (p = d− 1), we can include the backreaction. The
backreacted metric takes the same form as (4.138) with the range −∞ < ρ <∞ and [57, 134]

A(ρ) = cosh(|ρ| − ρ∗) , ρ∗ ≡ arctanh
(

4πGN Td−1 L

d− 1

)
. (4.177)

The defect entropy is given exactly by

Sdefect =
Ld−1

2GN

π(d−1)/2

sin (π(d− 1)/2) Γ ((d− 1)/2)
tanh ρ∗ · 2F1

(
1

2
,
d

2
,
3

2
; tanh2 ρ∗

)
. (4.178)

It reproduces (4.173) in the probe limit ρ∗ → 0 (Td−1L
d � 1) as expected.21

Finally One can read off the universal part of this defect free energy in the probe brane model

D̃brane ≡ − sin(πp/2) Ibrane

=
πp/2+1

Γ(p/2 + 1)
TpL

p+1 ,
(4.179)

which is seen to be positive for Tp > 0. Hence our conjecture (4.65) asserts that the brane tension
must decrease under any defect RG flow. This conforms with an intuition that the smaller the
brane tension is, the less the degrees of freedom live on the defect (as there are no defects when
Tp = 0). We will show the brane tension monotonically decreases under a defect RG flow
described by a holographic model generalizing the probe brane model in the following.

Triggering defect RG flow

We adopt a simple holographic model of defect CFT described by the same type of the action
as (4.168) with Ibrane replaced by the action of a single real scalar field φ [25]

Ibrane =

∫
dp+1η

√
Ĝ

[
1

2
ĜAB∂Aφ ∂Bφ+ V (φ)

]
, (4.180)

21This is twice the boundary entropy (4.205) calculated in the holographic model of BCFT in a later subsection.
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on a (p+ 1)-dimensional hyperbolic space anchored on a p-dimensional defect at the boundary
of the Euclidean AdSd+1 space. We assume that the potential V (φ) is bounded from below and
allows a few critical points satisfying

dV

dφ
= 0 . (4.181)

At each critical point φ0 this model reduces to the probe brane model with the brane tension

Tp = V (φ0) , (4.182)

and the defect RG flow is triggered by letting φ roll off from a local maximum to a local minimum
of V (φ).

Now we focus on a holographic dual of a planar defect on Rd. In the Poincaré coordinates

ds2 = dr2 + e−2r/L δµν dxµdxν , (4.183)

the brane action is localized at xp = xp+1 = · · · = xd−1 = 0. The worldvolume coordinates ηA
can be chosen as

ηi = xi (i = 0, · · · , p− 1) , ηp = r . (4.184)

Let us define a function

T (φ) ≡ V (φ)− 1

2
(∂rφ)2 , (4.185)

then it is easy to show T (φ) is a monotonically decreasing function with respect to r [25],

∂rT (φ) = − p
L

(∂rφ)2 ≤ 0 , (4.186)

where we use the equation of motion of φ and the translation invariance of the solution along the
defect. For the holographic RG flow interpolating between the UV fixed point φUV and the IR
φIR, (4.186) implies that the critical value of the potential is non-increasing under the RG flow,

V (φUV) ≥ V (φIR) , (4.187)

which in turn yields the brane tension is non-increasing in the probe brane model

Tp,UV ≥ Tp,IR . (4.188)

With (4.179) in mind we find the monotonicity

D̃brane|UV ≥ D̃brane|IR , (4.189)

in accordance with our proposal (4.65).
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4.4.3 AdS/BCFT model
Finally we examine the g-theorem in general dimensions stating the monotonicity of the hemi-
sphere partition function ofBCFTs under any boundaryRGflow. The bulkAdSmetric respecting
the SO(d, 1) symmetry of BCFTd on a hemisphere is

ds2 = L2
[
dρ2 + cosh2 ρ

(
dw2 + sinh2w ds2

Sd−1

)]
, (4.190)

where ρ ∈ (−∞,∞) and w ∈ (0,∞). This metric is equivalent to the more familiar form of
the global AdS space

ds2 = L2
[
du2 + sinh2 u

(
dθ2 + cos2 θ ds2

Sd−1

)]
, (4.191)

where u ∈ (0,∞) and θ ∈ [−π/2, π/2]. They are related by the following coordinate transfor-
mation

cot θ = coth ρ sinhw , coshu = cosh ρ coshw . (4.192)

The hemisphere defined by θ ∈ [−π/2, 0] at u = ∞ is reached by the ρ → −∞ limit in the
coordinates (4.190) while the other half defined by θ ∈ [0, π/2] at u = ∞ is reached by the
ρ→∞ limit. The boundary of the hemisphere at θ = 0 is reached by the w →∞ limit for any
ρ.

We locate BCFT on the hemisphere covered by θ ∈ [−π/2, 0] and construct the gravity dual
following Takayanagi’s proposal [22, 26, 27] by introducing the AdS boundary Q with a brane
of tension T ,

I = − 1

16πGN

∫
B

√
G

(
R +

d(d− 1)

L2

)
− 1

8πGN

∫
Q

√
Ĝ (K − T )− 1

8πGN

∫
M

√
ĜK ,

(4.193)

where B is the bulk AdS space andM is the boundary on which the dual BCFT lives. In the
present case,M is the hemisphere, B is the bulk AdS space in the coordinates (4.190) with the
restricted range ρ ∈ (−∞, ρ∗), and Q is the AdS boundary at ρ = ρ∗ (see figure 4.5). To make
the variational problem well-define in the presence of the boundary, the Gibbons-Hawking term
is introduced with the extrinsic curvature defined by

KMN = ĜMLĜNK∇LnK , (4.194)

for the outward pointing normal vector nM . The Dirichlet boundary condition is imposed on
M, but the Neumann boundary condition is chosen on Q

KMN − ĜMN K = −T ĜMN . (4.195)

Since the extrinsic curvature is given by

K =
d

L
tanh ρ , (4.196)

for any constant ρ surface, the brane tension is fixed to be

T =
d− 1

L
tanh ρ∗ . (4.197)
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On-shell action at critical points

We now calculate the on-shell action of this system. Without regularization, the on-shell action
diverges,

I(ρ∗) =
Ld−1

8πGN
Vol(Hd)

[
d

∫ ρ∗

−∞
dρ coshd ρ− TL

d− 1
coshd ρ∗ + d lim

ρ→−∞
tanh ρ coshd ρ

]
.

(4.198)

To compare with the boundary entropy (4.57) we subtract half of the on-shell action IAdS of the
whole AdS space without branes, which equals the on-shell action (4.198) with ρ = 0 where the
brane tension vanishes,

1

2
IAdS = I(0) . (4.199)

Hence the boundary entropy (4.57) reads

Sbdy = −I(ρ∗) +
1

2
IAdS

=
Ld−1

4GN

π(d−1)/2

sin (π(d− 1)/2) Γ ((d− 1)/2)
tanh ρ∗ · 2F1

(
1

2
,
d

2
,
3

2
; tanh2 ρ∗

)
.

(4.200)

We can read off the universal part of the boundary entropy from (4.66),

D̃(ρ∗) =
Ld−1

4GN

π(d−1)/2

Γ ((d− 1)/2)
tanh ρ∗ · 2F1

(
1

2
,
d

2
,
3

2
; tanh2 ρ∗

)
, (4.201)

which can be checked numerically to be a monotonically increasing function of ρ∗.

Holographic boundary entropy

As a crosscheck, we now holographically calculate the entanglement entropy of a half ball region
in BCFTs following [57]. Let r⊥ be the transverse coordinate to the boundary and introduce the
metric in the flat space

ds2 = dt2 + dr2
|| + r2

|| ds
2
Sd−3 + dr2

⊥ . (4.202)

BCFTs are defined in the domain r⊥ ∈ [0,∞) and the entangling surface is located at the
hypersurface satisfying r2

⊥ + r2
|| = R2 at t = 0.

The gravity dual of the BCFT is described by the hyperbolic slicing of the AdSd+1 spacetime

ds2 = L2

[
dρ2 + cosh2 ρ

dz2 + dt2 + dr2
|| + r2

|| ds
2
Sd−3

z2

]
, (4.203)

where ρ ∈ (−∞, ρ∗) and z ∈ [0,∞). The holographic entanglement entropy is given by
the area of the Ryu-Takayanagi surface parametrized by z(x, r||) at t = 0, but assuming the
x-independence one finds the unique semi-circle solution [57] (see figure 4.5)

z(r||)
2 + r2

|| = R2 . (4.204)
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M

B
Q Ryu-Takayanagi surface

Entanglement surface Σ

Figure 4.5: The bulk AdS space B is surrounded by the unionM∪Q of the boundary and bulk
hemispheres. It is bipartited by the RT surface anchored on the entanglement surface Σ.

Then we find the holographic boundary entropy

Sbdy =
Ld−1

4GN
Vol(Hd−2)

(∫ ρ∗

0

dρ coshd−2 ρ

)
=
Ld−1

4GN

π(d−1)/2

sin (π(d− 1)/2) Γ ((d− 1)/2)
tanh ρ∗ · 2F1

(
1

2
,
d

2
,
3

2
; tanh2 ρ∗

)
.

(4.205)

This is equivalent to the boundary entropy (4.200) calculated by the formula (4.57) with the
on-shell action as expected.

Holographic g-theorem in general dimensions

We shall prove the holographic g-theorem in the AdSd+1/BCFTd model by adapting the setup
of [26, 27] to the present case. Since the on-shell action (4.198) is a monotonic function of
the brane tension the proof amounts to showing the monotonicity of the brane tension under
boundary RG flows. Our strategy is in parallel with the holographic C-theorem [135] where the
null energy condition is imposed on the bulk matter field to construct a monotonic function of
a bulk metric component with respect to the holographic coordinate. In the present case, we
would rather impose the null energy condition on the boundary Q for any null vector ζM

(KMN −K ĜMN) ζMζN ≥ 0 . (4.206)

Since a boundary RG flow should respects the SO(d) symmetry of the hemisphere, the brane
configuration on Q is fixed by

θ = θ(u) , (4.207)

in the global AdS coordinates (4.191). To impose the null energy condition, we analytically
continue (4.191) to the Lorentzian signature by replacing the boundary sphere with the de Sitter
space,

ds2
Sd−1 −→ − dt2 + cosh2 t ds2

Sd−2 . (4.208)

The resulting metric becomes

ds2 = L2
[
du2 + sinh2 u

(
dθ2 − cos2 θ dt2 + cos2 θ cosh2 t ds2

Sd−2

)]
, (4.209)
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in which the outward pointing unit normal vector to Q is given by

nu = − Lθ′(u)√
θ′(u)2 + csch2u

, nθ =
L√

θ′(u)2 + csch2u
, nM 6=u,θ = 0 . (4.210)

Choosing the null vector to be

ζu = const , ζθ = ζu θ′(u) , ζt = ζu
√
θ′(u)2 + csch2u

cos θ
, ζM 6=u,θ,t = 0 ,

(4.211)

the condition (4.206) becomes

L (ζu)2√
θ′(u)2 + csch2u

g(u) ≥ 0 , (4.212)

where

g(u) ≡ tan θ(u) csch2u− θ′(u) cothu+ θ′(u)2 tan θ(u)− θ′′(u) . (4.213)

Hence the null energy condition yields the non-negativity of the function

g(u) ≥ 0 . (4.214)

Next we want to show the monotonicity of the brane angle ρ∗. We switch to the coordinates
(4.190) where the brane is located on the hypersurface

ρ(u) = arcsinh (sinhu sin θ(u)) . (4.215)

In what follows we show the derivative is non-negative

ρ′(u) =
1√

θ′2 + csch2u
f(u) ≥ 0 , (4.216)

where

f(u) ≡ sin θ(u) cothu+ θ′(u) cos θ(u) . (4.217)

As long as the brane configuration satisfies 0 ≤ θ(u) ≤ π/2 the null energy condition implies

f ′(u) = − cos θ(u) g(u) ≤ 0 . (4.218)

As the boundary condition limu→∞ θ(u) = 0 imposes f(∞) = 0 we conclude f(u) ≥ 0 and
ρ′(u) ≥ 0 for u ∈ [0,∞).

The inequality (4.216) means the brane angle ρ∗ monotonically decreases under a boundary
RG flow

ρUV ≥ ρIR , (4.219)

where ρUV = ρ(∞), ρIR = ρ(0), and we interpret the coordinate u as the holographic renormal-
ization scale as in [135]. Combined with (4.201) at the critical point, we prove the weak form
of the holographic g-theorem

D̃UV ≥ D̃IR . (4.220)
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4.5 Summary
In this chapter we have examined possible candidates for C-functions in BCFT and DCFT: one
is the defect free energy, and the other is the defect entropy. We have derived the universal
formula relating these two quantities and found that unlike CFT they have discrepancy coming
from the term of the non-vanishing stress tensor one-point function. Having this new formula in
our mind, we have proposed C-theorem for general dimensional DCFTs stating that the defect
free energy, not the defect entropy, must be the monotonic decreasing function under the defect
RG flows. We have checked our proposal in various models in field theories, most of which are
one-dimensional defects, namely Wilson loops. Then employing AdS/CFT correspondence, we
have further studied our proposal in bottom-up holographic models of DCFTs. In all examples
that we study, we find that the defect free energies are monotonic, while in some examples the
defect entropies are not.



Chapter 5

Conclusion

In this thesis, we presented various dynamical behaviors of BCFTs and DCFTs towards a better
way of classifying and understanding them. The useful quantities to distinguish these theories
are conformal anomalies in BCFTs. As for DCFTs, by using the dimensional regularization,
we can unify conformal anomaly coefficients and sphere free energy in general dimensions.
Another possible tool to count the effective degree of freedom is the entanglement entropy. It
was less explored how these quantities behave under RG flows, guiding us to this work.

Even though the boundary conformal anomaly contains interesting dynamical information
of BCFT, it is not obvious to present interacting models of them where we can extract these
anomalies. In chapter 3, we find such a tractable model of BCFTs allowing us to calculate
boundary conformal anomaly coefficients. We study the scalar O(N) model with the sextic
interaction in three dimensions. We take advantage of the fact that at large N theory becomes
approximate conformal where we can easily obtain the anomaly coefficients as a function of the
quasi-marginal coupling. However, we leave many interesting unanswered questions here:

• How do 1/N corrections change the story? It apparently breaks the conformal symmetry.

• Canwe saymore about theNeumann boundary casewhere the boundarymarginal coupling
becomes important?

• What happens when we try to compute the stress energy two-point function in the extraor-
dinary boundary condition?

• Do any experimental models that can be described by our large N model exist?

In chapter 4, we turn to study general C-functions in BCFTs and DCFTs. Such monotonic
functions were proposed in various forms, so one of our purposes is to organize them in the
unified form to obtain general constraints on DCFTs (BCFTs). In particular we study the sphere
free energy and the entanglement entropy in the presence of the defect, deriving the universal
formula. We proposed that the defect free energy should be a desired C-function. To check our
proposal, we study wilson loops as line defects and find supporting evidence. Along the way we
also find the defect entropy, which is the increment of the entanglement entropy due to the defect,
does not always decrease under RGflows. We further test our proposal in the holographic setting.
At least in some holographic models, we can prove our conjecture. The fact that we have not
fully know the examples of defect (boundary) RG flows makes it hard to collect more additional
evidence and to prove our proposal directly. However, one may hope that supersymmetry serves
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as a useful tool to shed light on this direction in accordance with F -maximization [23, 136], or
that conformal bootstrap technique can provide another perspective [137]. Given that the defect
free energy is related to the defect entropy, one may also wonder if we can use the quantum
information theoretic techniques to our end. We would like to return these problems at some
point in the future.
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Appendix A

Conformal integral with boundary

In this appendix, we review the method to compute the integral (3.46), which was studied in
Appendix D of [48]. More general integrals appearing in boundary CFT were investigated
in [138]. Let us start with the following integral,

f(ξ) =

∫ ∞
0

dz

∫
dd−1r

1

(2z)d
f1(ξ̃)f2(ξ̃′) , (A.1)

ξ̃ =
(x− r)2

4yz
, ξ̃′ =

(x′ − r)2

4y′z
, r = (r, z) .

To obtain the form of f(ξ), we consider the problem backwards and perform the following
invertible integral transform,

f̂(ρ) =
1

(4yy′)g

∫
dd−1x f(ξ) (A.2)

=
πg

Γ(g)

∫ ∞
0

duug−1f(u+ ρ) ,

where ρ = (y − y′)2/(4yy′) and g = (d− 1)/2. The inverse transform is given as follows,

f(ξ) =
1

πgΓ(−g)

∫ ∞
0

dρ ρ−g−1f̂(ρ+ ξ) . (A.3)

Employing the above transform, (A.2) can be recast as

f̂(ρ) =

∫ ∞
0

dz
1

2z
f̂1(ρ̃)f̂2 (ρ̃′) , ρ̃ =

(y − z)2

4yz
, ρ̃′ =

(y′ − z)2

4y′z
. (A.4)

Then if we can compute f̂(ρ) by (A.4), it enables us to obtain f(ξ) by the inverse integral
transform. To this end, we first change variables z = e2θ, y = e2θ1 and y′ = e2θ2 . (A.4) becomes

f̂
(
sinh2 (θ1 − θ2)

)
=

∫ ∞
−∞

dθf̂1

(
sinh2 (θ − θ1)

)
f̂2

(
sinh2 (θ − θ2)

)
. (A.5)

Taking the Fourier transform of (A.5),

˜̂
f(k) =

∫ ∞
−∞

dθ eikθf̂(sinh2 θ) , (A.6)
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the convolution property gives us the following simple relation,

˜̂
f(k) =

˜̂
f1(k)

˜̂
f2(k) , (A.7)

which makes it possible to compute f(ξ) from the given f1(ξ) and f2(ξ). One strategy is to
perform the series of integral transforms that converts fi to

˜̂
fi and then to use the convolution

property to obtain ˜̂
f . Performing an inverse Fourier transform and (A.3), we obtain f(ξ) in the

end. The success of the method depends highly on the form of fi, but for some of the fi of
interest, we can do these integral transforms.

The spin structures add another layer of complexity to the evaluation of (3.46). Let us
introduce the differential operator

D̃µν ≡ ∂µ∂ν +
1

y
(nµ∂ν + nν∂µ)− 1

d
δµν

(
∂2 +

2

y
n · ∂

)
. (A.8)

This operator D̃µν allows us to re-express theXµXν− δµν
d

tensor structure in terms of derivatives
acting on a function of a cross ratio:

D̃µνF(ξ) =
1

z2

(
XµXν −

1

d
δµν

)
ξ(1 + ξ)F ′′(ξ) , (A.9)

which allows us to write (3.46) as

Gµνσρ = (4zz′)2D̃µνD̃′σρG(ξ) , (A.10)

where for i = 1 or 2

G(ξ) =

∫ ∞
0

dy

∫
dd−1r

1

(2y)d
F1(ξ̃)F2(ξ̃′) , fi(ξ) = 4ξ(1 + ξ)F ′′i (ξ) . (A.11)

In the above expression we can play the same game not for fi, but for Fi. The point is that we
don’t need to transform F itself because using integration by parts we can write

F̂(ρ) =
πg

Γ(g + 2)

∫ ∞
0

duug+1F ′′(u+ ρ) . (A.12)

In our setup, f1(ξ) = (ξ(1 + ξ))−d/2 and corresponding integral transforms are easily done by

F̂1

(
sinh2 θ

)
=

1

2
Sd

1

d(d+ 1)
e−(d+1)|θ|,

˜̂F1(k) =
1

d
Sd

1

k2 + (d+ 1)2
. (A.13)

Now suppose we know ˜̂F2. Then we have

Ĝ(sinh2(θ)) =
Sd
d

1

2π

∫
dθ e−ikθ

1

(d+ 1)2 + k2

˜̂F2(k) , (A.14)

from which we find that(
(d+ 1)2 − d2

d2θ

)
Ĝ(sinh2(θ)) =

Sd
d
F̂2(sinh2(θ)) . (A.15)
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Using the integral transform (A.2), we can pull this differential equation back to one involving
G(ξ) (

ξ(1 + ξ)
d2

dξ2
+ d

(
ξ +

1

2

)
d

dξ
− d
)
G(ξ) = − 1

4d
SdF2(ξ) , (A.16)

or equivalently G ′′(ξ),(
ξ(1 + ξ)

d2

dξ2
+ (d+ 4)

(
ξ +

1

2

)
d

dξ
+ d+ 2

)
G ′′(ξ) = −1

d
Sd

1

16ξ(1 + ξ)
f2(ξ) . (A.17)
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