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Abstract

In this thesis, we enhance the diagnostic method for nodal line semimetals in the
case where spin-orbit coupling is negligible. We also show that the nodal line semimetals
diagnosed by the present enhanced method (“δ indices”) are linked to topological crys-
talline insulators when the spin-orbit coupling is introduced. This link reveals a clear
difference between the topological crystalline insulator classes that have not been distin-
guished by the previous methods. Our result suggests that the obtained link can lead
to the enhancement of the diagnostic methods for topological insulators and topological
crystalline insulators.

In the derivation of the δ indices, we assume not only time-reversal and space inversion
symmetries, which guarantee the stability of nodal lines, but also a four-fold rotation or
four-fold screw symmetry. The δ indices are derived by considering a subgroup reduction
of space groups and by applying the “symmetry-based indicator” defined in the space
group with lower symmetry. With this approach, we give calculation formulas of the δ
indices based on symmetry eigenvalues for each of the five Bravais lattices with a four-fold
rotation or screw symmetry (i) primitive tetragonal lattice, (ii) body-centered tetragonal
lattice, (iii) primitive cubic lattice, (iv) face-centered cubic lattice, and (v) body-centered
cubic lattice. By using the δ indices, we give three kinds of nodal line semimetals that are
newly diagnosed by the δ indices: (a) face-centered cubic lattice (Ca, Ba, and SnSe), (b)
body-centered square lattice (Ca2As), and (c) nonsymmorphic tetragonal lattice (tight-
binding model in the space group 127).

Based on the above examples of nodal line semimetals, we discuss to what kind of
topological insulator class these nodal line semimetals are linked when spin-orbit coupling
is introduced. By using k ·p perturbation models, we show that these nodal line semimet-
als are linked to topological crystalline insulators by introducing spin-orbit coupling. In
the examples (a) and (b), we show that a nontrivial mirror Chern number emerges on the
mirror-invariant plane that is penetrated by the nodal lines before introducing spin-orbit
coupling. It is also proved that the value of mirror Chern number corresponds to how
many times the mirror-invariant plane is penetrated by the nodal lines. In particular,
in the example (a), two types of nodal line configurations are realized depending on a
parameter. We show that, by checking the differences in the nodal line configurations,
it is possible to diagnose two different topological crystalline insulators classes that have
not been diagnosed by the previous methods. This link between the nodal lines and the
mirror Chern numbers is also confirmed in real materials, by comparing the results of
first-principles calculations for Ca and Ba. In the example (c), on the other hand, we
show that a characteristic configuration of nodal lines (concentric intersecting coplanar
ellipses, CICE nodal lines), which appear due to the nature of the nonsymmorphic space
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group, is linked to a glide-protected topological crystalline insulator. In this case, we
show that the CICE nodal lines correspond to the nontrivial glide topological invariants.
This result suggests that by finding a nodal line semimetal with CICE nodal lines, we
can find a topological crystalline insulator protected by the glide symmetry, which has
not been diagnosed by the previous methods.

These results introduce a nwe perspective of using the intrinsic link and hypothetical
SOC-neglecting first-principles calculations to enhance the diagnostic methods of topo-
logical insulators with SOC. Since the link is expected to be generally extended, the
perspective should be useful from now on in many aspects including diagnostic methods
and materials design.
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Chapter 1

Introduction

Topological materials science has been one of the most actively studied areas in the
field of condensed matter physics in recent years. One of the earliest proposed topological
phenomena is the quantum Hall effect [1, 2]. The Hall conductivity of a quantum Hall
system, which is a two-dimensional insulator, is quantized with an integer called the
Chern number, hence the quantum Hall system is also called a Chern insulator [3, 4, 5].
Quantized to integer values such as the Chern number, the properties of the topological
systems are robust against continuous (or “adiabatic”) perturbations of parameters. This
robustness is a key feature of topological materials.

Starting with the Chern insulator, various classes of topological insulators (TI) have
been proposed [6, 7]. Among them, the proposal of time-reversal (TR) protected topolog-
ical insulators has attracted plenty of attention [8, 9, 10]. These materials are character-
ized by gapless (metallic) surface states while the inside of the crystal (bulk) is insulating
[Fig. 1.1]. This class of topological insulators can be realized in three-dimensional crys-
tals [11, 12, 13, 14, 15, 16, 17, 18, 19] and are of interest for experimental as well as
theoretical studies. Subsequently, topological crystal insulators (TCI) [20, 21, 22], which
are protected by crystal symmetry such as mirror, rotation, or glide, have been proposed.
These insulators also have characteristic surface states on the surfaces where the crystal
symmetry is protected.

The topological insulators listed above are materials having three-dimensional insu-
lating bulk states and two-dimensional gapless surface states. Recently, a new class of
topological insulators with three-dimensional insulating bulk states and one-dimensional
gapless hinge states has been proposed. These materials are called higher-order topolog-
ical insulators (HOTI) [23, 24, 25, 26, 27].

Not only the topological insulators but also materials called topological semimetals
have been the subject of research in this field [28, 29, 30]. Topological semimetals consist
of valence and conduction bands that are degenerate at a point or a line in momentum
space and have a linear dispersion around them. This degenerate point (degenerate line)
is called a “node point” (“nodal line”). The stability of these nodes is protected by the
symmetry of the crystal. A typical topological semimetal is graphene [31]. Graphene is
known to have Dirac-cone-shaped band dispersions at high symmetry points in momen-
tum space. A material with similar characteristics — a node point and linear dispersion
around it — can be realized in 3D systems and is called a Dirac semimetal [Fig. 1.2]
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Figure 1.1. Various topological insulators and their surface (hinge) states. Blue
cubes represent insulating bulks and red planes represent gapless surface states.
For a higher-order topological insulator, a gapless hinge state is shown as a red
line.

[32, 33, 34, 35]. In Dirac semimetals, each band of the linear dispersion is doubly de-
generate with respect to the spin degree of freedom, just as in graphene. There are also
materials with the same point nodes, but without spin degeneracy, called Weyl semimet-
als [36, 37, 38, 39, 40]. In contrast to Dirac and Weyl semimetals that have point nodes,
there are materials with line nodes, which are called nodal line semimetals [41, 30, 42, 43].
The line nodes of most nodal line semimetals have spin degeneracy and are sometimes
called Dirac nodal line semimetals.

As summarized above, there are a great variety of topological materials, each with dif-
ferent properties. To be of interest to experimental and applied studies, explicit material
examples should be proposed. Then, given a material example or a certain band disper-
sion, how can we diagnose whether it is a topological material or not? Furthermore, if it
is a topological material, how can we diagnose its topological class in more detail? The
first possibility is to calculate the topological invariants that characterize each topologi-
cal material class, such as the Chern number. However, in general, topological invariants
are given as integrals of wavefunctions in the whole Brillouin zone, and their numerical
evaluations can be time-consuming. Considering the need to scan material databases to
find topological materials with desired properties, a method with less calculation cost is
preferable. Therefore, the development of a classification theory of topological materials
and a simple diagnostic method has been an important topic of research in this field
[44, 45, 46, 47, 48, 49, 50, 43, 30].

2
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Figure 1.2. Various topological semimetals and their band dispersions. Red
and blue bands correspond to the spin degree of freedom.

In this dissertation, we focus on the fact that some topological semimetals can not
be diagnosed by previous methods. Then, we propose a new method to diagnose them.
Therefore, in this introduction chapter, we briefly summarize the diagnostic methods pro-
posed so far. In particular, a method called “symmetry-based indicator” and diagnostic
methods of nodal line semimetals is reviewed in detail since they play an important role
in the following chapters. In chapter 2, we clarify two problems that need to be solved
in this dissertation. In chapter 3, as a solution to one of the problems, we define a new
diagnostic method for nodal line semimetals. In chapter 4, to solve the other problem,
we discuss an “intrinsic link” between nodal line semimetals that are newly diagnosed
and topological crystalline insulators.

3
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1.1 Definition of topological classes

Before going to the diagnostic methods of topological classes, we define what “identi-
cal topological classes” and “distinct topological classes” mean in topological materials.
Given materials, models, or phases A and B, a statement “A and B are topologically
identical” is defined as follows [6, 47].

topologically identical� �
“A and B are topologically identical” means that A and B are connected by continuous
parameter variation with keeping:

• “gapped” energy spectrum (band dispersion)

• symmetry of the system� �
“Topologically distinct” is defined as a complement of this statement. To be more specific,
topologically distinct materials (models or phases) cannot be continuously connected
without closing the gap or breaking the symmetry of the system.

In the above statement, we quote “gapped” because the word “gapped” can have
different meanings depending on the topological materials we focus on. For topological
insulators, this “gapped” truly means a gapped energy spectrum. In a band dispersion
picture in the momentum space, it is written as

∀k ∈ BZ, Ej+1(k) − Ej(k) > 0 (1.1)

for a certain band index j ∈ N, where BZ is Brillouin zone and Ej(k) is the band
dispersion of the j-th band. Note that the Fermi energy Ef is not involved in the above
definition (see Fig. 1.3, top right). Furthermore, Ej and Ej+1 can be dispersive near the
Fermi energy, and the material can be metallic (see Fig. 1.3, bottom left). When we
really try to use a materials as a topological “insulator”, we need to find a material in
which Fermi energy is locating between Ej and Ej+1 (see Fig. 1.3, top left).

On the other hand, in the definition of classes of topological semimetals, we cannot use
the definition (1.1) since topological semimetals are gapless by their definition. Therefore,
for topological semimetals, we focus on some specific points in momentum space, and the
word “gapped” in the topological semimetals means

∀k ∈ {k1,k2 . . . } , Ej+1(k) − Ej(k) > 0. (1.2)

How to choose the points {k1,k2, . . . } is explained in Section 1.3.

In the field of topological material science, the word “topologically trivial” and “topo-
logically nontrivial” are often used. This “trivial” means “identical to a material that
everyone believes is not a topological insulator (semimetal)”. In this dissertation, the
word “normal (trivial) insulator” is used for an insulator that gapped energy spectrum
in the bulk, surfaces, hinges, and corners1, as commonly used in the field of topological
material science.

1in all momentum in the bulk, surface, and hinge momentum space
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Figure 1.3. Examples of gapped and gapless band dispersions between the j-th
and (j + 1)-th bands. Ef is the Fermi energy. Only the bottom right one is
a gapless case. The other three are “gapped” in our definition. However, in
terms of real material properties, only the top left is an insulator.
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1.1.1 Classification theories and diagnostic methods

Based on the above definition of topological classes, classification theories have been
actively studied. One of the most famous classifications is the Altland-Zirnbauer’s (AZ)
symmetry class [51] and its periodic table of topological invariants. Further, recent studies
based on the K-theory [52] have revealed topological properties of cases where crystalline
symmetries are added to the AZ symmetry classes. Although these classification theo-
ries play a crucial role in the field of topological material science, they can give only a
“framework” of topological classes. For example, it is shown that the AII class in the
AZ symmetry class is classified by Z2-valued invariants, but the classification theory does
not tell us how to calculate the invariants, i.e., the Fu-Kane formula (see section 1.2) is
not given. To realize high-throughput materials search, explicit methods to calculate the
invariants (diagnostic methods)2 are desired. In the following sections, we review those
diagnostic methods. The detailed relation between classification theories and reviewed
diagnostic methods is discussed in Appendix B.

2Note that this differentiation of the words “classification theory” and “diagnostic method” is not
necessarily common. It is a local rule in this dissertation.

6
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1.2 Diagnostic methods for topological insulators

In this section, we review diagnostic methods for topological insulators. First, we
introduce diagnostic methods for inversion symmetric systems. These methods use al-
most the same formulas and applicable from one-dimensional (1D) systems to three-
dimensional (3D) systems [53]. In 3D systems, the formula is known as Fu-Kane formula,
which is also well-known as “Z2 index”. After reviewing these inversion based indices, we
introduce the symmetry-based indicator. The symmetry-based indicator is applicable for
all kinds of crystalline symmetric cases and thus diagnoses a wider variety of topological
insulators.

1.2.1 Inversion based indices

First, we briefly review diagnostic methods based on the inversion symmetry. We
review topological properties of a 1D chain model (the Su-Schrieffer-Heeger model), the
quantum Hall system (the Chern insulator), the 2D Time-reversal protected topological
insulator, and the 3D Time-reversal protected topological insulator. While topological
properties of these cases are not protected by the inversion symmetry, easy diagnostic
methods have been given when the inversion symmetry is additionally assumed. Since
these methods are well known today, we only exhibit the conclusions here (See Appendix
A.3 for the derivation and details).

1D chain model (Su-Schrieffer-Heeger model)

The 1D spinless fermion chain model called the Su-Schrieffer-Heeger model (SSH
model) [54, 55] consists of two sites A and B in a unit cell and alternative hoppings
between them t1 and t2 [Fig. 1.4]. When a finite length of the chain is considered, the
model can have end states, and the presence or absence of the end states is diagnosed by
the Berry phase θ.

Figure 1.4. Su-Schrieffer-Heeger model.

When the system additionally has the inversion symmetry, the Berry phase calculation
is simplified. Generally, in the 1D momentum space, there are two inversion-invariant
points, k = 0 and k = π. The Berry phase θ is written with the inversion eigenvalues of

7
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Table 1.1: Diagnostic method of the SSH model.

t1 and t2 Berry phase inversion eigenvalue end state

t1 > t2 θ = 0 χk=0χk=π = 1 No

t1 < t2 θ = π χk=0χk=π = −1 Yes

the occupied band in these points (χk=0, χk=π) as

eiθ = χk=0χk=π. (1.3)

Therefore, the product of the inversion eigenvalues works as a diagnostic method of the
topological class of the SSH model [Table 1.1]. (The detailed derivation and some point
to be noted are given in Appendix A.3.1.)

2D quantum Hall system (Chern insulator)

The Chern insulator is a quantum Hall system and the Hall conductivity is given as
−e2

h
C, where C ∈ Z is the Chern number [2]. When the Chern insulator has the inversion

symmetry, the parity of the Chern number is diagnosed by calculating the product of the
inversion eigenvalues. In a 2D system, there are four inversion-invariant points. These
points are called “Time-Reversal Invariant Momenta (TRIM)” since TR and inversion
work on a momentum k in the same way. The Chern number C is written with the
inversion eigenvalues as

eiπC =
∏

n:occupied

∏
k:4TRIM

χn(k), (1.4)

where n is the band index and χn(k) is the inversion eigenvalue of the n-th band in k.
The diagnostic method of the Chern insulator is summarized in Fig. 1.5 and Table 1.2.
(The detailed derivation is given in Appendix A.3.2.)

Table 1.2: Diagnostic method of the Chern insulator.

Chern number Hall conductivity Chiral edge state inversion eigenvalue

C = 0 (mod 2) −e2

h
2Z Indeterminate

∏
χn(k) = 1

C = 1 (mod 2) −e2

h
(1 + 2Z) (nonzero) Yes

∏
χn(k) = −1

8
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Figure 1.5. Chern number, edge band dispersion, bulk inversion eigenvalues,
and chiral edge state. In the edge band dispersion, the chiral edge states appear
around the momentum where the projected bulk momentum line includes the
flip of the inversion eigenvalue. The chiral edge state drawn with a solid line
(dashed line) is on the front side (backside) of the finite 2D system.
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2D topological insulator (TR protected TI)

For the cases of the SSH model and the Chern insulator, we have reviewed spinless or
spin undegenerate systems. We next review the 2D TR protected topological insulators
[8, 9, 10]. To get a nontrivial insulator in TR symmetric system, significant (unignorable)
spin-orbit coupling (SOC) is generally required3. Hence, in the following discussion, the
existence of significant SOC is assumed.

The topological property of the TR protected topological insulator is characterized
by a topological invariant ν = 0, 1. When the system has also the inversion symmetry,
the ν is diagnosed by using the inversion eigenvalues. Since the system has both TR
and inversion symmetries, all bands appear as doubly degenerate pairs in TRIM. The
topological invariant ν is written with the inversion eigenvalues defined in each pair as

(−1)ν =
∏

n:occupied

∏
k:4TRIM

χ2n(k), (1.5)

where n is the band index. Because we need to see one band of a paired bands, only
χ2n(k) is taken into account and χ2n−1(k) is not4.

Now χ = ±1, and thus it can also be written by counting the −1 inversion eigenvalues
as

ν =
∑

k:4TRIM

n−(k) (mod 2), (1.6)

where n−(k) is the number of occupied band pair with −1 inversion eigenvalues.
The diagnostic method is summarized in Fig. 1.6 and Table 1.3. (The detailed

derivation is given in Appendix A.3.3.)

Table 1.3: Diagnostic method of the 2D TR protected topological insula-
tor

ν Helical edge state
∏
χ

0 No5 1

1 Yes −1

3Here, “significant” means “nonzero”. In principle, even really small SOC can give a nontrivial
topological insulator. However, from a practical point of view, a system with a too small gap is not a
good example. If the bandgap is too small (compared to the interested energy scale), the system can be
approximately recognized as another class of topological material.

4Generally, χ2n−1(k) = χ2n(k)
5if exists, not protected generally

10
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Figure 1.6. Topological invariant ν, edge band dispersion, bulk inversion eigen-
values

∏
n χ2n(k), and helical edge state. In the edge band dispersion, the

helical edge states appear around the momentum where the projected bulk
momentum line includes the flip of the inversion eigenvalue. The helical edge
state drawn with a solid line (dashed line) is on the front side (backside) of the
finite 2D system. The red and blue lines correspond to the spin index 1 and 2.

11
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3D topological insulator (TR protected TI)

The 3D TR protected TI [11, 12, 13] is mostly understood as an extension of the 2D
case. The only, but crucial difference is the existence of the “strong invariant ν0”. The
strong invariant characterizes “strong topological insulators”, which are robust against
perturbations. On the other hand, there are “weak invariants ν1, ν2, ν3” and they charac-
terize “weak topological insulators”. The weak topological insulators are not necessarily
robust against perturbations, such as a super-cell periodic perturbation. These invariants
are conventionally written in (ν0; ν1ν2ν3).

When the system has the inversion symmetry, the topological invariants are written
with inversion eigenvalues as

ν0 =
∑

k:8TRIM

n−(k) (mod 2),

ν1 =
∑

k:4TRIM
m1=1

n−(k) (mod 2),

ν2 =
∑

k:4TRIM
m2=1

n−(k) (mod 2),

ν3 =
∑

k:4TRIM
m3=1

n−(k) (mod 2).

(1.7)

where the TRIM are represented by m1,m2,m3 = 0, 1 and reciprocal lattice vestors
b1, b2, b3 as k = 1

2
(m1b1 +m2b2 +m3b3). For example, in a primitive orthorhombic case,

the ν1 is calculated with the four TRIM on kx = π. Some examples of the invariants
and corresponding topological classes are shown in Fig. 1.7 (with surface Fermi arcs),
1.8 (with helical edge states). The diagnostic method is summarized in Table 1.4. (The
detailed derivation is given in Appendix A.3.4.)

Today this diagnostic method of the 3D TR protected topological insulator is widely
known as the “Fu-Kane formula” after the name of proposers [44]. It is also well known
as “Z2 index” due to its algebraic structure.

This method just requires to examine only eight momenta in the momentum space
and evaluate the inversion eigenvalues of wavefunctions. This process is relatively easy
and less time-consuming compared to examining the whole BZ. By this simplicity, this
formula has contributed greatly to find an explicit material example of 3D topological
insulators.

12



Doctoral Dissertation

Table 1.4: Diagnostic method of the 3D TR protected topological insula-
tor

ν0 ν1,2,3 Helical edge state
∏

8TRIM χ
∏

4TRIM χ class

0 0 No 1 1 trivial

0 1 Some surfaces 1 −1 weak

1 0 All surfaces −1 1 strong

1 1 All surfaces −1 −1 strong

Figure 1.7. Inversion eigenvalues and surface Fermi arc adopted from L. Fu,
and C. L. Kane, Physical Review B, 76, 045302 (2007). In the bottom panels,
the solid and open circle represents the eigenvalue product −1 and 1 that is
calculated with two points listed in the (001) direction. The thick line in the
surface BZ is a possible Fermi arc.
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Figure 1.8. 3D TR protected topological insulators and helical edge states. In a
strong topological insulator (ν0 = 1), helical edge states appear on all surfaces.
On the other hand, in a weak topological insulator, helical edge states appear
on some of the surfaces.
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1.2.2 Symmetry-based indicator

In this subsection, we review a recently proposed diagnostic method called “symmetry-
based indicator” [47, 48] (It is also called “symmetry indicator”, or sometimes just “indi-
cator”). Since the method plays a crucial role in this dissertation, we review this method
rather in detail.

In the previous subsection 1.2.1, we have focused on the cases with inversion symmetry
and explained the diagnostic methods using the inversion eigenvalue. Then, as a natural
conjecture, we expect to be able to examine other crystalline symmetry eigenvalues, such
as rotations, mirrors, and so on, to give a more detailed and versatile diagnostic method.
The symmetry-based indicator is based on this idea. First, we review in what system
the symmetry-based indicator can be defined and how it is given in the system. After
that, we summarize how to use it practically. Previous diagnostic methods have been
obtained by showing that the topological invariants, which had already been known,
can be written using inversion eigenvalues. To derive the symmetry-based indicator, on
the other hand, we assume that the combination of the crystalline eigenvalues of the
occupied band classifies the topological class of the system. Hence, it is not immediately
clear what specific topological invariants and what topological properties each given class
has. However, subsequent studies [49, 50] have mapped from the indicators to specific
topological invariants, and today the explicit properties of each class are somewhat known.

Note that in this section, we also consider systems with significant SOC.

Idea of the symmetry-based indicator

The idea of the symmetry-based indicator is as follows. Firstly, we choose a space
group. Then, we define the set of band structures {BS} and the set of atomic insulators
{AI} in that space group. A schematic picture is shown in Fig. 1.9. {AI} is a subgroup
of {BS}, as explained later. The topological classes classified by the symmetry-based
indicator are given as a quotient group of them as

{BS} / {AI} , (1.8)

which means

• If an element of {BS} is included in {AI}, it is trivial.

• All other elements are nontrivial.

• For two nontrivial elements of {BS}, we check the difference between them. Then,
if the difference is written with an element of {AI}, the two nontrivial elements of
{BS} are defined to be in the same topological class.

Some detailed notes are given in Appendix A.4.
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Atomic Insulators

Band Structures

Symmetry
Labels

Atomic

Topological

(b)(a)

Figure 1.9. Figure adopted from H. C. Po, et. al., Nature communications 8,
50 (2017). (a) shows how to convert a band dispersion into the symmetry label.
(b) is a schematic picture to show the algebraic structure of the derivation of
the indicator.

Definition of {BS}

A set “band structures ({BS})” (of some space group) is defined as a set of all the
possible occupied bands6 that satisfy the following “compatibility condition”. The num-
ber of the occupied bands can be different for each element. The compatibility condition
means

∀k ∈ {All high symmetry points, lines, and planes in BZ} , Ej+1(k) > Ej(k), (1.9)

where the l-th band (l ≤ j) is occupied, and the l′-th band (l′ > j) is unoccupied. Note
that this condition does not strictly require the system to be insulator as explained in
section 1.1. But for convenience, we refer to the lower j bands as “occupied bands” in
this dissertation.

The word “compatibility condition” is originally a rule for connecting bands in mo-
mentum space [56]. Since an energy band is continuous while the symmetry eigenvalues
are discrete, the connected bands must have the same symmetry eigenvalue from one end
to the other end of a high symmetry line or a high symmetry plane. For example, let
us assume two high symmetry points Γ and X, and a C2 rotation7 high symmetry line

6The elements of {BS} are not restricted by a realistic material properties. For example, it includes
the case where a p orbital is occupied but no s orbital is occupied.

7The C2 rotation means a π rotation. The definitions of the symmetry operations are given in
Appendix A.1
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Compativility

condition

satisfied

(a)
Compativility

condition

satisfied

(b)
Compativility

condition

violated

(c)

Figure 1.10. Compatibility condition in C2 rotation invariant line. Here ±i is
the C2 eigenvalue for the wavefunction of the corresponding band. (a)(b) Due
to the compatibility condition, the number of bands with +i (−i) is constant.
(c) When the compatibility condition is violated, the system is gapless.

Γ-X [Fig. 1.10]. In a spinful system, a C2 eigenvalue8 is ±i. In the cases of Fig. 1.10
(a) and (b), the compatibility condition is satisfied, while in the case of Fig. 1.10 (c), it
is not satisfied. Due to this compatibility condition, the number of bands with +i (−i)
is constant at the Γ point, X point, and on the Γ-X line. In the following, we do not
consider the case of Fig. 1.10 (c).

Note that this definition focuses only on the high symmetry points, lines, and planes in
the momentum space. Therefore, gapless points in generic k are neglected. For example,
the Weyl semimetal, whose gapless Weyl nodes generally appear in generic k, is defined
as “gapped” in this definition.

In order to consider the quotient group Eq. (1.8), an element of {BS}, i.e., a set
occupied bands, need to be represented in such a way that the addition and subtraction of
them are well defined. Therefore, we focus on the symmetry eigenvalues and represent the
elements of {BS} as a vector, which is called “symmetry label”. In general, space groups
have multiple crystalline symmetry operations, so we use the irreducible representations
(irreps) instead of the symmetry eigenvalues. The irreps are understood as a generalized
conception of the symmetry eigenvalues (See Appendix A.2 for the detail).

Given a set of occupied bands, we check their irreps at each high symmetry point,
line, and plane. By counting how many times an irrep appears and listing the result for
each irrep, the symmetry label is obtained.

For example, let us see the case of the space group 2, which has only the inversion
symmetry. In this case, there are eight high symmetry points (TRIM), and no high
symmetry line and plane. We name the TRIM as Γ, X, Y , Z, T , U , V , and R [Fig.
1.11] (the standard name of the high symmetry points is found in [57]). In all points, two
irreps are defined, one with a +1 inversion eigenvalue and the other with a −1 inversion

8Since the spin part is transformed by a representation of SU(2), a 2π rotation gives −1 to the spin
part (C2

2 = −1). This is originated from the algebraic structure SU(2)/SO(3) = Z2. In a spinless
system, on the other hand, C2

2 = 1 and thus a C2 eigenvalue is ±1.
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Figure 1.11. 8 TRIM in the BZ of the space group 2.

eigenvalue. For a set of occupied bands, let n+
Γ (n−

Γ ) be the number of bands with +1
(−1) eigenvalue at the Γ point. By applying the same definition to the other points, the
result is summarized as(

n+
Γ , n

−
Γ , n

+
X , n

−
X , n

+
Y , n

−
Y , n

+
Z , n

−
Z , n

+
T , n

−
T , n

+
U , n

−
U , n

+
V , n

−
V , n

+
R, n

−
R

)
. (1.10)

The length is 16. However, when the number of occupied bands is j, n+
Γ + n−

Γ = j must
be satisfied, and so on. Consequently, the set of occupied bands, which is an element of
{BS}, is represented by a symmetry label(

j, n+
Γ , n

+
X , n

+
Y , n

+
Z , n

+
T , n

+
U , n

+
V , n

+
R

)
. (1.11)

In general space groups, the compatibility condition (eigenvalue connectivity) restricts
the independent components. Using this representation, {BS} is extended to a linear
space. (This extension involves some complicated problems and they are discussed in
Appendix A.4.2.)

Note that topologically identical occupied bands as defined in section 1.1 are repre-
sented by the same symmetry label. For example, the symmetry label does not depend
on the energy sequence within the occupied bands, which has nothing to do with the
topological classification.

Definition of {AI}

Next, we define the set of {AI} in a specified space group. The idea of {AI} is that
if an element of {BS} is topologically identical with an element of {AI}, we will say the
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element of {BS} is trivial. For this purpose, the elements of {AI} should be “clearly
trivial band structures”. Therefore, we choose an element of {AI} as a set of occupied
bands that are flat since they are originate from isolated orbitals (This is why it is called
“atomic insulators”). {AI} is also represented by the symmetry label.

A systematical process exists for enumerating the elements of {AI}, and it can be
completed in a finite number of trials (See Appendix A.4.2 for the detail). The explicit
{AI} for each space group is available in the website Ref. [57].

Explicit symmetry-based indicators and calculation formulas

The elements of the quotient group {BS} / {AI} have periodic structures. In mathe-
matically, it is written as

∀b ∈ {BS} / {AI} , ∃n ∈ Z, s. t. nb ∈ {AI} , (1.12)

where nb is defined as nb =
∑n

j=1 b. The symmetry-based indicator is given as a Zn-
valued index from this periodic structure. In general space groups, the periodic structure
can exist in two or more dimensions. The symmetry-based indicators of each space group
are summarized in Table 1.5.

The Fu-Kane’s Z2 indices are included in the symmetry-based indicator. The Fu-
Kane formula is valid in a system with TR and inversion symmetries. It corresponds to
the space group 2, and the symmetry-based indicator in the space group 2 is given as
Z2×Z2×Z2×Z4 in Table 1.5. The former three Z2 are weak indices, and the Z4 includes
the strong index. The symmetry-based indicator has shown that there are subdividing
topological classes beyond the Fu-Kane’s strong index in TR and inversion symmetric
systems.

The calculation formula of the indicators are given in Ref. [49] (The tables are also
given in Appendix A.4.3). All of the indicators in Table 1.5 are calculated by checking only
the high symmetry points in the BZ. As explained before, the symmetry-based indicator
cannot predict specific topological invariants on its own but the Ref. [49] have mapped
the indicators into explicit topological invariants such as strong index, weak index, mirror
Chern number, and so on. Hence, today by calculating the symmetry-based indicator we
can diagnose the topological properties of a system. The explicit workflow is detailed in
the next section. Since the symmetry-based indicator can be calculated by checking only
the high-symmetry points in the BZ, it has allowed high-throughput materials search
[58, 59, 60, 61].

Note that although the symmetry-based indicator is comprehensive and diagnoses a
wide range of topological classes, it is not the perfect diagnostic method. For example,
as we can see in the Ref. [49], some systems with a nontrivial mirror Chern number are
diagnosed as trivial by the symmetry-based indicator. Not only that, a topological class
characterized by the indicator can have two or more possible combinations of topological
invariants. If we need to distinguish them, a diagnostic method beyond the symmetry-
based indicator is required. This is one of the purposes of this dissertation.
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Table 1.5: Symmetry-based indicators of band topology for systems with
time-reversal symmetry and significant SOC adopted from H. C. Po, et.
al., Nature communications 8, 50 (2017).

XBS Space groups

Z2 81, 82, 111, 112, 113, 114, 115, 116, 117, 118

119, 120, 121, 122, 215, 216, 217, 218, 219, 220

Z3 188, 190

Z4 52, 56, 58, 60, 61, 62, 70, 88, 126, 130

133, 135, 136, 137, 138, 141, 142, 163, 165

167, 202, 203, 205, 222, 223, 227, 228, 230

Z8 128, 225, 226

Z12 176, 192, 193, 194

Z2 × Z4 14, 15, 48, 50, 53, 54, 55, 57, 59, 63, 64, 66

68, 71, 72, 73, 74, 84, 85, 86, 125, 129, 131, 132

134, 147, 148, 162, 164, 166, 200, 201, 204, 206, 224

Z2 × Z8 87, 124, 139, 140, 229

Z3 × Z3 174, 187, 189

Z4 × Z8 127, 221

Z6 × Z12 175, 191

Z2 × Z2 × Z4 11, 12, 13, 49, 51, 65, 67, 69

Z2 × Z4 × Z8 83, 123

Z2 × Z2 × Z2 × Z4 2, 10, 47

XBS: the quotient group between the group of band structures and atomic insulators.
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Diagnosis workflow

Finally, we show a practical way to use the symmetry-based indicator. Although the
derivation of the symmetry-based indicator is too complicated, we can skip it in practice
by using some tables given by previous studies. Now we discuss a case of a 3D system
with TR symmetry and SOC.

Suppose a band dispersion and wavefunctions of a system are given. Mainly the
case given by the first-principles calculation is assumed, but it works in cases such as a
tight-binding model too. The workflow is given as following.

1. Identify the space group of the system.

2. Decide which bands to calculate.

3. Confirm that the bands satisfy the compatibility condition.

4. Check the irreps of the bands at high symmetry points.

5. Check and calculate the indicator with the Supplementary Table 1, 2, and 3 in Ref.
[49].

6. Find the obtained class in the Supplementary Table 7 in Ref. [49] and check the
topological invariants.

Let us describe each step in more detail.

Step 1 We have to know what space group the target system belongs to since the
symmetry-based indicator is individually defined in each space group. For most cases,
previous studies have given a space group. Or, VESTA [62] supports to find it.

Step 2 We decide on which bands we calculate the indicator. Usually, occupied bands
are chosen. Even if the system is not an insulator, we can take lower j bands to calculate.
We can neglect core electron bands in the low energy area because they have nothing to
do with the topological properties unless it is a very insane system.

Step 3 In principle, we need to confirm the chosen bands satisfy the compatibility
condition. However, in practice, we do not need to seriously check the compatibility
condition. If the system violates the compatibility condition, the resulting indicator will
be an unreasonable value, such as fractions or prohibited values9. Therefore, we can skip
this step, and if we get something wrong we can come back here10.

9For example, in the space group 225, the indicator Z8 is defined but odd numbers are prohibited. If
we have Z8 = 1, we cannot find the corresponding class in the step 6 and we can realize something is
wrong.

10If we try to check the compatibility condition, it can be relatively easily done by first-principles
calculations. A band dispersion is usually plotted along high symmetry lines, and thus a gapless point
is often found easily if exists.
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Step 4 We list the irreps of the chosen bands for all high symmetry points. Since the
formula to calculate the indicator is written only with irreps of high symmetry points, we
need not check high symmetry lines and planes. An irrep analysis option is implemented
in QUANTUM ESPRESSO [63], and other program packages also support to list irreps
(see Appendix A.6).

Step 5 We first see the Supplementary Table 3 in Ref. [49] (or Table A.3) to know
the indicator defined in the space group of the target system. If the space group is not
listed in the Supplementary Table 3 in Ref. [49], it means that there is no topological
band dispersion in the space group. If the space group is listed with an indicator, we can
find the explicit calculation formula in the Supplementary Table 1 and 2 in Ref. [49] (or
Table A.4 and A.5). Using these tables, we can obtain the symmetry-based indicator of
the target system.

Step 6 We identify the topological invariants from the obtained indicator. In the
Supplementary Table 7 in Ref. [49], the indicators of each space group are mapped to
topological invariants. By referring to the part of the target space group, we can know
what kind of topological invariants can be nontrivial. Note that the topological invariants
are not necessarily identified uniquely. Generally, for a single value of the symmetry-based
indicator, there are several candidates of topological invariants. Those candidates are not
distinguished within the symmetry-based indicator. If we need a more detailed diagnosis,
a more detailed analysis is required.

Finally, note that we can access a material database [64] that provide the symmetry-
based indicator. The accuracy is not necessarily guaranteed, but this database is often
useful for checking quickly.
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1.3 Diagnostic methods for topological semimetals

In section 1.2, we have reviewed the diagnostic methods of topological insulators.
Among them, the Fu-Kane formula and the symmetry-based indicator have been given in
systems with TR symmetry and significant SOC. In this section, we next review diagnostic
methods in systems with TR symmetry and negligible SOC. In those systems, diagnostic
methods mainly work to diagnose nodal line semimetals. To stabilize such nodal lines,
inversion symmetry is additionally required [41, 65]. Therefore, the diagnostic methods
we review in this section are given for systems with TR and inversion symmetries, and
negligible SOC.

First, we review a diagnostic method that is given by applying the symmetry-based
indicator [47]. However, only limited nodal line semimetals are diagnosed by this method
[Fig. 1.12]. Materials that have been proposed or have been experimentally studied
cannot be diagnosed by this method. Hence, some expanded methods have been proposed
and we review them next [43, 66].

Figure 1.12. Variety of nodal line semimetals in systems with negligible SOC.

1.3.1 Symmetry-based indicator for nodal line semimetals

We can apply the symmetry-based indicator to diagnose nodal line semimetals [47].
The derivation is simple: just redo the derivation of the symmetry-based indicator in the
case where SOC is negligible. Here in the systems with negligible SOC, we neglect the
spin degree of freedom.

Looking back at the derivation process of the symmetry-based indicator, the compati-
bility condition is required. Since nodal line semimetals have gapless points by definition,
the compatibility condition (Eq. (1.9)) is rewritten as
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• At all high symmetry points, lines, and planes, there is no gapless point between
Ej+1 and Ej with different irreps.

Due to this condition, the system mostly need to be gapped at the high symmetry points,
lines, and planes, but a gapless point between two bands with the same irreps is allowed
as an exception. Such a gapless point can appear on a high symmetry plane. Note that
the exception does not break the uniqueness of the symmetry label. All other parts of
the derivation are the same as the case with significant SOC. Because of this condition,
nodal line semimetals diagnosed by this method inevitably has a nodal line at generic
points of the momentum space11.

The symmetry-based indicator in systems with TR and negligible SOC is given in
Table 1.6.

Table 1.6: Symmetry-based indicators of band topology for systems with
time-reversal symmetry and negligible SOC adopted from H. C. Po, et.
al., Nature communications 8, 50 (2017).

XBS Space groups

Z2 3, 11, 14, 27, 37, 48, 49, 50, 52, 53, 54

56, 58, 60, 66, 68, 70, 75, 77, 82, 85

86, 88, 103, 124, 128, 130, 162, 163, 164, 165

166, 167, 168, 171, 172, 176, 184, 192, 201, 203

Z2 × Z2 12, 13, 15, 81, 84, 87

Z2 × Z4 147, 148

Z2 × Z2 × Z2 10, 83, 175

Z2 × Z2 × Z2 × Z4 2

XBS: the quotient group between the group of band structures and atomic insulators.

Since the inversion symmetry is required to stabilize nodal lines, all nontrivial indicators
are defined in space groups with the inversion symmetry. As was the case with signifi-
cant SOC, the specific nodal line configuration (or shape) of each class is not immediately
known. The mapping form indicators to nodal line configurations are given in a subse-
quent study Ref. [50]. After we get a specific value of the indicator, we can check Table
III in Ref. [50] to find a nodal line configuration of the system.

The indicator in systems with negligible SOC is generally quite different from those
in systems with significant SOC. It is because the spin degree of freedom changes the

11The nodal line can penetrate a high symmetry plane but it is not fixed on the plane by the symmetry.
Such case is exactly the case where the system has gapless point on a high symmetry plane within the
compatibility condition.
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gauge group, and thus SOC is strongly related to the availability of hybridization be-
tween bands [56]. Consequently, the presence or absence of SOC affects whether the
compatibility condition is satisfied or not. A system with (weak) SOC that satisfies the
compatibility condition can become, in infinitely small SOC limit, a system that violates
the compatibility condition. Although some examples are reviewed in section 1.4, the
link between topological classes of systems with significant and negligible SOC has not
discussed enough, and to reveal the link is one of the purposes of this dissertation.

As mentioned at the beginning of section 1.3, nodal line semimetals diagnosed by this
method is only a limited part of nodal line semimetals. Rather, the majority of nodal
line semimetals are of the kind that cannot be diagnosed by this method. For example,
ZrSiSe [67, 68, 69], CaAgAs [70, 71, 72], and CaP3 [73, 74], which are widely studied
both theoretically and experimentally, do not satisfy the compatibility condition. These
nodal line semimetals have been proposed without using diagnostic methods. They have
gapless points on high symmetry lines or planes and it is relatively easy to find with
the first-principles calculation, where a band dispersion is usually plotted along high
symmetry lines. On the other hand, nodal lines at generic points are not easily captured
by the first-principles calculation. Therefore, the symmetry-based indicator is a really
useful diagnostic method for them, even if they are not the majority.

Although nodal line semimetals that violate the compatibility condition are relatively
easy to find with the first-principles calculation, diagnostic methods for them are desired
for efficient exploration. In section 1.3.2, we review diagnostic methods for them.

The symmetry based indicator in the space group 83

Before going to the diagnostic methods for nodal line semimetals that violate the
compatibility condition, we clarify the indicator of the space group 83 that plays an
important role in this dissertation. The space group 83 belongs to the primitive tetragonal
crystal and its generators are C4 rotation, inversion (I), and lattice translations. In Ref.
[50], the indicator of the space group 83 is given as three Z2-valued indices,

δ+,π
2 , δ−,π

2 , δ′2. (1.13)

The definitions of them are

δ′2 = δ+,0
2 − δ+,π

2 = δ−,0
2 − δ−,π

2 (mod 2),

δ+,0
2 = n+

ξ=−1(Γ) + n+
ξ=−1(M) + n+

ζ=−1(X) (mod 2),

δ−,0
2 = n−

ξ=−1(Γ) + n−
ξ=−1(M) + n−

ζ=−1(X) (mod 2),

δ+,π
2 = n+

ξ=−1(Z) + n+
ξ=−1(A) + n+

ζ=−1(R) (mod 2),

δ−,π
2 = n−

ξ=−1(Z) + n−
ξ=−1(A) + n−

ζ=−1(R) (mod 2).

(1.14)

Here, n+
ξ=−1(Γ) is the number of occupied bands with the C4 eigenvalue ξ = −1 and the

mirror eigenvalue σ = +1 at the Γ point, n+
ζ=−1(X) is the number of occupied bands with
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Figure 1.13. Brillouin Zone of the space group 83.

the C2 eigenvalue ζ = −1 and the mirror eigenvalue σ = +1 at the X point, and so on
[Fig. 1.13].

These indices are interpreted as Berry phases. Generally, a nodal line in a system with
negligible SOC is characterized by a π Berry phase [30]. The Berry phase is calculated
along a closed loop taken in momentum space. Because a nodal line is interpreted as a
π flux of Berry curvature, the Berry phase along the loop is π (mod 2π) when an odd
number of nodal lines penetrate the loop. In the space group 83, when δ±,0

2 = 1, an odd
number of nodal lines penetrate the ΓXMX’Γ loop in the σ = ±1 sector, respectively12

Similarly, δ±,π
2 is related to the number of nodal lines of the mirror ±1 sector in the loop

ZRAR’Z [Fig. 1.13] (see Appendix A.7.1 for details).
Although four indices are given, the compatibility condition restricts δ+,0

2 − δ+,π
2 =

δ−,0
2 −δ−,π

2 (mod 2). Therefore, there are three independent indices as given in Eq. (1.13).

12Nodal lines between two bands with different mirror eigenvalues violate the compatibility condition.
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1.3.2 Extended methods

In this section, we review diagnostic methods for nodal line semimetals that violate the
compatibility condition. The systems with TR and inversion symmetries and negligible
SOC are still assumed. In these systems, it is proved that the Fu-Kane formula Eq. (1.7)
is used as a diagnostic method [43].

Z2 index

A condition is required to use the Fu-Kane formula (Z2 index) in this case instead
of the compatibility condition. The condition to use the formula for the lower j bands
(occupied bands) is written as

∀k ∈ {8 TRIM} , Ej+1(k) > Ej(k). (1.15)

This condition requires only that the number of occupied bands in the eight TRIM be
the same.

As we have reviewed in section 1.3.1, here we use the Berry phase to diagnose nodal line
semimetals. As explained in Section 1.2.1, when a loop is taken through four TRIM, the
Berry phase along the path can be calculated by the product of the inversion eigenvalues.
Note that in this case, the (relevant part of) loop must be inversion-invariant13. When
the product of inversion eigenvalues of occupied bands in the four TRIM is −1, the
loop that goes through the four TRIM is penetrated by an odd number of nodal lines.
The independent values of the products of inversion eigenvalue in four TRIM are given
almost in the same way as the Fu-Kane formula with 8 TRIM k = 1

2
(m1b1 + m2b2 +

m3b3), m1,2,3 = 0, 1,

ν0 =
∑

k:8TRIM

n−(k) (mod 2),

ν1 =
∑

k:4TRIM
m1=1

n−(k) (mod 2),

ν2 =
∑

k:4TRIM
m2=1

n−(k) (mod 2),

ν3 =
∑

k:4TRIM
m3=1

n−(k) (mod 2),

(1.16)

where n−(k) is the number of occupied bands with −1 inversion eigenvalues in k 14. If any
one of the (ν0; ν1ν2ν3) is 1, the system is a nodal line semimetal. However, even if all of
them are 0, the system can be a nodal line semiemtal with an even number of nodal lines.
The nodal line configuration in the BZ corresponds to which index is 1. For example, a
system with a nodal line like Fig. 1.14 has (ν0; ν1ν2ν3) = (1; 110) (see Appendix A.7.2
for details). In Ref. [43], Cu3NZn and Cu3NPd have been given as material examples of
nodal line semimetals with nontrivial Z2 indices [Figs. 1.15,1.16].

13The inversion symmetry is used to transform
∫ π

−π
dk into

∫ π

0
dk.

14Note that n−(k) is NOT “the number of pairs of bands” because the spin degree of freedom is
neglected. This is the only difference from the original Fu-Kane formula.
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Figure 1.14. Nodal line semimetal with (ν0; ν1ν2ν3) = (1; 110). The TR-
invariant path through XURV correpdonds to ν1.

28



Doctoral Dissertation

Figure 1.15. Band dispersions and Z2 indices of nodal line semimetals (a)
Cu3NZn and (b) Cu3NPd adopted from Y. Kim, et. al., Physical Review
Letters 115, 036806 (2015).

Figure 1.16. BZ and nodal lines in (a)(b) Cu3NZn and (c)(d) Cu3NPd adopted
from Y. Kim, et. al., Physical Review Letters 115, 036806 (2015).
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Z4 index

In terms of symmetry of the space group of the system, the Fu-Kane formula requires
only the inversion symmetry. The most simple space group with the inversion symmetry is
space group 2. Looking at the symmetry-based indicator in Table 1.6, Z2×Z2×Z2×Z4 is
defined in the space group 2. Although this is the case where the compatibility condition
is satisfied, it is suggested that the strong index ν0 for nodal line semimetals can be
extended15 to Z4. Based on this idea, a subsequent study [66] has succeeded in extending
to Z4.

The Z4 index is defined as

Z4 =
∑

k:8TRIM

n−(k) (mod 4). (1.17)

From the definition, ν0 ≡ Z4 (mod 2). Therefore, Z4 = 1, 3 are nodal line semimetals
with ν0 = 1, and there is a newly defined topologically nontrivial class Z4 = 2. The
Ref. [66] has shown that the Z4 = 2 systems are nodal line semimetals with monopole
charged16 nodal lines [30] when ν1 = ν2 = ν3 = 017. Since a nodal line in a system with
Z4 = 1, 3 has no monopole charge, an inherently different type of nodal line semimetal is
diagnosed by Z4 = 2. In Ref. [66], MoTe2 have been given as a material example with
Z4 = 2 [Fig. 1.17].

Since Z4 includes ν0, the diagnostic method of inversion symmetric systems is summa-
rized in (Z4; ν1ν2ν3). These four indices are equivalent to the symmetry-based indicator
in the space group 2 without SOC [Table 1.6]. The Refs. [43, 66] have shown that these
indices can be used for all space groups with the inversion symmetry.

Z4 Nodal line seimmetal

0 Indeterminate

1
Nodal line semimetal

without monopole charge

2
Nodal line semimetal

with monopole charge

3
Nodal line semimetal

without monopole charge

Table 1.7: Z4 index and corresponding nodal line semimetals.

15ν1,2,3 are equivalent. If only one is extended, it should be ν0.
16This “monopole charge” is Z2-valued but different from the Berry phase. The Berry phase is defined

as an integral on a loop in the momentum space (a 1D topological invariant). On the other hand, the
monople charge is defined on a closed surface in the momentum space (a 2D topological invariant).

17When ν1 = ν2 = ν3 = 0, the Z4 = 2 originates from a double band inversion at a single TRIM.
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Figure 1.17. Band dispersion and monopole charged nodal lines in MoTe2 as
an example of the system with Z4 = 2 adopted from Z. Wang, et. al., Physical
Review Letters 123, 186401 (2019). (b)(d) A double band inversion occurs at
the Γ point and (c) monopole charged nodal lines appear around the Γ point
(red lines).
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As a summary, the Z4 index and corresponding nodal line semimetals are listed in
Table 1.7 (ν1 = ν2 = ν3 = 0 is assumed).
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1.4 Intrinsic link between topological insulators and

semimetals

In section 1.2 and 1.3, we have reviewed the diagnostic methods of topological insu-
lators and nodal line semimetals independently. The former is discussed in systems with
significant SOC, while the latter is in systems with negligible SOC.

Some previous studies have proved that, in some examples, a topological semimetal
turns to a topological insulator when SOC is introduced. One of the typical example
is graphene [75, 76]. Graphene has Dirac-cone-like point nodes at the high symmetry
points when SOC is negligible. When SOC is introduced in graphene, the point nodes
get gapped and the system becomes a topological insulator18.

A similar link can be found between diagnostic methods of topological insulators and
nodal line semimetals. As we can see the Z2 index for TR protected 3D topological
insulator (Eq. (1.7)) and the Z2 index for nodal line semimetals (Eq. (1.16)) are defined
almost identically, there is an intrinsic link between topological insulators and nodal line
semimetals in inversion symmetric systems. Since the inversion operation does not affect
the spin (or pseudospin) part of wavefunctions, the inversion eigenvalue comes from the
orbital (or sublattice) part of wavefunctions (Eq. (1.18)).

Iψ = χψ ⇒ Iψα = χψIα = χψα

ψα : wavefunction

ψ : orbital/sublattice part

α : spin part

χ : inversion eigenvalue of orbital part

(1.18)

Therefore, when (weak19) SOC is introduced, the inversion eigenvalues of occupied bands
are the same as that of when SOC is neglected. Additionally, a nodal line protected by
TR and inversion symmetry is generally get gapped when SOC is introduced. From these
facts, it can be said that a nodal line semimetal with nontrivial Z2 index turns into a
(TR protected) topological insulator with the same nontrivial Z2 index [Fig. 1.19].

Not only the Fu-Kane index (ν0; ν1ν2ν3), Z4 = 2 class has a similar link. When SOC
is negligible, the Z4 = 2 class is a monopole charged nodal line semimetal. Looking at
the space group 2 with significant SOC in Table 1.5, Z4 is defined and the Z4 = 2 class
is found to be a higher-order topological insulator protected by the inversion symmetry
[77]. From these facts, a monopole charged nodal line semimetal with Z4 = 2 is expected
to be linked to a higher-order topological insulator with Z4 = 2, and the correctness of
this speculation has been demonstrated in MoTe2 [66].

18Experimentally, the introduction of SOC is realized by decorating Bi2Te3 nanoparticles on graphene
[76]

19Grnerally, SOC brings about an energy shift in each band. Due to the energy shift, a band inversion
can occur between occupied bands and unoccupied bands. Such band inversion generally changes the
inversion eigenvalues of occupied bands. However, such a band inversion never occurs in a weak SOC
limit since there is a finite gap between occupied bands and unoccupied bands in the zero SOC case.
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Figure 1.18. Bnad dispersion and edge states in a graphene ribbon with SOC
adopted from C. L. Kane, and E. J. Mele, Physical Review Letters 95, 226801
(2005).

As a summary, it is known that there is an intrinsic link between a nodal line semimetal
and a (higher-order) topological insulator characterized by (Z4; ν1ν2ν3) [Fig. 1.19].

For the symmetry-based indicator in systems with significant and negligible SOC, the
intrinsic link has not been comprehensively discussed. It is because, as is explained, the
symmetry-based indicator is independently defined in both cases, and thus the equivalence
of the indicators is not as clear as the Z2 and Z4. Some case studies are given in Ref.
[50], and we can see a nodal line semimetal with a nontrivial indicator is linked to a
topological insulator with some nontrivial indicator at least within the case studies.

This means that the band inversion is an amplitude-dependent phenomenon and we can neglect it within
the discussion of the link between topological classes.
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Figure 1.19. Intrinsic link between Z4 characterized topological insulators and
nodal line semimetals.
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Chapter 2

Motivation of this dissertation

The diagnostic methods given in previous studies are not a complete method, and
there is room for improvement. For example, in the diagnostic methods for topological
insulators, the Z8 = 0 class (considered to be “trivial”) in the space group 225 (face
centered cubic, FCC) contains a topological crystalline insulator1 [Table 2.1]. This means
some topological crystalline insulators are overlooked in the previous methods. Likewise,
two topological crystalline insulators with different topological invariants are classified in
the same class Z8 = 4. This difference results in different physical properties that are
important when considering applications. The surface state emerges only on a particular
surface in topological crystalline insulators, and the surface is determined by which mirror
Chern number is nontrivial. Therefore, topological crystalline insulators with different
mirror Chern numbers have different properties, such as compatibility with the symmetry
of a substrate. To realize a more detailed and useful materials search, diagnostic methods
to distinguish those topological classes easily are desired.

Space group #225 : Fm3̄m

Z8 weak nM(001)
nM(110)

0 000 0 0

0 000 4 2

4 000 0 2

4 000 4 0

Table 2.1: Possible topological invariant combinations for Z8 = 0, 4 classes
in the space group 225 with significant SOC excerpted from Supplemen-
tary Table 7 in Ref. [49].

Similar examples are also known in the diagnostic methods of nodal line semimetals,
i.e., there are nodal line semimetals that are not found by the previous diagnostic meth-

1The candidates listed in Table 2.1 are “basic set” of candidates. Since we can add or subtract the
indicator and invariants, we can get another candidate with larger mirror Chern numbers.
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Figure 2.1. Band dispersions and nodal lines in Ca, Sr, and Yb adopted from
M. Hirayama, et. al., Nature communications 8, 14022 (2017). (a) Band dis-
persion of Ca. (b) Nodal lines and BZ of Ca. The equivalent nodal lines
(modulo reciprocal lattice vectors) are shown in the same color. (c)(d) Mag-
nified band dispersions of Ca at ambient pressure and 7.5 GPa, respectively.
(e)(f) Band dispersions of Sr and Yb, respectively. (g) Nodal line of Yb. The
nodal line in Yb has a completely different shape from that of Ca although
that of Sr looks almost the same as that of Ca.
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(a) (b)

Figure 2.2. Nodal line in FCC SnSe. adopted from I. Tateishi, and H. Mat-
suura, Journal of the Physical Society of Japan, 87, 073702 (2018). (a) BZ
and nodal lines (red, green, orange, and light blue circles) in SnSe. A dashed
line is equivalent (modulo reciprocal lattice vectors) to a solid one with the
same color. There are four non-equivalent nodal lines per BZ. (b) Details of
the shape of the nodal line. The blue plane represents the hexagonal surface of
BZ. The red line is the nodal line. The perpendicular to the surface has been
magnified 10 fold. It penetrates the surface of the BZ right on the center-corner
line (solid line) and does not touch the center-edge line (dashed line).

ods. Not only suggested by the definition of the previous diagnostic methods, but some
material examples have been proposed. Previous studies have shown that FCC alkaline
earth metals (Ca, Sr, and Yb) [78] and FCC SnSe [79] have nodal lines around the Fermi
level. Looking back section 1.3, the diagnosis by the symmetry-based indicator and Z4 is
considered. However, the space group 225 (FCC) is not included in Table 1.6. It means
that there is no nodal line semimetal class that satisfies the compatibility relation. The
Z4 index can be calculated but it results in Z4 = 0 in all of Ca, Sr, Yb, and SnSe. So
these materials are nodal line semimetals that cannot be found by previous diagnostic
methods.

As referred to in section 1.4, it is known that a nodal line semimetal is intrinsically
linked to a topological insulator. However, since the materials listed above have Z4 = 0,
they are not linked to a TR protected topological insulator nor inversion protected a
higher-order topological insulator. A question then naturally presents itself: to what
kind of topological (crystalline) insulator class these nodal line semimetals are linked?
[Fig. 2.3]

Based on the above, we focus on the following two points that should be clarified in
this dissertation.

• To propose a new diagnostic method for the nodal line semimetals that has been
overlooked in previous methods

• To clarify to what kind of topological insulator class those nodal line semiemtals
are linked
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Figure 2.3. Points that should be clarified in this dissertation (shown in green
letters and areas).
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Chapter 3

δ indices

In this chapter, we derive a new index for diagnosing nodal line semimetals that could
not be found by previous methods.

3.1 Applicable systems

To stabilize nodal lines, we assume a system with TR and inversion symmetries and
negligible spin-orbit coupling. In this dissertation, we additionally assume C4 rotation
(or screw) symmetry. This assumption is based on a fact that a method used in this
dissertation is effective mainly in those systems. The space groups with inversion and C4

rotation symmetries are summarized in Table 3.1.
Since our purpose is to diagnose nodal line semimetals that violate the compatibility

condition, we do not assume the compatibility condition. In other words, we allow for
gapless points in high symmetry lines and planes. However, it is assumed that the number
of occupied bands is the same at all high symmetry points.

Bravais lattice
Space groups C ′

2Crystal family Lattice system

Tetragonal

Primitive
83-86 No

123-138 Yes

Body centered
87,88 No

139-142 Yes

Cubic

Primitive 221-224

YesFace centered 225-228

Body centered 229,230

Table 3.1: Space groups with inversion and C4 rotation symmetries. The
presence or absence of C ′

2 is also exhibited. Here, C ′
2 is two-fold rotation

symmetry whose axis is perpendicular to the C4 axis.
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3.2 Method : subgroup reduction

We derive a new diagnostic method by applying the symmetry-based indicator defined
in a subgroup of the space group [80].

Suppose there is a nodal line semimetal that violates the compatibility condition.
By definition, the nodal line semimetal has a gapless point in a high symmetry line or
plane. Consider the subgroup of the space group of the nodal line semimetal. Considering
a subgroup is equivalent to neglecting a certain symmetry operation. If we neglect the
symmetry operation corresponding to the line or plane where the gapless point exists, the
line or plane will become generic points and thus the nodal line semimetal will satisfy the
compatibility condition. Since the system satisfies the compatibility condition, we can use
the symmetry-based indicator defined in the subgroup to diagnose nodal line semimetals.
By rewriting the symmetry-based indicator of the subgroup using the symmetry of the
original space group, a new index is obtained.

Let us see an example in space group 255 (FCC). The space group 225 has no indicator
as shown in Table 1.6. Let us neglect C3(111) symmetry, and then we obtain the space
group 139. However, the space group has no indicator too. Then we next neglect C2x

symmetry and obtain the space group 87. The space group 87 has two indicators and
they can be used as a diagnostic method. But in fact, further subduction up to the
space group 83 gives four indicators and it is shown that the two in the space group 87
is effectively included in the four. If there is still a gapless point on a high symmetry
line, for example, the C4-invariant line, we need to subduce up to the space group 2. In
the space group 2, the indicator is exactly (Z4; ν1ν2ν3), which has already been known as
explained in section 1.3. In summary, the four indicators in the space group 83 works as
a new diagnostic method of nodal line semimetal in the space group 225.

We consider the subgroup reduction from general space groups with TR and inversion
and C4 symmetries. To preserve the stability of nodal lines, we do not consider a subgroup
reduction that neglects the inversion symmetry. If we keep C4, the space groups with
nontrivial indicators that we can reach are the space group 83-88, 124, 128, and 130 [Fig.
3.2]. The indicators of the space group 84-87, 124, 128, and 130 can be written by the
indicators of the space group 83 [Table 3.2]. The space group 88 is an exception, whose
indicator z′2 is written with Z4. If we need to consider further subgroup reductions, we
finally arrive at the space group 2 and get indicators (Z4; ν1ν2ν3). Using the fact that
the indicators in the space groups without C4 are always given as a part of (Z4; ν1ν2ν3)
[50], it is proved that (Z4; ν1ν2ν3) and (δ+,0

2 , δ−,0
2 , δ+,π

2 , δ−,π
2 ) give a sufficient diagnostic

method.
Note that this is a “sufficient” diagnostic method and some of them may be always

0 in the symmetry of the original space group. For example, in the space group 255,
ν1 = ν2 = ν3 = 0.
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Figure 3.1. Subgroup lattice from the space group 255 to 83 adopted from
Bilbao Crystallographic Server [57]. The space group at the end of an arrow
is a subgroup of the starting space group. The number [n] labeled on arrows
is “the index of the subgroup”. Here “index” is a technical term in the group
theory. [n] roughly means that the original group is “n times larger” than the
subgroup.
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#83

TR+I+C4

#84-87, #124, #128, #130

#88

#2

indicators

subgroup reduction

subgroup reduction

Figure 3.2. Flow of the subgroup reduction. If the C4 and inversion (I) sym-
metries are kept, the space groups with nontrivial indicators are 88-88, 124,
128, and 130. However, their indicators are written by that of the space group
83 and 2. Therefore, the indicators of 83 and 2 give a sufficient diagnostic
method.

space group indicators in Ref. [50]

83 δ+,0
2 , δ−,0

2 , δ+,π
2 , δ−,π

2

84 δ+,0
2 , δ−,0

2

85-86 δ δ = δ+,0
2 + δ−,0

2

87 δ+,0
2 , ϕ2 ϕ2 ≡ δ+,π

2

124,128 δ+,π
2

130 θ θ ≡ δ+,0
2 − δ−,0

2

Table 3.2: Indicators of the space groups with TR, inversion, and C4

symmetries. Indicators of the space groups other than 83 are either some
of that of 83 or can be written by using that of 83.
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3.3 Calculation formula of the δ indices

As shown in section 3.2, new nodal line semimetals are diagnosed by the δ indices,
(δ+,0

2 , δ−,0
2 , δ+,π

2 , δ−,π
2 ). In this section, we rewrite (δ+,0

2 , δ−,0
2 , δ+,π

2 , δ−,π
2 ) in the original sym-

metry to give their calculation formula.

It would be too complicated to give formulas for each space groups individually, so
we give for the five Bravais lattices listed in the Table 3.1. The given formula is valid in
any space group in the same Bravais lattice, although some indices can be fixed to 0 by
the space group symmetry.

At first, we give the calculation formula in the primitive tetragonal lattice. It is almost
a review of the definition of the indicators of the space group 83 given in Ref. [50]. Next,
we move on to the other Bravais lattices, where a nontrivial rewrite is required. For
all Bravais lattices, we first give the obtained diagnostic method and the calculation
formulas, and then the derivation and Berry phase interpretation are discussed.

In the following, we will consistently use the definitions in Table 3.3 for the eigenvalues
of crystalline symmetry operations1.

Operation Eigenvalue (Other)

C4 ξ

inversion (I) χ

mirror (m = IC2
4) σ superscripts ±

S4 = IC4 ξ′

C2 = Im ζ

Table 3.3: Symmetry operation and their eigenvalues.

3.3.1 Primitive Tetragonal

In the primitive tetragonal lattice, the indices in Eq. (1.14) can be directly used. Let
us repeat the definition of (δ+,0

2 , δ−,0
2 , δ+,π

2 , δ−,π
2 ),

δ±,0
2 = n±

ξ=−1(Γ) + n±
ξ=−1(M) + n±

ζ=−1(X),

δ±,π
2 = n±

ξ=−1(Z) + n±
ξ=−1(A) + n±

ζ=−1(R).
(3.1)

Here, n+
ξ=−1(Γ) is the number of occupied bands with the C4 eigenvalue ξ = −1 and the

mirror eigenvalue σ = +1 in the Γ point, n+
ζ=−1(X) is the number of occupied bands with

the C2 eigenvalue ζ = −1 and the mirror eigenvalue σ = +1 in the X point, and so on
[Fig. 3.3]. Note that the C2 rotation is a rotation around the XR line, and the mirror is
about the ΓMX plane or the ZAR plane.

1The C2 eigenvalues is considered in a high symmetry point that is not C4-invariant. Therefore
defining C2 = C2

4 can be misleading in some cases. Since the mirror-invariant plane of m = IC2
4 touches

the C2-invariant line, defining as C2 = Im is safer.
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Figure 3.3. Brillouin Zone of the primitive tetragonal lattice.

Due to the C4 symmetry, ν1 = ν2 is always satisfied. The diagnostic method is given
as seven indices,

Z4, ν1, ν3, δ
+,0
2 , δ−,0

2 , δ+,π
2 , δ−,π

2 (3.2)

Derivation and Berry phase interpretation

The derivation is the same as the symmetry based indicator in the space group 83
[Section 1.3.1]. However, now (δ+,0

2 , δ−,0
2 , δ+,π

2 , δ−,π
2 ) are independent because the compat-

ibility condition is not necessarily satisfied.
Even if there is a nodal line that touches a high symmetry line or plane, the Berry

phase interpretation basically works2. The δ±,0
2 corresponds to the parity on the number

of the nodal lines that penetrate the loop ΓXMX’Γ [Fig. 3.3, blue loop] in the ±1 mirror
sector. The δ±,π

2 corresponds to the parity on the number of the nodal lines that penetrate
the loop ZRAR’Z [Fig. 3.3, violet loop] in the ±1 mirror sector. Nodal lines between two
bands with different mirror eigenvalues are not found by the δ indices but they are found
by using (Z4; ν1ν2ν3). When the loop ΓXMX’Γ (ZRAR’Z) is touching a nodal line, the
loop can be deformed not to touch the nodal line so that ΓX and ΓX’ (ZR and ZR’) are
a C4 symmetric pair.

3.3.2 Body centered tetragonal

In the body centered tetragonal lattice, three independent indices δ+,0
2 , δ−,0

2 , δπ2 are
given. The definitions of them are

δ±,0
2 = n±

ξ=−1(Γ) + n±
ξ=−1(M) + n±

ζ=1(X) + n±(Γ) (mod 2),

δπ2 = nξ=−1(Γ) + nξ′=−1(P ) + nχ=−1(N) (mod 2).
(3.3)

2Only if a nodal line is a mz-protected nodal line, the Berry phase interpretation is invalid. However,
the δ indices work as a diagnostic method of nodal line semimetals in that case.

46



Doctoral Dissertation

Figure 3.4. Brillouin Zone of the body centered tetragonal lattice (c > a).

Here, nξ′=−1(P ) is the number of the occupied bands with the S4 eigenvalue ξ′ = −1 in
the P point. There are two types of BZ in the body centered tetragonal lattice depending
on the ratio of lattice constants [Fig. 3.4 and Fig. 3.5]. Equivalent high symmetry points
are given the same name and thus the definition Eq. (3.3) is valid in the both cases. Note
that the C2 rotation is a rotation around the XP line, and the mirror is about the plane
perpendicular to the XP line.

Due to the symmetry of the body centered tetragonal lattice, ν1 = ν2 = ν3 is always
satisfied. The diagnostic method is given as five indices,

Z4, ν1, δ
+,0
2 , δ−,0

2 , δπ2 (3.4)

Derivation and Berry phase interpretation

By a subgroup reduction that neglects the body centered symmetry, we introduce the
four indices in the space group 83. We rewrite them in the symmetry and BZ of the body
centered lattice and obtain new indices. However, when the body centered symmetry is
neglected, the unit cell is doubled and the BZ is folded in half. As a result, the indices
need to be rewritten to take into account the effect of the BZ folding.

Since a tetragonal space group is obtained by the subgroup reduction, the BZ after
folding is also tetragonal as shown in Fig. 3.4 and Fig. 3.5 (green cuboids). Here, letters
with a tilde (X̃ and Z̃) are the high symmetry points in the folded BZ. The four δ indices
are defined in the top face (Z̃PN) and the middle horizontal plane (ΓXX’). However, in
the original BZ, some points do not have the symmetry that is needed in the calculation
of the δ indices. For example, the X point is not a C4-invariant point in the original BZ,
although it is the corner of the folded BZ and the C4 eigenvalues should be checked there.

When the BZ is folded, degenerated states appear on the boundary of the folded
BZ. If a momentum point gets a new symmetry, a unitary transformation within the
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Figure 3.5. Brillouin Zone of the body centered tetragonal lattice (c < a).

degenerated states can give a new set of states that diagonalize the C4 operator. The
eigenvalues of the states are restricted by the following two rules. First, it is proved that
the sum of the eigenvalues must be 0 (See Appendix C.1). Second, the eigenvalues must
be consistent with the symmetry eigenvalues before BZ folding. Using these rules, we can
rewrite the δ indices in the original symmetry and BZ.

Let us see the concrete derivations. First, we rewrite δ±,0
2 . The definition in the folded

BZ is
δ±,0
2 = ñ±

ξ=−1(Γ) + ñ±
ξ=−1(X) + ñ±

ζ=−1(X̃), (3.5)

where ñ is the number of bands counted in the folded BZ.
Since the the Γ point is a C4 and mirror-invariant point and thus n±

ξ=−1(Γ) has no
ambiguity. However, the M point overlaps with the Γ point as a result of the BZ folding.
Therefore, ñ±

ξ=−1(Γ) is rewritten as

ñ±
ξ=−1(Γ) = n±

ξ=−1(Γ) + n±
ξ=−1(M) (3.6)

The X point is not a C4-invariant point in the original BZ. Due to the BZ folding,
the X point overlaps with the X’ point and becomes a C4-invariant point. As a result,
all bands are doubly degenerated with states originated from the X and X’ points at the
X point in the filded BZ. By making a linear combination of them, they are transformed
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into two C4 eigenstates. It is easily proved that their eigenvalues, ξX̃,1 and ξX̃,2, satisfy
ξX̃,1 + ξX̃,2 = 0. (the proof is given in Appendix C.1.) Since a C4 eigenvalue is generally
±1 or ±i, the possible combination is (ξX̃,1, ξX̃,2) = (+1,−1) or (ξX̃,1, ξX̃,2) = (+i,−i).
Considering that the X point is a C2-invariant point in the original BZ and ξ2 = ζ, the
C4 eigenvalues in the folded BZ are determined form the C2 eigenvalues in the original
BZ. The symmetry eigenvalues in the original BZ and the folded BZ are related as3

BZ folding Dobuly
degenerated

χ σ ζ −→ χ σ ζ ξ

+1 +1 +1
+1 +1 +1 +1
+1 +1 +1 −1 ◦

−1 +1 −1
−1 +1 −1 +i
−1 +1 −1 −i

−1 −1 +1
−1 −1 +1 +1
−1 −1 +1 −1 •

+1 −1 −1
+1 −1 −1 +i
+1 −1 −1 −i

. (3.7)

To calculate the δ+,0
2 , the number of occupied bands with σ = +1 and ξ = −1 should

be counted at the X point (ñ+
ξ=−1(X)) in the folded BZ (◦ in Eq. (3.7)). As shown in

Eq. (3.7), those bands are always degenerated with bands with σ = +1 and ξ = +1.
The doubly degenerated pairs are originated from bands with σ = +1 and ζ = +1 in the
original BZ. Therefore, the ñ+

ξ=−1(X) is rewritten in the original BZ as

ñ+
ξ=−1(X) = n+

ζ=1(X). (3.8)

The ñ−
ξ=−1(X) is rewritten in the same way (see • in Eq. 3.7) as

ñ−
ξ=−1(X) = n−

ζ=1(X). (3.9)

The X̃ point is not a C2-invariant point in the original BZ but the C2 eigenvalues
of doubly degenerated bands in the folded BZ are determined in the same way. The
eigenvalues are determined as

BZ folding Dobuly
degenerated

σ −→ σ ζ

+1
+1 +1
+1 −1 ◦

−1
−1 +1
−1 −1 •

. (3.10)

The reference point can be moved on the mirror-invariant plane4 and thus

ñ±
ζ=−1(X̃) = n±(Γ). (3.11)

3Note that χσ = ζ
4If the reference point cross a nodal line, the nodal line can cross the original reference point by a

trivial parameter tuning.
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In summary, δ±,0
2 are rewritten as Eq. (3.3).

Next, we rewrite δ±,π
2 . The definition in the folded BZ is

δ±,π
2 = ñ±

ξ=−1(Z̃) + ñ±
ξ=−1(P ) + ñ±

ζ=−1(N), (3.12)

The Z̃ point is a C4-invariant point but not a mirror-invariant point in the original BZ.
The mirror eigenvalues are defined only after the BZ folding and they are determined as

BZ folding Dobuly
degenerated

ξ −→ ξ σ

+1
+1 +1
+1 −1

−1
−1 +1 ◦
−1 −1 •

+i
+i +1
+i −1

−i −i +1
−i −1

. (3.13)

The reference point can be moved along the C4-invariant line (ΓM line) to the Γ point
and thus ñ±

ξ=−1 is rewritten as

ñ±
ξ=−1(Z̃) = nξ=−1(Γ). (3.14)

The P point is a S4 and C2-invariant point in the original BZ. Using the relations
of eigenvalues ξ′2 = ζ and ξ′ξ = σ, the C4 and mirror eigenvalues in the folded BZ are
determined as

BZ folding Dobuly
degenerated

ξ′ ζ −→ ξ′ ζ σ ξ

+1 +1
+1 +1 +1 +1
+1 +1 −1 −1 •

−1 +1
−1 +1 +1 +1
−1 +1 +1 −1 ◦

+i −1
+i −1 −1 +i
+i −1 +1 −i

−i −1
−i −1 +1 +i
−i −1 −1 −i

. (3.15)

Therefore, ñ±
ξ=−1(P ) is rewritten in the original BZ as

ñ±
ξ=−1(P ) = nξ′=∓(P ) (3.16)

The N point is one of the TRIM but not a C2 and mirror-invariant point. Using
the relation of eigenvalues χ = ζσ, the C2 and mirror eigenvalues in the folded BZ are
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determined as
BZ folding Dobuly

degenerated

χ −→ χ ζ σ

+1
+1 +1 +1
+1 −1 −1 •

−1
−1 +1 −1
−1 −1 +1 ◦

. (3.17)

Therefore, ñ±
ζ=−1 is rewritten in the original BZ as

ñ±
ζ=−1 = nχ=∓(N). (3.18)

In summary, δ±,π
2 is rewritten as

δ±,π
2 = nξ=−1(Γ) + nξ′=∓(P ) + nχ=∓(N). (3.19)

However δ+,π
2 and δ−,π

2 are not independent. δ+,π
2 + δ−,π

2 is calculated as

δ+,π
2 + δ−,π

2 = 2nξ=−1(Γ) + nξ′=1(P ) + nξ′=−1(P ) + nχ=1(N) + nχ=−1(N)

= nξ′=1(P ) + nξ′=−1(P ) + nχ=1(N) + nχ=−1(N) (mod 2).
(3.20)

The latter two terms are written with the number of occupied bands j as nχ=1(N) +
nχ=−1(N) = j. Additionally, ξ′ = ±i are always appear as a pair in TR symmetric
systems and thus the former two terms are written with the number of the ξ′ = ±i pair
l as nξ′=1(P ) + nξ′=−1(P ) = j − 2l. As a result,

δ+,π
2 + δ−,π

2 = j − 2l + j = 0 (mod 2). (3.21)

Therefore, we need to use only δ+,π
2 = δπ2 as given in Eq. (3.3).

These indices are also interpreted as Berry phases. The δ±,0
2 corresponds to the parity

on the number of the nodal lines that penetrate the loop ΓXM’X’Γ [Fig. 3.4, blue loop]
(or ΓXMX’Γ [Fig. 3.5, blue loop]) in the ±1 mirror sector. The δπ2 corresponds to the
parity on the number of the nodal lines that penetrate the loop ΓNPN’Γ [Fig. 3.4 and
Fig. 3.5, violet loop]5.

3.3.3 Primitive cubic

In the primitive cubic lattice, the indices of the primitive tetragonal lattice can be sim-
ply applied. The definition of the indices are rewritten with the name of high symmetry
points in the cubic lattice [Fig. 3.6] as

δ±,0
2 = n±

ξ=−1(Γ) + n±
ξ=−1(M) + n±

ζ=−1(X),

δ±,π
2 = n±

ξ=−1(X) + n±
ξ=−1(R) + n±

ζ=−1(M). (3.22)
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Figure 3.6. Brillouin Zone of the primitive cubic lattice

Note that the C2 rotation in the X point and M point is a rotation around the XM line,
the mirror is always about the plane that perpendicular to the C4 or C2 axis.

Due to the cubic symmetry, ν1 = ν2 = ν3 is always satisfied. The diagnostic method
si given as six indices,

Z4, ν1, δ
+,0
2 , δ−,0

2 , δ+,π
2 , δ−,π

2 . (3.23)

Derivation and Berry phase interpretation

The derivation and Berry phase interpretation is equivalent to that of the primitive
tetragonal lattice.

3.3.4 Face centered cubic

In the face centered cubic lattice, the indices of body centered tetragonal lattice can
be applied. The definitions of the indices are rewritten with the name of high symmetry
points in the face centered cubic lattice [Fig. 3.7] as

δ±,0
2 = n±

ξ=−1(Γ) + n±
ξ=−1(X) + n±

ζ=1(X) + n±(Γ) (mod 2),

δπ2 = nξ=−1(Γ) + nξ′=−1(W ) + nχ=−1(L) (mod 2).
(3.24)

Note that the C2 rotation in the X point is a rotation around the XW line, the mirror is
always about the plane perpendicular to the C4 or C2 axis.

5Since the reference point is moved from Z̃ to Γ, the loop is also deformed from Z̃NPN’Z̃ to ΓNPN’Γ
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Figure 3.7. Brillouin Zone of the face centered cubic lattice

Due to the face centered cubic symmetry, ν1 = ν2 = ν3 = 0 is always satisfied. The
diagnostic method is given as four indices,

Z4, δ
+,0
2 , δ−,0

2 , δπ2 (3.25)

Derivation and Berry phase interpretation

The derivation is almost the same as that of the body centered tetragonal case, just
replacing the point M with X, P with W, and N with L. The δ±,0

2 and δπ2 correspond to
the blue loop and the violet loop in Fig. 3.7, respectively.

3.3.5 Body centered cubic

In the body centered cubic lattice, the indices of body centered tetragonal lattice can
be applied. The definitions of the indices are rewritten with the name of high symmetry
points in the body centered cubic lattice [Fig. 3.8] as

δ±,0
2 = n±

ξ=−1(Γ) + n±
ξ=−1(H) + n±

ζ=1(N) + n±(Γ) (mod 2)

δπ2 = nξ=−1(Γ) + nξ′=−1(P ) + nχ=−1(N) (mod 2)
(3.26)

Note that the C2 rotation in the N point is a rotation around the NP line, the mirror is
always about the plane perpendicular to the C4 or C2 axis.
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Figure 3.8. Brillouin Zone of the body centered cubic lattice

Due to the body centered cubic symmetry, ν1 = ν2 = ν3 is always satisfied. The
diagnostic method is given as five indices,

Z4, ν1, δ
+,0
2 , δ−,0

2 , δπ2 (3.27)

Derivation and Berry phase interpretation

The derivation is almost the same as that of the body centered tetragonal case, just
replacing the point M with H. The δ±,0

2 and δπ2 correspond to the blue loop and the violet
loop in Fig. 3.8, respectively.

54



Doctoral Dissertation

3.4 Material Examples

In this section, we calculate the δ indices for some materials. These examples are
“nodal line semimetals” that have (Z4; ν1ν2ν3) = (0; 000) but nontrivial δ indices. Note
that here the word “nodal line semimetals” just refers to the existence of band crossings
between the j-th band and the (j + 1)-th band, and materials given in this section can
have metallic Fermi surfaces.

3.4.1 Ca, Ba

In Ca and Ba [78], the indices are calculated by focusing on an occupied band. The
irreps of their occupied bands are the same and the irreps in each high symmetry point
are listed in Table 3.4. The indices are

(Z4, δ
+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 1) (3.28)

Ca (space group 225)

Band Γ point X point W point L point

index irrep : (χ, σ, ξ) irrep : χ, (σ⊥C4 , ξ), (σ⊥C2 , ζ) irrep : ξ′ irrep : χ

1 Γ+
1 : (+1,+1,+1) Γ+

1 : +1, (+1,+1), (+1,+1) Γ4 : −1 Γ+
1 : +1

Table 3.4: Irreps and symmetry eigenvalues of the occupied band in high
symmetry points in Ca (space group 225)

3.4.2 Face centered cubic SnSe

In FCC SnSe [79], the indices are calculated by focusing on five occupied bands. The
irreps in each high symmetry point are listed in Table 3.5. The indices are

(Z4, δ
+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 1) (3.29)

3.4.3 Ca2As

In Ca2As [81], the indices are calculated by focusing on seven occupied bands. The
irreps in each high symmetry point are listed in Table 3.6. The indices are

(Z4, ν1, δ
+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 0, 1) (3.30)
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SnSe (space group 225)

Band Γ point X point W point L point

index irrep : (χ, σ, ξ) irrep : χ, (σ⊥C4 , ξ), (σ⊥C2 , ζ) irrep : ξ′ irrep : χ

1 Γ+
1 : (+1,+1,+1) Γ+

1 : +1, (+1,+1), (+1,+1) Γ1 : +1 Γ+
1 : +1

2 Γ+
1 : (+1,+1,+1) Γ+

1 : +1, (+1,+1), (+1,+1) Γ4 : −1 Γ−
2 : −1

3

Γ−
4 :

(−1,+1,+i)

(−1,+1,−i)
(−1,−1,+1)

Γ−
2 : −1, (−1,+1), (+1,−1)

Γ5 :
+i

−i
Γ−
3 :

−1

−14
Γ−
5 :

−1, (+1,+i), (+1,−1)

−1, (+1,−i), (−1,+1)5 Γ4 : −1 Γ+
1 : +1

Table 3.5: Irreps and symmetry eigenvalues of the occupied bands in high
symmetry points in FCC SnSe.

Ca2As (space group 139)

Band Γ point X point P point N point

index irrep : (χ, σ, ξ) irrep : χ, (σ⊥C2 , ζ) irrep : ξ′ irrep : χ

1 Γ+
1 : (+1,+1,+1) Γ−

3 : −1, (+1,−1)
Γ5 :

+i

−i
Γ−
2 : −1

2
Γ+
5 :

(+1,−1,+i)

(+1,−1,−i)
Γ−
4 : −1, (+1,−1) Γ+

1 : +1

3 Γ+
3 : +1, (−1,−1)

Γ5 :
+i

−i
Γ+
1 : +1

4 Γ+
1 : (+1,+1,+1) Γ+

1 : +1, (+1,+1) Γ+
2 : +1

5 Γ−
2 : (−1,−1,+1) Γ+

4 : +1, (−1,−1) Γ1 : +1 Γ−
2 : −1

6
Γ−
5 :

(−1,+1,+i)

(−1,+1,−i)
Γ−
2 : −1, (−1,+1) Γ4 : −1 Γ−

1 : −1

7 Γ+
1 : +1, (+1,+1) Γ1 : +1 Γ−

2 : −1

Table 3.6: Irreps and symmetry eigenvalues of the occupied bands in high
symmetry points in Ca2As (space group 139).

3.5 Summary of this chapter

In this chapter, a diagnostic method for nodal line semimetals that violate the compat-
ibility condition has been obtained by subgroup reduction in C4 symmetric space groups.
The obtained method is based on the four δ indices and they have been rewritten by
using the symmetry and BZ of each Bravais lattice before the subgroup reduction. The
obtained method has been shown with specific examples to be able to diagnose nodal line
semimetals that had not been diagnosed by previous methods.
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Chapter 4

Intrinsic link between nodal line
semimetals and topological
crystalline insulators

In chapter 3, we have defined the δ indices as a new diagnostic method of nodal
line semimetals and have confirmed that some materials are diagnosed as nodal line
semimetals by the indices. In this chapter, we move on to the other question presented
in chapter 2 : to what kind of topological insulator class are these nodal line semimetals
linked when SOC is introduced? However, unlike in the case of the Z4 index, the link
is not obvious from the calculation formula of δ. Therefore, although we make some
generalizations, we perform some case studies based on the obtained material examples.

We construct effective models that describe the nodal lines in these materials and
prove they are linked to topological crystalline insulators by explicitly calculating topo-
logical invariants. Furthermore, we show that their nodal line configurations correspond
to what kind of topological invariants are nontrivial in the obtained topological crys-
talline insulators. This result shows that turning off SOC and examining the nodal line
configuration can distinguish the two topological crystalline insulator classes that have
not been distinguished by previous methods.

4.1 Nodal line semimetals in face centered cubic lat-

tice

First, we focus on the nodal line semimetals in the FCC lattice (Space group 225)
system. Based on the proposed material examples [78, 79] (section 3.4), we construct
a generalized two-bands effective model, which keeps the same nodal line structure as
the material examples. By using the model, we show that the nodal line in the system
is intrinsically linked to a mirror Chern number when SOC is introduced. Furthermore,
we show that the difference in the configuration of the nodal line corresponds to the
difference between the topological crystalline insulator classes. After the calculation and
discussion on the model, we show that the intrinsic line is confirmed by first-principles
calculations in some materials examples.
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4.1.1 Target system

We assume a nodal line semimetal in the FCC system without SOC (Fig. 4.1). To
focus on a more concrete system, we construct a half-filled two-bands simple effective
model based on some realistic materials such as FCC Ca, Sr, Yb, and SnSe, which are
proposed as nodal line semimetals [78, 79]. It is reported that the nodal lines in the FCC
systems show two different configurations (Fig. 4.1(b) and (d)) and they are connected by
a parameter tuning [78]. To describe the realistic systems well and obtain a generalized
model, the two-bands model should satisfy the following assumptions.

(i) The nodal lines are given as a result of band inversion at the L point and they are
protected by TR+inversion symmetry [41, 65] [Fig. 4.1(b)].

(ii) The band inversion at the L point does not make a mirror protected nodal line on
the (110) plane, i.e., the inverted two bands have the same mirror eigenvalues.

(iii) By tuning a parameter, nodal lines touch each other and reconnection occurs on
the Σ line [Fig. 4.1(c)].

(iv) After the reconnection, the nodal lines are located around the W point and there is
no nodal line on the (001) plane [Fig. 4.1(d)].

To satisfy the assumption (i), the band structure of the two-bands model must have a
crossing point on the C2-invariant line (L-W line or Q line), and the two bands must have
different C2 rotational eigenvalues. Considering these assumptions, we can determine the
irreps of bands in the two-bands model as following. The irreps on each high symmetry
point and line and their labeling are given in Tables 4.1, 4.2, 4.3.

L point

The two bands must satisfy the following conditions.

• The two bands have the same mirror eigenvalue for mv (no nodal line on the mirror
plane).

• The two bands have different C2 rotation eigenvalues.

• The two bands are nondegenerate bands.

The pair of two bands that satisfy these conditions is
{

Γ+
1 ,Γ

−
2

}
or

{
Γ+
2 ,Γ

−
1

}
.

W point

The two bands must satisfy the following conditions.

• The two bands have the same mirror eigenvalue for md (no nodal line on the mirror
plane).

• The two bands have different C2 rotation eigenvalues.

• The two bands are nondegenerate bands.

The pair of two bands that satisfy these conditions is {Γ1,Γ4} or {Γ2,Γ3}.
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Figure 4.1. (a) Brillouin zone of face centered cubic lattice (Space group #225,
Fm3̄m). (b)(d) Nodal lines (red lines) in the system we assume. The config-
uration of nodal lines depends on a parameter. The (001) mirror plane and
the (110) mirror plane is shown as green and red planes, respectively. The
hexagonal surface of the BZ is shown as a blue plane for convenience, though
it is not a high-symmetry plane.
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Σ line

The two bands must satisfy the following conditions.

• The two bands have the same mirror eigenvalue for mx (no nodal line on the mirror
plane).

• The two bands have the same mirror eigenvalue for my (no nodal line on the mirror
plane).

• The two bands are nondegenerate bands.

The pair of two bands which satisfy these conditions is {Γ1,Γ1} or {Γ2,Γ2} or {Γ3,Γ3}
or {Γ4,Γ4}.
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Table 4.1: Point group D3d and its irreps. This point group is a little
group of the L-point. The mv is the (110) mirror, and the C ′

2 is the
rotation around the Q-line.

L point

D3d E 2C3 3C ′
2 I 2IC3 3mv

Γ+
1 1 1 1 1 1 1

Γ+
2 1 1 −1 1 1 −1

Γ+
3 2 −1 0 2 −1 0

Γ−
1 1 1 1 −1 −1 −1

Γ−
2 1 1 −1 −1 −1 1

Γ−
3 2 −1 0 −2 1 0

Table 4.2: Point group D2d and its irreps. This point group is a little
group of the W-point. The md is the (001) mirror, and the C ′

2 is the
Q-line.

W-point

D2d E 2IC4 C2 2C ′
2 2md

Γ1 1 1 1 1 1

Γ2 1 1 1 −1 −1

Γ3 1 −1 1 1 −1

Γ4 1 −1 1 −1 1

Γ5 2 0 −2 0 0

Table 4.3: Point group C2v and its irreps. This point group is a little
group of the Σ-line. The my is the (110) mirror, and the mx is the (001)
mirror.

Σ-line

C2v E C2 my mx

Γ1 1 1 1 1

Γ2 1 1 −1 −1

Γ3 1 −1 1 −1

Γ4 1 −1 −1 1
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Band connection

By considering the compatibility condition [82, 56], we can decide how the bands in
each high-symmetry point (line) are connected. When the system has nodal lines, the
irreps of the occupied band on the L point and the W point must violate the compatibility
condition along the L-W line, i.e., the eigenvalues of the C2 rotation along the L-W are
different in both ends. The possible combinations are given in Table 4.4. A schematic
picture of the band dispersion of the case Table 4.4(1) is shown in Fig. 4.2.

Table 4.4: Possible set of irreps of bands on each high-symmetry points.

L-point Σ-line W-point

(1) {Γ+
1 ,Γ

−
2 } {Γ1,Γ1} {Γ4,Γ1}

(2) {Γ+
1 ,Γ

−
2 } {Γ3,Γ3} {Γ3,Γ2}

(3) {Γ+
2 ,Γ

−
1 } {Γ2,Γ2} {Γ3,Γ2}

(4) {Γ+
2 ,Γ

−
1 } {Γ4,Γ4} {Γ4,Γ1}

Figure 4.2. Schematic picture of the band dispersion of the case (1) in Table
4.4. The band crossing is placed on the right side of the Σ line for convenience.
However, the band crossing emerges in a generic point, and thus it is not
generally determined on which side it should be.
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4.1.2 k · p model calculations

Since the irreps of bases have been obtained, we construct two-by-two models with
nodal line by using the k · p perturbation within the second-order of |k| for each high
symmetry point (line). Here we call the constructed model “local models” at the L point,
the W point, and the Σ line. Although we have obtained four possible combinations of
irreps, the following discussion is the same for all of them and thus the case (1) in Table
4.4.

When SOC term with an amplitude λ(> 0) is introduced into the local models, they
get gapped and the Berry curvature and the mirror Chern numbers can be calculated.
By considering a small SOC (small λ) case, we discuss an intrinsic link from nodal lines
to the mirror Chern numbers. Especially on Σ line, we discuss how the reconnection of
nodal lines affects the Berry curvature and the mirror Chern numbers. The results of
calculations in each local models are summarized in Fig. 4.8.

Before going to each local model, we clarify the definition of the mirror Chern number.
The mirror Chern number is defined in systems with significant SOC. When a system has
a mirror symmetry, the Hamiltonian on the mirror-invariant plane is block diagonalized
into two sectors with mirror eigenvalues1 ±i. Then, we can calculate the Chern number
in each sector, C+ and C−, and the mirror Chern number nM is given as

nM =
C+ − C−

2
. (4.1)

Note that C+ = −C− is always satisfied and thus we need to calculate only C+ .

L point

The coordinate system of the local model around the L point is shown in Fig. 4.3.
The origin is placed at the L point and the kz axis is parallel to the Λ line, which is the
C3 rotation axis. The kz axis is perpendicular to the hexagonal face of the BZ (the blue
plane in Fig. 4.1(a)). The kx axis is parallel to the Q line, which is the C ′

2 rotation axis.
The mv mirror-invariant plane, which is the (110) plane, is the kx = 0 plane.

By taking two bases that belong to Γ+
1 and Γ−

2 , the symmetry operators are written
as

C ′
2 → σz,

I → σz,

mv → σ0,

T → K,

(4.2)

where the σx,y,z are the Pauli matrices for orbitals and σ0 is the two-by-two identity
matrix. T is the TR operator and K is the complex conjugate operator. The local model

1Since spinful systems are transformed with a representation of SU(2), m2(= 2π rotation) gives −1.
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Figure 4.3. Coordinate system of the local model around the L point.

without SOC HL(kx, ky, kz) must satisfy

C ′
2
−1HL(kx, ky, kz)C

′
2 = HL(kx,−ky,−kz),

I−1HL(kx, ky, kz)I = HL(−kx,−ky,−kz),
m−1

v HL(kx, ky, kz)mv = HL(kx, ky,−kz),
T −1HL(kx, ky, kz)T = HL(−kx,−ky,−kz).

(4.3)

From these restrictions, HL(kx, ky, kz) is determined as

HL(k) = kzσy + (k2x + k2y + k2z − ∆2)σz, (4.4)

where ∆ is a real positive constant. We neglect some degree of freedom to make the
model simple, e.g., a constant energy shift by σ0, and the coefficient of the kz term. It is
because they are negligible in our calculation of the topological invariants. The gapless
points of this model are given as a solution of{

kz = 0
k2x + k2y + k2z − ∆2 = 0

. (4.5)

The solution of these equations is a ring with a radius ∆ on the kx-ky plane [Fig. 4.3].
When SOC is introduced, operations of the spin part are added to the symmetry

operators as

C ′
2 → iσzsx,

I → σzs0,

mv → − iσ0sx,

T → isyK,

(4.6)

64



Doctoral Dissertation

where sx,y,z are the Pauli matrices the spin degree of freedom (see Appendix D.2 for the
way to decide the spin parts). Within these restrictions, a Rashba-type SOC term [83, 84]
is allowed as the leading order of k. By introducing SOC terms with an amplitude λ(> 0),
the four-by-four local model with SOC is written as

HL,soc = HLs0 + λσx(−kysx + kxsy). (4.7)

As a result of introducing the SOC term, the nodal line vanishes and the model becomes
gapped.

On the (110) plane [the kx = 0 plane], the model is rewritten as

HL,soc =kzσys0 + (k2y + k2z − ∆2)σzs0 − λσxkysx. (4.8)

By using a unitary transformation U = σ0
1√
2
(sx + sz), the model is block diagonalized as

U †HL,socU =kzσys0 + (k2y + k2z − ∆2)σzs0 − λσxkysz. (4.9)

The (110) mirror operator is also transformed as U †(−iσ0sx)U = −iσ0sz. Now the two
blocks are corresponding to the blocks with +i and −i mirror eigenvalues, respectively.
They are explicitly given as

HL,+ = XLσx + YLσy + ZLσz, (4.10)

HL,− = −XLσx + YLσy + ZLσz, (4.11)

XL = λky , YL = kz , ZL = k2y + k2z − ∆2. (4.12)

The Berry connection of the occupied band of HL,+ is calculated as

AL,+,y =
−λkz

2RL(RL − ZL)
,

AL,+,z =
λky

2RL(RL − ZL)
,

(4.13)

where RL is defined as

RL =
√
X2

L + Y 2
L + Z2

L. (4.14)

The x component of the Berry curvature is given as

BL,+,x =
∂AL,+,z

∂ky
− ∂AL,+,y

∂kz

=
λ

2R3
L

(ZL + 2∆2).

(4.15)

The λ dependence of BL,+,x is shown in Fig. 4.4. When λ is large, for example
λ = 1.00, BL,+,x is spread widely. As λ getting smaller, sharper peaks appear on the
points where the nodal line penetrates when SOC is neglected. Since the mirror Chern
number is topological invariant, it must be independent with λ. Therefore, the nodal line
is considered as a source of the mirror Chern number. The Chern number of the occupied

65



Doctoral Dissertation

Figure 4.4. λ dependence of BL,+,x.
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band of the +i block, CL,+, is calculated by integrating the Berry connection on a circle
path (ky, kz) = (k cos θ, k sin θ),

CL,+ =
1

2π

∮
dk ·A

=
1

2π

∫ 2π

0

dθ
λk2

k2(cos2 θ + λ2 sin2 θ)

=
λ

|λ|
.

(4.16)

Here we assume k ≫ 1, and then RL ∼ |ZL| and RL − ZL ∼ X2
L+Y 2

L

2|ZL|
. Using the relation

CL,− = −CL,+, the mirror Chern number nL,M(110)
of this local model is given as

nL,M(110)
=

CL,+ − CL,−
2

=
λ

|λ|
= 1. (4.17)

It is proved that the mirror Chern number of this local model is nL,M(110)
= 1 [Fig.

4.8(d-1)]. Since there are two nonequivalent L point on the (110) plane, the mirror Chern
number of the whole BZ is nM(110)

= 2 [Fig. 4.8(f-1)]. Here nonequivalent means that
the two L points are not connected by the reciprocal lattice vectors.

W point

The coordinate system of the local model around the W point is shown in Fig. 4.5.
The origin is placed at the W point and the kz axis is parallel to the Z line, which is the
C2 rotation axis. The md mirror-invariant plane, which is the (001) plane, is the kx = 0
plane. The Q line, which is C ′

2 rotation axis, is a line represented as {kx + ky = 0 and
kz = 0}.

By taking two bases the belong to Γ1 and Γ4, the symmetry operators are written as

C ′
2 → σz,

md → σ0,

T → K.
(4.18)

The local model without SOC HW (kx, ky, kz) must satisfy

C ′
2
−1HW (kx, ky, kz)C

′
2 = HW (−ky,−kx,−kz)

m−1
d HW (kx, ky, kz)md = HW (−kx, ky, kz)
T −1HW (kx, ky, kz)T = HW (−kx,−ky,−kz)

(4.19)

From these restrictions, HW (kx, ky, kz) is determined as

HW (k) = (kz + ak2x − ak2y)σy + (k2x + k2y + k2z − ∆2)σz, (4.20)

where ∆(> 0) and a are real constants. Here, irrelevant terms are neglected again. In this
model, a nodal line emerges around the W point and it is oscillating in the kz direction,
keeping C2 rotation symmetry around the kz axis [Fig. 4.5].
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Figure 4.5. Coordinate system of the local model around the W point.

When SOC is introduced, the symmetry operators with spin parts are written as

C ′
2 → i

1√
2
σz(sx + sy),

md → − iσ0sx,

T → isyK.

(4.21)

The four-by-four local model with SOC (amplitude λ) is written as

HW,soc(k) = HW s0 + λσx(−kysx + kxsy). (4.22)

On the (001) plane [the kx = 0 plane], the model is rewritten as

HW,soc =(kz − ak2y)σys0 + (k2y + k2z − ∆2)σzs0 − λσxkysx. (4.23)

By using a unitary transformation U = σ0
1√
2
(sx + sz), the model is block diagonalized as

U †HW,socU =(kz − ak2y)σys0 + (k2y + k2z − ∆2)σzs0 − λσxkysz. (4.24)

The (001) mirror operator is also transformed as U †(−iσ0sx)U = −iσ0sz. The two block
with +i and −i mirror eigenvalues are explicitly given as

HW,+ = XWσx + YWσy + ZWσz, (4.25)

HW,− = −XWσx + YWσy + ZWσz, (4.26)

XW = λky , YW = kz − ak2y , ZW = k2y + k2z − ∆2. (4.27)
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The Berry connection of the occupied band of HW,+ is calculated as

AW,+,y =
−λ(kz + ak2y)

2RW (RW − ZW )
,

AW,+,z =
λky

2RW (RW − ZW )
,

(4.28)

where RW is defined as

RW =
√
X2

W + Y 2
W + Z2

W . (4.29)

The x component of the Berry curvature is given as

BW,+,x =
∂AW,+,z

∂ky
− ∂AW,+,y

∂kz

=
λ

2R3
W

(ZW + 2∆2 + 2ak2ykz).

(4.30)

The λ dependence of BW,+,x is shown in Fig. 4.6. Similarly to the case of the L
point, the sharp peak feature in a small λ region is seen. Therefore, the nodal line is
considered as a source of the mirror Chern number also in this case. The Chern number
of the occupied band of the +i block is calculated by integrating the Berry connection
on a closed path (ky, kz) = (k cos θ, k sin θ + ak2 cos2 θ),

CW,+ =
1

2π

∮
dk ·A

=
1

2π

∫ 2π

0

dθ
λk2

k2(cos2 θ + λ2 sin2 θ)

=
λ

|λ|
.

(4.31)

Note that the closed path always involves the points where sharp peaks appear. The
mirror Chern number nW,M(001)

is given as

nW,M(001)
=
CW,+ − CW,−

2
=

λ

|λ|
= 1 (4.32)

It is proved that the mirror Chern number of this local model is calculated as nW,M(001)
=

1 [Fig. 4.8(d-3)]. There are four nonequivalent X points on the (001) plane and the mirror
Chern number of the whole BZ is calculated as nM(001)

= 4 [Fig. 4.8(f-2)].

Σ line

The coordinate system of the local model around the Σ line is shown in Fig. 4.7.
Now the local model should be constructed to represent the reconnection of nodal lines
by tuning a parameter. The symmetry of the FCC lattice requires that the reconnection
of the nodal lines should occur on the Σ line. The origin is placed at the point where the
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Figure 4.6. λ dependence of BW,+,x.
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Figure 4.7. Coordinate system of the local model around the Σ line.

reconnection of nodal lines occurs. The kz axis is parallel to the Σ line. The (001) mirror
plane and the (110) mirror plane are the kx = 0 plane and the ky = 0 plane, respectively.

By taking two bases that belong to the same irrep Γ1, the symmetry operators are
written as

mx → σ0,

my → σ0,

T → K.
(4.33)

The local model without SOC HΣ(kx, ky, kz) must satisfy

m−1
x HΣ(kx, ky, kz)mx = HΣ(−kx, ky, kz),

m−1
y HΣ(kx, ky, kz)my = HΣ(kx,−ky, kz),
T −1HΣ(kx, ky, kz)T = HΣ(−kx,−ky,−kz).

(4.34)

To satisfy these restrictions and represent the nodal line reconnection, HΣ(kx, ky, kz) is
determined as

HΣ(k) = kzσy + (k2x − k2y + k2z + b)σz, (4.35)

where b is a real tuning parameter. In this model, hyperbolic nodal lines emerge on the
kx-ky plane and a reconnection of them occurs at the origin when b = 0 [Fig. 4.7].

When SOC is introduced, the symmetry operators are written as

mx → − iσ0sx,

my → iσ0sy,

T → isyK.
(4.36)
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The four-by-four local model with SOC (amplitude λ) is written as

HΣ,soc(k) = HΣs0 + λσx(−kysx + kxsy), (4.37)

On the kx = 0 plane [the (001) mirror plane], the model is block diagonalized with a
unitary transformation U1 = σ0i

1√
2
(sx + sz) as

H
(kx=0)
Σ,+ = XΣ,xσx + YΣ,xσy + ZΣ,xσz, (4.38)

H
(kx=0)
Σ,− = −XΣ,xσx + YΣ,xσy + ZΣ,xσz, (4.39)

XΣ,x = λky , YΣ,x = kz , ZΣ,x = −k2y + k2z + b. (4.40)

The mirror operator about the kx = 0 plane is also transformed as U †
1(−iσ0sx)U1 =

−iσ0sz. The Berry connection of the occupied band of H
(kx=0)
Σ,+ is calculated as

A
(kx=0)
Σ,+,y =

λkz
2RΣ,(kx=0)(RΣ,(kx=0) − ZΣ,x)

,

A
(kx=0)
Σ,+,z =

−λky
2RΣ,(kx=0)(RΣ,(kx=0) − ZΣ,x)

,

RΣ,(kx=0) =
√
X2

Σ,x + Y 2
Σ,x + Z2

Σ,x

(4.41)

and the x component of the Berry curvature is given as

B
(kx=0)
Σ,+,x =

∂A
(kx=0)
Σ,+,x

∂ky
−
∂A

(kx=0)
Σ,+,x

∂kz

=
−λ

2R3
Σ,(kx=0)

(ZΣ,x − 2b).

(4.42)

When b > 0, the Berry curvature B
(kx=0)
Σ,+,x has sharp peaks [Fig. 4.8(c-2), top right] at

the points where the nodal lines penetrate when SOC is neglected. As b getting smaller,
the two peaks get closer, and they meet each other when b = 0 [Fig. 4.8(c-2), top middle]
and vanish in b < 0 [Fig. 4.8(c-2), top left]. The b dependence of the mirror Chern
number of this local model nΣ,M(001)

is numerically evaluated as

nΣ,M(001)
=

{
1 (b > 0)
0 (b < 0)

, (4.43)

and the result is shown in Fig. 4.8(d-2). The mirror Chern number is changed at b = 0.
Next, we focus on the ky = 0 plane. On the ky = 0 plane [the (110) mirror plane], the

model is block diagonalized with a unitary transformation U2 = σ0i
1√
2
(sy + sz) as

H
(ky=0)
Σ,+ = XΣ,yσx + YΣ,yσy + ZΣ,yσz, (4.44)

H
(ky=0)
Σ,− = −XΣ,yσx + YΣ,yσy + ZΣ,yσz, (4.45)
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XΣ,y = λkx , YΣ,y = kz , ZΣ,y = k2x + k2z + b. (4.46)

The mirror operator about the ky = 0 plane is also transformed as U †
2 iσ0syU2 = iσ0sz.

The Berry connection of the occupied band of H
(ky=0)
Σ,+ is calculated as

A
(ky=0)
Σ,+,x =

λkz
2RΣ,(ky=0)(RΣ,(ky=0) − ZΣ,y)

,

A
(ky=0)
Σ,+,z =

−λkx
2RΣ,(ky=0)(RΣ,(ky=0) − ZΣ,y)

,

RΣ,(ky=0) =
√
X2

Σ,y + Y 2
Σ,y + Z2

Σ,y

(4.47)

and the y component of the Berry curvature is given as

B
(ky=0)
Σ,+,y =

∂A
(ky=0)
Σ,+,x

∂kz
−
∂A

(ky=0)
Σ,+,z

∂kx

=
λ

2R3
Σ,(ky=0)

(ZΣ,y − 2b).

(4.48)

Contrary to the kx = 0 plane, the sharp peak feature of the Berry curvature on the ky = 0
plane is seen only when b < 0 [Fig. 4.8(c-2), bottom three panels]. The mirror Chern
number of this local model nΣ,M(110)

is numerically evaluated as

nΣ,M(110)
=

{
0 (b > 0)
1 (b < 0)

, (4.49)

and it also shows a contrasting behavior to nΣ,M(001)
[Fig. 4.8(d-2)].

In both of the results on the kx = 0 plane and the ky = 0 plane, the nodal lines
are considered as sources of the mirror Chern numbers. Furthermore, by comparing the
two results, we can see that the b = 0 is a phase transition point. Considering that the
b = 0 is the reconnection point of the nodal lines, the reconnection of nodal lines in the
system without SOC corresponds to the topological phase transition in the system with
SOC. Actually, when b = 0, the model Eq. (4.37) has a gapless point at k = 0. It is
reasonable because generally a gap closing is required for a topological phase transition
[17,35]. Finally, we calculate the mirror Chern numbers of the whole BZ. The mirror
numbers are nM(110)

= 0 and nM(001)
= 4 for b > 0, and nM(110)

= 2 and nM(001)
= 0 for

b < 0. Although the transition of the mirror Chern numbers is one by one in the local
model, the transition in the whole BZ occurs between nM(001)

= 4 and nM(110)
= 2. It is

explained as follows. The reconnections of the nodal lines occur in twelve points in the
BZ. In the BZ, there are three symmetric planes for the (001) plane, but on the other
hand, there are six symmetric planes for the (110) plane. Due to the difference of the
multiplicity, the one by one transitions in the reconnection points result in the two by
four transition in the whole BZ.

73



Doctoral Dissertation

Figure 4.8. (a) Schematic pictures of the two different configurations of nodal lines (red ring) in
the target systems (a-1)(a-3) and the reconnection of them on the Σ line (a-2). (b) Schematic
pictures of the local models and nodal lines around the L point (b-1), Σ line (b-2), and W
point (b-3). For (b-2), the left, middle, and right ones are the b < 0, b = 0, and b > 0 case,
respectively. (c) Momentum dependence of the Berry curvature. (c-1) (110) component of Berry
curvature in the local model around the L point. (c-2) Top (bottom) three panels are the (001)
component ((110) component) of the Berry curvature in the local model around the Σ line. For
both rows, the left, middle, and right ones are the b < 0, b = 0, and b > 0 case, respectively.
(c-3) (001) component of Berry curvature in the local model around the W point. (d) Mirror
Chern number of the local models around the L point (d-1), Σ line (with the b dependence),
and W point. (e) Symmetry-based indicator (space group 255). (f) Mirror Chern numbers of
the whole BZ. These values are calculated from (d) by counting how many L points (W points)
exist on the (110) mirror plane [(001) mirror plane].
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4.1.3 Discussion in the whole Brillouin zone

Although the local models are discussed separately, they are originated from a two-
bands model in the whole BZ as we assumed first. In the first assumption, there are two
nodal line semimetals with different nodal line configurations. One of them has nodal
lines roughly located around the L point [Fig. 4.8(a-1)], and the other has nodal lines
roughly located around the W point [Fig. 4.8(a-3)]. The former includes the local model
around the L point and the local model around the Σ line with b < 0. The latter includes
the local model around the W point and the local model around the Σ line with b > 0.
As shown in the local model calculations, when SOC is taken into account, the mirror
Chern numbers are calculated by counting how many nodal rings locate on the mirror
planes. The former nodal line semimetal is linked to the topological crystalline insulator
with (nM(110)

, nM(001)
) = (2, 0) [Fig. 4.8(f-1)], and the latter nodal line semimetal is

linked to the topological crystalline insulator with (nM(110)
, nM(001)

) = (0, 4) [Fig. 4.8(f-
2)]. Now the obtained topological classes are topological crystalline insulator class when
SOC is taken into account, and it has been known that there are eight topological classes
(including a trivial class) indicated by the symmetry-based indicator Z8 in FCC (#225)
with SOC [47]2. It is noteworthy how our obtained classes are classified by the symmetry-
based indicator Z8. Actually, both of the obtained classes have the same indicator Z8 = 4
[Fig. 4.8(e-1)]. The possible topological invariant combinations for Z8 = 4 are listed in
Table 4.5. It includes our obtained classes, of course. The reason why our obtained
classes have the same indicator is that the gap closing on the phase transition point, or
the reconnection of nodal lines in the system without SOC, occurs between the two bands
with the same irreps. Since the symmetry-based indicator checks the irreps of occupied
bands, it must be identical before and after the phase transition. However, our result
has shown that when SOC is turned off, there is a clear difference between nodal lines
penetrating the (110) mirror plane and nodal lines penetrating the (001) mirror plane.
Additionally, considering that the nodal line is crossing the Q line, it must penetrate
one of the mirror planes. This means that when SOC is taken into account, the system
cannot be topologically trivial and there are only two possible mirror Chern number
combinations. This is consistent with the result of the symmetry-based indicator.

In real materials, it is usually difficult to tune the amplitude of SOC. However, in
first-principles calculations, we can hypothetically calculate band dispersions without
SOC. The result obtained above shows that two different topological crystalline insulators
show different nodal line configurations when SOC is neglected, and examining the nodal
line configuration leads to a subdividing diagnostic method beyond the symmetry-based
indicator.

2Actually, four of them are prohibited by the compatibility condition in FCC.
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Space group #225 : Fm3̄m

Z8 weak nM(001)
nM(110)

4 000 0 2

4 000 4 0

Table 4.5: Possible topological invariant combinations for Z8 = 4 class in
the space group 225 with significant SOC excerpted from Supplementary
Table 7 in Ref.[49].
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4.1.4 Material examples

In this section, we show the link proved in the previous sections is confirmed in mate-
rial examples, FCC Ca and Ba. We calculate their band dispersions by the first-principles
calculation for both cases with and without SOC. These calculations are performed by
QUANTUM ESPRESSO [63], which uses the density functional theory [85, 86]. For
the exchange-correlation term, generalized gradient approximation with Perdew-Burke-
Ernzerhof parametrization [87] is used. The plane wave energy cutoff is set to 50 Ry and
the k-point grid on the BZ is taken as 8× 8× 8 mesh. The lattice constants are 5.601 Å
for Ca and 6.0520 Å for Ba [64, 59]. With the output of the first-principles calculations,
we calculate the Wannier centers on the mirror-invariant planes by using Z2PACK code
[88, 89]. Seeing the Wannier center flows, we calculate the mirror Chern numbers for the
cases with SOC (See Appendix D.3 for the details).

The result for Ca is shown in Fig. 4.9. In Fig. 4.9(a), which is a band dispersion
without SOC, we can see a band crossing on the W-L line (denoted by a red circle). As
explained before, this band crossing is a part of a nodal line. For the (110) and (001)
mirror planes, the band gaps between the two bands that make the nodal line are shown
in Figs.4.9(e) and 3(f). The rectangle area of Fig. 4.9(e) [the square area of Fig. 4.9(f)] is
equivalent to the red rectangle (the green square) in Fig. 4.9(d). In Ca, there are gapless
points, which are plotted with red points, only on the (110) mirror plane. Therefore, Ca
has Fig. 4.8(a-1) type nodal lines when SOC is neglected. Let us introduce SOC into
this system. The system is confirmed to have Z8 = 4 by using the irreps given by the
first-principles calculation [Table 4.6]. The band crossing on the W-L line slightly gaps
out by the effect of SOC [Fig. 4.9(c)]. As a result, the band around −4 eV ∼ 0 eV has
no gapless point. Although Ca is a metal, we focus on the topological properties of a
gap above the band and we can calculate the mirror Chern numbers. The mirror Chern
numbers are calculated as winding numbers of Wannier centers on the mirror-invariant
planes [Figs.4.9(g), 3(h)]. We can see the winding number on the (110) mirror plane is
2, while that on the (001) mirror plane is 0. Therefore, Ca with SOC is a “topological
crystalline insulator”3 with (nM(110)

, nM(001)
) = (2, 0) [Fig. 4.8(f-1) phase].

Next, we move to the result for Ba shown in Fig. 4.10. In Fig. 4.10(a), we can
see a band crossing on the W-L line also in Ba (denoted by a red circle). This band
crossing is also a part of a nodal line and Ba is also confirmed to be indicated with
(Z4, δ

+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 1). The band gaps between the two bands on the (110) and
(001) mirror planes are shown in Figs.4.10(e), 4(f). In contrast to the Ca, there are
gapless points only on the (001) mirror plane in Ba. Therefore, Ba has Fig. 4.8(a-3) type
nodal lines when SOC is neglected. Let us introduce SOC into this system. The system
is confirmed to have Z8 = 4 [Table 4.7]. The band crossing on the W-L line gaps out
by the effect of SOC [Fig. 4.10(c)]. As a result, the band around −3 eV ∼ 0 eV has no
gapless point. Here we also just focus on a gap above the band and consider Ba to be an
“insulator”. The calculated Wannier centers on the mirror-invariant planes are shown in
Fig. 4.10(g), 4(h). We can see the winding number on the (001) mirror plane is 4, while
that on the (110) mirror plane is 0. Therefore, Ba with SOC is a “topological crystalline
insulator” with (nM(110)

, nM(001)
) = (0, 4) [Fig. 4.8(f-2) phase].

3Note again that we are simply discussing the topological properties of the gap.
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Figure 4.9. Band dispersion and Wannier centers of FCC Ca. (a) Band dispersion (without
SOC). A band crossing exists on the L-W line and it is denoted with a red circle. (b)(c) Enlarged
band dispersion (without SOC) around the band crossing. (c) Enlarged band dispersion (with
SOC). The two bands are slightly gaped out by the effect of SOC. (d) BZ and mirror-invariant
planes. (e) Band gap in the (110) mirror-invariant plane (without SOC). The rectangle area is
equivalent to the red rectangle in (d). (f) Band gap in the (001) mirror-invariant plane (without
SOC). The square area is equivalent to the green square in (d). (g) Wannier center in (110)
mirror-invariant plane (with SOC). The left (right) panel shows the Wannier center of the +i
(−i) mirror eigenvalue sector. The Wannier center is winding two times. (h) Wannier center
in (001) mirror-invariant plane (with SOC). The left (right) panel shows the Wannier center of
the +i (−i) mirror eigenvalue sector.
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Figure 4.10. Band dispersion and Wannier centers of FCC Ba. (a) Band dispersion (without
SOC). A band crossing exists on the L-W line and it is denoted with a red circle. (b) Enlarged
band dispersion (without SOC) around the band crossing. (c) Enlarged band dispersion (with
SOC). The two bands are gaped out by the effect of SOC. (d) BZ and mirror-invariant planes.
(e) Band gap in the (110) mirror-invariant plane (without SOC). The rectangle area is equivalent
to the red rectangle in (d). (f) Band gap in the (001) mirror-invariant plane (without SOC).
The square area is equivalent to the green square in (d). (g) Wannier center in (110) mirror-
invariant plane (with SOC). The left (right) panel shows the Wannier center of the +i (−i)
mirror eigenvalue sector. (h) Wannier center in (001) mirror-invariant plane (with SOC). The
left (right) panel shows the Wannier center of the +i (−i) mirror eigenvalue sector. The Wannier
center is winding four times.
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Table 4.6: Irreps of the occupied band of FCC Ca.

(Ca) Γ X L W

w/o SOC Γ+
1 Γ+

1 Γ+
1 Γ4

w/ SOC Γ+
6 Γ+

6 Γ+
4 Γ7

Table 4.7: Irreps of the occupied band of FCC Ba.

(Ba) Γ X L W

w/o SOC Γ+
1 Γ+

1 Γ+
1 Γ4

w/ SOC Γ+
6 Γ+

6 Γ+
4 Γ7

4.1.5 Summary of section 4.1

In this section, we have discussed what kind of topological classes emerge from nodal
line semimetals with (Z4, δ

+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 1) in FCC when SOC is introduced.
Our model calculation proved that these nodal line semimetals are linked to topological
crystalline insulator classes. Furthermore, the difference in nodal line configurations
corresponds to the difference in topological invariants. We also showed that this link is
actually found in some material examples by using the first-principles calculations. In
this link, two topological crystalline insulator phases, which can not be distinguished
by previous diagnostic methods are divided. This result indicates that it is possible to
diagnose topological crystalline insulators that are not distinguished in previous methods
by hypothetically neglecting SOC and performing first-principles calculations.4

4However, not all nodal line semimetals are linked to topological crystalline insulators. For example, in
FCC, a band inversion between Γ+

1 and Γ+
2 at the X point produces nodal lines when SOC is neglected,

but no nontrivial mirror Chern number emerges from them when SOC is introduced although they
penetrate a mirror-invariant plane.

80



Doctoral Dissertation

81



Doctoral Dissertation

4.2 Nodal line semimetals in body centered tetrago-

nal lattice

We focus on an example of nodal line semimetal in the body centered tetragonal
lattice (space group 139). In section 3.4, we have confirmed that Ca2As is a nodal line
semimetal with (Z4, ν1, δ

+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 0, 1). Also for this system, we discuss the
link between the nodal lines and the mirror Chern number as in section 4.1.

4.2.1 Target system and nodal lines

The Ca2As is a body centered tetragonal crystal system [Fig. 4.11(a)]. In the (con-
ventional) unit cell, there are 8 Ca atoms and 4 As atoms. The atoms that are connected
by symmetry operations are labeled with the same name as Ca(4c), Ca(4e), and As(4e).
Here, 4c and 4c is the name of the Wyckoff position.

The results of the first-principles calculation for the electronic band dispersion without
SOC is shown in Fig. 4.11(c). We can see that a band inversion occurs at the P point
and a gapless node appears on the P-N line, that is a C2-invariant line. This gapless
node is a part of a line node which is indicated by δπ2 . The schematic picture of the
configuration of the nodal line is shown in Fig. 4.11(e). The nodal line penetrates the
(11̄0) mirror-invariant plane.

4.2.2 Nodal line and the mirror Chern number

We discuss the intrinsic link between the nodal line and the mirror Chern numbers in
Ca2As. However, the first-principles calculation has given the irreps of the inverted bands
at the P point as Γ1 and Γ4. The symmetry of the P point and the irreps of the inverted
bands are exactly the same as those used in the discussion of the W point in the FCC
lattice, and thus the topological properties of the k · p model are calculated in the same
way. Therefore, the single nodal ring around the P point is linked to the mirror Chern
number nP,M(11̄0)

= 1. Unlike the case of FCC lattice, there are only two nonequivalent P

points on the (11̄0) plane in the BZ of the body centered tetragonal lattice. As a result,
it is revealed that the nodal line semimetal Ca2As is linked to a topological crystalline
insulator with nM(11̄0)

= 2 when SOC is introduced.

When SOC is introduced, the symmetry-based indicator of Ca2As is (Z2,Z8) = (0, 4),
and possible combinations of topological invariants are listed in Table 4.8. Although
there are four possible combinations, only two of them have nM(11̄0)

= 2. Furthermore,
considering that there is no nodal line other than the ones around the P points, the other
mirror Chern numbers are estimated to be 0. Therefore, by combining the symmetry-
based indicator and the discussion of nodal line configurations, we can diagnose the
topological class of Ca2As with SOC as (nM(001)

, nM(11̄0)
, nM(100)

) = (0, 2, 0). This result
is consistent with a previous study that numerically calculated the mirror Chern numbers
[81]. As in the case of the face centered cubic lattice, a subdividing diagnosis is realized
by examining the nodal line configuration.
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Figure 4.11. (a) Crystal structure of the Ca2As. (b) BZ of the system. n. The
green and purple planes are mirror-invariant planes. (c) Band dispersions and
density of states (DOS) pictures without SOC for Ca2As. In the panel of DOS,
projected DOS to each atom and each orbital are also shown. (d) Magnified
picture of the band dispersion around X and P points. In the magnified band
dispersion, the irreps of each band are also shown. (e) Schematic pictures of
the configuration of nodal lines.
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Table 4.8: Possible combinations of topological invariants for (Z2,Z8) =
(0, 4) excerpted from Supplementary Table 7 in Ref.[49].

(Z2,Z8) (ν0; ν1ν2ν3) nM(001)
nM(11̄0)

nM(100)

(0,4) (0;000)

0 0 2

0 2 0

4 0 0

4 2 2

Nodal lines in the related materials

Some materials in related materials (Ca2As family, X2Y , X =Ca, Sr, Ba, Y =Sb, As,
Bi) are nodal line semimetals. All of them have different nodal line configurations than
Ca2As, and they are diagnosed by (Z4; ν1). In contrast to Ca2As, the nodal line in these
materials are fixed in a mirror-invariant plane. By thigh-binding model calculation, it is
proved that the mirror protected nodal line also works as a source of the mirror Chern
number [Fig. 4.12]. However, since a link form Z2 indicated nodal line semimetals strays
from the mainstream of this dissertation, see Appendix E for the details.

4.2.3 Summary of section 4.2

In this section, we have shown that a body centered tetragonal lattice system Ca2As,
which has (Z4, δ

+,0
2 , δ−,0

2 , δπ2 ) = (0, 0, 0, 1), is linked to a topological crystalline insulator
class with a nontrivial mirror Chern number. This link can be used to determine a
topological crystalline insulator class from the candidates given by the symmetry-based
indicator, and thus it leads to a subdividing diagnostic method. Since the link confirmed
in the body centered tetragonal system is equivalent to that of the FCC lattice case, these
links are possibly generalized further.
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Figure 4.12. (a) Schematic pictures of the configuration of nodal lines in case
where mirror-protected nodal lines exist. (b) Berry curvature on the mirror-
invariant (001) plane in the case where small SOC is taken into account. There
is a sharp ridge on the line where the mirror-protected nodal line exists when
SOC is neglected. (c) The absolute value of the Berry curvature on the mirror-
invariant (01̄1) plane in the case where small SOC is taken into account. There
are sharp peaks on the points where the nodal lines penetrate the mirror-
invariant plane when SOC is neglected. In both cases, the nodal lines can be
considered as a source of the Berry curvature.
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4.3 Nodal line semimetals in nonsymmorphic tetrag-

onal lattice

Finally, we focus on the space group 127, which is a nonsymmorphic tetragonal space
group5. It has been proposed in Ref.[90, 91] that due to the nature of the nonsymmorphic
operations, a distinctive type of nodal lines can emerge in the space group 127 without
SOC. We show that the nodal lines can be (partially) diagnosed by the δ indices, and
they are linked to glide-protected topological crystalline insulators.

4.3.1 Target system

The generators of the space group 127 are C4z, gy (glide), and I (inversion). Here,
the glide gy is defined as

gy =

{
my

∣∣∣∣12 1

2
0

}
: (x, y, z) → (x+

1

2
,−y +

1

2
, z). (4.50)

Since the generators include the C4z rotation, there is also gx glide

gx = gyC4
2 =

{
mx

∣∣∣∣12 1

2
0

}
: (x, y, z) → (−x+

1

2
, y +

1

2
, z). (4.51)

Due to the two glides gx and gy, a distinctive type of nodal lines called “concentric
intersecting coplanar ellipses (CICE) nodal lines” can emerge around the M point or A
point [Fig. 4.13]. The M point and A point have the same symmetry, and thus we focus
only on the M point.

First, we consider the case without SOC. Due to the symmetry of the space group
127, all bands in the M point are doubly degenerate. This degeneracy is protected by
the glide and TR symmetries, and thus they do not split on the glide-invariant planes.
Let us consider a double band inversion at the M point. Note that the degenerate
bands have the same mz eigenvalues (mz = IC4

2) [Table 4.9]. If the inverted bands
have different mz eigenvalues, two mirror-protected nodal lines emerge on the kz = 0
plane [Fig. 4.13(c)(d)]. Since the degeneracy at the M point is kept along the M-X
line (M-X’ line), the nodal lines intersect each other on the M-X line (M-X’ line). As
a result, CICE nodal lines emerge around the M point. Double band inversions that
produce the CICE nodal lines are M+

1 ⊕M+
4 ↔ M−

1 ⊕M−
4 , M+

1 ⊕M+
4 ↔ M−

2 ⊕M−
3 ,

M+
2 ⊕M+

3 ↔ M−
1 ⊕M−

4 , M+
2 ⊕M+

3 ↔ M−
2 ⊕M−

3 , and M+
5 ↔ M−

5 . Assuming that
(Z4, ν1, ν3, δ

+,0
2 , δ−,0

2 ) = (0, 0, 0, 0, 0) before the double band inversion6, we can calculate
the indices obtained after the double band inversion as (2, 0, 0, 1, 1) for the M+

5 ↔ M−
5

case, and (2, 0, 0, 0, 0) for the other cases. In this dissertation, we focus on the M+
5 ↔M−

5

case, which is newly diagnosed by the δ indices.
Next, we decide a topological invariant that we should calculate when SOC is in-

troduced. In the space group 127 with SOC, Ref.[92] have shown that there are glide-
protected topological crystalline insulator classes. These topological crystalline insulators

5“nonsymmorphic space groups” : space groups that include a glide or screw operation, regardless of
the choice of the origin.

6δ+,π
2 and δ−,π

2 have nothing to do with the M point, and thus we neglect them.
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Figure 4.13. (a) Schematic picture of CICE nodal lines. (b) BZ (kz = 0 slice)
and CICE nodal lines. They emerge around the M point and are fixed on the
kz = 0 plane (mirror-invariant plane). (c)(d) CICE nodal lines decomposed
into two ellipses. Both of them are protected by the mz mirror symmetry.

87



Doctoral Dissertation

Table 4.9: Irreps at the M point in the space group 127.

irrep E C4 I gy

M+
1 ⊕M+

4

(
1 0
0 1

) (
i 0
0 −i

) (
1 0
0 1

) (
i 0
0 −i

)
M−

1 ⊕M−
4

(
1 0
0 1

) (
i 0
0 −i

) (
−1 0
0 −1

) (
−i 0
0 i

)
M+

2 ⊕M+
3

(
1 0
0 1

) (
−i 0
0 i

) (
1 0
0 1

) (
i 0
0 −i

)
M−

2 ⊕M−
3

(
1 0
0 1

) (
−i 0
0 i

) (
−1 0
0 −1

) (
−i 0
0 i

)
M+

5

(
1 0
0 1

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
−1 0

)
M−

5

(
1 0
0 1

) (
0 1
1 0

) (
−1 0
0 −1

) (
0 −1
1 0

)

Figure 4.14. Doubly degenarate Dirac-cone-chaped surface states at the M̄
point.

have doubly degenerate Dirac-cone-shaped surface states at the M̄ point in the (001) sur-
face BZ [Fig. 4.14]. This glide-protected class is characterized by two Z4-valued glide7

invariant (γx, γy) = (2, 2). Interestingly, these invariants have not been diagnosed by the
previous diagnostic methods. Therefore, in the following section, we calculate the (γx, γy)
and discuss the link between the CICE nodal lines semimetals and the glide-protected
topological crystalline insulators.

7Actually, odd numbers are prohibited by the C4 symmetry. These glide invariants are defined also
in orthorhombic lattices and odd numbers are allowed in those cases.
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4.3.2 k · p model calculations

We assume a double band inversion between M+
5 and M−

5 at the M point and no other
band inversions at other high symmetry points. First, we neglect SOC and construct a
four-by-four model with CICE nodal lines by using k ·p perturbation around the M point.
Then, we introduce SOC terms and calculate the glide invariants.

When SOC is neglected, by taking four bases that belong to M+
5 and M−

5 , the sym-
metry operators are written as block-diagonal matrices8,

C4z = τxσ0,

gy = iτyσz,

I = τ0σz,

T = K.

(4.52)

Here, τx,y,z and σx,y,z are Pauli matrices. τx,y,z correspond to the representations of M±
5

[Table 4.9], and σx,y,z correspond to the “inter-representation” component. The k · p
order model (local model) without SOC HM(kx, ky, kz) must satisfy

C4
−1HM(kx, ky, kz)C4 = HM(−ky, kx, kz),
g−1
y HM(kx, ky, kz)gy = HM(kx,−ky, kz),
I−1HM(kx, ky, kz)I = HM(−kx,−ky,−kz),

T −1HM(kx, ky, kz)T = HM(−kx,−ky,−kz).

(4.53)

From these restrictions, HM(kx, ky, kz) is determined as

HM(k) = tkxkyτzσ0 + t′kxkyτzσ0 + (∆2 − k2x − k2y)τ0σz + kzτzσy, (4.54)

where t, t′, and ∆ > 0 are real constants. Note that the origin of (kx, ky, kz) is placed
at the M point. To obtain CICE nodal lines in the half-filled case, t > t′ must be
satisfied. Therefore, we assume t′ = 0 in the following discussions. The eigenvalues of
this Hamiltonian are

E1 =
√

(tkxky + (∆2 − k2x − k2y))2 + (kz)2,

E2 = −
√

(tkxky + (∆2 − k2x − k2y))2 + (kz)2,

E3 =
√

(−tkxky + (∆2 − k2x − k2y))2 + (kz)2,

E4 = −
√

(−tkxky + (∆2 − k2x − k2y))2 + (kz)2.

(4.55)

By solving E1 = E2 and E3 = E4, we obtain CICE nodal lines on the kz = 0 plane.

8Since the glide operation includes a fractional lattice translation, the glide eigenvalue is ±i in the M
point.
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Next, we introduce SOC terms. The symmetry operators are written as

C4z = τxσ0
1√
2

(s0 − isz),

gy = τyσzsy,

I = τ0σzs0,

T = isyK,

(4.56)

where sx,y,z are the Pauli matrices the spin degree of freedom. Within these restrictions,
the eight-by-eight local model with SOC is written as

HM,soc = HMs0 + v1τyσy(kxsx − kysy)

+ v2τxσx(kxsy − kysx) + v3τ0σx(kxsx + kysy),
(4.57)

where v1, v2, and v3 are real parameters that represent the amplitude of SOC.
The glide invariants are evaluated by using Wilson loop eigenvalue diagrams (≃ Wan-

nier cneter)9. In the calculation, we calculated a kz integral [Fig. 4.15(a), green dashed
lines] and thus the Wilson loop is expressed as W (kx, ky). Originally, to evaluate the
glide invariant γx (γy), we need to plot W (kx, ky) along X̄ ′Γ̄X̄M̄ X̄Γ̄X̄ ′M̄ (see Fig. 4.14
for the definition of X̄ ′ and so on). However, we assumed that band inversions occur
only around the M point and we are interested in the topological invariants linked to the
CICE nodal lines. Therefore, we focus only on the X̄M̄ segment and X̄ ′M̄ segment to
evaluate γx and γy, respectively [Fig. 4.15(a), green solid line].

X̄M̄ line

The X̄M̄ line corresponds to the gx-invariant plane kx = 0 in the local model Eq.
(4.57). On the gx-invariant plane, the local model is written as

Hkx=0
M,soc =

(
∆2 − k2y

)
τ0σzs0 + kzτxσys0

− v1kyτyσysy − v2kyτxσxsx + v3kyτ0σxsy.
(4.58)

This model can be block diagonalized into two sectors with gx eigenvalues ±1. By using a
unitary transformation U = 1√

2
(τzσzsz + iτxσ0sx), the glide operator gx = gyC4

2 = τyσzsy

is transformed as U †τyσzsyU = τ0σ0sz and the sector with glide eigenvalue +1 is written
as

Hkx=0
M,+ =

(
∆2 − k2y

)
τ0σz + kzτxσy

+ v1kyτ0σx − v2kyτzσz − v3kyτyσy.
(4.59)

We calculate the Wilson loop for the occupied two bands. However, this model is not
periodic in the z direction, and thus we need to fix the wavefunctions in the both ends of kz
to avoid gauge issues in the numerical evaluation. When we assume |kz| >> 1, the model
is Hkx=0

M,+ ≃ kzτxσy and the occupied states are 1√
2
(isgn(kz), 0, 0, 1) and 1√

2
(0, isgn(kz), 1, 0)

for each end. The Wilson loop is effectively calculated like Fig. 4.15(B).

9Since all bands are degenerate, we need to evaluate the Wilson loop. See Appendix D.3 for details.
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The evaluated Wilson loop eigenvalue diagrams is shown in the left half of Fig. 4.15(c)
and (d). (c) is for t = 1.0, v1 = 0.1, v2 = 0.05, v3 = 0 (relatively large SOC), and (d) is
for t = 1.0, v1 = 0.02, v2 = 0.01, v3 = 0 (small SOC)10.

M̄X̄ ′ line

The M̄X̄ ′ line corresponds to the gy-invariant plane ky = 0 in the local model Eq.
(4.57). On the gy-invariant plane, the local model is written as

H
ky=0
M,soc =

(
∆2 − k2x

)
τ0σzs0 + kzτxσys0

+ v1kxτyσysx + v2kxτxσxsy + v3kxτ0σxsx
(4.60)

By using a unitary transformation U = 1√
2

(τ0σ0s0 + iτyσzs
x), the glide operator gy is

transformed as U †τyσzsyU = τ0σ0sz. The model is also block diagonalized and the sector
with glide eigenvalue +1 is written as

H
ky=0
M,+ =

(
∆2 − k2x

)
τ0σz + kzτxσy

− v1kxτ0σx + v2kxτzσy − v3kxτyσy.
(4.61)

In the numerical evaluation of the Wilson loop, the wavefunctions in both ends are fixed
in the same way as the X̄M̄ line.

The evaluated Wilson loop eigenvalue diagrams are shown in the right half of Fig.
4.15(c) and (d).

γx and γy

The glide invariant γx (γy) is pictorially calculated [92] from the Wilson loop eigenvalue
diagrams [Fig. 4.15(c)(d)] :

1. Draw a horizontal reference line across the diagram.

2. Count the number of times a positively sloped Wilson eigenvalue band crosses the
reference line along the X̄M̄ segment (M̄X̄ ′ segment) and subtract from it the
number of times a negatively sloped band crosses the reference line along the same
segment. Multiply the total by 2.

3. Take mod 4, it is γx (γy)

We can see the glide invariants are (γx, γy) = (2, 2). Furthermore, the small SOC case
[Fig. 4.15(d)] shows that the Wilson eigenvalue bands quickly winds at the point where
the CICE nodal lines penetrate the glide-invariant plane. From this perspective, we can
say that the CICE nodal lines are a source of nontrivial glide invariants (2, 2).

10As long as v3 ≃ v1, v2, or smaller, the topological nature of the diagrams is not changed.
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Figure 4.15. (a) CICE nodal lines and the path to evaluate the Wilson loop.
The Wilson loops are evaluated in the z direction (green dashed line), and the
Wilson loop eigenvalue diagrams are plotted along the X̄M̄X̄ ′ line (green solid
line). (b) Schematic picture of the gauge fixing in the numerical evaluation
of the Wilson loop. (c) Obtained Wilson loop eigenvalue diagram for t =
1.0, v1 = 0.1, v2 = 0.05, v3 = 0 (relatively large SOC) (d) Obtained Wilson
loop eigenvalue diagram for t = 1.0, v1 = 0.02, v2 = 0.01, v3 = 0 (small SOC).
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4.3.3 Summary of section 4.3

In this section, we have focused on a CICE nodal lines semimetal that is given by a
double band inversion between M+

5 and M−
5 at the M point. We have shown that the

CICE nodal lines semimetal has nontrivial indices (Z4, ν1, ν3, δ
+,0
2 , δ−,0

2 ) = (2, 0, 0, 1, 1),
and it is linked to glide-protected topological crystalline insulator with (γx, γy) = (2, 2)
when SOC is introduced. This result suggests that by finding the CICE nodal lines
semimetals with nontrivial δ indices, we can indirectly find a glide-protected topological
insulator class, which has not been diagnosed by previous diagnostic methods.

4.4 Summary of this chapter

In this chapter, we have looked at three examples of nodal line semimetals that are
newly diagnosed with the δ indices. In the case of the FCC lattice, we have shown
that the nodal line semimetals are linked to topological crystalline insulators with a
nontrivial mirror Chern number. We have also shown that the nodal lines are considered
as a source of the mirror Chern numbers, and thus the difference in the configurations
of the nodal lines correspond to the difference in the classes of topological crystalline
insulators. In the case of the body centered tetragonal lattice, we have seen the same link
as for the case of FCC. In the case of nonsymmorphic tetragonal lattice, we have shown
that a CICE nodal lines semimetal is linked to a glide-protected topological crystalline
insulator. Also, in this case, the CICE nodal lines are considered as a source of nontrivial
glide invariants. In these examples, it has been shown that by hypothetically turning off
SOC in first-principles calculations and examining the configuration of the nodal lines,
we can diagnose the topological crystalline insulators that have not been diagnosed by
previous methods.

Although these results are still case studies, the intrinsic link between nodal line
semimetals and topological crystalline insulators is confirmed in many cases, and this
link is possibly generalized and can lead to more detailed diagnostic methods.
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Chapter 5

Summary

In this dissertation, we studied diagnostic methods for nodal line semimetals and
intrinsic links between nodal line semimetals and topological crystalline insulators.

In chapter 3, we derived the δ indices as a new diagnostic method for nodal line
semimetals that violate the compatibility condition. The δ indices were defined in space
groups that have the time-reversal, inversion, and four-fold rotation (or screw) symme-
tries, by using subgroup reductions of space groups. We derived explicit calculation
formulas of the δ indices for each of five Bravais lattices that have the above symme-
tries : (i) primitive tetragonal lattice, (ii) body centered tetragonal lattice, (iii) primitive
cubic lattice, (iv) face centered cubic lattice, and (v) body centered cubic lattice. The
calculation formulas were written with symmetry eigenvalues of wavefunctions in high
symmetry points of BZ in each Bravais lattice. In the derivation of the calculation for-
mulas, we needed to translate the symmetry eigenvalues of the subgroup to that of the
original space group. By combining the δ indices and the previous methods (Z4 and Z2

indices), we obtained sufficient diagnostic methods for nodal line semimetals protected
by time-reversal and inversion symmetries. We also confirmed that the δ indices diag-
nose nodal line semimetals that had not been diagnosed by the previous methods with
material examples.

In chapter 4, we studied intrinsic links between nodal line semimetals that were di-
agnosed by the δ indices and topological crystalline insulators, by introducing spin-orbit
coupling into the nodal line semimetals. We studied three cases : (a) nodal line semimetals
in the face centered cubic lattice and mirror-protected topological crystalline insulators,
(b) nodal line semimetals in the body centered tetragonal lattice and mirror-protected
topological crystalline insulators, and (c) concentric intersecting coplanar ellipses (CICE)
nodal lines semimetals in a nonsymmorphic tetragonal lattice and glide-protected topo-
logical crystalline insulators. The former two cases (a) and (b) were discussed based on
the material examples obtained in chapter 3, and the latter case (c) were discussed based
on theoretical proposals of previous studies. In the case (a) and (b), we showed that non-
trivial mirror Chern numbers emerge on the mirror-invariant plane that was penetrated
by the nodal lines when spin-orbit coupling was neglected. We also showed that the value
of the mirror Chern number corresponded to how many times the nodal lines penetrated
the plane. From these results, we concluded that the nodal line semimetals in the case
(a) and (b) were intrinsically linked to mirror-protected topological crystalline insulators.
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This intrinsic link was confirmed in real materials (Ca and Ba) by using first-principles
calculations. In the case of (c) we showed that nontrivial glide invariants emerged from
CICE nodal lines. Therefore, we concluded that the CICE nodal lines semimetals in the
case (c) were intrinsically linked to glide-protected topological crystalline insulators. In
all cases, the intrinsic links were able to use to diagnose topological crystalline insulators
the had not been diagnosed by the previous methods.

In the case (a) and (b), we could distinguish topological crystalline insulators by
hypothetically turning off spin-orbit coupling and examining the configuration of nodal
lines. In the case (c), it is indicated that the glide-protected topological crystalline in-
sulators, which were not diagnosed by previous methods, are found by neglecting SOC
and searching CICE nodal line semimetals. These results indicated that by using the in-
trinsic link and hypothetical SOC-neglecting first-principles calculations, we can enhance
the diagnostic methods of topological insulators with SOC. Furthermore, the intrinsic
link can be used in the topological materials design. As reviewed in chapter 1, graphene
decorated by heavy atom nanoparticles is a topological insulator. If SOC is introduced in
a δ-indicated nodal line semimetals similarly, the material should become a topological
crystalline insulator. Since the link is expected to be generally extended, the perspec-
tive of performing SOC-neglected calculations and considering the intrinsic link should
be a useful perspective from now on in many aspects including diagnostic methods and
materials design.

Finally, we describe future works. The confirmed intrinsic links between nodal line
semimetals and topological crystalline insulators are now just case studies. Although we
used generalized models within some assumptions, we need more careful discussion to
obtain a more general theory. Also, the diagnosis based on the confirmed links is not
necessarily a dramatic advance although it cut calculation costs somewhat. For example,
in the case of nodal line semimetals in the face centered cubic lattice, we need to check the
configuration of nodal lines to distinguish two topological crystalline insulators. However,
at least in our current understandings, we need to numerically evaluate Berry phases to
check the configuration, and it is not necessarily a “cheap” calculation. Therefore, we can
say that the main future works are a generalization of the intrinsic link and improvement
of the evaluation method of nodal line configurations.
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Appendix A

Derivations and notes of diagnostic
methods

A.1 Symmetry operators

In this section, we define the symbols of symmetric operations [Table.A.1].

E : The identical operation.

Cn : A 2π/n rotation. A rotation axis with the largest n is called “main axis”.

Cnz : A Cn rotation around the z axis.

C ′
2 : A π rotation whose axis is perpendicular to the main axis.

I : The space inversion.

mh : A mirror about the plane that is perpendicular to the main axis. (mh = IC2)

mv : A mirror about the plane that is parallel with the main axis and the C ′
2 axis.

md : A mirror about the plane that is parallel with the main axis

but not with the C2 axis.

mz : A mirror about the xy plane (perpendicular to the z axis).

Sn : A combination of a Cn rotation and the inversion (n = 3, 4, 6). (Sn = ICn)

Table A.1: Symbols of symmetry operators.

A.2 Irreducible representation

The Irreducible representations (irreps) are understood as a generalized conception
of the symmetry eigenvalues. The irreps for all space groups are listed in Ref.[56] or a
website [57] [93, 94, 95].
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For example, let us assume a little group of a high symmetry point that is invariant
in a C2 rotation, the inversion I, and a mirror m = IC2. For each occupied band, a
C2 eigenvalue (±i), inversion eigenvalue (±1), and mirror eigenvalue (±i) are defined.1

However, the mirror eigenvalue is decided by the other two eigenvalues because m = IC2.
Therefore, there are four possible combinations of eigenvalues. Let us name them Γ+

3 ,
Γ+
4 , Γ−

3 , and Γ−
4 . They are equivalent to the irreps of the point group C2h [Table A.2].

Table A.2: Character table of the point group C2h for double valued irre-
ducible representations (representations that appear in spinful systems).
Since the all irreps are one dimention irreps, the character equals to the
symmetry eigenvalue.

C2h E C2 I m

Γ+
3 1 i 1 i

Γ+
4 1 −i 1 −1

Γ−
3 1 i −1 −i

Γ−
4 1 −i −1 1

A.3 Inversion-based diagnostic methods

In this section, we review the derivations of the inversion-based diagnostic methods.
We also mention some points to keep in mind.

A.3.1 SSH model

The Hamiltonian of the SSH model [Section 1.2.1][Fig.1.4] is

H =
∑
i

(
t1a

†
ibi + t2a

†
ibi−1 + h.c.

)
=
∑
k

(
a†k b

†
k

)( 0 t1 + t2e
−ik

t1 + t2e
ik 0

)(
ak
bk

)
,

(A.1)

where a† and a (b† and b) are the creation and annihilation operators on the A (B) sites.
Its energy eigenvalues E± are

E± = ±
√
t21 + t22 + t1t2 cos k (≡ ±ϵ). (A.2)

We consider the half-filled case and the eigenstate of the occupied band (the lower energy
band) is

|uk⟩ =
1√
2

(
1

− t1+t2eik

ϵ

)
. (A.3)

1We are considering a spinful system and thus we use irreps of the double space group.
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The topological property of this system is characterized by the Berry phase θ, which is
calculated as

Ak = i ⟨uk|
∂

∂k
|uk⟩ , (A.4)

θ =

∫ π

−π

dkAk

=
1

2

∫ π

−π

dk
1 + (t1/t2) cos k

1 + (t1/t2)2 + 2(t1/t2) cos k

=

{
0 (t1/t2 > 1)
π (t1/t2 < 1)

.

(A.5)

Ak is the Berry connection. Only when θ = π, middle-gap states appear in the energy
spectrum of a finite length chain. These middle-gap states are localized on the ends of
the chain, and thus we can say they are “end states”. Therefore, we can say that this
model is topologically nontrivial when θ = π.

Next, we add the inversion symmetry into this model. Let us assume the inversion
center is locating on the t1 bond [Fig.1.4]. Since the Hamiltonian is inversion symmetric,
the inversion operator I projects an eigenstate |uk⟩ into another eigenstate that belongs
to −k. Now |uk⟩ is defined as a continuous function of k in a fixed gauge, and thus the
projection by I generally gives a phase factor as,

I |uk⟩ = e−iβ(k) |u−k⟩ . (A.6)

With this relation, A−k is calculated as

A−k =i ⟨u−k|
∂

∂k
|u−k⟩

= − ∂

∂k
β(k) − Ak.

(A.7)

Now θ is 0 or π and thus we can know the value by calculating eiθ. eiθ is

eiθ = exp

[
i

∫ π

−π

dkAk

]
= exp

[
i

∫ π

0

dk (Ak + A−k)

]
=e−iβ(π)eiβ(0).

(A.8)

k = 0 and k = π are inversion-invariant momenta. We can see from Eq.(A.6) that in these
momenta e−iβ(k) is inversion eigenvalue of the eigenstate of the occupied band. Using the
fact that the inversion eigenvalue is ±1, the topological property of this model can be
diagnosed by checking the inversion eigenvalues χ in k = 0, π. The diagnosing method is
summarised in Table 1.1.
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The inversion operator is written as

Iai =b−i , Iak =
∑
i

e−ikrib−i = b−k,

Ibi =a−i , Ibk =
∑
i

e−ikria−i = a−k,

I =

(
0 1
1 0

)
,

(A.9)

and the eigenstates of the occupied bands satisfy

I |u0⟩ = |u0⟩ ,
I |uπ⟩ = sgn(t1 − t2) |uπ⟩ .

(A.10)

Arbitrariness of the inversion center So far we have assumed that the inversion
center is locating on the t1 bond. However, we can take it on the t2 bond instead. It is
worth checking how the diagnostic method works in this case. The inversion operator I ′

is written as

I ′ai =b−i−1 , I
′ak =

∑
i

e−ikrib−i−1 = e−ikb−k,

I ′bi =a−i−1 , I
′bk =

∑
i

e−ikria−i−1 = e−ika−k,

I ′ =e−ik

(
0 1
1 0

)
.

(A.11)

Only the inversion eigenvalue in k = π is changed and as a result χk=0χk=π flips its sign.
It sounds that by changing the inversion center the model can be changed from trivial to
nontrivial. This may seem that the artificial change in interpretation affects the physical
properties of the model, but in fact, the end of the chain is specifically affected. Once
the inversion center is fixed, the unit cell must be taken in such a way that its center of
mass overlaps the inversion canter, and the end of the chain must coincide with the end
of the unit cell [Fig.A.1]. In other words, the broken bond is changed when the inversion
center is changed. When t2 > t1, there is a bonding state on the t2 bond, and thus the
nontrivial end states appear only when t2 bond is broken. On the other hand, When
t1 > t2, the nontrivial end states appear only when the t1 bond is broken. In both cases,
the diagnostic method “When χk=0χk=π = −1, nontrivial end states appear” works well.

The change of the inversion center is also understood as a change of the origin to
measure a position. The Berry phase is the Wannier center (charge center) of the occupied
band. The Wannier function |0⟩ is defined as

|0⟩ =

∫
dkeikr |uk⟩ , (A.12)

where |uk⟩ is the periodic part of the Bloch wavefunction |ψk⟩ = eikr |uk⟩. Using the
Wannier function, we can see that the expectation value of the position r is the same as
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Figure A.1. Unit cell configuration and the end of the chain. (a) When the
inversion center is taken on the t1 bond. The t2 bond is broken in the chain
end. When Wannier center is locating on the t2 bond, nontrivial end states
appear. (b) When the inversion center is taken on the t2 bond. The t1 bond
is broken in the chain end. In this case, the Wannier center is inside the unit
cell, and thus no end state appears.

the Berry phase,

⟨0| r |0⟩ =

∫
dkdk′ ⟨uk| e−ikrreik

′r |uk⟩

=

∫
dki ⟨uk|

∂

∂k
|uk⟩

=θ

(A.13)

When the Wannier center is shifted by half of the unit cell from the origin, the Berry
phase is π. The inversion center is taken on the origin, and thus the position of the
Wannier center is (relatively) changed when the inversion center is changed.

Because of this inversion center dependence, we must carefully check the unit cell
configuration and the surface we want to see when we use the diagnostic method.

A.3.2 Chern insulator

Since the Chern insulator is a quantum Hall system, it is required to break the TR
symmetry and thus there is no spin degeneracy in generic point in the momentum space.
For the simple explanation, we assume a single occupied band case. The Chern number
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Figure A.2. Brillouin Zone and path used in the calculation of the Chern
number. Due to the inversion symmetry, the integral on S′ equals that on S.

C is calculated as

Ax =i ⟨uk|
∂

∂kx
|uk⟩ ,

Ay =i ⟨uk|
∂

∂ky
|uk⟩ ,

C =
1

2π

∫
BZ

dkxdky

(
∂Ay

∂kx
− ∂Ax

∂ky

)
.

(A.14)

The Hall current corresponds to the chiral edge state. The Chern number C is the number
of clockwise chiral edge stats [4]. Therefore, when the C is nonzero, the system has a
nonzero Hall conductivity and those cases are “topologically nontrivial” cases.

Let us introduce the inversion symmetry into the Chern insulator. Since the Berry
curvature Bz(k) = ∂Ay

∂kx
− ∂Ax

∂ky
is a pseudovector, Bz(k) = Bz(−k) is satisfied. Due to this

relation, we can divide the BZ into two inversion symmetric parts [Fig.A.2], for example
S (kx > 0) and S ′ (kx < 0), and the Chern number can be calculated on one of them.
Using the Stokes’ theorem,

C =
1

π

∫
S

dkxdky

(
∂Ay

∂kx
− ∂Ax

∂ky

)
=

1

π

∫
∂S

dk ·A. (A.15)

Now the path ∂S is M → Y → Y ′ →M ′ →M .

To calculate Eq.(A.15), let us fix the gauge so that the wave functions |uk⟩ in YM
and Y ′M ′ match without any phase factor. By this gauge fixing, the integrals along MY
and Y ′M ′ cancel each other. The Chern number can be evaluated by calculating eiπC,
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Figure A.3. Schematic picture of the band dispersion in TR symmetric system.
With only TR symmetry, bands are required to degenerate with a spin only
on TRIM (now Γ and X). If inversion symmetry is added, bands are required
to degenerate everywhere in the momentum space.

and it is given by using Eq.(A.8) as

eiπC = exp

[
i

∫
M ′XM

dk ·A
]

exp

[
i

∫
Y ΓY ′

dk ·A
]

=χΓχXχY χM ,

(A.16)

where χs are the inversion eigenvalues of the occupied band in the four inversion-invariant
points.

For multi occupied bands systems, this diagnostic method is extended as

eiπC =
∏

n:occupied

∏
k:4TRIM

χn(k), (A.17)

where n is the band index and χn(k) is the inversion eigenvalue of the n-th band in k.
Although this diagnostic method subduces the Z valued Chern number into a Z2

value, we can say the Chern number is nonzero when χΓχXχY χM = −1.

A.3.3 2D TR protected topological insulator

To get a nontrivial insulator in TR symmetric system, significant (unignorable) SOC
is required. In a TR symmetric spinful system, a single chiral edge state is prohibited.
The edge state that appears in these systems is a pair of states called helical edge state,
one of which goes forwards and the other backward, but with opposite spins. Therefore,
the 2D TR protected topological insulator is also referred to as a quantum spin Hall
system.

First, we review the definition of the topological invariant ν in systems with only the
TR symmetry. When a spinful system has TR symmetry, the eigenstates in TRIM are
always doubly degenerated with spin (or pseudospin) [FigA.3] [56]. The TR operator
T projects an eigenstate |u1,k⟩ into an eigenstate of the opposite spin |u2,−k⟩, and thus
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“the TR eigenvalue” is not well-defined in TRIM. However, when |u1,k⟩ and |u2,k⟩ are
continuously defined and the gauge is fixed, the phase factor given by T can be defined
like Eq.(A.6) as

T |u2,k⟩ =e−iβ(k) |u1,−k⟩ ,
T |u1,k⟩ = − e−iβ(−k) |u2,−k⟩ .

(A.18)

Using this relation, we define the w matrix as

w =

(
⟨u1,−k| T |u1,k⟩ ⟨u1,−k| T |u2,k⟩
⟨u2,−k| T |u1,k⟩ ⟨u2,−k| T |u2,k⟩

)
=

(
0 e−iβ(k)

−e−iβ(−k) 0

)
.

(A.19)

This w matrix plays an essential role to describe the topological properties of the system.
To calculate the topological invariant of the spin quantum Hall system, we define the

spin-polarized Berry connection,

As(k) = i ⟨u1,k|
∂

∂k
|u1,k⟩ − i ⟨u2,k|

∂

∂k
|u2,k⟩ . (A.20)

From Eq.(A.18), As(−k) is related with As(k) as

As(−k) = −As(k) +
∂

∂k
[β(k) − β(−k)] . (A.21)

Fixing the gauge in the same way as Eq.(A.16), the topological invariant ν is given as

ν =
1

2π

∫
Y ΓY ′

dk ·As(k) +
1

2π

∫
M ′XM

dk ·As(k). (A.22)

Now considering a spinful system and thus there is a factor 2 compared to Eq.(A.16).
We first evaluate the first term. It is calculated as

1

2π

∫
Y ΓY ′

dk ·As(k) =
1

2π

∫ π

−π

dkyA
s
y(0, ky)

=
1

2π

∫ π

0

dky
[
As

y(0, ky) + As
y(0,−ky)

]
=

1

2π

∫ π

0

dky
∂

∂ky
[β(0, ky) − β(0,−ky)]

(A.23)

From Eq.(A.19), β(k) = i log(w12) and β(−k) = i log(−w21) hold,

1

2π

∫
Y ΓY ′

dk ·As(k) =
1

2π

∫ π

0

dky
∂

∂ky
[i log(w12) − i log(−w21)]

= − 1

2πi

[
log

w12(π)

w12(0)
− log

w21(π)

w21(0)

] (A.24)
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Figure A.4. w12(0) and w12(π) for trivial (left) and nontrivial (right) cases.
The branch cut is taken on the negative real axis. The arguments should be
measured without crossing the branch cut.

In TRIM, due to the anti-unitarity of T , the w matrix is antisymmetric matrix and thus
w21 = −w12. To evaluate this value, we must be careful that the argument must be
measured in the same branch cut of log. Here we define the image of log is [−π, π), and
note that log(−1) = −iπ. We also define the upper (lower) half of the complex plane as
{z ∈ C |Im log z ∈ [0, π)} ({z ∈ C |Im log z ∈ [−π, 0)}). Fig.A.4 shows that when both of
w12(0) and w12(π) are in the upper (or lower) half Eq.(A.24) is 0. On the other hand,
when w12(0) and w12(π) are in the opposite half, it is −1. Summarising these result, we
can rewrite as

1

2π

∫
Y ΓY ′

dk ·As(k) =
1

πi
log

[
w12(π)√
w12(π)2

w12(0)√
w12(0)2

]
, (A.25)

where
√
z is the square root of z that is in the upper half of the complex plane.

The integral along M ′XM can be calculated in the same way. As a result, the
topological invariant ν is given as

(−1)ν =
∏

4 TRIM

w12(k)√
w12(k)2

(A.26)

When ν = 1 (nontrivial), there are helical edge states and Dirac cone surface bands
appear in the band dispersion around the Fermi energy.

When the system is also inversion symmetric, the Eq.(A.26) is described as a simpler
formula. The inversion I changes the momentum k to −k, but does not change the spin
part. Combining with T , IT works as an operator that flips the spin in the same k. As a
result, when the system is TR and inversion symmetric, all bands are doubly degenerated
with spin everywhere in the momentum space [Fig.A.3]. TRIM is also inversion invariant
points and therefore inversion eigenvalue χ(k) is defined in TRIM. Since [I, T ] = 0, the
two degenerated bands always have the same inversion eigenvalue. Using these fact, the
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w matrix in TRIM (k ≡ −k) is rewritten with the inversion eigenvalue,

wmn(k) = ⟨um,−k| T |un,k⟩
= ⟨um,k| IIT |un,k⟩
=χm(k) ⟨um,k| IT |un,k⟩
=χn(k) ⟨um,k| IT |un,k⟩ .

(A.27)

It is possible to choose the gauge of |u1(k)⟩ such as

∀k, ⟨u2,−k| IT |u1,k1⟩ = 1. (A.28)

In this gauge, the w matrix in TRIM is

w = χ1(k)

(
0 1
−1 0

)
. (A.29)

Therefore, the topological invariant ν (Eq.(A.26)) is diagnosed by a product of the inver-
sion eigenvalues in TRIM,

(−1)ν =
∏

k:4TRIM

χ1(k). (A.30)

Note that the inversion eigenvalue is taken only once for a degenerated pair.
For multi occupied (paired) bands systems, this diagnostic method is extended as

(−1)ν =
∏

n:occupied

∏
k:4TRIM

χ2n(k), (A.31)

where n is the band index. Because we need to see one band of a paired bands, only
χ2n(k) is taken into account and χ2n−1(k) is not.

Now χ = ±1, and thus it can also be written by counting the −1 inversion eigenvalues
as

ν =
∑

k:4TRIM

n−(k) (mod 2), (A.32)

where n−(k) is the number of occupied band pair with −1 inversion eigenvalues.

A.3.4 3D TR protected topological insulator

In the discussion of 3D TR protected topological insulator, spin-orbit coupled systems
are assumed for the same reason as the 2D case.

In 3D momentum space, there are eight TRIM. By choosing four of them, it is at-
tributed to the 2D case. For easy explanation, let us see a primitive orthorhombic case
and see the four TRIM on the kz = 0 plane and the four on the kz = π plane [Fig.A.5].
Each of them is understood as a 2D topological insulator. When the (001) surface is
considered, the two 2D topological insulators overlap on the surface BZ. When only one
of them, for example, kz = 0, has nontrivial invariant ν2D = 1, a 2D topological insulator
is given on the surface BZ. Projecting into the (001) surface BZ is understood in the real
space as making a slab with a finite thickness along the (001) direction. In this case, the
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Figure A.5. 3D topological insulator and its attribution to the 2D topological
insulator. The 3D bulk is understood as two 2D systems when a slab is as-
sumed. The 3D crystal has helical edge states on the surface that corresponds
to the “edge of slab”.

slab, which is a 2D system, posses helical edge states on its edge. If we move back to a
more 3D-like picture, the helical edge states are on the surface that is NOT perpendicular
to the (001) direction.

If both of the kz = 0 and kz = π plane have ν2D = 1, the surface is ν2D = 0. In naive
extrapolation, the band dispersion on the surface BZ can have two Dirac cone surface
bands but those surface states are not necessarily robust against a perturbation [Fig.1.8].
For example, let us assume a super-cell periodic perturbation. The perturbation folds
the BZ and as a result, the two Dirac cones may overlap each other and get gapped.

As explained above, we get two kinds of 3D topological insulators as an extension
of the 2D case. One of them is given as a combination of two nontrivial 2D topological
insulators, and the other is given as a combination of trivial and nontrivial 2D topological
insulators. The former one is not necessarily robust against perturbation and thus it is
called a “weak topological insulator”. On the other hand, the latter is robust against
perturbation. It is because the condition to realize the latter one is written as∑

k:8TRIM

n−(k) = 1 (mod 2), (A.33)

and this relation is never violated by a BZ folding. Due to this robustness, the latter one
is called a “strong topological insulator”. Furthermore, Eq.(A.33) has nothing to do with
the surface direction. Therefore, the strong topological insulator has helical edge stets
on all surfaces. In the surface BZ, the surface states appear as an odd number of Dirac
cones.

Using the relation between surface Dirac cones and inversion eigenvalues, the shape
of the surface Fermi arc can be qualitatively known [Fig.1.7].

Summarising and generalising the discussion above, the 3D TR protected topolog-
ical insulator with the inversion symmetry is diagnosed by four invariants, ν0 (strong
invariant) and ν1ν2ν3 (weak invariants). The definition of them are
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(−1)ν0 =
∏

n:occupied

∏
k:8TRIM

χ2n(k),

(−1)ν1 =
∏

n:occupied

∏
k:4TRIM
m1=1

χ2n(k),

(−1)ν2 =
∏

n:occupied

∏
k:4TRIM
m2=1

χ2n(k),

(−1)ν3 =
∏

n:occupied

∏
k:4TRIM
m3=1

χ2n(k),

(A.34)

where the TRIM are represented by m1,m2,m3 = 0, 1 and reciprocal lattice vestors
b1, b2, b3 as k = 1

2
(m1b1 +m2b2 +m3b3). For example, in a primitive orthorhombic case,

the ν1 is calculated with the four TRIM on kx = π. These invariants are also written
with the number of occupied band pair with −1 inversion eigenvalues,

ν0 =
∑

k:8TRIM

n−(k) (mod 2),

ν1 =
∑

k:4TRIM
m1=1

n−(k) (mod 2),

ν2 =
∑

k:4TRIM
m2=1

n−(k) (mod 2),

ν3 =
∑

k:4TRIM
m3=1

n−(k) (mod 2).

(A.35)

To attribute to the 2D topological insulator, we considered two 2D systems and topo-
logical invariants on them. Although there are only three invariants ν1, ν2, ν3 that is
calculated with four TRIM, the invariants of “the other four” are calculated as ν0 − ν1
and so on. In other words, the independent invariants are only four that are given in
Eq.(A.35). For any surface configurations, the corresponding weak invariants are given
by adding or subtracting the four invariants.

A.4 Symmetry-based indicator

In this section, we discuss detailed notes on the symmetry-based indicator.

A.4.1 “Trivial” in the symmetry-based indicator

The symmetry-based indicator essentially judges whether a given system can be con-
tinuously deformed into an insulator originate from isolated orbitals. This definition
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is based on the assumption that systems that can be represented by isolated orbitals
are “trivial”. Although in most cases this assumption is appropriate to the topologi-
cal classification, the word “topologically trivial” and “topologically nontrivial” are not
necessarily used in the same definition as given in section 1.1. The typical exception is
the SSH model. The nontrivial phase in the SSH model is diagnosed as “trivial” in the
definition of the symmetry-based indicator, in spite of the existence of the end states. It
is because the case with end states is represented by an atomic insulator, in which an
orbital is placed on the boundary of the unit cell.

Therefore, in some exceptional cases, we need to be careful.

A.4.2 Note on the symmetry label

Uniqueness of the symmetry label

Due to the compatibility condition, the set of the irreps of the occupied bands is con-
stant on a high symmetry line and thus the symmetry label is unique. If the compatibility
condition is violated, the label can depend on the reference point (where we check the
irreps).

The symmetry label as a linear space

In the original definition of the symmetry label, the component is prohibited to be
negative and thus the spaces {BS} and {AI} are not linear spaces. However, to make it
easy to handle them mathematically, we extend {BS} and {AI} to linear spaces. This
extension involves some complicated problems.

Since the addition and subtraction are defined in the linear space {BS}, the elements
of the linear space {BS} satisfies

∀b1, b2 ∈ {BS} , b1 + b2 ∈ {BS} and b1 − b2 ∈ {BS} . (A.36)

The addition is easily understood. The addition means that giving a new set of occupied
bands from two sets of occupied bands by overlapping them. On the other hand, the
subtraction can give a set of occupied bands with “negative number of bands”. Therefore,
the linear space {BS} includes unrealistic elements.

The elements of the linear space {AI} also satisfy

∀a1, a2 ∈ {AI} , a1 + a2 ∈ {AI} and a1 − a2 ∈ {AI} . (A.37)

The subtraction involves more complicated and interesting problems. Even if a1−a2 con-
sists of non-negative integers, it is not clear whether there really is an insulator originate
from isolated orbitals that corresponds to a1 − a2.

Actually, by discussing these this problem, a new topological class called “fragile topo-
logical insulator” has been proposed [96, 97, 98]. The fragile topological insulator class
is diagnosed as “trivial” by the symmetry-based indicator, but cannot be continuously
connected to an insulator originate from isolated orbitals.

Although the there are some problem with the linear space {BS} and {AI}, they are
defined as linear spaces in the symmetry-based indicator.
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Enumeration of {AI}

Enumeration of {AI} is done in the following process. Once the space group of
the system is fixed, a list of the Wyckoff position is given. The Wyckoff position is a
classification of real space points in the unit cell according to their symmetry [56, 57].
Points with the same symmetry are classified in the same Wyckoff position. Placing an
orbital in each Wyckoff position, we can obtain the set {AI}. When we place an orbital,
we choose one from several orbitals with different symmetry depending on the symmetry
of the Wyckoff position. When the Wyckoff position has multiplicity, i.e. we need to place
more than one orbitals to satisfy the space group symmetry, we enumerate all possible
combinations of the phase factor. Since both of the Wyckoff position and possible orbitals
are finite, enumerating all possible isolated orbitals in each Wyckoff position gives {AI}
with a finite trial.

Let us see an explicit example of the space group 2. Now there is only inversion
symmetry, so we need to check only two orbitals, an inversion symmetric one and an
inversion antisymmetric one. In the space group 2, there are nine Wyckoff positions.
Eight of them are inversion symmetric points, and the other one is a generic point. In
Fig.A.6, four examples of s and px orbitals in the Wyckoff position (0, 0, 0) and (1/2, 0, 0)
(fractional coordinate). Fig.A.6 shows only the z = 0 plane since there is no oscillation in
the z direction in these cases. By deciding the momentum we focus on, we can determine
a phase factor given by a lattice translation. In the space group 2, we need to check
eight TRIM to obtain the symmetry label. In Fig.A.6, only the case of X point ((π, 0, 0)
in fractional coordinate) is shown. With the inversion center in (0, 0, 0), the inversion
eigenvalue of each case is calculated. For example, when we place a s orbital in (0, 0, 0),
the inversion eigenvalue is 1 in both of Γ and X. On the other hand, when we place a
s orbital in (1/2, 0, 0), the inversion eigenvalue is 1 in Γ, while −1 in X. By checking
all combinations of an orbital and Wyckoff position, we can enumerate the {AI} of the
space group 2.

Although the elements of {AI} obtained by this process are finite, they include the
all bases of the linear space {AI}.
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Figure A.6. Examples of atomic insulators. The left (right) columns show the
wavefunction in the Γ point (X point). The top two rows are the case where
a s orbital (inversion symmetric) is placed and the bottom two rows are the
case where a px (inversion antisymmetric) is placed. The inversion eigenvalues
about (0, 0, 0) are visually obtained.
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A.4.3 The symmetry-based indicator and calculation formulas

The calculation formulas of the symmetry based indicator in systems with significant
SOC are given in table A.3, A.4, and A.5.

SI set SI group SGs

z2w,1 z2w,2 z2w,3 z4

Z2 × Z2 × Z2 × Z4 2, 10, 47

Z2 × Z2 × Z4 11, 12, 13, 49, 51, 65, 67, 69

Z2 × Z4

14, 15, 48, 50, 53, 54, 55, 57, 59, 63, 64, 66

68, 71, 72, 73, 74, 84, 85, 86, 125, 129, 131, 132

134, 147, 148, 162, 164, 166, 200, 201, 204, 206, 224

Z4

52, 56, 58, 60, 61, 62, 70, 88, 126, 130

133, 135, 136, 137, 138, 141, 142, 163, 165

167, 202, 203, 205, 222, 223, 227, 228, 230

z2 Z2

81, 82, 111, 112, 113, 114, 115, 116, 117, 118

119, 120, 121, 122, 215, 216, 217, 218, 219, 220

z2w,1 z4m,π z8 Z2 × Z4 × Z8 83, 123

z2w,1 z8 Z2 × Z8 87, 124, 139, 140, 229

z4m,π z8 Z4 × Z8 127, 221

z8 Z8 128, 225, 226

z3m,0 z3m,π Z3 × Z3 174, 187, 189

z3m,0 Z3 188, 190

z6m,π z12 Z6 × Z12 175, 191

z12 Z12 192

z′12 Z12 176, 193, 194

Table A.3: SI in all SGs adopted from Z. Song, et. al., Physical Review X,
8, 031069, (2018). The indicators whose odd values correspond to strong
TI are printed in red.
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Indicator SGs Formula

z2w,j=1,2,3 All SGs with inversion
∑′

K n
−
K mod 2 1

z4 All SGs with inversion
∑

K∈TRIM
1
2
n−
K − 1

2
n+
K mod 4

z2 All SGs with S4
∑

K
1
2
n

3
2
K − 1

2
n

1
2
K mod 2 2

z4m,π

83 (123, 127)3
3
2
n(EZ

3
2
g
) − 3

2
n(EZ

3
2
u
) − 1

2
n(EZ

1
2
g
) + 1

2
n(EZ

1
2
u
) + 3

2
n(EA

3
2
g
) − 3

2
n(EA

3
2
u
)

−1
2
n(EA

1
2
g
) + 1

2
n(EA

1
2
u
) + n(ER

1
2
g
) − n(ER

1
2
u
) mod 4

221

3
2
n(EX

3
2
g
) − 3

2
n(EX

3
2
u
) − 1

2
n(EX

1
2
g
) + 1

2
n(EX

1
2
u
)

+3
2
n(ER

5
2
g
) − 3

2
n(ER

5
2
u
) + n(FR

3
2
g
) − n(FR

3
2
u
) − 1

2
n(ER

1
2
g
) + 1

2
n(ER

1
2
u
)

+n(EM
1
2
g
) + n(EM

3
2
g
) − n(EM

1
2
u
) − n(EM

3
2
u
) mod 4

z8
83, 87, 123, 124, 127,

128, 139, 140, 221, 225,
226, 229

3
2
n+

3
2

− 3
2
n−

3
2

− 1
2
n+

1
2

+ 1
2
n−

1
2

mod 8 4

z3m,0
174 (187, 188, 189, 190)3

−1
2
n(1EK

1
2

)+ 3
2
n(1EK

3
2

)+ 1
2
n(1EK

5
2

)− 1
2
n(2EK

1
2

)+ 3
2
n(2EK

3
2

)+ 1
2
n(2EK

5
2

)

+n(EΓ
1
2

) − n(EΓ
5
2

) mod 3

z3m,π 174 (187, 189) 3
−1

2
n(1EH

1
2

) + 3
2
n(1EH

3
2

) + 1
2
n(1EH

5
2

)− 1
2
n(2EH

1
2

) + 3
2
n(2EH

3
2

) + 1
2
n(2EH

5
2

)

+n(EA
1
2

) − n(EA
5
2

) mod 3

z6m,0
175 (191, 192), 176 (193,

194)3

3
2
n(EΓ

3
2
g
) − 5

2
n(EΓ

5
2
g
) − 1

2
n(EΓ

1
2
g
) − 3

2
n(EΓ

3
2
u
) + 5

2
n(EΓ

5
2
u
) + 1

2
n(EΓ

1
2
u
)

+3n(EK
3
2

) − 5n(EK
5
2

) − n(EK
1
2

) + 3
2
n(EM

1
2
g
) − 3

2
n(EM

1
2
u
) mod 6

z6m,π 175 (191, 192) 3

3
2
n(EA

3
2
g
) − 5

2
n(EA

5
2
g
) − 1

2
n(EA

1
2
g
) − 3

2
n(EA

3
2
u
) + 5

2
n(EA

5
2
u
) + 1

2
n(EA

1
2
u
)

+3n(EH
3
2

) − 5n(EH
5
2

) − n(EH
1
2

) + 3
2
n(EL

1
2
g
) − 3

2
n(EL

1
2
u
) mod 6

z12 175, 191, 192
{
z̄6m + 3

[
(z̄6m − z4) mod 4

]}
mod 12 5

z′12 176, 193, 194
{
z6m,0 + 3

[
(z6m,0 − z4) mod 4

]}
mod 12

Table A.4: Fu-Kane-like formulae for all SI adopted from Z. Song, et.
al., Physical Review X, 8, 031069, (2018). The indicators whose odd
values correspond to strong TI are printed in red. The notations of high
symmetry momenta follow the standard convention [99], and the notations
of point group irreps follow [100]

1K is summed over the four TRIMs with kj = π.
2K is summed over the four S4 invariant TRIMs, n

1
2

K is the number of Kramer pairs at K with

tr [D (S4)] =
√
2, n

3
2

K is the number of Kramer pairs at K with tr [D (S4)] = −
√
2, and D(S4) is the

representation matrix on the corresponding Kramer pair.
3The equation is derived for the SG in front of the bracket but also applicable to the SGs in the

bracket, which are supergroups of the SG in front of the bracket. To apply the equation for these
supergroups, one should omit the additional symmetries and count them as the corresponding subgroup.

4The concrete definitions for n+
3
2

, n−
3
2

, n+
1
2

, and n−
1
2

is given in Table A.5
5Here z̄6m = z6m,0 + z6m,π mod 6
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Lattice SGs n Definitions for n+
3
2

, n−
3
2

, n+
1
2

, n−
1
2

Tetragonal
primitive

83 (123,
124, 127,

128)1

n+
1
2

n(EΓ
1
2
g
) + n(EM

1
2
g
) + n(EZ

1
2
g
) + n(EA

1
2
g
) + n(EX

1
2
g
) + n(ER

1
2
g
)

n−
1
2

n(EΓ
1
2
u
) + n(EM

1
2
u
) + n(EZ

1
2
u
) + n(EA

1
2
u
) + n(EX

1
2
u
) + n(ER

1
2
u
)

n+
3
2

n(EΓ
3
2
g
) + n(EM

3
2
g
) + n(EZ

3
2
g
) + n(EA

3
2
g
) + n(EX

1
2
g
) + n(ER

1
2
g
)

n−
3
2

n(EΓ
3
2
u
) + n(EM

3
2
u
) + n(EZ

3
2
u
) + n(EA

3
2
u
) + n(EX

1
2
u
) + n(ER

1
2
u
)

Tetragonal
body-

centred

87 (139,
140)1

n+
1
2

n(EΓ
1
2
g
) + n(EM

1
2
g
) + n(EX

1
2
g
) + 2n(EN

1
2
g
) + n(EP

1
2

)2

n−
1
2

n(EΓ
1
2
u
) + n(EM

1
2
u
) + n(EX

1
2
u
) + 2n(EN

1
2
u
) + n(EP

3
2

)

n+
3
2

n(EΓ
3
2
g
) + n(EM

3
2
g
) + n(EX

1
2
g
) + 2n(EN

1
2
g
) + n(EP

3
2

)

n−
3
2

n(EΓ
3
2
u
) + n(EM

3
2
u
) + n(EX

1
2
u
) + 2n(EN

1
2
u
) + n(EP

1
2

)

Cubic
primitive

221

n+
1
2

n(EΓ
1
2
g
) + n(F Γ

3
2
g
) + n(ER

1
2
g
) + n(FR

3
2
g
) + 2n(EM

1
2
g
) + n(EM

3
2
g
) + 2n(EX

1
2
g
) + n(EX

3
2
g
)

n−
1
2

n(EΓ
1
2
u
) + n(F Γ

3
2
u
) + n(ER

1
2
u
) + n(FR

3
2
u
) + 2n(EM

1
2
u
) + n(EM

3
2
u
) + 2n(EX

1
2
u
) + n(EX

3
2
u
)

n+
3
2

n(F Γ
3
2
g
) + n(EΓ

5
2
g
) + n(FR

3
2
g
) + n(ER

5
2
g
) + 2n(EM

3
2
g
) + n(EM

1
2
g
) + 2n(EX

3
2
g
) + n(EX

1
2
g
)

n−
3
2

n(F Γ
3
2
u
) + n(EΓ

5
2
u
) + n(FR

3
2
u
) + n(ER

5
2
u
) + 2n(EM

3
2
u
) + n(EM

1
2
u
) + 2n(EX

3
2
u
) + n(EX

1
2
u
)

Cubic
face-

centred

225

n+
1
2

n(EΓ
1
2
g
) + n(F Γ

3
2
g
) + 2n(EX

1
2
g
) + n(EX

3
2
g
) + 2n(EL

1
2
g
) + 2n(EL

3
2
g
) + n(EW

1
2

)

n−
1
2

n(EΓ
1
2
u
) + n(F Γ

3
2
u
) + 2n(EX

1
2
u
) + n(EX

3
2
u
) + 2n(EL

1
2
u
) + 2n(EL

3
2
u
) + n(EW

3
2

)

n+
3
2

n(F Γ
3
2
g
) + n(EΓ

5
2
g
) + 2n(EX

3
2
g
) + n(EX

1
2
g
) + 2n(EL

1
2
g
) + 2n(EL

3
2
g
) + n(EW

3
2

)

n−
3
2

n(F Γ
3
2
u
) + n(EΓ

5
2
u
) + 2n(EX

3
2
u
) + n(EX

1
2
u
) + 2n(EL

1
2
u
) + 2n(EL

3
2
u
) + n(EW

1
2

)

226

n+
1
2

n(EΓ
1
2
g
) + n(F Γ

3
2
g
) + n(EX

3
2
g
) + n(EX

1
2
u
) + n(EX

3
2
u
)

n−
1
2

n(EΓ
1
2
u
) + n(F Γ

3
2
u
) + n(EX

3
2
u
) + n(EX

1
2
g
) + n(EX

3
2
g
)

n+
3
2

n(F Γ
3
2
g
) + n(EΓ

5
2
g
) + n(EX

1
2
g
) + n(EX

1
2
u
) + n(EX

3
2
u
)

n−
3
2

n(F Γ
3
2
u
) + n(EΓ

5
2
u
) + n(EX

1
2
u
) + n(EX

1
2
g
) + n(EX

3
2
g
)

Cubic
body-

centred
229

n+
1
2

n(EΓ
1
2
g
) + n(F Γ

3
2
g
) + n(EH

1
2
g
) + n(FH

3
2
g
) + 3n(EN

1
2
g
) + n(EP

1
2

) + n(FP
3
2

)

n−
1
2

n(EΓ
1
2
u
) + n(F Γ

3
2
u
) + n(EH

1
2
u
) + n(FH

3
2
u
) + 3n(EN

1
2
u
) + n(FP

3
2

) + n(EP
5
2

)

n+
3
2

n(F Γ
3
2
g
) + n(EΓ

5
2
g
) + n(FH

3
2
g
) + n(EH

5
2
g
) + 3n(EN

1
2
g
) + n(FP

3
2

) + n(EP
5
2

)

n−
3
2

n(F Γ
3
2
u
) + n(EΓ

5
2
u
) + n(FH

3
2
u
) + n(EH

5
2
u
) + 3n(EN

1
2
u
) + n(EP

1
2

) + n(FP
3
2

)

Table A.5: The concrete expressions for n+
3
2

, n−
3
2

, n+
1
2

, n−
1
2

in the z8 Fu-

Kane-like formulae in all applicable SGs adopted from Z. Song, et. al.,
Physical Review X, 8, 031069, (2018). The notations of high symmetry
momenta follow the standard convention [99], and the notations of point
group irreps follow [100].

1The equations here are derived for SG #83 (#87) but also applicable to the SGs in the bracket,
which are supergroups of SG #83 (#87). To apply these equations for these supergroups, one should
omit the additional symmetries and count them as SG #83 (#87).

2In SG #87, the little group at N is Ci and the irrep notations in [100] is A 1
2 g

and A 1
2u
, both of

which are one dimensional. However, due to the Kramer’s theorem, the irreps at N should be double
degenerate, thus we adopt the two dimensional notations E 1

2 g
and E 1

2u
.
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A.5 Difference between the classes Z4 = 1 and Z4 = 3

The Fu-Kane’s strong Z2 index ν0 for nodal line semimetals is extended to Z4. In the
four classes indicated by Z4, Z4 = 1 and Z4 = 3 correspond to the nodal line semimetal
class without the monopole charge (ν0 = 1). Then, what is the difference between them?

The difference is called “relative difference”, which means

• They are topologically distinct classes in the definition of section 1.1.

• They can be exchanged when the unit cell configuration is changed.

• Their nodal line configurations are the same.

The first statement means that Z4 = 1 and Z4 = 3 cannot be continuously connected
without closing the gap (at high symmetry points) or breaking the symmetry of the sys-
tem. However, the second statement insists that if we change the unit cell configuration,
Z4 = 1 can be changed to Z4 = 3. For example, in the space group 2, it is known that a
change of inversion center can change the indices as

(Z4; ν1, ν2, ν3) → (Z4 + 2νj; ν1, ν2, ν3), (j = 1, 2, 3), (A.38)

where j is determined by in which direction the inversion center is shifted [50]. The
(1; 001) class can be changed to (3; 001) by changing the inversion center. However, this
statement does not contradict the first statement because they cannot be connected in a
fixed unit cell configuration. The change of the inversion center keeps all physical observ-
ables invariant, and thus the third statement is obtained. Note that (2; 000) cannot be
changed to (0; 000) even if we change the inversion center. There is “absolute difference”
between them.

For the topological insulator classes, more detailed discussions are needed. If we focus
only on the presence or absence of the surface states, we can say that Z4 = 1 and Z4 = 3
have the same properties. However, since the difference between them is interpreted as
the particle-hole flip, the chirality of the helical surface states should not be the same.
From that point of view, we cannot necessarily say that they are the same.
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A.6 Useful tools for diagnosis of topological materi-

als

Useful tools are summarized in Table.A.6 [101].

Table A.6: Some useful tools for diagnosis of topological materials. *
indicates that the author have used and can recommend.

Types of tools Resources

Topological materials databases

*Materiae [59, 102],

*Topological Materials Database [48, 58],

Topological Materials Arsenal [60]...

Wannier function methods and tools
*Wannier90 [103, 104], WannierTools [105],

*Z2Pack [88], WannierBerri [106], ...

Band representations tools

*Bilbao Crystallographic Server [57],

SymTopo [102], Irvsp [107], IrRep [108],

qeirreps [109] ...

Materials databases
ICSD [110], Springer Materials,

Materials Project [111], ...

Visualization tools *VESTA [62], *PyProcar [112] Xcrysden [113], ...
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A.7 Nodal line and Berry phase

In this section, we explain the Berry phase interpretation of indices in diagnostic
methods for nodal line semimetals.

A.7.1 Symmetry-based indicator in the space group 83

In particular in the space group 83, the system has the inversion and C4 symmetries
and thus there must be a mirror symmetry m = IC2

4 . On the mirror-invariant planes, the
Hamiltonian can be block diagonalized into two sectors with mirror eigenvalues σ = ±1.
When the Berry phase is calculated along a loop on the mirror-invariant planes, it can
be separately calculated in each sector. Consequently, there are four sectors to evaluate
the Berry phase, σ = ± sectors on the ΓMX plane (kz = 0) and σ = ± sectors on the
ZAR plane (kz = π).

The Berry phase on each sector is given by using the symmetry eigenvalues [114]. Let
us see an example of the sector on ΓMX plane with σ = +1. Due to the C4 symmetry,
the area where the Berry phase is calculated can be reduced to a quarter (S in Fig.1.13).
The Berry phase ω+,0

∂S along the loop ΓXMX’Γ [Fig.1.13,blue loop] is

ω+,0
∂S =

∫
∂S

dk ·A(k)

=

∫ X

Γ

dk ·A(k) −
∫ X′

Γ

dk ·A(k) +

∫ M

X

dk ·A(k) −
∫ M

X′
dk ·A(k).

(A.39)

When the C4 operation acts on |u(k)⟩ as C4 |u(k)⟩ = e−iβ(k) |u(C4k)⟩, the Berry connec-
tion satisfies

A(C4k) = −C4∇kβ(k) + C4A(k). (A.40)

Using the fact that the ΓX and ΓX’ (XM and X’M) are connected by the C4 operation,
the Berry phase is

ω+,0
∂S =

∫ X

Γ

dk ·
(
A(k) − C−1

4 A(C4k)
)

+

∫ M

X′
dk ·

(
−A(k) + C−1

4 A(C4k)
)

=

∫ X

Γ

dk · ∇kβ(k) −
∫ M

X′
dk · ∇kβ(k)

= β(kX) + β(kX′) − β(kΓ) − β(kM).

(A.41)

The Berry phase modulo 2π is evaluated with eiω∂S as

eiω
+,0
∂S = eiβ(kX)eiβ(kX′ )e−iβ(kΓ)e−iβ(kM ) = ξΓξMζX . (A.42)

Here, we used the fact that e−iβ(kΓ) (e−iβ(kM )) is the C4 eigenvalue at the Γ (M) point ξΓ
(ξM), and e−iβ(kX)e−iβ(kX′ ) is the C2 eigenvalue at the X point ζX , which can be easily
obtained from the definition of β(k)3. In multi occupied bands case, the Berry phase is
given as

eiω
+,0
∂S =

∏
j:occupied

ξΓ,jξM,jζX,j, (A.43)

3Since ζ = ±1, ζ−1 = ζ
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where ξΓ,j is the C4 eigenvalue of the j-th band at the Γ point. Although the C4 eigenvalue
is generally ±1 or ±i, it is known that +i and −i always appear as a degenerated pair
in systems with TR and inversion symmetries. Therefore, we need to see only the −1
eigenvalue, and the δ+,0

2 = 0, 1 is defined as

eiπδ
+,0
2 = eiω

+,0
∂S ,

δ+,0
2 = nξ=−1(Γ) + nξ=−1(M) + nζ=−1(X) (mod 2).

(A.44)

The other three δ−,0
2 , δ+,π

2 , δ−,π
2 are given in the same way. When δ+,0

2 = 1, an odd number
of nodal line penetrates the ΓXMX’Γ loop in the σ = +1 sector4 Similarly, δ+,π

2 is related
to the number of nodal lines of the mirror +1 sector in the loop ZRAR’ [Fig.1.13].

A.7.2 Z2 index for nodal line semimetals

Let us assume a nodal line around the V point in the space group 10 [Fig.A.7]. The
nodal line (the red ring in Fig.A.7) is protected by a mirror mz and fixed on the kz = 0
plane. A Berry phase along a loop through X, U , R, and V (the blue and green lines in
Fig.A.7) is calculated as ν1 in mod 2π. In this case the nodal line penetrates the loop
XURV once and thus ν1 = −1. Note that the blue solid lines and blue dashed lines are
inversion symmetric pairs (reciprocal lattice transformations are allowed). On the other
hand, the green lines are not inversion-invariant but they have nothing to do with the
Berry phase within a properly fixed gauge. If we want to know whether a nodal line exist
in a loop ΓZTY , it is diagnosed by ν0 − ν1. Considering these facts, a system with a
nodal line like Fig.A.7 has (ν0; ν1ν2ν3) = (1; 110).

The XURV loop is has been easily interpreted because it does not touch the nodal
line. On the other hand, the ΓY V X loop touches the nodal line, so the Berry phase
along the ΓY V X is not well defined as it is. To overcome this problem, the loop can be
transformed while keeping the inversion symmetry. The path between Y and V does not
have to be a line segment Y V . It can curve to avoid touching the nodal line [Fig.A.8,
solid blue line]. However, the other part of the path (dashed blue line) is fixed without
arbitrariness to keep the inversion symmetry of the path. By this transformation, the
number of nodal lines that penetrate the loop is well defined.

4Nodal lines between two bands with different mirror eigenvalues violates the compatibility condition.
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Figure A.7. BZ and TRIM of the space group 10. A TR-invariant path through
XURV is shown as blue and green lines. When a nodal line exists around the
V point, the Berry phase along the XURV loop is π (mod 2π)

Figure A.8. Nodal line and TR-invariant path that is transformed to avoid
touching the nodal line. The solid blue line and the dashed blue line are a
inversion symmetric pair. The green lines are equivalent lines, which have no
contribution to the Berry phase.
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Appendix B

Classification theories and diagnostic
methods

In this section, we review the classification theories of topological materials and discuss
the relationship between them and the diagnostic methods. We review three classification
theories, classifications in the Altland-Zirnbauer symmetry classes, a classification based
on the Clifford algebra, and a classification based on the K-theory.

B.1 Altland-Zirnbauer symmetry class

The Altland-Zirnbauer (AZ) symmetry classes [51] consist of ten classes based on
three symmetries, TR symmetry (T ), particle-hole symmetry (C), and chiral symmetry
(S) [Table B.1]. S is defined as S = T C, and therefore the presence/absence of S is
determined by the presence/absence of T and C in most case. The exception is the case
where both of them are absent (A and AIII classes). For a integer factor δ, a “periodic
table” of topological invariants is given as Table B.1. The δ is defined as δ = d − D,
where d is the (insulating) space dimension and D + 1 is the codimension of defects.
The word “codimension” means that the surface/hinge state emerges in a d − (D + 1)
dimension space. For example, in a 3D topological insulator, d = 3 and D + 1 = 1 since
the surface state emerges in a 2D space on a surface. The 3D TR-protected topological
insulators belong to the AII class (δ = 3), and we can see the classification is Z2. Although
the periodic table tells us just the framework of classifications, we know this Z2 is the
Fu-Kane’s Z2 index.

This periodic table is correct when only T , C, and S are considered. However, in
general, the topological classes are divided further if crystalline symmetries are addition-
ally considered. The symmetry-based indicator with TR symmetry and significant SOC
classifies the subdivided topological classed in the AII class with crystalline symmetries.
The symmetry-based indicator with TR and negligible SOC is related to the classification
in the AI class with crystalline symmetries1.

1Note that d is a dimension of an insulating Hamiltonian. Therefore, d = 1 in the case of nodal line
semimetals characterized by a Berry phase (1D topological invariant).
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class\δ T C S 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
AI + 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI + + 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − + 1 0 Z2 Z2 Z 0 0 0 2Z
AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI + − 1 0 0 0 2Z 0 Z2 Z2 Z

Table B.1: Periodic table of topological insulators and superconductors
adopted from C.-K. Chiu et. al., Reviews of Modern Physics, 88, 035005
(2016); δ := d − D, where d is the space dimension and D + 1 is the
codimension of defects; the left-most column (A, AIII, . . ., CI) denotes
the ten symmetry classes of fermionic Hamiltonians, which are charac-
terized by the presence/absence of time-reversal (T ), particle-hole (C),
and chiral (S) symmetry of different types denoted by ±1. The entries
“Z”, “Z2”, “2Z”, and “0” represent the presence/absence of non-trivial
topological insulators/superconductors or topological defects, and when
they exist, types of these states. The case of D = 0 (i.e., δ = d) corre-
sponds to the tenfold classification of gapped bulk topological insulators
and superconductors.

B.2 Classification based on the Clifford algebra

A classification based on the Clifford algebra derives a framework of topological classes
by considering an algebra of symmetry operations in AZ class with some crystalline
symmetries [115]. For example, in the AII class with a mirror symmetry, the classification
is given as Z. This Z corresponds to a mirror Chern number.

B.3 Classification based on the K-theory

In principle, a classification based on the K-theory gives a complete classification for
all AZ class with space group symmetry. Recently, the procedure to obtain the classifi-
cation has been also proposed [52]. However, at the moment, it is not necessarily easy
to complete the procedure in an exact way for the systems with crystalline symmetries.
Therefore, comprehensive understanding has not been achieved. In some cases, classifi-
cations are obtained and the result is consistent with the other classification theories and
diagnostic methods.
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Notes of the δ indices

C.1 BZ folding and symmetry eigenvalues

In this dissertation, only double BZ folding is considered. When the BZ is doubly
folded, doubly degenerated states appear on the boundary of the folded BZ. Let us assume
the doubly degenerated states ψk1 and ψk2 are originated from two momentum, k1 and
k2. We can construct new bases by making linear combinations of ψk1 and ψk2 , and get
eigenstates of symmetry operators such as mirror, C2, or C4).

Let us consider a symmetry operator R(= C4, C2,m). If k1 and k2 are R-invariant
point in the folded BZ, they are connected by R in the original BZ (Rk1 = k2). The
representation of R is written as

R =

(
0 ∗
∗ 0

)
: bases =

(
ψk1

ψk2

)
. (C.1)

The reconstruction of the bases is a Unitary transformation by U ,

URU † =

(
ρ1 0
0 ρ2

)
: bases = U

(
ψk1

ψk2

)
. (C.2)

Here, ρ1 and ρ2 are R eigenvalues.
By taking the trace,

0 = Tr(R) = Tr(URU †) = ρ1 + ρ2. (C.3)

It is proved that the BZ folding gives a doubly degenerated pair with opposite eigenvalues.
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Appendix D

Note about the intrinsic link
between nodal line semimetals and
topological crystalline insulators

D.1 Sign of the mirror Chern number

The sign of the mirror Chern number has no physical meaning. The sign depends on
the definition of the mirror operator, which has uncertainty.

Let us assume a mirror operator m in a spinful system. The Chern number of the
sectors with ±i mirror eigenvalues are C+ and C− and the mirror Chern number nM is

nM =
C+ − C−

2
. (D.1)

Let us consider a symmetry operation m′ = m3. In the real space (as an element of
SO(3)), m′ is the same mirror operation as m. On the other hand, in the spin space
(as an element of SU(2)), m′ = −m. Therefore, if we use m′ as the mirror operation
instead of m, the mirror eigenvalues are flipped and the mirror Chern number for m′

is −nM. The choice of the mirror operation corresponds to the choice of gauge. This
uncertainty has nothing to do with physical observables, and thus the sign of the mirror
Chern number has no physical meaning.

D.2 Spin part of symmetry operators

Since spin is a pseudovector, only rotations are considered. For a rotation which is
described by Euler angles (α, β, γ), the representation for the spin part is

D1/2(α, β, γ) = e−i 1
2
ασze−i 1

2
βσye−i 1

2
γσz

=

(
e−i 1

2
α cos 1

2
β e−i 1

2
γ −e−i 1

2
α sin 1

2
β ei

1
2
γ

ei
1
2
α sin 1

2
β e−i 1

2
γ ei

1
2
α cos 1

2
β ei

1
2
γ

)
.

(D.2)
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We have two possible representation for a rotation since (α, β, γ) and (α+π, 2π−β, γ+π)
describe the same rotation as an element of SO(3). The two representations satisfy

D1/2(α, β, γ) = −D1/2(α + π, 2π − β, γ + π). (D.3)

This is exactly the sign degree of freedom of the mirror Chern number.

D.3 Wilson loop evaluation of Chern number

D.3.1 The Chern number and Wannier center

The Chern number C is calculated as

2πC =

∫ π

−π

dkx

∫ π

−π

dky

(
∂

∂kx
Ay −

∂

∂ky
Ax

)
=

∫ π

−π

dkx

∫ π

−π

dky
∂

∂kx
Ay −

∫ π

−π

dkx

∫ π

−π

dky
∂

∂ky
Ax

=

∫ π

−π

dkyAy(kx, ky)

∣∣∣∣kx=π

kx=−π

−
∫ π

−π

dky
∂

∂ky

(∫ π

−π

dkxAx(kx, ky)

)
.

(D.4)

The gauge can be fixed to satisfy ψ(π, ky) = ψ(−π, ky) (⇒ Ay(π, ky) = Ay(−π, ky)), and
in that gauge the first term vanishes.

2πC = −
∫ π

−π

dky
∂

∂ky
θx(ky)

= −
∫ π

−π

dθx(ky).

(D.5)

Here, θx(ky) is the 1D Wannier center along a fixed kx line,

θx(ky) =

∫ π

−π

dkxAx(kx, ky). (D.6)

Since the system is periodic, θx(ky) = θx(ky + 2π) (mod 2π) is satisfied and thus the
Chern number is calcualted as “how many times the θx winds” form ky = −π to ky = π.

D.3.2 Numerical evaluation of the Wannier center

To evaluate the θx, the gauge of wavefunctions needs to be carefully treated. When a
wavefunction ψ(k) is given by numerical diagonalization of a Hamiltonian H(k), generally
different gauges are taken in each k point. Therefore, the numerical differential does not
suit the calculation of θx. Instead of the numerical differential, the following gauge
independent method is used.
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Given wavefunctions ψ(ki) in a k points line (loop) ki = {k1,k2,k3, · · ·kn−1,kn ≡ k1},
the Berry phase between ki and ki+1 can be calculated in the n→ ∞ limit as

|ψ(ki+1)⟩ ≃
(

1 + ∆ki ·
∂

∂k

)
|ψ(ki)⟩ (∆ki = ki+1 − ki)

⟨ψ(ki) |ψ(ki+1)⟩ ≃ 1 − i∆ki ·A(ki)

≃ e−i∆ki·A(ki).

(D.7)

Here A(k) = i
⟨
ψ(k)

∣∣ ∂
∂k

∣∣ψ(k)
⟩

is the Berry connection. Using this relation, the θ is
calculated within mod 2π as

e−iθ = e−i
∫
dk·A(k) ≃ e−i

∑n−1
i=1 ∆ki·A(ki) =

n−1∏
i=1

e−i∆ki·A(ki) ≃
n−1∏
i=1

⟨ψ(ki) |ψ(ki+1)⟩ . (D.8)

Since k1 ≡ kn (genarally 2π difference is allowed), the gauge fixing condition ψ(k1) =
ψ(kn) is easily satisfied by using ψ(k1) as ψ(kn). For a gauge transformation

|ψ(ki)⟩ ⇒ eiλi

∣∣∣ψ̃(ki)
⟩
, (D.9)

the right hand side of Eq.(D.8) is transformed as

n−1∏
i=1

⟨ψ(ki) |ψ(ki+1)⟩ =
n−1∏
i=1

⟨
ψ̃(ki)

∣∣∣ ψ̃(ki+1)
⟩
e−iλieiλi+1

= e−iλ1eiλn

n−1∏
i=1

⟨
ψ̃(ki)

∣∣∣ ψ̃(ki+1)
⟩

=
n−1∏
i=1

⟨
ψ̃(ki)

∣∣∣ ψ̃(ki+1)
⟩
.

(D.10)

It is proved that this method is gauge independent.

However, in numerical evaluation of θx(ky), we cannot see how θx(ky) and θx(ky+∆ky)
are connected. Therefore, if the θx quickly winds compared to the ky step size, we can
miss the nontrivial structure. Generally, when the band gap is small, the Wannier center
moves quickly and we need to evaluate with a fine ky mesh.

D.3.3 The Multi band Wannier centers and the Wilson matrix

For a multi occupied bands case, the Wilson loop approach is used as an extended
method to calculate the “Berry phase”.

Given m occupied band in k, {ψ1(k), ψ2(k) · · ·ψm(k)}, in each point in a k points
line (loop), the m×m Berry connection matrix is given as

Wαβ(ki) = ⟨ψα(ki) |ψβ(ki+1)⟩ . (D.11)
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As an analogy of the single band case, the topological invariant along the k loop is
obtained by calculating the product of each step,

W =
n−1∏
i=1

W (ki). (D.12)

The absolute value of the eigenvalues ofW is always 1 because that of each stepW (ki) is 1.
Let us write the eigenvalues as

{
eiθ1 , eiθ2 , · · · eiθm

}
, the arguments of then, {θ1, θ2, · · · θm}

represents the topological properties of the system. For example, the Chern number is
calculated by following θ =

∑m
i=1 θi as is in the single band case. In the calculation

of W , we need not to care the energy sequence in the occupied bands. Additionally, a
degenerate point between occupied bands also does not matter, even if the degeneracy is
held on the whole line.

D.3.4 Example : Ca

The example of the numerical evaluation of the Chern number is shown in Fig.D.1
(the mirror Chern number in Ca). The bottom left (bottom right) of the Fig.D.1 is the
Wannier center diagram of the +i mirror sector of on the (110) mirror-invariant plane
(the (001) mirror-invariant plane).

The “first BZ” on the (110) mirror-invariant plane is written ask(t1, t2) = t1

 2π
−2π
2π

 + t2

−2π
2π
2π

∣∣∣∣∣∣ t1, t2 ∈ [0, 1)

 . (D.13)

In the Wannier center diagram, the horizontal axis is t1 and the vertial axis is θ2/(2π).
Here, θ2 is defined as

θ2(t1) =

∫ 2
√
3π

0

dk1̄11A1̄11(k)

=

∫ 1

0

dt2
∂k(t1, t2)

∂t2
·A(k(t1, t2)).

(D.14)

The Wannier canter in the +i mirror sector winds two times, and thus the Chern number
in the sector is +2.

The “first BZ” on the (001) mirror-invariant plane is written ask(t1, t2) = t1

4π
0
0

 + t2

 0
4π
0

∣∣∣∣∣∣ t1, t2 ∈ [0, 1)

 . (D.15)

The horizontal and vertical axes in the Wannier center diagram are t1 and θ2/(2π),
respectively. The θ2 is defined in the same way as Eq.(D.14). The Wannier canter in the
+i mirror sector does not wind, and thus the Chern number in the sector is 0.
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Figure D.1. BZ and Wannier center diagrams on mirror-invariant planes
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Appendix E

Nodal lines in Ca2As family

By the first-principles calculation, it is revealed the the mirror-protected nodal line
is a pert of intersecting nodal lines (see Fig.4.12(a)). Therefore, we start from a tight-
binding model and consider the k · p perturbation around (kx, ky) = (π, π), in which we
keep the z direction periodic.

We fit the values of hopping parameters to reproduce the band dispersion by using
WANNIER90 [103]. From the result given by WANNIER90, the 11 largest hopping
parameters are taken into account and others are neglected. To represent the transition of
nodal line configurations between Ca2As and other materials, we use a tunable parameter
η. To make the calculation easier, we derive a 2×2 model for the system without SOC by
the k ·p perturbation around (kx, ky) = (π, π). For the bases, we take two wavefunctions
whose energies are close to the Fermi energy. As a result, The 2 × 2 model is given as

H2×2(k) = Zσz + Y σy, (E.1)

Z = J +K(k2x + k2y) + L cos ckz +Mkxky cos
ckz
2
, (E.2)

Y = S sin ckz + Tkxky sin
ckz
2
, (E.3)

J ≃0.7483 − 3.9229 × η,

K ≃0.1962,

L ≃0.009357,

M ≃0.04060,

S ≃0.008565,

T ≃0.04047,

(E.4)

where σy and σz are the Pauli matrices and σ0 is a two-dimension identity matrix, (kx, ky)
is redefined as a relative coordinate from (π, π). The presence of nodal lines and it
configuration depend on eta [Fig.E.1]. When η ≲ 0.1884, there is no nodal line. When
0.1884 ≲ η ≲ 0.1931, the nodal line configuration is the same as that of Ca2As. When
0.1931 ≲ η ≲ 0.2311, mirror-protected nodal lines additionally appear, but they are
separated. When 0.2311 ≲ η, they intersect with each other.
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Figure E.1. Schematic picture of the configuration of nodal lines. Both of
the two nodal line semimetals are linked to the same topological crystalline
insulator.

We introduce a Rashba-type SOC term with amplitude λ, and then the tight-binding
model is 4 written as

H4×4(k) = H2×2(k)s0 + λσx(−kysx + kxsy). (E.5)

The (001) mirror operator (mz) and the (11̄0) mirror operator (m⊥) are written as

mz → − iσzsz,

m⊥ → − i
1√
2
σ0(sx − sy).

(E.6)

For the (001) plane, the z component of the Berry curvature in the +i mirror sector
is written as

Bz,+ =
λ2

2R3
+

(
(J + L) +K(k2x + k2y) +Mkxky − 2Mkxky

Z2
+

(R+ + Z+)2

)
, (E.7)

where

X+ = −λky,
Y+ = λkx,

Z+ = −Z(kz=0),

R+ =
√
X2

+ + Y 2
+ + Z2

+.

(E.8)
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The mirror Chern number evaluated in this model is nX,M(001)
= 1. There are two X

points in the BZ and it is easy to see that only the sign of the term with coefficient M
is different in the other X point. Therefore, both nodal lines around the X points have
the same contribution to the mirror Chern number and thus the mirror Chern number is
nM(001)

= 2 when there are nodal lines on the kz = 0 plane [Fig.E.1]. It should be noted
that in this calculation it did not matter whether some other nodal lines are touching the
nodal line on the mirror plane.

For the (11̄0) plane (kx, ky, kz) = (kd, kd, kz), the perpendicular component of the
Berry curvature in the +i mirror sector is written as and

B⊥,+ = − λV

2R3
+

(
|J + L| + (K +

M

2
)k2d

)
, (E.9)

X+ = χkd,

Y+ = Y ≃ V kz,

Z+ = Z ≃ (J + L) + (K +
M

2
)k2d,

(E.10)

where V is defined as

V =

{
(S + T

4
k2d) (kz = 0)

(S − T
4
k2d) (kz = π)

. (E.11)

kz = 0, π correspond to the two nonequivalent P points. Since the Berry curvature shows
sharp peaks around kz = 0, π in case of λ ≪ 1, we assumed kz ≪ 1 or kz − π ≪ 1 for
each case. For kz = 0, V is always positive. On the other hand, Vkz=π is positive before
the nodal lines are separeted (η ≲ 0.2311) but negative after they touch (η ≲ 0.2311).
Due to the difference of the sign of V , the mirror Chern numbers from the two X points
cancel each other when η ≲ 0.2311. When η ≲ 0.2311, on the other hand, mirror Chern
numbers from the two separeted nodal lines cancel each other. Consequently, in the whole
BZ nM(11̄0)

= 0 in the both cases [Fig.E.1].
To know the sign of the mirror Chern number that evaluated in the local models, de-

tailed discussions are generally needed. Therefore, as long as we just see the configuration
of nodal lines, we cannot uniquely specify the class of topological crystalline insulator that
is obtained by introducing SOC. However, the number of candidates can be decreased by
using the intrinsic link between nodal lines and the mirror Chern numbers.
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