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Abstract

For many quantum many-body-systems, internal information can be read off as

a classical quantity. Based on this idea, this thesis proposes and analyzes two

models in which a macroscopic classical-mechanical system and a quantum

many-body system are coupled, demonstrating the necessity of modeling the

external macroscopic degrees of freedom for the study of quantum many-body

systems.

The first model focuses on the setup for investigating a two-dimensional

helium system with a quartz-crystal microbalance (QCM). This setup is a typ-

ical example of a quantum many-body system on a lattice coupled with a

classical-mechanically vibrating system. We derive the equation of motion for

the QCM as a simplified platform and predict the effects of coupling with two-

dimensional 4He. From the results, we find that the effective mass of the entire

system, the platform and the 4He atoms, shows a linear increase and a nonlin-

ear depletion with increasing of the 4He atoms. A mean-field approximation

also suggests that the latter depletion becomes largest at the half-filling num-

ber of 4He atoms.

The second model assumes a magnetic insulator in which the exchange in-

teraction oscillates in time. Since the exchange interaction is responsible for

the highest energy scale in magnetic insulators, its experimental realization is

difficult. Beyond these difficulties, however, a wide variety of new phenomena
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lie ahead. As an example of such a phenomenon, we predict the emergence

of long-range interactions and associated initial-state-sensitive dynamics. The

initial-state-sensitive dynamics is interesting from our original viewpoint of

quantum-classical coupled systems, as it is a sign that classical perturbations

from the outside world may cause a large back-action. Analytical and numer-

ical results show that a slight change in the initial state causes a significant

difference in the system’s time evolution when we drive the exchange interac-

tion with an appropriate amplitude.
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Chapter 1

Introduction

1.1 Partially classical open quantum systems

Experimentally probing the microscopic state of quantum many-body systems

involves coupling of the quantum system with macroscopic measuring instru-

ments and environments. It is difficult to analyze such setups by investigating

isolated quantum systems by means of the Schrödinger equation. This problem

has been partly resolved by effectively decoupling the system of interest from

the external systems and by measuring it without decoherence. For example, in

the imaging of ultracold atoms, various strategies are used to resolve the trade-

off between reducing probe-induced atom heating and increasing the imaging

resolution [1]. There are also efforts to reduce the quantum back-action asso-

ciated with measurements in the context of cavity quantum electrodynamics

(QED) and that for quantum thermodynamics [2, 3], for example.

On the other hand, some studies actively exploit the inevitable coupling be-

tween the system of interest and the external systems. In particular, studies of

open quantum systems strongly coupled to external systems has made signifi-

cant progress in recent years, leading to insights into strong-coupling quantum
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thermodynamics [4] and cavity quantum electrodynamics [5, 6]. Studies on

driven open quantum systems also have revealed the relation of the injection

and the dissipation respectively of energy and particles [7–9].

The above two approaches to quantum many-body systems differ in the

way of describing the system: in the former case, one formulates all dynamical

variables quantum-mechanically; in the latter case, one can leave truly clas-

sical variables as they are. An illustrative example of such classical variables

is the electromagnetic field used for trapping cold atoms. Furthermore, many

physical quantities measured in experiments are essentially classical. We can

interpret, for example, the electric conductivity of a metal or the magnetic mo-

ment of a magnet in terms of classical electromagnetic dynamics. In such sit-

uations, the latter semi-classical description would be suitable for intuitively

understanding phenomena.

We can model such an open quantum system, which partially obeys clas-

sical mechanics, as a quantum-classical coupled system as follows; see also

Fig. 1.1. First, we have a classical-mechanical system and a quantum one, each

obeying an equation of motion individually. Second, we slightly modify each

of the equations of motion to incorporate the effects of coupling. The coupling

considered here is, for example, electromechanical coupling in piezoelectric

materials or magneto-mechanical coupling in ferromagnetic materials. The

changes in the equations of motion for the quantum-mechanical system and

the classical one correspond to classical-to-quantum perturbation and back-

action in the opposite directions, respectively. Interestingly, we can some-

times derive a renormalized equation of motion for the classical-mechanical

system by eliminating the dynamical variables for the quantum one. For such

a model, this renormalization corresponds to the second-order process through

the classical-to-quantum perturbation and the quantum-to-classical back-action.
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Such treatment is not always possible, but if it is, it can have a variety of appli-

cations. As considered below, graphene and spintronic materials are concrete

examples of such a model.

1.1.1 Graphene

Graphene is roughly a coupled system of a classical elastic body following con-

tinuum mechanics and a quantum electronic system following the Dirac equa-

tion. Through the coupling, elastic deformation creates a gauge field for the

electronic system [10–12], and the behavior of the electronic system causes

properties of the elastic body to deviate from classical theory [13, 14]. The

former mechanism is closely related to strain engineering, which uses elastic

deformation to manipulate the electronic properties of graphene [15–17]. The

latter mechanism, on the other hand, contributes to the phenomenon of elastic

deformation caused by surface plasmons generated by light and other sources,

as well as to various related photomechanical effects [18–20].

If we find a renormalized equation of motion for the elastic part of graphene,

we can consider various applications. For example, known elastic anomalies

[13, 14] in graphene can be fully explained as electron-derived effects. We can

also utilize graphene as a controllable actuator by dynamically controlling its

elasticity while externally applying an electromagnetic field. It would be even

more interesting if additional electromagnetic fields and the elasticity-derived

artificial gauge field are coupled nonlinearly.

1.1.2 Spintronics materials

Spintronics materials range from typical magnetic insulators, including ferro-

magnets and antiferromagnets, to metals and superconductors, and even onto

general non-magnetic materials [21–26]. This diversity is due to the variety of
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·Q0(t) = f [Q0; ⟨ ̂a(t)⟩]

Figure 1.1: Schematic picture of a quantum-classical coupled system. The clas-

sical system is characterized by a dynamical variable Q0(t), while the quantum

system is characterized by a dynamical variable â(t). (a) A quantum system

that obeys the equation of motion i~∂tâ(t) = [â(t), Ĥ0] and a classical system

that obeys the equation of motion Q̇0(t) = f [Q0] evolve independently. (b) The

classical system and the quantum system are coupled. The Hamiltonian of the

quantum system and the time evolution function of the classical system are

modified as Ĥ0 7→ Ĥ(Q0) and f [Q0] 7→ f [Q0; 〈â(t)〉], respectively. Here, the Q0

dependence of Hamiltonian Ĥ0(Q0) represents the perturbation, while the â(t)

dependence of the time evolution function f [Q0, 〈â(t)〉] represents the back-

action. (c) The equation of motion Q̇0(t) = f [Q0] + δfquantum[Q0], where the

quantum variables have been eliminated by some procedure and only the clas-

sical variables survive. Here, the additional term δfquantum[Q0] represents the

renormalization from the second-order process associated with the coupling to

the quantum system.
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channels through which we can access the electronic spin degrees of freedom

in matter. Of particular importance is the mechanical spin-rotation conver-

sion, which utilizes the coupling between the electron’s spin degree of freedom

and the mechanical rotation, namely the spin-rotation coupling [27]. Mechan-

ical rotation, such as global rotation and elastic deformation, is classical and

sometimes macroscopic. Therefore such spintronics materials with classical

mechanical degrees of freedom are typical quantum-classical coupled systems.

The mechanism of coupling between electron spins and mechanical ro-

tation in magnetic materials is known as the microscopic origin of the phe-

nomenon of magnetization generation from global rotational motion, formerly

known as the Barnett effect [28]. Based on the mechanism, techniques of gen-

erating spin current using angular-momentum transfer from the mechanical

rotation to electron spins have been proposed [29, 30]. On the other hand,

the Einstein-de Haas effect [31], namely the inverse Barnett effect, is known

as a fundamental technology of spintronics and has been applied to spin-flip

detection with single electron precision [32, 33].

We can also apply the renormalization method to such a mechanically ro-

tating magnetic matter. For example, there is a series of studies of electron

spins coupled internally to twisted beam-like elastic bodies [34–36]. In such

a system, apart from the spin degree of freedom of the electrons, the beam

has an intrinsic torsional rigidity in the bare state. In this case, the electronic

spins and the beam torsion are coupled by angular-momentum conservation,

and consequently, the beam acquires a renormalized torsional rigidity from a

second-order process of the beam-to-spin perturbation and the spin-to-beam

back-action. Of course, we need some approximations to eliminate the spin

degree of freedom of the electrons. However, this idea may allow us to esti-

mate the energy dispersion of beam-like ferromagnet and antiferromagnet, for
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example, by measuring the torsional rigidity while applying a magnetic field.

1.2 Scope of this thesis

According to the previous discussion, we can formulate many experimental

systems as quantum-classical coupled systems and even describe them classi-

cally with fewer degrees of freedom. Reducing the number of degrees of free-

dom not only saves computational resources but also leads to intuitive under-

standing. Based on this viewpoint, we first consider two-dimensional 4He on

a graphite substrate. Two-dimensional 4He and 3He, along with bulk solid he-

lium, are interesting experimental systems for investigating two-dimensional

quantum solids of pure bosons and fermions. Experiments on two-dimensional

helium systems have traditionally employed setups of mechanical vibration,

such as torsional oscillators (TO) and quartz crystal microbalances (QCM).

However, there is still no theory that comprehensively describes such a cou-

pled system. Motivated by this, the present thesis proposes a model of two-

dimensional 4He coupled with a macroscopic classical platform.

The concept of quantum-classical coupled system motivates us to inves-

tigate yet a new problem. If the quantum system tends to equilibrate au-

tonomously, smaller classical-to-quantum perturbation would generate smaller

quantum-to-classical back-action, which is in fact closely related to the re-

laxation problem of isolated quantum systems [37]. In this case, the scatter-

ing process inside the quantum system would not be so complicated. How-

ever, if the quantum system has strong initial-state sensitivities, even a small

classical-to-quantum perturbation may generate a large quantum-to-classical

back-action. In the present thesis, we exploit long-range interactions in spin

systems which we show emerge from periodically driven exchange interac-
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tions.

The remaining part consist of the following chapters. In Chapter 2, we

derive an effective Hamiltonian for two-dimensional 4He coupled to a macro-

scopic and classical platform, and propose a method of estimating the mass

deficit from the associated equation of motion. In Chapter 3, we derive an

effective Hamiltonian for a spin system with periodically driven exchange in-

teractions and discuss the emergent long-range interactions as well as strong

initial-state sensitivities. Chapter 4 provides a summary, a conclusion, and

discussions.
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Chapter 2

Hard-core bosons coupled to a

platform

2.1 Background and motivation

4He and 3He are bosonic and fermionic isotopes of helium atoms, respectively,

and have provided ideal experimental playground for quantum many-body

systems [38–40]. Such a quantum nature particularly affects their quantum-

solid phases. One example is an elastic anomaly of the bulk solids [41, 42].

Another example is a variety of unusual equilibrium properties in the two-

dimensional solids, namely two-dimensional helium, realized on a graphite

substrate, e.g. liquid-crystal phase [43], incomplete superfliuidity [44], and

commensurate-incommensurate transition [45]. The two-dimensional helium

has attracted much attention in recent years for its nanofriction [46–49].

This study is a joint work with Tomoki Minoguchi (Institute of Physics, Univ. Tokyo, as of

December 2020) to be submitted (in preparation).
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In studies on nanofriction in two-dimensional helium, quartz-crystal mi-

crobalance (QCM) is often used, as in experimental studies in other film-substrate

systems [50–56]. QCM is designed for observing the film’s response under me-

chanical oscillation of the underlying substrate. The force often reaches macro-

scopic magnitudes, causing decoupling of the film from the substrate. The de-

coupling invokes an effective change in the total mass, shifting the oscillator’s

resonant frequency and quality factor. These shifts let us evaluate the film’s

properties. Such a setup can probe quantum many-body systems without di-

rectly observing the quantum many-body system of interest.

The present study aims to theorize such a mechanical-probing setup for

quantum systems. To this end, we propose a minimal model of a single-overlayer
4He atoms on a movable platform. Specifically, we consider the small-amplitude

limit, in which the overlayer receives only a small effect from the underlying

platform, and derive the total effective Hamiltonian with a proper coupling

term. The derivation is inspired by the method in Ref. [57]. The effective

Hamiltonian yields the platform’s equation of motion, by which we obtain an

effective-mass formula for the entire system. We organize the remaining sec-

tions as follows. Section 2.2 presents a theoretical overview and the results.

Section 2.3 gives a summary.

2.2 Methods and Results

2.2.1 Theoretical Overview

In this study, we formulate a situation in which 4He atoms adsorbed on a

graphite substrate are coupled globally to a platform which moves under a

potential force. This formulation leads to an effective Hamiltonian in the lab-

oratory frame. First, noting that the 4He atoms behave like hard-core bosons
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(HCB) on a triangular lattice due to the graphite potential and their interpar-

ticle repulsions, we describe the 4He atoms on the motionless platform by the

following Hamiltonian:

ĤHCBB −
∑

(i,j)∈E
Ji,j â

†
i âj , (2.1)

where E denotes the set of bonds on the triangular lattice, Ji,j denotes the tran-

sition amplitude at bond (i, j), and (âi , â
†
i ) denotes the creation and annihilation

operators, respectively, satisfying the following HCB commutation relation:[
âi , â

†
j

]
= δi,j(1− 2n̂i),

[
âi , âj

]
=

[
â†i , â

†
j

]
= 0. (2.2)

Here we defined the number operator by n̂i B â†i âi .

Second, we describe the bare platform subject to a potential force by the

following Hamiltonian:

Ĥ0B
P̂

2
0

2M0
+V0(Q̂0), (2.3)

whereM0 denotes the platform mass, (P̂ 0,Q̂0) denote the position and momen-

tum operators of the platform, respectively, with the canonical commutation

relation [
Q̂0

⊗, P̂ 0

]
= i~1̌, (2.4)

and V0(Q̂0) denotes the potential followed by the platform. Here, for any space

vectors A = (Aµ) and B = (Bµ), and for any operators Ĉ = (Ĉµ) and D̂ = (D̂µ) that

work on space vectors, A⊗B stands for the tensor with AµBν as its (µ,ν) com-

ponent, and correspondingly,
[
Ĉ ⊗, D̂

]
stands for the tensor with [Ĉµ, D̂ν] as its

(µ,ν) component. In addition, 1̌ denotes the identity tensor. In the following,

the check symbol on top of a character denotes a tensor.
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The purpose of this section is to couple the Hamiltonians given by Eqs. (2.1)

and (2.3) correctly. The bare platform obeys the following equation of motion

for the Hamiltonian Ĥ0:

∂2
t Q̂0(t) = − 1

M0
V ′0(Q̂0(t)). (2.5)

This is the same as in classical mechanics. However, this equation of motion

acquires two additional terms due to the coupling, as we see in the next sec-

tion:

∂2
t Q̂0(t) ∼ − 1

Mtot
V ′0(Q̂0(t))−

γN
i~

[
V̂ B,V0(Q̂0(t))

]
−γN ÂB(t), (2.6)

where N , mB, andMtotBM0 +NmB denote the number of particles, the boson

mass, and the total mass, respectively. We also denoted that γN BNµ/(1+Nµ).

The operators V̂ B and ÂB denote the collective velocity and collective acceler-

ation of the N -boson system, respectively, which will be defined later. Each of

Eqs. (2.5) and (2.6) is an equation of motion for a quantum mechanical oper-

ator. We identify the quantum expectation value for each of these equations

with that of the platform, which is essentially a classical object. This identifi-

cation allows us to treat the additional terms in Eq. (2.6) semiclassically.

The strategy for deriving the effective Hamiltonian is as follows. As a prim-

itive model of the HCB model on a lattice, we give an N -boson system inter-

acting in a periodic potential. Here we assume that the potential moves with

the platform. This assumption makes it impossible to perform the Wannier-

function expansion in the standard way. Therefore, we move to the center-of-

mass coordinate of (N + 1)-particles system of the N bosons and the platform,

further even move to a virtual quantum coordinate. These transformations

recover the possibility of the Wannier-function expansion. They also play a

physical role in effectively decoupling the bosons from the platform. This de-

coupling produces a small additional term as a side effect, but it is not a prob-
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lem. The decoupling also provides mathematical support for the method used

in Ref. [57].

2.2.2 Effective Hamiltonian (Result I)

Let us derive the HCB Hamiltonian (2.1) for the bosons on the QCM. We start

from the N -boson Hamiltonian by

ĤIB[Q̂0]B
N∑
n=1

 p̂2
n

2mB
+VB(q̂n − Q̂0)

+
g

2

∑
n,m

δ(q̂n − q̂m), (2.7)

where g denotes the interaction strength, and the operators {q̂n}Nn=1, {p̂n}
N
n=1 de-

note the position and momentum of the bosons, respectively, with the follow-

ing commutation relation: [
q̂n
⊗, p̂m

]
= i~δn,m1̌. (2.8)

Here, VB(q̂n − Q̂0) denotes a periodic potential that moves with the platform

position Q̂0. This offset of the potential generates the coupling; see Fig. 2.1.

We also assume a lattice structure at the minima of the potential VB(x). For

example, in the case of the triangular lattice, we suppose that

VB(x) =
V̄B

3

{
3− cos[k1 · x]− cos[k2 · x]− cos

[
(k1 −k2) · x

]}
(2.9)

with the wave vectors [58–60]

k1 =
2π
√

3a

(√
3,−1

)
, k2 =

4π
√

3a
(0,1), (a: lattice constant). (2.10)

Here, for a set V of sites in the lattice, we only require that VB(x) has a mini-

mum at the position x = xi of each site i ∈ V . From the above, we have the total

Hamiltonian in the form

Ĥtot = Ĥ0 + ĤIB[Q̂0], (2.11)
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Figure 2.1: Schematic picture of our setup, in which the bosons with the posi-

tions q̂1, q̂2, . . . interact in the periodic potential VB(x) in Eq. (2.9) fixed to the

platform with the position Q̂0. When the platform moves, the origin of the

potential VB moves accordingly, and thus the position of each boson feels shifts

from x = q̂n to x = q̂n − Q̂0 in the laboratory frame.

where Ĥ0 denotes the platform Hamiltonian given in Eq. (2.3).

It would be instructive to derive the HCB Hamiltonian (2.1) on the motionless-

platform, namely for the case Q̂0 = 0, in the standard prescription. To this end,

we start by the Hamiltonian

ĤIB[0] =
N∑
n=1

 p̂2
n

2mB
+VB(q̂n)

+
g

2

∑
n,m

δ(q̂n − q̂m). (2.12)

In the N -boson symmetrized Hilbert space, the Hamiltonian ĤIB[0] can be

rewritten as

ĤIB[0] =
∫
dx ψ̂†(x)

−~2∇2

2mB
+VB(x)

ψ̂(x) +
g

2

∫
dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x).

(2.13)

in the second-quantization language. Here we introduced the field operator
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ψ̂(x) as satisfying

[ψ̂(x), ψ̂†(y)] =i~δ(x − y), (2.14)

[ψ̂(x), ψ̂(y)] =[ψ̂†(x), ψ̂†(y)] = 0. (2.15)

Next, we reduce the Hamiltonian to a lattice model using the Wannier-

function expansion. The Wannier-function expansion means rewriting the field

operator ψ̂(x) in terms of a functionw(x−xi), which is localized at the potential

minimum x = xi :

ψ̂(x) '
∑
i∈V

w(x − xi)âi . (2.16)

Here, we also assume that the set of Wannier functions {w(x − xi)}i∈V satisfies

an appropriate orthonormality. In addition, (âi , â
†
i ) denotes the new creation

and annihilation operators defined on each site i ∈ V . Using this expansion, we

obtain the well-known Bose-Hubbard model [61]:

ĤIB[0] '−
∑

(i,j)∈E
Ji,j â

†
i âj +

U
2

∑
i∈V

n̂i(n̂i − 1) (n̂i B â†i âi) (2.17)

CĤBH, (2.18)

where we defined the hopping amplitude by

Ji,j B

∫
dx w(x − xi)

−~2∇2

2mB
+VB(x)

w(x − xj) (2.19)

and defined the onsite interaction by

U B
g

2

∫
dx |w(x)|4. (2.20)

Here E denotes the set of pairs of neighboring sites (bonds).

Note that the Wannier-function expansion (2.16) holds only if the bosons

occupy the lowest band formed by the periodic potential VB(x). In experimen-

tal situations, we need to keep the environment temperature sufficiently low
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compared to the lowest energy gap. From theoretical viewpoints, this means

that we have to choose the initial state from equilibrium states at a sufficiently

low temperature when we consider time-evolution problems.

Finally, we take the large-U limit. Under this limit, the HCB commutation

relation (2.2) results and the Bose-Hubbard Hamiltonian (2.18) reduces to the

HCB Hamiltonian (2.1):

ĤBH
U→∞−−−−−→ ĤHCB. (2.21)

The above gives the standard derivation of the HCB model on a lattice (2.1)

from interacting bosons in a potential (2.12).

We rewrite the total Hamiltonian Ĥtot using center-of-mass variables to ap-

ply the above prescription even for the case with the platform’s motion. To this

end, we define new positions by

Q̂B
Q̂0 +µ

∑N
n=1 q̂n

1 +Nµ
, (2.22)

r̂nBq̂n −
Q̂0 +µ

∑N
n=1 q̂n

1 +Nµ
(n = 1,2, . . . ,N ), (2.23)

where µ B mB/M0 denotes the boson-to-platform mass ratio. Similarly, we

define new momenta by

P̂ BP̂ 0 +
N∑
n=1

p̂n, (2.24)

π̂nBp̂n −µP̂ 0 (n = 1,2, . . . ,N ). (2.25)

These new variables satisfy the following commutation relations as shown in

App. 2.B.1: [
Q̂ ⊗, P̂

]
=i~1̌, (2.26)[

r̂n ⊗, π̂m
]

=i~δn,m1̌. (2.27)

20



Using Eqs. (2.22), (2.23), (2.24), and (2.25) and eliminating the variables Q̂0,

P̂ 0, {q̂n}, and {p̂n} yields a new expression given by

Ĥtot =
P̂ 2

2Mtot
− Π̂

2
B

2Mtot
+V0(Q̂−NµR̂B)

+
N∑
n=1

 π̂2
n

2mB
+VB(r̂n +NµR̂B)

+
g

2

∑
n,m

δ(r̂n − r̂m). (2.28)

Here we introduced the new canonical posision and momentum operators

R̂BB
1
N

N∑
n=1

r̂n, (2.29)

Π̂BB
N∑
n=1

π̂n (2.30)

with the commutation relation[
R̂B

⊗, Π̂B

]
= i~1̌. (2.31)

The operators R̂B and Π̂B capture a collective behavior of the bosons. See also

App. 2.B.2 for the derivation.

We need to further transform the Hamiltonian (2.28). Indeed, the argument

of VB(r̂n+NµR̂B) in Eq. (2.28) differs byNµR̂B from the one in Eq. (2.12), which

disables us to apply the Wannier-function expansion straight-forwardly. To fix

this difference, we consider a unitary transformation generated by the operator

ÛN B exp
[
1
2

log
(
1 +Nµ

)(
R̂B · Π̂B + Π̂B · R̂B

)
/i~

]
. (2.32)

This transformation maps the operators (r̂n, π̂n, R̂B,Π̂B) to

ÛN r̂nÛ
†
N =r̂n −

Nµ

1 +Nµ
R̂B (2.33)

ÛN π̂nÛ
†
N =π̂n +µΠ̂B (2.34)

ÛN R̂BÛ
†
N =

1
1 +Nµ

R̂B (2.35)

ÛN Π̂BÛ
†
N =(1 +Nµ)Π̂B, (2.36)
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and hence maps the Hamiltonian (2.28) to

ÛN ĤtotÛ
†
N =

P̂ 2

2Mtot
+

Π̂
2
B

2M0
+V0(Q̂−γN R̂B)

+
N∑
n=1

 π̂2
n

2mB
+VB(r̂n)

+
g

2

∑
n,m

δ(r̂n − r̂m); (2.37)

see also Apps. 2.B.3 and 2.B.4 for the derivation. Since the fourth and fifth

terms in Eq. (2.37) have the same form as the right-hand side of Eq. (2.12),

we can safely perform the Wannier-function expansion and take the large-U

limit. Under these procedures for the Hamiltonian (2.37), we finally obtain the

effective Hamiltonian

ĤeffB
P̂ 2

2Mtot
+

Π̂
2
B

2M0
+V0(Q̂−γN R̂B) + ĤHCB. (2.38)

Note that the operators R̂B and Π̂B also have the HCB representation:

R̂B '
1
N

∑
i∈V

xi n̂i , Π̂B '
∑
k

~k â†kâk, (2.39)

where âk (â†k) is the Fourier transformation of âi (â†i ).

In the derivation of Eq. (2.38), we directly applied the discussion from

Eq. (2.12) to Eq. (2.21) and replaced the terms

N∑
n=1

 π̂2
n

2mB
+VB(r̂n)

+
g

2

∑
n,m

δ(r̂n − r̂m) (2.40)

by the lattice Hamiltonian Ĥtot (2.1). To justify this replacement, we must

meet the following two conditions, in addition to the one that the environment

temperature is sufficiently low:

• The platform’s motion does not excite the bosons to higher energy bands

of the periodic potential VB(x).

• The Hilbert space of the system is symmetrized with respect to the new

variables {r̂n}Nn=1 introduced in Eq. (2.23).
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For the first condition to be true, it is essential to keep the typical frequency of

the platformΩ0 sufficiently small compared to that of the bosonsωB. Here, the

typical frequency of the platform Ω0 is determined by its maximum accelera-

tion and that of the bosons is given by harmonic approximation of the periodic

potential VB(x):

ωBB
2π
a

√
V0

mB
. (2.41)

The second condition above is similar to that for the variables {q̂n}Nn=1 but is in

fact different, since {r̂n}Nn=1 and {q̂n}Nn=1 are different variables. In the present

case, we can prove that the symmetrization for the variables {r̂n}Nn=1 is equiva-

lent to that for the variables {q̂n}Nn=1; see App. 2.C for the proof.

2.2.3 Platform’s equation of motion (Result II)

Since we have transformed the original Hamiltonian (2.11) to the one (2.37) by

the unitary transformation (2.32), we also have to use the new operator

Q̂
(0)
eff BÛN Q̂0Û

†
N (2.42)

=Q̂−γN R̂B (2.43)

to describe the platform’s position. With this in mind, we derive the equation

of motion for Q̂
(0)
eff (t) under the effective Hamiltonian (2.38). Here (t) denotes

the argument in the Heisenberg picture, which we omit for brevity in the fol-

lowing. Applying the Heisenberg equation once, we obtain

∂tQ̂
(0)
eff =

P̂
Mtot

−γN V̂ B, (2.44)

where we defined the hardcore boson’s collective velocity by

V̂ B(t)B∂tR̂B(t). (2.45)
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Defining the platform’s effective velocity by V̂
(0)
eff B ∂tQ̂

(0)
eff and applying the

same again, we arrive at

∂tV̂
(0)
eff =− 1

Mtot
V ′0(Q̂−γN R̂B)−

γN
i~

[
V̂ B,V0(Q̂−γN R̂B)

]
−γN ÂB, (2.6)

where we defined the hardcore boson’s collective acceleration by

ÂB(t)B∂tV̂ B(t). (2.46)

Equation (2.6) allows us to predict the motion of the platform coupled to the

HCB model for various shapes of the potential V0(Q̂
(0)
eff ). As a simple example,

we consider the case in which a linear force f ext acts on the platform:

V0(Q̂
(0)
eff ) = −Q̂(0)

eff · f ext. (2.47)

This assumption yields the following equation:

∂tV̂
(0)
eff =M̌−1

eff ◦ f ext −γN ÂB, (2.48)

where we defined the inverse effective-mass tensor by

M̌−1
eff B

1̌
Mtot

+γ2
N

[
R̂B
⊗, V̂ B

]
i~

. (2.49)

The tensor operator M̌−1
eff has a dimension of the inverse mass and gives us

information about the response to the applied force f ext. We hence investigate

the contribution of the first term M̌−1
eff ◦ f ext in Eq. (2.48). On the other hand,

we set aside the discussion of the second term −γN ÂB in Eq. (2.48) since its full

treatment will require much effort. We believe, however, that linear response

theory will allow us to analyze it in the small-f ext limit.

First, we can express the tensor M̌−1
eff explicitly as a function of N :

M̌−1
eff =

1̌
M0 +NmB

+
(
Nµ

1 +Nµ

)2

W̌B, (2.50)
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where

W̌BB

[
R̂B
⊗, V̂ B

]
i~

. (2.51)

To expand the operator W̌B in fewer terms, we employ the Matsubara-Matsuda

transformation [62, 63] and convert the HCB operators to spin-1/2 operators.

First, we can rewrite the HCB hamiltonian as

ĤHCB = −
∑

(i,j)∈E
Ji,j Ŝ

+
i Ŝ
−
j , (2.52)

where {(Ŝ±i , Ŝ
z
i )}i∈V denotes the spin operators with the commutation relation[

Ŝzi , Ŝ
±
j

]
= ±δi,j Ŝ±i ,

[
Ŝ+
i , Ŝ

−
j

]
= 2δi,j Ŝ

z
i . (2.53)

The operators R̂B and Π̂B also acquire the spin-operator representations:

R̂B =
1
N

∑
i∈V

xi

(
Ŝzi +

1
2

)
, Π̂B =

∑
k

~k Ŝ+
k Ŝ
−
k , (2.54)

where Ŝ±k is the Fourier transformation of Ŝ±i . Using them, we can explicitly

obtain the tensor operator W̌B in the form

W̌B =
J

~
2N 2

∑
(i,j)∈E

(xi − xj)⊗ (xi − xj)Ŝ+
i Ŝ
−
j +

1̌
M0

. (2.55)

Our next task is to calculate the expectation value of W̌B,

〈W̌B〉N =
J

~
2N 2

∑
(i,j)∈E

(xi − xj)⊗ (xi − xj)〈Ŝ+
i Ŝ
−
j 〉N +

1̌
M0

, (2.56)

where 〈•〉N denotes the expectation value with respect to theN -boson ground-

state. To this end, we first define the quantity

∆̌N B
1

a2|E|

∑
(i,j)∈E

(xi − xj)⊗ (xi − xj)〈Ŝ+
i Ŝ
−
j 〉N , (2.57)
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where a denotes the lattice constant. This gives a dimensionless version of the

first term in 〈W̌B〉N . Since its exact calculation is diffucult, we numerically es-

timate the value of ∆̌N and approximate it by a mean-field solution. Figure 2.2

shows its exact-diagonalization estimate and the mean-field solution given by

∆̌N ∼
1
2
N
|V |

(
1− N
|V |

)
1̌; (2.58)

for the derivation of Eq. (2.58), see App. 3.A. Since Eq. (2.58) approximates

the numerical estimate shown in Fig. 2.2 well, we deduce that

〈W̌B〉N =
Ja2

~
2
|E|
N 2 ∆̌N (2.59)

'
3
2
Ja2

~
2

1
N

(
1− N
|V |

)
+

1
M0

1̌ (2.60)

and that

〈M̌−1
eff〉N =

1̌
M0 +NmB

+
(
Nµ

1 +Nµ

)2

〈W̌B〉N (2.61)

' 1̌
M0

1−Nµ+
3
2
JmBa

2

~
2

(
1− N
|V |

)
Nµ

+O(µ2). (2.62)

Hence its inverse plays the role of the effective mass

[〈M̌−1
eff〉N ]−1 '

M0 +NmB −
3
2
JmBa

2

~
2

(
1− N
|V |

)
NmB

1̌. (2.63)

The first two terms in Eq. (2.63) constitute the total mass Mtot = M0 +NmB

increasing linearly withN , while the third term indicates a nonlinear depletion

with the amplitude gBB JmBa
2/~2. In particular, the depletion is largest in the

half-filling caseN/ |V | = 1/2. To see this fact in a µ-independent form, we define

the following quantity:

∆NeffB
〈M̌eff〉

x,x
N −M0

mB
(2.64)

'
1− 3

2
gB

(
1− N
|V |

)N. (2.65)
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Figure 2.2: (a) Geometry of the triangular lattice used for the numerical cal-

culation. We used the open boundary condition. (b) Numerical results for the

matrix elements of ∆̌N (broken curves) in Eq. (2.57) and the mean-field solution

(2.58) (solid curve). The method of numerical calculation is exact diagonaliza-

tion with QuSpin [64, 65]. Almost only the diagonal component is dominant,

with the maximum value around 0.125 both for ∆̌x,xN and ∆̌y,yN .
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Figure 2.3: The mean-field behavior of ∆Neff at gB = 0.0,0.33,0.66,1.0,2.0,

where gB = 0.66 ' 2/3 corresponds to a critical point at which the minimum

value of ∆Neff is not less than 0.

The quantity ∆Neff inherits the linear increase term and the nonlinear deple-

tion term in the effective mass [〈M̌−1
eff〉N ]−1 in Eq. (2.63), straightforwardly

showing the nonlinearity of [〈M̌−1
eff〉N ]−1; see also Fig. 2.3. Hence, the effective

mass [〈M̌−1
eff〉N ]−1 behaves qualitatively the same as the quantity ∆Neff.

2.3 Summary

In this study, we formulated the HCB model on a triangular lattice, which is an

effective model of two-dimensional 4He on a movable platform, and derived

the effective Hamiltonian (2.38). We also derived the platform’s equation of

motion (2.6), from which we obtained the effective-mass formula (2.63). The

effective-mass formula includes a linearly increasing term and a depletion term

as a function of the number of particles.

We have made several assumptions for simplification in this study. First,

for a more accurate description of the two-dimensional 4He, we have to adopt
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the extended HCB with off-site interaction. The importance of the off-site in-

teraction is also evident from some numerical results showing that 4He atoms

on graphite give rise to a non-trivial unit cell [66, 67]. In the analysis of the

equations of motion, we have also ignored the term −γN ÂB. To fully calculate

the linear response regime of the external force f ext, we should take this term

into account.

Finally, let us discuss the possible variations of this study. Although our

original motivation was only to theorize mechanical probing such as QCM, the

methods of deriving the effective Hamiltonian and the equation of motion may

be applicable to theories of other experimental setups. For example, one idea

would be to replace the HCB model with the fermionic Hubbard-type model

for the two-dimensional 3He. Another idea would be to replace the simple

platform used in this study with an elastically deformable body, which may

allow us to consider a deformation of the lattice model.
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Appendix

2.A Mean-field approximation of ∆̌N

In this appendix, we derive the mean-field formula

∆̌N =
1

a2|E|

∑
(i,j)∈E

(xi − xj)⊗ (xi − xj)〈Ŝ+
i Ŝ
−
j 〉N (2.66)

'1
2
N
|V |

(
1− N
|V |

)
1̌. (2.57)

The derivation requires the following assumptions:

1. The quantity 〈Ŝ+
i Ŝ
−
j 〉N does not depend on the direction of the bond (i, j);

2. The quantity 〈Ŝ+
i Ŝ
−
j 〉N does not depend on the position of the bond (i, j).

The first assumption yields that

〈Ŝ+
i Ŝ
−
j 〉N ' 〈Ŝ

+
i Ŝ
−
j 〉N B

1
zG

∑
〈i,j〉∈E

〈Ŝ+
i Ŝ
−
j 〉N , for i ∈ V , (2.67)

where
∑
〈i,j〉∈E denotes taking the sum of the bonds j connected to i by the

bonds in the set E and zG denotes the coordination number (degree) of the

lattice G = (V ,E). In the case of the triangular lattice, zG = 6. Using this, we

can show that ∑
〈i,j〉∈E

(xi − xj)⊗ (xi − xj)〈Ŝ+
i Ŝ
−
j 〉N ' 3a2 〈Ŝ+

i Ŝ
−
j 〉N 1̌. (2.68)
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Adding the second assumption yields the following

〈Ŝ+
i Ŝ
−
j 〉N '

1
|E|

∑
〈i,j〉∈E

〈Ŝ+
i Ŝ
−
j 〉N C ρN , (2.69)

where ρN denotes the spin stiffness. We can also approximate the spin stiffness

ρN by the order parameter at zero temperature as follows:

ρN =
1
|E|

∑
〈i,j〉∈E

〈Ŝ+
i Ŝ
−
j 〉N '

1
|V |

∑
i∈V
| 〈Ŝi〉N |2C

[
|ψ|2

]
N
, (2.70)

where
[
|ψ|2

]
N

denotes the order parameter. The above discusson and the mean-

field solution [
|ψ|2

]
N

=
N
|V |

(
1− N
|V |

)
(2.71)

for the hard-core boson [68] yields

〈Ŝ+
i Ŝ
−
j 〉N '

N
|V |

(
1− N
|V |

)
. (2.72)

Substituting Eqs. (2.68), (2.72) and the general relation |E| = 3|V | for the

triangular lattice |E| = 3|V |, we finally obtain

∆̌N =
1

a2|E|

∑
(i,j)∈E

(xi − xj)⊗ (xi − xj)〈Ŝ+
i Ŝ
−
j 〉N (2.73)

=
1

2a2|E|

∑
i∈V

 ∑
(i,j)∈E

(xi − xj)⊗ (xi − xj)〈Ŝ+
i Ŝ
−
j 〉N

 (2.74)

' 1
2a2|E|

∑
i∈V

(
3a2 〈Ŝ+

i Ŝ
−
j 〉N 1̌

)
(2.75)

=
1

2|V |

∑
i∈V
〈Ŝ+
i Ŝ
−
j 〉N 1̌ (2.76)

'1
2
N
|V |

(
1− N
|V |

)
. (2.77)
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2.B Some detailed calculations

2.B.1 Proofs of Eqs. (2.26) and (2.27)

We show that the linear transformation given by Eqs. (2.22), (2.23), (2.24), and

(2.25) give a canonical transformation, which preserves the canonical commu-

tation relations (2.26) and (2.27). To this end, we assume[
Q̂0

⊗, P̂ 0

]
=i~1̌, (2.78)[

q̂n
⊗, p̂m

]
=i~δm,n1̌, (2.79)[

Q̂0
⊗, p̂n

]
=0, (2.80)[

q̂n
⊗, P̂ 0

]
=0. (2.81)
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Evaluating the commutation relations for the variables Q̂, P̂ , {r̂n}Nn=1, and {π̂n}Nn=1,

we have[
Q̂ ⊗, P̂

]
=

Q̂0 +µ
∑N
m=1 q̂m

1 +Nµ
⊗, P̂ 0 +

N∑
n=1

p̂n

 (2.82)

=
1

1 +Nµ


[
Q̂0

⊗, P̂ 0

]
︸     ︷︷     ︸

i~1̌

+µ
N∑
m=1

N∑
n=1

[
q̂m
⊗, p̂n

]
︸    ︷︷    ︸
i~δm,n1̌


(2.83)

=i~1̌, (2.84)[
r̂n ⊗, π̂m

]
=

q̂n − Q̂0 +µ
∑N
l=1 q̂l

1 +Nµ
⊗, p̂m −µP̂ 0

 (2.85)

=

q̂n − µ

1 +Nµ

N∑
l=1

q̂l
⊗, p̂m

+
µ

1 +Nµ

[
Q̂0

⊗, P̂ 0

]
(2.86)

=
[
q̂n
⊗, p̂m

]
︸    ︷︷    ︸
i~δn,m1̌

−
µ

1 +Nµ

N∑
l=1

[
q̂l
⊗, p̂m

]
︸    ︷︷    ︸
i~δl,m1̌

+
µ

1 +Nµ

[
Q̂0

⊗, P̂ 0

]
︸     ︷︷     ︸

i~1̌

(2.87)

=i~δn,m1̌, (2.88)[
Q̂ ⊗, π̂n

]
=

Q̂0 +µ
∑N
m=1 q̂m

1 +Nµ
⊗, p̂n −µP̂ 0

 (2.89)

=−
µ

1 +Nµ

[
Q̂0

⊗, P̂ 0

]
︸     ︷︷     ︸

i~1̌

+
µ

1 +Nµ

N∑
m=1

[
q̂m
⊗, p̂n

]
︸    ︷︷    ︸
i~δm,n1̌

(2.90)

=0, (2.91)[
r̂n ⊗, P̂ 0

]
=

q̂n − Q̂0 +µ
∑N
m=1 q̂m

1 +Nµ
⊗, P̂ 0 +

N∑
l=1

p̂l

 (2.92)

=
N∑
l=1

[
q̂n
⊗, p̂l

]
︸   ︷︷   ︸

=i~δn,l 1̌

−
µ

1 +Nµ

N∑
m=1

N∑
l=1

[
q̂m
⊗, p̂l

]
︸    ︷︷    ︸

=i~δm,l 1̌

− 1
1 +Nµ

[
Q̂0

⊗, P̂ 0

]
︸     ︷︷     ︸

i~1̌

(2.93)

=0, (2.94)
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which proves Eqs. (2.26) and (2.27).

2.B.2 Proof of Eq. (2.28)

We invert the definitions

Q̂B
Q̂0 +µ

∑N
n=1 q̂n

1 +Nµ
, (2.22)

r̂nBq̂n −
Q̂0 +µ

∑N
n=1 q̂n

1 +Nµ
(n = 1,2, . . . ,N ), (2.23)

P̂ BP̂ 0 +
N∑
n=1

p̂n, (2.24)

π̂nBp̂n −µP̂ 0 (n = 1,2, . . . ,N ). (2.25)

and put the expressions

Q̂0 =Q̂−NµR̂B, (2.95)

q̂n =Q̂+ r̂n (n = 1,2, . . . ,N ) (2.96)

P̂ 0 =
1

1 +Nµ

(
P̂ − Π̂B

)
, (2.97)

p̂n =π̂n +
µ

1 +Nµ

(
P̂ − Π̂B

)
(n = 1,2, . . . ,N ) (2.98)
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directly into the total Hamiltonian (2.11). We then obtain

Ĥ0 =
1

2M0

(
1

1 +Nµ

)2(
P̂ − Π̂B

)2
+V0(Q̂−NµR̂B) (2.99)

=
1

2Mtot

1
1 +Nµ

(
P̂ − Π̂B

)2

︸                         ︷︷                         ︸
CK̂0

+V0(Q̂−NµR̂B), (2.100)

ĤIB[Q̂0] =
N∑
n=1

 1
2mB

[
π̂n +

µ

1 +Nµ

(
P̂ − Π̂B

)]2

+VB(r̂n +NµR̂B)


+
g

2

∑
n,m

δ(r̂n − r̂m) (2.101)

=
1
Mtot

Π̂B ·
(
P̂ − Π̂B

)
+

1
2Mtot

Nµ

1 +Nµ

(
P̂ − Π̂B

)2

︸                                                       ︷︷                                                       ︸
CK̂1

+
N∑
n=1

 π̂2
n

2mB
+VB(r̂n +NµR̂B)

+
g

2

∑
n,m

δ(r̂n − r̂m). (2.102)

Gathering the terms K̂0 and K̂1 into

K̂0 + K̂1 =
[

1
2Mtot

1
1 +Nµ

+
1

2Mtot

Nµ

1 +Nµ

]
︸                                    ︷︷                                    ︸

=1/(2Mtot)

(
P̂ − Π̂B

)2

+
1
Mtot

Π̂B ·
(
P̂ − Π̂B

)
(2.103)

=
1

2Mtot

[
(P̂ − Π̂B)2 + 2Π̂B · (P̂ − Π̂B)

]
︸                               ︷︷                               ︸

P̂ 2−Π̂2
B

(2.104)

=
P̂ 2

2Mtot
− Π̂

2
B

2Mtot
, (2.105)
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we finally arrive at

Ĥtot = Ĥ0 + ĤIB[Q̂0] (2.106)

=
P̂ 2

2Mtot
− Π̂

2
B

2Mtot
+V0(Q̂−NµR̂B)

+
N∑
n=1

 π̂2
n

2mB
+VB(r̂n +NµR̂B)

+
g

2

∑
n,m

δ(r̂n − r̂m).

(2.107)

2.B.3 Derivation of formulas (2.33), (2.34), (2.35), and (2.36)

First, we show the formulas

ÛN r̂nÛ
†
N =r̂n −

Nµ

1 +Nµ
R̂B, (2.33)

ÛN π̂nÛ
†
N =π̂n +µΠ̂B, (2.34)

using the general expression

eÂB̂e−Â =
∞∑
k=0

1
k!

adk
Â
B̂ (2.108)

for a set of arbitrary operators Â and B̂. Here, we introduced the notation

adk
Â
B̂B [Â, [Â, [· · · [Â︸        ︷︷        ︸

k

, B̂]]]] (2.109)

for the adjoint operation. The remaining formulas

ÛN R̂BÛ
†
N =

1
1 +Nµ

R̂B, (2.35)

ÛN Π̂BÛ
†
N =(1 +Nµ)Π̂B (2.36)

immediately follow Eqs. (2.33) and (2.34), respectively.

To show Eq. (2.33), we put

Â =
cN
2i~

(
R̂B · Π̂B + Π̂B · R̂B

)
, B̂ = r̂n (2.110)
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and evaluate the right-hand side of Eq. (2.108). In this case, we can show that

(
adk

Â
B̂
)

Eq. (2.110)
=


r̂n, (k = 0)

(−cN )kR̂B, (k ≥ 1)
(2.111)

and consequently have

ÛN r̂nÛ
†
N =

∞∑
k=0

1
k!

(
adk

Â
B̂
)

Eq. (2.110)
(2.112)

=r̂n +
∞∑
k=1

(−cN )k

k!
R̂B (2.113)

=r̂n +
(
e−cN − 1

)
R̂B (2.114)

=r̂n +
(

1
1 +Nµ

− 1
)
R̂B (2.115)

=r̂n −
Nµ

1 +Nµ
R̂B. (2.116)

We can prove Eq. (2.111) by mathematical induction. The case of k = 0 trivially

holds. For the case of k = 1, it holds that(
ad1

Â
B̂
)

Eq. (2.110)
=
cN
2i~

[
R̂B · Π̂B + Π̂B · R̂B, r̂n

]
(2.117)

=
cN
2i~

N∑
m=1

[
R̂B · π̂m + π̂m · R̂B, r̂n

]
(2.118)

=
cN
2i~

N∑
m=1


R̂B ◦

[
π̂m ⊗, r̂n

]
︸    ︷︷    ︸
=−i~δm,n1̌

+
[
π̂m ⊗, r̂n

]
︸    ︷︷    ︸
=−i~δm,n1̌

◦R̂B


(2.119)

=− cN R̂B. (2.120)

Here, assuming that (
adk

Â
B̂
)

Eq. (2.110)
= (−cN )kR̂B (2.121)
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for an integer k ≥ 2, we have(
adk+1

Â
B̂
)

Eq. (2.110)
=
cN
2i~

[
R̂B · Π̂B + Π̂B · R̂B,

(
adk

Â
B̂
)

Eq. (2.110)

]
(2.122)

=− (−cN )k+1

2i~
[R̂B · Π̂B + Π̂B · R̂B, R̂B] (2.123)

=(−cN )k+1R̂B. (2.124)

Here, we used the fact

[R̂B · Π̂B + Π̂B · R̂B, R̂B] =R̂B ◦
[
Π̂B

⊗, R̂B

]
︸     ︷︷     ︸

=−i~1̌

+
[
Π̂B

⊗, R̂B

]
︸     ︷︷     ︸

=−i~1̌

◦R̂B (2.125)

=− 2i~R̂B. (2.126)

Equation (2.111) is thus proven by induction.

To show Eq. (2.128), we similarly put

Â =
cN
2i~

(
R̂B · Π̂B + Π̂B · R̂B

)
, B̂ = π̂n (2.127)

in Eq. (2.108). In this case, we can show that

(
adk

Â
B̂
)

Eq. (2.127)
=


π̂n (k = 0)

ckN Π̂B/N (k ≥ 1)
, (2.128)

and consequently have

ÛN π̂nÛ
†
N =

∞∑
k=0

1
k!

(
adk

Â
B̂
)

Eq. (2.127)
(2.129)

=π̂n +
∞∑
k=1

1
k!
ckN
N

Π̂B (2.130)

=π̂n +
1
N

(
ecN − 1

)
Π̂B (2.131)

=π̂n +µΠ̂B. (2.132)
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In Eq. (2.128), the case of k = 0 trivially holds. For the case of k = 1, it holds

that (
ad1

Â
B̂
)

Eq. (2.127)
=
cN
2i~

[
R̂B · Π̂B + Π̂B · R̂B, π̂n

]
(2.133)

=
cN
2i~

1
N

N∑
m=1

[
r̂m · Π̂B + Π̂B · r̂m, π̂n

]
(2.134)

=
cN
2i~

1
N

N∑
m=1


[
r̂n ⊗, π̂n

]
︸    ︷︷    ︸

=i~δm,n1̌

◦Π̂B + Π̂B ◦
[
r̂n ⊗, π̂n

]
︸    ︷︷    ︸

=i~δm,n1̌


(2.135)

=
cN
N

Π̂B. (2.136)

Here, assuming that

(
adk

Â
B̂
)

Eq. (2.127)
=
ckN
N

Π̂B (2.137)

for an integer k ≥ 2, we have(
adk+1

Â
B̂
)

Eq. (2.127)
=
cN
2i~

[
R̂B · Π̂B + Π̂B · R̂B,

(
adk

Â
B̂
)

Eq. (2.127)

]
(2.138)

=
1
N

ck+1
N

2i~
[R̂B · Π̂B + Π̂B · R̂B,Π̂B] (2.139)

=
ck+1
N

N
Π̂B. (2.140)

Here, we used the fact

[R̂B · Π̂B + Π̂B · R̂B,Π̂B] =
[
R̂B
⊗, Π̂B

]
︸     ︷︷     ︸

=i~1̌

◦Π̂B + Π̂B ◦
[
R̂B
⊗, Π̂B

]
︸     ︷︷     ︸

=i~1̌

(2.141)

=2i~Π̂B. (2.142)

Eq. (2.111) is thus proven by induction.
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2.B.4 Derivation of Eq. (2.37)

We put the equations

ÛN r̂nÛ
†
N =r̂n −

Nµ

1 +Nµ
R̂B, (2.33)

ÛN π̂nÛ
†
N =π̂n +µΠ̂B, (2.34)

ÛN R̂BÛ
†
N =

1
1 +Nµ

R̂B, (2.35)

ÛN Π̂BÛ
†
N =(1 +Nµ)Π̂B, (2.36)

directly into the expression

Ĥtot =
P̂ 2

2Mtot
− Π̂

2
B

2Mtot
+V0(Q̂−NµR̂B)

+
N∑
n=1

 π̂2
n

2mB
+VB(r̂n +NµR̂B)

+
g

2

∑
n,m

δ(r̂n − r̂m) (2.28)

to show that

ÛN ĤtotÛ
†
N =

P̂ 2

2Mtot
+

Π̂
2
B

2M0
+V0(Q̂−γN R̂B)

+
N∑
n=1

 π̂2
n

2mB
+VB(r̂n)

+
g

2

∑
n,m

δ(r̂n − r̂m). (2.37)

First, the {r̂n}-dependent terms in Eq. (2.28) are transformed as

ÛN

V0(Q̂−NµR̂B) +
N∑
n=1

VB(r̂n +NµR̂B) +
g

2

∑
n,m

δ(r̂n − r̂m)

Û†N (2.143)

=V0(Q̂− γ̃N R̂B) +
N∑
n=1

VB(r̂n) +
g

2

∑
n,m

δ(r̂n − r̂m), (2.144)

where γ̃N B Nµ/(1 + Nµ). Second, the remaining {π̂n}-dependent terms are

transformed as

ÛN

− Π̂
2
B

2Mtot
+

N∑
n=1

π̂2
n

2mB

Û†N =
Π̂

2
B

2M0
+

N∑
n=1

π̂2
n

2mB
. (2.145)
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We then have Eq. (2.37). Here, Eq. (2.145) is derived from

ÛN

− Π̂
2
B

2Mtot

Û†N =− 1
2Mtot

(
ÛN Π̂BÛN

)2
(2.146)

=− 1
2Mtot

(1 +Nµ)2Π̂
2
B (2.147)

=− 1
2M0

(1 +Nµ)Π̂
2
B, (2.148)

ÛN

 N∑
n=1

π̂2
n

2mB

Û†N =
1

2mB

N∑
n=1

(
ÛN π̂nÛ

†
N

)2
(2.149)

=
1

2mB

N∑
n=1

(
π̂n +µΠ̂B

)2
(2.150)

=
1

2mB

N∑
n=1

π̂2
n +

1
2M0

(2 +Nµ)Π̂
2
B. (2.151)

2.C Indistinguishability of identical particles

We show that symmetrizing the Hamiltonian (2.11) with repsect to the vari-

ables {q̂n}Nn=1 also means that for the variables {r̂n}Nn=1. To this end, we express

the linear transformation given by Eqs. (2.22), (2.23), (2.24), and (2.25) in the
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matrix notation: 

Q̂

r̂1
...

r̂N


=



A0,0 A0,1 · · · A0,N

A1,0 A1,1 · · · A1,N
...

...
. . .

...

AN,0 AN,1 · · · AN,N

︸                          ︷︷                          ︸
CA



Q̂0

q̂1
...

q̂N


, (2.152)



P̂

π̂1
...

π̂N


=



B0,0 B0,1 · · · B0,N

B1,0 B1,1 · · · B1,N
...

...
. . .

...

BN,0 BN,1 · · · BN,N

︸                         ︷︷                         ︸
CB



P̂ 0

p̂1
...

p̂N


(2.153)

We then take the basis

∣∣∣Q0, . . . ,qN
〉
B

∣∣∣Q0
〉
⊗ 1
√
N !

 N∏
n=1

ψ̂†(qn)

 |0〉 , (2.154)

which is symmetrized with respect to any variables. Here, the field operator

ψ̂†(q) satisfies the condition

[ψ̂(q), ψ̂†(q′)] =i~δ(q−q′), (2.155)

[ψ̂(q), ψ̂(q′)] =[ψ̂†(q), ψ̂†(q′)] = 0. (2.156)

The dynamical variables {(q̂n, p̂n)}Nn=1 are also expressed as

q̂n =
∫
dQ0dq1 · · ·dqN

∣∣∣Q0, . . . ,qN
〉
qn

〈
Q0, . . . ,qN

∣∣∣ , (2.157)

p̂n =
∫
dQ0dq1 · · ·dqN

∣∣∣Q0, . . . ,qN
〉

(−i~∇n)
〈
Q0, . . . ,qN

∣∣∣ . (2.158)
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First, we can show that

r̂n =
1

det[A]

∫
dQ0dq1 · · ·dqN

× |A−1Q0, . . . ,A
−1qN 〉qn 〈A

−1Q0, . . . ,A
−1qN | , (2.159)

π̂n =
1

det[A]

∫
dQ0dq1 · · ·dqN

× |A−1Q0, . . . ,A
−1qN 〉 (−i~∇n)〈A−1Q0, . . . ,A

−1qN | ; (2.160)

see also a later paragraph (Proof of Eqs. (2.159) and (2.160)). This means

that taking the variables {r̂n}Nn=1 instead of {q̂n}Nn=1 effectively replaces the ba-

sis
∣∣∣Q0, . . . ,qN

〉
by |A−1Q0, . . . ,A

−1qN 〉. These bases have generally different ex-

change symmetries:

|Q0, . . . ,qk , . . . ,ql , . . . ,qN 〉 (2.161)

= |Q0, . . . ,ql , . . . ,qk , . . . ,qN 〉 , (1 ≤ k < l ≤N ) (2.162)

|A−1Q0, . . . ,A
−1qk , . . . ,A

−1ql , . . . ,A
−1qN 〉 (2.163)

= |A−1Q0, . . . ,A
−1ql , . . . ,A

−1qk , . . . ,A
−1qN 〉 . (1 ≤ k < l ≤N ) (2.164)

Here, we show that these symmetries are actually equivalent. Indeed, it holds
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that

[
A−1Q0

]
qk↔ql

=
[
A−1

]
k′ ,0︸   ︷︷   ︸

=1

Q0 +
N∑

m,k,l

[
A−1

]
k′ ,m︸    ︷︷    ︸

=−µ

qm

+
[
A−1

]
k′ ,k︸   ︷︷   ︸

=−µ

ql +
[
A−1

]
k′ ,l︸   ︷︷   ︸

=−µ

qk (2.165)

=Q0 −NµR̂B =
[
A−1Q0

]
(A−1qk)↔(A−1ql ),

(2.166)

[
A−1qk′

]
qk↔ql

=
[
A−1

]
k′ ,0︸   ︷︷   ︸

=1

Q0 +
N∑

m,k,l

[
A−1

]
k′ ,m︸    ︷︷    ︸

=δk′ ,m

qm

+
[
A−1

]
k′ ,k︸   ︷︷   ︸

=δk′ ,k

ql +
[
A−1

]
k′ ,l︸   ︷︷   ︸

=δk′ ,l

qk (2.167)

=


Q0 +qk′ (k′ , k, l)

Q0 +ql (k′ = k)

Q0 +qk (k′ = l)

=
[
A−1qk′

]
(A−1qk)↔(A−1ql ).

(2.168)

In other words, exchanging the variables qk and ql is equivalent to exchang-

ing the variables A−1qk and A−1ql . From this fact, we can safely perform the

second-quantizaton procedure for the Hamiltonian both in the {(q̂n, p̂n)}Nn=1-

representation and the {(r̂n, π̂n)}Nn=1-representation.

Proof of Eqs. (2.159) and (2.160)

Suppose that F(Q̂0, . . . , q̂N ) is an arbitrary function of the variables Q̂0 and

{q̂n}Nn=1. First, let the state
∣∣∣Q0, . . . ,qN

〉
give one of its eigenstates:

F(Q̂0, . . . , q̂N )
∣∣∣Q0, . . . ,qN

〉
= F̄(Q0, . . . ,qN )

∣∣∣Q0, . . . ,xN
〉
. (2.169)
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Here F̄(Q0, . . . ,qN ) is the symmetrized version of F(Q0, . . . ,qN ) with respect to

{qn}Nn=1. The matrix element of F(Q̂0, . . . , q̂N ) is therefore given by〈
Q′′0 ,q

′′
1 , . . . ,q

′′
N

∣∣∣F(Q̂0, q̂1, . . . , q̂N )
∣∣∣Q′0,q′1, . . . ,q′N 〉

(2.170)

=F̄(Q′0,q
′
1, . . . ,q

′
N )〈Q′′0 ,q

′′
1 , . . . ,q

′′
N |Q

′
0,q
′
1, . . . ,q

′
N 〉 . (2.171)

Second, we can take a unitary representation which satisfies

ÛQ̂0Û
† =AQ̂0, (2.172)

Û q̂nÛ
† =Aq̂n; (1 ≤ n ≤N ) (2.173)

see also a later paragraph (Unitary representation of linear canonical trans-

formation). Using the unitary representation and assuming the ansatz solu-

tion

Û
∣∣∣Q0,q1, . . . ,qN

〉
= J |Q̃0, q̃1, . . . , q̃N 〉 , (2.174)

we have〈
Q′′0 ,q

′′
1 , . . . ,q

′′
N

∣∣∣F(Q̂0, q̂1, . . . , q̂N )
∣∣∣Q′0,q′1, . . . ,q′N 〉

(2.175)

=
〈
Q′′0 ,q

′′
1 , . . . ,q

′′
N

∣∣∣Û†ÛF(Q̂0, q̂1, . . . , q̂N )Û†Û
∣∣∣Q′0,q′1, . . . ,q′N 〉

(2.176)

=
(〈
Q′′0 ,q

′′
1 , . . . ,q

′′
N

∣∣∣Û†)F(AQ̂0,Aq̂1, . . . ,Aq̂N )
(
Û

∣∣∣Q′0,q′1, . . . ,q′N 〉)
(2.177)

=|J |2 〈Q̃′′0 , q̃′′1 , . . . , q̃
′′
N |F(AQ̂0,Aq̂1, . . . ,Aq̂N ) |Q̃′0, q̃′1, . . . , q̃

′
N 〉 (2.178)

=|J |2F̄(AQ̃′0,Aq̃
′
1, . . . ,Aq̃

′
N )〈Q̃′′0 , q̃′′1 , . . . , q̃

′′
N |Q̃

′
0, q̃
′
1, . . . , q̃

′
N 〉 . (2.179)

Noting that F(Q̂0, q̂1, . . . , q̂N ) is arbitrary and comparing Eqs. (2.171) and (2.179),

we have

F̄(Q′0,q
′
1, . . . ,q

′
N ) =F̄(AQ̃′0,Aq̃

′
1, . . . ,Aq̃

′
N ), (2.180)

〈Q′′0 ,q
′′
1 , . . . ,q

′′
N |Q

′
0,q
′
1, . . . ,q

′
N 〉 =|J |2 〈Q̃′′0 , q̃′′1 , . . . , q̃

′′
N |Q̃

′
0, q̃
′
1, . . . , q̃

′
N 〉 . (2.181)

45



Equation (2.180) specifically means that

Q̃0

q̃1
...

q̃N


= A−1



Q0

q1
...

qN


(2.182)

and therefore

〈Q′′0 ,x
′′
1 , . . . ,x

′′
N |Q

′
0,x
′
1, . . . ,x

′
N 〉 (2.183)

=|J |2 〈A−1Q′′0 ,A
−1x′′1 , . . . ,A

−1x′′N |A
−1Q′0,A

−1x′1, . . . ,A
−1x′N 〉 (2.184)

= |J |2 det[A]︸       ︷︷       ︸
=1

〈Q′′0 ,x
′′
1 , . . . ,x

′′
N |Q

′
0,x
′
1, . . . ,x

′
N 〉 . (2.185)

Here, we used the general formula

〈A−1Q′′0 ,A
−1x′′1 , . . . ,A

−1x′′N |A
−1Q′0,A

−1x′1, . . . ,A
−1x′N 〉 (2.186)

=det[A]〈Q′′0 ,x
′′
1 , . . . ,x

′′
N |Q

′
0,x
′
1, . . . ,x

′
N 〉 . (2.187)

We then have

|J | = 1√
det[A]

(2.188)

and obtain

Û
∣∣∣Q0,x1, . . . ,xN

〉
=

1√
det[A]

|A−1Q′0,A
−1x′1, . . . ,A

−1x′N 〉 . (2.189)

Unitary representation of linear canonical transformation

Equations (2.22), (2.23), (2.24), and (2.25) give a type of linear canonical trans-

formation represented by
q̂ 7→ Q̂B Aq̂ =


f∑
j=1

A1,j q̂j ,
f∑
j=1

A2,j q̂j , . . . ,
f∑
j=1

Af ,j q̂j

,
p̂ 7→ P̂ B Bp̂ =


f∑
j=1

B1,j p̂j ,
f∑
j=1

B2,j p̂j , . . . ,
f∑
j=1

Bf ,j p̂j

.
(2.190a)

(2.190b)

46



Here q̂ = (q̂1, q̂2, . . . , q̂f )T and p̂ = (p̂1, p̂2, . . . , p̂f )T denote f -dimensional dynam-

ical variables, each component of which satisfies

[q̂i , p̂j] = i~δi,j , (2.191)

and A,B are real matrices. In this case, it holds that

ABT = I, (2.192)

where I is the identity matrix. We use the fact to prove that any linear canonical

transformation accompanies the corresponding unitary representation.

To this end, we first show Eq. (2.192). Evaluating the commutation relation

of the dynamical variables (Q̂, P̂ ), we have

[
Q̂i , P̂j

]
=


f∑
k=1

Ai,k q̂k ,
f∑
l=1

Bj,l p̂l

 (2.193)

=
f∑
k=1

f∑
l=1

Ai,kBj,l
[
q̂k , p̂l

]
︸ ︷︷ ︸
=i~δk,l

(2.194)

=i~
f∑
k=1

Ai,k(B
T )k,j . (2.195)

If Eq. (2.190) gives a canonical transformation, it must also hold that[
Q̂i , P̂j

]
= i~δi,j . (2.196)

We then have the condition

ABT = I (2.192)

for the matrices A,B to give a canonical transformation in the representation

(2.190).
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Using Eq. (2.192), we try to represent the transformation (2.190) by a uni-

tary representation q̂ 7→Û q̂Û
†,

p̂ 7→Û p̂Û†
(2.197a)

(2.197b)

with the ansatz

Û = exp

1
2

f∑
i=1

f∑
j=1

ci,j
(
q̂i p̂j + p̂j q̂i

)
/i~

 ≡ eĜ[c]. (2.198)

Here we demand that the generating matrix ci,j is real for the operator Û to be

unitary. First, the unitary operator (2.198) acts on q̂i as follows:

Û q̂iÛ
† =

∞∑
k=0

1
k!

adkĜ[c]
(q̂i). (2.199)

Here, we used the notation (2.109) and used the formula (2.108). We can eval-

uate the values of the array
{
adkĜ[c]

(q̂i)
}∞
k=0

inductively as follows. For the case

of k = 0, it holds that

ad0
Ĝ[c]

(q̂i) = q̂i . (2.200)

For the case of k = 1, it holds that

ad1
Ĝ[c]

(q̂i) =
[
Ĝ[c],ad0

Ĝ[c]
(q̂i)

]
(2.201)

=
1

2i~

f∑
j=1

f∑
k=1

cj,k
[
q̂j p̂k + p̂k q̂j , q̂i

]
︸             ︷︷             ︸

−2i~δk,i q̂j

(2.202)

=
f∑
j=1

(−c)j,i q̂j (2.203)

=
f∑
j=1

(−cT )i,j q̂j . (2.204)
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Under the assumption that

adkĜ[c]
(q̂i) =

f∑
j=1

[
(−cT )k

]
i,j
q̂j (2.205)

for a value of k ≥ 2, it immediately follows that

adk+1
Ĝ[c]

(q̂i) =
[
Ĝ[c],adkĜ[c]

(q̂i)
]

(2.206)

=
1

2i~

f∑
k=1

f∑
l=1

ck,l

f∑
j=1

[
(−cT )k

]
i,j

[
q̂kp̂l + p̂l q̂k , q̂j

]
︸            ︷︷            ︸

−2i~δk,i q̂j

(2.207)

=
f∑
k=1

(−ck,j)
f∑
j=1

[
(−cT )k

]
i,j
q̂k (2.208)

=
f∑
j=1

f∑
k=1

[
(−cT )k

]
i,j

[
−cT

]
j,k
q̂k (2.209)

=
f∑
j=1

[
(−cT )k+1

]
i,j
q̂j , (2.210)

which fact is independent of the value of k. From the above, we have

adkĜ[c]
(q̂i) =

f∑
j=1

[
(−cT )k

]
i,j
q̂j (2.211)

for all k ≥ 0 and obtain

[
l.h.s of Eq. (2.199)

]
=
∞∑
k=0

1
k!


f∑
j=1

[
(−cT )k

]
i,j
q̂j

 (2.212)

=
f∑
j=1

[
exp

(
−cT

)]
i,j
q̂j . (2.213)

We can also evaluate the value of Û p̂iÛ† in the same way:

Û p̂iÛ
† =

∞∑
k=0

1
k!

adkĜ[c]
(p̂i). (2.214)
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For the case of k = 0, we have

ad0
Ĝ[c]

(p̂i) = p̂i . (2.215)

For the case of k = 1, we have

ad1
Ĝ[c]

(p̂i) =
[
Ĝ[c],ad0

Ĝ[c]
(p̂i)

]
(2.216)

=
1

2i~

f∑
j=1

f∑
k=1

cj,k
[
q̂j p̂k + p̂k q̂j , p̂i

]
︸             ︷︷             ︸

2i~δj,i p̂k

(2.217)

=
f∑
k=1

[c]i,kp̂k . (2.218)

Here, assuming that

adkĜ[c]
(p̂i) =

f∑
j=1

[
ck

]
i,j
p̂j (2.219)

for a value of k ≥ 2, we immediately have

adk+1
Ĝ[c]

(p̂i) =
[
Ĝ[c],adkĜ[c]

(p̂i)
]

(2.220)

=
1

2i~

f∑
k=1

f∑
l=1

ck,l

f∑
j=1

[
ck

]
i,j

[
q̂kp̂l + p̂l q̂k , p̂j

]
︸            ︷︷            ︸

−2i~δk,j p̂l

(2.221)

=
f∑
j=1

cj,l

f∑
l=1

[
ck

]
i,j
p̂l (2.222)

=
f∑
l=1

f∑
j=1

[
ck

]
i,j

[c]j,l︸           ︷︷           ︸
[ck+1]i,l

p̂l (2.223)

=
f∑
j=1

[
ck+1

]
i,j
p̂j , (2.224)
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which fact is independent of the value of k. From the above, we have

adkĜ[c]
(p̂i) =

f∑
j=1

[
ck

]
i,j
p̂j (2.225)

for all k ≥ 0 and obtain

[
l.h.s of Eq. (2.214)

]
=
∞∑
k=0

1
k!


f∑
j=1

[
(−cT )k

]
i,j
p̂j

 (2.226)

=
f∑
j=1

[
exp(c)

]
i,j
p̂j . (2.227)

We then arrive at the condition


exp(c) =A,

exp
(
−cT

)
=B.

(2.228a)

(2.228b)

Note that the condition (2.228) is consistent with ABT = I because[
exp(c)

]−T
= exp

(
−cT

)
. (2.229)

Equation (2.198) and the additional condition (2.228) give the unitary repre-

sentation of the linear canonical transformation (2.190).
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Chapter 3

XXZ model with periodically

driven exchange interactions

3.1 Background and motivation

Periodically driven quantum many-body systems constitute a class between

time-independent systems and general time-dependent systems, having a math-

ematical structure that can be solved by reducing them to time-independent

systems. This provides a hint for designing Hamiltonians with new quantum

states as stationary states, which would not be realized in bare time-independent

systems. This technique is called Floquet engineering in reference to the Floquet

theory [69], which is a general theory for time-periodic systems and has con-

tributed to generation of new gauge fields in the optical lattice [70–77] and

deformation of the band structure of graphene [78–85], for example.

This study is a joint work with Seiji Yunoki (RIKEN, CEMS, as of December 2020) to be

submitted (in preparation).
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The starting point of the Floquet engineering is to represent the periodically

driven system in terms of a time-independent effective Hamiltonian. Using

the Floquet theory, given a time-periodic Hamiltonian Ĥ(t) = Ĥ(t + T ), we can

construct a generator of time evolution over one cycle of Ĥ(t), which is called

the Floquet Hamiltonian. In the short-period limit T → 0, or equivalently in the

high-frequency limit ΩB 2π/T →∞, the Floquet Hamiltonian coincides with

the average Hamiltonian given by

ĤaveB
1
T

∫ T

0
dt Ĥ(t). (3.1)

Therefore, the average Hamiltonian is often referred to as the effective (Flo-

quet) Hamiltonian and is denoted by Ĥeff.

It is important, however, to note that we can in general obtain a number of

effective Hamiltonians. In other words, for a given periodic Hamiltonian Ĥ(t),

there are a generally infinite number of effective Hamiltonians

Ĥeff =
1
T

∫ T

0
dt Û (t)[Ĥ(t)− i~∂t]Û †(t), (3.2)

each of which is specified by the unitary transformation Û (t). The average

Hamiltonian (3.1) is only a spacial case in which Û (t) is the identity operator.

Out of the infinitely large set {Û (t)}, we should choose one that is appropriate

to the purpose of research, especially when investigating nonlinear effects of

driving forces in interacting many-body systems.

One example of such nonlinear effects is correlated tunneling in interact-

ing bosons, which was predicted theoretically by Rapp et al. [86] for the Bose-

Hubbard model with time-dependent on-site interactions and was demonstrated

experimentally by Meinert et al. [87] using the corresponding cold-atom sys-

tem. Correlated tunneling can only be described by Ĥeff under a specific choice

of Û (t). The driven Bose-Hubbard model used in Refs. [86, 87] is given by the
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time-dependent Hamiltonian

Ĥ(t) = −J
∑
〈i,j〉

â†i âj +
∑
i

U (t)
2
n̂i(n̂i − 1), (3.3)

where â†i and âi are the bosonic creation and annihilation operators at the site

i, n̂i = â†i âi is the number operator, and the on-site interaction U (t) oscillates in

time as U (t) = Ū + δU sinΩt. Adopting the unitary transformation

Û (t) = exp
[

1
2i
δU
~Ω

cosΩt
∑
i n̂i(n̂i − 1)

]
, (3.4)

we obtain the effective Hamiltonian

Ĥeff =− J
∑
〈i,j〉

â†iJ0(Âi,j)âj +
∑
i

Ū
2
n̂i(n̂i − 1), (3.5)

where J0(x) is the zeroth-order Bessel function of the first kind and

Âi,j B (δU/~Ω)× (n̂i − n̂j) (3.6)

is the scaled particle-number difference between sites i and j.

In this Hamiltonian, the elementary processes describing the movement of

particles are governed by effective bond operator

b̂
(eff)
i,j B â†iJ0(Âi,j)âj + h.c (3.7)

for each bond (i, j). Let ni B 〈Ψ | n̂i |Ψ 〉 be the expectation value of the number

operator n̂i on site i under the state |Ψ 〉. We can expect the dynamics through

Âi,j due to the bond operator b̂(eff)
i,j depending on the spatial distribution of

ni . For example, for a bond (i, j), the process of changing the particle number

distribution from (ni ,nj) = (0,1) to (ni ,nj) = (1,0) always takes place with a

constant amplitude −J because J0(0) = 1. On the other hand, for the same

bond, the process of changing from (ni ,nj) = (1,1) to (ni ,nj) = (2,0) takes place

with an amplitude J ×J0(δU/~Ω). When the value of (δU/~Ω) is set to a zero
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of the Bessel function J0(x), the latter process is strongly suppressed while the

former process is intact. This complex state dependence is one of the features

of correlated tunneling. If we averaged the original Hamiltonian Ĥ(t) as in

Eq. (3.1) by choosing the identity for Û (t), we would only find a trivial time-

independent part of Ĥ(t):

Ĥave = −J
∑
〈i,j〉

â†i âj +
∑
i

Ū
2
n̂i(n̂i − 1), (3.8)

from which we would not be able to derive correlated tunneling. This demon-

strates that the choice of Û (t) is essential for the observation of target phenom-

ena.

When the total Hamiltonian is written as Ĥ(t) = Ĥ0+V̂ (t) such that
∫ 2π/Ω

0
dt V̂ (t) =

0, we should utilize the unitary transformation in the form

Û (t) = T exp

−∫ t dt′

i~
V̂ (t′)

, (3.9)

which reduces to Eq. (3.4) in the case of the Hamiltonian (3.3). Combining this

with Eq. (3.2), we obtain the interaction term as in

V̂effB
1
T

∫ T

0
dt [Û (t)Ĥ0Û †(t)− Ĥ0]. (3.10)

Note that the driving term in Eq. (3.3) acts on each site i, whereas the resulting

interaction in Eq. (3.5) acts on each bond (i, j). This motivates us to investigate

a possibility of finding, out of a driving two-body interaction, an effective long-

range interaction of the form (3.10).

In the present study, we indeed find a four-site interaction out of an XXZ

model in which the longitudinal exchange interaction is periodically driven

with constant amplitude. In the resulting model, we observe a state-selective

localization, that is, a limited number of Ising-like product states become fixed

points of the dynamics generated by the effective Hamiltonian. This means
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that under the basis of the Ising-like product states, we observe dynamics that

strongly depends on the initial state. Such an initial-state-dependent dynamics

has also been reported as the quantum scar, which is one of the mechanisms

preventing the thermal equilibration of quantum many-body systems [88, 89].

3.2 Methods and Results

3.2.1 Emergent long-range interactions (Result I)

We consider an XXZ model with periodically driven longuitudinal exchange

interactions on an arbitrary lattice, whose Hamiltonian is given by

Ĥ(t) = −J⊥
2

∑
〈i,j〉

(Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j )− J‖(t)

∑
〈i,j〉

Ŝzi Ŝ
z
j , (3.11)

where J⊥ and J‖(t) ≡ J̄‖ + δJ cosΩt are the transverse and longuitudinal compo-

nents of the exchange interaction, respectively, and {Ŝz,±i } are the spin operators

satisfying [Ŝ+
i , Ŝ

−
j ] = δi,j Ŝ

z
i and [Ŝzi , Ŝ

(j)
± ] = ±δi,j Ŝ

(i)
± . Here, the symbol

∑
〈i,j〉 indi-

cates summation over all the bonds on the lattice.

In the present case, for the unitary transformation (3.9) we choose

Û (t) = exp
[
−iAsinΩt

∑
〈i,j〉 Ŝ

z
i Ŝ

z
j

]
, (3.12)

where

AB
δJ
~Ω

(3.13)

is the dimensionless amplitude of the driving force and thus the effective Hamil-

tonian (3.2) takes the form

Ĥeff(A) = −J⊥
2

∑
〈i,j〉

[
Ŝ+
i J0(AẐi,j)Ŝ

−
j + h.c.

]
− J̄‖

∑
〈i,j〉

Ŝzi Ŝ
z
j ; (3.14)
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see App. 3.A for the derivation. Here,

Ẑi,j =
∑
〈k,i〉

Ŝzk −
∑
〈k,j〉

Ŝzk (3.15)

is the local staggered magnetization around the bond (i, j). Note that
∑
〈k,i〉 Ôk

denotes summation of Ôk for all sites that are connected to i.

The operator Ẑi,j produces a new type of long-range interaction. First, the

operator Ẑi,j involves many spins that depends on the underlying lattice struc-

ture. In fact, if the lattice is given on a square lattice of dimension d, Ẑi,j is

written as the sum of Ŝzk over 4d pieces of sites, since the coordination number

is given by 2d (see Fig. 3.2.1). Second, Ẑi,j has the following property. Let the

value of the parameter A be one of the innumerable zeros of the Bessel function

J0(x), i.e., Aλ with J0(Aλ) = 0. If the operator Ẑi,j produces the eigenvalue ±1

in the argument of J0(AλẐi,j) when Ĥeff(Aλ) acts on a quantum state |Ψ 〉, then

it holds that

Ĥeff(Aλ) |Ψ 〉 = −J̄‖
∑
〈i,j〉

Ŝzi Ŝ
z
j |Ψ 〉 . (3.16)

Since Ẑi,j is written in terms of Ŝzk , let us choose the set of Ising-like product

states as the representation basis hereafter. We can then classify all basis states

into two types depending on the eigenvalue of Ẑi,j , states for which the eigen-

value is either 1 or −1 and hence Eq. (3.16) holds, and the other states for which

Eq. (3.16) does not hold.

We formulate it more specifically as follows. First, we break down the

Hamiltonian into two terms:

Ĥeff(A) =ĤXYeff (A) + ĤIsing, (3.17)
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Figure 3.2.1: Range of action of Ẑi,j for a bond (i, j) in (a) a one-dimensional

chain and (b) a two-dimensional square lattice. The gray letters inside the

circles indicate the sites they are connected to either site i or site j.

where

ĤXYeff (A)B− J⊥
2

∑
〈i,j〉

[
Ŝ+
i J0(AẐi,j)Ŝ

−
j + (+↔−)

]
(3.18)

ĤIsingB− J̄‖
∑
〈i,j〉

Ŝzi Ŝ
z
j . (3.19)

Let HIsing be the set of Ising-like product states that can be realized on a given

lattice; see Eq. (3.25) below for an example of S = 1/2. Then an arbitrary state

|Ψ 〉 ∈ HIsing can be classified into two types depending on whether or not it

satisfies the vanishing condition

ĤXYeff (Aλ) |Ψ 〉 = 0. (3.20)

Let HIsing
0 be the set of the former, and HIsing

1 be the set of the latter. The con-

dition (3.20) gives the decomposition into the direct sum HIsing = HIsing
0 ⊕HIsing

1 .

By casting the condition (3.20) into the form

exp
[

1
i~
Ĥeff(Aλ)× t

]
|Ψ 〉 ∝ |Ψ 〉 (3.21)

for an arbitrary t ∈ R, we realize that the state |Ψ 〉 ∈ HIsing
0 is a fixed point of

the dynamics generated by Ĥeff(Aλ). In other words, Ĥeff(A) creates dynamics

such that only the states |Ψ 〉 ∈ HIsing
0 are selectively localized.
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3.2.2 Spin-1/2 chain: analytical discussion (Result II)

In order to investigate the state-selective localization more specifically, we now

analyze an S = 1/2 chain of length L under the periodic boundary condition.

The two terms (3.18) and (3.19) in the effective Hamiltonian (3.14) now reads

ĤXYeff (A) = −J⊥
2

L∑
i=1

[
Ŝ+
i J0(AẐi,i+1)Ŝ−i+1 + (+↔−)

]
(3.22)

ĤIsing = −J̄‖
L∑
i=1

Ŝzi Ŝ
z
i+1, (3.23)

respectively, where ŜL+1 = Ŝ1 and

Ẑi,i+1 = Ŝzi−1 − Ŝ
z
i + Ŝzi+1 − Ŝ

z
i+2. (3.24)

Let us denote each element of HIsing as

|Ψm〉 =
L⊗
l=1

|mi〉 = |m1,m2, . . . ,mL〉 , (3.25)

where |mj〉 is either of the local eigenstates |+〉 , |−〉 defined by Ŝzj |±〉 = ±|±〉 /2

andm = (m1,m2, . . . ,mL) in the label of the state |Ψm〉. In this case, the condition

(3.20) for |Ψ 〉 is equivalent to the condition

b̂i,i+1(Aλ) |Ψm〉 = 0 (3.26)

for every bond (i, i + 1), where we introduced the effective bond operator

b̂i,i+1(A)B Ŝ+
i J0(AẐi,i+1)Ŝ−i+1 + (+↔−) (3.27)

Since the bond operator b̂i,i+1 acts on the four spins at i −1, i, i+1, i+2, we can

focus on the 16 pieces of four-site states

|ψi,i+1〉 = |mi−1,mi ,mi+1,mi+2〉 , (3.28)
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out of the state |Ψm〉 given by

|Ψm〉 = |m1, . . . ,mi−2〉 ⊗ |ψi,i+1〉 ⊗ |mi+3, . . . ,mL〉 , (3.29)

reducing the condition (3.26) to

b̂i,i+1(Aλ) |ψi,i+1〉 = 0. (3.30)

First, we can classify the 16 four-site states into two groups: a group of 8

states satisfying |mi+1〉 = |+〉 and a group of 8 states satisfying |mi+1〉 = |−〉. For

any state
∣∣∣ψi,i+1

〉
in the former group, it holds that

b̂i,i+1(A)
∣∣∣ψi,i+1

〉
= Ŝ+

i J0(AẐi,i+1)Ŝ−i+1

∣∣∣ψi,i+1

〉
. (3.31)

In this case, since Ŝ−i+1

∣∣∣ψi,i+1

〉
is also one of the 16 four-site states, it is an eigen-

state of J0(AẐi,i+1), and thus we have

Ŝ+
i J0(AẐi,i+1)Ŝ−i+1

∣∣∣ψi,i+1

〉
∝ Ŝ+

i Ŝ
−
i+1

∣∣∣ψi,i+1

〉
(3.32)

with the corresponding eigenvalue as the proportionality factor. In the same

way, for any state
∣∣∣ψi,i+1

〉
in the latter group, since it holds that

b̂i,i+1(A)
∣∣∣ψi,i+1

〉
= Ŝ−i J0(AẐi,i+1)Ŝ+

i+1

∣∣∣ψi,i+1

〉
. (3.33)

and since Ŝ+
i+1

∣∣∣ψi,i+1

〉
is an eigenstate of J0(AẐi,i+1), we have

Ŝ−i J0(AẐi,i+1)Ŝ+
i+1

∣∣∣ψi,i+1

〉
∝ Ŝ−i Ŝ

+
i+1

∣∣∣ψi,i+1

〉
. (3.34)

Putting these two together, we obtain

b̂i,i+1(A)
∣∣∣ψi,i+1

〉
= J̄ × b̂i,i+1(0)

∣∣∣ψi,i+1

〉
(3.35)

with the proportionality coefficient J̄ .
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𝔥0 𝔥1 𝔥×

Figure 3.2.2: Classification of 24 = 16 possible Ising-like product states in four

consecutive sites (a cluster). The three groups h0, h1, and h× shown in the figure

correspond to the states given by Eqs. (3.36), (3.37), and (3.38), respectively. In

each cluster state, the two sites enclosed in a dashed rectangle correspond to

the bond (i, i + 1).

Table 3.2.1: The right-hand side of Eq. (3.35) for cases
∣∣∣ψi,i+1

〉
∈ h0,h1,h×.

J̄ b̂i,i+1(0)
∣∣∣ψi,i+1

〉
J̄ × b̂i,i+1(0)

∣∣∣ψi,i+1

〉∣∣∣ψi,i+1

〉
∈ h0 J0(A) ∈ h0 ∈ J0(A)h0∣∣∣ψi,i+1

〉
∈ h1 1 ∈ h1 ∈ h1∣∣∣ψi,i+1

〉
∈ h× It depends. 0 0

We then classify the 16 four-site states further into three groups; see Fig. 3.2.2:

h0B{ |+,+,−,−〉 , |+,−,+,−〉 , |−,+,−,+〉 , |−,−,+,+〉}, (3.36)

h1B{ |+,+,−,+〉 , |+,−,+,+〉 , |−,−,+,−〉 , |−,+,−,−〉}, (3.37)

h×B{ |mi−1,+,+,mi+2〉 , |mi−1,−,−,mi+2〉}mi−1=±,mi+2=±. (3.38)

The behavior of J̄ , b̂i,i+1(0)
∣∣∣ψi,i+1

〉
, and J̄ × b̂i,i+1(0)

∣∣∣ψi,i+1

〉
on the right-hand

side of Eq. (3.35) is shown in Table 3.2.1. Therefore, setting A = Aλ yields
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b̂i,i+1(Aλ) |ψi,i+1〉 =


0 for |ψi,i+1〉 ∈ h0 ⊕ h×

b̂i,i+1(0) |ψi,i+1〉 for |ψi,i+1〉 ∈ h1.
. (3.39)

From the above, we know that the four-site state |ψi,i+1〉 satisfying the local

vanishing condition (3.30) is given by the union set h0 ⊕ h×. On this basis,

we can also construct a state |Ψm〉 that satisfies the global vanishing condition

(3.20). In the next section, we verify numerically that such a state |Ψm〉 actually

satisfies Eq. (3.20).

3.2.3 Spin-1/2 chain: numerical discussion (Result III)

Let us consider the following two product states:

|A0〉 = |−,−,−,−,−,−,−,−,+,+,+,+,+,+,+,+〉 , (3.40)

|A1〉 = |−,−,−,−,−,−,−,+,−,+,+,+,+,+,+,+〉 (3.41)

on L = 16 finite-size chain. The former (3.40) is a state with one domainwall

at the bond (8,9) and is contained in H
Ising
0 because |ψn,n+1〉 ∈ h× ⊕ h0 holds

for every bond (n,n + 1) ∈ E. The latter (3.41) is a state in which the spins

at the bond (8,9) (the position that the underline indicates) are flipped and is

contained in H
Ising
1 because the bonds (7,8) and (9,10) satisfy |ψ7,8〉 ∈ h1 and

|ψ9,10〉 ∈ h1.

These two states |A0〉 and |A1〉 only differ in the partial state at the bond

(9,10), which may be negligible in the thermodynamic limit L→∞. The slight

difference, nevertheless, generates largely different time-evolution dynamics

due to the fact that one state belongs to HIsing
0 and the other state belongs to

H
Ising
1 . To see this, we estimate the value of Szn(t) B

〈
Ψ (t)

∣∣∣ Ŝzn ∣∣∣Ψ (t)
〉

and the

half-chain entanglement entropy given by

SL/2(t)B Tr
[
−ρ̂L/2(t) log ρ̂L/2(t)

]
, (3.42)
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where

ρ̂L/2(t)B Tr1≤n≤L/2

[∣∣∣Ψ (t)
〉〈
Ψ (t)

∣∣∣]. (3.43)

The state vector at time t is given by

|Ψ (t)〉 = T exp

∫ t

0

dt′

i~
Ĥ(t′)

 |Ψ (0)〉 , (3.44)

which we numerically estimated by the package QuSpin [90, 91]. We chose the

parameters in the Hamiltonian Ĥ(t) so that the effective Hamiltonian Ĥeff(Aλ)

well approximates the dynamics and that the condition J0(Aλ) ' 0 holds.

Figure 3.2.3 shows our estimates of the spatial profile of Szi (t) at several

times for the initial states |A0〉 and |A1〉 and for the frequenciesΩ = 10.0,8.0,6.0,4.0.

The difference in them demonstrates that the change from |A0〉 to |A1〉 makes

a significant difference in the time evolution; the spin configuration remains

almost constant for |A0〉 but decays for |A1〉. This is a direct consequence of

the fact that the initial state |A0〉 is a fixed point of the dynamics.

Figure 3.2.4 shows the time evolution of SL/2(t) for the same set of initial

states and the frequencies Ω = 10.0,8.0,6.0,4.0. Each of the panels (a) and

(b) shows a plateau-like behavior, which is considered as a kind of Floquet

prethermalization, and indicates the scope how precisely the effective Hamil-

tonian Ĥeff(Aλ) captures the time evolution.

We made a similar estimation for the following two product states:

|B0〉 = |−,−,−,−,+,+,+,+,−,−,−,−,+,+,+,+〉 , (3.45)

|B1〉 = |−,−,−,−,+,+,+,−,+,−,−,−,+,+,+,+〉 . (3.46)

These also form a situation that one belongs to h0 and the other belongs h1

with a slight difference at the bond (8,9) (the position where the underline in

Eq. (3.46) indicates). Figure 3.2.5 shows estimates of the spatial profile of Szi (t)
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Figure 3.2.3: Numerical estimation of Szi (t). Here, the value of Szi (t) = +0.5

corresponds to the spin state |+〉, while the value of Szi (t) = −0.5 corresponds

to the spin state |−〉. The calculation conditions are set so that A = 2.4048, and

hence J0(A) ' 0 holds with the fixed values J‖ = −1.0, J⊥ = −0.75 and ~ = 1. The

left panel (a) shows the result for the initial state |Ψ (0)〉 = |A0〉 and the right

panel (b) shows that for the initial state |Ψ (0)〉 = |A1〉.
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Figure 3.2.4: Numerical estimation of SL/2(t). The calculation conditions are

the same as that of Fig. 3.2.3. The left panel (a) shows the result for the ini-

tial state |Ψ (0)〉 = |A0〉 and the right panel (b) shows that for the initial state

|Ψ (0)〉 = |A1〉. The gray vertical lines indicate the times when we took the snap-

shots shown in Fig. 3.2.3.

at several times for the initial states |B0〉 and |B1〉 and for the frequencies Ω =

10.0,8.0,6.0,4.0. Figure 3.2.6 shows the time evolution of SL/2(t) for the same

set of initial states and the frequencies Ω = 10.0,8.0,6.0,4.0. The behaviors

shown in Figs. 3.2.5 and 3.2.6 are qualitatively similar to those in Figs. 3.2.3

and 3.2.4.

The results implies that by flipping a pair of spins on a bond we can switch

the total state back and forth between HIsing
0 and HIsing

1 . Hence, it is also possible

to guess from the measurement of Szi (t) whether the initial state |Ψ (0)〉 belongs

to HIsing
0 or HIsing

1 .
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Figure 3.2.5: Numerical estimation of Szi (t). Here, the value of Szi (t) = +0.5

corresponds to the spin state |+〉, while the value of Szi (t) = −0.5 corresponds

to the spin state |−〉. The calculation conditions are set so that A = 2.4048, and

hence J0(A) ' 0 holds with the fixed values J‖ = −1.0, J⊥ = −0.75 and ~ = 1. The

left panel (a) shows the result for the initial state |Ψ (0)〉 = |B0〉 and the right

panel (b) shows that for the initial state |Ψ (0)〉 = |B1〉.
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Figure 3.2.6: Numerical estimation of SL/2(t). The calculation conditions are

same as that of Fig. 3.2.5. The left panel (a) shows the result for the initial state

|Ψ (0)〉 = |B0〉 and the right panel (b) shows that for the initial state |Ψ (0)〉 =

|B1〉. The gray vertical lines indicate the times when we took the snapshots

shown in Fig. (3.2.5).

3.3 Summary

In the present work, we show that driven longitudinal exchange interactions

in the XXZ model lead to long-range transverse exchange interactions in the

Floquet picture, and results in a state-selective localization in which limited

Ising-like product states are fixed points of the dynamics. Especially in the

one-dimensional case with S = 1/2 and arbitrary length L, we show the long-

range transverse interactions reduce to four-site interactions and specify the

condition for a given Ising-like product state to be the fixed point. We also

show some examples of such a localizable product state and numerically veri-

fied that these are actually fixed points of the dynamics.

The driving protocol presented in the present study may be experimentally

realized in magnetic insulators by a technique of controlling magnetism with

ultrafast electric fields [92]. In addition to such experimental approaches, it is
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also interesting to investigate the state-selective localization as a quantum scar

[88, 89], which prevents thermal equilibration in isolated quantum many-body

systems. The state-selective localization proposed in this study has a common

feature to the quantum scar in that the dynamics is strongly dependent on

the initial state. It is desirable that the model given in this study be properly

extended to describe experimental situations and to investigate the quantum

scar in more details.
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Appendix

3.A Derivation of the Effective Hamiltonian

In this appendix, we present a detailed derivation for Ĥeff(A) in Sec. 3.2.1. First,

we decompose the original Hamiltonian given by Eq. (3.11) into Ĥ(t) = Ĥ0+V̂ (t)

such that
∫ 2π/Ω

0
dt V̂ (t) = 0 holds. Then, for

Ĥ0 =− J⊥
2

∑
〈i,j〉

(Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j )− J̄‖

∑
〈i,j〉

Ŝzi Ŝ
z
j , (3.47)

V̂ (t) =− δJ cosΩt
∑
〈i,j〉

Ŝzi Ŝ
z
j , (3.48)

we find the unitary transformation (3.9) in the form

Û (t) =T exp

−∫ t dt′

i~
V̂ (t′)

 (3.49)

=exp
[
−iAsinΩt

∑
〈k,l〉 Ŝ

z
k Ŝ

z
l

]
, (3.50)

where A is given by Eq. (3.13). We then find Eq. (3.14) by substituting it into

the formula

Ĥeff(A) =
Ω

2π

∫ 2π/Ω

0
dt Û (t)Ĥ0Û †(t). (3.51)

Let us thereby evaluate Û (t)Ĥ0Û †(t). Because of the commutation relation

[Ŝzi , Û (t)] = 0, we obtain

Û (t)Ĥ0Û †(t) = −J⊥
2

∑
〈i,j〉
Û (t)

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
Û †(t)− J̄‖

∑
〈i,j〉

Ŝzi Ŝ
z
j . (3.52)
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Furthermore, using the formula

e−iÂB̂eiÂ =
∞∑
n=0

(−i)n

n!

(
adÂ

)n
B̂, (3.53)

where adÂ · B̂ B [Â, B̂], for any pair of operators Â and B̂, one of the terms in

the square parentheses in Eq. (3.52) can be written as

Û (t)Ŝ+
i Ŝ
−
j Û
†(t) =

∞∑
n=0

(−i)n

n!
(AsinΩt)n

(
ad

∑
〈k,l〉 Ŝ

(k)
z Ŝzl

)n(
Ŝ+
i Ŝ
−
j

)
(3.54)

=
∞∑
n=0

(−i)n

n!
(AsinΩt)nŜ+

i (Ẑi,j)
nŜ−j (3.55)

=Ŝ+
i exp

[
−iAsinΩt × Ẑi,j

]
Ŝ−j , (3.56)

where Ẑi,j is given by Eq. (3.15).

We can prove the equality between Eqs. (3.54) and (3.55) by induction as

follows. If we accept(
ad

∑
〈k,l〉 Ŝ

(k)
z Ŝzl

)m(
Ŝ+
i Ŝ
−
j

)
= Ŝ+

i (Ẑi,j)mŜ−j (3.57)

for a non-negative integer m, we obtain(
ad

∑
〈k,l〉 Ŝ

(k)
z Ŝzl

)m+1(
Ŝ+
i Ŝ
−
j

)
=
∑
〈k,l〉

[Ŝ(k)
z Ŝzl , Ŝ

+
i (Ẑi,j)

mŜ−j ] (3.58)

=2× Ŝ+
i

[∑
〈k,l〉

(
δl,i − δl,j

)
Ŝ

(k)
z

]
(Ẑi,j)

m
Ŝ−j (3.59)

=Ŝ+
i (Ẑi,j)

m+1Ŝ−j . (3.60)

For the equality between Eq. (3.58) and Eq. (3.59), we mainly use the symmetry

of exchanging the indices k and l. For the equality between Eq. (3.59) and

Eq. (3.60), we use the decomposition of the sum given by

2×
∑
〈k,l〉
Ôk,l =

∑
k

∑
〈k,l〉
Ôk,l , (3.61)
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where
∑
〈k,i〉 Ôk denotes summation of Ôk for all sites that are connected to i.

Since Eq. (3.57) trivially holds form = 0, it holds for any non-negative integers.

In exactly the same way, we obtain

Û (t)Ŝ−i Ŝ
+
j Û
†(t) =Ŝ−i exp

[
+iAsinΩt × Ẑi,j

]
Ŝ+
j . (3.62)

Hence, we find

Û (t)Ĥ0Û †(t) = −J⊥
2

∑
〈i,j〉

[
Ŝ+
i e−iAsinΩt×Ẑi,j Ŝ−j + (+↔−)

]
− J̄‖

∑
〈i,j〉

Ŝzi Ŝ
z
j . (3.63)

Using the integral formula [93]

1
2π

∫ 2π

0
dθ e−iasinθ = J0(a), for a ∈R (3.64)

in Eq. (3.63), we arrive at

Ĥeff(A) =
Ω

2π

∫ 2π/Ω

0
dt Û (t)Ĥ0Û †(t). (3.65)

=− J⊥
2

∑
〈i,j〉

[
Ŝ+
i J0(AẐi,j)Ŝ

−
j + (+↔−)

]
− J̄‖

∑
〈i,j〉

Ŝzi Ŝ
z
j , (3.66)

where J0(x) is the zeroth-order Bessel function of the first kind.
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Chapter 4

Conclusion

4.1 Summary and Conclusion

In this thesis, we have shown that proper modeling of quantum-classical cou-

pled systems allows us to theorize several experimental results and predict

new phenomena. In Chapter 2, we derived an effective Hamiltonian for two-

dimensional 4He coupled with a movable platform and obtained an effective-

mass formula from the platform’s equation of motion. In Chapter 3, we showed

that long-range interactions that emerge in a spin system lead to initial-state-

sensitive dynamics.

In quantum-classical coupled systems, as introduced in Chapter 1, it is of-

ten crucial to derive the coupling Hamiltonian correctly. For such problems,

Chapter 2 provides a straight-forward solution. We derived the Hamiltonian

for two-dimensional 4He fixed on a movable platform in Chapter 2. Such a sys-

tem with fixation is a typical example of a strongly-coupled system, in which

the perturbation theory fail. We instead defined a lattice model on a moving

coordinate, unraveled the quantum classical parts by a coordinate transforma-

tion, and straight-forwardly derived an ideal coupling Hamiltonian.
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The model discussed in Chapter 3 contains no explicit classical degrees of

freedom and does not constitute a quantum-classical coupled system. How-

ever, to reproduce the results in Chapter 3, we need classical apparatuses for

periodically driving the exchange interactions in the magnetic insulator, for

generating slightly different initial states, and for measuring the physical quan-

tities. We therefore need to attach classical systems externally to the quantum

system in question. Such external systems and the quantum model treated in

Chapter 3 should constitute a quantum-classical coupled system as a whole.

It also raises the issue of designing the external systems to some classical-to-

quantum perturbation or measure a specific physical quantity by quantum-to-

classical back-action.

From the above, each of Chapters 2 and 3 makes the following contributions

to the framework of quantum-classical coupled systems proposed in Chapter 1.

Chapter 2 presents an experimentally inspired example of quantum-classical

coupled systems, together with an entire effective Hamiltonian and a renor-

malized classical equation of motion. Hence, this chapter provides a means

of probing a quantum system coupled to a classical system through the classi-

cal part. Chapter 3 predicts non-equilibrium dynamics in a class of quantum

many-body systems. To reproduce such non-equilibrium dynamics, we need to

design a specific classical system and couple it with the quantum system. This

chapter, therefore, raises the issue of designing the classical part in a quantum-

classical coupled system.

4.2 Discussions and Future Prospects

It would be interesting to compare our concept of quantum-classical coupled

systems with similar studies. In Chapter 2, we treated both two-dimensional
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4He and a movable platform as a quantum system according to the method

proposed in Ref. [57]. It is indeed a way of composing a quantum-classical

coupled system. However, according to some methodological studies [94–98],

we should be cautious about such a composition. First, there are two natural

properties that a quantum-classical coupled system must satisfy: the two sys-

tems evolve in time independently and correctly when uncoupled; the equa-

tion of motion for the two systems are subject to nontrivial modifications due

to the coupling. Methodological studies of quantum-classical coupling date

back to Anderson’s proposal in Ref. [94], which claimed to satisfy such prop-

erties. Unfortunately, it turned out that quantum-to-classical back-action does

not occur in his formulation [95, 96], and other studies have shown the same

shortcoming in a mathematically rigorous manner [97, 98]. However, it turned

out that a more technical approach eliminates this problem and allows us to

incorporate quantum-to-classical back-action properly [99–102]. We may need

to show that our method is equivalent to the methods proposed in Refs. [94,

99–102] in the next.

It would also be interesting to apply our concept of quantum-classical cou-

pled systems to more fundamental problems, such as quantum thermodynam-

ics and quantum information. One example is a quantum autonomous ma-

chine [103–107], which is coupled only to two heat baths. It behaves like a

quantum heat engine subjected to external driving. In such a system, the quan-

tum system should have a strong back-action on each heat bath, leading to the

idea of probing the quantum system only from the behavior of the heat baths.

Another example is a driven dissipative system with a heat bath and a driver

[7–9, 108–116]. In the context of the driven dissipative system, one often as-

sumes that the heat bath has dynamical variables, while the driver does not.

Such a driver without dynamical variables approximates a system in which the
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back-action received from the quantum system is infinitely small. To justify

this approximation, we have to formulate all external systems as heat baths

with degrees of freedom and derive a similar model. Our framework may also

be useful for such justification studies.
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[4] Á. Rivas, Phys. Rev. Lett. 124, 160601 (2020).

[5] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Rep. Prog.

Phys. 69, 1325 (2006).

[6] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565

(2001).

[7] S. Restrepo, J. Cerrillo, V. M. Bastidas, D. G. Angelakis, and T. Brandes,

Phys. Rev. Lett. 117, 250401 (2016).

[8] M. Carrega, P. Solinas, M. Sassetti, and U. Weiss, Phys. Rev. Lett. 116,

240403 (2016).

[9] M. C. Goorden, M. Thorwart, and M. Grifoni, Phys. Rev. Lett. 93, 267005

(2004).

76



[10] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.

Geim, Rev. Mod. Phys. 81, 109 (2009).

[11] M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Physics Reports

496, 109 (2010).
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