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Abstract

The redshift-space power spectrum, characterizing the three-dimensional distri-
bution of galaxies collected by wide-area spectroscopic surveys, is one of the most
powerful probes of cosmological parameters. To obtain unbiased and stringent cos-
mological constraints, we need a su�ciently accurate theoretical template to meet
the statistical precision expected by modern large-scale surveys. At the same time,
we have to make a proper treatment on the uncertainty of the galaxy bias, i.e., the
relationship between the spatial pattern of the observed galaxies and the underlying
density field dominated by dark matter. A standard analysis method used in the lit-
erature is to use the analytic theoretical prediction based on the perturbation theory
(PT) of the large-scale structure formation, with a set of nuisance parameters that
model galaxy bias. However, the PT-based models cease to be accurate on smaller
scales where the PT breaks down due to strong nonlinearities, and cannot extract
cosmological information contained in such scales. To tackle this problem, in this
dissertation, I present the achievements in three important steps: the construction
of a theoretical template, the theoretical assessment of the cosmological parameter
constraints, and the cosmological parameter inference from the real survey data.

For the theoretical template, we use an ensemble of high-resolution N -body
simulations for 101 flat-geometry wCDM cosmology to construct an emulation
software enabling fast, accurate computations of the redshift-space power spectrum
of dark matter halos that is valid up to kmax ƒ 0.6 h Mpc≠1, based on a feed-forward
neural network. Galaxies, at least massive, early-type galaxies, tend to reside in dark
matter halos with masses larger than 1012 h≠1 M§, which our emulator can handle.
The emulated redshift-space halo power spectrum includes various nonlinear e�ects
relevant for the clustering of the observed galaxies, that are di�cult to accurately
model with an analytic method such as the PT. Aided by simple recipes to connect the
simulated halos to the observed galaxies, our emulator has the flexibility to express
the complex galaxy formation physics and its variety among galaxy samples based
on di�erent selection criteria. The emulator-based method enables us to compute the
redshift-space galaxy power spectrum for a set of input parameters at less than one
CPU second. This corresponds to a factor of 106 reduction in computational time
compared to brute-force method (run N -body simulations, identify halos, populate
galaxies, and then measure the power spectrum from a mock galaxy catalog).

For the assessment of cosmological constraints, we investigate how the nuisance
parameters contained in our approach a�ect the cosmological parameter constraints
from the redshift-space galaxy power spectrum which simulates a real galaxy sur-
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vey. We show that there is the cosmological information content available in the
power spectrum on scales smaller than those where the PT is valid, even after the
marginalization over various nuisance parameters.

For cosmology inference, we first perform validation tests of the emulator-based
method by comparing the emulator-based predictions with the hypothetical power
spectrum measured from mock catalogs of SDSS galaxies. We found that our
method can recover the underlying cosmological parameters to within the statistical
credible intervals. We also confirmed that we can obtain more stringent constraints
on cosmological parameters using the power spectrum information beyond k =

0.1 h Mpc≠1 up to 0.2 or 0.3 h Mpc≠1, where the PT-based models tend to break
down. We then apply our method to the SDSS-III galaxy power spectrum assuming
the flat ΛCDM cosmology. We obtain the constraints on cosmological parameters
such as Ωm, ‡8, and H0, which are comparable with the recent analysis based on
the PT-based method. We succeed to obtain cosmological parameter constraints
from the full N -body simulation-based method for the first time, and the method
developed here should be useful for upcoming surveys such as Subaru Prime Focus
Spectrograph, Dark Energy Survey Instrument, Euclid and Roman Space Telescope.
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Chapter 1

Introduction

1.1 Dark Universe

Cosmology, which is the challenge to understand the large-scale and fundamental
nature of the Universe, has become a precision science. Over past a few decades, the
observational constraints on the cosmological model has become very stringent based
on the progress of the observational technology and enlargement of the cosmological
surveys. In particular, the cosmic microwave background (CMB) and the large-scale
structure of the Universe is the main cosmological probes, are investigated in various
satellite or ground-based surveys.

The discovery by Edwin Hubble in 1929 revealed that the universe is expanding,
and the distance r to our nearby galaxy is related to its recession velocity v as

v = cz = H0r, (1.1)

where c is the speed of light, z is the redshift, and H0 is the constant which we
call as the Hubble constant today. To explain the expanding Universe, cosmologists
introduced the cosmological constant to the Einstein equation, which Albert Einstein
once introduced to realize the static Universe. In the late 1990s, a research group
led by Saul Perlmutter and another one led by Adam Riess and Brian P. Schmidt
discovered that the cosmological constant is significantly non-zero and the expansion
of the Universe is accelerated, through the observation of Type Ia supernovae.
Although more than two decades has passed since its observational discovery, the
physical process of accelerated expansion remains to be elucidated. Some cosmologists
attribute it to an unknown energy component of the Universe, and call it the dark
energy. Other people are struggling to explain the accelerated expansion by modifying
the General Relativity.

On the other hand, the matter component which suppress the expansion by the
gravity, also has a mystery. In the 1930s, Fritz Zwicky noticed that the apparent
velocities of galaxies in the Coma Cluster have a large variance. This velocity
dispersion was much larger than that calculated from the number of galaxies and
its average mass, and it suggested the existence of some “dark” mass which cannot
be detected by light. Later, the galactic rotation curves, which are the profiles of
rotation velocity of stars and gas within a galaxy as a function of distance from the
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Chapter 1 Introduction

galactic center, were found to be flat at at very large distances. This flat rotation
curve convinced the existence of dark matter.

Today, the cosmological model which has these two dark components is strongly
supported by the results of various cosmological probes, such as the cosmic microwave
background (CMB) and the large-scale structure of the Universe. The cosmological
model with the cold dark matter and the dark energy in the form of cosmological
constant, i.e., the so-called ΛCDM model, has been the concordance model during
the past two decades. One of the most important goal in modern cosmology is to
determine the parameters which characterize ΛCDM model, or to falsify the ΛCDM
model. To this end, we focus on the galaxy clustering on the large-scale structure.

1.2 Cosmology with galaxy clustering

One of the powerful observation of cosmology is the three-dimensional spatial distri-
bution of galaxies spread over the large-scale structure, i.e., the galaxy clustering
(see Fig. 1.1). Since the 1980s, the galaxy redshift surveys (spectroscopic surveys)
have been conducted to observe the three-dimensional galaxy maps, by measuring
the angular postions and spectroscpic redshifts of galaxies. The fist galaxy red-
shift surveys is the CfA Redshift Survey [1], completed in 1981, observing about
2400 galaxies and it reported the characteristic structures such as filaments and
voids. In 1998, the Sloan Digital Sky Survey (SDSS) 1, targeting over 1,000,000
galaxies, was started. The SDSS spectroscopic survey for the first time detected the
Baryon Acoustic Oscillation which makes the characteristcic bump in the measured
correlation function of galaxies, and also succeeded to constrain the cosmological
parameters from the galaxy clustering. Now, to further elucidate the fundamental
cosmology and to make more stringent tests of the standard ΛCDM model, there
are a number of ongoing and upcoming wide-area galaxy redshift surveys, e.g., the
SDSS-III Baryon Oscillation Spectroscopic Survey [BOSS] [2], the SDSS-IV extended
Baryon Oscillation Spectroscopic Survey [3], the Subaru Prime Focus Spectrograph
[4], the Dark Energy Spectroscopic Instrument [5], the ESA Euclid satellite mission
[6], and the NASA Roman Space Telescope [7].

The galaxy distributions observed by spectroscopic surveys are modulated by the
Doppler e�ect due to the line-of-sight peculiar velocities of galaxies, and exhibits
characteristic anisotropies, called the redshift-space distortions (RSD) [8, 9, 10]. The
RSD e�ect is useful to improve cosmological constraints by breaking degeneracies
between the cosmological parameters and uncertainties in galaxy bias relative to the
underlying matter distribution.

In order to exploit the full information from galaxy redshift surveys, we need a
su�ciently accurate theoretical template that enables a high-fidelity comparison
with the measured clustering statistics of galaxies to obtain robust constraints on

1https://www.sdss.org
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1.2 Cosmology with galaxy clustering

Figure 1.1: A thin slice of three-dimensional galaxy map observed in the SDSS-III
Baryon Oscillatio Spectroscopic Survey [2]. Taken from http://www.

sdss3.org/science/.
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Chapter 1 Introduction

cosmological parameters. The standard approach has been analytic prescriptions
based on the perturbation theory of large-scale structure [11, 12]. This approach
describes the distribution of galaxies in terms of a series expansion of both the
matter density and velocity fields with a set of free coe�cients/terms including bias
parameters [13, 14]. A further refined model enforcing the mass and momentum
conservations, the so-called E�ective Field Theory of Large-Scale Structure, has
also been developed [15]. These models have been applied to actual data sets to
obtain cosmological constraints [16, 17, 18, 19, 20, 21]. While these perturbation
theory-based templates give useful predictions at linear and quasi-nonlinear scales up
to k ≥ 0.2 h Mpc≠1, the application of these models to on even smaller scales is still
disturbed by even higher-order contributions of both the density and velocity fields as
well as nonperturbative e�ects arising from the small-scale dynamics, i.e., formation
of galaxies (or dark matter halos) [22, 23, 24, 25, 26, 27, 28]. Consequently, the
cosmological analysis on the galaxy power spectrum has been typically limited to the
wave number k . 0.15 h Mpc≠1 [18, 17]. In other words, the clustering information
on the higher-k scales does not seem useful for cosmology in this method, because
the information is used to basically constrain higher-order bias parameters and other
nuisance parameters that need to be introduced for the theoretical consistency of
models.

1.3 Aim of this thesis

In this thesis, we take an alternative approach to the galaxy clustering cosmology.
We develop a simulation-based theoretical template, called emulator, with the aim
to obtain accurate model predictions for redshift-space galaxy power spectrum.

Our basic philosophy is similar to that of Dark Quest [29]; it is based on the fact
that the redshift-space power spectrum of halos can be accurately modeled by using
N -body simulations. Then, a model of the halo-galaxy connection, which a user
adopts, can be combined with the emulator outputs to compute the redshift-space
power spectrum of galaxies for a galaxy sample of interest. Given uncertainties in
physics of galaxy formation and evolution, a large number of nuisance parameters to
model the halo-galaxy connection need to be introduced and then be marginalized
over to obtain unbiased constraints on cosmological parameters (also see [30, 31] for
the study based on a similar motivation). Using an ensemble of the cosmological
N -body simulations for 101 cosmological models in the six-dimensional parameter
space of the flat wCDM cosmology around the best-fit model to the Planck CMB data
[32], we construct an emulator for the redshift-space halo power spectrum by utilizing
a feed-forward neural network. The emulator of halo power spectrum, developed
in this way, includes various complicated e�ects on nonlinear scales. We carefully
assess the performance and validation of the emulator outputs by comparing with
the redshift-space power spectra directly measured from the N -body simulations in
validation sets that are not used in the training.
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1.3 Aim of this thesis

The second aim of this thesis is to assess cosmological information content in
the redshift-space power spectrum of galaxies. For this purpose, we use a suite of
halo catalogs, constructed from high-resolution N -body simulations, to build mocks
of galaxies that resemble the SDSS-III BOSS galaxies, using the halo occupation
distribution (HOD) method [33, 34, 35, 36]. To create realistic mock catalogs,
we include a number of nuisance parameters that model the relation between the
distributions of galaxies and their host dark matter halos — so-called the halo-galaxy
connection. We then measure the redshift-space galaxy power spectrum as our
hypothetical observables of the galaxy clustering. We evaluate the sensitivity of
redshift-space galaxy power spectrum to each of model parameters using di�erent
mock catalogs of galaxies that are generated from changes in each of model parameters
(cosmological parameters and the halo-galaxy connection parameters). In doing this
we also include apparent anisotropic clustering patterns in the redshift-space galaxy
distribution that are caused if an assumed cosmological model, which needs to be
employed to convert the observed angular separations and redshifts to the comoving
coordinates in the clustering analysis, is di�erent from the underlying true cosmology
– the so-called Alcock-PaczyÒski (AP) e�ect [37, 38]. Thus we use the redshift-space
power spectra of galaxies, measured from these mocks, to numerically evaluate the
Fisher information matrix for the SDSS-like galaxies, and then assess the cosmological
information content up to the quasi-nonlinear regime (kmax = 0.3 h Mpc≠1in our
exercise), after marginalization over the halo-galaxy connection parameters. Our
study is somewhat based on the similar motivation to the previous works [39, 30],
but our work is di�erent in the sense that we purely rely on the N -body simulations
to assess cosmological information contents inherent in the redshift-space power
spectrum of host halos up to the nonlinear regime, while the previous works used
the perturbation theory-based model.

As the third achievement of this thesis, we perform the cosmological analysis on
the actual galaxy redshift survey data. Having an emulator-based versatile template
on hand, we apply it to galaxy catalogs in the SDSS-III BOSS Final Data Release.
We measure the redshift-space galaxy power spectrum by ourselves, and infer the
cosmological parameters which characterize the concordance flat ΛCDM model. We
also test our emulator-based analysis pipeline by using mock galaxy catalogs with
di�erent prescriptions of the halo-galaxy connection.

Outline of this thesis

This thesis is structured as follows: in Chapter 2, we briefly review the basics of the
large-scale structure in the standard ΛCDM cosmology. In Chapter 3, we describe
the formulation on the galaxy clustering observed by galaxy redshift surveys, and
add the discription of the halo model formalism we are employing throughout this
thesis. Chapter 4 is dedicated to describe the technical aspects of the power spectrum
measurement, and explain how we take into account the window function e�ect in
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Chapter 1 Introduction

real surveys. In Chapter 5, we describe our development of the simulation-based
emulator. which is based on Ref. [40]. Chapter 6 present our assessment of the
cosmological parameters from the redshift-space galaxy power spectrum following
the halo model formalism, based on Ref. [31]. Chapter 7 describes our results of the
cosmology inference on the SDSS-III galaxy data, and finally in Chapter 8 we put
concluding remarks.
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Chapter 2

Large-Scale Structure of the Universe

In this chapter, we review the linear cosmological perturbation theory, which is well
established and well describes the large-scale behavior of the fluctuations of matter
and radiation.

Although the Universe on large scales is assumed to be homogeneous and isotropic
at zeroth order, we actually observe that it has a complicated structure of matter or
galaxy distributions. It is because the Universe is not completely homogeneous, and
this inhomogeous nature is formulated as a perturbative theory.

2.1 Background Universe

The modern cosmology describes the behaviour of the Universe based on two funda-
mental principles:

• Cosmological Principle — The Universe is homogeneous and isotropic on large
spatial scales, roughly over O(100) Mpc.

• General Relativity — The dynamics of the Universe is determined by the
Einstein equation.

From the first assumption, the spacetime metric of the Universe is the Friedmann-
Robertson-Walker (FRW) metric:

ds2 = ≠dt2 + a(t)2

C

dr2

1 ≠ Kr2
+ r2(d◊2 + sin2 ◊d„2)

D

, (2.1)

where · is the conformal time, a(t) is the scale factor, which specifies the physical
size of the Universe, and a = 1 at present. K is the constant spatial curvature,
and K > 0, K = 0, and K < 0 correspond to the closed-, flat-, and open-geometry
Universe. The observation of the Cosmic Microwave Background (CMB) suggests
the our Universe has a flat-geometry, and hence we will often use K = 0 in the rest
of this thesis.
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Chapter 2 Large-Scale Structure of the Universe

2.1.1 Einstein equation

The gravitational evolution of the Universe is governed by the Einstein equation.
The Einstein equation describes the relation between the geometry of the Universe
and the energy components:

Gµ‹ = 8fiGTµ‹ , (2.2)

where Gµ‹ is the Einstein tensor and Tµ‹ is the energy-momentum tensor. Gµ‹ is
defined using the rich tensor Rµ‹ and rich scalar R as

Gµ‹ = Rµ‹ ≠ 1

2
Rgµ‹ + Λgµ‹ , (2.3)

where gµ‹ is the spacetime metric, which is the FRW metric in this case. Λ is called
the cosmological constant that can cause the accelerated expansion of the Universe.
The energy momentum tensor takes the form of

Tµ‹ = (fl + p)uµu‹ + pgµ‹ , (2.4)

where fl and p are the energy density and pressure of the Universe, and uµ is the
4-velocity of the observer. In the homogeneous and isotropic Universe, it is

Tµ‹ = diag(fl, p, p, p). (2.5)

With Eqs. (2.1), (2.5), the (00)- and (ii)-components of the Einstein equation
[Eq. (2.2)] reduce to

3

ȧ

a

42

=
8fiG

3
fl +

Λ

3
≠ K

a2
(2.6)

ä

a
= ≠4fiG

3
(fl + 3p) +

Λ

3
, (2.7)

where the first one is called the Friedmann equation, which descibes the time
evolution of the scale factor, i.e., the expansion history of the Universe, with the
energy components.

In addition, the energy-momentum conservation, ÒµT µ
‹ , implies

fl̇ = ≠3
ȧ

a
(fl + p). (2.8)

Only two among Eqs. (2.6), (2.7), and (2.8) are independent. We further impose
the equation of state which relates the energy density and pressure as P = wfl. w is
called the equation of state parameter. The Universe consists of three main energy
components with di�erent w:

• Matter (w = 0) — The non-relativistic particles, e.g., the dark matter and
baryon (usual matter).
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2.1 Background Universe

• Radiation (w = 1
3) — The relativistic particles, e.g., the photons and neutrinos.

• Dark energy (w < ≠1
3) — The energy component with negative pressure.

w = ≠1 for the cosmological constant.

From Eq. (2.8), the energy densities of matter and radiation evolves as flm Ã a≠3

and flr Ã a≠4, respectively. The evolution of dark energy density depends on the wde,
in general a function of time, and is given by

flde Ã exp

;

≠3

⁄

da

a
[1 + wde(a)]

<

. (2.9)

In the case that wde is a constant across time, the dark energy density evolves as
flde Ã a≠3(1+wde). Such a cosmological model is called wCDM model, for which we
will construct the theoretical model in Chapter 5.

2.1.2 Redshift and cosmological distance

The distance to a distant galaxy is measured from the elongation of wavelength of
light emitted from it. We define the redshift z using the rate of change of wavelength:

1 + z © ⁄

⁄0
=

1

a(t0)
, (2.10)

where ⁄ is the observed wavelength of light, and ⁄0 is one when the light is emitted,
and a(t0) is the scale factor at which the galaxy resides.

While the redshift is the direct observable, e.g., in galaxy redshift surveys, the
cosmological distance is calculated assuming some cosmological model from the
redshift. In the FRW metric [Eq. (2.1)] with d◊ = d„ = 0, the light propagates along
the geodesic so that

d2s = ≠dt2 + a2(t)
dr2

1 ≠ Kr2
= 0 … dt

a(t)
=

drÔ
1 ≠ Kr2

. (2.11)

We define the comoving distance as

‰ ©
⁄ r

0

drÔ
1 ≠ Kr2

=

⁄ t

t0

dt

a(t)
. (2.12)

Here we define the Hubble parameter at cosmic time t,

H(t) © ȧ(t)

a(t)
, (2.13)

to represent the expansion rate of the Universe. The comoving distance is also
written in terms of H as

‰(z) =

⁄ 1

a

da

a2H(a)
=

⁄ z

0

dz

H(z)
. (2.14)

9



Chapter 2 Large-Scale Structure of the Universe

In galaxy surveys, we compute the comoving coodinates of galaxies following the last
expresion. Inversely, we can also write the radial distance r in the FRW metric as a
function of ‰,

r(‰) = SK(‰) ©

Y

_

_

_

]

_

_

_

[

sin(
Ô

K‰)Ô
K

(K > 0)

‰ (K = 0)
sinh(

Ô
≠K‰)Ô

≠K
(K < 0)

(2.15)

We can also define the distance using the apparent angular size of an object.
Suppose we observe the object with the length perpendicular to the line-of-sight is ¸,
whose apparent angular size is ∆◊. In the FRW metric,

¸ = ar∆◊ =
r(z)

1 + z
∆◊. (2.16)

The (physical) angular diameter distance, DA, is defined as

DA(z) =
¸

∆◊
=

r(z)

1 + z
=

SK(‰)

1 + z
, (2.17)

where we used Eq. (2.15).

2.1.3 Friedmann equation and cosmological parameters

The expansion history of the Universe is governed by the Friedmann equation,
Eq. (2.6). The Friedmann equation is rewritten as

H2 =

3

ȧ

a

42

=
8fiG

3
fl. (2.18)

Here the total energy density fl is the sum over di�erent energy components,

fl = flr + flm + flde + flK , (2.19)

where we include the cosmological constant as the dark energy density flde and also
regard the curvature term as the energy density. We define the Hubble constant H0

as the present value of Hubble parameter,

H2
0 © H2(z = 0) =

8fiG

3
fl(z = 0) © 8fiG

3
flcr. (2.20)

where we define the critical energy density flcr as the present value of total energy
density. We discuss the energy density of each energy component in terms of its ratio
to the critical density:

Ωi0 © fli0

flcr
=

8fiGfli0

3H2
0

, (2.21)

10



2.2 Cosmological perturbation theory in Newtonian approximation

where fli0 is the energy density of the component i. The density parameters are also
defined as a function of time, i.e.,

Ωi(z) © fli(z)

flcr(z)
, (2.22)

where

flcr(z) © 3

8fiG
H2(z). (2.23)

The Ωi(z) is related to Ωi0 as

Ωi(z) =
H2

0

H2(z)

fli(z)

fli0
Ωi0. (2.24)

The parameters such as H0 and Ωi0 (in the rest of this thesis we often drop "0")
specify the cosmological model, and are called the cosmological parameters. Since
the Hubble constant H0 characterizes the recession velocity, it is usually in unit of
km/s/Mpc. In stead of H0, we often discuss the dimesionless Hubble constant defined
as h © H0/(100 km/s/Mpc). Using Eq. (2.6), we can write the Hubble parameter in
terms of H0 and density parameters:

H2(a) = H2
0

;

Ωm0a3 + Ωr0a4 ≠ ΩK0a3 + Ωde0 exp

5

≠3

⁄

da

a
(1 + wde(a))

6<

. (2.25)

In the past Universe, the radiation is the dominant energy component. After that
the radiation energy become lower than that of matter. The epoch of matter-radiation
equality is

aeq =
flr0

flm0
=

Ωr0

Ωm0
. (2.26)

The present radiation density flr0 is determined by the CMB temperature today,
which leads to the determination of Ωr0h2. Thus substantially aeq is determined by
Ωm0h2. Since matter energy density drops as Ã a≠3, in the late Universe the dark
energy become dominant.

2.2 Cosmological perturbation theory in Newtonian

approximation

We describe the energy components that constitute the Universe — such as matter and
radiation — as cosmological “fluid”. The dynamics and evolution of the cosmological
fluid is driven by gravity and interactions between di�erent components of the
fluid. Since we are mainly interested in the spatial scales smaller than the horizon
scale, which is ≥ 1/aH(a) in the comoving scale, we consider the gravity within the
Newtonian picture in this section.

11



Chapter 2 Large-Scale Structure of the Universe

In Newtonian picture, the cosmological fluid follows the continuity and Euler
equations.

ˆfl

ˆt
+ Òr · (flu) = 0, (2.27)

5

ˆ

ˆt
+ u · Òr

6

u = ≠1

fl
Òrp ≠ Òr„, (2.28)

where fl and p are the mass density and the pressure (respectively) of the fluid, u is
the velocity, and „ is the gravitational potential. All the quantities listed above are
a field which is a function of the physical coordinates r and the cosmic time t. The
gravitational potential is determined by the Poisson equation,

Ò2
r„(r, t) = 4fiGfltot(r, t). (2.29)

where fltot is the total energy density of the Universe, which can be di�erent from fl,
the density of fluid component we focus on.

So far we use the physical spatial coordinates for the fluid equations. In the
expanding Universe, it is convenient to transform the physical spatial coordinates r

to the comoving coordinates x. These are related as r = a(t)x using the scale factor
a(t), and the velocity field, u(t), is decomposed as

u(t) = ṙ = ȧx + aẋ © ȧx + v, (2.30)

where we define the peculiar velocity v © aẋ, which is the velocity component other
than the expansion of the background Universe. In this coordinate transformation,
the derivatives are transformed as

Q

a

ˆ
ˆt

-

-

-

r

Òr

R

b =

Q

a

1 ˆx

ˆt

-

-

-

r

0 a≠1

R

b

Q

a

ˆ
ˆt

-

-

-

x

Òx

R

b =

A

1 ≠Hx

0 a≠1

B

Q

a

ˆ
ˆt

-

-

-

x

Òx

R

b , (2.31)

where H is the Hubble paramter. We hereafter omit subscript x in the derivatives in
the comoving frame. Using this, we can rewrite the continuity and Euler equations
as

ˆfl

ˆt
+ 3Hfl +

1

a
Ò · (flv) = 0, (2.32)

ˆv

ˆt
+ Hv +

1

a
(v · Ò)v = ≠ 1

afl
Òp ≠ 1

a
ÒΦ. (2.33)

where we redefine the gravitational potential in comoving coordinates,

Φ = „ +
aä

2
|x|2. (2.34)
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2.2 Cosmological perturbation theory in Newtonian approximation

Here we define the density and pressure fluctuations,

”(x, t) =
fl(x, t)

fl̄(t)
≠ 1, (2.35)

”p(x, t) = p(x, t) ≠ p̄(t). (2.36)

where fl̄(t) and p̄(t) are the mean density and pressure, which depend on the cosmic
time t. The continuity and Euler equations derived above are written in terms of the
fluctuations,

ˆ”

ˆt
+

1

a
Ò · [(1 + ”)v] = 0, (2.37)

ˆv

ˆt
+ Hv +

1

a
(v · Ò)v = ≠ 1

afl̄(1 + ”)
Ò”p ≠ 1

a
ÒΦ. (2.38)

By combining with the (ii)-component of background Einstein equation [Eq. (2.7)],
the Poisson equation for Φ in the comoving coordinates is

Ò2
Φ = 4fiGa2(fl̄tot”tot + 3”ptot), (2.39)

where ”tot and ”ptot are the density and pressure fluctuations of the total cosmological
fluid. In the matter-dominated Universe, we can ignore the pressure fluctuations and
Eq. (2.39) reduces to

Ò2
Φ = 4fiGa2fl̄m”m. (2.40)

2.2.1 Jeans instability

So far we have introduced the nonlinear equations for the dynamics of cosmic fluid.
Hereafter we consider the density and pressure fluctuations and ”p(x, t), and the
velocity as small perturbations, i.e., |”(x, t)|, |”p(x, t)|, |v| π 1, and ignore higher-
order terms of these fluctuations. With this treatment, the continuity and Euler
equations Eqs. (2.37) and (2.38) reduces to

”̇ +
1

a
Ò · v = 0, (2.41)

v̇ + Hv = ≠ 1

afl̄
Ò”p ≠ 1

a
ÒΦ. (2.42)

Combining these two and the Poisson equation [Eq. (2.39)] yields

”̈ + 2H ”̇ ≠ Ò2(”p)

a2fl̄
= 4fiGa2(fl̄tot”tot + 3”ptot). (2.43)
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Chapter 2 Large-Scale Structure of the Universe

Using the sound speed defined as

c2
s =

3

ˆp

ˆfl

4

S

, (2.44)

Eq. (2.43) is written as

”̈ + 2H ”̇ ≠
A

4fiGfl̄” +
c2

s

a2
Ò2”

B

= 4fiGa2(fl̄res”res + 3”pres). (2.45)

where we define fl̄res”res = fl̄tot”tot ≠ fl̄” and ”pres = ”ptot ≠ ”p to split the fluid
component we focus on from the total fluid that generates the gravitational potential.

In the following we consider a single-component fluid and ignore the right-hand-
side of the above equation. While this equation describe the evolution of density
fluctuations, it contains the spatial derivative Ò, hence it is convenient to move on
to the Fourier space. By defining the Fourier-space fluctuation fields,

”̃(k, t) =

⁄

d3xe≠ik·x”(x, t), (2.46)

where we will often omit the tilde in this thesis. the evolution of the density fluctuation
is

”̈̃ + 2H ”̇̃ ≠
A

4fiGfl̄ ≠ c2
s k2

a2

B

”̃ = 0. (2.47)

From this equation, we see the evolution of ”̃(k) depends on the wave number k = |k|,
and largely governed by the sign of 4fiGfl̄ ≠ c2

s k2

a2 . We define the Jeans wave number

kJ =



4fiGa2fl̄

cs
, (2.48)

which yields 4fiGfl̄ ≠ c2
s k2

a2 = 0. On large scales where k < kJ, the fluctuations ”̃(k)

grow rapidly due to gravity, while on small scales where k > kJ, the fluctuations
decay as they oscillate due to that the pressure overwhelms the gravity.

2.2.2 Evolution of the density fluctuations

We focus on large scales where k π kJ, fluid such as matter. Then, Eq. (2.47) leads
to

”̈ + 2H ”̇ ≠ 4fiGfl̄” = 0. (2.49)

This equation In the ΛCDM cosmology, the solution to this equation is

” Ã H(a), H(a)

⁄ a

0

da

a3H(a)3
(2.50)
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2.2 Cosmological perturbation theory in Newtonian approximation

The Hubble parameter in the late-time Universe is (by ignoring the radiation)

H2(a) = H2
0

5

Ωm0

a3
+ ΩΛ0 +

1 ≠ Ωm0 ≠ ΩΛ0

a2

6

(2.51)

decreases as the Universe evolves, and hence only the solution

D+(a) = H(a)

⁄ a

0

da

a3H3(a)
(2.52)

is the growing mode. We call this solution the linear growth factor, and it is also
written by

D+(z) =
5

2

1

1 + z
Ωm(z)

⁄ 1

0
dx

5

Ωm(z)

x
+ ΩΛ(z)x2 + 1 ≠ Ωm(z) ≠ ΩΛ(z)

6≠3/2

.

(2.53)

2.2.3 Peculiar velocity field

We describe the linear-theory treatment of (peculiar) velocity field, v, which is essential
to understand the redshift-space distortions. Taking the rotation of linearized Euler
equation [Eq. (2.42)],

ˆ

ˆt
(Ò ◊ v) +

ȧ

a
(Ò ◊ v) = 0, (2.54)

which means the rotation of velocity Ò ◊ v is damped as Ã a≠1 in linear theory.
Thus, we can write the velocity as a field generated by some potential,

v = ≠ÒÂ(x, t) (2.55)

Combining it with the linearized continuity equation [Eq. (2.41)],

Ò2Â = aHf”, (2.56)

where we define the linear growth rate,

f © d ln D+

d ln a
. (2.57)

In Fourier space, the velocity potential is related to the density perturbation as

Ẫ(k, t) = ≠aHf

k2
”̃(k, t), (2.58)

and the Fourier-space velocity is

ṽ(k, t) = ≠ikẪ(k, t) = aHf
ik

k2
”̃(k, t). (2.59)
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Chapter 2 Large-Scale Structure of the Universe

Similarly to the linear growth factor D+, the linear growth rate is also written using
the density parameters,

f(z) = ≠1 ≠ Ωm(z)

2
+ ΩΛ(z) +

I

⁄ 1

0
dx

5

Ωm(z)

x
+ ΩΛ(z)x2 + 1 ≠ Ωm(z) ≠ ΩΛ(z)

6≠3/2
J≠1

,

(2.60)

within the ΛCDM cosmology in the late-time Universe. In addition, the linear growth
rate is also well approximated by

f(z) ƒ [Ωm(z)]0.55. (2.61)

In galaxy redshift surveys, the combination of linear growth rate and the variance of
linear matter density fluctuations, f‡8 is commonly constrained, as we will see later.

2.3 Correlation function and power spectrum

The cosmological information in the large-scale strucure is contained in its statistical
properties, since the large-scale structure is thought to have evolved from the quantum
fluctuations produced in the early Universe. In addition, the primordial fluctuations
produced by the inflation is thought to be near Gaussian, and the statistical properties
of a Gaussian random field is perfectly determined only by the two-point statistics.
Thus, in the cosmological context, the two-point statistics is of primary importance.

2.3.1 Correlation function

The two-point correlation function of a density field is defined as

›(x1 ≠ x2) = È”(x1)”(x2)Í , (2.62)

where we assume the correlation function is invariant with respect to the spatial
translations, i.e., it is a function of the di�erence between two spatial points, x1 and
x2.

In the case of the galaxies (or other discrete tracers of matter), the two-point
correlation function ›(x1 ≠ x2) is equivalent to the “excess probability” that two
galaxies is observed at two positions x1 and x2, as we see below. Suppose that we
consider a galaxy distribution whose number density field is n(x). The probability
that a galaxy is in a small volume ”V at a position x is

Prob1(x) = Èn(x)Í ”V = n̄”V, (2.63)

where we require ”V to be su�ciently small so that the number of galaxies in this
volume can be either zero or unity. Likewise, the joint probability that two galaxies
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2.3 Correlation function and power spectrum

are in small volumes ”V1, ”V2 at two positions x1, x2 (respectively) is

Prob2(x1, x2) = Èn(x1)n(x2)Í ”V1”V2

= n̄2 È[1 + ”(x1)][1 + ”(x2)]Í ”V1”V2

= n̄2 [1 + ›(x1 ≠ x2)] ”V1”V2. (2.64)

In the case that the galaxies are uniformly distributed, i.e., the galaxy distribution
is a (three-dimensional) Poisson process, this two-point probability is a simple
multiplication of one-point probabilities,

Prob2(x1, x2) = Prob1(x1)Prob1(x2) = n̄2”V1”V2, (2.65)

since the numbers of galaxies at two positions are statistically independent. By
comparing Eqs. (2.64) and (2.65), we see that the two-point correlation function
is also seen as the excess probability that we observe two galaxies at two di�erent
positions.

2.3.2 Power spectrum

In cosmology, from the theoretical point of view, it is useful to discuss the fluctuations
in Fourier space. We consider the two-point correlation of the Fourier-space density
fluctuations,

+

”(k)”(kÕ)
,

=

⁄

d3x

⁄

d3xÕe≠k·x≠kÕ·xÕ +

”(x)”(xÕ)
,

=

⁄

d3x

⁄

d3xÕe≠k·x≠kÕ·xÕ
›(x ≠ xÕ). (2.66)

Using the translational invariance of the correlation function, the above equation
reduces to

+

”(k)”(kÕ)
,

= (2fi)3”D(k + kÕ)
⁄

d3xe≠ik·x›(x)

© (2fi)3”D(k + kÕ)P (k), (2.67)

where ”D(k) is the Dirac’s delta function and we define the power spectrum P (k). We
see that the two-point correlation function and the power spectrum are the Fourier
counterpart of each other,

P (k) =

⁄

d3xe≠ik·x›(x), ›(x) =

⁄

dk

(2fi)3
eik·xP (k). (2.68)

Assuming the rotational invariance of the corraltion function, i.e., ›(x) = ›(x)

where x = |x|, the power spectrum is also written as a function of k = |k| and does
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Chapter 2 Large-Scale Structure of the Universe

not depend on the direction of k. Then Eq. (2.68) is

P (k) = 4fi

⁄ Œ

0
x2dx

sin(kx)

kx
›(x) = 4fi

⁄ Œ

0
x2dxj0(kx)›(x), (2.69)

›(x) =

⁄ Œ

0

k2dk

2fi2

sin(kx)

kx
P (k) =

⁄ Œ

0

k2dk

2fi2
j0(kx)P (k), (2.70)

where j0(x) is the zeroth-order spherical Bessel function.

2.3.3 Evolution of linear matter power spectrum

The linear matter power spectrum is quite important to discuss a lot of cosmological
probes of the large-scale structure. In this subsection, we describe its basic properties.

The power spectrum of initial density fluctuations is usually assumed to be a power
law form:

Pinit(k) Ã kns , (2.71)

where ns is called the spectral tilt. ns is one of the cosmological parameters. According
to the discussions by Harrison [41] and Zeldovich [42], the variance of density
fluctuations on the Hubble scale should be the same across time, and then ns is
expected to be unity. The spectrum with ns is called the Harrison-Zeldovich spectrum.
In addition, ns is well constrained by the CMB anisotropy experiments, which also
suggest ns ƒ 1.

Within the Hubble scale, the density fluctuations experience the evolution according
to various physical processes, depending on the wave number. However, in linear
theory the fluctuation for each k mode evolves independently from other modes, and
hence the evolution is characterized by a simple form:

”(k, z) = T (k)
D+(z)

D+(zinit)
”(k, zinit) (2.72)

where D+(z) is the growing-mode linear growth factor described above, and we
introduce the transfer function T (k), which charaterizes the k dependence of the
evolution. The shape of T (k) is determined by the Einstein-Boltzmann equations of
various energy components, and there is no exact simple analytic solution. The exact
numerical calculation of transfer function is done using the linear Boltzmann solver
such as Camb1 [43]. Using this, the linear matter power spectrum is evolved as

P (k) =

5

D+(z)

D+(zinit)

62

T 2(k)Pinit(k). (2.73)

The transfer function depends mainly on the matter-radiation equality aeq. Since
in the radiation-dominated era the evolution of fluctuations on subhorizon scales

1https://camb.info/
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2.3 Correlation function and power spectrum

is supressed compared to those on superhorizon scales (which evolve as Ã a2), the
transfer function becomes smaller. In the matter-dominated era, the fluctuations on
superhorizon and subhorizon scales grows at the same rate. Due to the di�erence
between the matter and radiation-dominated era, the transfer function behaves as

T (k) Ã

Y

]

[

1 (k π keq)

k≠2 (k ∫ eq)
, (2.74)

where keq = aeqH(aeq) is the Hubble scale at the matter-radiation equality. As we
mentioned in Sec. 2.1.3, aeq is determined by Ωmh2, and hence this shape of transfer
function also mainly depends on Ωmh2. Aside from this behaviour, the characteristic
features such as Baryon Accoustic Oscillations (BAO) is also contained in the transfer
function.

2.3.4 Variance of density fluctuations

One of the cosmological parameters in which we are interested in this thesis is in
the form of the variance of density fluctuations. It characterize the strength of the
matter clustering. Here we describe its formulation.

Suppose we sample masses enclosed in a sphere with radius R at many points in
the Universe. This mass at some point is given by

M =

⁄

|x|<R
d3xfl(x) =

⁄

|x|<R
d3xfl̄[1 + ”(x)]

=
4fiR3

3
fl̄ +

⁄

|x|<R
d3xfl̄”(x)

© M̄ + ”M, (2.75)

where fl̄ is the mean matter density in the Universe, and we defined the mean mass
M̄ and the fluctuation ”M . The mass fluctuation is expressed by

”M

M̄
=

3

4fiR3

⁄

|x|<R
d3x”(x) =

⁄

d3xWR(|x|)”(x), (2.76)

where we introduce the window function WR(x). As the window, the top-hat window
function,

WR(x) =
3

4fiR3
Θ(R ≠ x), (2.77)

using the Heaviside step function Θ(x), is typically used.

With these definitions, we can calculate the mass variance smoothed in the sphere
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of radius R,

‡2(R) ©
K

3

”M

M̄

42
L

=

⁄

k2dk

2fi2
W̃

2
(kR)P (k), (2.78)

where

W̃
2
(kR) =

⁄

d3xe≠ik·xWR(|x|), (2.79)

and in the case of top-hat window,

W (kR) =
3

(kR)3
[sin(kR) ≠ kR cos(kR)]. (2.80)

As ‡2(R) is in the form of an integral of power spectrum, we can see it as the
amplitude of fluctuations. Conventionally, ‡8, the variance of linear fluctuations
smoothed in R = 8 h≠1 Mpc, is used as a cosmological parameter.

2.4 The nonlinear treatment of fluctuations

In linear theory, the treatment of the evolution of density and velocity fields are
highly simple. This is because the evolution of each k mode is independent from
other mode, within linear theory. When we consider the nonlinearity of density and
velocity fields, the calculation becomes highly complicated.

The system of the continuous, Euler, and Poisson equations [Eqs. (2.37), (2.38),
and (2.39)], becomes

ˆ”

ˆ·
+ Ò · [(1 + ”)u] = 0, (2.81)

ˆu

ˆ·
+

5

3

2

Ωm(z)

f2(z)
≠ 1

6

u + (u · Ò)u +
3

2

Ωm(z)

f2(z)
Ò„ = 0, (2.82)

Ò2„ = 0, (2.83)

where we define the normalized velocity u = v/(aHf) and grativational potential
„ = 4fiGa2fl̄Φ, and used the time variable · = ln D+. Furthermore, we define the
velocity divergence:

◊ © ≠Ò · u, (2.84)

and in Fourier space it leads to

u(k) =
ik

k2
◊(k). (2.85)

Using the above equations, we obtain the evolution equations of nonlinear density
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and velocity fields:

ˆ”(k)

ˆ·
≠ ◊(k)

=

⁄

d3k1

(2fi)3

d3k2

(2fi)3
(2fi)3”D(k1 + k2 ≠ k)–(k1, k2)◊(k1)”(k2), (2.86)

ˆ◊(k)

ˆ·
≠ 3

2

Ωm(z)

f2(z)
”(k) +

5

3

2

Ωm(z)

f2(z)
≠ 1

6

◊(k)

=

⁄

d3k1

(2fi)3

d3k2

(2fi)3
(2fi)3”D(k1 + k2 ≠ k)—(k1, k2)◊(k1)◊(k2), (2.87)

where we define two integration kernels,

–(k1, k2) © 1 +
k1 · k2

k2
1

, —(k1, k2) © |k1 + k2|2(k1 · k2)

2k2
1k2

2

. (2.88)

In Eqs. (2.86) and (2.87), the evolutions of density and velocity fields are contributed
by the couplings among di�erent wave vector modes. Due to this complicated mode
coupling, the exact analytic solutions to the above evolution equations have never
been derived. The standard analytic approach to this issue is the perturbative
expansion of the density and velocity divergence,

” = ”(1) + ”(2) + . . . , (2.89)

◊ = ◊(1) + ◊(2) + . . . , (2.90)

where ”(n) and ◊(n) are of the nth order of the linear perturbation, ”L. This pertur-
bation theory approach is highly powerful on relatively large scales (small k) where
the fluctuation does not exceed O(1), which is typically k . 0.2 h Mpc≠1 at redshift
z . 1. On the other hand, due to the truncation of higher-order terms, it tends to
fail to capture the fluctuations on smaller scales where the nonlinearity becomes even
severer.

In this thesis, we adopt an alternative appproach based on numerical simulations,
targeting mainly on these nonlinear-scale clustering.
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Chapter 3

Galaxy Clustering

In this section, we describe the galaxy clustering, which is the main probe of the
large-scale structure. The galaxy clustering is the spatial distribution of galaxies on
the large-scale structure, and is observed by galaxy redshift surveys. A di�culty in
the galaxy clustering is that it is “biased” from the underlying matter clustering. To
extract cosmological information from the observed galaxy clustering, we inevitably
need to take into account the galaxy bias. In addition, there are two important e�ects
in galaxy redshift surveys: the redshift-space distortions (RSD) and the Alcock-
PaczyÒski (AP) e�ect. These e�ects imprint the clustering statistics measured from
the three-dimensional galaxy map the distinct anisotropic patterns.

3.1 Galaxy bias

In the cosmological theory, our primary interest on the large-scale structure is in the
matter distribution in the Universe, as is described in Chapter 2. However, what we
can directly observe with a telescope is the distributions of galaxies, not of matter
itself. There is in general some discrepancy between the distribution of matter and
that of discrete objects (e.g., galaxies and halos), called “bias”.

The relation between the flactuations of matter density field ” and of the number
density field of galaxies (or other discrete matter tracers) ”g is written with some
functional of ”:

”g(x) = Fg[”], (3.1)

where Fg is a functional which can depend on the whole spatial configuration of
matter density field, i.e., the bias can be nonlocal. However, on large scales where
the linear theory is valid, we can simply model the bias as a constant:

”g = bg”, (3.2)

where the constant bg is called linear bias.

In the case of dark matter halos, the linear bias as a function of mass is well
calibrated using N -body simulations, and the fitting formulae is well universal over
di�erent cosmology and redshift. One of the well-known fitting formulae is presented
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Chapter 3 Galaxy Clustering

in Ref. [44].

However, the galaxy distributions are governed by the complex physical process
of the galaxy formation and evolution, on which we still do not have su�cient
understanding. Moreover, the galaxies targeted in galaxy surveys are selected under
some selection criteria, such as the color and magnitude cuts. Therefore, we cannot
determine the bias of obvserved galaxies from the first principles, which is the main
uncertainty on doing the cosmology using galaxy clustering.

3.2 Redshift-space distortions

A galaxy redshift survey constructs a three-dimensional map of taget galaxies, by
measuring their spectroscopic redshifts and angular positions on the celestial sphere.
Redshifts observed by the spectroscopy does not have their “true” values which
purely come from the homogeneous and isotropic expansion of the Universe, but have
a contribution of the Doppler e�ect of light propagated from the galaxies, arising
from their peculiar motions. Due to this Doppler shift, the observed redshift zobs is
related to the true one z as

zobs = z +
v · n̂

a
, (3.3)

where v is the peculiar velocity of a galaxy relative to the observer, n̂ is the unit
vector along the line-of-sight direction, a is the scale factor where the galaxy resides.
This e�ect is called the redshift-space distortions (RSD) [8, 9, 10].

The redshift-space distortions induces an anisotropy in the galaxy clustering. To
measure the clustering statistics, e.g., power spectrum, we convert the galaxies’
redshifts into the comoving distances, assuming some fiducial cosmological model.
The three-dimensional space of comoving coordinates reconstructed in this way
is called “redshift space” to distinguish it from real space. In redshift space, the
positions of galaxies appear to be modulated by their peculiar velocities along the
line-of-sight direction as

s = x +
v · n̂

aH(a)
n̂, (3.4)

where x and s are the positions in real and redshift space, and H(a) is the Hubble
expansion rate at scale factor a.

The real- and redshift-space density fields are connected since the mass or the
number of matter tracers is conserved,

Ë

1 + ”S(s)
È

d3s = [1 + ”(x)] d3x, (3.5)

where ”(x) is the density contrast in real space, and we denote the redshift-space
quantities by the superscript “S”. By simply multiplying eik·s and integrating

24



3.2 Redshift-space distortions

Eq. (3.5), we obtain

(2fi)3”D(k) + ”S(k) =

⁄

d3xeik·s[1 + ”(x)]

=

⁄

d3xeik·x[1 + ”(x)]ei[(k·n̂)(u·n̂)], (3.6)

where we use Eq. (3.4) and the normalized velocity u © v/(aH). The two-point
correlation of the Fourier-space density field in redshift space is

eË

(2fi)3”D(k) + ”S(k)
È Ë

(2fi)3”D(kÕ) + ”S(kÕ)
Èf

= (2fi)6 +

”D(k)”D(kÕ)
,

+
e

”S(k)”S(kÕ)
f

=

=⁄

d3xeik·x[1 + ”(x)]ei[(k·n̂)(u·n̂)]
⁄

d3xÕeikÕ·xÕ
[1 + ”(xÕ)]ei[(kÕ·n̂Õ)(uÕ·n̂Õ)]

>

=

⁄

d3xeik·x
⁄

d3xÕeikÕ·xÕ
e

[1 + ”(x)][1 + ”(xÕ)]ei[(k·n̂)(u·n̂)+(kÕ·n̂Õ)(uÕ·n̂Õ)]
f

(3.7)

where we denote u(xÕ) as uÕ for simplicity.

3.2.1 Plane-parallel approximation

To proceed with the calculation, it is quite useful to adopt the (global) plane-parallel
approximation (also called the distant-observer approximation). This approximation
is that we assume all the particles (such as galaxies and halos) share the same
line-of-sight direction. With this treatment, the È...Í in Eq. (3.7) has the invariance
with respect to spatial translations, i.e., it can be seen as a function of r = x ≠ xÕ.
Thus, we proceed with Eq. (3.7) as

⁄

d3x

⁄

d3xÕei(k+kÕ)·xÕ
eik·(x≠xÕ)

e

[1 + ”(x)][1 + ”(xÕ)]ei[kÎuÎ(x)+kÕ
Î
uÎ(xÕ)]

f

= (2fi)3”D(k + kÕ)
⁄

d3reik·r
e

[1 + ”(x)][1 + ”(xÕ)]eikÎ[uÎ(x)≠uÎ(xÕ)]
f

, (3.8)

where Î denotes the component along the line-of-sight direction. We introduce µ to
denote the directional cosine between k and the line-of-sight,

µ © n̂ · k̂ =
kÎ
k

. (3.9)

In the plane-parallel approximation, we define the redshift-space power spectrum as

e

”S(k)”S(kÕ)
f

= (2fi)3”D(k + kÕ)P S(k), (3.10)

and Eq. (3.8) leads to

(2fi)3”D(k) + P S(k) =

⁄

d3reik·r
e

[1 + ”(x)][1 + ”(xÕ)]eikµ[uÎ(x)≠uÎ(xÕ)]
f

. (3.11)
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Chapter 3 Galaxy Clustering

Figure 3.1: The galaxy power specrtrum measured in the SDSS-III Baryon Oscillatio
Spectroscopic Survey [2], as a function of (k‹, kÎ). Cited from Ref. [19].

This power spectrum P S(k) is expressed as a function of the wave number k and
the cosine angle µ. It is symmetric with respect to the wave vector lying in the
two-dimensional plane perpendicular to the line-of-sight, denoted as k‹. Hence the
redshift-space power spectrum is given as a function of two variables that specify the
wave vector k; (k, µ) or (k‹, kÎ), where k‹ = k



1 ≠ µ2 and kÎ = kµ (see Fig. 3.1).

From Eq. (3.11), we also see that the redshift-space power spectrum reduces to
the real-space one at µ = 0, i.e., P S(k, µ = 0) = P (k). Throughout this chapter,
we employ the global plane-parallel approximation in which we assume that the
line-of-sight direction is parallel to one axis of the Cartesian coordinate, for which
we take the x3-axis direction, n̂ Î x3.

3.2.2 Linear theory treatment

So far we have discussed a highly general formulation of the redshift-space distortions.
In this section, we provide the linear-theory treatment of the redshift-space galaxy
power spectrum, first derived by Nick Kaiser [8]. Assuming the plane-parallel approx-
imation along the x3 axis, we calculate the Jacobian of the coordinate transformation
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3.2 Redshift-space distortions

between the real and redshift space,

J =

-

-

-

-

ˆs

ˆx

-

-

-

-

= 1 +
ˆ

ˆx3

3

v3

aH

4

, (3.12)

where v3 is the x3-component of velocity. Using this Jacobian, the redshift-space
galaxy density field is related to the real-space galaxy density and velocity field,

”S
g (s) ƒ ”S

g (x) = ”g(x) ≠ 1

aH

ˆv3

ˆx3
, (3.13)

where we dropped the higher-order terms of the perturbations. We next move on to
the Fourier space,

”S
g (k) = ”g(k) ≠ ik3

aH
v3(k). (3.14)

By using Eq. (2.59), we can write the redshift-space density field of galaxies in terms
of real-sapce galaxy and matter density field,

”S
g (k) = ”g(k) + f

3

k3

k

42

”(k) = ”g(k) + fµ2”(k), (3.15)

where f is the linear growth rate defined in Eq. (2.57). Assuming the linear galaxy
bias bg, we obtain

”S
g (k) = (bg + fµ2)”(k) = bg(1 + —µ2)”(k), (3.16)

where we define — = f/bg, which is called the redshift-space distortion parameter.
The multiplicative factor bg + fµ2 is often called the Kaiser factor. The strength of
the RSD e�ect is completely determined by this factor within the linear theory. The
power spectrum in redshift space is of a quite simple form:

P S
g (k, µ) = (1 + —µ2)2b2

gP (k) = (1 + —µ2)2Pg(k). (3.17)

This formula has a µ dependence in the form of a fourth-order polynomial without
odd-order terms.

3.2.3 Multipole moment of redshift-space power spectrum

The redshift-space power spectrum given as a function of (k, µ) contains the full
information in the galaxy distribution at the level of two-point statistics. However,
in galaxy redshift surveys, measuring the power spectrum in the form of P (k, µ) can
lead to a huge dimension of data vector, and the analysis would be computationally
expensive; e.g., a calibration of the covariance matrix requires a large number of
simulations that should be much larger than the dimension of data vector. For this
reason, a dimensional reduction of data vector is useful.
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Chapter 3 Galaxy Clustering

It is common to expand the redshift-space power spectrum using the Legendre
polynomials:

P S(k, µ) =
Œ

ÿ

¸=0

P S
¸ (k) L¸(µ), (3.18)

where L¸(µ) is the ¸th order Legendre polynomials. Here P S
¸ (k) is the ¸th order

multipole moments of the power spectrum, which is given as a function of |k|. Using
the orthogonality of the Legendre polynomials, the multipole moment of the power
spectrum is defined as

P S
¸ (k) © 2¸ + 1

2

⁄ 1

≠1
dµ P S(k, µ) L¸(µ). (3.19)

Note that the odd-¸ moments vanish due to the rotational symmetry of the redshift-
space clustering around the line-of-sight.

In the Kaiser’s linear theory we presented in Sec. 3.2.2, the redshift-space power
spectrum has the nonvanishing moments of ¸ = 0 (monopole), ¸ = 2 (quadrupole)
and ¸ = 4 (hexadecapole), and the higher-order moments vanish. The concrete
expression for the linear-theory multipole moment of galaxy power spectrum is

Q

c

c

a

P S
0,Kaiser(k)

P S
2,Kaiser(k)

P S
4,Kaiser(k)

R

d

d

b

=

Q

c

c

a

1 + 2
3— + 1

5—2

4
3— + 4

7—2

8
35—2

R

d

d

b

b2
gP lin

m (k) (3.20)

where P lin
m (k) is the linear matter power spectrum.

The monopole (¸ = 0) and the quadrupole (¸ = 2) moments are dominant terms of
the anisotropic power spectrum at least on scales up to the quasi-nonlinear regime we
are interested in. The current-generation galaxy redshift surveys such as the SDSS
survey enable a significant detection of these two dominant moments [18, 45].

3.3 Alcock-PaczyÒski e�ect

In galaxy redshift surveys, another useful information can be extracted from an ap-
parent geometrical distortion in the observed galaxy clustering; the Alcock-PaczyÒski
(AP) e�ect [37, 38]. This e�ect arises from the discrepancy between the underlying
true cosmology and the “reference” cosmological model, where the latter needs to be
assumed in a clustering analysis when mapping direct observables of galaxy positions,
i.e. its redshift and angular positions, to the comoving coordinates. The AP e�ect
can be described by the coordinate transformation, and in Fourier space it is given as

k‹,ref =
DA(z)

DA,ref(z)
k‹, kÎ,ref =

Href(z)

H(z)
kÎ, (3.21)
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3.4 Halo model formalism of galaxy power spectrum

where DA(z) is the angular diameter distance to redshift z given in Eq. (2.17) and
H(z) is the Hubble parameter at z, and quantities with and without subscript “ref”
hereafter denote those in the reference (assumed) cosmological model and the true
(unknown) cosmology, respectively. For convenience of our discussion, we define two
parameters to characterize the AP distortion, following Ref. [46], as

–‹ © DA(z)

DA,ref(z)
, –Î © Href(z)

H(z)
. (3.22)

Hence the observed redshift-space power spectrum can be expressed in terms of the
underlying true power spectrum as

P S
gg,ref(kÎ,ref , k‹,ref) =

1

–2
‹–Î

P S
gg(kÎ, k‹), (3.23)

In the following, we will often omit the subscript “ref” for notational simplicity. The
baryon acoustic oscillation (BAO) features in the galaxy power spectrum makes the
AP e�ect very powerful to constrain DA(z) and H(z) [47, 48, 49] (here note that
the BAO peak location is almost una�ected by the RSD e�ect). The AP e�ect can
also be utilized to constrain the cosmological parameters which are relevant to the
cosmic expansion (see e.g. [50]).

The multipole power spectrum is defined from the observed spectrum as

P S
gg,ref,¸(kref) =

2¸ + 1

2–2
‹–Î

⁄ 1

≠1
dµref

Ó

P S
gg [k(kref , µref), µ(µref)]

Ô

L¸(µref), (3.24)

where L¸(x) is the ¸-th order Legendre polynomial and

k(kref , µref) ©
Ò

k2
Î + k2

‹ = kref
1

–‹

C

1 + µ2
ref

A

–2
‹

–2
Î

≠ 1

BD1/2

, (3.25)

µ(µref) ©
kÎ
k

= µref
–‹
–Î

C

1 + µ2
ref

A

–2
‹

–2
Î

≠ 1

BD≠1/2

(3.26)

As we will show in Chapter 6, the monopole moment of power spectrum is sensitive
to the “dilation” parameter, –2

‹–Î whose variation causes an isotropic shift of the
BAO peak locations and a change in the power spectrum amplitudes. On the other
hand, the quadrupole moment is sensitive to the “warping” parameter –‹/–Î, or
FAP in Ref. [19] whose variation causes an anisotropic distortion in the redshift-space
power spectrum (therefore a change in the quadrupole moment).

3.4 Halo model formalism of galaxy power spectrum

In this section, we describe the halo model formalism [35, 34, 51, 52], which we will
employ as the basic formalism to model the galaxy power spectrum in this thesis.
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Chapter 3 Galaxy Clustering

The comprehensive review of this approach is presented in Ref. [53].

In the halo model formalism, we assume that all matter is associated with halos,
and then the matter correlation function is described by the contribution from pairs
of mass elements in the same halo and those in two distinct halos, which are referred
to as the one-halo and two-halo terms, respectively. Both terms can be modeled by
assuming a halo density profile, i.e., the density distribution inside halos, such as the
Navarro-Frenk-White profile [54]. This approach can also be applied to the galaxy
distribution, as we describe below.

3.4.1 Halo occupation distribution model

First, we introduce the halo occupation distribution (HOD; [33, 52]) model, which is
a phenomenological model for the number distribution of galaxies sitting in halos
of a given mass. In this thesis, we adopt the HOD model proposed by Ref. [36]. It
decomposes the galaxies into the central and satellite galaxies: the central galaxy is
assumed to reside at the center of its host halo, and satellite galaxies are surrounding
it. In this HOD model, the mean number of central and satellite galaxies are given
separately:

ÈNÍ(M) = ÈNcÍ(M) + ÈNsÍ(M), (3.27)

where the notation È Í (M) denotes the average of a quantity for halos of a given
mass M . We employ the mean HOD for central galaxies given by the following form:

ÈNcÍ(M) =
1

2

C

1 + erf

A

log M ≠ log Mmin

‡log M

BD

, (3.28)

where erf(x) is the error function and Mmin and ‡log M are model parameters. Note
ÈNcÍ Æ 1. The mean central HOD, ÈNcÍ(M), can be interpreted as the probability
that a halo with mass M hosts a central galaxy. The mean central HOD considered
here has properties that ÈNcÍ æ 0 for halos with M π Mmin, while ÈNcÍ æ 1 for
halos with M ∫ Mmin. In our fiducial model we assume that halos host central
galaxies following a Bernoulli process with the probability solely determined by the
halo mass, or equivalently we ignore a possible extra dependence of the central HOD,
often referred to as the halo assembly bias, on other physical properties such as
large-scale environments or internal structures of halos (density profile, formation
epoch, etc.) for our default choice. We will discuss the impact of assembly bias e�ect
in Chapter 6.

For the mean HOD of satellite galaxies, we employ the following parametrized
model:

ÈNsÍ(M) © ÈNcÍ(M)⁄s(M) = ÈNcÍ(M)

5

M ≠ ŸMmin

M1

6–sat

(3.29)
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where M1, –sat, and Ÿ are model parameters, and we have defined

⁄s(M) ©
5

M ≠ ŸMmin

M1

6–sat

, (3.30)

for convenience of our following discussion. For our default prescription, we assume
that satellite galaxies reside only in a halo that already hosts a central galaxy. Hence,
in the above equation, Nc = 1 for a halo where satellite galaxy(ies) can reside. Then
we assume that the number distribution of satellite galaxies in a given host halo follows
the Poisson distribution with mean ⁄s: P (Ns|Nc = 1) = (⁄s)

Ns exp(≠⁄s)/(Ns!) and
P (Ns|Nc = 0) = ”K

Ns,0, where ”K
i,j stands for the Kronecker’s delta. Thus a host

halo of satellite galaxies has in total 1 + Ns galaxies. Under this setting, the mean
number of galaxy pairs living in the same halo with mass M , which is relevant for
the one-halo term calculation, can be computed as

ÈN(N ≠ 1)Í = P (Nc = 1) ÈN(N ≠ 1)|Nc = 1Í + P (Nc = 0) ÈN(N ≠ 1)|Nc = 0Í

= ÈNcÍ
Œ

ÿ

Ns=0

(⁄s)
N
s

Ns!
exp(≠⁄s) Ns(1 + Ns)

= ÈNcÍ(M)
Ë

2⁄s(M) + ⁄s(M)2
È

. (3.31)

Note that the second term in the first line is zero following our assumption that no
satellite galaxies reside in a halo without a central galaxy. This treatment is the
same as in Ref. [36].

The central and satellite HOD models we use in this thesis are specified by five
parameters {Mmin, ‡log M , M1, –sat, Ÿ}. In Chapter 6, however, we will adopt another
notation by Msat = ŸMmin, and it also leads to the five-parameter HOD model.

3.4.2 Position distribution

To model the galaxy clustering in the halo model formalism, we need to model the
(redshift-space) position distribution of satellite galaxies inside a halo. We assume,
for simplicity, that satellite galaxies follow the spatial distribution of matter in the
host halo. The number density profile of satellite galaxies is given as

H(x; M) =
fl(x; M)

M
, (3.32)

where fl(x; M) is the mass density profile for halo of mass M . This profile satisfies
the normalization condition,

s

d3x H(x; M) = 1. Since we can assume a spherically
symmetric radial profile in the statistical average sense, this normalization condition
reduces to

s R
0 4fir2dr H(r; M) = 1, where R is the halo radius. In this thesis, we

adopted the normalized Navarro-Frenk-White (NFW) profile [54]:

H(r; M, c) =
c3

4fiR3

5

ln(1 + c) ≠ c

1 + c

6≠1 1

(cr/R)(1 + cr/R)2
, (3.33)
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for the galaxy radial profile. The NFW profile is specified by the concentration
parameter c and mass M . For this we employed the median concentration-mass
relation c(M) calibrated in Refs. [55, 56]. To compute it we use the publicly
available Python toolkit Colossus1 [57]. For Chapter 6, we also introduce a
nuisance parameter to model a possible uncertainty in the concentration parameter,
c(M, z) æ cconcc(M, z) (cconc = 1 for the fiducial model).

3.4.3 Velocity distribution: Finger-of-God e�ect

To model the redshift-space distribution inside halos, we also need a model of the
velocity distribution of satellite galaxies with respect to the halo center. In this
thesis, we employ an isotropic Gaussian distribution for the velocity distribution for
simplicity,

F(∆rÎ; ‡vir,M ) =
1Ô

2fi
‡vir,M

aH

exp

S

U≠
(∆rÎ)2

2
‡2

vir,M

a2H2

T

V , (3.34)

where ‡vir(M) is the velocity dispersion for halos of M . In Chapter 5, we assume
that the velocity dispersion is specified by the host halo mass as

‡2
vir,M =

GM

2Rphy
, (3.35)

where Rphy is the physical halo radius (i.e. Rphy = aR). In Chapter 6, we use a more
complex model, following Ref. [58]:

‡2
vir,M (r) =

GM(< r)

2r
, (3.36)

where M(< r) is the mass enclosed within the radius r (it is also in the physical scale)
from the center of the halo, and can be calculated by assuming the density profile.
Similarly to the concentration parameter, we also introduce a nuisance parameter to
model the uncertainty in the velocity dispersion, ‡vir,M (r) æ cvel‡vir,M (r) (cvel = 1

for the fiducial model).

Eq. (3.34) denotes the distribution of the line-of-sight component of velocity, and
we expressed the velocity function in terms of the positional displacement by the
RSD e�ect due to the line-of-sight velocity component: ∆rÎ © vÎ/(aH). The velocity
function [Eq. (3.34)] satisfies the normalization condition

s Œ
≠Œd(∆rÎ) F(∆rÎ) = 1.

The RSD e�ect due to this internal virial motions of satellite galaxies inside host
halos is called the Finger-of-God (FoG) e�ect [59] (also see [60, 61] for the halo model
approach of the FoG e�ect). This is a highly nonlinear e�ect in the redshift-space
galaxy clustering. The redshift-space distribution of satellite galaxies in a given
host halo is stretched by the FoG e�ect along the line-of-sight direction. It can be

1http://www.benediktdiemer.com/code/colossus/
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3.4 Halo model formalism of galaxy power spectrum

expressed by a convolution of the distributions of real-space spatial distribution and
the velocity function of satellite galaxies (also see [58, 62]),

HS(s; M, ‡vir,M ) =

⁄ Œ

≠Œ
dy H(s ≠ yn̂; M) F(y; ‡vir,M ), (3.37)

where n̂ denotes the unit vector along the line-of-sight direction. Equation (3.37)
reduces to a simple multiplicative form in Fourier space:

H̃
S
(k; M, ‡vir,M ) = H̃(k; M) F̃(kÎ; ‡vir,M ). (3.38)

Note that in this work we consider only the specific model based on the NFW profile
and the Gaussian velocity distribution, but actually Eq. (3.38) can be constructed from
any other models of the real-space position distribution H̃(k; M) and displacement
(velocity) distribution F̃(kÎ; ‡vir,M ).

3.4.4 Galaxy power spectrum

With all the building blocks we described above, we can calculate the galaxy power
spectrum.

Once the HOD model is given, the mean number density of galaxies under consid-
eration is given as

n̄g =

⁄

dM
dn

dM
[ÈNcÍ(M) + ÈNsÍ(M)] , (3.39)

where dn/dM is the halo mass function which gives the mean number density of
halos in the mass range [M, M + dM ]. The redshift-space power spectrum of galaxies
can be decomposed into two contributions within the halo model framework:

P S
gg(k) = P S,1h

gg (k) + P S,2h
gg (k), (3.40)

where P S,1h
gg and P S,2h

gg are the one- and two-halo terms, respectively. The one-halo
term arises from pairs of galaxies that reside in the same halo, while the two-halo
term arises from those in di�erent halos.

The two terms can be expressed as

P S,1h
gg (k) =

1

n̄2
g

⁄

dM
dn

dM
ÈNcÍ(M)

◊
Ë

2⁄s(M)H̃
S
(k; M, c, ‡vir,M ) + ⁄s(M)2H̃

S
(k; M, c, ‡vir,M )2

È

, (3.41)
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and

P S,2h
gg (k) =

1

n̄2
g

⁄

dM
dn

dM

Ë

ÈNcÍ(M) + ÈNsÍ(M)H̃
S
(k; M, c, ‡vir,M )

È

◊
⁄

dM Õ dn

dM Õ

Ë

ÈNcÍ(M Õ) + ÈNsÍ(M Õ)H̃
S
(k; M Õ, cÕ, ‡Õ

vir,M Õ)
È

P S
hh(k; M, M Õ).

(3.42)

Here P S
hh(k; M, M Õ) is the redshift-space power spectrum of two halos that have

masses M and M Õ, respectively. The above one-halo term has an asymptotic behavior
P S,1h

g æ 1/n̄gg for the limit k æ 0 because H̃
S æ 1.

Our overall approach in this thesis is to model the redshift-space galaxy power
spectrum based on the halo power spectrum, P S

hh(k; M, M Õ), which is in the two-halo
term. The halo model formalism described above takes an essential role in this
approach.

3.4.5 O�-centering e�ect

Furthermore, we include a possible e�ect of “o�-centered” central galaxies in our
modeling. Since dark matter halo is not a well-defined object and experiences mergers
of progenitor halos, galaxies selected by specific ways based on a spectroscopic sample
(e.g. color and magnitude cuts) might be o�-centered (i.e. satellite) galaxies, as
indicated in the results of Ref. [62]. Even if a halo contains a single target galaxy
in the sample and if the galaxy is o�-centered from the true halo center, the galaxy
is categorized as a “central” galaxy in a naive HOD picture. We explicitly include
e�ects of these o�-centered galaxies on redshift-space galaxy power spectrum. To do
this, we follow the methods in Ref. [62] (also see [62, 63, 64, 65]) and we introduce
a parameter poff (0 Æ poff Æ 1), which represents the probability that each central
galaxy is o�-centered from the center of its host halo. In addition we assume a
Gaussian distribution for the radial distribution of the o�-centered galaxy in each
host halo:

P(roff) =
1

(2fi)3/2(rsRoff)3
exp

C

≠ (roff)2

2(rsRoff)2

D

, (3.43)

where rs is the scale radius of each halo with mass M and we include additional
dimensionless parameter Roff which models a typical o�-centering radius in units of
the scale radius. Under this formulation, in Eqs. (3.41) and (3.42) we can replace
the central HOD as

ÈNcÍ(M) æ
5

(1 ≠ poff) + poff exp

;

≠1

2
k2(rsRoff)2

<

F̃(k; ‡vir,M)

6

ÈNcÍ(M). (3.44)
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Chapter 4

Measurement of Galaxy Power Spectrum

In this chapter, we describe the measurement techniques of the Fourier-space cluster-
ing statistics, focusing on the power spectrum. After we explain the basic treatment of
the Fourier-space density field, we introduce the well-known estimator for the galaxy
power spectrum proposed in Ref. [66]. We further describe the FFT-based estimator
for the multipole monents of the redshift-space power spectrum [67], which we used
in the power spectrum measurement on the survey galaxy catalogs in Chapter 7. In
addition, we show the formulation of the survey window function e�ect which needs
to be taken into account in galaxy redshift surveys.

4.1 Fourier-space statistics

4.1.1 Fourier series expansion of the fluctuation fields

When we calculate the clustering statistics of some field f(x) in N -body simulations
or galaxy surveys, we have only finite-volume information of the field. Therefore,
in the case that we want the Fourier-space counterpart of the field, we impose the
periodic boundary condition, i.e., the field satisfies

f(x) = f(x + Ln), (4.1)

where L is the one-side length of the simulation box (in the case of real survey it is
taken to be the side length of the FFT box to contain the whole survey footprints)
and n is an arbitrary integer vector. The Fourier-space field, f̃(k), is obtained by
expanding f(x) in Fourier series:

f(x) =
ÿ

k= 2fi

L
n

f̃(k)eik·x, (4.2)

where all wave vectors k are not continuous but discrete quantities. The Fourier
component f̃(k) is given by

f̃(k) =
1

V

⁄

V
d3xf(x)e≠ik·x, (4.3)
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Chapter 4 Measurement of Galaxy Power Spectrum

where V = L3 is the volume we consider as above. We can calculate the Fourier-space
statistics from this field. For instance, the power spectrum is given by

e

”̃(ki)”̃
ú
(kj)

f

=

K

⁄

V

d3x

V
e≠iki·x”(x)

⁄

V

d3xÕ

V
eikj ·xÕ

”(xÕ)

L

=

⁄

V

d3x

V

⁄

V

d3xÕ

V
e≠iki·xeikj ·xÕ +

”(x)”(xÕ)
,

=

⁄

V

d3x

V
e≠i(ki≠kj)·x

⁄

V

d3r

V
e≠ikj ·r›(r)

= ”K
ij

1

V

5⁄

V
d3re≠iki·r›(r)

6

© ”K
ij

P̂ (ki)

V
, (4.4)

where ”K
ij is the Kronecker’s delta, and ›(r) = È”(x)”(xÕ)Í (r = x≠xÕ) is the two-point

correlation function we defined in Sec. 2.3. In the last line, we used

⁄

V

d3x

V
e≠i(ki≠kj)·x = ”K

ij . (4.5)

4.1.2 Direct summation method

To calculate the power spectrum from some discete particle distribution, there is a
direct method with any artifact due to the Fourier transform. Suppose we have the
distribution of Np particles (e.g., N -body simulation particles or galaxies observed
in surveys) in the spatial volume V . We define the number density field as

fl(x) =

Np
ÿ

i=1

m”D(x ≠ xi), (4.6)

where m is the mass of particles, or we can set m = 1 when we consider the number
density field. Then, we write down the field of density contrast as

”(x) © fl(x)

fl̄
≠ 1 =

1

n̄

Np
ÿ

i=1

”D(x ≠ xi) ≠ 1, (4.7)

where fl̄ is the mean mass density, n̄ = fl̄/m = Np/V is the mean number density.
Assuming the periodic boundary condition, we can derive the Fourier series component
of ”(x),

”̃(k) =
1

n̄

Np
ÿ

i=1

1

V

⁄

V
d3x”D(x ≠ xi)e

≠ik·x ≠ 1

V

⁄

V
d3xe≠ik·x

=
1

Np

Np
ÿ

i=1

e≠ik·xi ≠ ”K
k , (4.8)
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4.2 Fast Fourier transform-based method

where ”K
k

is unity when k = 0 and otherwise zero (note that k is the discrete vector).

When we calculate the power spectrum by averaging
-

-

-”̃(k)
-

-

-

2
, the self-correlation

of particles should be subtracted as the shot noise. This contribution amounts to
1

N2
p

qNp

i=1 = 1
Np

, and hence, the power spectrum is calculated using

e

”̃(ki)”̃(kj)
f

= ”K
ij

C

P (ki)

V
+

1

Np

D

=
”K

ij

V

5

P (ki) +
1

n̄

6

,

P (ki) = V
-

-

-”̃(ki)
-

-

-

2
≠ 1

n̄
. (4.9)

This estimator is clean in the sense that it is free from the aliasing problem arising
from the discrete Fourier transform. However, it is computationally expensive,
because it requires Np ◊ Nk calculations, where Nk is the number of wave vector for
which ”̃(k) is evaluated.

4.2 Fast Fourier transform-based method

To accelerate the measurement of the Fourier-space clustering statistics, we commonly
resort to the fast Fourier Transform (FFT), an e�cient algorithm of the discrete
Fourier transform (DFT). It can compute the DFT of a function on the rectangular
grid by O(Ng log Ng) calculations, where Ng is the number of grid points.

4.2.1 Interpolation of the particle distribution on the FFT grid

Since the discrete Fourier transform requires the field evaluated on each point of a
rectangular grid, we need to interpolate the field calculated from the discrete particle
distribution on the grid as follows.

First, each particle is assigned a “shape”, which is represented by the shape
function S(x) centered on the particle position. This function is symmetric, positively
defined and separable as S(x) = S1D(x)S1D(y)S1D(z). This separability makes the
calculations simply applicable to the arbitrary dimensional field. It also satisfies the
normalization

⁄

V
d3xS(x) = 1. (4.10)

From this setting, we can calculate the field which is constructed from the particle
distribution, e.g., the density contrast field ”(x). The density contrast field of Np

particles is

”(x) =
1

n̄

Np
ÿ

i=1

S(x ≠ xi) ≠ 1, (4.11)
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and we obtain the grid-interpolated field of it as

”w(xG
j ) © 1

H3

⁄

xG
j

d3x”(x) =
1

n̄

Np
ÿ

i=1

C

1

H3

⁄

xG
j

d3xS(x ≠ xi)

D

≠ 1, (4.12)

where H is the grid spacing along one dimension. By defining the grid interpolation
kernel as the grid-averaged shape of a particle,

W (xG
j ≠ xi) © 1

H3

⁄

xG
j

d3xS(x ≠ xi), (4.13)

Eq. (4.12) reduces to

”w(xG
j ) =

1

n̄

Np
ÿ

i=1

W (xG
j ≠ xi) ≠ 1. (4.14)

By the separability of S(x), W (x) is also separable into each dimension, and it is
su�cient if we use a one-dimensional function to construct the arbitrary dimensional
interpolation kernel. As such grid interpolation kernels, the basis functions of B-spline
curves are commonly used. The functional shapes for the lowest-order basis functions
are as follows [68]:

• Nearest Grid Point (NGP)

W (1)(x) =

Y

]

[

1 (|x| < 1
2)

0 (otherwise)
(4.15)

• Cloud In Cells (CIC)

W (2)(x) =

Y

]

[

1 ≠ |x| (|x| < 1)

0 (otherwise)
(4.16)

• Triangular-Shaped Cloud (TSC)

W (3)(x) =

Y

_

_

_

]

_

_

_

[

3
4 ≠ x2 (|x| < 1

2)

1
2

1

3
2 ≠ |x|

22
(1

2 Æ |x| < 3
2)

0 (otherwise)

(4.17)

• Piecewise Cubic Spline (PCS)

W (3)(x) =

Y

_

_

_

]

_

_

_

[

1
6

!

4 ≠ 6x2 + 3|x|3
"2

(0 Æ |x| < 1)

1
6 (2 ≠ |x|)3 (1 Æ |x| < 2)

0 (otherwise)

(4.18)
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4.2 Fast Fourier transform-based method

In this thesis, we use the CIC in Chapters 5 and 6, and the PCS in Chapter 7.

4.2.2 Fourier-space field in FFT

After assigning the particles to each grid point, we perform the FFT to go to the
Fourier space.

Since the discrete Fourier transform lose the high-frequency signals, the grid-
interpolated field Eq. (4.12) can be mathematically described in terms of the comb
function III(x) © q

n ”D(x ≠ n). We can define the field on the discrete grid as a
sampling on the continuous space x,

”G
w (x) = III

3

x

H

4

”w(x), (4.19)

where ”w(x) is underlying (continuous) interpolated field, which is given by

”w(x) =

⁄

d3xÕW (x ≠ xÕ)”(xÕ) =

⁄

d3xÕW (x ≠ xÕ)

S

U

1

n̄

Np
ÿ

i=1

”D(xÕ ≠ xi) ≠ 1

T

V

=
1

n̄

Np
ÿ

i=1

W (x ≠ xi) ≠ 1. (4.20)

The discretely-sampled field ”G
w (x) satisfies ”G

w (xG
j ) = ”w(xG

j ) on each grid point
xG

j , and becomes zero elsewhere. The Fourier-series coe�cient of the comb function
III(x) is III˜ (k) =

q

n ”K
k,ksn

, where ks = 2fi/H is the sampling frequency. Hence the
Fourier-series coe�cient of ”G

w (x) is

”̃
G
w(k) = III˜ (k) ú ”̃w(k) =

ÿ

kÕ

III˜ (kÕ)”̃w(k ≠ kÕ) =
ÿ

n

ÿ

kÕ

”K
kÕ,ksn”̃w(k ≠ kÕ)

=
ÿ

n

”̃w(k ≠ ksn). (4.21)

The terms of n ”= 0 are the aliasing contributions which arise from the discrete
sampling. Since the sampling wavenumber of the grid ks is much larger than the
wavenumbers k we are interested in, the aliasing terms are typically from the higher-
frequency region than k. The field ”w(x) is a convolution of the interpolation window
W (x) and the true field ”(x), and hence we can remove the e�ect of the interpolation
window from the main (n = 0) contribution by simply dividing by W̃ (k),

”̃
G

(k) © ”̃
G
w(k)

W̃ (k)
= ”̃(k) +

ÿ

n”=0

w̃n(k)”̃(k ≠ ksn), (4.22)

where we define the “corrected” window function w̃n(k) © W̃ (k ≠ ksn)/W̃ (k).
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Chapter 4 Measurement of Galaxy Power Spectrum

4.3 Feldman-Kaiser-Peacock estimator

4.3.1 Basic formalism

On the practical measurement of the power spectrum form galaxy redshift surveys,
the selection e�ect due to the survey geometry needs to be taken into account. To
this end, we introduce the so-called Feldman-Kaiser-Peacock estimator [66], which is
commonly used in the measurement of galaxy clustering statistics.

Following Ref. [66], we define the weighted density field as

”W (x) © w(x) [ng(x) ≠ –nr(x)]
#s

d3xn̄2(x)w2(x)
$1/2

=
w(x) [ng(x) ≠ –nr(x)]

I
1/2
22

, (4.23)

where ng(x) and nr(x) are the galaxy and random number density fields. Note that
they already include the incompleteness weight due to the observational systematics.
We denote the expected mean number density of galaxies as n̄(x), which depends
on the position x due to the nontrivial survey geometry. The denominator, I22 ©
s

d3xn̄2(x)w2(x), is a normalization that assures the measured power spectrum
becomes the true values when the survey geometry is trivial so that n̄(x) is the
global mean density. It means that ”W (x) does not represent the density contrast
itself but is normalized for the power spectrum. Using ng(x) = n̄(x)[1 + ”(x)] and
–ns(x) = n̄(x), we calculate the correlations of the number density fields of galaxies
and randoms as follows:

Èng(x1)ng(x2)Í = n̄(x1)n̄(x2)[1 + ›(x1, x2)] + n̄(x1)”D(x1 ≠ x2), (4.24)

Ènr(x1)nr(x2)Í = –≠2n̄(x1)n̄(x2) + –≠1n̄(x1)”D(x1 ≠ x2), (4.25)

Èng(x1)nr(x2)Í = –≠1n̄(x1)n̄(x2), (4.26)

where ›(x1, x2) is the galaxy two-point correlation function and the terms of Dirac’s
delta functions represent the shot noises arising from the self-correlations of galaxies
and randoms. Using these relations, we obtain

È”W (x1)”W (x2)Í =
1

I22
Èw(x1) [ng(x1) ≠ –nr(x1)] w(x2) [ng(x2) ≠ –nr(x2)]Í

=
w(x1)w(x2)

I22
{n̄(x1)n̄(x2)›(x1, x2) + (1 + –)n̄(x1)”D(x1 ≠ x2)} ,

(4.27)

and hence, the (window-convolved) galaxy power spectrum PW (k) can be estimated
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4.3 Feldman-Kaiser-Peacock estimator

as

P̂ W (k) =
e

|”̃W (k)|2
f

=

⁄

d3x1e≠ik·x1

⁄

d3x2eik·x2 È”W (x1)”W (x2)Í

=
1

I22

⁄

d3kÕ

(2fi)3
P (kÕ)

-

-

-

-

⁄

d3xn̄(x)w(x)e≠i(k≠kÕ)·x

-

-

-

-

2

+ (1 + –)
1

I22

⁄

d3xn̄(x)w2(x),

(4.28)

where the latter term is the shot noise which should be subtracted.

4.3.2 Multipole moment of power spectrum

In galaxy redshift surveys, we typically measure the multipole moments of the redshif-
space galaxy power spectrum. The redshift-space power spectrum is translational-
invariant only when the global plane-parallel approximation is assumed (i.e., all
galaxies share the same line-of-sight direction), and in the absence of this the redshift-
space power spectrum depends on the line-of-sight direction;

P̂ (k, x) = (2¸ + 1)

5⁄

d3x1e≠ik·x1”(x1)

⁄

d3x2eik·x2”(x2)L¸(k̂ · x̂)

6

, (4.29)

where we take x to be on the representative line-of-sight between the two positions
x1 and x2, e.g., x = (x1 + x2)/2.

Including the survey window function, we can write the estimator of redshift-space
power spectrum multipoles by averaging over the wave vectors within the k bins,

P̂ W,¸(k) = (2¸ + 1)

⁄

dΩk

4fi

5⁄

d3x1e≠ik·x1”W (x1)

⁄

d3x2eik·x2”W (x2)L¸(k̂ · x̂) ≠ P shot
¸ (k)

6

,

(4.30)

where P shot
¸ (k) is the subtracted shot noise terms, defined as

P shot
¸ (k) = (1 + –)

1

I22

⁄

d3xn̄(x)w2(x). (4.31)

The shot noise contributions for the quadrupole or higher-order multipoles are
negligible, and we subtract the shot noise only for the monopole momemt in the
power spectrum measurement in Chapter 7.

We then use the local plane-parallel approximation, i.e., the vector from the
observer to the either of two pair galaxies is taken as the line-of-sight direction:

P̂ W,¸(k) = (2¸ + 1)

⁄

dΩk

4fi

5⁄

d3x1e≠ik·x1”W (x1)

⁄

d3x2eik·x2”W (x2)L¸(k̂ · x̂2) ≠ P shot
¸ (k)

6

,

(4.32)

This is called the Yamamoto estimator [69], which decompose the integration by x1

and x2 into the separable form.
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Chapter 4 Measurement of Galaxy Power Spectrum

In the Yamamoto estimator, the integration including the Legendre polynomial,
⁄

d3x2eik·x”W (x)L¸(k̂ · x̂), (4.33)

cannot be done by using FFTs. The solution to this issue has recently been proposed
by several authors [70, 71, 67]. Among this, we will use the most recent method
proposed in Ref. [67], This method decomposes the Legendre polynomial using the
spherical harmonic addition theorem:

L¸(x̂1, x̂2) =
4fi

2¸ + 1

ÿ̧

m=≠¸

Y¸m(x̂1)Y ú
¸m(x̂2), (4.34)

where Y¸m(x̂) is the sperical harmonics and x̂i denotes the unit vector along the
direction of xi. With this decomposition, we can compute Eq. (4.32) by purely using
FFTs.

P̂ W,¸(k) = (2¸ + 1)

⁄

dΩk

4fi
”W,0(k)”W,¸(≠k), (4.35)

where we define

”W,¸(k) ©
⁄

d3xe≠ik·x”W (x)L¸(k̂ · x̂)

=
4fi

2¸ + 1

ÿ̧

m=≠¸

Y¸m(k̂)

⁄

d3xe≠k·x”W (x)Y ú
¸m(x̂). (4.36)

This implies that, we can compute the ¸th-order power spectrum multipole by 2¸ + 1

FFTs. Thus is a huge reduction of computational complexity compared to a naive
integration of Eq. (4.33).

4.4 The e�ect of survey window function

In the above formalism, we measure the power spectrum convolved with the survey
window function. Here we take a closer look at this e�ect on the power spectrum.
We start from the weighted density field [Eq. (4.23)],

”W (x) =
n̄(x)w(x)

I
1/2
22

;

ng(x)

n̄(x)
≠ –

nr(x)

n̄(x)

<

=
n̄(x)w(x)

I
1/2
22

;

[1 + ”(x)] ≠ –
nr(x)

n̄(x)

<

© W (x)

;

[1 + ”(x)] ≠ –
nr(x)

n̄(x)

<

, (4.37)

where we define the survey window function (or selection function)

W (x) © n̄(x)w(x)

I
1/2
22

. (4.38)
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4.4 The effect of survey window function

Note that this window function satisfies the normalization condition
s

d3x|W (x)|2 = 1.
The last term in the bracket of Eq. (4.37) is proceeded as

–
ng(x)

n̄(x)
=

s

d3xn̄(x)[1 + ”(x)]
s

d3xn̄(x)
= 1 +

s

d3xn̄(x)”(x)
s

d3xn̄(x)
, (4.39)

and thus we have

”W (x) = W (x)

I

”(x) ≠
s

d3xn̄(x)”(x)
s

d3xn̄(x)

J

. (4.40)

The second term in this equation leads to the term called integral constraint, but its
contribution to the measured power spectrum in SDSS-III galaxies a�ects the signals
only on very large scales k . 0.005 h Mpc≠1 [18], hence we ignore this term.

Neglecting the integral constraint, the window convolved power spectrum is

PW (k) =

⁄

d3kÕ

(2fi)3
P (kÕ)

-

-

-W̃ (k ≠ kÕ)
-

-

-

2
, (4.41)

where P (k) is the true power spectrum. W̃ (k) is the Fourier transform of the window
function, and

-

-

-W̃ (k)
-

-

-

2
=

-

-

-

-

⁄

d3xW (x)eik·x

-

-

-

-

2

=

⁄

d3x

⁄

d3xÕW (x)W (xÕ)eik·(x≠xÕ)

ƒ
Nran
ÿ

i”=j

w(xi)w(xj)eik·(xi≠xj) (4.42)

This can be transformed as

-

-

-W̃ (k)
-

-

-

2
=

⁄

d3s

5⁄

d3xW (x)W (x + s)

6

eik·s ©
⁄

d3s
Ë

W 2
È

(s) eik·s, (4.43)

and the configuration-space window function
#

W 2
$

(s) can be estimated by thew
(weighted) pair count of the random particles in the survey catalogs.

In Chapter 7, we will implement the survey window function in the theoretical
template, by using the following method [17]. The multipole moments of the window-
convolved power spectrum is written as

PW,¸(k) =
2¸ + 1

2

⁄

d„

2fi

⁄

dµ PW (k) L¸(µ)

=
2¸ + 1

2

⁄

d„

2fi

⁄

dµ

⁄

d3kÕP (kÕ)
-

-

-W̃ (k ≠ kÕ)
-

-

-

2
L¸(µ)

=

⁄

d3kÕP (kÕ)
5

2¸ + 1

2

⁄

d„

2fi

⁄

dµ
-

-

-W̃ (k ≠ kÕ)
-

-

-

2
L¸(µ)

6

=

⁄ Œ

0
kÕ2dkÕ

⁄ 1

≠1
dµÕ

⁄ 2fi

0
d„ÕP (kÕ, µÕ)

5

2¸ + 1

2

⁄ 2fi

0

d„

2fi

⁄ 1

≠1
dµ

-

-

-W̃ (k ≠ kÕ)
-

-

-

2
L¸(µ)

6

.

(4.44)
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Expanding the true redshift-space power spectrum as P (kÕ, µÕ) =
q

L PL(kÕ)LL(µÕ)

(µÕ = k̂
Õ
· x̂h), and using the formulae

eikxµ =
ÿ

¸

i¸(2¸ + 1)j¸(kx)L¸(kx)

2¸ + 1

2

⁄ 1

≠1
dµ

⁄ 2fi

0

d„

2fi
L¸(k̂ · ∆x̂)L¸Õ(k̂ · x̂h) = L¸(x̂h · ∆x̂)”¸¸Õ , (4.45)

where j¸(x) is the spherical Bessel function, we have

PW,¸(k) =

⁄ Œ

0
kÕ2dkÕ

⁄ 1

≠1
dµÕ

⁄ 2fi

0
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L

PL(kÕ)
-

-
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-

-

-

2

¸L
, (4.46)

where we define the “multipoles” of the window function in Fourier space,

-

-

-W̃ (k, kÕ)
-

-

-

2

¸L
© 2i¸(≠i)L(2¸ + 1)

S

U

Nran
ÿ

i”=j

w(xi)w(xj)j¸(k |∆x|)jL(kÕ |∆x|)L¸(x̂h · ∆x̂)LL(x̂h · ∆x̂)

T

V

(4.47)

Thus, we can calculate the window-convolved power specrtrum multipoles by combin-

ing the theoretical model of the true power spectrum with the
-

-

-W̃ (k, kÕ)
-

-

-

2

¸L
estimated

using the random catalogs.
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Chapter 5

Accurate Emulator for the Redshift-Space

Power Spectrum of Halos and Galaxies

In this chapter, we develop an N -body simulation-based theoretical template, so-
called the emulator, for the redshift-space power spectrum of massive halos. To avoid
the di�culty of analytic approaches in the nonlinear regime, we employ a machine
learning technique to interpolate the N -body simulation data set.

There have been several previous works on the emulator approach for the large-scale
structure probes. As a pioneering work on the emulator construction, the Coyote

Universe [72, 73, 74] employed the Gaussian process regression [75] on 1000 N -body
simulations covering 38 wCDM cosmologies to construct an emulator for the nonlinear
matter power spectrum in the redshift range 0 Æ z Æ 1, which can predict the matter
power spectrum at k . 1 h Mpc≠1 to within about 1% accuracy. In recent years, the
Euclid collaboration constructs the EuclidEmulator [76, 77], which emulates the
nonlinear correction of the matter power spectrum at k . 10 h Mpc≠1. In the context
of the galaxy clustering, the Aemulus Project [78, 79, 80] constructed an emulator
for the monopole and quadrupole moments of the redshift-space galaxy correlation
function, as well as the halo mass function. It used 47 wCDM cosmologies and a
specific form of the halo occupation distribution (HOD) to produce the mock galaxy
catalogs, and constructed an emulation of the galaxy correlation function, which has
about 1% accuracy in the redshift-space separations of 1 . s/(h≠1 Mpc) . 10.

These works suggest that it is possible to construct the simulation-based emulator
which can be used to extract the cosmological information. In this work, we develop
an emulator for the redshift-space power spectrum of halos, instead of galaxies. This
approach is unique in that we can include the bias at the level of halos, and then
can implement the galaxy bias by using phenomenological halo model formalism,
depending on the user-specific settings of the halo-galaxy connection. Also, we
emulate the redshift-space power spectrum as a function of (k, µ), in stead of its
multipole moments as in the Aemulus emulator, and it enables us to straightforwardly
implement the Alcock-Paczynski e�ect, which is enevitable in galaxy redshift surveys.
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5.1 Emulation Design

We present our overall strategy to develop an “emulator” of redshift-space power
spectrum of “halos”, and describe the relation of the halo power spectrum to the
galaxy power spectrum in redshift space, which is a direct observable from galaxy
surveys.

Under the halo model picture (also see Sec. 3.4), without loss of generality, the
redshift-space power spectrum of galaxies is generally given by the sum of the one-
and two-halo terms,

P S
gg(k) = P S

gg,1h(k) + P S
gg,2h(k)

= P S
gg,1h(k) +

⁄

dM1G(k; M1)

⁄

dM2G(k; M2)P S
hh(k; M1, M2). (5.1)

The first term is the one-halo term arising from the contribution of correlations
between galaxies inside the same halo, while the second term is the two-halo term
arising from those between galaxies that reside in di�erent halos. P S

hh(k; M1, M2) is
the redshift-space power spectrum for halos of masses M1 and M2. Other functions,
P S

gg,1h and G, are needed to model the relation of halos to galaxies and therefore
depend on galaxy physics. The halo emulator approach in this study is motivated by
the fact that the redshift-space power spectrum of halos can be accurately modeled
using N -body simulations, as done in Ref. [29]. On the other hand, since it is still quite
challenging to model the formation and evolution of galaxies from the first principles,
one has to employ an empirical prescription to describe characteristics of a target
galaxy sample, by employing a su�cient number of nuisance parameters to model the
e�ects due to properties and physics of galaxies. Then, the nuisance parameters have
to be marginalized over to obtain unbiased and robust constraints on cosmological
parameters at the price of conservative confidence intervals. In summary, we assume
that P S

hh carries cosmological information, while the galaxy-related functions are
treated as theoretical errors/uncertainties that lead to degradation of the cosmological
parameter constraints,

Halos (cosmology): P S
hh(k; z, M1, M2, pcosmo)

Galaxies (errors and nuisance):
Ó

P S
gg,1h(k), G(k; M)

Ô

, (5.2)

where pcosmo is a set of cosmological parameters.

Hence, we use an ensemble of high-resolution N -body simulations to develop an
emulator that allows for fast and accurate computation of the redshift-space halo
power spectrum, P S

hh(k; z, M1, M2, pcosmo), as a function of redshift, halo masses (M1

and M2), and cosmological parameters (pcosmo). Since we use N -body simulations,
the halo power spectrum we emulate includes all complicated e�ects in the nonlinear
regime: nonlinear clustering, nonlinear redshift-space distortion, nonlinear bias, and
so on. This is complementary to perturbation theory-based approaches. On the other
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5.2 Dark Quest N -body Simulations

hand, galaxy-related functions (P S
gg,1h, G) need to be provided by a user. In this

chapter, as a working example, we use the specific halo model and HOD functions
described in Sec. 3.4 to implement the galaxy power spectrum based on the halo
emulator.

5.2 Dark Quest N-body Simulations

In this section we describe the Dark Quest, a suite of cosmological N -body
simulations that we use to develop the emulator. We will also create mock galaxy
catalogs from this simulation suite, which are mainly used in Chapters 6 and 7. This
simulation suite targets primarily on the development of halo and matter clustering
emulator named Dark Emulator, and our work in this chapter is a part of this
emulation project. Detailed descriptions on the Dark Quest and Dark Emulator

can be found in Ref. [29]. Here we briefly describe the main properties of these
simulations.

5.2.1 N-body simulations

All the simulations in Dark Quest [29] were executed by using the Tree-Particle
Mesh hybrid code Gadget2 [81]. The initial conditions of each simulation are
generated assuming the adiabatic Gaussian initial conditions based on the linear
matter power spectrum for each cosmology. Dark Quest consists of the simulations
with two di�erent particle resolutions: high-resolution (HR) and low-resolution
(LR) runs. The side lengths of the simulation boxes in the HR and LR runs are
1 and 2 h≠1 Gpc, respectively, and both adopt Np = 20483 particles. Thus the
particle mass for the fiducial Planck 2015 TT,TE,EE+lowP best-fit cosmology
[32] (we will refer it simply as Planck cosmology in this and the next chapters) is
mp = 1.02 and 8.16 ◊ 1010 h≠1 M§ for HR and LR runs, respectively. In this work,
we utilize only the LR simulations to create the training and validation data sets to
keep the su�cient statistics, since we need only the positions, velocities, and masses
of halos to measure the redshift-space power spectrum of halos (for di�erent mass
thresholds) and we do not use N -body particles. For LR simulations, the initial
conditions are generated at redshift around 30, using the second-order Lagrangian
perturbation theory (2LPT; [82, 83]) based on the implementation by Refs. [84, 85].
Note that the initial redshifts are slightly varied depending on the input cosmology
according to the criterion in Ref. [29]. We also use the HR simulations to assess the
e�ects of Fourier resolution on the power spectrum measurements in Appendix 1.

The Dark Quest simulations employ the flat-geometry wCDM cosmology frame-
work that is characterized by the six cosmological parameters as follows. The set
of cosmological parameters for which the simulations are run is defined using the
optimal maximin-distance sliced Latin hypercube design [86], which enables an e�-
cient sampling from a high-dimensional parameter space with a hierarchical structure
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among the samples. Our purpose is to construct an emulator from the simulations
each of which requires very high computational cost, and thus such an e�cient
simulation design is of great importance. Following this scheme, the Dark Quest

contains five disjoint subgroups of cosmological parameters (referred to as “slice” in
the following), each of which satisfies a homogeneous sampling from the parameter
space. The cosmological parameters are sampled from the following ranges (also see
Fig. 2 in [29]):

0.0211375 < Êb < 0.0233625,

0.10782 < Êcdm < 0.13178,

0.54752 < Ωde < 0.82128,

2.4752 < ln(1010As) < 3.7128,

0.916275 < ns < 1.012725,

≠ 1.2 < w < ≠0.8, (5.3)

where Êb © Ωbh2 and Êcdm © Ωcdmh2 are the physical density parameters of baryon
and cold dark matter, respectively; h is the dimensionless Hubble constant defined
as h © H0/(100 km s≠1 Mpc≠1); Ωde is the dark energy density parameter, As and
ns are the amplitude and spectral tilt of the power spectrum of primordial curvature
perturbations, defined at the pivot scale, kp = 0.05 Mpc≠1; w denotes the equation-
of-state parameter of dark energy. The parameter range above Eq. (5.3) is defined
to be centered at the best-fit ΛCDM model for the Planck 2015 TT,TE,EE+lowP
data [32], i.e., Êb = 0.02225, Êcdm = 0.1198, Ωde = 0.6844, ln(1010As) = 3.094, ns =

0.9645, and w = ≠1. For the neutrino abundance, we assume Ê‹ © Ω‹h2 = 0.00064

to include the e�ect on the initial linear power spectrum alone, and neglect the
dynamical e�ect of massive neutrinos in the N -body simulations. The Hubble
constant is computed from the total energy budget condition assuming flatness, i.e.,
Ωmh2 = Êb + Êcdm + Ê‹ and Ωm + Ωde = 1. Aside from the Planck cosmology, each
of the five slices has 20 sets of cosmological parameters, and we have one realization
for each of 100 cosmological models. Hence we sample 100 + 1 models in total for
our emulator construction. We note that the ranges of cosmological parameters are
broad enough, e.g., to cover the current constraints of the large-scale structure probes
such as those from the Subaru Hyper Suprime-Cam [87].

The Dark Quest stored outputs of each N -body simulation realization at 21
redshifts, given by z = 1.48, 1.35, 1.23, 1.12, 1.02, 0.932, 0.846, 0.765, 0.689, 0.617,
0.549, 0.484, 0.422, 0.363, 0.306, 0.251, 0.198, 0.147, 0.0967, 0.0478, and 0. These
redshifts are evenly stepped by the linear growth factor for the fiducial Planck

cosmology.

In addition it has 15 random realizations for the fiducial Planck cosmology each of
which has a volume of 8 (h≠1 Gpc)3, which is larger than the volume of SDSS-III
BOSS survey that has about 5.7 (h≠1 Gpc)3. We will often use these simulations
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to estimate statistical errors such as the errors expected for the power spectrum
measurements.

5.2.2 Halo catalogs

Halo catalogs from each simulation output in this simulation suite are produced based
on the following procedure. First, halos are identified using the friends-of-friends
halo finder in six-dimensional phase space, Rockstar, developed in Ref. [88]. The
center of each halo is defined as the center-of-mass of the “core particles,” a subset
of member particles in the inner part of that halo, which is considered as a proxy of
the mass density maximum or the location of central galaxy if forms. Similarly, the
velocity of each halo is given as the center-of-mass velocity of the core particles.

The Dark Quest employ the halo mass definition given by M200 = (4fi/3)200fl̄m0R3
200,

where R200 is the spherical halo boundary radius within which the interior mass
is equal to 200 times the mean mass density fl̄m0. Note that the use of the mean
mass density today fl̄m0 is due to the use of the comoving coordinates, meaning that
R200 is also in comoving length units. This definition of halo mass includes all the
N -body particles within the boundary R200 around the halo center, including those
not gravitationally bound by the halo. After identifying halo candidates, all the
halos are split into either central or satellite halos. When the separation between the
centers of di�erent halos is closer than R200 of any other halo, the most massive halo
is marked as a central halo, and the other halo(s) as a satellite subhalo(s). Only the
central halos with mass M200 > 1012 h≠1 M§ are kept in the final catalogs.

5.3 Construction of the emulator for the redshift-space halo

power spectrum

In this section, we describe details of the emulator development. The goal is to
develop an emulator which allows for fast, accurate computation of the redshift-space
power spectrum of halos for an input cosmological model within wCDM framework,
given as a function of wave vector (k, µ), redshift (z), and halo masses (M1 and M2).

5.3.1 Problem setting and emulation scheme

Before going to details of the emulator development, we here describe several impor-
tant aspects of our problem and discuss the machine learning scheme to meet the
requirements from the problem setting.

The problem that we are dealing with falls in the category of regression, i.e., to
find a reasonable function that reacts to the input parameters smoothly and predicts
the outcome for new sets of inputs. In particular, we construct a data set of the
redshift-space power spectrum corresponding to di�erent cosmologies, redshifts and
number densities. Our goal is to implement the regression of the power spectrum
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data set in the input parameter space. As we will describe later, the number of
combinations of the input parameter values is quite large (more than 105), and
for each of these inputs, a quite high-dimensional data vector of the redshift-space
power spectrum, each component of which corresponds to each (k, µ) bin, needs to
be output. Such a regression of (i) a multi-output (or equivalently, vector-valued)
function in (ii) a multi-dimensional input parameter space on (iii) a large data set

is a highly nontrivial task, and furthermore we need to realize it in (iv) a small
computational time. To meet these requirements, we need to pay a special attention
to select an e�cient machine learning algorithm.

Traditionally, the Gaussian process (GP) regression [75] has been applied to the
emulator constructions. This is because of some advantages of the GP; it enables a
nonparametric regression, i.e., we need not assume any specific function shape to
fit the data set, it works well even in a relatively high-dimensional input space, it
is robust against the overfitting, and it can provide predictions in a probabilistic
manner which accounts for the errors in the data set (though we do not necessarily
regard the last point as important in cosmology applications, since the physical
interpretation of the predicted variance is somewhat unclear). However, the GP has
a drawback that it is di�cult to apply to large data sets (specifically, the data size of
order of 104 or more) due to its high computational cost, unless we introduce some
sparse approximation. In addition, current typical GP applications mainly focus on
the problems with a single scalar output, and the multi-output GP schemes are not
straightforward to apply. Therefore, in previous works on the emulator constructions
using GPs, multiple single-output GPs were independently built so that each of them
corresponds to each component of the multi-dimensional output data vector. When
the dimensionality of the output data vector is quite high (as in our problem), this
can lead to a large computational time due to the call of each GP in the resultant
emulator, as well as a quite large data size of the emulator code set. Thus, in the
application of GPs to the emulator construction, it is almost inevitable to employ
some scheme to reduce the dimensionality of the output data, e.g., the principal
component analysis. However, to find a successful scheme of the dimensionality
reduction for a given target quantity, i.e., the scheme by which we can precisely
reconstruct the high-dimensional data vector from the reduced data encoded in a
low-dimensional space, would be also a nontrivial task. It is highly desirable, if
possible, to build a learning pipeline that we can easily apply to almost any target
quantities.

In this work, we choose a feed-forward neural network as a hopeful candidate for
such a scheme of high versatility. The neural network provides a smooth interpolation
of the data set in the multi-dimensional input space, and a relatively easy scheme for
the multi-output regression without the necessity of dimensionality reduction, and it
can be applied to a large data set. This approach was previously applied to cosmology
(e.g., [89, 90, 91]), and its performance was shown to be competitive or sometimes
better than other existing methods, when the network architecture was appropriately
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designed. In addition, as we would extend the data size by additional simulation
runs in the future, this scalability for larger data sets would be advantageous. This
is opposed to the O(N3) scaling of the popular Gaussian process regression with N

training samples. On the other hand, the neural network has a drawback that it is
more susceptible to the overfitting compared to GPs. Hence we need to carefully
check the emulation performance using the validation data set and tune the network
architecture so that the generalization error is successfully suppressed.

5.3.2 Data set

Our aim is to develop a machine-learning pipeline that optimally finds the corre-
spondence between the input parameters (cosmology, redshift, and two halo masses
M1 and M2) and the output power spectrum P S

hh(k, µ) from the training data set.
Following the procedure in Ref. [29], we set two distinct number density bins n1

and n2, instead of mass bins, to make the learning process easier. This choice is
intended to have similar error levels over the data vector among di�erent cosmologies.
If we had specified a halo sample by its mass instead, the shot noise level could be
quite di�erent among di�erent cosmologies especially in high-mass bins, reflecting
the strong dependence of the halo mass function (i.e., the exponential damping as a
function of the mass variance) on some of the cosmological parameters. In Appendix 2
we see that the two distinct number density bins, n1 and n2, are necessary to cover
the full mass dependence of the halo power spectrum, and hence irreducible to a
single set of bins.

For each number density bin n, we pick up the halos from top of the ranked list in
which we sort all the halos in descending order of mass, to reach the given number
density. Such number density bins correspond to the halo mass threshold (minimum
mass in the halo sample) derived from the halo mass function,

nh(M > Mmin) =

⁄ Œ

Mmin

dM
dn

dM
(M), (5.4)

where Mmin denotes the halo mass threshold and dn/dM is the halo mass function
in the range [M, M + dM ] which depends on the cosmology and redshift. In the
prediction stage, the emulator outputs the predictions (redshift-space power spectrum)
as a function of mass by taking the numerical derivative at the target masses M1, M2,

P S
hh(k; M1, M2) =

ˆ2

ˆMˆM Õ

Ë

nh(M)nh(M Õ)P S
hh(k; n(M), n(M Õ))

È-

-

-M=M1,
M Õ=M2

dn
dM (M1) dn

dM (M2)
, (5.5)

where n(M) is the halo number density corresponding to the mass threshold M .

We employ nine logarithmic bins for the number density ranging from 10≠7 to
10≠3 (h≠1 Mpc)≠3, and add one mass threshold bin Mmin = 1012 h≠1 M§ for each
cosmology and redshift. Since we adopt the (logarithm of) number density as the
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actual input argument to the neural network, the mass threshold Mmin = 1012 h≠1 M§
for each cosmology and redshift is converted to the number density through Eq. (5.4),
i.e., we have a slightly heterogeneous sampling of the number density over di�erent
cosmologies and redshifts.

We measure the halo power spectra from the halo catalogs by using the FFT-
based method described in Chapter. 4. Each halo catalog in the Dark Quest

simulations contains the positions, velocities, and masses of halos. We construct the
number density field of halos in redshift space by shifting the halo positions along
the x3 axis according to their velocities and assigning each halo to the FFT grid
using the Cloud-In-Cell (CIC) interpolation kernel. We then mitigate the aliasing
contaminations in Fourier space by using the interlacing scheme in Ref. [92]. We
adopt 10243 grids on the 2 h≠1 Gpc cubic box, which corresponds to the Nyquist wave
number kNy = 1.61 h Mpc≠1. We use the k-bin width ∆k = 0.02 h Mpc≠1 and define
the k value for each bin as its central value. In Appendix 1 we show a resolution
study on this measurement procedure, where we find that our specific choice of
the number of grids and the k-bin width has almost no significant impact on the
measured power spectrum.

In the measurement, we assume the Poisson shot noise and subtract it from the
measured power spectrum, but note that this procedure requires a slightly careful
treatment as follows. Suppose we measure the power spectrum between the halo
samples of two di�erent number densities, n1 and n2 (n1 < n2), defined by the
procedure above (we call these two samples “sample 1” and “sample 2,” respectively).
By construction, sample 1 is a subsample of the sample 2, and hence the cross power
spectrum between these two samples is decomposed into the auto and cross power
spectra, respectively, for the overlapping and the exclusive subsamples:

P1,2(k) = fP1,1(k) + (1 ≠ f)P1,2\1(k), (5.6)

where f = n1/n2, P1,2(k) is the cross power spectrum between samples 1 and 2,
P1,1(k) is the auto power spectrum of the sample 1, and P1,2\1(k) is the cross power
spectrum between the sample 1 and the subsample of the sample 2 which has no
overlap with the sample 1. The Poisson noise that should be subtracted from the
auto power spectrum P1,1(k) is simply 1/n1, and this is equivalent to the subtraction
of f/n1 = 1/n2 from P1,2(k). On the other hand, the second term in the right-hand
side does not have a contribution from shot noise by construction.

5.3.3 Data preprocessing

The power spectrum signals measured in (k, µ) bins from each simulation are noisy
due to the small number of modes averaged within each (k, µ) bin. This inaccuracy is
particularly problematic for low number density samples. To overcome this obstacle,
we use the lowest four multipole moments to approximate the two-dimensional power
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Figure 5.1: An assessment of the approximation, Eq. (5.7), to model the redshift-
space power spectrum P S

hh(k, µ) in terms of the lowest four multipole
moments. In the upper panel in each plot, the symbols with error bars are
the cross power spectrum between the halo samples of number densities
(n1 and n2), P S

hh(k, µ; n1, n2), measured from one simulation realization
at z = 0 for the Planck cosmology, where we consider the fixed number
density for one sample, n1 = 10≠4 (h≠1 Mpc)≠3 and consider the other
sample of di�erent number densities, n2 = 10≠3 (blue), 10≠4 (orange),
10≠5 (green), or 10≠6 (red) (h≠1 Mpc)≠3, respectively. The error bars are
the standard deviation among 15 realizations for the Planck cosmology,
corresponding to the statistical errors in the band power measurement
for a volume of 8 (h≠1 Gpc)3. The solid lines are the results of Eq. (5.7),
i.e., the power spectrum reconstructed from the multipole moments up to
degree ¸ = 6 that are measured from the same halo samples in the same
realization. We show the results at k = 0.05, 0.19, 0.39, and 0.59 h Mpc≠1,
from upper left to lower right plots. We also show, in each lower panel,
the di�erences between the reconstructed spectra and the simulation
results in (k, µ) bins, relative to the scatter in the bin.
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spectrum as

P S
hh(k, µ) ƒ

ÿ

¸=0,2,4,6

P S
hh,¸(k) L¸(µ), (5.7)

Here we ignore contributions from the higher-order multipoles of ¸ Ø 8. Since the
hexadecapole (¸ = 4) and tetra-hexadecapole (¸ = 6) moments are highly noisy and
have almost zero amplitudes at low k for most cosmological models, we avoid to
directly learn the individual multipoles, and instead choose to feed the reconstructed
two-dimensional power spectrum, based on Eq. (5.7), into the neural network. Using
Eq. (5.7), we reconstruct the approximated power spectrum in 31 linearly spaced
bins of k in the range [0.01, 0.61] h Mpc≠1 and 20 linearly spaced bins of µ in the
range [0.025, 0.975]. We use 620 (k, µ) bins in total.

A validation of the approximation [Eq. (5.7)] is given by Fig. 5.1. The symbols
show the power spectrum P S

hh(k, µ) as a function of µ in some representative bins of
k, directly measured from a particular realization of the fiducial Planck cosmology.
On the other hand, the solid lines are the results obtained using Eq. (5.7), where we
used the multipole moments of ¸ = 0, 2, 4 and 6 measured from the same realization.
The solid lines show a good agreement with the direct measurements and do not
show any systematic deviation for any value of (k, µ), confirming that the higher-
order multipoles do not give a significant contribution to the two-dimensional power
spectrum.

In addition to the approximation [Eq. (5.7)], we employ the following linear
transformation to reduce the dynamic range of data vector. For every sampling point
of (k, µ), we transform the data vector so that the mean and variance of data over
all the inputs (cosmology, redshift and two distinct number densities) are reduced to
zero and unity, respectively:

P S
hh(k, µ) ‘æ P S

hh(k, µ) ≠ P̄
S
hh(k, µ)

Ò

Var
#

P S
hh(k, µ)

$

, (5.8)

where P̄
S
hh(k, µ) and Var

Ë

P S
hh(k, µ)

È

are the mean and variance among all the power
spectra in each (k, µ) bin over all the training and validation data sets. We feed
these transformed data into the neural network.

5.3.4 Regression using a neural network

The machine learning using neural networks has been rapidly developed on the back
of the recent progress of machine power and the success of the back-propagation
method, in addition to the vast increase of available data. Its applicability to a
broad range of learning tasks has already been recognized in the community of
cosmology as well as astrophysics. For regression tasks, feed-forward neural networks
perform accurately serving as a “universal function approximator” [93], i.e., it can
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Input layer 
(9 units)

Hidden layer 
(200 units)

Hidden layer 
(200 units)

Output layer 
(620 units)

Halo power spectrum in 620 bins of (k,μ)

9D input parameter

{�b, �c, �de, ln(1010As), ns, w, z, n1, n2}

Figure 5.2: The architecture of the feed-forward neural network which we adopt for
the regression of the input power spectrum data (training data set). The
input layer has nine units corresponding to the nine-dimensional input
parameters [Eq. (5.9)]. We adopt two hidden layers that contain 200
units to give a large flexibility to the mapping from the input to output
vectors. Finally the output layer has 620 units, which is equal to the
number of the (k, µ) bins we use.

approximate almost any continuous functions f(x) with high precision, provided that
it has a su�ciently large number of parameters. As we mentioned above, another
strength of neural networks is their relatively easy handle on multi-output functions.

In this work we found that a feed-forward neural network with a simple architecture
enables us to perform a multi-dimensional regression of the power spectrum data
measured from the simulations. Figure 5.2 shows the network architecture we adopt
for the regression. We adopt the fully-connected network with two hidden layers; the
input layer takes the nine input parameters, i.e., six wCDM cosmological parameters,
redshift z and two distinct number densities, n1, n2:

pin = {Êb, Êcdm, Ωde, ln(1010As), ns, w, z, n1, n2}. (5.9)

On the other hand, the network output layer corresponds to the vector of P S
hh(k, µ)

values, i.e., the output dimension is equal to the number of (k, µ) bins, Nbin = 620.
We set two hidden layers which have a large number (200 for each) of hidden units.
In Appendix 3, we describe how we chose the optimal number of hidden units. As
the activation function, we impose the Gaussian Error Linear Units (as known as
GELUs) [94], which is a smooth variant of the Rectified Linear Units (ReLUs) that
are typically used in various machine learning tasks, to both two hidden layers. This
is because we expect that the response (i.e., the derivative) of the power spectrum to
any of the input variables is smooth without discontinuity from which the standard
ReLU function often su�ers. Through these activation functions, the input parameter
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vectors are nonlinearly transformed to represent the target quantities, i.e., the data
of the halo power spectrum.

We implement the neural network and the training procedure by using PyTorch

(https://pytorch.org/) [95], which is an open-source Python framework for the
deep learning. The training of the network is done by using the adaptive stochastic
optimization algorithm Adam [96]. The training performance is highly sensitive to
the learning rate for the Adam optimizer. We set the learning rate to 10≠3, which
we found is the best choice among 10≠4, 5 ◊ 10≠4, 10≠3, 5 ◊ 10≠3, and 10≠2.

We train the neural network to learn the correspondence between the input and
output variables,

pin ‘æ P S
hh(k, µ|pin), (5.10)

where pin is a set of nine parameters [Eq. (5.9)], and P S
hh(k, µ|pin) is the redshift-space

halo power spectrum, based on the transformation of Eq. (5.8). The training data set
consists of the power spectrum data for combinations of 80 cosmologies, 21 redshifts,
and 10 number density bins for each of n1 and n2; hence, the size of the training
data amounts to 168,000 instances. Through the training procedure, we optimize the
neural network so that the network output P S

emu(k, µ) precisely approximates the
simulation data P S

sim(k, µ). In the optimization, we obtain the network parameters
by minimizing the loss function that we define as

‰̃2
m © 1

m

m
ÿ

i=1

1

Nbin

Nbin
ÿ

(k,µ)

C

P S
sim(k, µ|pi) ≠ P S

emu(k, µ|pi)

‡P S
fid

(k, µ|pi)

D2

, (5.11)

where Nbin is the number of (k, µ) bins (Nbin = 620 in our case), m is the number
of training data in one “mini-batch” (see below), and ‡P S

fid
(k, µ|pi) is the error of

the power spectrum in the (k, µ) bin for the ith training data set. The mini-batch
is a subset of the training data set that is used to train the network parameters.
The training of neural network is done by feeding data into the network in the
form of mini-batch, and repeatedly updating the network parameters according
to the derivative of the loss function back-propagated to each unit until the loss
function is su�ciently minimized. The use of mini-batches is beneficial because it is
not only memory e�cient, but also leads to an improved optimization performance
compared to feeding all the training data all at once, as it adds a certain degree of
stochasticity to the parameter updates and this helps to escape from local minima in
the high-dimensional network parameter space. The training period during which
all the mini-batches in the training data set are fed into the network is called as an
“epoch.” At the beginning of each epoch, we set up the mini-batches by randomly
shu�ing the whole training data set and dividing it into the mini-batches each of
which contains 2000 instances, i.e., m = 2000 in Eq. (5.11). For the error ‡P S

fid
, we use

the standard deviation of the power spectra, for a given set of redshift, n1 and n2 in
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the ith parameter (pi), computed from the 15 realizations for the Planck cosmology.
That is, we ignore the dependence of the power spectrum error on cosmological
models, as we have only one realization for each cosmological model in the training
sets. Note that the simulations for the Planck cosmology is not included in the
training data set.

We use 1000 epochs to train the neural network, and after the training we obtain
the optimized network parameters that give a parametrized fitting formula of the
redshift-space power spectrum, P S

emu(k, µ). We design the loss function [Eq. (5.11)]
to approximately correspond to the ‰2 value between the data and “model” (network
output in this case), averaged over all the (k, µ) bins of all the instances in the
mini-batch. Hence, we expect that the loss function roughly goes to unity when the
training successfully converges to the optimal result. In fact, the trained network we
obtain shows the loss function value to be about 2 for both the training and validation
data set (while the validation data set is not used for the training itself), and this
value is su�ciently saturated by the end of the training. With the trained network
we can compute the redshift-space power spectrum, P S

hh(k, µ), for an arbitrary input
set of the model parameters that are covered within the ranges of nine parameters.
From the neural network output which has Nbin = 620 values, we can obtain the
prediction at any point of (k, µ) within the range that we consider, by using the
bivariate cubic spline interpolation.

5.3.5 Large-scale limit: Stitching with linear theory prediction

The redshift-space power spectrum measured from simulations is considerably noisy on
very large scales due to the lack of large-scale Fourier modes or the significant sample
variance of a finite volume, 8 (h≠1 Gpc)3. Thus, the power spectrum predicted by the
neural network output does not meet our requirements at roughly k . 0.02 h Mpc≠1.
To overcome this inaccuracy, we stitch the linear theory prediction with the neural
network output to obtain the emulator predictions over a wide range of scales.
Specifically, we smoothly stitch the neural network output and the linear theory
prediction as

P S
hh(k, µ) = P S

hh,lin(k, µ)e≠(k/kswitch) + P S
hh,NN(k, µ)

Ë

1 ≠ e≠(k/kswitch)
È

, (5.12)

where P S
hh,NN(k, µ) is the neural network output we have described above, and

P S
hh,lin(k, µ) is the linear theory prediction. For the latter, we employ the following

model:

P S
hh,lin(k, µ; n1, n2) =

Ë

bh(n1) + fµ2
È Ë

bh(n2) + fµ2
È

Plin(k), (5.13)

where f = d ln D+/d ln a is the linear growth rate, and bh(n) is the linear bias for the
halo sample of a given number density n. We use the Dark Emulator developed
in [29] for real-space halo statistics to compute the halo bias for the halo sample
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Figure 5.3: An example of the emulator prediction for the multipole moments of
the redshift-space cross power spectrum between the halo samples with
number densities, n1 = 10≠3 and n2 = 10≠4 (h≠1Mpc)3 at z = 0.549, for
the Planck cosmology that is not used in the training data set. The blue,
orange, green and red lines show the predictions for the monopole (¸ = 0),
quadrupole (¸ = 2), hexadecapole (¸ = 4), and tetra-hexadecapole (¸ = 6)
moments, respectively. The symbols with error bars denote the moments
measured from one realization for the Planck cosmology, where the errors
are the statistical errors for a volume of 8 (h≠1 Gpc)3, as in the previous
figure. The gray down arrow on the upper horizontal axis denotes the
scale kswitch = 0.03 h Mpc≠1 that is the switching scale between the linear
theory prediction and the emulator output [see around Eq. (5.12) for
details].

of a given number density. Throughout this chapter, we adopt the switching scale
kswitch = 0.03 h Mpc≠1 for all cosmological models. Including this stitching, our
emulator implementation can compute P S

hh(k, µ) in a few of 10≠2 CPU seconds on a
2.8 GHz quad-core Intel Core i7 processor, for given input parameters.

5.3.6 Emulator performance

We below discuss the validation and performance of the emulator that we have
explained in the preceding section.

Figure 5.3 shows an example of the emulator predictions, for the Planck cosmology
that is not used in the training set. Here we consider the multipole moments of the
redshift-space cross power spectrum between the halo samples of number densities,
n1 = 10≠3 (h≠1 Mpc)≠3 and n2 = 10≠4 (h≠1 Mpc)≠3, which can be obtained by
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Figure 5.4: A demonstration of the emulator predictions in the cosmological parame-
ter space. We vary Ωm in the range [0.2, 0.4] while other cosmological
parameters are fixed to the values for the Planck cosmology. We show the
predictions for the halo sample with nh = 10≠3.2 (h≠1 Mpc)≠3 at z = 0.5,
which are not at the sampling points of redshift and number density in
the training data set.

Figure 5.5: The emulator predictions for all the 101 cosmologies covered by the Dark

Quest simulation suite. We show the moments for the halo samples
with (n1, n2) = (10≠3, 10≠4) (h≠1 Mpc)≠3 at z = 0.549. For comparison
the black thick lines show the predictions for the Planck cosmology.
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numerically integrating the emulator output, P S
hh(k, µ), over µ, weighted by the

Legendre polynomials corresponding to the multipole order. The figure shows that
the monopole and quadrupole from the simulations are reproduced well by our
network, by better than 5% in the fractional di�erence (even over the range of
k scales where the quadrupole moment has small amplitudes). The ¸ = 4 and 6

moments have smaller amplitudes and noisy, but the emulator still explains the
overall trend with wave number k fairly well, especially in large k bins compared to
the statistical errors for a volume of 8 (h≠1 Gpc)3. The gray arrow on the upper axis
denotes the switching scale between the linear theory and the direct neural network
prediction as discussed in Sec. 5.3.5.

In Fig. 5.4, we show how we can use the emulator to study variations in the
monopole, quadrupole and hexadecapole moments for cosmological models with
di�erent Ωm(= 1 ≠ Ωde). Note that we assumed the flat-geometry universe, and
the other five parameters, i.e., {Êb, Êcdm, ln(1010As), ns, w}, are kept to their values
for the Planck cosmology. The figure shows a clear dependence of the moments
on Ωm, including variations in the feature originating from the baryonic acoustic
oscillations (BAO). The changes in the quadrupole and hexadecapole are not so
prominent compared to the monopole because of their smaller amplitudes.

Figure 5.5 gives another demonstration of the emulator. We here show variations
in the multipole moments of the redshift-space power spectrum for all the 101
cosmological models that are sampled in the Dark Quest simulation suite. Here
we consider the halo samples with di�erent number densities of n1 = 10≠3 and
10≠4 (h≠1 Mpc)≠3 at z = 0.549, as an example of general cases. The figure shows
that the emulator covers a wide dynamic range for each multipole moment, and
describes the cosmological dependence of the BAO features.

Figure 5.6 gives an assessment of the emulator outputs. We consider the multipole
moments of redshift-space power spectra for the halo sample with number density
nh = 10≠4 (h≠1 Mpc)≠3 at redshifts z = 1.48, 0.549, and 0.0 from left to right panels,
respectively. The sample at z = 0.549 roughly corresponds to host halos of the
SDSS BOSS galaxies. The upper panel of each plot shows that the emulator well
recovers the input power spectrum data, meaning that the neural network does not
degrade the accuracy after the regression. The lower panel gives a validation of the
emulator, which shows the comparison of the emulator predictions with the multipole
moments directly measured from simulations for each of 20 validation cosmological
models in slice 5, which are not used in the training. The neural network reproduces
equally well the simulation results for each of the validation models. The accuracy
of the emulator predictions is comparable between the training and validation data
sets. It implies that the neural network successfully avoids the overfitting. We also
emphasize that our emulator can predict the monopole and quadrupole moments of
halo power spectrum with the number density nh = 10≠4 (h≠1 Mpc)≠3 with about 1
and 5% accuracies, respectively, in the fractional errors. For comparison the blue
and red shaded regions denote the statistical errors expected for measurements of the
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Figure 5.6: A validation of the emulator predictions. We compare, by the ratio, the
emulator predictions with the simulation results for the monopole and
quadrupole moments, for the halo sample with nh = 10≠4 (h≠1 Mpc)≠3 at
three representative redshifts z = 1.48, 0.549, and 0.0, respectively. The
upper panel in each plot shows the comparison for 80 cosmological models
in the training data set, while the lower panel shows the comparison for 20
cosmological models in the validation data set. The symbols and error bars
are the mean and standard deviation among 80 or 20 results, respectively.
For comparison the blue and red shaded regions are the statistical errors
around the ratio for the fiducial Planck cosmology, where the errors
are for V = 8 (h≠1 Gpc)3. Mmin,fid in the legend denotes the halo mass
threshold corresponding to the number density nh = 10≠4 (h≠1 Mpc)≠3,
for the Planck cosmology at each redshift. The black dotted lines indicate
±5% fractional errors.

Figure 5.7: Similar to the previous figure, but another validation of the emulator
predictions using the quantify to evaluate the accuracy of the emulator
prediction (Eq. 5.14), which is defined by the di�erence between the
emulator predictions and the simulation results relative to the statistical
errors in each multipole moment for a volume of 8 (h≠1 Gpc)3. We here
show the results up to the multipole moments of ¸ = 6. The symbols
and error bars are the mean and standard deviation among 80 and 20
realizations for the training and validation sets, respectively.
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monopole and quadrupole moments, respectively, for a volume of 8 (h≠1 Gpc)3, which
are estimated from the standard deviations among 15 realizations for the Planck

cosmology, where the simulation volume is larger than that of the SDSS BOSS survey,
Vs ƒ 5.7 (h≠1 Gpc)3. The quadrupole moment for the Planck cosmology (red shaded
region) at z = 1.48 shows a deviation at high k. It should be by chance due to the
inaccuracy of learning, since we do not see the same behavior at other redshifts or
number densities. One might notice relatively larger variances in the quadrupole
moment (i.e., orange error bars) at z = 1.48 and 0.549 for both the training and
validation sets at k & 0.4 h Mpc≠1. This is due to the fact that the quadrupole
moments happen to have a transition from positive to negative values around these
scales for some of the cosmological models, for the halo sample at these redshifts and
number density. In Appendix 4, we show the prediction accuracy for the monopole
and quadrupole moments for the halo samples of di�erent number densities.

For the hexadecapole (¸ = 4) and tetra-hexadecapole (¸ = 6) moments, it is
tricky to make a similar fractional comparison of the emulator predictions with
the simulation results, especially at large scales, because the higher-order moments
are noisy in the simulation measurements, and have small (almost zero-consistent)
amplitudes. Instead, we perform another comparison as shown in Fig. 5.7. In this
figure we compare the di�erences between the emulator predictions and the simulation
data (both in the training and validation sets), relative to the standard deviation
among 15 realizations for the fiducial Planck cosmology; we use the following quantity
to evaluate the accuracy of the emulator predictions:

P S
¸,sim(k) ≠ P S

¸,emu(k)

‡P S
¸,fid

(k)
, (5.14)

where P S
¸,sim(k) and P S

¸,emu(k) are the power spectrum multipole of degree ¸ measured
from the simulation halo catalogs and predicted by our emulator, respectively, and
‡P S

¸,fid
(k) is the standard deviation among 15 realizations for the Planck cosmology.

We show the results for the same halo samples of three redshifts and number density
as in Fig. 5.6. The four color (blue, orange, green, and red) symbols with error bars
are their mean and standard deviation over 80 or 20 cosmologies in the training
(upper) or validation (lower) sets, respectively. The figure shows that the accuracies
of the emulator predictions for the higher-order moments are roughly comparable
between the training and validation sets as well as among di�erent multipole moments,
over all the k range that our emulator covers. This means that the training of neural
network has been successfully done so that the all the terms in the loss function
[Eq. (5.11)] are on average equally minimized, and the training procedure did not
cause a serious overfitting.
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Figure 5.8: The logarithmic derivatives of the halo power spectrum with respect
to Ωm (left) and As (right), around the fiducial Planck cosmology. We
show the derivatives of the monopole (blue) and quadrupole (orange)
moments. The solid lines are the emulator predictions, while the symbols
are the signals measured from the N -body simulations. For the latter,
we used the additional N -body simulations, with varying Ωm or As from
its Planck cosmology value, to numerically evaluate the derivatives from
the measured power spectra in di�erent simulations (see text for details).
The error bars are the standard deviation among the 10 realizations each
of which has a volume of 8 (h≠1 Gpc)3.

5.3.7 Derivatives of the the power spectrum with respect to

cosmological parameters

Figure 5.8 shows the derivatives of the halo power spectrum with respect to two
cosmological parameters, Ωm (left) and As (right). While our training procedure of
the neural network is such that it minimizes the di�erences between the training data
and the network outputs, the rate of change in the data in response to changes in the
input parameters is not explicitly taken into account. Hence there is no guarantee
that the emulator gives accurate predictions on the derivatives. In this figure, we
focus on the derivatives with respect to the cosmological parameters around the
fiducial Planck cosmology. We show the case of the halo sample with number density
nh = 10≠4 (h≠1 Mpc)≠3 at z = 0.549, which corresponds to the halo mass threshold
Mmin = 2.8 ◊ 1013 h≠1 M§ for the Planck cosmology. For the monopole (blue)
and quadrupole (orange) moments, the emulator predictions (solid lines) and the
measured derivative signals (symbols) show a good agreement with each other. For
the measured signals, we used the additional N -body simulations to numerically
evaluate the derivatives, where we used a shifted value of Ωde = 1 ≠ Ωm or ln(1010As)

by ±5% from the fiducial value of Planck cosmology to run the simulations (the
other five parameters in Eq. (5.3) are kept to their fiducial values). We will describe
the details of this additional runs later in Chapter 6. The error bars are the standard
deviation among 10 realizations (we have two di�erent simulations of +5% and ≠5%

to take the two-sided derivative with respect to each of Ωm and As, and thus we used
in total 40 realizations for this study). We compute the emulator predictions by the
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Class Function Description
Primary P S

hh(k; z, M1, M2, p) Redshift-space power spectrum for halos of mass
thresholds M1 and M2, given as a function of
redshift (z), wave vector (k), and cosmological
parameters p = {Êb, Êcdm, Ωde, ln(1010As), ns, w}

Nuisance ÈNcÍ(z, M) HOD for central galaxies
ÈNsÍ(z, M) HOD for satellite galaxies
H̃(k; z, M, ...) Real-space position distribution of galaxies in

host halos of mass M

F̃(kÎ; z, M, ...) Velocity distribution of galaxies inside halos of
mass M

Table 5.1: A summary of the functions that we use in this chapter. “Primary”
function is the redshift-space power spectrum for halos, P S

hh(k). It is the
primary output of the emulator we develop in this chapter. “Nuisance”
functions are needed to model the relation between halos and target
galaxies in redshift space. These functions need to be flexible enough to
model the range of e�ects of galaxy physics in the redshift-space galaxy
power spectrum.

two-sided numerical derivatives in which we shift Ωm or ln(1010As) by ±1%, while
changing this rate in the range of 1%–5% gives almost no change in the predictions.

5.4 Galaxy power spectrum

We have so far described the construction and validation of the emulator for the
halo power spectrum. Our primary aim is to have accurate model predictions for the
redshift-space galaxy power spectrum, a direct observable in galaxy redshift surveys.
In this section we describe how we can use the emulator output to make model
predictions for the galaxy power spectrum, and demonstrate that it has a su�cient
functionality to give the theoretical templates for a cosmological analysis of actual
galaxy redshift surveys.

5.4.1 Galaxy power spectrum based on the halo model formalism

To compute the redshift-space galaxy power spectrum, we combine the halo model
formalism described in Sec. 3.4 with the emulator output analytically at the level of
equations (also see [29] for the similar method for the real-space galaxy clustering
statistics). In doing so, we keep a large flexibility by providing a dedicated function-
ality module so that a user can adopt a desired HOD model for a sample of target
galaxies. The requirement for an application of our emulator to the halo model
formalism is that target galaxies reside in host halos with masses M Ø 1012 h≠1M§
at a redshift for a cosmological model within the ranges covered by our training set.
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We here summarize representative model ingredients of HOD that we already
implemented in the emulator modules. Once again, a user can extend the model
to include other e�ects, so the following items should be considered as a working
example:

• ÈNcÍ (M) — The HOD for central galaxies that model the average number of
“central” galaxies in the host halos of mass M .

• ÈNsÍ (M) — The HOD for satellite galaxies.

• H(r; M) — The normalized radial profile of satellite galaxies in the host halo
of mass M . One can employ the spherically-symmetric profile in the average
sense, and the profile needs to be defined so as to satisfy the normalization
condition of

s R200

0 4fir2dr H(r; M) = 1.

• F(∆rÎ; r, M) — The distribution function of the relative line-of-sight displace-
ment due to the RSD e�ect caused by the internal (virial) velocities of satellite
galaxies in the host halos of mass M [61, 60, 58]. This leads to the FoG
e�ect [59]. We can assume a spherically symmetric profile with a dependence
only on the radial distance from the halo center, in the average sense, but
the radial and tangential velocity dispersions with respect to the halo center
can be di�erent. The velocity function satisfies the normalization condition
s Œ

≠Œd∆rÎ F(∆rÎ) = 1.

• P(roff ; M) — Some of central galaxies can have an o�-centering e�ect with
respect to the halo center (the density maximum) as a consequence of merger
or accretion in the hierarchical structure formation, as indeed indicated by the
actual data [62] or by the simulation study [64]. We can assume the spherically
symmetric distribution for P in the average sense, and the profile satisfies the
normalization condition,

s Œ
0 4fir2

off
droff P(roff) = 1. The o�-centered galaxies

would have internal motions with respect to the halo center, so the velocity
distributions of the o�-centered galaxies need to be given if one wants to include
the RSD e�ect, as we do for satellite galaxies using F .

Note that the above functions depend on redshift z, but we omit z in the argument
for notational simplicity. One can employ parametrized functions to model these
ingredients or inject a numerical table into the emulator modules to implement the
halo-galaxy connection. In Table 5.1, we summarize the functions that we use in this
chapter.

We should emphasize that the form of P S
hh(k, µ; M1, M2) in the emulator output

makes it straightforward to include the FoG e�ect due to the virial motions of galaxies
in the host halo and the AP geometrical distortion e�ect (see below) to obtain the
redshift-space power spectrum of galaxies. This is not the case if the emulator output
is in the form of the multipole moments. This is one of the requirements to which
we stick when building the emulator.
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We note that, strictly speaking, our standard implementation of the one-halo term
in Eq. (3.41) behaves as a shot-noise-like term of k0 at the limit of k æ 0 and this
violates the mass and momentum conservation at this limit [97]. Nevertheless, for the
tests in the next subsection, we did not find any signature of failure caused by our
implementation of the one-halo term over the range of k we consider, so we ignore
this limitation for now. For further improvement, one can introduce an empirical
function to give a cuto� of the one-halo term at very small k, e.g., following the
method in Ref. [98] (see also [85]).

Our default implementation implicitly assumes that the halo-galaxy connection is
determined solely by the host halo mass. This would be violated if more complicated
conditions apply to the target galaxies, which is often referred to as the assembly
bias, i.e., the existence of additional parameter, beyond halo mass, in the halo-galaxy
connection such as the halo mass concentration, the halo ellipticity, and environments
in more general terms. The previous studies discussed that the assembly bias hardly
a�ects the RSD e�ect due to bulk motions of host halos, partly because the RSD e�ect
is a gravitational e�ect [99, 100, 31]. The assembly bias e�ect should be carefully
taken into account when one performs the cosmological parameter estimation. We
will discuss this issue in Chapter 6.

5.4.2 Implementation of galaxy power spectrum

We now present a demonstration of the application of our emulator to predicting the
redshift-space power spectrum of galaxies. To do this, we consider galaxy samples
from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) as a working
example, and compare the emulator prediction to the mock measurement from the
mock galaxy catalogs. We will put the detailed description of the mock catalog
creation in Chapter 6. In this chapter, we used mocks that mimic the LOWZ sample
at z = 0.251 and the CMASS (we refer it as “CMASS1” in Chapter 6) sample at
z = 0.484 [2]. The survey volumes for these samples Vs ƒ 1.0 (h≠1 Gpc)3 for the
fiducial Planck cosmology. Although details of the model ingredients are not essential
for the demonstration, we use up to 18 model parameters for each galaxy sample: six
cosmological parameters, two parameters to model the AP e�ect, and 10 parameters
to model the halo-galaxy connection (see Table 6.2 in Chapter 6). Among these,
12 parameters (the parameters besides the cosmological parameters) are di�erent
for the LOWZ and CMASS galaxy samples. Even for this fairly complex model,
our emulator enables one to compute the redshift-space power spectrum of galaxies
in about 0.35 seconds on a 2.8 GHz quad-core Intel Core i7 processor including a
two-dimensional integral for the two mass variables.

In Fig. 5.9, we compare the emulator predictions for the multipole moments of
the redshift-space galaxy spectrum with those measured from the mock catalogs
for SDSS LOWZ- and CMASS-like samples. Note that, for this result, we did not
include the o�-centering e�ect, and will discuss it below separately. The figure clearly
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Figure 5.9: The solid lines show the emulator predictions for the multipole moments
of redshift-space power spectrum for galaxies that mimic the SDSS BOSS
LOWZ- and CMASS-like galaxies at z = 0.251 and z = 0.484, respectively,
for the Planck cosmology. Here we adopt the HOD method to combine
with the emulator outputs to compute the redshift-space galaxy power
spectra for the BOSS-like galaxies. The symbols with error bars are
the spectra measured from the mock catalogs, where we employ the
same HOD to populate galaxies into halos in each simulation realization,
include the RSD e�ect, and then measure the multipole moments from
the mocks. The mock results are for one particular realization, and the
errors are for a volume of 8 (h≠1 Gpc)3. The lower panels show the ratio
for the monopole and quadrupole moments.

Figure 5.10: The data points with error bars and the solid curves are the same as
those for the LOWZ-like sample in Fig. 5.9. The dashed and dot-dashed
lines are the one- and two-halo term contributions to the total power
for the monopole and quadrupole moments, respectively.
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Figure 5.11: A demonstration for the use of the emulator. Here we use the emulator
to study variations in the multipole moments of redshift-space galaxy
power spectrum for cosmological models with varying Ωm or As for
LOWZ-like galaxies as in Fig. 5.9. Other model parameters, besides a
varied parameter (Ωm or As), are kept to their fiducial values.

shows that the emulator fairly well reproduces the mock measurements over all scales
up to k = 0.6 h Mpc≠1. To be more quantitative the lower panels show the ratio,
compared to the statistical errors for a volume of 8 (h≠1 Gpc)3. The agreement is
well within the errors, definitely within the expected errors for an actual survey
volume of Vs ƒ 1 (h≠1 Gpc)3, which have a factor of 3 larger errors than those
plotted in the figure. The lower panel displays a relatively large discrepancy (bias)
around k ƒ 0.3 h Mpc≠1 for the quadrupole moments due to the zero-crossing in the
amplitude. The mock measurements are quite computationally expensive; run high-
resolution simulations (a few days for each with multiple processors), identify halos,
populate galaxies into halos, and then measure the redshift-space power spectrum
and the moments. The emulator enables a computation of these galaxy spectra in
O(0.1) CPU second, and allows for huge improvements in the computation time,
more than 6 orders of magnitudes (at least days time scale with multiple CPUs vs.
0.1 seconds with a single CPU).

In Fig. 5.10, we show respective contributions of the one- and two-halo terms
[Eqs. (3.41) and (3.42)] to the total power of the multipole moments for the LOWZ
sample in Fig. 5.9. The one-halo term gives a non-negligible or even significant
contribution to each of the moments, starting from quite small-k scales, around
k ƒ 0.05 h Mpc≠1 for the monopole, and from k ƒ 0.1 h Mpc≠1 for the quadrupole,
respectively. The nice agreements between the emulator predictions and the mock
measurements cannot be realized unless we include the one-halo term contributions
even on such large scales. Hence, this means that we have to marginalize over the
halo-galaxy connection parameters, which preferentially a�ect the one-halo term, to
obtain robust constraints on cosmological parameters.

We can easily use the emulator to study the dependence of the galaxy power
spectrum on cosmological parameters. Figure 5.11 shows how the multipole moments
of the galaxy power spectrum vary with changes in either Ωm or As. Here again
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Figure 5.12: Shown is how the o�-centering e�ects of central galaxies a�ect the
monopole, quadrupole and hexadecapole moments for the LOWZ- and
CMASS-like galaxies as in Fig. 5.9. Here we quantify the e�ects by the
di�erences between the power spectra with and without the o�-centering
e�ects [see Eq. (5.15)]. The solid lines are the emulator predictions, while
the symbols with the error bars are the results measured from the mock
catalogs. We model the o�-centering e�ects by the two parameters, poff

and Roff , where poff is a fraction of central galaxies that are o�-centered
in host halos of a given mass (here we assume the constant fraction
across all halo masses), and Roff is a characteristic radius relative to
the scale radius of NFW profile for the host halo (see text for details).
We consider three cases for poff , as indicated in the legend, and consider
Roff = 2. The case without the o�-centering e�ect corresponds to
poff = 0.

we vary Ωm through Ωde using the spatial flatness (Ωm = 1 ≠ Ωde), and the other
cosmological parameters in Eq. (5.3), besides a varied parameter (Ωde or As), and
the halo-galaxy connection parameters are kept fixed to their fiducial values. Thus
our emulator quite easily enables us to evaluate the sensitivity of the galaxy power
spectrum to cosmological parameters, which would be useful to explore an optimal
survey design for a galaxy survey.

Since dark matter halos are not relaxed nor in dynamical equilibrium and have no
clear boundary, there is no unique definition of the halo center. Common choices
include the potential minimum, the mass density peak, the center of mass of member
particles, or the position of massive subhalos. Throughout this chapter we employ
the mass density maximum traced by the center-of-mass position of a certain fraction
of innermost particles as a proxy of halo center, as provided as the Rockstar

output. In addition, central galaxies might have an o�set from the halo center (any
of the above centers) as a consequence of merger and accretion (e.g., see Fig. 11 in
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[64]). If a galaxy-galaxy weak lensing measurement is available for spectroscopic
galaxies used in the redshift-space power spectrum measurements, it might be
possible to observationally constrain the o�-centering e�ects [58, 62]. In any case,
the o�-centering e�ect is uncertain or di�cult to accurately model, so a conservative
approach would be to include the possible contamination in the model template,
which should be marginalized over. We here use the emulator to study the impact of
o�-centering e�ects on the redshift-space galaxy power spectrum. To quantify the
impact, we study the di�erences between the multipole moments of redshift-space
power spectrum with and without the o�-centering e�ects, defined as

∆P S
¸ (k; poff) © P S

¸ (k; poff) ≠ P S
¸ (k; poff = 0), (5.15)

where poff is a parameter to specify the fraction of central galaxies in halos of a given
mass M that are o�-centered. Here we do not consider the halo mass dependence of
poff ; that is, we assumed the same fraction of o�-centered galaxies across di�erent
host-halo masses. For a characteristic o�-centering radius, we adopt Roff = 2, where
Roff is the parameter to specify the characteristic o�-centering radius relative to
the scale radius rs of the Navarro-Frenk-White (NFW) profile [54], i.e., we use
Roff = Roffrs in Eq. (3.43).

Figure 5.12 shows variations in the multipole moments with the di�erent poff values,
for the LOWZ- and CMASS-like galaxies. We also implemented the same o�-centering
e�ects into the mock galaxy catalogs, and then measured the multipole moments from
the varied mocks. The figure shows that the o�-centering e�ects a�ect the multipole
moments at k & 0.1 h Mpc≠1, by more than the statistical errors of 8 (h≠1 Gpc)3

volume. Our emulator nicely captures the variations in the monopole, quadrupole
and hexadecapole moments due to the o�-centering e�ect, although there still remain
subtle di�erences between the predictions and the mock measurements. We checked
that the subtle di�erence can be resolved by slightly changing the o�-centering
parameters. Hence, we would like to suggest that the o�-centering parameters need
to be included, and then be marginalized over the uncertainties in cosmological
analyses, rather than precisely fixing them from theoretical considerations.

5.4.3 Alcock-PaczyÒski e�ect

Finally, we implemented the AP distortion in our emulator. Figure 5.13 shows how
the AP distortion a�ects the monopole, quadrupole, and hexadecapole moments of
the galaxy power spectrum, for the LOWZ- and CMASS-like galaxies. We compare
the emulator predictions with the measurements from the mock catalogs. To create
the mock power spectrum including the AP e�ect, we artificially distorted the Fourier-
space coordinates according to Eq. (3.21), in the measurement code. For illustrative
purpose, we here study the di�erences between the emulator predictions and the
mock measurements, defined in a similar way to Eq. (5.15). The AP e�ect has 2
degrees of freedom in the dependences of the galaxy power spectrum, e.g., the angular
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Figure 5.13: The AP distortion e�ect on the monopole and quadrupole moments in
the galaxy power spectrum for the LOWZ- and CMASS-like galaxies.
Here we vary either the angular diameter distance DA,ref(z) or the
Hubble expansion rate Href(z) at the redshift of galaxy sample by ±5%,
keeping the AP distortion parameter –‹/–Î Ã DA(z)H(z) to their true
value (i.e. –‹/–Î = 1), where DA,ref and Href are the quantities for the
reference cosmology that is adopted in the clustering analysis. The blue
and orange solid lines are the emulator predictions, while the symbols
with error bars are the results measured from the simulations including
the AP distortion. The errors are the statistical errors expected for
measurements of each moment for a volume of 8 (h≠1 Gpc)3.

diameter distance DA and the Hubble parameter H. Here we focus on variations
in the moments with varying either of DA or H with keeping the AP parameter
(–‹/–Î) fixed to the fiducial value (its true value). The figure clearly shows that
our emulator well describes the AP distortions in the monopole, quadrupole, and
hexadecapole moments at equal accuracies to the mock measurements. Our emulator
allows for the computation of these moments in O(0.1) CPU second.

All the evaluations of our emulator for the galaxy power spectrum in comparison
with the mock measurements are quite encouraging. We conclude that our emulator
is ready to apply to actual measurements from galaxy redshift surveys such as the
BOSS surveys.
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Chapter 6

Cosmological Parameter Forecasts on

SDSS-III Galaxy Power Spectrum

In the previous chapter, we have developed a fast and accurate emulator to predict the
halo and galaxy power spectrum in redshift space. The strategy we adopt to model
the galaxy power spectrum is the halo model-based approach employing an HOD
model. As we mentioned above, the halo model formalism is highly phenomenological
prescription which can include a number of nuisance parameters concerning the poorly-
understood halo-galaxy connection. Hence, we are interested in what cosmological
information would be held after the marginalization of such nuisance parameters.

In this work, we delve into this issue by using the Fisher matrix forecast. We
for the first time calculate the Fisher matrix for the redshift-space galaxy power
spectrum at the quasi-nonlinear scales up to k = 0.3 h Mpc≠1. By using the N -body
simulation-based mock galaxy catalogs, we evaluate the parameter derivatives of the
power spectrum in an non-perturbative way. Our main focus is on what cosmological
parameter constraints will be obtained from these quasi-nonlinear scales which has
never been included in the cosmological analysis of the galaxy power spectrum, in
the halo model framework.

6.1 N-body simulation-based mock galaxy power spectrum

In this work, we compute the Fisher matrix on the redshift-space galaxy power
spectrum for the model parameters, i.e., the cosmological and halo-galaxy connection
parameters. To this end we compute the derivative factors evaluated from the N -body
simulations. In this section we describe details of our procedure to create the mock
catalogs which mimic the Sloan Digital Sky Survey (SDSS)-III galaxies and compute
the sensitivity of the redshift-space galaxy power spectrum to each model parameter,
and the way to compute the covariance matrix.

6.1.1 N-Body Simulations and Halo Catalogs

To create the mock galaxy catalogs in this work, we again used the Dark Quest

N -body simulations and some additional runs we prepared using the same code set
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Model # of sim. Ωm ln(1010As) ‡8 Response (ˆP S
¸ /ˆp–) w.r.t.

Planck 16 0.3156 3.094 0.831 AP/HOD/galaxy
Ωm+ 10 0.350 - 0.820 Ωm, ‡8

Ωm≠ 10 0.281 - 0.841 Ωm, ‡8

As+ 10 - 3.249 0.897 ‡8

As≠ 10 - 2.939 0.769 ‡8

Table 6.1: Summary of N -body simulations used in this study. Each simulation
employs a box size of 2 h≠1Gpc and 20483 N -body particles (see text
for details). We use 16 realizations for the fiducial Planck cosmology
to compute the response functions of redshift-space galaxy power spec-
trum, ˆP S

gg,¸(k)/ˆp–, with respect to each of the halo-galaxy connection
parameters (see text) and the cosmological distances at a given redshift,
DA(z) and H(z), via a hypothetical clustering analysis taking into account
an apparent geometrical distortion due to the Alcock-PaczyÒski e�ect.
In addition, we use 10 realizations for each of the varied cosmological
models where either of Ωm or the parameter of primordial curvature per-
turbations, ln(1010As), is shifted by about ±11% or ±5%, respectively,
but other cosmological parameters are kept fixed. We use these varied
cosmology simulations to compute the response functions with respect to
either of Ωm or ‡8. The element denoted as “-” means the same parameter
value as the fiducial Planck cosmology.

as the Dark Quest. We briefly review the details of the N -body simulations we
used, as summarized in Table 6.1.

We use di�erent sets of simulations. The first set is 16 realizations for the fiducial
Planck cosmology that are contained in the Dark Quest simulations. These
correspond to the total volume of 16 ◊ 8 = 128 (Gpc/h)3 which is much larger than
the volume of SDSS-III survey with area 8000 deg2 and over the redshift range we
consider in this chapter, VSDSS ƒ 6.2 (h≠1Gpc)3 (see Table 6.3). Hence the Planck

realizations allow for a precision measurement of redshift-space galaxy power spectra
due to the large statistics.

In this work, we use the halo catalogs at output redshifts z = 0.251, 0.484 and
0.617 that represent the redshifts of the LOWZ galaxy sample and low-z and high-z
sides of the CMASS galaxies in the SDSS-III DR11 survey, respectively. Table 6.3
gives a summary of these survey parameters.

The purpose of this chapter is to evaluate cosmological information contents in
the galaxy power spectrum after marginalization over various nuisance parameters
that model halo-galaxy connection. To do this, we numerically evaluate a response
function of the redshift-space galaxy power spectrum to each model parameter,
ˆP S

gg,¸(k)/ˆp–, which quantifies how a change in the –-th parameter, p–, alters
the multipole power spectrum P S

gg,¸(k). More precisely we use the two-sided finite
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di�erence to numerically evaluate the partial derivative:

ˆP S
gg,¸(k)

ˆp–
©

P S
gg,¸(k; p–,fid + ∆p–) ≠ P S

gg,¸(k; p–,fid ≠ ∆p–)

2∆p–
(6.1)

where P S
gg,¸(k; p–,fid ± ∆p–) is the ¸-th multipole power spectrum of galaxies where

the parameter is shifted to p–,fid ± ∆p– by a small amount ∆p– (see below), but
other parameters are fixed to their fiducial values. To compute this we use the
mock catalog of galaxies to evaluate the power spectrum P S

gg,¸(k) for each of varied
models. For the derivatives ˆP S

gg,¸(k)/ˆp–, with respect to the halo-galaxy connection
parameters, we use the mock catalogs of SDSS galaxies that are constructed from 16
N -body simulation realizations at target redshifts for the fiducial Planck cosmology
(see below for details).

To compute the other derivatives with respect to cosmological parameters we
run di�erent sets of N -body simulations to estimate the dependence of the galaxy
power spectrum. In this chapter we focus on Ωm and ‡8 to which the galaxy power
spectrum is sensitive within the flat ΛCDM model. Other cosmological parameters
are fixed to their values for the fiducial Planck model. To do this we run 10 paired
realizations of N -body simulations by varying either of Ωm or As on either positive
or negative side from their fiducial value, with other parameters being kept to the
fiducial values (actually we use ln(1010As) rather than As itself, as the parameter for
which the numerical derivatives are evaluated, but we simply refer to as As to avoid
the complexity of the description). For each paired realizations, we use the same
initial seed of initial conditions to run the N -body simulations. Table 6.1 summarizes
details of the N -body simulations we use in this chapter. The reason we use As

instead of ‡8 is that we use As for the normalization parameter of the initial power
spectrum for the fiducial Planck model in Ref. [29]. Using the chain rule we compute
the numerical derivative with respect to ‡8 as

ˆP S
gg,¸(k)

ˆΩm

-

-

-

-

-

As

=
ˆP S

gg,¸(k)

ˆ‡8

-

-

-

-

-

Ωm

ˆ‡8

ˆΩm

-

-

-

-

As

+
ˆP S

gg,¸(k)

ˆΩm

-

-

-

-

-

‡8

,

ˆP S
gg,¸(k)

ˆAs

-

-

-

-

-

Ωm

=
ˆP S

gg,¸(k)

ˆ‡8

-

-

-

-

-

Ωm

ˆ‡8

ˆAs

-

-

-

-

Ωm

. (6.2)

We use the mock catalog of galaxies that are constructed from N -body simulations
with varying either of Ωm or As (see Table 6.1), and then evaluate the numerical
derivative, ˆP S

gg,¸(k)/ˆAs

-

-

-

Ωm

or ˆP S
gg,¸(k)/ˆΩm

-

-

-

As

, using Eq. (6.1), where we fix the
halo-galaxy connection parameters to their fiducial values. Then we use the above
equation to compute ˆP S

gg,¸/ˆ‡8

-

-

-

Ωm

and ˆP S
gg,¸/ˆΩm

-

-

-

‡8

, where we use CAMB to

evaluate ˆ‡8/ˆΩm|As
and ˆ‡8/ˆAs|Ωm

around the fiducial Planck cosmology.
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Parameter
Fiducial value

‡priorLOWZ CMASS1 CMASS2

DA(z) [h≠1 Mpc] 564.6 861.5 971.5 -
H(z) [h km s≠1 Mpc≠1] 114.1 131.0 142.1 -

log Mmin 13.62 13.94 14.19 2.0
‡log M 0.6915 0.8860 0.7919 1.0
log M1 14.42 14.46 14.85 2.0

log Msat 13.33 13.72 13.01 2.0
–sat 0.9168 1.192 0.9826 2.0

cconc 1.0 1.0 1.0 2.0
cvel 1.0 1.0 1.0 2.0
poff 0.30 0.30 0.30 1.0
Roff 2.0 2.0 2.0 2.0

PSN 0 0 0 0.1/n̄g

Table 6.2: The fiducial values of model parameters in our Fisher matrix analysis for
a hypothetical galaxy survey that resembles the LOWZ galaxy sample and
two subsamples of CMASS galaxies at lower and higher redshift sides in the
SDSS-BOSS surveys (see Table 6.3). Here we consider 12 parameters for
each galaxy sample: the angular and radial distances, DA(zn) and H(zn),
9 parameters to model the halo-galaxy connection, and the residual shot
noise parameter. In addition we include the cosmological parameters Ωm

and ‡8 for the background cosmological model. Using these fiducial values
and the slightly-varied value for each parameter (with other parameters
being kept fixed), we generate the mock catalogs of these galaxies from
the halo catalogs in N -body simulations for the fiducial Planck cosmology,
make a hypothetical measurement of the redshift-space power spectrum
from each mock and then compute the Fisher matrix elements from the
measured power spectra. The column denoted as “‡prior” is the value for
a Gaussian prior of each parameter. For a prior of the residual shot noise,
we employ 10% of the shot noise for the fiducial mock of each sample.

Sample Redshift range VS [h≠1Gpc]3 n̄g [h Mpc≠1]3 linear bias bg

LOWZ [0.15, 0.30] (0.251) 1.98 2.173 ◊ 10≠4 1.78
CMASS1 [0.47, 0.55] (0.484) 2.26 9.251 ◊ 10≠5 2.12
CMASS2 [0.55, 0.70] (0.617) 3.8 5.336 ◊ 10≠5 2.28

Table 6.3: The parameters of galaxy samples that resemble the LOWZ, CMASS1
and CMASS2 galaxies in the BOSS survey. Each sample is defined to
be a volume-limited sample which is defined to be luminosity-limited,
rather than flux-limited, for a given redshift range (see text for details).
The mean number density of galaxies (n̄g) is computed from the mock
catalogs using the fiducial HOD parameters for the fiducial Planck model
(Tables 6.1 and 6.2). The linear bias (bg) is determined from comparison
of the galaxy power spectrum with the matter power spectrum in the
same mock realization at low-k bins.
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6.1.2 Mock catalogs of SDSS LOWZ and CMASS galaxies

We consider models of halo-galaxy connection that mimic spectroscopic galaxies
in the SDSS survey [2]. We consider the “LOWZ” galaxies in the redshift range
z = [0.15, 0.30] and two subsamples of “CMASS” galaxies that are divided into two
redshift bins of z = [0.47, 0.55] and [0.55, 0.70], respectively. Hereafter we call the
two CMASS samples in the lower and higher redshift bins, CMASS1 and CMASS2,
respectively. We employ the HOD and other parameters that roughly resemble
the SDSS galaxies for the Planck cosmology, as given in Table 6.2. To generate
mock catalogs of these galaxies we use the halo catalogs produced from N -body
simulation outputs at redshifts z = 0.251, 0.484 and 0.617, which are close to the
median redshifts of the LOWZ, CMASS1, and CMASS2, respectively (see Table 6.3).
We ignore the redshift evolution of the galaxy clustering within each redshift bin.
The following is the details of procedures to populate SDSS-like galaxies into halos
identified in each N -body simulation realization:

(i) Central galaxies – We employ the central HOD, ÈNcÍ(M), with the form given
by Eq. (3.28). We select halos to populate central galaxies assuming a Bernoulli
distribution with mean ÈNcÍ(M). We assume that each central galaxy has the
same peculiar velocity as the bulk velocity of its host halo measured as the
center-of-mass velocity of particles in the core region.

(ii) Off-centering effect of central galaxies – As our default model we include a pop-
ulation of o�-centered “central” galaxies. We select o�-centered galaxies from
all the central galaxies selected in the procedure (i), following the prescription
described in Sec. 3.4: each central galaxy to be o�-centered is selected with a
probability poff , and its displacement from its host halo center is drawn from
the isotropic 3D Gaussian distribution given by Eq. (3.43). The scale radius rs

of each halo is computed from the fitting formula of halo mass-concentration
relation, c(M, z), in Ref. [55], where we assume an NFW profile for the host
halo mass M and redshift z for the Planck cosmology. Once an o�-centered
radius roff is given, we assign a “sloshing” velocity of the o�-centered galaxy
around the halo center, assuming it follows a Gaussian distribution with the
typical velocity dispersion given by Eq. (3.36). The total velocity of each
“o�-centered” central galaxy is given as the sum of the assigned internal velocity
and the bulk velocity of its host halo.

(iii) Satellite galaxies – To populate satellite galaxies into halos we employ the
satellite HOD with the form given by Eq. (3.29). As described in Sec. 3.4 we
assume that satellite galaxies reside in halos which already host a “central”
galaxy inside, including the o�-centered galaxy in the procedure (ii). For
each of such host halos with mass M , we determine the number of satellite
galaxies, randomly drawn from the Poisson distribution with mean ⁄s defined
in Eq. (3.29). For each satellite galaxy we determine its position within r200
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of the halo, by randomly drawing from the NFW profile. As we do for the
o�-centered galaxy in the procedure (ii), we assign an internal velocity to
each satellite galaxy using the interior mass M(< r) at the satellite position.
Likewise the total velocity is given as a sum of the internal motion and the
host halo’s bulk velocity.

These are the procedures to populate central and satellite galaxies in the halos found
in N -body simulation realizations including the RSD e�ect. These are an empirical
approach, and the properties of true galaxies would be more complicated because
of the dependence on complicated physics inherent in galaxy formation/evolution
processes as well as on non-trivial selection e�ects, e.g., color and magnitude cuts.
Hence these mock galaxy catalogs should be considered as a working example for the
following discussion, and we will discuss the impact of other e�ects that we ignore
on our results, e.g., the assembly bias separately.
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Figure 6.1: The halo occupation distribution (HOD), measured from one realization
of the galaxy mock catalogs of LOWZ, CMASS1 and CMASS2 for the
fiducial Planck cosmology (Table 6.2). Here we show the central (blue)
and satellite (orange) HODs. Note that we use the halos with mass
M200 Ø 1012 h≠1M§ as host halos of the mock galaxies in the simulation.
For comparison the dashed curves show the input mean HODs in Table 6.2.

Fig. 6.1 shows the HODs for the LOWZ, CMASS1, and CMASS2-like galaxies that
we employ when building the mock catalogs in this chapter. The three dashed curves
in each panel show the central and satellite HODs and the total HOD, respectively.
The points show the respective HODs that are measured from the mock catalogs
for the fiducial Planck cosmology. The SDSS galaxies are passively-evolving early-
type galaxies that are selected based on color and magnitude cuts [101, 2]. These
galaxies typically reside in halos with masses ≥ 1013M§, while cluster-scale halos
with >≥ 1014M§ host these galaxies as satellite galaxies. The average number density
n̄g = 2.173 ◊ 10≠4, 9.251 ◊ 10≠5 or 5.336 ◊ 10≠5 [hMpc≠1]3 for the LOWZ, CMASS1,
or CMASS2 for the Planck cosmology, respectively (see Table 6.3). These number
densities are smaller than that of the full LOWZ and CMASS galaxies, because we
mimic the luminosity-limited subsample, not the flux-limited all galaxies (see [102]
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for a similar discussion). The detailed shape of HOD is not essential for our purpose.
We employ these HODs as a working example.

6.1.3 Measurements of redshift-space power spectra from mock galaxy

catalogs
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Figure 6.2: The symbols show the monopole (left panel) and quadrupole (right) power
spectra measured from the galaxy mocks that resemble LOWZ, CMASS1
and CMASS2 galaxies, respectively. For illustrative purpose we multiply
the power spectrum by k so that the power spectrum shown is in a narrow
range of this amplitude (therefore y axis is in a linear, rather than logarith-
mic, scale). Since the power spectra are estimated from the 16 realizations
of 2 h≠1Gpc cubic box corresponding to volume of 128 (h≠1Gpc)3 in
total, the error bar of the mean of band power measurements at each
k bin, although shown, is not visible. For comparison, the solid curves
show the predictions of Kaiser formula [Eq. (3.20)], where we used the
linear matter power spectrum, the linear bias parameter (bg in Table 6.1),
and the redshift-space distortion parameter — = (1/bg)d ln D+/d ln a for
the Planck model (D+ is the linear growth rate). Note that the plotting
ranges of y-axis in the monopole and quadrupole spectra are di�erent
from each other because of their di�erent amplitudes (see text for details).
The lower panel shows the ratio. The Kaiser formula ceases to be accurate
at k & 0.05 h Mpc≠1, especially for the quadrupole spectrum.

We measure the power spectrum from each realization of the galaxy mocks con-
structed according to the method in the preceding subsection, using FFT-based
method (see Chapter 4). First we map the real-space positions of mock galaxies and
their velocities to the redshift-space positions using Eq. (3.4), under the plane-parallel
approximation where the line-of-sight is taken to be along the z-axis direction. The
number density field of mock galaxies is defined on 10243 3D mesh grids using the
Cloud-in-Cell (CIC) interpolation. Since our simulations’ box size is 2000 h≠1 Mpc,
the Nyquist wave number is kNy = 1.608 h Mpc≠1, which is su�ciently smaller than
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Figure 6.3: The impact of satellite galaxies on the real-space (left panel) and redshift-
space (right) power spectra. To study this, the triangle symbols with
error bars show the power spectra when using central galaxies alone in
each galaxy mock (i.e., removing satellite galaxies from the mock), while
the circle symbols are the same as in Fig. 6.2. The lower panels show the
ratio.

the scales we are interested in. We then implement the FFT method to the number
density field of galaxies to obtain the Fourier-transformed field, where we reduce
the aliasing contamination arising from the grid interpolation, using the interlacing
scheme described in [92]. We split each Fourier mode into linearly-spaced k-bins
ranging k = [0, 2] h Mpc≠1, and obtain the power spectrum signals by averaging the
modes that enter into each bin of k. We adopt the bin width ∆k = 0.01 h Mpc≠1that
is su�ciently narrow compared to the BAO features in the power spectrum. We
assume the Poisson shot noise PPoisson = 1/n̄g and subtract it from the measured
power spectrum.

Fig. 6.2 shows the monopole and quadrupole power spectra measured from the 16
realizations of mock catalogs of LOWZ, CMASS1 and CMASS2-like galaxies for the
Planck cosmology. The error bar at each k bin denotes an estimate of the error on
the mean of power spectrum amplitude, estimated as ‡/

Ô
16, where ‡ is the standard

deviation of band power at each k bin. Hence the error represents the statistical error
when the band power at each k bin is measured from a volume of 128 (h≠1Gpc)3. For
comparison we also show the linear theory predictions for each galaxy sample, which
are computed using the Kaiser formula, Eq. (3.20). We determine the linear bias bg

from a comparison of the real-space power spectra of galaxies and matter measured
from the galaxy mocks and N -body simulations, respectively, at the lowest 5 k-bins
(corresponding to k . 0.05 h Mpc≠1) that are considered to be well in the linear
regime. The linear bias value estimated based on this method is given in Table 6.3.
The Kaiser formula predicts that the ratio of the quadrupole power spectrum to the
monopole spectrum is given as P S

2,Kaiser/P S
0,Kaiser = (4—/3 + 4—2/7)/(1 + 2—/3 + —2/5)

80



6.1 N -body simulation-based mock galaxy power spectrum

independently of the linear matter power spectrum and the wave number k. Galaxies
with greater bias parameter has a smaller ratio of P S

2 /P S
0 . The redshift and linear bias

parameter in Table 6.3 give about 0.43–0.45 for the ratio for the LOWZ, CMASS1
and CMASS2 samples.

Fig. 6.2 shows that the linear-theory prediction moderately matches the simulation
result for the monopole power spectrum up to k ƒ 0.1 h Mpc≠1. However, the Kaiser
formula ceases to be accurate very quickly at k & 0.05 h Mpc≠1for the quadrupole
power spectrum, indicating that nonlinearities in the RSD e�ect become significant
from the relatively small k compared to the nonlinear e�ect on the real-space or
monopole power spectrum. In particular the nonlinear quadrupole power spectra
have smaller amplitudes than the linear theory predicts at k & 0.05 h Mpc≠1because
of the smearing e�ect due to streaming motions of halos or virial motions of galaxies
[103, 104, 13]. Hence it is of critical importance to properly take into account the
nonlinear e�ects in the galaxy power spectra in order to accurately estimate the power
of redshift-space galaxy power spectra for constraining cosmological parameters.

In the halo model picture, the underlying halo power spectrum contains the
cosmological information, while the e�ects arising from the halo-galaxy connection
are considered as a source of systematic e�ects. To study this, in Fig. 6.3 we plot the
power spectra of the central galaxies alone; i.e., we repeat the measurement after we
remove the satellite galaxies from each mock realization.The galaxy power spectrum
including the satellite galaxies is quite di�erent from the power spectrum of central
galaxies. The satellite galaxies alter the galaxy clustering in several ways (also see
[105] for a similar discussion). First, the inclusion of the satellite galaxies leads to a
boost in the large-scale (small-k) amplitude of galaxy power spectrum, because the
satellite galaxies tend to reside in massive halos, which have a greater linear bias, and
including the satellite galaxies upweights the contribution of massive halos leading to
the greater band power at small k bins in the 2-halo term regime. Secondly, as is clear
from the real-space power spectrum, the satellite galaxies boost the power spectrum
amplitude at small scales due to the 1-halo term contribution, which arises from
clustering of (central-satellite or satellite-satellite) galaxies in the same host halo.
Thirdly, the satellite galaxies cause a suppression in the power spectrum amplitude
at small scales due to the FoG e�ect, as can be found from the redshift-space power
spectra in the right panel. Hence the 1-halo term contribution and the FoG e�ect are
somewhat compensated. Thus, the satellite galaxies, more generally the halo-galaxy
connection parameters, cause complex, scale-dependent changes in the galaxy power
spectrum at small scales compared to the power spectrum of the host halos or the
central galaxies.
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Figure 6.4: The Gaussian covariance of the monopole and quadrupole galaxy
power spectra. Note that, to estimate the covariance matrices,
we used the redshift-space galaxy power spectrum, P S

gg(k, µ), mea-
sured from the 16 realizations of CMASS1 mocks for the Planck
model [see Eq. (6.3)]. For illustrative purpose, we show the ratio
P S

gg,¸(k)P S
gg,¸Õ(k)/Cov[P S

gg,¸(k), P S
gg,¸Õ(k)] as a function of k. Since the

quadrupole power spectrum amplitude has a zero crossing at k ƒ
0.2 h Mpc≠1, the curves involving the quadrupole power spectrum displays
a discontinuity around the wave number.

6.1.4 Covariance matrix of redshift-space power spectra

To compute the Fisher matrix, we need to estimate the covariance matrix for the
multipole power spectra of galaxies, which is defined as

Cov
Ë

P̂
S
gg,¸(ki), P̂

S
gg,¸Õ(kj)

È

©
e

P̂
S
gg,¸(ki)P̂

S
gg,¸Õ(kj)

f

≠
e

P̂
S
gg,¸(ki)

f e

P̂
S
gg,¸Õ(kj)

f

. (6.3)

In this chapter we employ the Gaussian covariance matrix as given in Appendix A
in Ref. [106] (also see [47, 107]), which is given by

Cov
Ë

P̂
S
gg,¸(ki), P̂

S
gg,¸Õ(kj)

È

=

”K
ij

1

Nmode(ki)

⁄ 1

≠1
dµ (2¸ + 1)L¸(µ)(2¸Õ + 1)L¸Õ(µ)

C

P S
gg(ki, µ) +

1

n̄g

D2

, (6.4)

where ”K
ij is the Kronecker delta function, defined so as to satisfy ”K

ij = 1 if i = j,
otherwise ”K

ij = 0; Nmode(ki) is the number of independent Fourier modes, determined
by the fundamental Fourier mode for a given survey, in the spherical shell of radius
ki with width ∆k; Nmode(ki) ƒ 4fik2

i ∆k/[(2fi)3/VS] for ki ∫ 2fi/(VS)1/3, and VS

is the survey volume; [P S
gg(ki, µ) + 1/n̄g] is the “observed” redshift-space power

spectrum given as a function of (ki, µ), including the shot noise contamination. For
the survey volume, we adopt VS = 1.98, 2.26 or 3.80 [h≠1Gpc]3 for the redshift slice
of LOWZ, CMASS1 or CMASS2-like galaxies, respectively (see Table 6.3). For the
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redshift-space power spectrum P S(k, µ) (including the shot noise term) in the above
equation, we use the power spectrum directly measured from the 16 realizations of
mock catalogs for the fiducial Planck cosmology. Note that, for the real-space power
spectrum Pgg(k) (i.e., no µ-dependence), the above formula reproduces the standard
covariance formula, Cov[Pgg(ki), Pgg(kj)] = [2”K

ij /Nmode(ki)] ◊ [Pgg(ki) + 1/n̄g]2.

In Fig. 6.4 we show the Gaussian covariance matrices for the monopole and
quadrupole power spectra for the CMASS1-like galaxies. For illustrative purpose, we
plot P S

gg,¸(ki)P
S
gg,¸Õ(ki)/Cov[P S

gg,¸(ki), P S
gg,¸Õ(ki)], which roughly gives a signal-to-noise

ratio for the band power measurement at each ki bin, (S/N)2|ki
. The figure clearly

shows that the signal-to-noise ratio for the quadrupole spectrum is much smaller
than that of the monopole spectrum, by up to a factor of 100. This large-factor
reduction is due to the two facts. First, the quadrupole power spectrum has a smaller
band power than the monopole spectrum by a factor of 4 (see Fig. 6.2), which
explains a factor of 16 in (S/N)2|ki

that scales as the square of band power. Second,
the covariance of the quadrupole power spectrum also arises from the monopole.
This explains the remaining factor in the factor of 100. Nevertheless, as we will
show below, the quadrupole spectrum is quite powerful to constrain cosmological
parameters, as it purely arises from the RSD e�ect and cosmological AP distortion
both of which are cosmological e�ects. The figure also shows a significant cross-
covariance between the monopole and quadrupole spectra. Note that, in this study
we consider only the diagonal, Gaussian contribution, but in reality there should be
the o�-diagonal covariance. As has been recently shown in [108], such non-Gaussian
contribution is relatively small for SDSS galaxies because of the relatively large shot
noise contribution to the total covariance matrix. We postpone the evaluation of
this impact on the cosmological parameter inference in realistic galaxy surveys and
we will further investigate this point using the SDSS galaxy clustering data in the
future work.

6.2 Results

In this section we show the main results of this chapter; we show parameter forecasts
that are obtained from measurements of the redshift-space power spectra of SDSS-like
galaxies.

6.2.1 Fisher information matrix

To perform the parameter forecast, we employ the Fisher information formalism
[109, 110]. We include, as observables, the monopole and quadrupole power spectra
of LOWZ, CMASS1 and CMASS2-like galaxies. The Fisher matrix for the ¸- and

83



Chapter 6 Cosmological Parameter Forecasts on SDSS-III Galaxy Power Spectrum

¸Õ-th multipole power spectra is defined as

F ¸¸Õ

–— =
ÿ

zn

ÿ

ki,kj

ˆP S
gg,¸(ki; zn)

ˆp–
Cov≠1

Ë

P̂
S
gg,¸(ki; zn), P̂

S
gg,¸Õ(kj ; zn)

È ˆP S
gg,¸Õ(kj ; zn)

ˆp—

(6.5)

where the Cov≠1
Ë

P̂
S
gg,¸(ki; zn), P̂

S
gg,¸Õ(kj ; zn)

È

is the inverse of the covariance matrix
[Eq. (6.4)], and p– is the –-th parameter. Here we use the Gaussian covariance
assumption, and hence the covariance matrix is diagonal in wave number bins; the
summation over ki and kj reduces to a single summation

q

ki
. To combine the Fisher

information for di�erent samples of the LOWZ, CMASS1 and CMASS2-like galaxies,
we simply sum the Fisher matrices for the three galaxy samples. In other words, we
ignore a possible cross-covariance between the di�erent galaxy samples at di�erent
redshift slices. When computing the Fisher information for a combined measurement
of the monopole and quadrupole power spectra, we properly take into account the
cross-covariance. When computing the Fisher matrix, we set kmin = 0.02 h Mpc≠1for
the minimum wave number in the k-bin summation

q

ki
, and then study how the

Fisher information content varies with a maximum wave number, kmax, for which
we mainly consider kmax = 0.1, 0.2 or 0.3 h Mpc≠1, respectively. We consider the
following set of model parameters:

p © {Ωm, ‡8, DA(zn), H(zn),

log Mmin(zn), ‡log M (zn), log M1(zn), log Msat(zn), –sat(zn),

cconc(zn), cvel(zn), poff(zn), Roff(zn), PSN(zn)} , (6.6)

where quantities including zn in the argument indicate that they can take di�erent
values for the three galaxy samples at di�erent redshifts (either of LOWZ, CMASS1
or CMASS2). When we include the information from the galaxy samples of three
redshift bins, we consider 38 model parameters in total. Among those, 8 cosmological
parameters; (Ωm, ‡8) and {DA(zn), H(zn)} for each of the three redshifts, where
DA(zi) are H(zi) are the parameters to model the AP e�ect (see Section 3.3). On the
other hand, we include 10 nuisance parameters that model the halo-galaxy connection
and the residual shot noise for each of the three redshifts. Table 6.2 gives the fiducial
values as well as the prior for the nuisance parameters. Note that the prior we employ
is a very weak one, and we use it only to have a stable calculation of the Fisher
matrix (e.g., its inversion).

The most important model ingredient for the Fisher calculation is the response
function ˆP S

gg,¸(k)/ˆp–, which quantifies how a change in the –-th model parameter
alters the ¸-th multipole moment of the power spectrum, or equivalently a sensitivity
of the ¸-th multipole moment to the –-th parameter. Fig. 6.5 shows the response
functions for the monopole and quadrupole moments. As described we use the
realizations of galaxy mock catalogs to numerically evaluate the response function for
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each parameter up to the nonlinear scales (high k) (see Table 6.1 and Section 6.1). We
also discuss a validation of the measured responses using the linear theory prediction
in Appendix 5. As shown in the appendix, the k-dependence of the response function
at relatively small k bins is fairly well captured by variations in the underlying linear
matter power spectrum, the linear galaxy bias (via the small-k behavior of 2-halo
term) and the linear RSD e�ect. These are all useful cosmological information, while
the 1-halo term causes a complex k-dependent e�ect on the response functions.

We first focus on the results for cosmological parameters Ωm and ‡8 to which
large-scale structure probes are most sensitive within the flat ΛCDM model. As
expected, the cosmological parameter, Ωm or ‡8, causes characteristic changes in
the amplitude and shape of the redshift-space power spectra over all the scales we
consider. Note that when we change Ωm the baryon and CDM density parameters,
Êb = Ωbh2 and Êcdm = Ωcdmh2, are kept unchanged, since these parameters are well
constrained from the CMB experiments. Also note all the responses are measured at
every k bin in units of h Mpc≠1, although a change of Ωm leads to a change of h.

The responses to Ωm display oscillatory behaviors of the BAO, which however
is not due to the shift of BAO peak itself (in physical unit) but the change in the
Hubble constant h, since Êb and Êcdm are kept unchanged. For fixed ‡8 and HOD
parameters, increasing Ωm leads to a decrease in the power spectrum amplitude at the
redshifts of the galaxy samples. The change in Ωm also alters the RSD strength. Such
a kind of behavior is also seen on the linear matter power spectrum, and is further
confirmed by the linear theory prediction using the halo bias model in Appendix 5.

Next let us consider the responses to ‡8. First, increasing ‡8, for a fixed Ωm, leads
to a greater normalization of the linear matter power spectrum by definition. In
addition, increasing ‡8 leads to an increase in the abundance of massive halos, which
boosts a clustering contribution from satellite galaxies in massive halos that have
greater linear bias. This yields the greater amplitude of galaxy power spectrum, even
at small k bins in the linear regime (also see discussion around Fig. 1 in Ref. [105]).
However these boosts are to some extent compensated by a smaller halo bias due to
the increased ‡8, because halos of a fixed mass scale become less biased and therefore
have smaller linear bias compared to the fiducial Planck model (again see Fig. 1 in
Ref. [65]). Furthermore, an increase of ‡8 causes larger random or streaming motions
of halos, yielding a greater suppression in the clustering amplitude at larger k in
the nonlinear regime. Thus increasing ‡8 causes a scale-dependent response for the
monopole and quadrupole power spectra, causing positive to negative responses from
small to large k. We will below study how changes in Ωm and ‡8 alter the power
spectra of central galaxies, i.e., removing satellite galaxies, which helps to gain a
clearer understanding of these behaviors.

The AP e�ect distorts the BAO peak locations, and consequently the response
functions display oscillatory behaviors. As described in Sec.3.3 and later in this text,
since the redshift-space power spectrum includes two di�erent combinations of the
AP distortion, the e�ects of DA and H are distinguishable. Note that the responses
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of the monopole power spectrum to DA and H have behaviors quite similar to that
to Ωm, which is not true of the quadrupole power spectrum. This indicates that
the e�ects of Ωm and distance parameters on the monopole spectrum are highly
degenerated, and hence combining the monopole and quadrupole spectra is of critical
importance to break the degeneracies.

The middle-row panels of Fig. 6.5 show the responses to the five HOD parameters.
As can be found from Eq. (3.28), the parameters log Mmin and ‡log M determine the
cuto� and shape of the mean central HOD at the low-mass end. When log Mmin is
decreased or when ‡log M is increased, less massive halos, which are below the cuto�

mass scale in the fiducial HOD model, become to be included in the sample. Such
halos have smaller bias, leading to the smaller amplitudes of the power spectra. Hence
the response functions of the monopole power spectrum with respect to log Mmin or
‡log M are positive or negative, respectively. On the other hand, such less massive
halos have smaller random motions, and therefore cause a less suppression at small
scales. For this reason, the response of the quadrupole power spectrum changes its
sign at k ƒ 0.1 h Mpc≠1.

The HOD of satellite galaxies is characterized by the parameters, log M1, log Msat

and –sat. Here log M1 determines the normalization of the mean satellite HOD;
e.g., decreasing the mass scale M1 leads to a higher normalization, thereby yielding
more satellites to be in the sample. Increasing M1 leads to a smaller clustering
amplitude at small k bins due to a less contribution from massive halos, while it
leads to a smaller FoG e�ect. For this reason, the monopole response to M1 is
negative, while the quadrupole response is negative at very small k bins and then
becomes positive at larger k. The parameter Msat determines a cut-o� mass scale;
ÈNsÍ æ 0 at M æ Msat. The increase of Msat confines the mass scale of the host
halos to higher mass, which results in the decrease of the large-scale galaxy bias. The
parameter –sat determines the slope of halo mass dependence of the mean satellite
HOD. Its increase leads to two di�erent e�ects on the power spectrum amplitude
at large scales: one is the enhancement of the number of satellite galaxies hosted
by high-mass halos, and another is the suppression of the number of those living
in low-mass halos. The typical mass at this enhancement/suppression transition is
M ≠ Msat ≥ M1. In addition, at small scales, an increase of the satellite population
causes an enhancement of the FoG smearing, so the behavior of the response to –sat

would be subtle.

Other nuisance parameters, cconc, cvel, poff and Roff , model distributions of galaxies
inside their host halos, and therefore a�ect the redshift-space power spectrum at k

bins of our interest due to the FoG e�ect (because the real-space changes due to
variations of galaxy distribution in the same halo are all at scales below a few h≠1 Mpc,
which are outside the k-range we consider). The bottom-row panels of Fig. 6.5 display
similar shapes for the responses to these parameters due to the changes in the amount
of FoG e�ect. These responses would be approximately described by a k2 dependence
at small k bins [58, 62]. Hence, as long as a FoG function, which has a k2-dependent
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term with free amplitude parameter, is introduced, one might be able to take into
account variations in the FoG contamination.

For completeness, in Fig. 6.6 we study the responses of the power spectra of the
central galaxies to the model parameters. We numerically evaluate the response
functions from the power spectra of the central galaxies. These power spectra
are measured from the central galaxies in the same mock catalogs as used in the
mocks in Fig. 6.5. Comparison of Figs. 6.5 and 6.6 manifests the role of satellite
galaxies in these response functions. For example, the ‡8 response for the monopole
power spectrum of the central galaxies changes its sign at small k bins, compared to
Fig. 6.5, and is negative over all the k-scales. Since the multipole power spectra are
expressed as P0(k) ≥ (b2 + 2bf/3 + f2/5)(‡8)2 and P2(k) ≥ (4bf/3 + 4f2/7)(‡8)2

[see Eq. (3.20)], the sign change at small k is due to the fact that a decrease in
the linear bias overcomes an increase in ‡8 in the monopole response; the leading
term b2(‡8)2 has a negative response to an increase in ‡8. On the other hand, the
‡8-response of the quadrupole power spectrum is still positive at small k bins, because
of the weaker dependence on b as the leading term has a dependence of b(‡8)2. All
these complicated dependences of the power spectra on cosmological parameters are
contained in the halo power spectrum.

6.2.2 Cosmological parameter forecasts

Signal-to-noise ratio of multipole power spectra

Before showing cosmological parameter forecasts, we first study, in Fig. 6.7, the
cumulative signal-to-noise ratio (S/N)2 expected for a measurement of the monopole
and quadrupole power spectrum for the SDSS-like survey (Table 6.3), which is defined
as

3

S

N

42

=
kmax
ÿ

i,j

P S
¸ (ki) Cov≠1

Ë

P S
¸ (ki), P S

¸ (kj)
È

P S
¸ (kj), (6.7)

The inverse of (S/N)2 gives a precision in estimating the amplitude parameter of
power spectrum, if the power spectrum up to a given maximum wave number, kmax,
is measured from an assumed galaxy survey (here the SDSS-like survey), assuming
that the power spectrum shape is perfectly known. Fig. 6.7 shows the results of
S/N for the monopole and quadrupole power spectra as a function of kmax. Here we
consider the LOWZ, CMASS1, and CMASS2-like samples. If the power spectrum
measurement is in the sample-variance-limited regime and the Gaussian covariance is
valid, S/N Ã k

3/2
max. The figure shows that (S/N) keep increasing with increasing kmax

up to kmax ≥ 0.2 h Mpc≠1. However, at the larger kmax the covariance is dominated
by the shot noise for the SDSS-like galaxies which have the number density of about
10≠4 (hMpc≠1)3 (see Table 6.3), and the S/N is saturated in the shot noise regime.
The figure also shows that S/N for the quadrupole has a smaller amplitude than
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the monopole by a factor of 10. Nevertheless the quadrupole spectrum carries a
significant information on cosmological parameters thanks to its sensitivity to the
RSD e�ect and the AP e�ect, and therefore helps break the parameter degeneracies
when combined with the monopole spectrum, as we will show below.

Geometrical constraints and cosmological parameter forecasts

We now show the forecasts for cosmological constraints, which are the main results
of this chapter. A notable advantage of the redshift-space galaxy clustering method,
compared to other large-scale structure probes, is that it enables us to simultaneously
constrain the growth of matter clustering (usually f‡8) as well as the cosmological
distances via the AP e�ect. As we have described above, in this study we treat these
parameters independently, Ωm, ‡8, DA(zn), and H(zn) in our parameter forecasts,
even though the cosmological distances can be specified for a given Ωm at a given
redshift for a flat ΛCDM model. Thus the redshift-space galaxy clustering method
enables a stringent geometrical test of the cosmological distances free of uncertainties
in the large-scale structure growth or galaxy bias [111] (also see [112] for a similar
discussion). We keep this advantage for our parameter forecasts, and then will discuss
how the Ωm constraint is improved if we use the Ωm-dependence of distances for a
flat ΛCDM model.

The BAO peak position and shape in the galaxy power spectrum is measured
anisotropically if a reference cosmological model, which needs to be assumed in
converting the observed angular scales and redshifts to the comoving coordinates
in the analysis, di�ers from the underlying true cosmology. Fig. 6.8 shows the 68%
CL error ellipses in determination of DA(zn) and H(zn), including marginalization
over other 32 parameters including nuisance parameters to model the halo-galaxy
connection. The left, middle and right panels in each row show the results when using
either of the monopole or quadrupole power spectrum alone or when combining the
two spectra, respectively. The top-, middle- and bottom-row panels are the results
for the LOWZ, CMASS1 and CMASS2-like galaxy samples, respectively. First of all,
each panel shows that the geometrical constraints are improved as the information
up to the higher kmax is included. The monopole power spectrum gives a tighter
constraint on the combination of “DA(z)2/H(z)(Ã –2

‹–Î)”, where –Î = H/Hfid

and –‹ = DA,fid/DA (DA and H are model parameters, and the quantities with
“fid” are the values for the Planck cosmology, i.e., the true values). The value
of “–2

‹–Î” is varying along the direction perpendicular to “–2
‹–Î = const.” shown

in each panel, which is close to the direction of the constant warping parameter
(–Î/–‹ = const.). A change in H(z) and DA(z) while keeping –Î/–‹ fixed, causes
an “isotropic” distortion in the monopole spectrum, or causes an isotropic shift
in the BAO peak locations and the broad-band k-dependent shape as a function
of k. It means that the distance constraints in the monopole power spectrum are
from the isotropic distortion (sometimes called the “dilation” e�ect). On the other
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hand, the quadrupole spectrum gives a tighter constraint on the combination of
–‹/–Î. Again the direction of varying the value of –‹/–Î is close to the direction
of –2

‹–‹ = constant. While the monopole power spectrum amplitude is kept fixed
along this direction of –2

‹–‹ = const., it causes an anisotropic distortion in the
redshift-space power spectrum and therefore alters the quadrupole power spectrum.
Fig. 6.9 explicitly shows how a change in either of –Î/–‹ or –2

‹–Î, keeping the
other fixed, alters either of the monopole or quadrupole power spectra, while the
other is almost unchanged. Interestingly, even though the signal-to-noise (S/N)
in the quadrupole power spectrum is smaller than that of the monopole spectrum
by a factor of 10 (see Fig. 6.7), the quadrupole carries a better precision of the
distance measurements than that of the monopole. This would be explained by the
fact that a change of Ωm has a strong degeneracy with that of DA(z) and H(z) in
the monopole power spectrum (see Fig. 6.5). On the contrary, the quadrupole has
distinct behaviors in the responses to Ωm and AP parameters, as well as to another
cosmological parameters ‡8.

Fig. 6.10 shows the 68% CL error ellipses in the (Ωm, ‡8)-subspace, including
marginalization over other 36 parameters (the cosmological distances and the halo-
galaxy connection parameters). Here we include the information for the three redshift
slices of the LOWZ-, CMASS1- and CMASS2-like surveys (Table 6.3). For comparison,
we here show the results when using either of the monopole or quadrupole power
spectrum alone, or combining the monopole and quadrupole signals up to a given
maximum wave number, kmax = 0.1, 0.2 or 0.3 h Mpc≠1, respectively. As we have
shown in Fig. 6.8, variations in the BAO peak locations and anisotropic features in
the power spectrum are captured by the cosmological distance parameters, DA(z)

and H(z). The constraints on Ωm and ‡8 shown here are from the RSD e�ect and the
amplitude information in the power spectrum. Similarly to the previous figure, this
figure shows that the quadrupole power spectrum carries a similar-level information
on these cosmological parameters to that of the monopole power spectrum. Thus
the RSD e�ect to which the quadrupole power spectrum is sensitive carries useful
cosmological information. Hence, combining the monopole and quadrupole power
spectra improves the cosmological constraints compared to the constraints from
either of the two power spectra alone. The figure also shows that including the power
spectrum information up to the higher kmax, from 0.1 to 0.3 h Mpc≠1, continues to
improve the cosmological constraints, even after marginalization over other nuisance
parameters. This implies that changes in Ωm and ‡8 cause quite di�erent scale-
dependent changes in the redshift-space power spectra from the dependences of
other parameters, as quantified by the response functions in Fig. 6.5. Therefore
the cosmological parameters are distinguishable from other parameters such as the
halo-galaxy connection parameters in the measured redshift-space power spectrum.
Table 6.4 summarizes the marginalized 68% CL error of Ωm or ‡8. The table shows
that including the information up to kmax = 0.3 h Mpc≠1from 0.1 h Mpc≠1leads to
an improvement in the constraint on Ωm or ‡8 by a factor of 3.15 or 3.63, respectively.
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‡(Ωm)/Ωm

kmax [h Mpc≠1] 0.1 0.2 0.3

P S
0 0.40 (0.060) 0.16 (0.023) 0.10 (0.020)

P S
2 0.71 (0.29) 0.18 (0.11) 0.12 (0.085)

P S
0 + P S

2 0.18 (0.052) 0.083 (0.020) 0.058 (0.018)

‡(‡8)/‡8

kmax [h Mpc≠1] 0.1 0.2 0.3

P S
0 0.23 (0.17) 0.13 (0.12) 0.087 (0.085)

P S
2 0.51 (0.27) 0.15 (0.10) 0.096 (0.062)

P S
0 + P S

2 0.12 (0.071) 0.078 (0.040) 0.056 (0.030)

Table 6.4: The 68% fractional error of Ωm or ‡8, including marginalization over
other parameters. Shown here is the fractional error when using either
of the monopole (P S

0 ) or quadrupole (P S
2 ) power spectrum information

or using the joint measurement (P S
0 + P S

2 ) up to a given maximum wave
number, kmax = 0.1, 0.2 or 0.3 h Mpc≠1, respectively. The number in
the parentheses gives the error if including the Ωm information in the
angular diameter distance DA and the Hubble expansion rate H for the
flat ΛCDM model (see Fig. 6.11 for details).

This would be compared to a factor of 5.2(= 271/2), which corresponds to a naive
improvement if the parameter error scales with the inverse of Fourier volume, 1/k

3/2
max

in a case that all the parameters are totally independent and the information is in
the sample-variance-limited regime. The results in Fig. 6.10 and Table 6.4 are quite
encouraging.

An alternative approach one might want to employ is to use the measured redshift-
space galaxy power spectrum to make a most stringent test or even falsify the flat
ΛCDM paradigm. Within the flat ΛCDM model, the cosmological distances, DA(z)

and H(z), are specified by a given Ωm, and hence one could obtain an even tighter
constraint on Ωm than the case where DA(z) and H(z) are treated as free parameters.
Fig. 6.11 shows the marginalized errors of Ωm and ‡8 based on this approach, where
we used 32 parameters in the Fisher analysis; 38 minus 6 parameters (DA(z) and
H(z) for each of the three redshift slices). The figure clearly shows that including
the geometrical information significantly improves the constraint on Ωm, while the
constraint on ‡8 is almost unchanged. This implies that most of the information in
Ωm is from the geometrical constraints, the BAO peak locations and the AP e�ect, if
assuming the flat ΛCDM model, while the constraint on ‡8 is mainly from the RSD
and amplitude information. Table 6.4 gives a summary of the marginalized 1D error
in Ωm and ‡8, and shows that we could achieve about 2% or 3% accuracy in Ωm or
‡8, respectively, if we can use the information up to kmax = 0.3 h Mpc≠1, even after
including marginalization over the halo-galaxy connection parameters.

What is the impact of nuisance parameters such as the halo-galaxy connection
parameters on the cosmological parameter inference? To address this question, in
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Fig. 6.12, we show the results if we fix the halo-galaxy connection parameters to
their fiducial values by the thin lines on top of the results after marginalization
(thick), which were already shown in Fig. 6.10. Here we used only 8 parameters in
the Fisher analysis; Ωm, ‡8 and 6 distance parameters (3 DA’s and H’s parameters).
First of all, if we use the information up to kmax = 0.1 h Mpc≠1, we cannot obtain
any meaningful constraint on either of Ωm or ‡8 due to strong degeneracies between
the power spectrum amplitudes and the halo-galaxy connection parameters, where
the latter controls the overall galaxy bias at small k limit. If we use either of the
monopole or quadrupole information up to kmax = 0.2 or 0.3 h Mpc≠1, the halo-
galaxy connection parameters degrade the accuracy of Ωm or ‡8 by a similar amount.
In the case of the joint constraints using both of the monopole and quadrupole, the
error of Ωm is not largely changed when kmax Ø 0.2 h Mpc≠1, because Ωm is mainly
determined by the AP e�ect as we discussed. On the other hand, the ‡8 constraint
is largely degraded by the halo-galaxy connection parameters. Hence, an accuracy of
‡8 estimation from the redshift-space galaxy power spectrum largely depends on a
level of our understanding of the halo-galaxy connection in the nonlinear regime.

To quantify the constraining power of the BOSS-like galaxy survey on the cosmo-
logical parameters, we compute the following figure of merit (FoM), defined in terms
of the Fisher matrix as

FoM =
1



|det (F≠1)sub|
, (6.8)

where F≠1 is the inverse of Fisher matrix, “sub” in (F≠1)sub means (8◊8) sub-matrix
elements containing only Ωm, ‡8 and 6 distance parameters, and “det” denotes the
determinant of the sub-matrix. The FoM quantifies a volume of the marginalized
ellipsoid in the 8-dimensional space of cosmological parameters.

Fig. 6.13 shows that the FoM of the quadrupole power spectrum is comparable to
that of the monopole power spectrum. What is remarkable is that the quadrupole
gets a larger FoM than the monopole when the HOD and other halo-galaxy connection
parameters are marginalized. This is ascribed to huge degeneracies between the
cosmological parameters and the HOD parameters in the monopole power spectrum
(see Fig. 6.5). By combining the two information, the impact of halo-galaxy connection
parameters, i.e., uncertainties in galaxy physics or small-scale structures, is mitigated,
which boosts the FoM by a factor of over 1000 compared to either of the two alone.
In addition, the power spectrum information in the quasi nonlinear regime is useful;
including the information up to kmax = 0.3 h Mpc≠1leads to about factor of 6 gain in
the information content compared to kmax = 0.2 h Mpc≠1. This gain is larger than a
naive expectation, (0.3/0.2)3/2 ƒ 1.8, and is ascribed to the fact that the nonlinear
information helps e�ciently break the parameter degeneracies. This result clearly
demonstrates that the redshift-space power spectrum in mildly nonlinear regime is
quite powerful to constrain the cosmological parameters.
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6.3 Discussion

6.3.1 A model-independent measurement of the RSD e�ect

The uniqueness of the redshift-space power spectrum method is it enables to measure
the cosmological distances (DA and H) and the strength of peculiar velocities via the
RSD e�ect. Because peculiar velocities of galaxies arise from the gravitational field in
large-scale structure, it can be used to test gravity theory on cosmological scales. Here
we more explicitly address the power of the redshift-space galaxy power spectrum for
making a “model-independent” test of the RSD e�ect ([also see [113, 114] for similiar
discussion). To do this, when generating a mock catalog of galaxies in redshift space,
we modify the radial displacement of each halo by an amount of model parameter
fRSD, from Eq. (3.4), as

∆s =
vÕ

Î(x)

aH(z)
n̂,

vÕ
Î = fRSDvh,Î + vvir,Î, (6.9)

where vh,Î and vvir,Î are the line-of-sight components of the halo bulk velocity and
of the virial velocity of galaxies inside the halo, respectively, and fRSD is a model
parameter; if fRSD = 1, the RSD displacement is the same as that for the fiducial
Planck ΛCDM cosmology. If we assume fRSD ”= 1, the amount of RSD e�ect is
artificially modified. When we consider LOWZ, CMASS1, and CMASS2, we employ
the same constant factor fRSD in generating the mock catalogs of the galaxies. Note
that the RSD e�ect in the linear regime is proportional to f‡8. The standard RSD
analyses to constrain the parameter combination f‡8 to test gravity theories are
usually based on the nonlinear templates of the spectra constructed for ΛCDM
cosmology within the GR framework but float f‡8 as an independent parameter.
Our test here is exactly along this line. Assuming a constant fRSD across the three
redshifts of galaxies, it gives a simplest model of the RSD modification. However,
due to large uncertainties in internal random motions of galaxies inside the host halo,
we do not modify the RSD displacement due to the relative motion of galaxies to the
halo bulk velocity, i.e., the FoG e�ect. Thus the following forecast on an estimation
of fRSD is purely from the e�ect on the halo power spectrum. However note that
velocities of these random motions are actually modified according to the details
of the modified gravity model, e.g., [115], which shows using simulations that the
Hu-Sawicki f(R) [116] and the Symmetron [117] gravity model a�ect the velocity
profiles inside halos in a model-dependent way.

Fig. 6.14 shows how a change in fRSD alters the monopole and quadrupole power
spectra as a function of k. Note that the real-space power spectra are independent
of fRSD and the same for all these cases. As expected, the parameter fRSD alters the
monopole and quadrupole spectra, and is di�erent from the AP distortion (Fig. 6.9).
The e�ect at small k is as expected by the Kaiser formula, but the e�ect at large
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k changes its sign. This is because the RSD e�ect at large k is dominated by the
smearing e�ect due to streaming motions of di�erent halos. This e�ect is enhanced
or reduced respectively by changing fRSD > 1 or < 1 from the fiducial value of
fRSD = 1, which explains the sign change at large k in Fig. 6.14.

In Fig. 6.15, we show the marginalized error ellipses in the two-dimensional sub-
space of DA, H or fRSD. To do this, we fix Ωm and ‡8 to their fiducial values;
that is, we do not include these parameters in the Fisher matrix. Hence we use
37 model parameters in the Fisher analysis; fRSD and 3 DA’s and H’s parameters
for three redshift slices, and 30 nuisance parameters of the halo-galaxy connection.
Because we fix Ωm and ‡8 to their fiducial values, all the real-space power spectra
are the same for models varying either of fRSD, DA or H, and the changes in the
redshift-space power spectrum are due to variations in the RSD e�ect (via fRSD)
or the AP distortion. Therefore this forecast for fRSD assesses the power of the
redshift-space power spectrum for constraining the RSD e�ect strength, or more
generally a deviation of the RSD e�ect from the ΛCDM prediction. If we can find
fRSD ”= 1 from this kinds of analysis, that would be a smoking gun evidence of
non-GR gravity. The figure shows that the SDSS-like galaxy survey would allow
for a 10% accuracy of fRSD determination, even after marginalization over the AP
e�ects and other parameters.

6.3.2 Galaxy assembly bias

We have so far employed the HOD method to model the biased relation between
distributions of galaxies and matter, i.e., galaxy bias, in an N -body simulation
realization. One critical assumption employed in the HOD method is it assumes
that a probability of populating galaxies in halos is solely described by halo masses,
ÈNÍ(M). Even if halos have the same mass, the halos have various assembly histories
due to the nature of hierarchical structure formation in a CDM scenario. For this
reason halos, even with the same mass, could have a di�erent large-scale bias. That
is, the large-scale bias of halos could depend on another parameter besides the halo
mass – this e�ect is usually referred to as an assembly bias [118, 119, 120, 121, 122].

Therefore we here study a possible impact of assembly bias on the cosmological
parameter forecast. To include the assembly bias e�ect in the mock galaxy catalog,
we used the following method. First, using the member N -body particles of each
halo in a given N -body simulation realization, we compute the mass enclosed within
the sphere of radius of 0.5r200 and use the mass fraction to the whole halo mass
M200 as a proxy of the mass concentration. We then make a ranked list of all the
halos in the ascending order of the inner-mass fraction at each halo mass bin ranging
M = [1012, 1016]h≠1M§ with width ∆ log10 M = 0.02, and populate central galaxies
into halos from the top of the list (from the lowest-concentration halo), according to
the number fraction specified by the central HOD ÈNcÍ(M) [Eq. (3.28)]. Finally we
populate satellite galaxies into the halos which already host a central galaxy using
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the fiducial satellite HOD. Thus this method does not change the mean HOD as a
function of mass, but would change clustering properties of galaxies by preferentially
selecting host halos with low concentration. We then measure the redshift-space
power spectrum from these modified mocks, in the same way as we do for the fiducial
mocks.

Fig. 6.16 shows the power spectra measured from the mocks including the assembly
bias e�ect. The real-space power spectrum, measured from the mocks with assembly
bias, displays greater amplitudes than that in the fiducial mocks by 20%, over all
the scales we consider. Thus, halos with low mass concentrations have greater
clustering amplitudes than the average, displaying a physical connection between
inner-structure of halos and the large-scale environments. This is consistent with the
claims in the previous work [119], for relatively massive halos with M & Mú, where
Mú is a typical nonlinear halo mass satisfying ”collap/‡(Mú) ƒ 1 (”collap = 1.67),
because BOSS galaxies reside in such massive halos. This result should be considered
as an extreme case, because we completely followed the ranked list of the halo mass
concentration when populating central galaxies in a fully deterministic manner, and
did not include any scatter in the galaxy-halo concentration. Hence a more realistic
case would be in between the fiducial model and the assembly bias result even if the
assembly bias exists in the real galaxy catalog. The right panel shows the e�ect of
assembly bias on the monopole and quadrupole power spectra. The assembly bias
amplifies the monopole spectrum by a similar amount to that of the real-space power
spectrum. The e�ect on the quadrupole power spectrum is less significant. The lower
panel shows the comparison with the predictions of Kaiser formula, if we change the
linear bias by an amount of the assembly bias e�ect (about factor of 1.1), but do
not change f‡8. The figure shows that the modified Kaiser prediction fairly well
reproduces the simulation results, although the quadrupole power spectrum has a
zero-crossing at k ƒ 0.2 h Mpc≠1, so the results look noisy around the scale. This
means that the assembly bias mainly a�ects the halo bias, and does not change the
RSD e�ect. Or equivalently the peculiar velocity field of low-concentration halos is
not so di�erent from that of halos with the same mass – i.e., little assembly bias
e�ect on the velocity field (see [99, 100] for similar discussion).

To quantify the impact of assembly bias on cosmological parameter estimation, we
estimate a possible bias on the cosmological parameters due to the ignorance of the
dependence on the concentration in the model, using the formula [123, 124]

”p– =
ÿ

—

1

F ¸¸Õ
2≠1

–—

ÿ

ij

Ë

P S+AB
¸ (ki) ≠ P S

¸ (ki)
È

Cov≠1
Ë

P̂
S
¸ (ki), P̂

S
¸Õ(kj)

È ˆP S
¸Õ(kj)

ˆp—

,

(6.10)

where P S+AB
¸ (ki) is the power spectrum measured from the mocks with assembly

bias, and P S
¸ (k) without superscript “+AB” is the fiducial power spectrum. The

quantity ”p– estimated from the above equation quantifies a bias in the parameter
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p– due to the assembly bias e�ect, if the model predictions do not include the e�ect.
Fig. 6.17 shows the results for a possible bias in Ωm or ‡8 if the assembly bias a�ects
the redshift-space power spectra for all the LOWZ, CMASS1, CMASS2-like galaxies.
Since the assembly bias we consider is an extreme case and the assembly bias, even
if exists, unlikely a�ects all the SDSS galaxies at di�erent redshifts, this can be
considered as a worst case scenario. The figure shows that the assembly bias does not
cause an amount of bias in these parameter greater than the marginalized error. This
is because the assembly bias changes only the overall amplitudes of the real-space
power spectrum, i.e., a change in the apparent galaxy bias, and does not a�ect the
RSD e�ect, as shown in Fig. 6.16. We have actually confirmed that this assembly
bias e�ect causes a significant bias in the forecast on Ωm and ‡8 when we do not
include any uncertainty in the halo-galaxy connection, but can be absorbed by the
changes in HOD parameters, even if all the other nuisance parameters, cconc, cvel,
poff , Roff and PSN, are fixed to their fiducial values.
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Figure 6.5: The partial derivative of the monopole (left panels) or quadrupole (right)
power spectrum with respect to each model parameter (p–), which we
refer to as the “response” function, for the CMASS1 sample. To compute
the response function, we first generate the mock catalogs where we
slightly varied a parameter but fixed other parameters to their fiducial
values, and then numerically compute the partial derivative. Note that
we compute the response functions for DA and H from the AP distortion
e�ect in a hypothetical clustering analysis; we assume a slightly shifted
value in DA or H from the fiducial value when mapping the real-space
positions of galaxies to the comoving coordinates in each mock for the
fiducial Planck model, and then measure the monopole and quadrupole
spectra from the mock. For illustrative purpose, we show the fractional
response function relative to the real-space power spectrum for the fiducial
mocks, [1/P R

gg(k)]ˆP S
gg,¸(k)/ˆ ln p–. Note that we employ the parameters

log Mmin, log M1 and log Msat rather than the physical quantities Mmin,
M1 and Msat in units of h≠1M§ for numerical convenience. We multiply
the response functions for these parameters by 1/20 so that the functions
are in the similar range of y-axis.

96



6.3 Discussion

0.05 0.10 0.15 0.20 0.25 0.30

−1

0

1

2

1
PR
cc(k)

∂P S
cc,0(k)

∂ ln pα

0.05 0.10 0.15 0.20 0.25 0.30

−1

0

1

0.05 0.10 0.15 0.20 0.25 0.30

k [hMpc−1]

−0.4

−0.2

0.0

0.05 0.10 0.15 0.20 0.25 0.30

−1

0

1

2

1
PR
cc(k)

∂P S
cc,2(k)

∂ ln pα

Ωm

σ8

DA/DA,fid

H/Hfid

0.05 0.10 0.15 0.20 0.25 0.30

−1

0

1
logMmin

σlogM

logM1

αsat

logMsat

0.05 0.10 0.15 0.20 0.25 0.30

k [hMpc−1]

−0.4

−0.2

0.0

cconc
cvel
poff
Roff

Figure 6.6: The similar to Fig. 6.5, but the results for the power spectra of central
galaxies that are computed from the mocks including only the central
galaxies as in Fig. 6.3.
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Figure 6.7: The cumulative signal-to-noise ratio, S/N [defined by Eq. (6.7)] for a
hypothetical measurement of the monopole and quadrupole power spectra
for each of the LOWZ, CMASS1 and CMASS2 samples, respectively.
The cumulative S/N is the information content of the power spectrum
amplitude, obtained by integrating the signal-to-noise at each k bin from
the minimum wave number, set to kmin = 0.02 h Mpc≠1here, up to a
given maximum wave number kmax shown in the x-axis.
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Figure 6.8: The Fisher-forecasted 68% CL error ellipse in the sub-space of angu-
lar diameter distance DA(zn) and the Hubble expansion rate H(zn) at
each redshift of the LOWZ (top-row panels), CMASS1 (middle-row)
and CMASS2 (bottom-row) samples, respectively, including marginal-
ization over other parameters. The left, middle or right panel in each
row shows the result when using either of the monopole or quadrupole
power spectrum alone or using the joint measurement of monopole and
quadrupole spectra, respectively. The three contours in thick lines in
each panel show the results when using the power spectrum information
up to kmax = 0.1, 0.2 or 0.3 h Mpc≠1, respectively. These constraints
are from measurements of the geometrical AP distortion of the BAO
peak locations and broad-band shape in the redshift-space power spectra.
For comparison, the magenta or cyan dashed curve shows the direction
where the isotropic “dilation” parameter, –2

‹–Î or the anisotropic “warp-
ing” parameter –‹/–Î in the geometrical AP distortion is kept constant;
–2

‹–Î = const. or –‹/–Î = const, respectively. Here –‹ and –Î are the
ratio of the assumed cosmological distances (i.e., the assumed values) to
the true values (i.e., the values for the Planck model as given in Table 6.2):
–‹ © DA,fid/DA and –Î = H/Hfid that are shown in the x- and y-axes,
respectively. We also put the thin solid-line contours, which denote the
error ellipses in the case where the halo-galaxy connection parameters
are fixed to their fiducial values.
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Figure 6.9: The geometrical AP e�ect on the monopole and quadrupole power spectra
for the fiducial CMASS1 mocks. To study this, we focus on the two
components of AP e�ect: the isotropic dilation e�ect “–2

‹–Î” and the
anisotropic warping e�ect “–‹/–Î” (see the caption in the previous figure).
The left panel shows the spectra when the warping parameter –‹/–Î is
varied by –‹ = 1/0.95 or 1/1.05, while the dilation parameter –2

‹–Î is
kept fixed. While the monopole power spectrum amplitude and the BAO
peak locations are almost unchanged, this variation alters the relative
amplitude of the quadrupole power spectrum. The right panel shows the
spectra when the dilation parameter –2

‹–Î is varied by the same amount
of –‹ as in the left panel, while the warping parameter –‹/–Î is kept
fixed. In this case, while the monopole power spectrum is largely changed,
the change of the quadrupole is relatively moderate.
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Figure 6.10: The marginalized error ellipses in the sub-space of parameters, Ωm and
‡8, as in Fig. 6.12. To derive this, we used the Fisher matrix jointly
combining the power spectrum information for the LOWZ, CMASS1,
and CMASS2 samples. Since we treated the geometrical information
in the galaxy power spectrum by DA(zn) and H(zn) at each redshift,
the constraints on Ωm and ‡8 are mainly from the RSD e�ect and the
amplitude information in the redshift-space galaxy power spectrum. The
dashed-line contours represent the constraints from the power spectra
that are measured from the mocks including central galaxies alone (i.e.,
removing satellite galaxies from each mock). Comparison of the solid
and dashed contours shows that the constraining power of Ωm and ‡8 is
mainly from the redshift-space power spectra of central galaxies.
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Figure 6.11: Similar results to the previous figure, but show the expected errors
on Ωm and ‡8 for the flat ΛCDM framework. Here we include the
Ωm information in DA(zn) and H(zn) at each redshift of the LOWZ,
CMASS1 and CMASS2 samples, since these quantities at each redshift
is specified by an assumed Ωm if a flat ΛCDM model is a priori assumed.
Consequently the error of Ωm is significantly tightened. The thin solid-
line contours are the error ellipses when we fix the halo-galaxy connection
parameters to their fiducial values, i.e., unmarginalized errors.
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Figure 6.12: The impact of uncertainties in halo-galaxy connection on the errors of
Ωm and ‡8. Similar plot to Fig. 6.10, but shows the results when fixing
the halo-galaxy connection parameters to their fiducial values as the
thin solid-line contours. To compute this, we use (8 ◊ 8) sub-matrix
elements of the full Fisher matrix that contain only Ωm and ‡8 and the
two distances, DA and H, for each of the three redshift bins.
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Figure 6.13: The figure-of-merit (FoM) of cosmological information,
{Ωm, ‡8, DA(zn)/DA,fid, H(zn)/Hfid} (8 parameters in total), in
the redshift-space galaxy power spectra for the LOWZ, CMASS1 and
CMASS2 samples. The FoM quantifies a volume of the error ellipsoid
in the eight-dimensional space of the cosmological parameters. The
filled symbols show the results when including the power spectrum
information up to a given maximum wave number kmax shown in the
x-axis. Here we show the results for the monopole or quadrupole power
spectrum alone or when combining measurements of the two spectra.
The open symbols show the results when other halo-galaxy connection
parameters are kept fixed to their fiducial values.
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Figure 6.14: The e�ect of RSD control parameter, fRSD, on the monopole and
quadrupole power spectra; when generating the mocks of of CMASS1
galaxies in redshift space, we modified the RSD displacement of host
halos by the amount of fRSD, and then computed these multipole power
spectra from the mocks (we did not change the RSD e�ects due to
internal motions of galaxies inside the host halo). Note that fRSD = 1
corresponds to the ΛCDM model, and all the models shown here have the
same real-space power spectrum. A change in the RSD parameter fRSD

alters these power spectra depending on k. The lower panel shows the
fractional ratio relative to the fiducial model. The dashed curve shows
the Kaiser formula prediction [Eq. (3.20)] that is computed by replacing
—ΛCDM in the formula with fRSD—ΛCDM, and fairly well reproduce the
mock results at small k limit.
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Figure 6.15: The marginalized error ellipse in each of the two-dimensional subspaces
of DA, H or fRSD, where we consider the distance constraints for the
CMASS1 sample and the constraint on fRSD is from the information
of all the three redshift slices (i.e., we use the same parameter for the
RSD modification of all the three slices by the same amount fRSD). To
obtain these forecasts, we use fRSD, and 3 DA and H parameters for
the three redshift slices, instead of Ωm and ‡8, and include other 30
nuisance parameters of the halo-galaxy connection. These constraints
are purely from the RSD, the BAO peak locations and the AP e�ects.
The constraint fRSD (its fiducial value fRSD = 1) corresponds to a
fractional error of f‡8 in the linear regime.
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Figure 6.16: Comparison of the fiducial signals with those that included the e�ect
of halo assembly bias (see text for details). The result for CMASS1-
like galaxies is shown. Here we implemented the assembly bias e�ect
by populating galaxies into halos according to the ranked list of mass
concentration at each halo mass bin (from the lowest mass concentration).
The left panel shows that the real-space power spectrum is amplified by
almost constant factor, 1.2, over all the scales we consider. The right
panel shows the redshift-space power spectrum, while the lower panel
shows the comparison with the Kaiser formula, where the linear bias
is modified by the factor that matches the real-space power spectrum
amplitude. The modified Kaiser formula fairly well reproduces the
monopole and quadrupole spectra. Thus the assembly bias appears
to be mainly from the density field around mock galaxies, while the
velocity field is not largely changed by the assembly bias.
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Figure 6.17: An estimation of a possible bias in Ωm (upper panels) or ‡8 (lower
panels) due to the e�ect of assembly bias on the redshift-space power
spectrum, if the e�ect is ignored in the model prediction. We here
assume that the assembly bias, which is implemented in the same way as
in Fig. 6.16, a�ects the redshift-space power spectra for all the LOWZ,
CMASS1, and CMASS2-like galaxies, and then estimate the parameter
bias using the Fisher method (Eq.6.10). We show the results, relative
to the fiducial value (true value) of each parameter, as a function of the
maximum wave number kmax, and also show the marginalized error for
comparison.
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Chapter 7

Cosmological Analysis of SDSS-III Galaxy

Power Spectrum

So far, we have constructed the theoretical template for the redshift-space galaxy
power spectrum based on the halo-model formalism and assessed the impact of
marginalization of nuisance parameters on the cosmological parameter constraints.
In this chapter, we employ our theoretical template in the cosmological analysis of a
real galaxy survey, the Sloan Digital Sky Survey [125].

As we mentioned in Chapter 5, there are recent several works for the emulation
of the large-scale structure probes, such as the nonlinear matter power spectrum
[76, 77] and the two-point correlation function of the HOD galaxies [80]. Although the
primary purpose for building simulation-based emulators is to extract the cosmological
information from galaxy survey data, there has been no attempt to apply them to
the cosmological analysis in the actual galaxy surveys. In this work, we, for the first
time, analyze the full-shape power spectrum measured from a galaxy redshift survey
by using an emulator-based analysis pipeline, and obtain the cosmological parameter
inferences.

7.1 Sloan Digital Sky Survey-III: Baryon Oscillation

Spectroscopic Survey

The Sloan Digital Sky Survey (SDSS) is the largest galaxy imaging and spectroscopic
survey that has been already completed. In this work, we use the Final Data
Release (Data Release 12; DR12) of the SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS) [2]. The BOSS DR12 contains the spectroscpic redshifts of 1, 198, 006

luminous red galaxies, lying over the redshift range 0.2 < z < 0.75. The area of sky
coverage is 10,252 deg2, and it is divided into the two sky regions named the North
Galactic Cap (NGC) and South Galactic Cap (SGC).

For the cosmological analysis, we use the publicly available large-scale structure
catalog named CMASSLOWZTOT1. This catalog combines the two di�erent selections of
galaxies, LOWZ and CMASS into one galaxy sample, by correcting the systematic

1The BOSS DR12 public large-scale structure catalogs can be downloaded from https://data.

sdss.org/sas/dr12/boss/lss/
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Redshift bin Redshift range zeff Chunk Ngal N Õ
gal

Low-Z 0.2 < z < 0.5 0.38
NGC 429182 445260.72
SGC 174819 182676.6

Mid-Z 0.4 < z < 0.6 0.51
NGC 500872 534722.44
SGC 185498 197081.45

High-Z 0.5 < z < 0.75 0.61
NGC 435741 467502.47
SGC 158262 169907.44

Table 7.1: Various properties of galaxy samples in the CMASSLOWZTOT catalog we used
in this study. We listed the values of e�ective redshift zeff and unweighted
and weighted numbers of galaxies, Ngal and N Õ

gal, respectively.

weights (see Ref. [126] for detailed description of the catalog creation). We split the
whole catalog into three overlapping bins of redshift, which we denote them as Low-Z
(0.2 < z < 0.5), Mid-Z (0.4 < z < 0.6) and High-Z (0.5 < z < 0.75). It is the same
partition as the public cosmological analysis of the BOSS DR12 full-shape power
spectrum in Ref. [18].

Table 7.1 shows the parameters of galaxy samples in each redshift bin and angular
data chunk (either NGC or SGC). Ngal is the unweighted number of galaxies, i.e.,
naive count of galaxies listed in the catalog. In reality, each galaxy has its own
weights to take into account the correction of various observational artifacts. Using
this correction weight, which we denote as wc, we calculate the weighted number
N Õ

gal =
qNgal

i=1 wc,i. Aside from the correction weight, each galaxy also has the FKP
weight to improve the signal-to-noise ratio of the measured power spectrum. We use
the FKP weight in the form of

wFKP,i =
1

1 + n̄(zi)P0
, (7.1)

where zi is the spectroscopic redshift of the ith galaxy, n̄(zi) is the expected number
density, and we use P0 = 104 h≠3 Mpc3. zeff is called the e�ective redshift, and is
used to calculate the theoretical template of the power spectrum for each galaxy
sample. We define it as the weighted mean redshift over the galaxy sample:

zeff =

qNgal

i=1 wtot,izi
qNgal

i=1 wtot,i

, (7.2)

where wtot,i is the total weight of the ith galaxy, given by wtot,i = wc,iwFKP,i.

7.2 Power spectrum measurement

We measure the monopole, quadrupole, and hexadecapole moments of the redshift-
space pwoer spectrum for each redshift bin and angular chunk. For the measurement,
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Figure 7.1: The multipole moments of the power spectrum measured from the
CMASSLOWZTOT catalogs, for both NGC (upper) and SGC (lower) and
three redshift bins. We measured the monopole (blue), quadrupole (red),
and hexadecapole (green) moments, and also show the best-fit (MAP)
model predictions for each redshift and angular chunk as solid lines.
The error bars of data are the square root of the diagonal elements of
the covariance matrices we estimated using the MultiDark-Patchy mock
catalogs (see Sec. 7.3).

we adopt the FFT-based estimator of the power spectrum multipoles, described in
Ref. [67] and in Chapter 4.

In the measurement, we create the FKP weighted density field by assigning the
galaxy and random catalogs into cubic FFT boxes, using the Piecewise Cubic Spline
(PCS) interpolation scheme (see Chapter 4). The FFT boxes are set so that they
contain all the galaxies and random particles in them and zero-padding regions not
less than 200 h≠1 Mpc. We determine the grid spacing for each FFT box according
to the Nyquist wave number kNy = 1.2 h Mpc≠1. We also use the interlacing scheme
to mitigate the aliasing contaminations, as well as the decomposition of the PCS
interpolation window in Fourier space. Each wave vector mode is split into the
linearly-spaced bins of k with width ∆k = 0.01 h Mpc≠1.

As the fiducial (or reference) cosmology for which we computed the three-dimensional
comoving coordinates of galaxies and randoms in the real survey data, we assumed
the flat-geometry ΛCDM model with Ωm = 0.31, following Ref. [18].

Fig. 7.1 shows the multipole moments of the power spectrum we measured from
the CMASSLOWZTOT catalogs. Symbols with error bars are the measured spectra, and
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solid lines are the best-fit (maximum a posteriori; MAP) models computed with our
emulator-based theoretical template. Note that we fit the model independently to
the power spectra for each redshift bin and angular chunk, and in this figure we show
the case that we used all of three multipoles up to kmax = 0.3 h Mpc≠1. The error
bars of the data are from diagonal elements of the covariance matrices estimated
using the MultiDark-Patchy mock catalogs, as we describe in Sec. 7.3.

In the measurement, we found that our measured power spectra is slightly di�erent
from those provided by the SDSS collaboration, which is also reported in Ref. [127].
We did a cross check of the measurement by using a publicly available Python

toolkit nbodykit2 [128], and confirmed that the power spectrum measured with it
and with our code well agree to each other.

7.3 Covariance matrix using MultiDark-Patchy mock

catalogs

To infer the cosmological parameters by the comparison of the theoretical prediction
and measured power spectrum data, we need the covariance matrix. In this work,
we estimate the power spectrum covariance using 2048 realizations of the MultiDark-
Patchy mock catalogs created in Refs. [129, 130]. These mock catalogs are created
using an approximate N -body solver which combines the Lagrangian perturbation
theory and a small-scale halo collapse model, and a semi-analytical galaxy biasing
scheme, with calibration to a reference large-volume N -body simulation sample
selected from the BigMultiDark simulations [131]. The input cosmological parameters
are as follows: Ωb = 0.048, Ωm = 0.307115, h = 0.6777, M‹ = 0.06 (neutrino
mass), ns = 0.9611, and ‡8 = 0.8288, and we derive Êb = 0.02205, Êcdm = 0.1184,
ln(1010As) = 3.1.

To measure the power spectrum from these mock catalogs, we employed the same
estimator as applied to the data power spectrum, including the interpolation kernel
(PCS) and zero-padding size (at least 200 h≠1 Mpc), but we set slightly smaller
Nyquist wave number kNy = 1.0 h Mpc≠1 to suppress the computational time. We
estimate the power spectrum covariance matrix as

Cov
Ë

P̂
S
¸ (ki), P̂

S
¸Õ(kj)

È

=
1

Nr ≠ 1

Nr
ÿ

n=1

Ë

P̂
S
¸ (ki) ≠ P̄

S
¸ (ki)

È Ë

P̂
S
¸Õ(kj) ≠ P̄

S
¸Õ(kj)

È

, (7.3)

where Nr = 2048 is the number of realizations of mock catalogs, and we define the
mean power spectrum as

P̄
S
¸ (ki) =

Nr
ÿ

n=1

P̂
S
¸ (ki). (7.4)

2https://nbodykit.readthedocs.io/en/latest/
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We estimate the covariance matrix from the finite number of mock realizations and
invert to obtain the estimate of the inverse covariance matrix. However, it leads
to the biased estimation of the inverse covariance, even though the estimator of
the covariance Eq. (7.3) is unbiased. To approximate the unbiased estimator of the
inverse covariance, we simply multiplied to the inverse of the estimated covariance
the so-called Hartlap factor [132] defined as

fHartlap =
Nr ≠ nbin ≠ 2

Nr ≠ 1
, (7.5)

where nbin is the number of bins we use in the parameter inference. For example,
in the case that we use the monopole, quadrupole, and hexadecapole moments up
to kmax = 0.3 h Mpc≠1, the number of bins amounts to nnin = 30 ◊ 3 = 90, which
means fHartlap = 0.9555.

7.4 Theoretical model and methodology

7.4.1 Survey window function

We take into account the survey window function in the theoretical model. We put
the detailed description of this in Sec. 4.4. Acturally, a measurement of the window
functions using the random catalogs is computationally di�cult. Hence, in this
study, we approximated the Fourier-space window functions introduced in Sec. 4.4 by
transforming the BOSS DR12 configuration-space window functions (see Ref. [18])
provided by the SDSS collaboration. We confirmed this approximation works well
using the linear power spectrum.

Fig. 7.2 is an illustration to show how the survey window function a�ects the
power spectrum, in the case of Low-Z SGC galaxies. The window function basically
alters the power spectrum only at large scales, k . 0.1 h Mpc≠1.

7.4.2 Model parameters and priors

In this subsection, we describe the model parameters that we infer, as well as their
prior settings.

Cosmological parameters

Since we want to infer the cosmological parameters within the flat-geometry ΛCDM
framework, we sample all of five parameters:

pcosmo =
Ó

Êb, Êcdm, Ωde, ln(1010As), ns

Ô

. (7.6)

For Êb and ns, we impose priors that are inferred from the Planck 2018 cosmology.
More precisely, we impose the Gaussian priors given in Table 1 of Ref. [133] for the
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Figure 7.2: A demonstration of the window function e�ects on the power spectrum
multipoles for the Low-Z SGC galaxies. The dashed lines are the power
spectrum multipoles computed by the emulator, which roughly mimic
the Low-Z SGC power spectrum. The solid lines are those including the
window function e�ects following the scheme we described in Sec. 4.4.

Parameter Prior
Cosmology

Êb N (µ = 0.02237, ‡ = 0.00015)
Êcdm U(0.10782, 0.13178)
Ωde U(0.54752, 0.82128)

ln(1010As) U(2.4752, 3.7128)
ns N (µ = 0.9649, ‡ = 0.0042)

Nuisance
log Mmin U(12.0, 15.0)

‡2
log M U(0.0001, 2.0)

log M1 U(12.0, 16.0)
–sat U(0.01, 5.0)
Ÿ U(0.01, 5.0)

Pshot U(≠104, 104) h≠3 Mpc3

cvel U(0.01, 10.0)

Table 7.2: The parameter set we varied in the cosmological analysis within the flat
ΛCDM cosmology. N (µ, ‡) denotes the Gaussian distribution with mean
µ and standard deviation ‡. U(a, b) denotes the uniform distribution
between the minimum value a and the maximum value b. The flat priors
for cosmological parameters are set to be within the parameter ranges on
which the emulator is supported.
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Planck 2018 TT, TE, EE+lowE+lensing. We treat Ωm = 1 ≠ Ωde and ‡8 as derived
parameters.

Since we assumed the fiducial cosmology (Ωm = 0.31) when we measured the power
spectrum, we include the Alcock-Paczynski e�ect in the theoretical model, following
Eq. (3.24) in Chapter 3.

Nuisance parameters

The model we use is basically the same as one we described in Chapter 5, but we
include two additional nuisance parameters, as we consider in Chapter 6:

• Pshot, which represents the residual shot noise contribution apart from the
simple Poisson shot noise. We add Pshot to the galaxy power spectrum Pgg(k, µ),
and hence it is relevant only to the monopole moment.

• cvel, which represents the multiplicative coe�cient to the galaxy velocity dis-
persion inside halos. This parameter regulates the uncertainty on the strength
of FoG e�ect.

Since we use the five-parameter HOD model, we have seven nuisance parameters on
the halo-galaxy connections:

pgalaxy = {log Mmin, ‡2
log M , log M1, –sat, Ÿ, Pshot, cvel}, (7.7)

for each redshift bin and angular chunk. We listed the parameter set used in the
analysis in Table 7.2.

7.4.3 Bayesian inference of posterior distribution

To infer the cosmological parameters, we employ the Bayesian posterior inference.
Using the power spectrum data vectors and the covariance matrix, we compute the
log-likelihood function:

ln L(D|p) =

≠ 1

2

ÿ

¸,¸Õ

kmax
ÿ

i,j

Ë

P D
¸ (ki) ≠ P¸(ki; p)

È

Cov≠1 [P¸(ki), P¸Õ(kj)]
Ë

P D
¸Õ (kj) ≠ P¸Õ(kj ; p)

È

,

(7.8)

where we assume the Gaussian likelihood and omit the normalization factor. P D
¸ (ki)

denotes the data of the ¸th-order power spectrun multipole at the ith bin, P¸(ki; p) is
its theoretical model, and p is the model parameters. By combining with the priors
we mentioned above, we sample the posterior disttributions by using the nested
sampling.
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All the parameter inference were done by using the publicly-available Mon-

tePython33 code [134, 135], and we employed the e�cient nested sampling al-
gorithm MultiNest [136] implemented in it, rather than the standard MCMC
sampling.

7.5 Model validation on mock data

Although our theoretical model for the power spectrum is calibrated by the cosmolog-
ical N -body simulations at the level of dark matter halos, we assume a specific form
of the phenomenological prescription for the halo-galaxy connection, as discussed
in Chapter 5. Therefore, we need to check that our emulator-based theoretical
model can safely recover the true cosmological parameters in the mock galaxy power
spectrum.

7.5.1 Validation using the HOD galaxy mocks

For this purpose, we created the mock galaxy catalogs which roughly mimic the
BOSS DR12 galaxy power spectrum we consider, by using the HOD-based method
used to create mock galaxy catalogs in Chapter 5 and 6. We created two kinds of
mocks:

(i) Fiducial — The standard HOD galaxy mocks where the five parameters of
central and satellite HOD models, Eqs. (3.28) and (3.29), are chosen to mimic
the Mid-Z galaxy sample.

(ii) Off-centering — The galaxy mocks with the same HOD but also include the
o�-centered central galaxies with the o�-centering probability poff = 0.3 and the
typical o�-centering radius with respect to the NFW scale radius, Roff = 2.0

(see Sec. 3.4 for the definitions of these two parameters).

For both settings, we created mocks by populating galaxies into halo catalogs from
the Dark Quest LR simulations (i.e., the box side length is 2 h≠1 Gpc) run for the
fiducial Planck 2015 ΛCDM cosmology. We use the mean power spectrum signals
among 15 realizations as the mock signals.

Since we employ the HOD-based theoretical template, it can reproduce the same
power spectrum as the Fiducial mock data, up to the prediction accuracy of the
emulator itself. Thus, the fit on this mock takes on the role of a kind of sanity check
of our analysis pipeline. Nevertheless, it is not entirely clear whether our model
can recover the true cosmological parameters after marginalization over nuisance
parameters of galaxy-halo connection. If any of cosmological parmaeters have severe
degeneracies with the nuisance parameters, the posterior distribution could display a
sizable bias compared to the true value (see e.g., Ref. [137]). On the other hand, for

3https://github.com/brinckmann/montepython_public

114

https://github.com/brinckmann/montepython_public
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Figure 7.3: The mock data (symbols with error bars) we used in the model validation
and the best-fit (MAP) model predictions (solid lines). Thick-colored
symbols and solid lines correspond to the Fiducial mock, and thin-
colored ones correspond to the Off-centering mock, respectively. We
show the case of kmax = 0.3 h Mpc≠1.

the test using the Off-centering mocks, our set of nuisance parameters employed
in this analysis does not contain the o�-centering parameters, poff and Roff , and
hence it is nontrivial whether our model can safely recover the true cosmological
parameters for the Off-centering mocks. We perform the cosmological analysis
on these mock signals using our analysis pipeline, with two slight di�erences from
our analysis of the actual BOSS spectra: one is that we employ the Gaussian prior
of with the mean values of Êb = 0.2225 and ns = 0.9645, which are taken from the
Planck 2015 cosmology instead of Planck 2018, because our mocks are built from
N -body simulations assuming the Planck 2015 cosmology. Another is that we did
not implement the survey window function as these mocks do not have the window
function e�ect.

First, we show the mock signals as well as the corresponding best-fit model
predictions in Fig. 7.3. In this figure, we show the results for both the Fiducial (thick-
colored) and Off-centering (thin-colored) mocks together, to see the di�erence
between these two. For both cases, our model well fits to the mock signals on scales
up to k = 0.3 h Mpc≠1, which is the maximum wave number we considered in the
analysis. Note that in the cases of smaller kmax, we also confirmed that the best-fit
models well agree with the signals on scales up to that kmax.

Fig. 7.5 shows the parameter posterior distributions obtained by our mock analysis.
The upper and lower panels are the results obtained by the analyses of Fiducial

and Off-centering mock data, respectively. In both cases, we obtain highly similar
posteriors, and our method successfully recovers the true input Planck cosmology
(shown as gray horizontal and vertical solid lines in each subplot), when the power
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spectrum signals up to kmax = 0.2 and 0.3 h Mpc≠1 are used in the parameter
inference. For the case of kmax = 0.1 h Mpc≠1, our model tends to give the lower
values than the truth for ln(1010As) and ‡8. In addition, from the constraint on
Ωm ≠ ‡8 plane, we see that the Ωm constraint shows almost no improvement by
increasing kmax = 0.2 to 0.3 h Mpc≠1, while the ‡8 constraint is still improved to some
extent. This behavior looks highly consistent with the Fisher forecast in Fig. 6.11 (or
Fig. 8 in Appendix 6, where we show the forecasts using the same nuisance parameter
set as we use in this work), which implies that Ωm is almost determined by the BAO
feature alone. The fact that, we find no remarkable di�erence in the cosmological
parameter constraints in spite of the significant di�erence in the power spectrum
signals due to the o�-centering e�ect, is thought to reflect that the flexibility of our
model due to severe degeneracies between the nuisance parameters of halo-galaxy
connection and the cosmological parameters. That is, even if we include the power
spectrum information at k > 0.2 h Mpc≠1, the information does not much imporve
the cosmological constraints, and is rather explained by the nuisance parameters.

Fig. 7.6 shows the impact of the inclusion of the hexadecapole moment in the
cosmological parameter inference. The blue and red contours are the posterior
distributions of {Ωm, ln(1010As, ‡8, H0)} in the case that we use only the monopole
and quadrupole moments, or we use the three multipole moments up to the hexade-
capole in the analysis. The upper and lower panels are the case of kmax = 0.2 and
0.3 h Mpc≠1. By including the hexadecapole moment, the estimated variances of As

and ‡8 are marginally improved especially the case of kmax = 0.2 h Mpc≠1, while it
hardly a�ects the estimations of Ωm and H0.

7.5.2 Nuisance parameters

In this subsection, we see the behaviors of the nuisance parameter constraints, focusing
on the Fiducial HOD-based mock. Fig. 7.7 show how the parameter estimation
including seven nuisance parameters changes by the increase of maximum wave
number kmax. We show the same settings of analysis as the upper panel of Fig. 7.5.
As we use the power spectrum signals at the quasi-nonlinear scales k > 0.1 h Mpc,
the estimation of almost all the nuisance parameters is significantly improved. It
means that the information to break the degeneracies among the cosmological and
nuisance parameters is contained in these regime. Fig. 7.8 shows the change of
parameter estimation by the inclusion of hexadecapole moment, under the same
setting of analysis as the upper panel of Fig. 7.6. From this figure, we see that
the hexadecapole moment mainly contributes to the determination of log Mmin and
‡log M , the HOD parmeters for central galaxies, and cvel, the multiplicative factor on
the galaxy velocity variance inside halos. The marginal improvement in As (and ‡8)
estimation seems to be arising from the degeneracy breaking among As and these
nuisance parameters.
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Figure 7.4: The marginalized one- and two-dimensional (1D and 2D) posterior distri-
butions for {Ωm, ln(1010As), ‡8, H0} estimated on the Fiducial (upper)
and Off-centering (lower) HOD-based mock catalogs. We show the
results of the Mid-Z SGC mock signals. The gray, orange, and magenta
curves and contours correspond to kmax = 0.1, 0.2, and 0.3 h Mpc≠1,
respectively. 117
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Figure 7.5: The marginalized one- and two-dimensional (1D and 2D) posterior distri-
butions for {Ωm, ln(1010As), ‡8, H0} estimated on the Fiducial (upper)
and Off-centering (lower) HOD-based mock catalogs. We show the
results of the Mid-Z SGC mock signals. The gray, orange, and magenta
curves and contours correspond to kmax = 0.1, 0.2, and 0.3 h Mpc≠1,
respectively.118



7.5 Model validation on mock data

Figure 7.6: Comparison between the cosmological parameter inferences with and
without the hexadecapole moment. We show the results of the Mid-Z
SGC Fiducial mock signals, for the cases of kmax = 0.2 (upper) and 0.3
(lower) h Mpc≠1.
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Figure 7.7: The parameter posteriors of {Ωm, ln(1010As), ‡8, H0} and seven nuisance
parameters listed in Table 7.2. We use the monopole, quadrupole, and
hecadecapole moments of the Mid-Z SGC Fiducial mock galaxies.
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Figure 7.8: The same as Fig. 7.7, but we show the comparison between the analyses
with and without the hexadecapole moment.
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7.5.3 Validation using the MultiDark-Patchy mocks

We also applied our analysis pipeline to another set of mocks: MultiDark-Patchy
mocks. While the MultiDark-Patchy mocks are not created from the full N -body
simulations but are created using various phenomenological approximated schemes,
they include the same survey window as the real galaxy catalogs. Hence we used our
pipeline with only di�erence in the means of Gaussian priors on Êb and ns, which
are set to be the input values of MultiDark-Patchy listed in Sec. 7.3.

Fig. 7.9 shows the resultant paramter posteriors. Again, we show the case for
the monopole, quadrupole, and hexadecapole moments and the covariance of the
Mid-Z SGC samples. It shows the same behavior with results on the HOD mock
catalogs: the km = 0.1 h Mpc≠1 case shows the significantly lower values for As and
‡8, while the increasing kmax to 0.2 h Mpc≠1 improve both the estimated parameter
variance and descripancy from the true values. However, the As and ‡8 estimates for
kmax = 0.3 h Mpc≠1 appear to again start to deviate from the truth. Thus, in the
analysis below we mainly focus on the case of kmax = 0.2 h Mpc≠1, while we show
the case of kmax = 0.3 h Mpc≠1 as well. The issue of robustness of the parameter
estimation should be further investigated using more various mock catalogs. We will
delved into this issue in more detail as a future work.

7.6 Analysis of BOSS DR12

In this section, we show the main results of cosmological parameter inference. In
our baseline setting, we use the monopole, quadrupole, and hexadecapole moments,
and show the results for the maximum wave number kmax = 0.2 and 0.3 h Mpc≠1.
While we vary five cosmological parameters as we described in the previous section,
we mainly focus on the results for {Ωm, ln(1010As), ‡8, H0}, which are of particular
interest in the large-scale structure probes.

7.6.1 Cosmological parameter constraints for single redshift and angular

chunk

First we show the cosmological parameter inference results performed on the galaxy
sample in the single redshift bin and either of the North or South survey fields.

Fig. 7.10 is the marginalized posterior distributions for the cosmological parameters
{Ωm, ln(1010As), ‡8, H0}, obtained from the analyses on each redshift bin and angular
chunk. We show the cases of kmax = 0.2 (upper) and 0.3 h Mpc≠1 (lower). In both
cases, we see that the contours for all of redshifts and angular chunks roughly mutually
agree. The High-Z NGC case (shown in magenta) shows lower values of ln(1010As)

and ‡8, and the Low-Z SGC case (shown in green) shows lower Ωm and higher H0,
than the other five cases, respectively. However, these values are consistent with the
cosmmological analysis using the E�ective Field Theory (EFT)-based modeling [20]
(see Fig. 2 in Ref. [20]).
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7.6 Analysis of BOSS DR12

Figure 7.9: The same as Fig. 7.5, but we show the result on the MultiDark-Patchy
mock catalogs.
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Figure 7.10: The marginalized 1D and 2D posterior distributions for
{Ωm, ln(1010Am), ‡8, H0}, for each redshift and angular chunk.
We show the cases of kmax = 0.2 (upper) and 0.3 h Mpc≠1 (lower).
Di�erent colors of contours correspond to di�erent redshifts and chunks
listed in the legend.
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7.7 Discussion: future prospect on the systematics

In this work, we have the first step to the cosmological analysis of the redshift-space
galaxy clustering based on the emulator. Although we saw that our methodology can
be powerful in the cosmological parameter inference in actual galaxy spectroscopic
surveys, we should enumerate the possible systematics which can a�ect the emulator-
based cosmological analysis to suggest the wrong cosmology.

Since we assume the specific phenomenological model on the poorly-understood
halo-galaxy connection, our model flexibility of galaxy power spectrum is inevitably
restrictive, although it can provide the non-perturbative predictions of the power
spectrum. To check the biases in the inferred cosmological parameters arising from
the use of such a restrictive theoretical model, we need to test the inference pipeline
on the mock catalogs with various settings of the halo-galaxy connection. In this
work, we tested our method on two kinds of HOD mock catalogs, as the first step.
However, there are further variations on how the galaxies can reside in their host
halos, even if the same HOD is assumed. For example, in these two HOD-based
mocks we assume that the spatial distributions of satellite galaxies follows the NFW
profile, but in reality the galaxies do not faithfully trace the dark matter distribution
inside halos. Furthermore, as we mentioned in Chapter 5, our emulator predicts
the dependence of halo power spectrum only on one halo property, i.e., mass, and
ignore the halo assembly bias. In reality, several simulation-based studies showed
that the halo clustering does depend on the halo properties other than mass, and
the population of galaxies targeted in surveys can correlate with such properties. In
Sec. 6.3.2, we see that the di�erence between the galaxy power spectrum with and
without a possible assembly bias due to the halo concentration can be safely absorbed
by the marginalization over HOD parameters. We need to test the emulator-based
analysis on such mock catalogs with the large degree-of-freedom of assembly bias.
On this issue, there is a similar previous study for the investigation of the bias in the
parameter inference from the lensing data of the Subaru Hyper Suprime-Cam and
SDSS projected clustering [137].

Furthermore, to extend the maximum wave number of the power spectrum signals
used in the cosmological analysis in galaxy redshift surveys, we will need to properly
evaluate the observational systematics due to the fiber collision, which arises from the
fact that the two spectroscopic fibers on the telescopes cannot be physically closer
than some angular distance set by the hardware, and fails to measure the redshift of
some target galaxies. Since the probability that the fiber collision happens depends
on the angular number density of target galaxies at a local sky patch, it distorts the
measured power spectrum, and this e�ect becomes severer at larger k (e.g., [138]).
We need to quantify the influence of fiber collision, and mitigate its impact, e.g., by
properly weighting the galaxies or, if possible, by implementing this e�ect in the
theoretical model.
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Chapter 8

Conclusion

In this thesis, we have delved into a newly-developed, simulation-based approach of
cosmological inference from the redshift-space galaxy power spectrum from various
aspects: the theoretical model building, the assessment of impact of nuisance pa-
rameters on cosmology constraints, and the cosmological analysis of actual survey
data.

Emulator development

For the theoretical model building, we have developed an “emulator” of the redshift-
space power spectrum of halos, based on the N -body simulations and a machine
learning-based technique. A fast and accurate prediction of the power spectrum
in a multi-dimensional input parameter space requires an e�cient way to precisely
interpolate the simulation data. To this end, we adopted a feed-forward neural
network with a simple structure. In the six-dimensional parameter space of flat-
geometry wCDM cosmology and the redshift range 0 Æ z Æ 1.48 investigated in a
large cosmological N -body simulation suite, the neural network can reproduce the
halo power spectrum P S

hh(k, µ) for a given halo mass threshold above 1012 h≠1 M§,
in several CPU milliseconds. The prediction accuracy of the emulator is shown to
be about 1% (5%) for the monopole (quadrupole) moments of the power spectrum
for halos with a mass threshold ≥ 1013 h≠1 M§, which are likely to host the galaxies
targeted in the current galaxy redshift survey.

We demonstrated that we can combine the emulator outputs with the halo model
formalism to obtain the model predictions for the redshift-space galaxy power
spectrum for a galaxy sample of interest. Since our emulator outputs the redshift-
space power spectrum as a function of (k, µ), instead of its multipole moments, it
allows one to easily incorporate various anisotropic e�ects: the so-called Finger-of-
God e�ects due to the random motions of galaxies inside host halos, the o�-centering
e�ects, and the Alcock Paczynski distortions, where these e�ects generally mix
contributions of di�erent multipole moments to a given multipole. As a working
example, we used a halo occupation distribution (HOD) model calibrated for the
SDSS-III galaxies to compute the redshift-space galaxy power spectra based on the
halo emulator. We showed that the emulator predictions well match the power
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spectra measured from the simulation-based mock catalogs that are generated using
the same HOD and the same spatial and velocity distributions of galaxies inside
halos. Our emulator can compute the galaxy power spectrum in O(0.1) CPU seconds,
which corresponds to a huge reduction in the computation time compared to the full
N -body simulations, which the emulator essentially reproduces.

Impact of the uncertainties in the halo-galaxy connection on

cosmological constraints

In Chapter 6, we have studied the cosmological information content in the redshift-
space power spectrum of galaxies over a range of wave number scales from the linear
to quasi-nonlinear regimes. Using simulation-based mock galaxy catalogs, we studied
how changes in cosmological parameters and the halo-galaxy connection parameters
alter the redshift-space power spectrum of galaxies. Rather than galaxies whose for-
mation and evolution processes remain uncertain, the redshift-space power spectrum
of halos hosting the galaxies should carry the cosmological information accessible with
our current knowledge. We presented theoretical forecasts on cosmological parameter
constraints from the HOD galaxy power spectrum, using the Fisher information
matrix. We studied how the power spectrum of SDSS-like galaxies can be used to
constrain the cosmological parameters (Ωm and ‡8) and the cosmological distances
(DA and H), even after marginalization over the halo-galaxy connection parameters.

We have seen that varying the cosmological parameters and the cosmological
distances via the AP e�ect leads to characteristic variations in the monopole and
quadrupole moments of galaxy power spectrum on scales k Æ 0.3 h Mpc≠1(Fig. 6.5).
In particular, we found that the Baryon Acoustic Oscillation (BAO) features are quite
useful to obtain robust measurements of the angular and radial cosmological distances
DA and H, even in the presence of uncertainties in the halo-galaxy connection
(Fig. 6.8). Compared to this, the parameters (Ωm, ‡8), which control the amplitude
of redshift-space power spectrum and the RSD strength, are more strongly a�ected
by the halo-galaxy connection parameters, but the constraints can be improved by
including the redshift-space power spectrum information on quasi-nonlinear scales up
to kmax = 0.3 h Mpc≠1. Though the signal-to-noise ratio of the quadrupole moment
is smaller than that of the monopole moment by up to a factor of 100, the quadrupole
moment has the sensitivity to cosmological parameters comparable to that of the
monopole. By combining the two we can improve the cosmological constraints,
mitigating the impact of halo-galaxy connection parameters. Our results imply
that combining the monopole and quadrupole moments allows for a self-calibration

of cosmological parameters, lifting the degeneracies among the cosmological and
nuisance parameters, to some extent.

A uniqueness of the redshift-space power spectrum, compared to other large-
scale structure probes, is that the anisotropic features allow one to measure the
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cosmological distances (also via the BAO peaks) as well as the RSD e�ect. Here the
RSD e�ect is expected to be a powerful probe of the gravity theory on cosmological
scales. We have also addressed this issue. By introducing a parameter fRSD to control
the amplitude of the RSD e�ect of halos hosting galaxies in the mocks, we assessed
the power of the redshift-space power spectrum for making a model-independent
estimation of the RSD parameter together with the distance parameters DA and H.
With this parameterization, the constraint on fRSD comes purely from the anisotropic
features in the redshift-space power spectrum, because it does not alter the real-space
power spectrum. We found that the fractional accuracy of fRSD, corresponding
to the fractional error of f‡8 in the linear regime, is about 10% if we include the
redshift-space power spectrum up to kmax = 0.3 h Mpc≠1, after marginalization over
the halo-galaxy connection parameters and uncertainties in the FoG e�ect due to
virial motions of galaxies in their host halos. Our forecast might be considered
as a conservative forecast, but generally implies that there are severe degeneracies
between the RSD e�ect and the systematics due to the halo-galaxy connection.

Cosmological analysis on the SDSS-III galaxy catalog

As one of the main results of this thesis, we applied our theoretical model based on
the emulator combining with halo model formalism to the cosmological parameter
inference on the observed galaxy power spectrum. We used the redshift-space galaxy
power spectrum from the completed SDSS-III BOSS Final Data Release galaxy
catalog, which contains over 1,000,000 luminous red galaxies over the redshift range
0.2 < z < 0.75, in total of North and South sky regions. We split the catalogs
into three overlapping redshift bins, and measured the monopole, quadrupole, and
hexadecapole moments of power spectrum from each redshift bin and sky region
(North or South). Likewise, we also measured the covariance matrix of the power
spectrum multipoles, using 2048 realizations of the MultiDark-Patchy mock galaxy
catalogs.

On these measured power spectrum signals, we performed the cosmological pa-
rameter inference based on our emulator-based theoretical template, within the flat
ΛCDM cosmology. Our main aim is to see how well we can estimate the cosmological
parameters from the redshift-space galaxy power spectrum, on quasi-nonlinear scales
up to kmax = 0.2 or 0.3 h Mpc≠1, for which our emulator-based theoretical template
is fully valid at the level of halos.

Our approach includes various nuisance parameters phenomenologically describing
the halo-galaxy connection, which is the main theoretical uncertainty. To see whether
our method can robustly measure the cosmological parameters, we first tested the
method using simulation-based mock galaxy catalogs. We prepared mock catalogs
with di�erent settings: the HOD-based mock catalogs with and without the o�-
centering e�ect (which causes the significant di�erence in the reshift-space power
spectrum), and the MultiDark-Patchy mock catalogs. For two HOD-based mocks,
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our method successfully recovered the input cosmology, for both the cases of using
the signals up to kmax = 0.2 and 0.3 h Mpc≠1. For MultiDark-Patchy mock catalogs,
our method recovers the input cosmology in the kmax = 0.2 h Mpc≠1 case, but in the
kmax = 0.3 h Mpc≠1 case, the estimation of As and ‡8 tend to present lower values.
The issue of robustness of the parameter estimation should be further discussed using
more various mock catalogs as a future work.

After the tests using the mock catalogs with di�erent recipes to populate galaxies,
we performed the cosmological parameter inferences on the real survey data, and see
that our emulator-based method can present the reasonable cosmological parameter
constraint, compared to the another analysis based on the perturbation theory-based
theoretical model.

This is the first attempt in the world to measure the cosmological parameters from
the redshift-space galaxy clustering based on the N -body simulation-based emulator.
The method developed in this thesis should be useful for upcoming surveys such as
the Subaru Prime Focus Spectrograph, Dark Energy Survey Instrument, Euclid, and
Roman Space Telescope.

Future works

The emulator-based cosmological analysis of galaxy surveys is still a very premature
method. The most important problem which should be investigated in the future
works is the systematics on the cosmological parameter inference. As we mentioned
in Sec. 7.7, our approach using the halo emulator and halo model formalism leads to
the restrictive theoretical model prediction in the sense that it does not completely
cover the all the possibility on how the galaxies targeted in galaxy redshift surveys
reside in their host halos, including the correlation with the halo assembly bias. This
fact can leads to the theoretical systematics which prevent us to unbiasedly estimate
the cosmological parameters, even if we marginalize a lot of parameters which model
the halo-galaxy connection. While it is highly di�cult to perfectly resolve this issue,
the state-of-the-art method to evaluate the robustness of the parameter inference
is to test the analysis pipeline on the galaxy mock catalogs with di�erent recipes
to populate galaxies inside halos. As an immediate future work, we will need more
detailed investigations on the parameter estimation bias, using further di�erent mock
catalogs, in particular the assembly bias mocks.

In this thesis, we show only the result for each redshift and sky region, and we do
not present the combined results of di�erent redshifts and sky regions. To obtain the
stringent constraints of the cosmological parameters which are shared over di�erent
redshifts, combining the data in di�erent redshift bins is highly essential. This is
also our future work after the dissertation.

From the observation side, the influence of the fiber collision can become prob-
lematic. This e�ect correlates with the galaxy clustering and becomes severer on
larger-k scales. Hence, when we try to use the large-k signals at e.g., k ƒ 0.3 h Mpc,
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we will need to properly handle this observational systematics, also possibly by using
the mock catalogs with such a systematics.
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Appendix

1 A resolution study on the power spectrum measurement

In Sec. 5.3.2, we described our settings used in measurements of the redshift-space
power spectrum of halos that were in turn used as the datasets of emulator building.
In this appendix, we present a resolution study in the power spectrum measurement.

First, we study how the grid assignment we used a�ects the power spectrum
measurement. For this purpose we use the Dark Quest HR simulations, which have
a box size of 1 h≠1Gpc, a halved size of our default simulations of 2 h≠1 Gpc. Figure 1
compares the multipole moments of halo power spectrum using the CIC assignment
with di�erent number of grids: 5123 grids and 10243, respectively. Here the former
has the same Nyquist frequency in the FFT computation as that of our default
setting (2 h≠1 Gpc plus 10243). For both cases we use the interlacing scheme for the
aliasing mitigation. Here we consider the auto power spectrum for two samples of
halos with number densities, nh = 10≠3 and 10≠4 (h≠1 Mpc)≠3, respectively, at z = 0

for the Planck cosmology. The error bars represent standard deviation among the 15
realizations. Although the systematics due to the grid assignment is below the errors
for the quadrupole and tetra-hexadecapole (¸ = 6) moments, it significantly a�ects
the monopole and hexadecapole moments at k & 0.7 or 0.8 h Mpc≠1. In this paper
we use the power spectrum data at k < 0.61 h Mpc≠1 for the emulator construction,
and in this range our default setting accurately estimates the multipole moments
with the precision better than the statistical errors. Hence we conclude that the FFT
resolution does not a�ect our emulator construction.

Second, we study the impact of a finite k binning in the power spectrum measure-
ments. There is a trade-o� in a choice of the bin width. For a finner bin width, the
band power measurement in each k bin becomes noisier due to a smaller number of
the Fourier modes, but it can well capture features in the power spectrum. For a wider
bin width, the measurement becomes less noisy but might erase or smooth features
in the power spectrum. For our emulator construction, we need less noisy datasets to
avoid any failure of the machine learning due to too large sample variance. For this
reason, we adopt the k-bin width ∆k = 0.02 h Mpc≠1, although the analyses using
the current-generation galaxy redshift surveys usually employ ∆k ƒ 0.01 h Mpc≠1

for the k-bin width [18]. Hence it is important to check the e�ect of our binning
on the power spectrum measurement. In Fig. 2, we compare the power spectrum
measured with two di�erent bin widths ∆k = 0.01 and 0.02 h Mpc≠1, respectively.
In the upper panel, the solid line represents the spline interpolation of the power
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Figure 1: The e�ect of the FFT grid assignment on the multipole moments of halo
power spectrum measured from the simulations. We compare four mul-
tipole moments of degrees ¸ = 0, 2, 4, and 6 for the Planck cosmology,
between the CIC assignments on 5123 grids and on 10243 grids, respec-
tively. Since we measure from the Dark Quest HR simulations with box
size of 1 h≠1 Gpc, the Nyquist wave number for each setting is 1.61 and
3.22 h Mpc≠1, respectively. The former FFT resolution is equivalent to our
fiducial setting we used for the main results of this paper. The gray arrow
in the upper horizontal axis indicates the maximum wave number of data,
kmax = 0.61 h Mpc≠1, which we adopt to construct the emulator.

spectrum measured at ∆k = 0.02 h Mpc≠1, while the symbols are that measured at
∆k = 0.01 h Mpc≠1 for the multipole moment of each order. The error bars show the
variances among 15 realizations of the Planck cosmology. Over all the k range we
are interested in, the power spectrum measured with finner bins shows almost no
significant discrepancy from the case of the wider bins. A caveat is that the wider
binning slightly smears out the BAO features. However, the primary purpose of this
work is to accurately model the nonlinear clustering e�ects and the RSD e�ect in
the redshift-space power spectrum, so we most care about an unbiased measurement
of the power spectrum amplitudes. Thus, Fig. 2 shows that our binning scheme well
captures the amplitudes of the multipole moments, with the precision better than
the statistical errors, up to k ƒ 0.7 h Mpc≠1. Hence, we conclude that our choice
∆k = 0.02 h Mpc≠1 meets the requirements.

2 Multiplication of the cross power spectrum of halos?

In our emulator, we choose to work on the power spectrum of halos with di�erent
number densities (masses): P S

hh(k; n1, n2). In linear theory, the redshift-space power
spectrum between halos with mass M1 and M2 can be expressed in the multiplicative
form as

P S
hh,lin(k, µ; M1, M2) =

Ë

bh(M1) + fµ2
È Ë

bh(M2) + fµ2
È

Plin(k), (1)

where bh(M) is the linear bias of halos with mass M . The standard halo model
also assumes that the two-halo term of the halo power spectrum is given by such

134



2 Multiplication of the cross power spectrum of halos?

Figure 2: E�ects of the k-bin width on the multipole moments (up to ¸ = 6) of halo
power spectrum. The symbols with error bars are the multipole moments
measured using the bin width ∆k = 0.01 h Mpc≠1. The solid lines are
the results obtained by the spline interpolations of the moments using
the bin width ∆k = 0.02 h Mpc≠1. The error bars are estimated from
the standard deviation among the 15 realizations of Dark Quest LR
simulations (2 h≠1Gpc on a side) for the Planck cosmology.
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a multiplicative form as P 2h
hh (k; M1, M2) = b(M1)b(M2)P L

hh(k) [139, 140]. From this
consideration, one might ask whether the power spectrum of halos in di�erent mass
bins can be approximated by the multiplicative form as

P S
hh,lin(k, µ; M1, M2) =

Ò

P S
hh,lin(k, µ; M1)P S

hh,lin(k, µ; M2). (2)

If the above approximation or ansatz was valid at nonlinear scales for all the halo
mass range, it would be su�cient to study the auto power spectrum of halos in a
single mass bin, which reduces the e�orts and di�culty of the emulator development.
Here we study whether the above ansatz is valid using the simulations.

In Fig. 3, we investigate a validity of the ansatz, Eq. (2). To this, we study the
cross-correlation coe�cient between the monopole moments of the redshift-space
power spectrum for the halo samples of two number densities,

P S
hh,0(k; n1, n2)

Ò

P S
hh,0(k; n1)P S

hh,0(k; n2)
(3)

for the Planck cosmology at z = 0. We consider the cases of n2 = 10≠3.5, 10≠4, 10≠4.5,
and 10≠5 (h≠1 Mpc)≠3, while keeping n1 fixed to 10≠3 (h≠1 Mpc)≠3. Note that the
halo sample of n2 is a subsample of the sample of n1, and we subtracted the shot
noise from each power spectrum in the numerator and the denominator. The figure
clearly shows that the ansatz, Eq. (2), does not hold at nonlinear scales. As an
overlap between the two samples decreases (the di�erences between n1 and n2 get
larger), a deviation of the cross-correlation coe�cient from unity becomes greater
and starts from smaller k bins. With the results in this figure, we conclude that it is
indispensable to use the halo power spectrum of two number density bins for the
emulator construction.

3 An optimal choice of the number of hidden units in the

neural network training

In our network architecture, we employed two hidden layers to give a large flexibility
to the nonlinear mapping from the nine-dimensional input vector to the output power
spectrum. The main factor which handles the model flexibility of neural network
is the number of hidden units (hereafter, we call it as Nhidden). We executed the
following study to make an appropriate choice of Nhidden in our neural network.

Figure 4 shows how the loss function values after the training vary with Nhidden. We
employ the equal Nhidden for both the two hidden layers, and run the training for 1000
epochs as we described in Sec. 5.3.4, for the di�erent Nhidden in the range of [20,1000].
In addition, to measure the goodness of choice of Nhidden in our network including
its possible uncertainty due to the variations of dataset, we change the split of
training/validation datasets; since we have five slices (slice 1–5) in the Dark Quest

136



3 An optimal choice of the number of hidden units in the neural network training

Figure 3: A test of multiplication of the redshift-space halo power spectrum; whether
does the multiplication [Eq. (2)] hold? This identify holds for the linear
theory prediction with the Kaiser RSD e�ect. If the above identity holds,
the cross-correlation coe�cients in the y axis should be unity. Here we
consider the case that one halo sample has a fixed number density of n1 =
10≠3 (h≠1 Mpc)≠3, and the other sample has varying number densities, n2 to
be 10≠3.5 (blue), 10≠4 (orange), 10≠4.5 (green) and 10≠5 (red) (h≠1 Mpc)≠3,
respectively. The error bars are the standard deviation among the 15
realizations for the Planck cosmology.
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Figure 4: Shown is how the value of the loss function [Eq. (5.11)] after the training for
1000 epochs varies with the number of hidden units, Nhidden. Blue and red
symbols with error bars are the training and validation loss, respectively.
The error bars are the standard deviation among five di�erent choices of
the training/validation split (see text).

simulation suite, we can consider five di�erent choices of the training/validation
split, by choosing one of them as the validation set and remaining four slices as the
training set. In this figure, we show the mean and standard deviation of the final
loss function values among the five choices of the training/validation split, for each
of the training (blue) and validation (red) losses. Note that, when we calculated the
final training or validation loss, we followed the definition of Eq. (5.11), except that
we averaged over the whole training or validation dataset, respectively.

The training loss decreases almost monotonically with the increase of Nhidden,
because the enhanced flexibility of the neural network enables better fittings to the
training dataset. However, this is not the case in the validation loss. When Nhidden

is low, the validation loss decreases with the increase of Nhidden, similarly to the
training loss. However, as we increase Nhidden more than about 400, the validation
loss also increases, which leads to a worse emulation performance. It is due to that
the neural network has too large flexibility to properly generalize to the validation
data. Since our goal is to construct an emulator that can predict not only the
training dataset but also the power spectrum for new inputs, we need to suppress
the validation loss and avoid such an overfitting. The validation loss becomes the
lowest when Nhidden ≥ 200. We use this value as an optimal choice of Nhidden for our
emulator construction.
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4 Dependence of the emulator accuracy on the halo number density

Figure 5: The accuracy of the emulator predictions for di�erent values of halo number
density. We focus on the cases of n1 = n2 = nh presented in each subplots.
The second row is identical to the lower panels in Fig. 5.6.

4 Dependence of the emulator accuracy on the halo

number density

In this appendix, we study the accuracy/performance of the emulator predictions for
other halo samples which we did not consider in the main text. Figures 5 and 6 show
how the emulator accuracies for the monopole and quadrupole moments with the
di�erent halo samples. In Fig. 5 we show the results for the power spectrum of the
single number density bin, nh, where nh = 10≠3, 10≠4, 10≠5, and 10≠6 (h≠1 Mpc)≠3,
respectively. Due to the severe shot noise, the accuracy for the low number density
such as nh = 10≠6 (h≠1 Mpc)≠3 is much worse than that for the higher number density
sample. However, for each value of nh, the discrepancies are roughly comparable
to the variance estimated from 15 realizations for the fiducial Planck cosmology,
indicated by shaded regions. This indicates that the training of the neural network
reaches the limit determined from the noise levels of the training data. The same
tendency is also presented in Fig. 6, which shows the cases in which n1 and n2 are
di�erent.
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Figure 6: The same as Fig. 5, but we show the cases of n1 ”= n2.

5 Comparison of responses with simple theoretical

prescriptions

In this paper we execute a Fisher matrix analysis using the response of the redshift-
space power spectrum with respect to various parameters. For completeness, in this
appendix we compare the estimation of these responses from our simulation-based
galaxy mocks with their predictions based on the linear theory and the halo model
formalism, which is presented in Eqs. (3.41) and (3.42). We predict the responses
following two simple models.

(i) The HOD power spectrum combined with the FoG damping – Following Eqs. (3.41)
and (3.42), we compute the real-space galaxy power spectrum based on the
halo power spectrum, a NFW radial profile of galaxies and the HOD defined
by Eqs. (??) and (??). The halo power spectrum is computed from the linear
matter power spectrum and the large-scale halo bias bh(M). To model the
redshift-space distortions, we employ the well-known Kaiser’s e�ect and the
FoG damping factor:

P S
gg(k, µ) =

1

1 + —µ2
22

P R
gg(k)DFoG(kµf‡v), (4)

where — = f/bg and ‡v is the parameter which represents the velocity dispersion
of the virial velocities. For the FoG damping we assume the broadly-used
Gaussian form, i.e., DFoG(kµf‡v) = e≠k2µ2f2‡2

v , and we compute ‡v by simply
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using the linear theory expression:

‡2
v,lin =

1

3

⁄

d3q

(2fi)3

Plin(q)

q2
. (5)

(ii) The linear power spectrum with the linear galaxy bias – We compute the
galaxy power spectrum following Kaiser’s formula from the linear matter power
spectrum and the linear galaxy bias. Note that the HOD parameters a�ect
only on this galaxy bias in this model.

In both models above, we use the linear galaxy bias bg given as

bg =

⁄

dM
dn

dM
[ÈNcÍ(M) + ÈNsÍ(M)] bh(M), (6)

where bh(M) is the linear halo bias. To compute the halo mass function and the
linear halo bias in these models for an input cosmology, we employ Dark Emulator

in Ref. [?]. Since the parameters to model the spatial and velocity distributions of
galaxies in their host halos, cconc, cvel, poff and Roff , are di�cult to include in the
linear theory prediction, we focus only on the cosmological and HOD parameters
here.

Fig. 7 shows the comparison of the parameter responses measured from mocks
to these two models. The three columns show the results for LOWZ, CMASS1 or
CMASS2-like galaxies, respectively. The filled symbols are the measured responses
with respect to each parameter, and the solid and dashed lines are the predictions
given by the models (i) and (ii) described above, respectively. We see that behaviors
of these responses at highly large scales are well described by both models, and the
model (i) has a slightly better performance on reproducing the responses to the
cosmological parameters than the simplest linear theory prediction (ii). However,
the modification included in the model (i) gives little improvements on reproducing
the HOD-responses. This means that the model (i) is still too naive to capture these
behaviors and hence we must employ more complicated models in analyzing the
galaxy power spectrum in the current galaxy surveys.

6 Fisher forecasts on cosmological parameters using the

nuisance parameter set in Chapter 7

In this appendix, we present the Fisher matrix forecasts on the cosmological pa-
rameters {Ωm, ‡8}, when we use the same set of nuisance parameters used in the
cosmological analysis described in Chapter 7. In Chapter 7, we reduce the number
of nuisance parameters from the set used in Chapter 6, by fixing three parameters;
poff , Roff , which handle the o�-centering e�ect, and cconc, the multiplicative factor
on the mass-concentration relation.
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Fig. 8 shows the Fisher matrix forecast on Ωm and ‡8 we investigated in Chapter 6.
As in Chapter 7, we focus on the cosmological parameter constraints in the concor-
dance ΛCDM framework. The solid-line contours correspond to the results in which
we use the same set of nuisance parameters as used in the cosmology inference in
Chapter 7. The dashed-line contours are the same as those we showed in Chapter 6.
There is an only marginal deference between these two, especially for the case that
the monopole and quadrupole moments are combined.

142



6 Fisher forecasts on cosmological parameters using the nuisance parameter set in Chapter 7

0.1 0.2 0.3

k [hMpc−1]

−5000

0

�
k
P

S �
(k
)

�
Ω
m

LOWZ

Monopole

Quadrupole

0.1 0.2 0.3

k [hMpc−1]

−500

0

500

�
k
P

S �
(k
)

�
ln
(1
01

0
A

s)

0.1 0.2 0.3

k [hMpc−1]

0

2000

4000

�
k
P

S �
(k
)

�
(D

A
/D

A
,fi
d
)

0.1 0.2 0.3

k [hMpc−1]

−2000

0

2000

�
k
P

S �
(k
)

�
(H

/H
fi
d
)

0.1 0.2 0.3

k [hMpc−1]

0

2000

�
k
P

S �
(k
)

�
lo
g
M

m
in

0.1 0.2 0.3

k [hMpc−1]

−5000

0

�
k
P

S �
(k
)

�
�
lo
g
M

0.1 0.2 0.3

k [hMpc−1]

−1000

0

1000

�
k
P

S �
(k
)

�
lo
g
M

1

0.1 0.2 0.3

k [hMpc−1]

−250

0

250

�
k
P

S �
(k
)

�
lo
g
M

sa
t

0.1 0.2 0.3

k [hMpc−1]

−200

0

200

�
k
P

S �
(k
)

�
�
sa
t

0.1 0.2 0.3

k [hMpc−1]

−5000

0

CMASS1

Monopole

Quadrupole

0.1 0.2 0.3

k [hMpc−1]

−500

0

500

0.1 0.2 0.3

k [hMpc−1]

0

2000

4000

0.1 0.2 0.3

k [hMpc−1]

−2000

0

2000

0.1 0.2 0.3

k [hMpc−1]

0

2000

0.1 0.2 0.3

k [hMpc−1]

−5000

0

0.1 0.2 0.3

k [hMpc−1]

−1000

0

1000

0.1 0.2 0.3

k [hMpc−1]

−250

0

250

0.1 0.2 0.3

k [hMpc−1]

−200

0

200

0.1 0.2 0.3

k [hMpc−1]

−5000

0

CMASS2

Monopole

Quadrupole

0.1 0.2 0.3

k [hMpc−1]

−500

0

500

0.1 0.2 0.3

k [hMpc−1]

0

2000

4000

0.1 0.2 0.3

k [hMpc−1]

−2000

0

2000

0.1 0.2 0.3

k [hMpc−1]

0

2000

0.1 0.2 0.3

k [hMpc−1]

−5000

0

0.1 0.2 0.3

k [hMpc−1]

−1000

0

1000

0.1 0.2 0.3

k [hMpc−1]

−250

0

250
Rescaled by factor 2

0.1 0.2 0.3

k [hMpc−1]

−200

0

200 Rescaled by factor 0.2

Figure 7: The comparison of the derivatives of the power spectrum computed from the
SDSS-like galaxy mocks to the predictions by two simple models (see text
for details). We compare the derivatives with respect to Ωm, ln(1010As),
DA(zn), H(zn) and five HOD parameters with the corresponding theoretical
predictions. Blue and red lines are for the monopole and quadrupole
moments, and the solid and dashed lines denote the model (i) and (ii),
respectively. The green, vertical dashed line indicates the scale k = 0.02
h Mpc≠1, which is adopted as the minimum wavenumber kmin in all the
Fisher calculations in this study.
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Figure 8: The 68% error ellipse on Ωm and ‡8 for the flat ΛCDM framework. The
solid-line contours are the error ellipses when we marginalize the nuisance
parameters we used in Chapter 7. The dashed-line contours are the same
as those in Fig. 6.11.
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