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Abstract
Higher-order quantum transformations describe transformations between quan-

tum operations. Higher-order quantum transformations are used for analyzing

the properties of quantum operations, and are expected to bring further insights

to quantum mechanics. In quantum algorithms, computational tasks are usu-

ally encoded as quantum operations, and a physical realization of higher-order

quantum transformations is expected to provide a comprehensive implemen-

tation of those quantum algorithms. In this thesis, we focus on higher-order

quantum transformations on unitary operations, as many quantum algorithms

can be described by unitary operations, and general quantum operations can be

represented by unitary operations acting on an extended quantum system.

The first topic we focus on is quantum switch, a higher-order quantum trans-

formation used for the study of the causal structure of quantum operations

within quantum mechanics. We investigate the difference between the action

of quantum switch on unitary operations and that on general quantum opera-

tions beyond unitary operations, and we show that they coincide under certain

natural assumptions. This result strengthens the theoretical background for the

studies on quantum switch, and provides a physical meaning to the experimental

realization of quantum switch.

The second topic is controllization, a higher-order quantum transformation

from a unitary operation to the corresponding controlled unitary operation. It

is a quantum counterpart of the “if-clause” in classical computing. We extend

the definition of controlled unitary operations to controlled general quantum

operations and further to controlled higher-order quantum transformations. We

analyze controllization as a controlled version of a certain class of higher-order

quantum transformations, and propose a new quantum algorithm for approxi-

mate controllization without using an auxiliary system.

In the last topic, we propose a new structure of higher-order quantum trans-

formation named success-or-draw, which allows a repeat-until-success strategy.

The repeat-until-success strategy allows an exponentially decreasing failure prob-

ability for probabilistic algorithms. However, in probabilistic higher-order quan-

tum transformations, the initial input state cannot be re-used on failure, and

the applicability of a repeat-until-success strategy is not straightforward. We

mathematically identify a structure that allows re-use of the initial input state

on failure as the success-or-draw structure, and we prove that this structure

is compatible with a large class of higher-order quantum transformations. We

also analyze a higher-order quantum transformation known as unitary inver-

sion in terms of success-or-draw, and propose a protocol with a higher success

probability than previously known ones.
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Notations

• H, I,O: Hilbert spaces.

• L(H): The set of linear operators on H.

• |ψ〉H, ρH: Quantum states in the Hilbert space H.

• δij: The Kronecker delta.

• ĩd: The identity operation.

• |U〉〉: The unnormalized maximally entangled state defined by (I⊗U)|I〉〉 :=∑
i |i〉(U |i〉)

• JU : The Choi operator of unitary operation U defined by JU := |U〉〉〈〈U |.

• ˜̃A: A supermap.

• Ã: The corresponding map of the supermap ˜̃A, or a quantum operation.

• A: The Choi operator of the supermap ˜̃A.
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Chapter 1

Introduction

1.1 Quantum Information Processing

Quantum mechanics presents various new phenomena not exhibited in classical

mechanics such as quantum entanglement. Quantum mechanics provides a new

understanding of the fundamental principles of our world, and new technologies

not achievable within classical mechanics. Quantum information processing [1–

4] is one of the emerging technologies utilizing various unique phenomena of

quantum mechanics for information processing. Some information processing

tasks can be more efficiently performed in quantum mechanics than in classical

mechanics. One of the most famous tasks is factoring, which can be solved

in a polynomial time using a quantum algorithm, Shor’s algorithm [5], and is

considered to have an exponential speed-up by utilizing properties of quantum

mechanics. Quantum key distribution [6] also provides secure communication

with quantum mechanics.

While developing technologies for utilizing unique properties of quantum me-

chanics is inevitable for performing quantum information processing, discovering

novel quantum algorithms including Shor’s algorithm remains an active field of

research. Quantum mechanics introduces many operations for information pro-

cessing not existing in classical mechanics such as creating a superposition of

states, but it also forbids many intuitive operations used in classical information

processing such as cloning of unknown quantum states [7]. Thus, it is important

to clarify which operations are possible within quantum mechanics.

There exist various models for quantum computing including the quantum

circuit model, measurement-based quantum computation [8, 9], and adiabatic

quantum computation [10]. The quantum circuit model is widely used because

it intuitively describes information processing tasks corresponding to the clas-

sical counterpart. In the quantum circuit model, input data for information
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Figure 1.1: An example of a quantum circuit. The input state is |ψ〉 and a

fixed auxiliary state |0〉. Unitary operations U1, U2, and U3 are applied on the

quantum states in order, and quantum measurements M1, M2 give outcomes

represented by classical information. Each horizontal line presents a quantum

system, and the operations are applied from left to right.

processing tasks are usually encoded in quantum states, and the “program” is

described by a sequence of quantum operations as shown in Fig. 1.1.

The quantum circuit model describes quantum algorithms in an abstract

way, in the sense that transformations of quantum states are not described

by the actual time evolution generated by a Hamiltonian of the quantum sys-

tem constituting a quantum computer. Quantum algorithms are described by

a sequence of elemental operations in the quantum circuit model. The basic

building blocks of the quantum circuit model are the quantum gates, usually a

finite set of unitary operations and quantum measurements in a certain basis

often fixed in a basis called the computational basis. In many quantum algo-

rithms, a sequence of unitary operations is applied, and quantum measurements

are performed in the last step to obtain outcomes given by classical information

from the quantum states transformed by the sequence of unitary operations. For

that, unitary operations are considered to be the most basic building block for

quantum information processing.

1.2 Higher-order Quantum Operations

In spite of being widely used, describing quantum algorithms in terms of the

quantum circuit model becomes complicated when the tasks become complex

and the number of required quantum gates increases. Moreover, the develop-

ments of quantum technologies allow us to exploit larger quantum systems for

performing such complex tasks. Thus, new methods for describing quantum al-

gorithms are in demand for future developments in quantum information theory,

and many attempts have been made recently. One of the recent developments

is higher-order quantum operations [11, 12]. While usual quantum operations
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describe transformations between quantum states, higher-order quantum oper-

ations describe transformations between quantum operations.

Higher-order quantum operations can be regarded as the quantum coun-

terpart of higher-order functions in many programming languages in classical

computing, and are expected to provide an alternative way of quantum pro-

gramming. Especially, in many computational tasks, the properties of the tasks

are encoded as quantum operations, instead of quantum states, in various forms,

and a physical realization of higher-order quantum operations are expected to

provide a comprehensive implementation of quantum algorithms. Also, since

quantum operations describe dynamics of quantum systems, higher-order quan-

tum operations can be used for analyzing the transformability of quantum dy-

namics, and bring further insights to quantum mechanics.

In order to understand how higher-order quantum operations are used for

quantum algorithms, here we introduce a few examples of higher-order quantum

operations. The first example of higher-order quantum operation is unitary

inversion: transforming a unitary operation into its inverse operation [13–17].

A schematic view of the problem is given in Fig. 1.2. Given a unitary operation,

its inverse operation is also a unitary operation. If the unitary operation, or

the corresponding unitary operator, is given by its classical description, such

as a matrix with all elements known, obtaining the inverse operation is simple

in principle, because the inverse of a unitary matrix can be calculated as the

transposition and complex conjugation of the original matrix. However, if the

unitary operation is given by a Hamiltonian dynamics, obtaining the inverse

operation becomes a non-trivial task because it is not possible to invert the

time evolution of a quantum system in general. Many quantum algorithms, for

example the Harrow-Hassidim-Lloyd (HHL) algorithm [18] that solves a linear

equation, use a unitary operation characterizing the problems and its inverse

operation in pairs. If it is possible to universally invert a unitary operation

without specifying its classical description, this kind of quantum algorithms can

be realized more simply because once we construct a quantum circuit of the

unitary operation characterizing the problems, its inverse operation can also be

implemented by using the same unitary operation, and it is not necessary to

construct another quantum circuit only for the inverse operation.

Another example of higher-order quantum operation is controllization: trans-

forming a unitary operation into the corresponding controlled unitary opera-

tion [17, 19–25]. A controlled unitary operation is also a unitary operation and

its action is given as follows: if the control system is in state |0〉, it applies the

identity operation to the target system; if the control system is in state |1〉, it ap-

plies the corresponding unitary operation to the target system; and if the control

4



Figure 1.2: A schematic picture of an example of a higher-order quantum opera-

tion called unitary inversion. The higher-order quantum operation by a concave

box denoted by S transforms a unitary operation U into its inverse U−1. Many

algorithms use U and U−1 in pairs. If this higher-order quantum operation is

implementable, we can replace the use of U−1 with repetitive uses of U together

with S, instead of implementing U−1 regardless of U .

system is in a superposition of |0〉 and |1〉, it applies the coherent superposition

of the two operations. Controlled unitary operations are widely used in various

quantum algorithms including Shor’s algorithm for factoring, the HHL algorithm

for solving linear equations, and Kitaev’s phase estimation algorithm [26]. Con-

trolled unitary operations are a quantum counterpart of the “if-operation” in

classical computing, and similarly, controllization is a quantum counterpart of

the “if-clause”, which transforms an operation into an “if-operation”, in classical

computing. As the “if-clause” is a key element in classical computing, control-

lization is expected to be a useful higher-order quantum operation in quantum

computing.

Higher-order quantum operations are also used for the study of the rela-

tionship between space and time in quantum information processing. A recent

emerging topic in this category is the indefinite causal order [27–30]. Usual

situations considered for higher-order quantum operation are to use the input

operations in a fixed time order. However, if higher-order quantum operations

are considered as just a transformation between quantum operations, there is no

fundamental principle of quantum mechanics to rule out the possibility of using

input operations in superposition, which is also known as the indefinite causal

order. The simplest example of higher-order quantum operation with indefinite

causal order is quantum switch: transforming a pair of unitary operations into a

superposition of two differently ordered concatenations of the pair of input uni-

tary operations [27]. Quantum switch is shown to be not implementable within

the usual quantum circuit model, but no principle of quantum mechanics is

found to forbid the implementation of quantum switch so far. Quantum switch

is not just an academically interesting example of indefinite causal order, but

it is shown to provide certain advantages in quantum computing and quantum

communication tasks [31–36].
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We have listed three examples of higher-order quantum operations and their

importance in quantum physics and quantum information processing. There are

other higher-order quantum operations that have been investigated, for example,

cloning of unitary operation [37], store and retrieve of unitary operations [38,39].

A common feature of these useful higher-order quantum operations is that they

are basically defined for unitary operations, that is, we usually focus on the

action of higher-order quantum operations on unitary operations instead of gen-

eral quantum operations. Unitary operations are one of the most fundamental

quantum operations in quantum information processing, and in many quan-

tum algorithms, tasks are encoded into unitary operations. As one of the main

reasons to utilize higher-order quantum operation is to perform the tasks of

quantum information processing, it is natural to focus on the action on unitary

operations where the tasks are encoded. However, when we actually implement

a higher-order quantum operation in a quantum circuit, for example, it is al-

ways possible to input general quantum operations instead of unitary operations

as input operations. That is, even when we only consider the action of higher-

order quantum operations on unitary operations, the action on general quantum

operations must be determined in a certain manner.

1.3 Implementing Higher-order Quantum Op-

erations

Higher-order quantum operations yield various applications if they are imple-

mented. However, it is not obvious how these higher-order quantum operations

can be implemented in quantum mechanics. A mathematical formulation of

higher-order quantum operations that is compatible with the quantum circuit

model [11, 12] provides a tool for analyzing what kind of higher-order quantum

operations are implementable. Unfortunately, many of the higher-order quan-

tum operations are shown to be not implemented in an exact and deterministic

manner [16, 37, 38]. On the other hand, there are various attempts for imple-

menting higher-order quantum operations by relaxing certain restrictions. For

example, it is usually considered the case where multiple uses of input quantum

operations are allowed. By such relaxations, there exists a universal way for

approximately implementing higher-order quantum operations: first extract the

classical description of the input operation, for example by utilizing quantum

process tomography [40]; then calculate the output operation of the higher-order

quantum operation in a classical way; and finally implement the corresponding

output operation based on the calculated classical description. This method can
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be used to implement higher-order quantum operation with an arbitrarily small

error if enough number of uses of the input operation is allowed. However, this

method does not provide many advantages of higher-order quantum operation,

because the calculation of higher-order quantum operation is mainly performed

in a classical way. Also, this method does not implement the exact higher-order

quantum operation, because quantum process tomography cannot provide exact

classical description with a finite number of uses of the input operation.

In this thesis, we focus on the properties of three types of higher-order quan-

tum operations. Apart from its concrete formalism, finding out how to imple-

ment higher-order quantum operation is still a hard problem in general due to

the exponential nature of the Hilbert space to be analyzed. Thus, we focus on

the analysis of certain types of higher-order quantum operations, especially those

on unitary operations, and provide new understandings of the possibilities and

limitations of higher-order quantum operations. We also propose new quantum

algorithms for efficient implementations of certain higher-order quantum opera-

tions, and provide new methods for the experimental realization of higher-order

quantum operations.

Quantum Switch The first topic we focus on is quantum switch. Quantum

switch is a well-studied higher-order quantum operation as we stated, but its

definition has not been concrete in the following sense: when the two input

operations are unitary operations, the output operation is given by coherently

controlled two differently causally ordered operations; however, when two input

operations are not unitary operations, the output operation cannot be simply

extended as a coherent superposition as in the unitary case. In the definition

of quantum switch [27], the action on general quantum operations is chosen to

be the most natural one based on its Kraus representation [41]. This definition

is widely used in various studies of quantum switch on general quantum oper-

ations [33–36], but it has not been known if this definition is the only possible

definition compatible with its action on unitary operations.

In this thesis, we show that the action of quantum switch on general quantum

operations can be uniquely determined from its action on unitary operations by

adding two natural assumptions. Moreover, if either of the two assumptions is

omitted, the uniqueness does not hold. This result strengthens the theoretical

background for the studies on quantum switch, and provides a physical meaning

to the experimental realization of quantum switch because the assumptions we

pose are necessary to promise the action of quantum switch on general quantum

operations.

Controllization The second topic is controllization. Controllization has been

studied in various contexts, and there are a few quantum algorithms for con-
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trollization proposed under certain assumptions. In this thesis, we seek a gen-

eral framework for understanding controllization. To this end, we first seek an

“appropriate” definition of a controlled version of general quantum operations

beyond unitary operations by extending the definition of controlled unitary op-

erations. Our definition is based on two possible physical implementations and

one axiomatic approach, and we show that all the three converge to the same

definition. We then generalize the definition of controlled quantum operations

to a controlled version of higher-order quantum operations. Based on this defini-

tion, controllization can be regarded as a controlled version of a certain class of

higher-order quantum operations called neutralization, and we can analyze the

performance of controllization within this definition. We provide a method that

reproduces certain previously known quantum algorithms for controllization [17]

within this framework. Moreover, we propose a new quantum algorithm for ap-

proximate controllization without using auxiliary system, which is not possible

in the previously known ones [17,20].

Success-or-Draw In the last topic, we propose a new structure of higher-order

quantum operations named success-or-draw for probabilistic higher-order quan-

tum operations, which allows a repeat-until-success implementation of them.

Certain higher-order quantum operations such as unitary inversion are known

to be implementable in an exact and probabilistic manner. When a probabilis-

tic algorithm is available, a straightforward method for enhancing the success

probability is to perform the same algorithm multiple times until success, i.e., a

repeat-until-success strategy. Such a strategy requires the input state to be suit-

ably prepared every time when the algorithm is repeated. In order to perform

a higher-order quantum operation, the input state on which the output opera-

tion is applied is necessary in addition to the input operations. In the classical

case, the input state can be copied and re-used multiple times. Thus, it is not

a fundamental limitation in the repeat-until-success strategy. In the quantum

case, however, the input state cannot be cloned in general [7], and moreover, the

input state will be disturbed in general regardless of success or failure. Thus,

in order to apply the repeat-until-success strategy for probabilistic higher-order

quantum operation, both copies of the input operations and the input state

are necessary in general. While the input operation can be “copied” by physi-

cally using the corresponding quantum circuit multiple times, the requirement

of cloning the input state causes the realization of repeat-until-success strategy

difficult practically in the quantum case.

In Ref. [13], an explicit quantum circuit for probabilistic unitary inversion is

presented. It utilizes certain properties characteristic to the problem of unitary

inversion and shows that it is possible to preserve the input state even when it

8



fails. Thus, it is possible to perform a repeat-until-success strategy, and achieves

an exponentially decreasing failure probability for unitary inversion. However,

while they show the possibility of preserving the input state on failure on certain

problems, it is not known if a similar method can be applied to other problems.

In this thesis, we mathematically identify the structure that guarantees the

preservation of the input state on failure as the success-or-draw structure. With

the mathematical definition of the success-or-draw structure, we prove that this

structure is compatible with a large class of higher-order quantum operations.

We also analyze the problem of unitary inversion in terms of success-or-draw,

and propose a protocol with a higher success probability than previously known

ones.

1.4 Organization of This Thesis

This thesis is organized as follows. In Chapter 2, we review basic mathematical

tools used in quantum information and the formulation of higher-order quantum

operations. We then review certain higher-order quantum operations related to

our main results. In Chapter 3, we analyze the relationship between different

definitions of quantum switch and prove that they coincide under two natu-

ral assumptions. In Chapter 4, we consider controllization by constructing a

theoretical framework of general controlled quantum operations and controlled

higher-order quantum operations, and analyze the problem of controllization

within this framework. In Chapter 5, we propose a new useful structure of

higher-order quantum operations, the success-or-draw structure, and provide a

realization theorem of this structure. We also analyze the unitary inversion in

terms of the proposed structure. Chapter 6 concludes the thesis and proposes

the possible future scope for further study.
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Chapter 2

Preliminary

In this chapter, we first introduce the two basic concepts of quantum informa-

tion theory, quantum states (Sec. 2.1) and quantum operations (Sec. 2.2). We

then review the mathematical formalism of higher-order quantum operations

in Sec. 2.3 and several results on higher-order quantum operations relevant to

the following chapters. In Sec. 2.5, we give a brief introduction to the indefi-

nite causal order and a characteristic higher-order quantum operation for the

indefinite causal order known as quantum switch. In Sec. 2.4, we introduce a

higher-order quantum operation known as the controllization, which we will fo-

cus on in Chapter 4. In Sec. 2.6, we introduce another higher-order quantum

operation known as the unitary inversion. The main result of Chapter 5 is in-

spired by a certain algorithm for unitary inversion, and unitary inversion will

also be analyzed in Chapter 5.

2.1 Quantum States

In this thesis, only finite-dimensional systems are considered. A quantum system

is described by a Hilbert space as H ' Cd, where d is the dimension of the

system. The Hilbert spaces on which the vectors and operators are defined are

specified by the subscripts or superscripts, and may be omitted if it is trivial

from the context. A two-dimensional quantum system is sometimes called a

qubit.

A pure quantum state is described by a unit vector in the Hilbert space as

|ψ〉 ∈ H. More precisely, a pure quantum state is described by a ray, that is,

two quantum states described by the vectors eiθ|ψ〉 and |ψ〉 correspond to the

same quantum state because the global phase eiθ is a non-physical quantity. We

define an orthonormal basis {|i〉}d−1
i=0 forH called the computational basis, and an

10



arbitrary pure quantum state can be decomposed in this basis as |ψ〉 =
∑

i ci|i〉
with complex coefficients {ci}d−1

i=0 satisfying
∑

i |ci|2 = 1.

Mixed quantum states, which are probabilistic mixtures of pure quantum

states, appear in quantum information theory naturally. A mixed state is repre-

sented by a linear operator on H as ρ ∈ L(H), which is referred to as a density

operator. A pure state |ψ〉 is described by the corresponding projector |ψ〉〈ψ|.
A mixed state obtained by a probabilistic mixture of quantum states {ρi}i ac-

cording to the probability distribution {pi}i is given by ρ =
∑

i piρi. Since a

pure state is described by a positive operator |ψ〉〈ψ| ≥ 0 and a mixed state are

a probabilistic mixture of pure states, a general quantum state is described by

an operator ρ ∈ L(H) satisfying the positivity ρ ≥ 0 and unit trace Trρ = 1.

Quantum coherence is an important measure for quantumness, and is consid-

ered to be a key element in quantum computing. For a quantum state, coherence

is defined for a fixed basis, usually the computational basis or the eigenbasis of

a Hamiltonian of a system, and an intuitive understanding of coherence is that

how much a quantum state is in a superposition. A quantum state is not co-

herent if its density operator is diagonal in that basis, which is a probabilistic

mixture of each basis state rather than a superposition. There exist various

measures for coherence [42], for example, the norm of the off-diagonal terms of

a density operator and the distance from non-coherent states.

Next, we consider composite quantum systems. Given two quantum systems

described by the Hilbert spaces H1 ' Cd1 and H2 ' Cd2 , the composite system

is represented by the tensor product H1⊗H2. If the quantum states of the two

systems are given by pure states |ψ1〉 and |ψ2〉 respectively, the quantum state of

the composite system is also a pure state and is given by |ψ1〉⊗ |ψ2〉 ∈ H1⊗H2.

We sometimes abbreviate this state as |ψ1〉|ψ2〉 or |ψ1ψ2〉 for convenience. If a

pure state in the composite system can be written as a tensor product of two

independent pure states in each system as shown above, it is called a product

state. The linearity of quantum mechanics allows the linear combination of

quantum states to be a quantum state. If a pure state cannot be decomposed

as the tensor product of two pure states in each system, it is called an entangled

state. Similarly, if a mixed state can be written as a tensor product as ρ =

ρ1 ⊗ ρ2 ∈ L(H1 ⊗ H2), it is called a product state. If a mixed state can be

written as a probabilistic mixture of product states as ρ =
∑

i pi(ρ1)i ⊗ (ρ2)i, it

is called a separable state, and otherwise an entangled state.

We define a special class of bipartite states, the maximally entangled states.

Here we assume that d1 = d2 = d for convenience. A bipartite state is said to
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be a maximally entangled state if it can be written as

|ψ〉 =
1√
d

d−1∑
i=0

|e1
i 〉|e2

i 〉, (2.1)

where {|e1
i 〉} and {|e2

i 〉} are bases of H1 and H2, respectively. Moreover, such a

state can be written as

|ψ〉 = (I ⊗ U)|ψ+〉 (2.2)

with some unitary operator U and the state |ψ+〉 defined by

|ψ+〉 :=
1√
d

d−1∑
i=0

|i〉|i〉 (2.3)

using the computational basis {|i〉}d−1
i=0 . For later convenience, we also define

the unnormalized version of maximally entangled states denoted by a dual ket

symbol | · 〉〉 defined by

|U〉〉 := (I ⊗ U)
d−1∑
i=0

|i〉|i〉, (2.4)

where |I〉〉 =
√
d|ψ+〉 holds.

2.2 Quantum Operations and their Represen-

tations

In this section, we review quantum operations, which describe transformations

between quantum states. We then introduce three commonly used representa-

tions of transformations in quantum information: the Kraus representation, the

Choi-Jamio lkowski representation, and the Stinespring representation.

Consider a deterministic transformation Ã of a quantum state ρ on H to a

quantum state σ on K.1 A transformation by a deterministic quantum operation

is described by a map Ã, which has to preserve the properties of quantum states.

The first condition for a map Ã is the linearity, that is, Ã is a linear map

satisfying

Ã(p1ρ1 + p2ρ2) = p1Ã(ρ1) + p2Ã(ρ2). (2.5)

1The tilde denotes that it is a transformation between linear operators. This notation will

be discussed later when higher-order quantum operations are introduced.
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The linearity is required because if an input state ρ of a map Ã is a probabilistic

mixture of two states ρ1 and ρ2 with probability p1 and p2, namely, ρ = p1ρ1 +

p2ρ2, then the output state Ã(ρ) should also be the probabilistic mixture of

Ã(ρ1) and Ã(ρ2), namely, Ã(ρ) = p1Ã(ρ1) + p2Ã(ρ2). The second condition for

a map Ã is the complete positivity, that is, Ã is a completely positive (CP) map

satisfying

(Ã ⊗ ĩdk)(ρ) ≥ 0 (2.6)

for all positive operators ρ ≥ 0 ∈ L(H⊗Ck) with an arbitrary finite-dimensional

auxiliary space Ck, where ĩdk denotes the identity operation on Ck. The CP

condition is required due to the positivity of quantum states, if we apply the

transformation Ã on a part of the bipartite system H⊗ Ck, the resulting state

should still be positive. The last condition for a map Ã is the trace-preserving

property, that is, Ã is a trace-preserving (TP) map satisfying

Tr [Ã(ρ)] = Tr ρ, (2.7)

for all ρ ∈ L(H). The TP condition is required because any operator with unit

trace should be transformed into an operator with unit trace and due to the

linearity. To summarize, a deterministic quantum operation is described by a

CPTP map.

Next, we introduce commonly used representations of quantum operations

in quantum information. Note that all of them are representations for linear

maps, and the linearity of quantum operations are automatically satisfied.

The first representation we introduce is the Kraus representation [41]. In

the Kraus representation, a quantum operation Ã transforming a quantum state

ρ ∈ L(H) into another quantum state ρ′ = Ã(ρ) ∈ L(K) is represented as

Ã(ρ) =
∑
i

KiρK
†
i , (2.8)

where {Ki} is a set of linear operators on L(H,K) and is called the Kraus

operators of the quantum operation Ã. The CP condition of quantum operation

is automatically satisfied, and the TP condition is given by
∑

iK
†
iKi = I in the

Kraus representation, where I denotes the identity operator on H.

The quantum operation for a unitary operation Ũ is represented as Ũ(ρ) =

UρU † using the corresponding unitary operator U . In this thesis, we also call

a unitary operation by the corresponding unitary operator as unitary operation

U . The Kraus representation of a unitary operation consists of a single Kraus

operator U . Note that the global phases of the Kraus operators do not affect
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the action of a quantum operation, that is, {Ki} and {eiθiKi} lead to the same

quantum operation. In general, Kraus operators of a quantum operation are not

uniquely determined. Different sets of Kraus operators of a quantum operation

exist, and there is a simple relationship between them as follows. Let {Ki}n−1
i=0

and {K ′j}n−1
j=0 represent the same quantum operation, then K ′j =

∑
i u
∗
jiKi holds

where (uij) is a unitary matrix. In fact,∑
j

K ′jρK
′†
j =

∑
i1,i2,j

(u∗ji1Ki1)ρ(uji2K
†
i2

) =
∑
i1,i2

δi1i2Ki1ρK
†
i2

=
∑
i

KiρK
†
i (2.9)

holds, and the two sets of Kraus operators represent the same quantum opera-

tion.

The second representation the Choi-Jamio lkowski representation [43, 44], or

simply the Choi representation. In the Choi representation, a quantum operation

Ã : L(H) → L(K) is represented as a linear operator on H ⊗ K called a Choi

operator JA defined by

JA = (ĩd⊗ Ã)(|I〉〉〈〈I|HH) (2.10)

where |I〉〉 :=
∑

m |m〉|m〉 is the unnormalized maximally entangled state in

H⊗H and ĩd denotes the identity operation on the first system. This relationship

between a quantum operation (channel) and a quantum state is known as the

Choi-Jamio lkowski isomorphism or the state-channel duality. When a quantum

operation Ã is given by Eq. (2.8), the corresponding Choi operator can be written

as

JA =
∑
i

|Ki〉〉〈〈Ki|HK, (2.11)

where |Ki〉〉 ∈ H ⊗K is given by

|Ki〉〉 =
∑
mn

〈m|Ki|n〉 · |n〉|m〉. (2.12)

In contrast to the the Kraus operators, the Choi operator does not depend on

the choice of the Kraus operators and is uniquely determined by Ã. Given a

Choi operator JA of a quantum operation Ã, the original linear map is obtained

by

Ã(ρ) = TrH[JA(ρT ⊗ IK)] (2.13)

for ρ ∈ H. The CP condition of quantum operation Ã is equivalent to the

positivity of the corresponding Choi operator as JA ≥ 0, and the TP condition

is equivalent to TrKJA = IH.
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For a unitary operation Ũ(ρ) = UρU †, the corresponding Choi operator is

given by

JU = (ĩd⊗ Ũ)(|I〉〉〈〈I|HH) (2.14)

= (I ⊗ U)|I〉〉〈〈I|HH(I ⊗ U †) = |U〉〉〈〈U |HK. (2.15)

Note that the Choi operator for the identity operation described by the identity

operator I on H to K is given by Jid = JI = |I〉〉〈〈I| on H⊗K, while the projector

appearing |I〉〉〈〈I| in Eq. (2.10) is an operator on H⊗H. Due to the importance

of the identity operation in this thesis, we denote the Choi operator for the

identity operation as Jid instead of JI .

The last representation is the Stinespring representation [45]. Any quantum

operation can be realized by a unitary operation on an extended system followed

by a projective measurement, and the Stinespring representation is based on

this structure. For a quantum operation Ã represented by the Kraus operators

{Ki}n−1
i=0 , it is always possible to define a unitary operator U on an extended

quantum system H⊗Haux by adding an auxiliary system Haux = Cn satisfying

U |ψ〉|0〉 =
n−1∑
i=0

Ki|ψ〉|i〉, (2.16)

where {|i〉}n−1
i=0 is an orthonormal basis of the auxiliary system. We call this U

as a purification of the Kraus representation {Ki}. Similar to the Kraus repre-

sentation, the Stinespring representation is not unique. The quantum operation

Ã can be represented as the reduced dynamics of this unitary operation as

Ã(ρ) = Traux

[
U (ρ⊗ |0〉〈0|)U †

]
. (2.17)

Probabilistic Quantum Operations

Probabilistic transformations of quantum states are allowed in quantum me-

chanics in addition to deterministic ones. Considering that the trace of a density

operator corresponds to the probability in the state, and the probability can-

not exceed one. The TP condition for deterministic transformation is replaced

by the trace-non-increasing (TNI) condition. That is, a probabilistic quantum

operation Ã : L(H) → L(K) transforms a quantum state ρ into Ã(ρ), and the

probability of this transformation is given by Tr Ã(ρ) ≤ 1 in general.

One type of basic probabilistic transformations is a quantum measurement,

especially given by the positive operator-valued measurements (POVM). A POVM

consists of a set of positive operators {Λi}n−1
i=0 satisfying

∑n−1
i=0 Λi = I, and it

transforms a quantum state ρ into a probability distribution given by {Tr (Λiρ)}i.
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A general probabilistic quantum operation is described by a set of measurement

operators {Mi}n−1
i=0 satisfying

∑n−1
i=0 M

†
iMi = I, and it transforms a quantum

state ρ into a quantum state MiρM
†
i /TrM †

iMiρ with probability TrM †
iMiρ.

It is important that the measurement outcome is known to be i. If the mea-

surement outcome is not given, then the resulting quantum state is given by

a probabilistic mixture calculated as
∑n−1

i=0 MiρM
†
i , which is the same state

as a deterministic quantum operation given by the Kraus operators {Mi}n−1
i=0 .

When we say probabilistic quantum operations, we also consider the case that

only certain measurement outcomes, say a set given by {0, 1, . . . ,m − 1} with

m < n, is obtained by post-selection. In this case, the Kraus operators for this

probabilistic quantum operation are given by {Mi}m−1
i=0 , and it is easy to see

that
∑m−1

i=0 M †
iMi ≤ I holds. We say that a probabilistic quantum operation is

succeeded if we obtain certain measurement outcomes specified in advance, oth-

erwise failed, and the success part and the failure part sum up to a deterministic

quantum operation.

The Choi operator JA for a probabilistic quantum operation is a positive

operator JA ≥ 0 satisfying TrKJA ≤ IH. If we call this as success, and assume

that JF ≥ 0 is a Choi operator corresponds to failure, then it is required that

they sum up to a deterministic quantum operation, namely, J = JA+JF satisfies

J ≥ 0 and TrKJ = IH. Note that JF is not uniquely determined for a JA in

general.

2.3 Higher-order Quantum Operations

In this section, we introduce quantum supermaps, a mathematical tool for de-

scribing higher-order quantum operations [11, 12]. Quantum supermaps de-

scribes transformations between quantum operations. We first present a for-

malism for quantum supermaps that are compatible with the quantum circuit

model, especially the ones that use the input operations in a fixed order. Such

quantum supermaps are called quantum combs. We also introduce quantum su-

permaps with indefinite causal order by relaxing certain requirements for quan-

tum combs. While quantum supermaps with indefinite causal order cannot be

implemented within the usual quantum circuit model, there are currently no

known physical principles that forbid their implementation, and are expected to

provide certain advantages in quantum information processing.

The conditions for quantum supermaps are usually presented in terms of

the Choi representation. It is possible to present these conditions in the Kraus

representation as we show in Appendix B. In order to avoid confusion, we mainly
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denote quantum operations with a tilde and supermaps with a double tilde in this

thesis. We may omit the tildes when it is not important to distinguish whether a

map and a supermap especially when they are referred in the subscript of a Choi

operator. For a quantum operation, we denote a map by Ã : L(H)→ L(K) and

its Choi operator by JA ∈ L(H ⊗ K). For a higher-order quantum operation

transforming a quantum operation Ã : L(I1)→ L(O1) to a quantum operation

Ã
′

: L(I0) → L(O0), we denote the supermap as ˜̃S : [L(I1) → L(O1)] →
[L(I0)→ L(O0)]. It is possible to describe the supermap as a map transforming

the Choi operators of the input and the output quantum operations, which we

describe as S̃ : L(I1⊗O1)→ L(I0⊗O0). The Choi operator for this supermap

is given by an operator S ∈ L(I1 ⊗ O1 ⊗ I0 ⊗ O0). Note that the order of the

Hilbert spaces may vary for convenience, and we denote the order of the Hilbert

spaces explicitly when it is ambiguous. The conditions for the supermaps in

terms of the corresponding Choi operators are given in the following.

2.3.1 Quantum Combs

The most general way to transform a set of input operations Λ̃1, . . . , Λ̃K is to

insert quantum operations before and after each input operation as the quantum

circuit shown in Fig. 2.1, if the usage of the input operations is fixed and given by

this order. Let the input and the output Hilbert spaces for input operations Λ̃k

be Ik and Ok, the corresponding Choi operators be Lk, the auxiliary systems be

Ak, and the input and the output Hilbert spaces for the output operation be I0

and O0, respectively, as shown in the quantum circuit in Fig. 2.1 for K = 2. Let

the quantum operations inserted be Ẽ1 : L(I0)→ L(I1⊗A1), Ẽ2 : L(O1⊗A1)→
L(I2 ⊗A2), . . . , ẼK : L(OK−1 ⊗AK−1) → L(IK ⊗AK), ẼK+1 : L(IK ⊗AK) →
L(O0), and the corresponding Choi operators be E1, E2, . . . , EK , EK+1. Then a

quantum comb ˜̃C transforms the input operations Λ̃1, . . . , Λ̃K as

˜̃C(Λ̃1, . . . , Λ̃K) = ẼK+1 ◦ (Λ̃K ⊗ ĩdAK ) ◦ ẼK ◦ · · · ◦ Ẽ2 ◦ (Λ̃1 ⊗ ĩdA1) ◦ Ẽ1. (2.18)

In the Choi representation, the l.h.s should be equal to

TrI1O1···IKOK [C(L1 ⊗ · · · ⊗ LK)T ], (2.19)

where C is the Choi operator of the quantum comb ˜̃C. The r.h.s. is given by

TrI1O1A1···IKOKAK (EK+1L
T
KE

TAK
K · · ·ETA2

2 LT1E
TA1
1 ) (2.20)

= TrI1O1A1···IKOKAK [(EK+1E
TAK
K · · ·ETA2

2 E
TA1
1 )(L1 ⊗ · · · ⊗ LK)T ], (2.21)
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Figure 2.1: The most general way for implementing a quantum comb (a quantum

supermap with definite order of input operations) with two input operations Λ̃1

and Λ̃2 in the quantum circuit model.

where TAK denotes the partial transpose on AK , and the equality holds because

Lk are the operators on different Hilbert spaces for different k and the partial

trace is taken on Ik and Ok for all k ≥ 1. Note that the identity operators

are omitted. Thus, the Choi operator of the quantum comb C is given by con-

catenating the quantum operations E1, . . . , EK+1 and tracing out the auxiliary

systems A1, . . . ,AK as

C = TrA1···AK (EK+1E
TAK
K · · ·ETA2

2 E
TA1
1 ). (2.22)

In the following, we present the condition for C by considering the conditions

for E1, . . . , EK+1.

The first condition for the Choi operator of a quantum comb C is that it is

a positive operator C ≥ 0. This is because every quantum operation Ẽk is CP,

the concatenation of them is also CP, thus the corresponding Choi operator C

is positive. The second condition for C is given by a set of linear constraints

TrO0C = C(K) ⊗ IOK

d
, (2.23)

TrIkC
(k) = C(k−1) ⊗ IOk−1

d
(2 ≤ k ≤ K), (2.24)

TrI1C
(1) = (TrC)

II0

d0

, (2.25)

where C(K) = TrOKO0C and C(k−1) = TrOk−1IkC
(k) for k = 2, . . . , K. These

conditions are obtained by the TP condition of each quantum operation Ek.

These conditions also indicate that the output state of the quantum comb on Ik
does not depend on the input state of the quantum comb Ok′ for k′ ≥ k, that

are the input states appear at later times. For that reason, these conditions are

known as the causal condition for quantum comb. The normalization condition is

given by TrC = dI0dO1 · · · dOK . For example, C = II0⊗ II1
dI1
⊗IO1⊗· · ·⊗IOK⊗ IO0

dO0

is a deterministic comb. It is also shown that the inverse holds [11, 12], that

is, every operator C satisfying the positivity C ≥ 0 and the causal condition

Eq. (2.23)-(2.25) can be implemented by a quantum circuit shown in Fig. 2.1.

18



Figure 2.2: A limited class of quantum combs that utilize all input operations,

Λ̃1 and Λ̃2, in a parallel way.

The causal condition given by Eq. (2.23)-(2.25) is also known as the sequential

condition, because it assumes sequential uses of the input operations. It is also

possible to consider the case where all input operations are used in a parallel

way as shown in the quantum circuit in Fig. 2.2. In this case, it is equivalent to

the 1-slot quantum comb, where the input and output Hilbert spaces of the slot

are given by I := I1 ⊗ · · · ⊗ IK and O := O1 ⊗ · · · ⊗ OK . That is, the parallel

condition is given by

TrO0C = TrOO0C ⊗
IO

dO
. (2.26)

TrIOO0C = (TrC)
II

dI
. (2.27)

In the formulation of the quantum comb, the dimensions of the auxiliary systems

are not restricted except that they are finite. Thus, any quantum comb with

the parallel condition is simply a restricted version of a general quantum comb,

i.e., a quantum comb with the sequential condition. While the quantum comb

with the sequential condition is more general, the parallel condition has been

relatively well-studied for various reasons. The parallel condition treats all the

input operations in the same way, thus there is a higher symmetry between

the input operations. A quantum comb with the parallel condition also has

an advantage in that it can be performed in a shorter time compared to the

sequential case. Moreover, there are various physical systems that can apply the

same quantum operations to multiple quantum states, in which case the parallel

condition is achieved naturally. Note that it is also possible to consider certain

causal conditions partially parallel or partially sequential.

Probabilistic Quantum Combs

Next, we introduce the probabilistic quantum combs. Similar to the probabilis-

tic quantum operations, probabilistic quantum combs are obtained by inserting
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probabilistic quantum operations before and after each input operation. A prob-

abilistic quantum comb is implementable if there exists another probabilistic

quantum comb such that they sum up to a deterministic quantum comb. In the

Choi representation, a probabilistic quantum operation is described by a positive

operator JΛ satisfying JΛ ≤ J where J is the Choi operator of a deterministic

quantum operation. Similarly, a probabilistic quantum comb is described by a

positive operator S ≥ 0 satisfying S ≤ C where C is the Choi operator of a

deterministic quantum comb. We usually consider a probabilistic higher-order

quantum operation with two labels, success and failure, which are represented

by S and F . In this case, the conditions for S and F are given by

S ≥ 0, F ≥ 0 (2.28)

S + F is a deterministic comb. (2.29)

2.3.2 Higher-order Quantum Operations with Indefinite

Causal Order

The requirements for a quantum comb basically originate from the requirements

that it transforms input quantum operations into an output quantum operation,

and there is a causal order between the usage of each input operation. However,

the second condition is a requirement that comes from the fact that we use

the input operations in a fixed order, and it is not a fundamental restriction

for higher-order quantum operations. Instead of requiring the causal condition

of the quantum comb, or the sequential condition, we can consider a relaxed

version: a quantum supermap transforming CPTP maps into CPTP maps.

A simple example that satisfies this assumption is a probabilistic mixture of

different orders of the usage of the input operations. For simplicity, we consider

the case K = 2, where there exist only two input operations Λ̃1 and Λ̃2. In this

case, it is possible to probabilistically choose to use Λ̃1 or Λ̃2 first and the other

for the second. We then obtain a quantum operation given by 1
2
(Λ̃1◦Λ̃2+Λ̃2◦Λ̃1).

This is a valid higher-order quantum operation and it does not satisfy the causal

condition Eq. (2.23)-(2.25). A more non-trivial example is quantum switch [27]

which will be introduced in Sec. 2.5.

The condition for indefinite causal order in terms of the Choi representation

is not simple in general. Here we only present the case of K = 2 [29]. A
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supermap W is a valid supermap within indefinite causal order if it satisfies

W ≥ 0 (2.30)

TrO0W = TrO1O0W + TrO2O0 − TrO1O2O0 (2.31)

TrI2O2O0W = TrO1I2O2O0W (2.32)

TrI1O1O0W = TrO2I1O1O0W (2.33)

TrI1O1I2O2O0W = TrW. (2.34)

The condition for K = 3 is presented in Ref. [14]. While these conditions are

more complex than the sequential condition, it is invariant under the permu-

tation of input operations. Thus, even if what we focus on is the sequential

condition, it is sometimes useful to consider the indefinite causal order, which

may simplify the problem by investigating certain symmetries.

2.3.3 Higher-order Quantum Operations with Multiple

Copies of an Input Operation

We have stated the conditions for a higher-order quantum operation to be im-

plementable, in the sense that whether the transformation from a set of input

operations Λ̃1, . . . , Λ̃K to the target output operation is possible. Here only a

single use of each input operation is allowed, but multiple uses of each input

operation can be considered in general.

For simplicity, we consider the transformation of an input operation Λ̃I to

an output operation Λ̃O. If we are allowed to use K copies of Λ̃I and implement

Λ̃O, the corresponding quantum supermap satisfies ˜̃S : Λ̃
⊗K
I 7→ Λ̃O. That is,

the action of ˜̃S on multiple copies of an input operation Λ̃
⊗K
I is defined, but its

action on other input operations such as Λ̃1 ⊗ Λ̃2 ⊗ · · · ⊗ Λ̃K with all different

Λ̃i is not necessarily defined. The positivity and the causal conditions for the

supermap S are still required for implementing this supermap. However, there

is more freedom in defining the action of the supermap, and thus a larger class

of higher-order quantum operations is implementable under the multiple copy

scenario.

2.4 Controlled Unitary Operations and Con-

trollization

In this section, we review the higher-order quantum operation known as con-

trollization [19–25], a higher-order quantum operation transforming unitary op-
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eration into its controlled version. Controllization can be considered to be a

quantum counterpart of the “if clause” in classical computing. It is shown that

controllization is not possible under certain assumptions. By relaxing some of

the assumptions, there are a few quantum algorithms for implementing con-

trollization. In this section, we review the preceding results on the problem of

controllization.

2.4.1 Controlled Unitary Operations

We first review some properties of controlled unitary operations. Controlled

unitary operations are a special class of unitary operations which can be regarded

as conditional operations. In classical computation, a conditional operation is

defined for two systems, a control system and a target system. The action of

a conditional operation is to apply an operation if the control bit is in state 1,

and do nothing if the control bit is in state 0. A controlled unitary operation

is a quantum counterpart of such a conditional operation, acting on a control

quantum system and a target quantum system. Conventionally, a controlled

unitary operation is a unitary operation that applies the target unitary operation

or the identity operation on the target system coherently depending on the

state of the control qubit. For a d-dimensional unitary operation represented

by a unitary operator U : H(:= Cd) → K(:= Cd), the corresponding controlled

unitary operation C̃U is defined by a unitary operator CU : HC ⊗H → KC ⊗K
with the control systems HC = C2 and KC = C2 given by

CU := |0〉〈0| ⊗ I + |1〉〈1| ⊗ eiθUU, (2.35)

where θU is an arbitrary phase factor. The corresponding Choi operator JCU ∈
L(HC ⊗KC ⊗H⊗K) is given by

JCU = (|00〉|I〉〉+ |11〉|eiθUU〉〉)(〈00|〈〈I|+ 〈11|〈〈eiθUU |) (2.36)

= |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JU
+ |00〉〈11| ⊗ |I〉〉〈〈eiθUU |+ |11〉〈00| ⊗ |eiθUU〉〉〈〈I| (2.37)

where |ii〉 ∈ HC⊗KC for i, j = 0, 1 is the state of the control qubit system. The

degree of freedom of the phase factor θU is required in the definition, because

while unitary operators U and eiφU with a global phase φ ∈ R representing

the same unitary operation Ũ , the corresponding controlled unitary operations

|0〉〈0| ⊗ I + |1〉〈1| ⊗ U and |0〉〈0| ⊗ I + |1〉〈1| ⊗ eiφU corresponds to different

unitary operations. This phase factor cannot be determined just by specifying

the unitary operation Ũ , even if we restrict U to be an element of SU(d), in

which case the degree of freedom of the phase factor e
2πi
d still remains.
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An important characteristic of the controlled unitary operation C̃U defined

by Eq. (2.35) is that it preserves coherence between the output states with the

control system being in |0〉 and |1〉. This coherence can be evaluated by a norm

of the off-diagonal term of its Choi operator, namely, the terms with the control

systems |00〉〈11| and |11〉〈00| in Eq. (2.37). An incoherent version of a controlled

unitary operation can also be defined by the Choi operator given by

JCclsU = |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JU , (2.38)

and we call JCclsU as a classically controlled version of a unitary operation rep-

resented by U . Such a classically controlled operation can be implemented by

first measuring the control qubit on the computational basis, and then applying

the unitary operation or the identity operation depending on the measurement

outcome. Note that while a generalization of coherently controlled unitary op-

eration is not straightforward, this classically controlled unitary operation can

be easily generalized to the classically controlled version of general quantum

operation Ã as

JCclsA := |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JA. (2.39)

2.4.2 Controllization and No-go Theorem

Controllization is a higher-order quantum operation transforming a unitary op-

eration into a corresponding controlled unitary operation. A straightforward

definition of controllization is given by a map on corresponding unitary opera-

tors as U 7→ |0〉〈0|⊗I+|1〉〈1|⊗U . However, this map does not define a supermap,

because a unitary operation Ũ can be described by any unitary operator of the

form eiθU with the global phase eiθ. To avoid inconsistency about the global

phase, a phase factor is usually introduced to cancel out the effect of the global

phase in the definition of controllization. That is, we define controllization by a

map U 7→ |0〉〈0| ⊗ I + |1〉〈1| ⊗ eiθUU , where θU is an arbitrary phase factor de-

pending on U . By introducing this phase factor θU , a supermap from a unitary

operation Ũ to a corresponding controlled unitary operation can be defined as

Ũ 7→ C̃U , (2.40)

where C̃U denotes the unitary operation defined by the unitary operator given by

Eq. (2.35). Note that the phase factor θU is included in the definition Eq. (2.35).

The supermap given by Eq. (2.40) is a well-defined supermap, especially an

injection, due to the existence of the phase factor. However, it is not trivial if

this supermap can be linear for some phase factor, and its implementability in
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quantum mechanics is not obvious. In Refs. [21–24], it has been shown that this

supermap cannot be linear for any phase factor, and thus controllization is not

implementable with a single use of the input unitary operation. In Ref. [25],

controllization for a restricted set of unitary operations is investigated, and a

necessary and sufficient condition for the set of unitary operations is derived.

2.4.3 Possible Workarounds for Controllization

While exact controllization is not possible with a single use of the input unitary

operation, there are many attempts to implement controllization with certain

relaxations. Here we present two possible workarounds.

Approximate Controllization

The first attempt to implement controlled unitary operation is to implement it

in an approximate manner. In Refs. [16, 17], the optimal average fidelity for

controllization has been analyzed. Here the average fidelity defined as

F :=
1

(2d)2

∫
dUF (JC0U , C̃(JU)) (2.41)

is considered, where C̃ denotes a (corresponding map of a) supermap and C0
U :=

|0〉〈0|⊗ I + |1〉〈1|⊗U is a controlled unitary operation with a fixed phase factor.

The fidelity between the two Choi operators A,B is given by F (A,B) := Tr[AB].

In Ref. [16], the optimal fidelity with a single use of an input operation is ob-

tained as

max
C̃

F = 1/2 (2.42)

by optimizing over all possible deterministic supermap C̃. In Ref. [17], the

optimal fidelity with multiple uses of an input operation is also obtained by

investigating the effect of fixed phase factor in the definition of fidelity, and is

shown to be 1/2, the same value as the single use case. This average fidelity

is actually achievable in a classical manner, that is, the supermap Ũ 7→ C̃
cls

U

achieves this fidelity, where C̃
cls

U is defined by Eq. (2.38).

Controllization for Hamiltonian Dynamics

The second attempt to implement controllization is to consider the case when

the unitary operation is given by Hamiltonian dynamics. If a unitary operation

is generated by time-independent Hamiltonian dynamics as U = eiHt where we
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Figure 2.3: The quantum circuit for approximate controllization proposed in

Ref. [20]. The initial state of the auxiliary system is given by the completely

mixed state I/d. In each iteration, a controlled swap operation, U1/n, controlled

swap operation, and a random Pauli operation denoted by σr are applied in

order.

set ~ = 1, we assume that it is possible to divide the time interval t to t/n for

some n, so that we can utilize U1/n = eiHt/n instead of U itself.

In Ref. [20], an algorithm implementing approximate controllization with n

uses of U1/n is presented. The algorithm is described by the quantum circuit

shown in Fig. 2.3. The key element of this algorithm is to keep the auxiliary

system in the completely mixed state by randomization with the random Pauli

operations {σr}r after each iteration. The error of this algorithm is measured

by the diamond norm [3], which characterizes a distance between two general

quantum operations, between the obtained quantum operation and the target

controlled unitary operation, and is obtained as O(1/n). In the limit of large n,

this algorithm converges to exact controllization.

In Ref. [17], an algorithm implementing exact controllization with d uses

of U1/d is presented, where d is the dimension of the unitary operation U . The

algorithm is described by the quantum circuit shown in Fig. 2.4. The key element

of this algorithm is the totally antisymmetric state

|Ad〉 :=
1√
d!

∑
σ∈Sd

sgn(σ)|σ(1)〉|σ(2)〉 · · · |σ(d)〉, (2.43)

which is an invariant state under U⊗d as U⊗d|Ad〉 = det(U)|Ad〉 for an arbitrary

unitary operator U . This algorithm achieves exact controllization with a finite

division of the original unitary operation.

While the two algorithms both implement controllization, their mathematical

characterization is not trivial from the presented algorithms. In Chap. 4, we

present a framework for controlled quantum operations, and a unified way for
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Figure 2.4: The quantum circuit for exact controllization proposed in Ref. [17].

The initial state of the auxiliary system is given by the totally antisymmetric

state |Ad〉.

understanding these algorithms as a result.

2.5 Quantum Switch

Quantum switch [27] is a higher-order quantum operation that transforms mul-

tiple input operations into a “coherent superposition of different orders” of the

input operations. It is an example of a higher-order quantum operation that

cannot be implemented within quantum circuit model, but there is no funda-

mental principle that forbids its implementation in quantum mechanics. For

that, quantum switch is a well-studied higher-order quantum operation in the

context of indefinite causal order, for revealing how the causal structure may

affect the quantum information processing in quantum mechanics. It is also pro-

posed as a resource for quantum information processing, as it has been shown to

provide computational advantage on certain tasks such as discriminating quan-

tum channels [31,32,46] and enhancing communications [33–36,47,48]. Here we

only consider quantum switch that uses only two input operations introduced

in Ref. [27]. The action of quantum switch can be generalized to multiple input

operations as studied in Ref. [32],

2.5.1 Definition of Quantum Switch

The action of quantum switch is to produce a coherent control of causal orders.

In Ref. [27], the action of quantum switch is originally defined on unitary oper-

ations, and then generalized to quantum operations beyond unitary operations

as follows.
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Given two unitary operations U1 and U2 as input operations, a quantum

switch transforms them into the coherent control of different orders, namely, the

unitary operation given by

W = |0〉〈0| ⊗ U2U1 + |1〉〈1| ⊗ U1U2, (2.44)

by using each of U1 and U2 only once. If the control qubit is in |0〉, U1 is applied

on the target system first, and followed by U2, and if the control qubit is in |1〉,
U2 is applied first followed by U1. If the control qubit is in a superposition of

|0〉 and |1〉, then the two different orders should be “superposed” in a coherent

way.

The action of quantum switch for unitary operations is defined in a natural

way, and it can be generalized to quantum operations other than unitary opera-

tions [27]. Given two quantum operations Ã1 and Ã2 with the Kraus operators

{Ki}i and {Lj}j as input operations, a quantum switch transforms them into

the quantum operation given by the Kraus operators {Wij}ij with

Wij = |0〉〈0| ⊗ LjKi + |1〉〈1| ⊗KiLj. (2.45)

It is easy to see that if two quantum operations are unitary operations, it coin-

cides with the definition for unitary operation. While the Kraus representation

is not unique and different Kraus operators can be used for representing the same

quantum operation, this definition does not depend on the choice of Kraus op-

erators, which can be checked by using the relationship between different Kraus

operators presented in Sec. 2.2.

2.5.2 Superactivation with Quantum Switch

While the action of quantum switch on unitary operations is to simply produce

a coherent control of different order, its action on general quantum operations

is not necessarily the same.

A simple example is the case where two input operations are identical. If

the two input operations are the same unitary operation U , then the output

is the unitary operation |0〉〈0| ⊗ U2 + |1〉〈1| ⊗ U2 = I ⊗ U2, or equivalently,

ĩd ⊗ Ũ ◦ Ũ . However, if the two input operations are the depolarizing channel

D̃, the output operation is different from ĩd ⊗ D̃ ◦ D̃ = ĩd ⊗ D̃ as follows [33].

For d-dimensional system, the Kraus operators for the depolarizing channel can

be chosen as {1
d
Ui}d

2−1
i=0 where {Ui}d

2−1
i=0 is a set of unitary operators satisfying

TrUiU
†
j = dδij . Assuming the control qubit is in

√
p|0〉 +

√
1− p|1〉, and the

target system is given by ρ, the action of the output operation of quantum switch

27



on this input state is given by

(p|0〉〈0|+ (1− p)|1〉〈1|)⊗ I

d
+
√
p(1− p)(|0〉〈1|+ |1〉〈0|)⊗ ρ

d2
. (2.46)

If the control qubit is in |0〉 or |1〉, equivalently p = 1 or p = 0, the target system

is given by the completely mixed state I/d, which is expected as the depolarizing

channel transforms any input state into the completely mixed state I/d. This

also coincides with the case if the output operation is given by ĩd⊗D̃. However,

if the control qubit is in a superposition of |0〉 and |1〉, the target system does

depend on the input state as Eq. (2.46) shows, and thus the action is different

from ĩd⊗ D̃.

This result is surprising because the depolarizing channel does not transfer

any information, but when we apply the depolarizing channel twice with the

assist of quantum switch, the output operation is not a depolarizing channel

anymore, and can be used for transferring information. This phenomenon that

quantum switch enables some communication with the depolarizing channel has

been studied theoretically in Ref. [33–35], and also experimentally in Ref. [47,48].

As this phenomenon was first pointed out for quantum switch, some consider

that such enhancement in communication originates from the indefinite causal

order aspect of quantum switch. However, it is also pointed out that such a

phenomenon can happen in systems exploiting coherently controlled quantum

operations without causally indefinite elements [49,50].

2.6 Unitary Inversion

In this section, we review the higher-order quantum operation known as unitary

inversion [13–17,38,39], a higher-order quantum operation transforming unitary

operation U into its inverse U−1. Since the inverse of a unitary operation U

is given by its Hermitian conjugate, the problem of unitary inversion can be

further divided into two higher-order quantum operations: the unitary conju-

gation, transforming a unitary operation U into its complex conjugate U∗, and

the unitary transposition, transforming a unitary operation U into its transpo-

sition UT . Note that while unitary inversion is basis independent, both unitary

conjugation and unitary transposition are basis dependent, and both complex

conjugate and transposition are defined with respect to the computational basis

{|i〉}d−1
i=0 .

The problem of unitary inversion has been studied in various conditions, for

example, approximate cases or probabilistic but exact cases. Since probabilistic

but exact supermaps can always be transformed into a deterministic but approx-
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imate one by considering the probabilistic mixture of success and failure cases,

we do not focus on this difference in this section. Another important feature is

how the input unitary operations are used, especially, three types are usually

considered: parallel, sequential, and indefinite causal order.

In Ref. [51], a deterministic and exact algorithm for unitary conjugation is

presented. The complex conjugate of a unitary operation U can be obtained by

using d − 1 copies of the input unitary operation in a parallel way. Especially,

the following equality holds

U∗ = V †U⊗d−1V, (2.47)

where V is an isometry defined as

V =
1√

(d− 1)!

∑
σ∈Sd

sgn(σ)|σ(1)〉|σ(2)〉 · · · |σ(d− 1)〉〈σ(d)|, (2.48)

with the d-dimensional symmetric group Sd and permutation σ. Moreover, it is

also shown in Ref. [13,14] that unitary conjugation is not possible with less than

d−1 uses of the input unitary operation even in a probabilistic way. With these

results on unitary conjugation, the remaining difficulty for unitary inversion is

similar to the difficulty of unitary transposition. In the following of this section,

we review the unitary inversion and unitary transposition.

2.6.1 Parallel Strategy

We first review the unitary inversion and unitary transposition with parallel

uses of input operations [13, 14, 39]. Let K be the number of uses of the input

operation U . The optimal success probability for unitary transposition can be

obtained by the following optimization problem

max p (2.49)

s.t. TrIO[SJ⊗KU ] = pJUT (2.50)

0 ≤ S ≤ C (2.51)

C is a parallel deterministic comb, (2.52)

where S and C are the Choi operator of supermaps. The first constraint defines

the action of S to be unitary transposition, and the remaining constraints are the

conditions that S is compatible with the quantum circuit model. This optimiza-

tion problem is also known as semidefinite programming (SDP). In Ref. [14], the

optimal success probability for unitary transposition is obtained as a solution to
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Figure 2.5: The quantum circuit for unitary transposition based on port-based

teleportation. Depending on the measurement outcome of M̃, a selecting oper-

ation is performed to choose one quantum system and trace out the remaining.

this SDP, namely,

popt = 1− d2 − 1

K + d2 − 1
= 1−O(1/K). (2.53)

This success probability is achievable with a modified version of the port-based

teleportation [52,53] as the quantum circuit shown in Fig. 2.5.

The original port-based teleportation is given by the quantum circuit shown

in Fig. 2.5 without the unitary operations denoted by U . Like the usual quan-

tum teleportation, an entangled state |aux〉 is required as a resource, and a

measurement M̃ is performed on the composite system of the input state |ψ〉
and a part of |aux〉. The difference between the usual quantum teleportation

and the port-based teleportation is the correction part, while in the usual quan-

tum teleportation, a certain unitary operation depending on the measurement

outcome is applied to the rest of |aux〉 for correction, it is replaced by a se-

lecting operation in the port-based teleportation, that is, all but one system of

|aux〉 is traced out, and the remaining system is in the state |ψ〉. Due to the

simple structure of the correction part, the port-based teleportation cannot be

achieved in a deterministic and exact manner, and the port-based teleportation

used here is a probabilistic one. On the other hand, since the correction part is

given by a selecting operation, it commutes with any operation in the sense that

Ũ ◦Select = Select ◦ Ũ
⊗K

holds. Moreover, as the entangled state |aux〉 satisfies

(U⊗K ⊗ I)|aux〉 = (I ⊗ (UT )⊗K)|aux〉 similar to the maximally entangled state,

we can see that the quantum circuit shown in Fig. 2.5 performs the unitary

transposition.
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For unitary inversion, while the optimal success probability is not yet known,

its upper bound can be obtained [14]. Assume that it is possible to perform

unitary inversion with success probability p with K uses of the input operations,

then it is also possible to perform unitary transposition with success probability

p with K(d − 1) uses of the input operations by a concatenation of unitary

inversion and unitary conjugation. Since the optimal success probability for

unitary transposition is given by Eq. (2.53), we obtain an upper bound for the

success probability of unitary inversion as

popt ≤ 1− d2 − 1

K(d− 1) + d2 − 1
= 1−O(1/K). (2.54)

2.6.2 Sequential Strategy

Next, we focus on the unitary inversion with sequential uses of input opera-

tions [13]. Since a parallel strategy can always be a sequential one, a higher

success probability is expected and the gap between two strategies is a theo-

retically and practically important problem. In Ref. [13], a quantum algorithm

for unitary inversion with sequential uses of the input operation is proposed.

The algorithm utilizes a repeat-until-success strategy, that is, it is an algorithm

that repeats a certain subroutine until it succeeds. For simplicity, we only con-

sider the two-dimensional unitary inversion here. The subroutine is given by the

quantum circuit shown in Fig. 2.6. The subroutine is similar to the quantum

teleportation, which generates the state X iZj|ψ〉 before correction, where |ψ〉
is the initial state and (i, j) = (0, 0), (0, 1), (1, 0), (1, 1) is the outcome of the

Bell measurement. For the two-dimensional unitary inversion shown in Fig. 2.6,

we obtain U−1X iZj|ψ〉 with a single use of U by a small modification to the

quantum teleportation protocol. This subroutine successfully achieves unitary

inversion if (i, j) = (0, 0), which occurs with probability p = 1/4. When it fails,

we can obtain the initial state |ψ〉 by applying (X iZj)−1U with an extra use of

U . Since the initial state |ψ〉 remains when it fails, we can repeat this subroutine

until it succeeds.

The success probability of this algorithm scales as

p = 1−
(

1− 1

4

)bK+1
2
c

= 1−O(cK) (2.55)

where c is a constant. While this algorithm is not the optimal one for uni-

tary inversion with sequential uses, it is enough to show that there exists an

exponential gap between the parallel strategy and the sequential strategy.

The optimal success probability for unitary inversion with sequential uses is

obtained numerically using SDP [13] for some d and K. For d = 2, the optimal
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Figure 2.6: The quantum circuit for a subroutine for unitary inversion proposed

in Ref. [13]. The input state is |ψ〉 and the auxiliary system is set to be the

maximally entangled state |φ+〉. The measurement M̃ij is given by the Bell

measurement. If the measurement outcome is (i, j) = (0, 0), the inverse U † is

successfully obtained. Otherwise, (X iZj)−1U is applied by an extra use of U ,

and the initial state |ψ〉 is recovered, which allows another repetition of this

subroutine.

success probability is given by 0.4286 ' 3/7 for K = 2 and 0.7500 ' 3/4 for

K = 3. This success probability indicates that the quantum circuit presented

in Fig. 2.6 is, in fact, not the optimal one. However, the optimal supermap

obtained by this SDP always assumes that we use all possible K copies of the

input operation, whereas the one presented in Fig. 2.6 uses less than K copies

of the input operation on average. In particular, the expected number of uses

to implement the algorithm presented by Fig. 2.6 converges to finite.
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Chapter 3

The Uniqueness of Quantum

Switch

Quantum switch [27] is a higher-order quantum operation transforming a pair of

input unitary operations into a superposition of two differently ordered concate-

nations of the pair of the input unitary operations. It is an example of quantum

control of causal orders, and has been shown to provide some computational

advantage on certain tasks such as discriminating quantum channels [31,32,46]

and enhancing communications [33–36,47,48]. When two unitary operations U1

and U2 are given as input operations, a quantum switch transforms them into a

controlled unitary operation given by

W = |0〉〈0| ⊗ U2U1 + |1〉〈1| ⊗ U1U2 (3.1)

by using each of U1 and U2 only once. While the action of quantum switch for

unitary operations is defined in a natural way, its action for general quantum

operations is not trivial from the definition for unitary operations. In Ref. [27],

it has been shown that one possible definition that coincides with the definition

for unitary operations can be given as follows: given two quantum operations

represented by the Kraus operators {Ki}i and {Lj}j respectively, the output

operation of quantum switch is given by the Kraus operators {Wij}ij defined by

Wij := |0〉〈0| ⊗ LjKi + |1〉〈1| ⊗KiLj. (3.2)

Following this definition, many researches have been pursued. One interesting re-

sult is that quantum switch can help in enhancing communication tasks [33–35].

In particular, if two input operations are the depolarizing channels, which does

not transfer any information, the output operation is not depolarizing channel

anymore, and can be used for transferring information as stated in Sec. 2.5.2.
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Figure 3.1: A “quantum switch” with two input operations Ẽ1 and Ẽ2 which uses

Ẽ1 twice. If both input operations are unitary operations, the output operation

is the same as Eq. (3.1). Otherwise, the output operation may be different from

the usual quantum switch of which action is given by Eq. (3.2)

The action of quantum switch on the depolarizing channels looks different from

that on unitary operations, that is, coherently controlled two differently causally

ordered operations, since a composition of two depolarizing channels is a depo-

larizing channel.

Can we assume that the action of quantum switch on general quantum op-

erations is different from the one defined by Eq. (3.2)? Actually, it is possible

if we are allowed to use the same input operation twice, for example. That is,

assume the two input operations are given by Ẽ1 and Ẽ2, and we are allowed

to use Ẽ1 twice. In this case, it is possible to construct a “quantum switch”

of which action on unitary operations does not change, but its action on the

depolarizing channels is different from Eq. (2.46) as we show in the following.

The assumption that quantum switch only uses the two input operations Ẽ1 and

Ẽ2 once is important for it to be a higher-order quantum operation with indefi-

nite causal order. In addition, we show that this assumption is necessary if we

consider its action on general quantum operations beyond unitary operations.

3.1 The Uniqueness of Quantum Switch

In this chapter, we derive the suitable action of quantum switch on arbitrary

quantum operations from its action on unitary operations.

We first present an example of a “quantum switch” of which action on the de-

polarizing channels is different from Eq. (2.46) by using the same input operation

twice. Consider the quantum circuit shown in Fig. 3.1. If both input operations

are unitary operations U1 and U2 on a d-dimensional system, the output oper-

ation is given by Eq. (3.1). Consider the case when both input operations are

the depolarizing channel D̃, of which Kraus operators are given by {1
d
Ui}d

2−1
i=0

where {Ui}d
2−1
i=0 is a set of unitary operators satisfying TrUiU

†
j = dδij such as

the generalized Pauli operators using the clock and shift operators. Similarly
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to Sec. 2.5.2, we assume the control qubit is in
√
p|0〉 +

√
1− p|1〉, the target

system is given by ρ, and the auxiliary system is given by ρa, then the action of

the output operation on this input state is calculated as

1

d6

∑
i,j,k

[p|0〉〈0| ⊗ UjUiρU †i U
†
j × TrUkρaU

†
k

+ (1− p)|1〉〈1| ⊗ UkUjρU †jU
†
k × TrUiρaU

†
i

+
√
p(1− p)|0〉〈1| ⊗ UjUiρU †jU

†
k × TrUkρaU

†
i + h.c.]

= (p|0〉〈0|+ (1− p)|1〉〈1|)⊗ I

d
+

√
p(1− p)
d3

(|0〉〈1| ⊗ ρaρ+ |1〉〈0| ⊗ ρρa), (3.3)

which is different from Eq. (2.46).

As shown in the example above, it is not possible to uniquely derive the action

on arbitrary quantum operations from its action on unitary operations without

further assumption. Here we introduce two extra but natural assumptions. Let˜̃W be the supermap of quantum switch and W be the corresponding Choi op-

erator. The first assumption is that quantum switch uses each input operation

only once, which is equivalent to that this higher-order quantum operation is

linear in each input operation. That is, the supermap ˜̃W satisfies

˜̃W(α1Ã1 + α2Ã2, β1B̃1 + βB̃2)

= α1β1
˜̃W(Ã1, B̃1) + α1β2

˜̃W(Ã1, B̃2) + α2β1
˜̃W(Ã2, B̃1) + α2β2

˜̃W(Ã2, B̃2)

(3.4)

for arbitrary complex numbers α1, α2, β1, β2 and input operations Ã1, Ã2, B̃1, B̃2.

The second assumption is that quantum switch is described by a completely CP

preserving supermap, which is equivalent to the positivity of the corresponding

Choi operator W ≥ 0. This condition is a necessary condition for the supermap

to be physically implementable. We prove that under these two assumptions,

the action of quantum switch can be uniquely determined from its action on

only unitary operations.

Since the Choi-Jamio lkowski isomorphism is a bijection, we prove the unique-

ness of the extension of quantum switch by proving that the corresponding Choi

operator W is uniquely determined. Let the Hilbert spaces Ik,Ok = Cd for

k = 1, 2 be the Hilbert spaces of the two input operations, and P ,F = C2d be

the Hilbert spaces of the output operation as Fig. 3.2 shows. Note that P ,F
can be further divided as P = PC ⊗ PT and FC ⊗ FT , where PC , FC = C2

corresponds to the control qubit, and PT ,FT = Cd corresponds to the target

system. Let Hin = I1 ⊗ O1 ⊗ I2 ⊗ O2 and Hout = PT ⊗ FT ⊗ PC ⊗ FC . The
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Figure 3.2: The conceptual figure of higher-order quantum operation with in-

definite causal order such as quantum switch. A quantum switch takes unitary

operations as input operations, and output a controlled unitary operation on

Hilbert spaces P ,F . The output unitary operation cannot be implemented by

using the two input unitary operations in a certain order with each unitary op-

eration used only once.

Choi operator of quantum switch W is an operator on L(Hin⊗Hout). Note that

the Choi operator is define on this Hilbert space because of the assumption of

linearity. We also denote the Choi operator of quantum switch defined by the

Kraus operators given in Ref. [27] as W0 ∈ L(Hin⊗Hout). This operator can be

calculated as W0 = |W0〉〈W0| with

|W0〉 =|00〉PCFC |I〉〉PT I1|I〉〉O1I2|I〉〉O2FT

+ |11〉PCFC |I〉〉PT I2|I〉〉O2I1|I〉〉O1FT

=
d−1∑

i,j,k=0

(|ijjkik00〉+ |jkijik11〉), (3.5)

where the Hilbert spaces for the vector in the last line is in the order of I1 ⊗
O1 ⊗ I2 ⊗O2 ⊗ PT ⊗ FT ⊗ PC ⊗ FC . Note that the normalization of the Choi

operators is given by TrW = TrW0 = 2d3, and each elements of the matrix W0

is 0 or 1.

In this chapter, we show that the only possible W satisfies W = W0 under the

following assumptions. When input operations are unitary operations denoted

by J = JU1 ⊗ JU2 , the action of quantum switch is given by W0 as TrinW0J
t,

where the partial trace is on Hin. The first assumption is that quantum switch

uses each input operation only once, which is equivalent to the linearity. This

assumption is automatically satisfied by using the Choi operator defined on

Hin ⊗ Hout. The second assumption is the positivity given by W ≥ 0. To

summarize, the uniqueness of quantum switch is formally given by Theorem 3.1.
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Theorem 3.1. Let W0 = |W0〉〈W0| where |W0〉 is defined by Eq. (3.5). If there

exists W ≥ 0 such that Trin[W (JU1 ⊗ JU2)
t] = Trin[W0(JU1 ⊗ JU2)

t] holds for all

U1 and U2, then W = W0 holds.

The proof of Theorem 3.1 is given in the following sections.

3.2 The Linear Span of Unitary Operations

While the positivity is a key feature for seeking the unique extension of quantum

switch, we first focus on the linearity in this section. From the linearity, the

action on any input operations that is a linear combination of unitary operations

is given in the same way, that is, for any J ∈ span{JU1 ⊗ JU2} where

span{JU1 ⊗ JU2} := {O | O =
∑
i1,i2

ci1i2(JUi1 ⊗ JUi2 ), ci1i2 ∈ C}, (3.6)

the action of quantum switch on J is given by TrinW0J
t. For that, we consider

the operators in span{JU1⊗JU2}. Since span{JU1⊗JU2} = span{JU}⊗span{JU}
holds, it is enough to consider the operators in span{JU}.

We first summarize the results in this section: the following operators are in

span{JU}.

1. |ii〉〈jj|, |ij〉〈ji| ∈ span{JU} for i 6= j.

2. |ij〉〈i′j′| ∈ span{JU} for i 6= j 6= i′ 6= j′ (all of them are different).

3. |ij〉〈i′j′| ∈ span{JU} if only two of i, j, i′, j′ are the same and others are

different.

4.
∑

j=i+k |ij〉〈ij| ∈ span{JU} for k = 0, . . . , d− 1.

5. (|ij〉〈ii| − |jj〉〈ji|), (|ji〉〈ii| − |jj〉〈ij|) ∈ span{JU} for i 6= j.

The proof is given in Lemmas 3.1-3.5.

We remark that the set of the operators listed here do not span the whole

space of span{JU} unless d = 2. There are only 2d(d − 1) + d(d − 1)(d −
2)(d − 3) + 6d(d − 1)(d − 2) + d + 2d(d − 1) = d(d3 − 3d + 3) elements here,

but the dimension of span{JU} is (d2 − 1)2 + 1 (see Lemma C.3), which is

strictly greater than d(d3 − 3d + 3) for d > 2. As we will show in Sec. 3.3 that

Theorem 3.1 can be proved by only considering the action of quantum switch on

these operators, requiring the action of quantum switch on all unitary operations

is not necessary in general to uniquely determine the action of quantum switch
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on general quantum operations. Instead, requiring the action of quantum switch

on a restricted set of unitary operations is enough for uniquely determining the

action on the rest of unitary operations and general quantum operations.

Another important fact is that the action of quantum switch on the depo-

larizing channels is determined only by the linearity, because

I

d
⊗ I

d
∈ span{JU1 ⊗ JU2} (3.7)

holds, where I
d

is the Choi operator of the depolarizing channel. This is also

obvious because the depolarizing channel is a probabilistic mixture of uniformly

random unitary operations. Thus, the results of Refs. [33–35] can be obtained

with only the assumption of the linearity. In contrast, if we apply quantum

switch to general quantum operations, the action may not be determined from

only the linearity.

Lemma 3.1. |ii〉〈jj|, |ij〉〈ji| ∈ span{JU} holds for i 6= j.

Proof. (The same Lemma is proved in Ref. [17]) Since only the linear span is

considered, we use unnormalized quantum states for convenience. Consider the

following maximally entangled state

|ψθ,φ〉 = |ii〉+ eiθ|jj〉+ eiφ|KK〉, (3.8)

where |KK〉 :=
∑

k 6=i,j |kk〉, then |ψθ,φ〉〈ψθ,φ| = JU for some U and |ψθ,φ〉〈ψθ,φ| ∈
span{JU}. Since

|ψθ,φ〉〈ψθ,φ| = |ii〉〈ii|+ |jj〉〈jj|+ |KK〉〈KK| (3.9)

+ e−iθ|ii〉〈jj|+ e−iφ|ii〉〈KK|+ ei(θ−φ)|jj〉〈KK| (3.10)

+ eiθ|jj〉〈ii|+ eiφ|KK〉〈ii|+ e−i(θ−φ)|KK〉〈jj|, (3.11)

we obtain ∫ 2π

0

dθ

∫ 2π

0

dφ eiθ|ψθ,φ〉〈ψθ,φ| = |ii〉〈jj| ∈ span{JU} (3.12)

for all i 6= j. The same calculation with the maximally entangled state

|ψ′θ,φ〉 = |ij〉+ eiθ|ji〉+ eiφ|KK〉, (3.13)

leads to |ij〉〈ji| ∈ span{JU} for all i 6= j.

Lemma 3.2. |ij〉〈i′j′| ∈ span{JU} holds for i 6= j 6= i′ 6= j′.
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Proof. Consider the maximally entangled state

|ψθ,φ〉 = |ij〉+ eiθ|i′j′〉+ eiφ|KK〉 (3.14)

where |KK〉 := |ji〉 + |j′i′〉 +
∑

k 6=i,j,i′j′ |kk〉. Then the same calculation of

Lemma 3.1 proves |ij〉〈i′j′| ∈ span{JU}.

Lemma 3.3. |ij〉〈i′j′| ∈ span{JU} holds if only two of i, j, i′, j′ are the same

and others are different.

Proof. There are 6 cases that only two of i, j, i′, j′ are the same and others are

different. If |ij〉〈i′j′| ∈ span{JU}, then the conjugate transpose also satisfies

|i′j′〉〈ij| ∈ span{JU}. Thus, it is enough to consider the following four cases

with i 6= j 6= k.

|ii〉〈jk| ∈ span{JU} (3.15)

|ij〉〈jk| ∈ span{JU} (3.16)

|ij〉〈ik| ∈ span{JU} (3.17)

|ij〉〈kj| ∈ span{JU} (3.18)

For each of them, consider the following maximally entangled states, and the

same calculation of Lemma 3.1 proves that they are in span{JU}, respectively.

1. |ψθ,φ〉 = |ii〉+ eiθ|jk〉+ eiφ|LL〉 with |LL〉 := |kj〉+
∑

l 6=i,j,k |ll〉.

2. |ψθ,φ〉 = |ij〉+ eiθ|jk〉+ eiφ|LL〉 with |LL〉 := |ki〉+
∑

l 6=i,j,k |ll〉.

3. |ψθ,φ〉 = |i〉(|j〉 + eiθ|k〉) + eiφ|LL〉 with |LL〉 := |j〉(|j〉 − eiθ|k〉) + |ki〉 +∑
l 6=i,j,k |ll〉.

4. |ψθ,φ〉 = (|i〉 + eiθ|k〉)|j〉 + eiφ|LL〉 with |LL〉 := (|i〉 − eiθ|k〉)|i〉 + |jk〉 +∑
l 6=i,j,k |ll〉.

Lemma 3.4.
∑

j=i+k |ij〉〈ij| ∈ span{JU} holds for k = 0, . . . , d− 1.

Proof. Consider the maximally entangled state

|ψθi〉 =
∑
i

eθi |i, i+ k〉. (3.19)

Note that we consider the d-dimensional system and |i+ k〉 indicates |i+ k (mod d)〉.
Then we obtain∫ 2π

0

∏
i

dθi |ψθi〉〈ψθi | =
∑
i

|i, i+ k〉〈i, i+ k| =
∑
j=i+k

|ij〉〈ij| ∈ span{JU}.

(3.20)
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Lemma 3.5. (|ij〉〈ii| − |jj〉〈ji|), (|ji〉〈ii| − |jj〉〈ij|) ∈ span{JU} holds for i 6= j.

Proof. Consider the maximally entangled state

|ψ1
θ,φ〉 = (|i〉+ eiθ2|j〉)(|i〉+ eiθ2|j〉) + eiθ1(|i〉 − eiθ2|j〉)(|i〉 − eiθ2|j〉) + eiφ|KK〉

(3.21)

|ψ2
θ,φ〉 = (|i〉+ eiθ2|j〉)(|i〉 − eiθ2|j〉) + eiθ1(|i〉 − eiθ2|j〉)(|i〉+ eiθ2|j〉) + eiφ|KK〉

(3.22)

where |KK〉 :=
∑

k 6=i,j |kk〉. Here∫ 2π

0

dθ1dθ2dφe
iθ1e−iθ2|ψ1

θ,φ〉〈ψ1
θ,φ| = |ij〉〈ii|+ |ji〉〈ii| − |jj〉〈ij| − |jj〉〈ji| (3.23)∫ 2π

0

dθ1dθ2dφe
iθ1e−iθ2|ψ2

θ,φ〉〈ψ2
θ,φ| = −|ij〉〈ii|+ |ji〉〈ii| − |jj〉〈ij|+ |jj〉〈ji|,

(3.24)

holds, and by considering the sum and difference, we obtain

(|ij〉〈ii| − |jj〉〈ji|), (|ji〉〈ii| − |jj〉〈ij|) ∈ span{JU}. (3.25)

3.3 The Proof of Theorem 3.1

The Choi operator W0 of quantum switch that we prove is given by Eq. (3.5).

For J = |ijkl〉〈i′j′k′l′| ∈ L(I1⊗O1⊗I2⊗O2), the action of W0 can be evaluated

as

Trin(W0J
t) = 〈ijkl||W0〉〈W0||i′j′k′l′〉 (3.26)

= (δjk|il00〉+ δil|kj11〉)(δj′k′〈i′l′00|+ δi′l′〈k′j′11|) (3.27)

= δjkδj′k′|il00〉〈i′l′00|+ δilδi′l′|kj11〉〈k′j′11|
+ δjkδi′l′|il00〉〈k′j′11|+ δilδj′k′ |kj11〉〈i′l′00|. (3.28)

Note that for J ∈ span{JU1 ⊗ JU2}, Trin(WJ t) = Trin(W0J
t) holds by assump-

tion.

Each element of W0 is 0 or 1. In order to prove Theorem 3.1, it is enough

to prove that each element of W satisfies |(W )ij| = 0 or 1. This is because if

an arbitrary extension W satisfies |(W )ij| = 0 or 1 but W 6= W0, then some

elements of εW + (1− ε)W0, which is also a candidate for W , must have values
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between 0 and 1, which contradicts with the assumption that arbitrary extension

W satisfies |(W )ij| = 0 or 1.

The rest of the proof is divided into two parts: the first part considers the

diagonal elements of W , and the second part considers the off-diagonal elements

of W .

(First part: diagonal elements of W ) Consider J = |ijkl〉〈i′j′k′l′|, for all

i, j, k, l, there exist i′, j′, k′, l′ such that J ∈ span{JU1 ⊗ JU2}. That is, if i = j

then let i′ = j′( 6= i) so that |ij〉〈i′j′| ∈ span{JU}, and in this case, we relabel

the variables i′, j′ as j. Similarly, if i = j then let i′ = j, j′ = i so that |ij〉〈i′j′| ∈
span{JU}. (See Sec. 3.2) The same arguments hold for k, l. We then obtain the

followings for i 6= j and k 6= l:

W̃(|ijkl〉〈jilk|) = (δjk|il00〉+ δil|kj11〉)(δil〈jk00|+ δjk〈li11|) (3.29)

W̃(|ijkk〉〈jill|) = (δjk|ik00〉+ δik|kj11〉)(δil〈jl00|+ δjl〈li11|) (3.30)

W̃(|iikl〉〈jjlk|) = (δik|il00〉+ δil|ki11〉)(δjl〈jk00|+ δjk〈lj11|) (3.31)

W̃(|iikk〉〈jjll|) = (δik|ik00〉+ δik|ki11〉)(δjl〈jl00|+ δjl〈lj11|), (3.32)

where W̃ denotes the corresponding map of W , i.e., W̃(J) = TrinWJ t. Also,

consider that I ⊗ I ∈ span{JU1 ⊗ JU2}, we obtain

Tr W̃(I ⊗ I) = Tr(TrinW ) = TrW = 2d3. (3.33)

By considering Eqs. (3.29) – (3.33) and the positivity W ≥ 0, we obtain the

following elements of W with i 6= j, k 6= l

〈ijklil00|W |ijklil00〉 = 1 for j = k (3.34)

〈ijklkj11|W |ijklkj11〉 = 1 for i = l (3.35)

〈ijkkik00|W |ijkkik00〉 = 1 for j = k (3.36)

〈ijkkkj11|W |ijkkkj11〉 = 1 for i = k (3.37)

〈iiklil00|W |iiklil00〉 = 1 for i = k (3.38)

〈iiklki11|W |iiklki11〉 = 1 for i = l (3.39)

〈iikkik00|W |iikkik00〉 = 1 for i = k (3.40)

〈iikkki11|W |iikkki11〉 = 1 for i = k, (3.41)
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or equivalently,

〈ijjlil00|W |ijjlil00〉 = 1 for i 6= j, j 6= l (3.42)

〈ijkikj11|W |ijkikj11〉 = 1 for i 6= j, k 6= i (3.43)

〈ijjjij00|W |ijjjij00〉 = 1 for i 6= j (3.44)

〈ijiiij11|W |ijiiij11〉 = 1 for i 6= j (3.45)

〈iiilil00|W |iiilil00〉 = 1 for i 6= l (3.46)

〈iikiki11|W |iikiki11〉 = 1 for i 6= k (3.47)

〈iiiiii00|W |iiiiii00〉 = 1 (3.48)

〈iiiiii11|W |iiiiii11〉 = 1. (3.49)

The proof is given in the rest of this part. The number of terms in 1st, 3rd, 5th

and 7th lines (or 2nd, 4th, 6th, 8th lines) is given by d(d−1)2, d(d−1), d(d−1), d

respectively, and the total number of terms in these 8 lines is 2d3. Since TrW =

2d3, all the other diagonal terms of W is 0, that is, 〈ψ|W |ψ′〉 = 0 for all |ψ〉, |ψ′〉
not of these forms.

Remark 3.1. Before providing the proof of the first part, we show how we can

obtain the diagonal elements of W from Eqs. (3.29) – (3.33) and the positivity

W ≥ 0 with a simpler example. Consider a linear map W̃ : L(C2)→ L(C2) and

the corresponding Choi operator W ∈ L(C4) satisfying

W̃(|i〉〈j|) = |i〉〈j| for (i, j) = (0, 1), (1, 0) (3.50)

TrW = 2 (3.51)

W ≥ 0, (3.52)

then the matrix W can be assumed to be

W =


a b 0 1

c d 0 0

0 0 e f

1 0 g h

 (3.53)

with a + d + e + h = 2. From the positivity W ≥ 0, we obtain ah− 1 ≥ 0 and

a, d, e, h ≥ 0. Here the inequality

2 = a+ d+ e+ h ≥ 2
√
ah+ e+ h ≥ 2× 1 + 0 + 0 = 2 (3.54)

holds, and by considering the condition for the equality, we obtain a+d = 2
√
ad

as a necessary condition. Thus, we obtain a = d = 1 and the diagonal terms are

uniquely determined as (a, d, e, h) = (1, 0, 0, 1).
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Now we provide the proof of Eqs. (3.34) – (3.41) from Eqs. (3.29) – (3.33)

and the positivity W ≥ 0. Let

S1 = {|ijklil00〉 | i 6= j, k 6= l, j = k} ∪ {|ijklkj11〉 | i 6= j, k 6= l, i = l} (3.55)

S2 = {|ijkkik00〉 | i 6= j, j = k} (3.56)

S3 = {|ijkkkj11〉 | i 6= j, i = k} (3.57)

S4 = {|iiklil00〉 | k 6= l, i = k} (3.58)

S5 = {|iiklki11〉 | k 6= l, i = l} (3.59)

S6 = {|iikkik00〉 | i = k} (3.60)

S7 = {|iikkki11〉 | i = k}, (3.61)

and it is enough to prove that ∏
|ψ〉∈Sa

〈ψ|W |ψ〉 ≥ 1 (3.62)

holds for a = 1, . . . , 7. This is because if Eq. (3.62) holds, the inequality

2d3 ≥
7∑

a=1

∑
|ψ〉∈Sa

〈ψ|W |ψ〉 ≥
7∑

a=1

|Sa|

 ∏
|ψ〉∈Sa

〈ψ|W |ψ〉

 1
|Sa|

≥
7∑

a=1

|Sa| = 2d3

(3.63)

also holds, and by considering the condition for the equality, we obtain

〈ψ|W |ψ〉 = 1 (3.64)

for all |ψ〉 ∈ Sa for all a. Here we only prove Eq. (3.62) for a = 1, 2, 6. The case

of a = 4 can be proved in the same way as the case of a = 2 by considering the

symmetry between the two input operations. The rest cases a = 3, 5, 7 can be

proved in the same way as a = 2, 4, 6, respectively, by considering the symmetry

between the action of the control qubit being 0 and 1.

(Case 1: S1) In this case, we show the following inequality holds

∏
|ψ〉∈S1

〈ψ|W |ψ〉 =

( ∏
i 6=j,k 6=l,j=k

〈ijklil00|W |ijklil00〉

)( ∏
i 6=j,k 6=l,i=l

〈ijklkj11|W |ijklkj11〉

)

=

( ∏
i 6=k,k 6=l

〈ikklil00|W |ikklil00〉

)( ∏
i 6=k,k 6=l

〈kilkli11|W |kilkli11〉

)
=

∏
i 6=k,k 6=l

〈ikklil00|W |ikklil00〉〈kilkli11|W |kilkli11〉 ≥ 1. (3.65)
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Let |ψ0
ikl〉 := |ikklil00〉 and |ψ1

ikl〉 := |kilkli11〉, then 〈ψ0
ikl|W |ψ1

ikl〉 = 1 holds for

arbitrary i, k, l satisfying i 6= k, k 6= l because of Eq. (3.29). By considering the

positivity of the submatrix(
〈ψ0

ikl|W |ψ0
ikl〉 〈ψ0

ikl|W |ψ1
ikl〉

〈ψ1
ikl|W |ψ0

ikl〉 〈ψ1
ikl|W |ψ1

ikl〉

)
=

(
〈ψ0

ikl|W |ψ0
ikl〉 1

1 〈ψ1
ikl|W |ψ1

ikl〉

)
≥ 0, (3.66)

we obtain the inequality

〈ψ0
ikl|W |ψ0

ikl〉〈ψ1
ikl|W |ψ1

ikl〉 ≥ 1, (3.67)

which completes the proof of Eq. (3.65).

(Case 2: S2) In this case, we show the following inequality holds∏
|ψ〉∈S3

〈ψ|W |ψ〉 =
∏

i 6=j,j=k

〈ijkkik00|W |ijkkik00〉

=
∏
i 6=k

〈ψik|W |ψik〉 =
∏
i<k

〈ψik|W |ψik〉〈ψki|W |ψki〉 ≥ 1, (3.68)

where we define |ψik〉 := |ikkkik00〉 for i, k = 0, . . . , d− 1. Since 〈ψik|W |ψki〉 =

1 holds arbitrary i, k satisfying i 6= k because of Eq. (3.30), we consider the

positivity of the submatrix(
〈ψik|W |ψik〉 〈ψik|W |ψki〉
〈ψki|W |ψik〉 〈ψki|W |ψki〉

)
=

(
〈ψik|W |ψik〉 1

1 〈ψki|W |ψki〉

)
≥ 0, (3.69)

and obtain

〈ψik|W |ψik〉〈ψki|W |ψki〉 ≥ 1 (3.70)

for any i 6= k, which completes the proof of Eq. (3.68).

(Case 3: S6) In this case, we show the following inequality holds∏
|ψ〉∈S7

〈ψ|W |ψ〉 =
∏
i=k

〈iikkik00|W |iikkik00〉 =
∏
k

〈kkkkkk00|W |kkkkkk00〉 ≥ 1.

(3.71)

Let |ψk〉 := |kkkkkk00〉 for k = 0, . . . , d − 1, then 〈ψk|W |ψk′〉 = 1 holds for

k 6= k′ because of Eq. (3.32). By considering the positivity of the submatrix
〈ψ0|W |ψ0〉 〈ψ0|W |ψ1〉 · · · 〈ψ0|W |ψd−1〉
〈ψ1|W |ψ0〉 〈ψ1|W |ψ1〉

. . . 〈ψ1|W |ψd−1〉
...

. . . . . .
...

〈ψd−1|W |ψ0〉 〈ψd−1|W |ψ1〉 · · · 〈ψd−1|W |ψd−1〉

 ≥ 0, (3.72)
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we obtain Eq. (3.71).

In total, we uniquely determined the diagonal elements of W .

(Second part: off-diagonal elements of W ) Here we show that every element

of W satisfies |(W )ij| = 0 or 1. From the positivity, if a diagonal element is 0,

then all the elements of that row or column is 0. Therefore, we can assume that

W is given by

TrinWJ t = 〈ijkl||W 〉〈W ||i′j′k′l′〉 (3.73)

= aijkli′j′k′l′δjkδj′k′|il00〉〈i′l′00|+ bijkli′j′k′l′δilδi′l′ |kj11〉〈k′j′11|
+ cijkli′j′k′l′δjkδi′l′|il00〉〈k′j′11|+ dijkli′j′k′l′δilδj′k′ |kj11〉〈i′l′00| (3.74)

with |aijkli′j′k′l′|, |bijkli′j′k′l′ |, |cijkli′j′k′l′ |, |dijkli′j′k′l′| ≤ 1. (cf. Eq. (3.28)) As we

mentioned, it is enough to show that all of the absolute values of them (with

non vanishing kronecker delta) are 1. Considering that there are at most (2d3)2

non-zero elements, this is also equivalent to show that ||W ||1 = (2d3)2, where

||W ||1 denotes the element-wise 1-norm in this chapter (i.e. sum of absolute

values of all elements in the computational basis). Since ||W ||1 ≤ (2d3)2 is

trivial, we prove ||W ||1 ≥ (2d3)2 in the following.

Remark 3.2. Before proceeding to the proof, we briefly explain the key idea of

the proof (by adding an extra assumption which makes the proof much simpler).

Let J =
∑

ijkli′j′k′l′ |ijkl〉〈i′j′k′l′|, then ||W ||1 ≥ ||TrinWJ t||1 holds because of

the triangle inequality. Assume that J ∈ span{JU1 ⊗ JU2} (which is the extra

assumption and is not true), then the r.h.s. can be evaluated using TrinWJ t =

TrinW0J
t as

||W ||1 ≥ ||TrinWJ t||1 = ||TrinW0J
t||1 = (2d3)2, (3.75)

which completes the proof.

In order to evaluate ||W ||1, we first provide a grouping of |ijkl〉〈i′j′k′l′| =

|ij〉〈i′j′| ⊗ |kl〉〈k′l′|, which covers all possible elements and also satisfies that

each group is in span{JU1 ⊗ JU2}. See Sec. 3.2 for the proof that they are in

span{JU1 ⊗ JU2}. We first classify |ij〉〈i′j′| into the following groups. (i, j, i′, j′

are assumed to be different by default)

1. If all i, j, i′, j′ are different, or if only two of them are the same, or i =

j, i′ = j′ or i = j′, j = i′, then we use |ij〉〈i′j′| ∈ span{JU1 ⊗ JU2}.

2. If i = i′, j = j′ or i = i′ = j = j′, then we use
∑

j=i+k |ij〉〈ij| ∈ span{JU1⊗
JU2}.
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3. If i = j = j′ or i = j = j′ or i = i′ = j′ or j = i′ = j, then we use

(|ij〉〈ii| − |jj〉〈ji|), (|ji〉〈ii| − |jj〉〈ij|) ∈ span{JU1 ⊗ JU2}.

We denote the three groups as G1, G2 and G3 respectively. To make the state-

ment clear, we provide the definitions explicitly as follows:

G1 = {|ij〉〈i′j′| | i 6= j 6= i′ 6= j′,

or i = j, i 6= i′ 6= j′ (and the remaining 5 patterns),

or i = j, i′ = j′, i 6= i′, or i = j′, j = i′, i 6= j}, (3.76)

G2 = {
∑
j=i+k

|ij〉〈ij| | k = 0, . . . , d− 1}, (3.77)

G3 = {|ij〉〈ii| − |jj〉〈ji|, |ji〉〈ii| − |jj〉〈ij| | i 6= j}. (3.78)

The number of elements of each group is given by

|G1| = d(d− 1)(d− 2)(d− 3) + 6d(d− 1)(d− 2) + 2d(d− 1) (3.79)

= d(d− 1)(d2 + d− 4), (3.80)

|G2| = d, (3.81)

|G3| = 2d(d− 1). (3.82)

Note that |G1| + d|G2| + 2|G3| = d4 holds. The same grouping is chosen for

|kl〉〈k′l′|. By considering the triangle inequality and that the three groups has

no overlap, we obtain

||W ||1 ≥
3∑

a,b=1

∑
J∈Ga⊗Gb

||TrinWJ t||1. (3.83)

Moreover, since all J considered here satisfies J ∈ span{JU1 ⊗ JU2}, we can

evaluate the r.h.s. with TrinWJ t = TrinW0J
t.

The summation
∑

J∈Ga⊗Gb ||TrinWJ t||1 for each a, b is evaluated as follows.

See Appendix A for calculations. Note that it is enough to consider only 6 cases
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that satisfy a ≤ b because of the symmetry between the two systems.∑
J∈G1⊗G1

||TrinWJ t||1 = 2d(d− 1)(2d4 + 2d3 − 18d2 + 11d+ 8), (3.84)∑
J∈G1⊗G2

||TrinWJ t||1 = 2d(d− 1)(2d2 − d− 4), (3.85)∑
J∈G2⊗G2

||TrinWJ t||1 = 2d2(d+ 1), (3.86)∑
J∈G1⊗G3

||TrinWJ t||1 = 4d(d− 1)(4d2 − 5d− 2), (3.87)∑
J∈G2⊗G3

||TrinWJ t||1 = 4d(d− 1)(d+ 2), (3.88)∑
J∈G3⊗G3

||TrinWJ t||1 = 16d2(d− 1). (3.89)

By using these equations, ||W ||1 is evaluated as

||W ||1 ≥ (2d3)2, (3.90)

which completes the prove of Theorem 3.1.
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Chapter 4

Controlled Quantum Operations,

Controlled Quantum Combs, and

Controllization

A quantum version of a conditional operation is a controlled unitary operation.

Even though a controlled version of a unitary operation is well-defined, it has

been shown that universal controllization of unitary operations maintaining full

coherence is not implementable with a single use of the unitary operation within

quantum mechanics [21–24]. This no-go theorem of universal controllization of a

unitary operation restricts quantum programming, since whenever the controlled

unitary operation is used in a quantum algorithm, controllization has to be

performed based on the description of each unitary operation. There are several

preceding researches on controllization of unitary operations by relaxing the

situation of the no-go theorem.

In this chapter, we analyze the problem of universal controllization as con-

trolled higher-order quantum operations. Introduction of well-defined controlled

versions of general quantum operations and higher-order quantum operations

provides a novel tool for quantum programming, in addition to the standard

controlled unitary operations.

In Sec. 4.1, we first seek an “appropriate” definition of a controlled general

deterministic quantum operation for utilizing controlled quantum operations in

quantum computation by extending the definition of controlled unitary opera-

tions. In our definition, controlled quantum operations with different degrees

of coherence are defined with a Kraus operator contributing to the coherence.

The coherence of a controlled quantum operation is evaluated by the trace norm

of an off-diagonal term of its Choi operator. If the Hilbert-Schmidt norm of

the Kraus operator contributing to the coherence is 0, it is classically controlled
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(no coherence), and if it is 1, it is fully coherently controlled as in the case

of standard controlled unitary operations, and controlled quantum operations

with intermediate coherence are also included. For each quantum operation,

the maximal Hilbert-Schmidt norm of the operator is determined, which we call

the most coherently controlled quantum operation. In Sec. 4.2, we discuss the

relationship between quantum switch and controlled quantum operations based

on our definition.

In Sec. 4.3, we further extend our definition to a controlled version of quan-

tum combs. We then show that universal controllization can be regarded as

a controlled version of a neutralization comb, a quantum comb transforming

any quantum operations into the identity operation. A controlled neutralization

comb can perform a transformation from a quantum operation to its controlled

version, although the maximal coherence may not be guaranteed in general.

The idea of controlled neutralization comb provides a unified way of under-

standing and analyzing controllization. By utilizing the most coherently con-

trolled neutralization combs, the quantum algorithms presented in Sec. 2.4 can

be understood in a way as presented in Sec. 4.4.1. We also propose a new quan-

tum algorithm for universal controllization which can be implemented without

any auxiliary system. The new algorithm for universal controllization we present

in Sec. 4.4.2 and Sec. 4.4.3 is based on randomization using the Pauli operations

and the Clifford operations, respectively. We evaluate both randomizations, and

we show that the randomization using the Pauli operations performs better than

the randomization using the Clifford operations.

4.1 Controlled Quantum Operations

4.1.1 Controlled Quantum Operations Based on Physical

Implementations

We seek an appropriate definition of controlled quantum operations by gener-

alizing the definition of the controlled unitary operations preserving coherence

JCU instead of the incoherent version JCclsU . In this section, we consider two possi-

ble generalizations based on two different implementation schemes of controlled

unitary operations, and both generalizations emerge to the same definition.

The first definition of the controlled quantum operation is based on the

Stinespring representation [45] of a quantum operation, which is represented by

the quantum circuit shown in Fig. 4.1. For a quantum operation Ã represented

by the Kraus operators given by {Ki}ni=1, it is always possible to define a unitary

operator U on an extended quantum system H ⊗ Haux by adding an auxiliary
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Figure 4.1: A quantum circuit for Stinespring representation of a quantum oper-

ation. A quantum operation Ã : L(H) → L(K) can be implemented by adding

an auxiliary system Haux in a state |0〉 to an initial state |ψ〉 on H and applying

a unitary operation U on the joint system H⊗Haux. The unitary operator U is

called purification of the Kraus operators of Ã.

system Haux = Cn+1 satisfying

U |ψ〉|0〉 =
n∑
i=1

Ki|ψ〉|i〉 (4.1)

for an arbitrary state |ψ〉 ∈ H, where {|i〉}ni=0 is an orthonormal basis of the

auxiliary system. Note that we take a particular U such that the summation

over i starts from 1 instead of 0 in the r.h.s. of Eq. (4.1) to treat each Kraus

operator Ki for i = 1, . . . , n equally. This choice is equivalent to taking the

Kraus operators {Ki}ni=0 with K0 = 0. We call this U as a purification of the

Kraus operators {Ki}. The quantum operation Ã can be represented as the

reduced dynamics of this unitary operation as

Ã(|ψ〉〈ψ|) = Traux

[
U (|ψ〉〈ψ| ⊗ |0〉〈0|)U †

]
. (4.2)

Considering the controlled unitary operation defined by Eq. (2.36), the Choi

operator of the controlled unitary operation of the purification Eq. (4.1) is given

by JCU ∈ L(HC ⊗KC ⊗H⊗K ⊗Haux ⊗Kaux) as

JCU =
(
|00〉|I〉〉|00〉+ |11〉

n∑
i=1

|Ki〉〉|0i〉
)(
〈00|〈〈I|〈00|+ 〈11|

n∑
j=1

〈〈Kj|〈0j|
)

(4.3)

where |mm〉|X〉〉|0n〉 is a tensor product of |mm〉 ∈ HC ⊗ KC , |X〉〉 ∈ H ⊗ K
and |0n〉 ∈ Haux ⊗Kaux. We omitted the global phase dependence in Eq. (4.3),

since it can be absorbed in the choice of the Kraus operators. By tracing out

the auxiliary system Haux⊗Kaux, the Choi operator of the reduced dynamics is

obtained as

Traux(JCU ) = |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JA. (4.4)

This is the classically controlled quantum operation defined by Eq. (2.39). Even

when Ã is a unitary operation whose Kraus operator is given by a single element
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set {K1 = V } of a unitary operator V , the construction of the Choi operator

based on Eq. (4.1) derives JCclsU instead of JCU which preserves coherence.

The loss of coherence here originates from ignoring the freedom in the pu-

rification of the identity operation applied in the case that the control qubit is

|0〉. In other words, there is an asymmetry that the identity operation is imple-

mented without purification while Ã is. The general form of the Kraus operators

of the identity operation is given as {Ki = αiI} satisfying
∑

i |αi|
2 = 1. The

corresponding purification U0 of these Kraus operators of the identity operation

is given by

U0|ψ〉|0〉 = |ψ〉
n∑
i=1

αi|i〉. (4.5)

Here U0 is a unitary operator acting non-trivially only on the auxiliary system

Haux. We consider that U0 is applied when the control qubit is |0〉 instead of

I on H ⊗ Haux in the controlled quantum operation. Then the corresponding

unitary operator of the controlled operation C̃U,U0 is

CU,U0 = |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U. (4.6)

The corresponding Choi operator is given as

JCU,U0
=

n∑
i,j=1

(
αi|00〉|I〉〉+ |11〉|Ki〉〉

)(
α∗j〈00|〈〈I|+ 〈11|〈〈Kj|

)
⊗ |0i〉〈0j|, (4.7)

By tracing out the auxiliary system Haux ⊗Kaux, we obtain

TrauxJCU,U0
=
∑
i

(
αi|00〉|I〉〉+ |11〉|Ki〉〉

)(
α∗i 〈00|〈〈I|+ 〈11|〈〈Ki|

)
. (4.8)

The corresponding quantum circuit is shown in Fig. 4.2. We take the definition

given by Eq. (4.8) as the first definition of a controlled quantum operation. For a

given quantum operation, controlled quantum operations with different degrees

of coherence can be defined by changing the set of Kraus operators {Ki} and

coefficients {αi}.
In the appendix of Ref. [49], a definition of a controlled quantum operation is

introduced in terms of purification with an environment. They obtained a similar

representation of ours where αi = 〈i|U0|0〉 in Eq. (4.8) is given by 〈i|ε0〉 with

an initial state of the environment |ε0〉 in their definition. The main difference

between the definition of Ref. [49] and our definition is that we explicitly choose

a certain type of Kraus operators {Ki}ni=0 satisfying K0 = 0. By this choice of

the Kraus operators and the corresponding purification U , the quantum circuit
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Figure 4.2: A definition of controlled quantum operation based on the Stine-

spring representation. There is extra freedom by introducing U0 applied to the

auxiliary system depending on the state of the control qubit, which can be re-

garded as a purification of the identity operation. Given a fixed U , controlled

quantum operations with all possible degrees of coherence for a given quantum

operation Ã are implementable by only changing U0.

shown in Fig. 4.2 can implement controlled quantum operations with all possible

degrees of coherence by just choosing the coefficients {αi} or equivalently U0.

We will analyze this point at the end of Sec. 4.1.2.

The second definition of a controlled quantum operation is to use an addi-

tional dimension, based on the implementation of a controlled unitary operation

in the optical interferometer system [22, 23, 30, 54, 55]. Consider a composite of

quantum states of the control qubit α|0〉 + β|1〉 and the target state |ψ〉. We

assume that the control qubit and the target state are encoded into the a single

photon. That is, the control qubit is encoded into the polarization of a pho-

ton as α|H〉 + β|V 〉, where |H〉 and |V 〉 denote the horizontal and the vertical

polarization, and the target state is encoded into other degrees of freedom of

the same photon such as the orbital angular momentum or the transverse spa-

tial mode, which is represented by the Hilbert space H. A unitary operation

represented by U ∈ L(H) can be realized by an optical element which acts on

the addition degrees of freedom but not the polarization, and the corresponding

controlled unitary operation C̃U can be implemented with the optical interfer-

ometer shown in Fig. 4.3a. The polarization of the photon controls its path

via polarization beam splitters, and the optical elements corresponding to U is

placed in the lower path. If the polarization of the photon is in |V 〉, the photon

pass through the lower path and U is applied on the target state |ψ〉. If the

polarization of the photon is in |H〉, the photon pass through the upper path,

and the vacuum state pass through the optical elements corresponding to U

which remains to be the vacuum state. Thus, the resulting quantum state is

given by α|H〉|ψ〉 + β|V 〉U |ψ〉, and the action of the controlled unitary opera-

tion is obtained. By considering the vacuum state |v〉, which is ignored in the

formulation of optical elements, a unitary operation U on the Hilbert space H
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(a) (b)

Figure 4.3: (a) An implementation of a controlled unitary operation in an optical

interferometer [22, 23]. The optical element PBS denotes a polarization beam

splitter, and the polarization |H〉 and |V 〉 control the routing of the optical

path. The lower path has an optical element acting on the additional degrees

of freedom, which corresponds to the unitary operation U acting on the target

system. (b) An equivalent quantum circuit to the optical interferometer by

introducing the vacuum state |v〉. The control qubit |0〉 and |1〉 correspond to the

polarization |H〉 and |V 〉. The target state |ψ′〉 is a quantum state embedded in a

one-dimension larger Hilbert space |ψ′〉 ∈ H⊕C that is equivalent to the original

target state |ψ〉 ∈ H as |ψ′〉 = |ψ〉 + 0|v〉. The auxiliary state is given by the

vacuum state |v〉 ∈ H⊕C, and the unitary operation Ū = U⊕|v〉〈v| ∈ L(H⊕C)

does not change the vacuum state |v〉.

can be regarded as a unitary operation Ū embedded into a one-dimension larger

Hilbert space H ⊕ C as Ū = U ⊕ |v〉〈v|. The optical interferometer shown in

Fig. 4.3a with the unitary operation U can be regarded as the quantum circuit

shown in Fig. 4.3b with the unitary operation Ū .

An embedded unitary operation Ū is transformed to the corresponding con-

trolled unitary operation C̃Ū by the optical interferometer shown in Fig. 4.3.

This transformation is represented by the following function f , namely,

f(JŪ) = |00〉〈00| ⊗ Jīd + |11〉〈11| ⊗ JŪ + |00〉〈11| ⊗ |Ī〉〉〈〈Ū |+ h.c. (4.9)

= |00〉〈00| ⊗ Jīd + |11〉〈11| ⊗ JŪ + |00〉〈11| ⊗ |Ī〉〉(〈vv|JŪ) + h.c., (4.10)

where |Ū〉〉 = |U〉〉 + |vv〉 by definition of the embedded space, and the second

equality holds because of 〈vv|Ū〉〉 = 1. Note that the function f only depends

on JŪ , which is uniquely determined for a unitary operation.

This optical interferometer implementation for a controlled unitary operation

can also be extended for general quantum operations. A quantum operation Ã
can be extended to ˜̄A of a larger dimensional system by extending the Kraus op-

erators as K̄i = Ki⊕ αi|v〉〈v|, where coefficients {αi} satisfying
∑

i |αi|2 = 1 are

necessary so that {K̄i} is also a Kraus representation of a quantum operation.
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For a quantum operation given by the Kraus operators {K̄i}, the controlled ver-

sion given by the optical interferometer shown in Fig. 4.3 is uniquely determined

by the Choi operator f(JĀ) as

f(JĀ) = |00〉〈00| ⊗ Jīd + |11〉〈11| ⊗ JĀ + |00〉〈11| ⊗ |Ī〉〉(〈vv|JĀ) + h.c. (4.11)

=
∑
i

(αi|00〉|I〉〉+ |11〉|Ki〉〉+ αi|ξ〉|vv〉)

× (α∗i 〈00|〈〈I|+ 〈11|〈〈Ki|+ α∗i 〈ξ|〈vv|), (4.12)

where |ξ〉 = |00〉 + |11〉 is a vector in HC ⊗ KC . Assuming that the input

state of this extended operation does not contain the vacuum state, that is,

it is orthogonal to |ψctrl〉|v〉, where |ψctrl〉 is an arbitrary state of the control

qubit, the third term in each bracket does not affect the result, and Eq. (4.12)

is equivalent to Eq. (4.8).

The two different definitions emerge to the identical one given by

JCKi,αiA
=
∑
i

(
αi|00〉|I〉〉+ |11〉|Ki〉〉

)(
α∗i 〈00|〈〈I|+ 〈11|〈〈Ki|

)
. (4.13)

We stress that a characteristic property of this definition of a controlled quantum

operation JCKi,αiA
is that it cannot be uniquely determined by the Choi operator

JA, but depends on both the choice of the Kraus operators {Ki} and the coeffi-

cients {αi}. This is in contrast to the classical controlled version of a quantum

operation JCclsA , which is uniquely determined for Ã.

4.1.2 Axiomatic Definition of Controlled Quantum Op-

erations

In this section, we define a controlled quantum operation in an axiomatic man-

ner. We show that we can derive the definition of the form given in Eq. (4.13)

from a small number of axioms. We consider that a controlled quantum opera-

tion should satisfy the following three criteria.

Axiom 4.1 (Axioms for controlled quantum operations). The action of a con-

trolled quantum operation of a deterministic quantum operation Ã satisfies the

following three axioms.

1. If the state of the control qubit is |0〉 or |1〉, the state of the control qubit

remains unchanged after applying the controlled quantum operation.

2. If the state of the control qubit is |0〉, the identity operation is applied to

the target system.
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3. If the state of the control qubit is |1〉, the quantum operation Ã is applied

to the target system.

The form of the controlled quantum operation given by Eq. (4.13) can be

derived from just these three axioms as follows. A general form of the Kraus

operators of a quantum operation on a composite system consisting of a control

system and a target system is written by

Li = |0〉〈0| ⊗ Ai + |0〉〈1| ⊗Bi + |1〉〈0| ⊗ Ci + |1〉〈1| ⊗Di

∈ L(HC ⊗H,KC ⊗K) (4.14)

Due to the first axiom, terms in Li that change the control qubit state must

vanish as Bi = Ci = 0. To satisfy the second axiom, each Ai must be propor-

tional to identity, that is, Ai = αiI with
∑

i |αi|2 = 1 is required. The third

axiom implies that {Di} is a Kraus representation of Ã. Therefore, the Kraus

operator of the controlled quantum operation has to be in a form of

Li = αi|0〉〈0| ⊗ I + |1〉〈1| ⊗Ki, (4.15)

where
∑

i |αi|2 = 1 and {Ki} is a Kraus representation of Ã. The quantum

operation given by the Kraus operators {Li} is equivalent to that of Eq. (4.13).

A controlled quantum operation is characterized by the parameters {αi}
and {Ki}, but not all different combinations of these correspond to all different

controlled quantum operations in general, namely, these parameters are redun-

dant. In the following, we provide a parameterization that uniquely determines

a controlled quantum operation. By expanding Eq. (4.13), we obtain

JCKi,αiA
= JCclsA + |00〉〈11| ⊗ |I〉〉〈〈K|+ |11〉〈00| ⊗ |K〉〉〈〈I|, (4.16)

where JCclsA is a controlled quantum operation of Ã without coherence defined by

Eq. (2.39) and K is the operator given by K =
∑

i α
∗
iKi. As a Choi operator

uniquely determines a quantum operation, the operator K fully specifies one

controlled quantum operation of Ã without redundancy. Note that the operator

K corresponds to the transformation matrix introduced in Ref. [49]. In the

following, we use the definition of the controlled quantum operation C̃
K

A for Ã
with a choice of K =

∑
i α
∗
iKi for Ã as

JCKA := JCclsA + |00〉〈11| ⊗ |I〉〉〈〈K|+ |11〉〈00| ⊗ |K〉〉〈〈I|. (4.17)

Now we show that the quantum circuit shown in Fig. 4.2 can implement

controlled quantum operations with all possible degrees of coherence for a given
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quantum operation by choosing only the coefficients {αi} or equivalently U0.

More precisely, given a fixed set of Kraus operators {Ki}ni=0 with K0 = 0, for

any set of the Kraus operators {K ′j}mj=0 with K ′0 = 0 and coefficients {α′j}mj=0

with
∑

j |α′j|2 = 1, we can choose {αi} with
∑

i |αi|2 = 1 to make the two

resulting controlled quantum operations to be equivalent. This property implies

that we can represent all possible controlled quantum operations for a given

quantum operation by any choice of the Kraus operators with our definition

given by Eq. (4.8).

Since {Ki}ni=0 and {K ′j}mj=0 represent the same quantum operation, K ′j =∑
i u
∗
jiKi holds with a unitary matrix (uij). Note that if n 6= m, we pad with

Ki, K
′
j = 0 to make the number of the Kraus operators to be the same. In

order to implement the controlled quantum operation with K =
∑

j(α
′
j)
∗K ′j,

by considering
∑

j(α
′
j)
∗K ′j =

∑n
i,j=0(α′j)

∗u∗jiKi, we can choose αi =
∑

j α
′
juji

when the Kraus operators are given by {Ki}ni=0. For n < m,
∑n

i=0 |αi|2 may

be smaller than 1, we pad {Ki}ni=0 to {Ki}mi=0 with Ki = 0 for n < i ≤ m.

However, since we assumed K0 = 0, we can re-define the coefficient |α0|2 by

|α0|2 +
∑m

i=n+1 |αi|2 to satisfy
∑n

i=0 |αi|2 = 1. Note that the phase of α0 can be

chosen arbitrarily as the corresponding Kraus operator is K0 = 0. For n ≥ m,∑n
i=0 |αi|2 = 1 is satisfied by construction. Thus, for a given set of the Kraus

operators {Ki}ni=0 with K0 = 0, we can choose only the coefficients {αi} to define

controlled quantum operations with all possible degrees of coherence, and it also

indicates that the quantum circuit shown in Fig. 4.2 can be used to implement

corresponding all possible controlled quantum operations.

4.1.3 Most Coherently Controlled Quantum Operation

The controlled quantum operation defined by C̃
K

A contains different types of con-

trolled quantum operations including the classically controlled version of quan-

tum operations depending on the choice of K. However, in quantum information

processing, keeping coherence or superposition of states is important. Thus, we

consider a characterization of the most coherently controlled quantum operation

in this section.

Since we focus on the coherence between the different states of the control

qubit, we investigate the (block) off-diagonal term of the corresponding Choi

operator of a controlled quantum operation. Especially, we consider the off-

diagonal term of the Choi operator indicating coherence of a controlled quantum

operation given by

∆JCKA = JCKA − JCclsA . (4.18)
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The trace norm of ∆JCKA corresponds to a distance measure between quantum

operations [56]. We regard that the controlled quantum operation that has

the largest norm of the off-diagonal term, which can be also interpreted to be

the most distant one from the classically controlled version, as the quantum

mechanically most coherent one. Here ∆JCKA has only two non-zero eigenval-

ues λ = ±
√
d
√

Tr [K†K] and the corresponding two eigenstates are given by

(1/
√
d)|00〉 ⊗ |I〉〉 ± (1/

√
TrK†K)|11〉 ⊗ |K〉〉. Thus, we obtain the Schatten

p-norm1 of this operator ||X||p = p
√

Tr [|X|p] as∣∣∣∣∣∣∆JCKA ∣∣∣∣∣∣p = 2
1
p

√
d
√

Tr [K†K]. (4.19)

According to Eq. (4.19), C̃
K

A with maximum quantum coherence (in the sense

of the Schatten p-norm) is obtained by maximizing the Hilbert-Schmidt norm of

K. In order to calculate the Hilbert-Schmidt norm, we introduce the orthogonal

Kraus operators {K̄j} as follows. For any quantum operation Ã, we can take

a set of mutually orthogonal Kraus operators {K̄j}mj=1 satisfying Tr K̄i
†
K̄j = 0

for all i 6= j. Explicitly, {K̄j}mj=1 can be obtained by first calculating the Choi

operator of Ã, and then performing the spectral decomposition on the Choi

operator. Note that the number of the Kraus operator in the orthogonal Kraus

representation {K̄j}mj=1 satisfies m ≤ n where n is the number of the Kraus

operators in an arbitrary Kraus representation {Ki}ni=1. We can rewrite K =∑
i α
∗
iKi as K =

∑
i β
∗
i K̄i with

βi =
TrK†K̄i

Tr K̄i
†
K̄i

(4.20)

by defining K̄i = 0 for m < i ≤ n when m < n. The coefficients {βi} satisfy∑
i |βi|

2 ≤ 1 and this can be shown as follows. Since {Ki} and {K̄j} represent

the same quantum operation, Ki =
∑n

j=1 uijK̄j holds with a unitary matrix

(uij). Then we obtain

m∑
j=1

|βi|2 =
n∑

i,j=1

|αi|2 |uij|2 δi≤m =
m∑
i=1

|αi|2 ≤
n∑
i=1

|αi|2 = 1 (4.21)

where δi≤m denotes a step function, namely, δi≤m = 1 for i ≤ m and otherwise

δi≤m = 0.

By using the orthogonal Kraus operators {K̄i}, the Hilbert-Schmidt norm of

K is represented as

TrK†K =
∑
i

|βi|2 Tr K̄i
†
K̄i,

∑
i

|βi|2 ≤ 1. (4.22)

1The trace norm corresponds to p = 1.
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We define a subset of the index of the orthogonal Kraus operators {K̄i} of a

quantum operation Ã with the maximum Hilbert-Schmidt norm as

Amax :=
{
i
∣∣∣ ∀j, Tr K̄i

†
K̄i ≥ Tr K̄j

†
K̄j

}
. (4.23)

It is clear from Eq. (4.22) that the operator K for the maximum coherence

is obtained by appropriately choosing the coefficients {αi} for the orthogonal

Kraus operators with the maximum Hilbert-Schmidt norm as

K =
∑

i∈Amax

α∗i K̄i,
∑
i

|αi|2 = 1. (4.24)

We can construct an orthogonal Kraus representation of Ã which includes K

as one of the Kraus operator. In other words, K is one of the possible Kraus

operators of Ã which has the maximum Hilbert-Schmidt norm. In the follow-

ing, we call a controlled quantum operation of Ã described with the maximum

Hilbert-Schmidt norm of K as the most coherently controlled quantum operation.

In particular, when the maximal Hilbert-Schmidt norm of K is 1, we refer such

a controlled quantum operation to as the fully coherently controlled quantum

operation. The controlled unitary operations given by Eq. (2.37) is the fully

coherently controlled quantum operation as expected.

Remark that the definition of a controlled quantum operation can be gener-

alized by replacing the identity operation applied when the control qubit state

is |0〉 with another general quantum operation, such as the depolarizing chan-

nel. Such kinds of controlled quantum operations are considered in Ref. [49,50].

However, it is difficult to evaluate the coherence in general for such cases, and

it is not clear what can be regarded as the most coherently controlled quantum

operation. Nevertheless, the most coherently controlled quantum operation can

be easily extended if another quantum operation described by a single Kraus

operator, e.g., an isometry V , is applied when the control qubit state is |0〉,
instead of the identity operation. In this case, by replacing the identity operator

by the isometry V in Eq. (4.15), all the calculation directly follows, and the

eigenvalue to calculate Eq. (4.19) becomes ±
√

Tr [V †V ]
√

Tr [K†K]. Since the

TP condition is given as V †V = I for deterministic quantum operations, we

obtain the same value of coherence as Eq. (4.19).

4.2 Relationship between Controlled Quantum

Operations and Quantum Switch

Recently, the effects of a quantum switch [27] on general quantum operations

have been extensively analyzed. It is reported that quantum switch enhances
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the communication capacity of the input channels, including the completely

depolarizing channel [33, 35, 48] (Sec. 2.5). While some consider the enhance-

ment is due to the indefinitely causally ordered aspect of quantum switch, others

claim that such a phenomenon can happen in systems exploiting coherently con-

trolled quantum operations without causally indefinite elements [49,50]. In this

section, we investigate the relationship between controlled quantum operations

and quantum switch based on our definition of controlled quantum operations.

In Ref. [49], it is pointed out that the action of quantum switch on the

depolarizing channels presented in Ref. [33] can be obtained by considering con-

trolled depolarizing channels. That is, by taking K = 1
d
I in our definition for

controlled quantum operations, the action of concatenation of two controlled

depolarizing channels (with one of them having inverted control qubit, namely,

applying the depolarizing channel if control qubit is in |1〉 and do nothing if in

|0〉) is equivalent to the action of quantum switch on depolarizing channels. In

order to avoid confusion, we denote the controlled quantum operation of Ã with

inverted control qubit as C̃
◦
A in this section. That is, C̃

◦
A := X̃ c ◦ C̃A ◦ X̃ c where

X̃ c denotes the Pauli X operation (NOT operation) on the control qubit. To

simplify the problem, here we consider only two-dimensional case. The Kraus

operators for the depolarizing channel D̃ is given by {1
2
σi}3

i=0, where σi denotes

the Pauli operators as σ0 = I, σ1 = X, σ2 = Y, σ3 = Z. The Choi operator of

the output quantum operation of quantum switch is calculated as

|00〉〈00| ⊗ I

2
+ |11〉〈11| ⊗ I

2
+ |00〉〈11| ⊗

∑
i,j

1

24
|σiσj〉〉〈〈σjσi|+ h.c.

= |00〉〈00| ⊗ I

2
+ |11〉〈11| ⊗ I

2
+ (|00〉〈11|+ |11〉〈00|)⊗ 1

4
|I〉〉〈〈I| (4.25)

by using the commutation relation of the Pauli operators. The resulting quan-

tum operation of concatenation of two controlled depolarizing channels, C̃
◦L
D ◦

C̃
K

D = C̃
K

D ◦ C̃
◦L
D , is given by

|00〉〈00| ⊗ I

2
+ |11〉〈11| ⊗ I

2
+ |00〉〈11| ⊗ |L〉〉〈〈K|+ |11〉〈00| ⊗ |K〉〉〈〈L|, (4.26)

where K and L denotes the Kraus operators defining the controlled quantum

operation. It is easy to see that the two resulting quantum operations coincide

if we take K = L = 1
2
I as Ref. [49] pointed out.

In Ref. [57, 58], the authors pointed out that while the input state passes

through both depolarizing channels in quantum switch case, it passes through

only a single depolarizing channel in the controlled depolarizing channel case. In

fact, the action of both cases coincides because concatenations of depolarizing
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channels are depolarizing channel. Moreover, the authors pointed out that the

concatenation of two controlled depolarizing channel is different from a single

controlled depolarizing channel. In our formalism, this fact is also obvious.

Assuming that the two depolarizing channels are characterized by K1, K2, then

the concatenated one is characterized by K2K1. While K2K1 is a Kraus operator

for the concatenated channel, such a product does not cover the whole set of

Kraus operators of the concatenated channel. For example, for the depolarizing

channel case, while 1
2
I is a Kraus operator of a single channel, it cannot be a

product of two Kraus operators of the depolarizing channel, i.e., of the form

K2K1 with K1, K2 being the Kraus operators of the depolarizing channel.

In this section, we also show that if the input quantum operation is different

from the depolarizing channel, such coincidence does not happen in general, not

only because the concatenation of two channels is not the same as the original

one, but also the coherent term cannot be the same. In particular, we consider

the case where the input quantum operation Ã is given by the Kraus operators

{αiσi}3
i=0 with αi ≥ 0 satisfying

∑
α2
i = 1. Note that the depolarizing channel

corresponds to αi = 1/2 for all i. The action of quantum switch on this quantum

channel is given by

|00〉〈00| ⊗ JA◦A + |11〉〈11| ⊗ JA◦A + |00〉〈11| ⊗B + |11〉〈00| ⊗B† (4.27)

where the off-diagonal term B is given by

B =
∑
i

α4
i |I〉〉〈〈I|+ 2[(α0α1)2 − (α2α3)2]|X〉〉〈〈X|

+ 2[(α0α2)2 − (α1α3)2]|Y 〉〉〈〈Y |+ 2[(α0α3)2 − (α1α2)2]|Z〉〉〈〈Z| (4.28)

On the other hand, if we consider the concatenation of two controlled versions,

which are characterized by K,L, respectively, the resulting quantum operation

C̃
◦L
A ◦ C̃

K

A is given by

|00〉〈00| ⊗ JA + |11〉〈11| ⊗ JA + |00〉〈11| ⊗ |L〉〉〈〈K|+ |11〉〈00| ⊗ |K〉〉〈〈L|. (4.29)

Here the two operators K,L have to satisfy

K =
∑
i

βi(αiσi)
∑
i

|βi|2 ≤ 1, (4.30)

L =
∑
i

γi(αiσi)
∑
i

|γi|2 ≤ 1, (4.31)

and thus, we obtain

|L〉〉〈〈K| =
∑
i,j

γiβ
∗
jαiαj|σi〉〉〈〈σj|. (4.32)
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From Eq. (4.28), we can see that unless αi = 1/2 for all i or αi = 1 for one

i and otherwise 0, which correspond to the depolarizing channel and the Pauli

operations, respectively, at least one of |σi〉〉〈〈σi| for i 6= 0 remains. Assuming that

|σ1〉〉〈〈σ1| remains. Then, in order to let the same term in Eq. (4.32) be non-zero,

it is required that α1, β1, γ1 6= 0. Also, the term |I〉〉〈〈I| in Eq. (4.28) is non-zero,

and it is required that α0, β0, γ0 6= 0 from Eq. (4.32). However, this indicates

that the term |σ0〉〉〈〈σ1| is also non-zero in Eq. (4.32), where such term does not

exist in Eq. (4.28). Thus, the two resulting quantum operations can coincide

only if the input operation is the depolarizing channel or the Pauli operations

among the quantum operation given by the Kraus operators {αiσi}3
i=0.

If we consider the controlled version of the concatenation of two channels,

C̃
◦L
A◦A ◦ C̃

K

A◦A, the diagonal terms coincide, but the coherent term still cannot

coincide. The concatenation of two quantum channel JA◦A is given by {α′iσi}3
i=0

where

α′0 =

√∑
i

α4
i (4.33)

α′1 =
√

2(α0α1)2 + 2(α2α3)2 (4.34)

α′2 =
√

2(α0α2)2 + 2(α1α3)2 (4.35)

α′3 =
√

2(α0α3)2 + 2(α1α2)2 (4.36)

Here the two operators K,L have to satisfy

K =
∑
i

βi(α
′
iσi)

∑
i

|βi|2 ≤ 1, (4.37)

L =
∑
i

γi(α
′
iσi)

∑
i

|γi|2 ≤ 1, (4.38)

and thus, we obtain

|L〉〉〈〈K| =
∑
i,j

γiβ
∗
jα
′
iα
′
j|σi〉〉〈〈σj|. (4.39)

Similarly, we can see that unless αi = 1/2 for all i or αi = 1 for one i and

otherwise 0, i.e., the depolarizing channel and the Pauli operations, the two

resulting quantum operations cannot coincide. Note that here the coherence

between two quantum channels to be concatenated is allowed as we consider

the controlled version of Ã ◦ Ã, i.e., C̃
K

A◦A. This also includes the case of the

concatenation of two independently controlled channel, i.e., C̃
K2

A ◦ C̃
K1

A , because

if K1 and K2 are the Kraus operators for the quantum operation Ã, then it is

also possible to choose K = K2K1 as a Kraus operator for Ã ◦ Ã. The inverse
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is not possible in general, and unless coherent control of D̃ ◦ D̃ is allowed, the

controlled depolarizing channel does not have the same action as the output

operation of quantum switch, that is, there exists no K1, K2, L1, L2 such that

C̃
◦L2

D ◦ C̃
◦L1

D ◦ C̃
K2

D ◦ C̃
K1

D coincide with Eq. (4.25).

4.3 Controlled Quantum Combs

In this section, we extend the definition of controlled quantum operations to

controlled quantum supermaps, especially controlled quantum combs. We con-

sider a quantum comb ˜̃S transforming N quantum operations Ãk : L(H2k−1)→
L(H2k) for k = 1, . . . , N to a target quantum operation Ã0 : L(H0)→ L(H2N+1)

as Fig. 4.4 shows. The Choi operator of this quantum comb S satisfies

S ≥ 0 (4.40)

Tr2k+1S
(2k+1) = Tr2k,2k+1S

(2k+1) ⊗ I2k

d2k

, (4.41)

for k = 0, 1, . . . , N and S(2k+1) := Tr2k+2,...,2N+1S. While we usually use the Choi

operator as a mathematical description for quantum combs, quantum combs can

also be described by the Kraus operators {Si} as

S̃(J) =
∑
i

SiJS
†
i , (4.42)

with Si ∈ L(H1⊗H2⊗ · · · ⊗H2N ,H0⊗H2N+1). The Kraus representation and

the Choi representation are related as

S =
∑
i

|Si〉〉〈〈Si|. (4.43)

Note that the condition for Si is not
∑

i S
†
iSi = I, which is the condition for a

quantum operation to be TP. Instead, the conditions for Si are determined by

the conditions given by Eq. (4.41). In Appendix B, we rewrite this condition in

terms of the Kraus operators.

In the following, we define the controlled version of a quantum comb analo-

gous to the case of quantum operations given by Eq. (4.17) presented in Sec. 4.1.

In the definition of a controlled quantum comb, it is not straightforward to define

an identity comb, which corresponds to the identity operation for defining con-

trolled quantum operations. Here we consider the following quantum comb as

the identity comb. Assuming that dimH2k = dimH2k+1, we define the identity
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Figure 4.4: A quantum comb with N input quantum operations. The k-th

input quantum operation is a quantum operation transforming a state on H2k−1

to H2k. The resulting quantum operation is a quantum operation transforming

a state on H0 to H2N+1.

Figure 4.5: A controlled quantum comb. The initial and the final Hilbert spaces

of the control system belongs to the initial and the final Hilbert spaces of the

quantum comb.

comb ˜̃S id as a quantum comb that transfers the state in H2k to H2k+1 without

any change for all k. The action of this quantum comb is given by˜̃S id(Ã1 ⊗ · · · ⊗ ÃN) = ÃN ◦ · · · ◦ Ã1. (4.44)

This identity comb can also be represented as

S̃ id(J) = KidJK
†
id (4.45)

where Kid is the corresponding Kraus operator given by

Kid =

(
N⊗
k=0

〈〈I|2k,2k+1

)
|I〉〉0,0|I〉〉2N+1,2N+1. (4.46)

Note that the following arguments of this section can be generalized to the case

that the quantum comb is described by a single Kraus operator, instead of this

identity comb.

Analogous to the controlled quantum operation defined by Eq. (4.17), we

define the controlled version of quantum comb ˜̃CS as in Fig. 4.5 by the following

Choi operator

CK
S := |00〉〈00| ⊗ Sid + |11〉〈11| ⊗ S

+ |00〉〈11| ⊗ |I〉〉〈〈K|+ |11〉〈00| ⊗ |K〉〉〈〈I|, (4.47)

63



where K =
∑

i α
∗
iKi with

∑
i |αi|

2 = 1 and Sid is the Choi operator of the

identity comb. If we trace out the final system H2N+1, which includes the

control qubit system, the third and fourth terms vanishes. Thus, it is clear if

the quantum comb to be controlled satisfies the sequential condition given by

Eq. (4.41), the controlled version also satisfies the same condition and is a valid

quantum comb.

Moreover, as in the quantum operation case, we can define the most coher-

ently controlled quantum comb in terms of the operator K by

K =
∑

i∈Bmax

α∗i K̃i,
∑
i

|αi|2 = 1, (4.48)

where {K̃i} is an orthogonal Kraus representation of the quantum comb ˜̃S and

Bmax :=
{
i
∣∣∣ ∀j, Tr K̃i

†
K̃i ≥ Tr K̃j

†
K̃j

}
. (4.49)

4.3.1 Neutralization Comb and Controlled Quantum Op-

erations

In this section, we investigate the relationship between controlled quantum op-

erations and controlled quantum combs. We consider a class of quantum combs

which we call neutralization combs, i.e., quantum combs transforming any input

quantum operation into the identity operation. A quantum comb ˜̃N which takes

N quantum operations Ã1, . . . , ÃN as inputs is a neutralization comb if˜̃N (Ã1 ⊗ · · · ⊗ ÃN) = ĩd. (4.50)

Note that the condition given by Eq. (4.50) does not uniquely determine a

neutralization comb, and there are many quantum combs satisfying Eq. (4.50)

forming a class of neutralization combs.

When we have quantum operations Ã1, . . . , ÃN as input operations of a

controlled neutralization comb, the resulting quantum operation is a controlled

quantum operation of ÃN ◦ · · · ◦ Ã1. That is, if the control qubit is in |0〉, the

controlled quantum operation applies the identity operation, and if the control

qubit is in |1〉, it applies ÃN ◦ · · · ◦ Ã1. (See Axiom 4.1) From now on, for

adopting the standard notation of controlled quantum operations, we exchange

the state of the control qubit when the identity comb is applied and when a

neutralization comb is applied. Namely, we apply the neutralization comb if the

control qubit is in |0〉 and apply the identity comb if the control qubit is in |1〉, so

that the role of the control qubit of the resulting controlled quantum operation

coincides with the standard definition of controlled quantum operations.
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Figure 4.6: A neutralization comb with a single input quantum operation Ã
defined by Eq. (4.51) with N = 1. Any input state of H0 is sent to the output

state without any change regardless of the quantum operation Ã.

One way to implement a neutralization comb is to apply the input quantum

operations on the auxiliary system, and then discarding the auxiliary system.

Mathematically, this neutralization comb is described as

N = |I〉〉〈〈I|0,2N+1 ⊗ ρHin ⊗ IHout , (4.51)

where Hin =
⊗N

k=1H2k−1,Hout =
⊗N

k=1H2k and ρ ∈ L(Hin) is a quantum state

that is initially prepared in the auxiliary system. The corresponding quantum

circuit of this neutralization comb for N = 1 is shown in Fig. 4.6.

It would be the first guess to simply use this neutralizing comb for defining a

most coherently controlled neutralization comb and then obtain the most coher-

ently controlled quantum operation. However, the most coherently controlled

neutralization comb does not necessarily provide the most coherently controlled

quantum operation in general. For example, consider the neutralization comb

given by Eq. (4.51) for N = 1. When Ã is a single unitary operation described

by U , the corresponding most coherently controlled operation is given by the

controlled unitary operation CU defined as Eq. (2.35). However, it is shown that

the controlled unitary operation is not implementable in this situation [21–24],

regardless of how the controlled neutralization comb is defined.

While universal controllization is not possible in this case, the most coher-

ently controlled neutralization comb can implement the action of the most coher-

ently controlled quantum operation by restricting the set of the input quantum

operations. One example of such a restricted set is the set of unitary opera-

tions of which one of the eigenstates of the unitary operator U is given, that is,

{U | U |ψ〉 = eiθU |ψ〉} where |ψ〉 is an eigenstate and θU is an arbitrary phase.

Note that the implementation of a controlled unitary operation in the optical

interferometer system (Fig. 4.3) can be regarded as a special case where the

eigenstate |ψ〉 is given by the vacuum state |v〉.
Consider the controlled neutralization comb given by Eq. (4.51). It is easy

to see that if we set the auxiliary state to be ρ = |ψ〉〈ψ|, the controlled unitary

operation is implemented. Mathematically, this neutralization comb is described

by N = |I〉〉〈〈I|03⊗|ψ〉〈ψ|1⊗I2. Only the eigenvector which has the maximal norm
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Figure 4.7: Quantum circuit for the controlled neutralization defined by

Eq. (4.52). If the unitary operator U has an eigenstate |ψ〉, this quantum circuit

exactly implements the corresponding controlled unitary operation.

contributes for the most coherently controlled comb. In this case, it is possible

to choose any elements as |K0〉〉 = |I〉〉03⊗|ψ〉1⊗|φ〉2 with an arbitrary state |φ〉.
By requiring the controlled version of the identity operation ĩd : L(H)→ L(K)

is still an identity operation ĩd : L(HC⊗H)→ L(KC⊗K), we obtain |φ〉 = |ψ∗〉,
and the corresponding fully coherently controlled neutralization comb is given

by

CN = |00〉〈00| ⊗N + |11〉〈11| ⊗ |I〉〉〈〈I|
+ |00〉〈11| ⊗ |K0〉〉〈〈I|+ |11〉〈00| ⊗ |I〉〉〈〈K0|, (4.52)

|K0〉〉 = |I〉〉03 ⊗ |ψ〉1 ⊗ |ψ∗〉2. (4.53)

A quantum circuit for this implementation of the neutralization comb is shown

in Fig. 4.7. The action of this controlled neutralization comb CN for U is given

as

TrHinHout [N(|U〉〉〈〈U |12)T ]

= |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JU + |11〉〈00| ⊗ 〈〈U∗|12(|I〉〉〈〈K0|0123)|U∗〉〉12 + h.c.

= |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JU + |11〉〈00| ⊗ |e−iθUU〉〉〈〈I|03 + h.c. (4.54)

where the last equality holds because of

〈〈U∗|12|K0〉〉0123 = |I〉〉03

∑
i

〈ii|(I ⊗ UT )|ψψ∗〉

= |I〉〉03

∑
i

〈ii|(U ⊗ I)|ψψ∗〉

= |I〉〉03e
iθU . (4.55)
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4.4 Universal Controllization utilizing Controlled

Neutralization Comb

4.4.1 Neutralization Comb for Multiple Copies of an In-

put Unitary Operation

In this section, we show that the algorithm for controllization of divisible unitary

operations presented in Sec. 2.4.3 (Fig. 2.4) can be reproduced by using the idea

of neutralization comb. For simplicity, we consider the case that the input uni-

tary operation is described by a d-dimensional unitary operator U , and by using

this unitary operation n times to implement the controlled quantum operation

|0〉〈0| ⊗ I + |1〉〈1| ⊗ Un. Note that in this case, the output of the identity comb

is given by Un.

We assume that the neutralization comb is achieved by preparing an auxiliary

state and then tracing out the auxiliary system, which can be written as

N = |I〉〉〈〈I|0,2n+1 ⊗ ρHin ⊗ IHout . (4.56)

The controlled version of this neutralization comb is described by |K0〉〉 = λ|I〉〉⊗
|ψ〉 ⊗ |φ〉 with arbitrary states |ψ〉, |φ〉 and a normalization constant |λ| ≤ 1.

The action of this controlled comb is

TrHinHout [CN(|U〉〉〈〈U |⊗n)T ] = |00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JUn
+ |11〉〈00| ⊗ |Un〉〉〈〈K0|(|(U∗)n〉〉)
+ |00〉〈11| ⊗ (〈〈(U∗)n|)|K0〉〉〈〈Un|. (4.57)

The resulting controlled unitary operation is required to be

|00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JUn + |11〉〈00| ⊗ |Un〉〉〈〈I|+ |00〉〈11| ⊗ |I〉〉〈〈Un|,
(4.58)

and the condition for the off-diagonal term is given by

(〈〈(U∗)n|)|K0〉〉 = |I〉〉, (4.59)

or equivalently,

λ|〈〈I|(U⊗n ⊗ IK)(|ψ〉 ⊗ |φ〉)| = 1 (4.60)

Notice that the maximally entangled state can be written as |I〉〉 =
∑

i |ii〉 =∑
i |ψiψ∗i 〉, where {|ψi〉} is an arbitrary basis, the off-diagonal coherence term

can be evaluated as

λ〈〈I|(U⊗n ⊗ IK)(|ψ〉 ⊗ |φ〉) = λ〈φ∗|(U⊗n)|ψ〉 (4.61)
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and its absolute value is |λ||〈φ∗|(U⊗n)|ψ〉|. This can achieve 1 only if |λ| = 1

and |ψ〉 = eiθUU⊗n|φ〉. Thus, we obtain the necessary condition that |ψ〉 is

invariant under the action of U⊗n. This condition is equivalent to the existence

of a one-dimensional invariant subspace of U⊗n, which, by considering the Schur-

Weyl duality, happens if and only if n is a multiple of d = dimU . Thus, the

necessary condition for most (and fully) coherently controlled unitary operation

given by Eq. (4.58) to be implementable, i.e., n is a multiple of d, is derived. This

condition is also the sufficient condition, because the quantum circuit shown in

Fig. 2.4 of Sec. 2.4.3 implements the controlled unitary operation.

For completeness, the Choi operator for the most coherently controlled neu-

tralization comb is given by

CN = |00〉〈00| ⊗N + |11〉〈11| ⊗ |I〉〉〈〈I|
+ |00〉〈11| ⊗ |K0〉〉〈〈I|+ |11〉〈00| ⊗ |I〉〉〈〈K0|, (4.62)

|S0〉〉 = |I〉〉0,2N+1 ⊗ |Ad〉Hin ⊗ |Ad〉Hout . (4.63)

Here |Ad〉 is the d-dimensional totally antisymmetric state satisfying U⊗d|Ad〉 =

(detU)|Ad〉 for all U ∈ U(d) given by

|Ad〉 =
1√
d!

∑
σ∈Sd

sgn(σ)|σ(1)〉|σ(2)〉 · · · |σ(d)〉, (4.64)

where Sd is the d-dimensional symmetric group and σ denotes a permutation.

Remark that in this section, we assume that the Choi operator of the neutral-

ization comb has the form of Eq. (4.56), which is implemented by first preparing

a quantum state on the auxiliary system, and discard the auxiliary system at

the end. If we further restrict the initial state of the auxiliary state to be a pure

state, the necessity of the requirement for the initial auxiliary state to be a one-

dimensional invariant state is trivial since it is equivalent to an invariant pure

state. However, if preparing a mixed state for the initial state of the auxiliary

system is allowed, the maximally mixed state, I/d, is invariant under the ac-

tion of unitary operations. Although the invariant states exist both in the pure

and the mixed states, only the pure invariant state can contribute to exactly

implementing the fully coherently controlled unitary operation. However, in ap-

proximate cases, the maximally mixed state has been utilized for implementing

controlled divisible unitary operation with a randomization algorithm shown in

Ref. [20] (Fig. 2.3 of Sec. 2.4.3).
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Figure 4.8: Quantum circuit for the basis randomization comb. The input

quantum operation is Ã, and the action of the basis randomization comb is

given by applying a pair of unitary operations, Ui randomly chosen from a set

{Ui} and its inverse U †i , before and after the quantum operation Ã.

4.4.2 Basis Randomization Comb with the Pauli Opera-

tors

In this section and the next section, we consider an approximate neutralization

comb employing random unitary operators, which we call a basis randomization

comb. The idea of employing random unitary operators to implement control-

lization of a unitary operation described by Hamiltonian dynamics was intro-

duced in Ref. [20], where randomization is applied to an auxiliary system of

which initial state is prepared in the maximally mixed state (see also Sec. 2.4.3

and Fig. 2.3). Here we show that a similar effect can be implemented by ap-

plying randomization to the target system directly instead of using an auxiliary

system. We consider the two-dimensional case d = 2 for simplicity.

While the introduction of a basis randomization comb is intended to apply

to infinitesimal Hamiltonian dynamics, i.e., a unitary operation close to the

identity operation for obtaining the approximate controllization of Hamiltonian

dynamics, the definition of a basis randomization comb is valid for any quantum

operation. A generalization of the basis randomization comb for general d-

dimensional systems is also straightforward.

Consider a quantum operation Ã : L(H1 = C2) → L(H2 = C2) of which

Choi operator is given by

JA =
3∑

i,j=0

cij|σi〉〉〈〈σj|, (4.65)

where {σi}3
i=0 represents the set of the Pauli operators and {cij}ij are coefficients.

We consider the basis randomization comb ˜̃RS implemented by the quantum

circuit shown in Fig. 4.8 for a set of unitary operators S := {Ui}. The unitary

operators composing the set S are not necessary to be mutually orthogonal in

general. We assume a unitary operator in the set is chosen uniformly randomly

with probability 1/ |S| for simplicity. We analyze the cases for two sets for S,

a set consists of the Pauli operators in this section and another set consists of
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the Clifford operators in Sec. 4.4.3. The action of ˜̃RS on Ã denoted as 〈Ã〉S is

given by

〈Ã〉S =
1

|S|
∑
Ui∈S

Ũ
†
i ◦ Ã ◦ Ũ i, (4.66)

which is implemented by applying a pair of unitary operations, Ui randomly

chosen from a set {Ui} and its inverse U †i , before and after the quantum operation

Ã. The Choi operator of the basis randomization comb ˜̃RS is given by

RS =
1

|S|
∑
Ui∈S

|Ui〉〉〈〈Ui|01 ⊗ |U †i 〉〉〈〈U
†
i |23. (4.67)

The Choi operator of the quantum operation transformed by the basis random-

ization comb ˜̃RS for the input quantum operation Ã is given by

J〈A〉S =
∑
Ui∈S

∑
jk

cjk|U †i σjUi〉〉〈〈U
†
i σkUi|. (4.68)

We investigate the action of the basis randomization comb with a set of the

Pauli operators SP := {σi}3
i=0 in this section. A set of the Pauli operators SP

forms a 1-design [59,60]. In the next section, we analyze the basis randomization

comb with a set of the Clifford operators SC , which forms a 1-, 2- and 3- de-

sign [59,60] to investigate the difference caused by the sets of unitary operators

used in the basis randomization comb.

By using the commutation relation of the Pauli operators, the Choi operator

of the resulting quantum operation J〈A〉SP is calculated as

J〈A〉SP =
∑
i

cii|σi〉〉〈〈σi|. (4.69)

Thus, the basis randomization comb with SP transforms the quantum operation

Ã to the quantum operation 〈A〉SP of which Choi operator is given by

J〈A〉SP = c00 · Jid + c11 · JX + c22 · JY + c33 · JZ . (4.70)

We first consider a class of unitary operations given by infinitesimal Hamil-

tonian dynamics of a time-independent Hamiltonian H as δU = e−iHδt. For a

unitary operation δU described by a unitary operator δU = e−iHδt = I− iHδt+

O(δt2), the Choi operator of the resulting operation by the basis randomization

comb CRSP is calculated as

J〈δU〉SP = |I〉〉〈〈I|+
∑
i

(−iσ†iHσiδt)|I〉〉〈〈I|

+
∑
i

|I〉〉〈〈I|(−iσ†iHσiδt)† +O(δt2). (4.71)
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We see that the approximate neutralization for any unitary operation in this class

with an error of O(δt2) is realized if the second and third terms in Eq. (4.71)

vanish.

We further consider a quantum operation given by U = e−iHt, and apply the

basis randomization comb with SP for each time interval δt = t/n where n is the

number of division of the Hamiltonian dynamics in the duration time t. In this

case, by considering δU = I − iHδt−H2δt2/2 +O(δt3) as the unitary operator

for each time interval, we obtain J〈δU〉SP with coefficients defined by Eq. (4.70)

as

c00 = 1 + [(TrH)2 − d(TrH2)]δt2/d2 +O(δt4)

c11 = (TrHX)2δt2/d2 +O(δt4)

c22 = (TrHY )2δt2/d2 +O(δt4)

c33 = (TrHZ)2δt2/d2 +O(δt4). (4.72)

When the basis randomization comb is applied n times, the resulting quantum

operation is given by (〈δU〉SP )n. Since any multiplication of Pauli operations

results also a Pauli operation, the Choi operator of this operation can be de-

composed in the form of Eq. (4.70), namely,

c
(P )
0 Jid + c

(P )
1 JX + c

(P )
2 JY + c

(P )
3 JZ . (4.73)

with the coefficients

c
(P )
0 = 1 +

1

n
[(TrH)2 − d(TrH2)]

t2

d2

+
1

2n2
{[(TrH)2 − d(TrH2)]2 + (TrHX)4 + (TrHY )4 + (TrHY )4]} t

4

d4

+O(
1

n3
) (4.74)

c
(P )
1 =

1

n
(TrHX)2 t

2

d2
+O(

1

n2
) (4.75)

c
(P )
2 =

1

n
(TrHY )2 t

2

d2
+O(

1

n2
) (4.76)

c
(P )
3 =

1

n
(TrHZ)2 t

2

d2
+O(

1

n2
). (4.77)

Thus, for large enough n, the basis randomization comb with SP transforms any

unitary operation generated by Hamiltonian dynamics to

ĩd+O(1/n), (4.78)
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which is close to the identity operation, and thus this basis randomization comb

is an approximate neutralization comb if it is applied to a unitary operation

generated by Hamiltonian dynamics with a small enough interval t/n n times.

The controlled version of (a single element of) this basis randomization comb

CRSP is given by an operator K0 as

CRSP = |00〉〈00| ⊗RSP + |11〉〈11| ⊗ |I〉〉〈〈I|
+ |00〉〈11| ⊗ |K0〉〉〈〈I|+ |11〉〈00| ⊗ |I〉〉〈〈K0|. (4.79)

Note that the corresponding Kraus representation is given by {1
2
σi ⊗ σ†i }, and

K0 is in the form of K0 = 1
2

∑
i α
∗
iσi ⊗ σ

†
i with

∑
i |αi|

2 = 1. The action of RSP

on the Choi operator of an arbitrary unitary operation |U〉〉〈〈U | is

Tr12[RSP (|U〉〉〈〈U |)T ] = |00〉〈00| ⊗ J〈U〉SP + |11〉〈11| ⊗ JU
+ |11〉〈00| ⊗ 〈〈U∗||I〉〉〈〈K0||U∗〉〉+ h.c., (4.80)

and 〈〈U∗||K0〉〉 in the off-diagonal coherence term is evaluated as

〈〈U∗||K0〉〉 = 〈〈I|12(I1 ⊗ UT
2 ) · 1

2
(
∑
i

α∗i (σi)1 ⊗ (σ∗i )2)(|I〉〉01 ⊗ |I〉〉23)

=
1

2
〈〈I|(

∑
i

α∗i (σ
†
iUσi)1 ⊗ I2)(|I〉〉01 ⊗ |I〉〉23)

=
1

2
|
∑
i

α∗i (σ
†
iUσi)〉〉03, (4.81)

where the subscripts denote the indices of the Hilbert spaces of the target system.

By requiring the most coherently controlled identity operation on the target

system to be the identity operation in the extended system including the control

system, i.e., I 7→ |0〉〈0| ⊗ I + |1〉〈1| ⊗ I, Eq. (4.81) should satisfy

1

2
|
∑
i

α∗i (σ
†
i Iσi)〉〉03 = |I〉〉03,∑
i

αi = 2. (4.82)

Thus, the coefficients are αi = 1/2 for all i, and the operator K0 is uniquely

determined as

K0 =
1

4
(I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z), (4.83)

and we obtain

〈〈U∗||K0〉〉 =
1

4
|
∑
i

(σ†iUσi)〉〉03. (4.84)
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Figure 4.9: A quantum circuit for the controlled basis randomization comb. The

input quantum operation is Ã, and the action of the basis randomization comb

is given by applying a pair of controlled unitary operations CUi chosen uniform

randomly from a set {Ui} and its inverse C†Ui before and after the quantum

operation Ã. By repeating this circuit n times, the controlled unitary operation

of Hamiltonian dynamics U = e−iHt is implemented with an error of O(1/n)

with the global phase factor θU = (TrH/d)t.

A Kraus representation of this most coherently controlled neutralization comb

is given by

{|0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ I ⊗ I,
|0〉〈0| ⊗X ⊗X + |1〉〈1| ⊗ I ⊗ I,
|0〉〈0| ⊗ Y ⊗ Y + |1〉〈1| ⊗ I ⊗ I,
|0〉〈0| ⊗ Z ⊗ Z + |1〉〈1| ⊗ I ⊗ I}, (4.85)

and one possible implementation in the quantum circuit is shown in Fig. 4.9.

When we apply the controlled basis randomization comb n times, since this

comb does not change the state of the control qubit, the term corresponding to

Eq. (4.81) is evaluated as

I ⊗ 1

4n
(
∑
i

σ†iUσi)
n|I〉〉. (4.86)

For the case U = e−iHδt = I − iHδt−H2δt2/2 +O(δt3) with δt = t/n, we have

1

4
(
∑
i

σ†iUσi) = I − iδt(1

4

∑
i

σ†iHσi)−
1

2
δt2(

1

4

∑
i

σ†iH
2σi) +O(δt3)

= I − iδt(TrH)I/d− 1

2
δt2(TrH2)I/d+O(δt3), (4.87)

and we obtain

1

4n
(
∑
i

σ†iUσi)
n = e−i(TrH/d)tI +O(1/n). (4.88)
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Finally, we obtain the Choi operator of the quantum operation transformed

from U = e−iHt by the controlled basis randomization comb with SP as

|00〉〈00| ⊗ Jid + |11〉〈11| ⊗ JU + |11〉〈00| ⊗ |ei(TrH/d)tU〉〉〈〈I|+ h.c.+O(1/n),

(4.89)

which converges to the (fully coherently) controlled unitary operation, that is

Ce−iHt = |0〉〈0| ⊗ I + |1〉〈1| ⊗ ei(TrH/d)te−iHt in the limit of n→∞.

4.4.3 Basis Randomization Comb with the Clifford Op-

erators

In the previous section, we considered the basis randomization using a set of

the Pauli operators SP , for erasing the terms of O(δt) in Eq. (4.71). The Choi

operator of the resulting operation by the basis randomization comb given by

Eq. (4.68) is of the form
∑

i(U
†
i ⊗UT

i )JA(U †i ⊗UT
i )†. Since the Choi operator of

the identity operation, |I〉〉〈〈I|, is the fixed point of
∫
dU(U †⊗UT ) · (U †⊗UT )†,

it is expected that this integral transforms any Choi operator approximately to

|I〉〉〈〈I|.
The corresponding effect can be achieved for

∑
i(U

†
i ⊗UT

i ) · (U †i ⊗UT
i )† if we

choose the set S = {Ui} to be a 2-design (by definition of 2-design) [60]. Thus,

the basis randomization by a 2-design may perform better than a 1-design, that

is, the Pauli operators. In this section, we analyze the basis randomization comb

employing a 2-design using a set of the Clifford operators of a 1-qubit system.

We first summarize the properties of the Clifford group that we use in the

following [61]. Clifford group GC is the group of the operators by whom conju-

gation transforms any Pauli operator into another Pauli operator, that is,

∀U ∈ SP , ∀V ∈ GC , V UV
† ∈ SP . (4.90)

Note that the Clifford group has a trivial center Z

Z = {±I,±iI,±ei
π
4 I,±e3iπ

4 I}, (4.91)

of which element can only change the global phase, and thus, we only consider

RC , the residue class of GC divided by Z as RC := GC/Z. Since the set of the

Pauli operators SP is a normal subgroup of RC , we can define the residue group

RC/P := RC/SP .

The representative elements of RC/P are given by the following six operators
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RC/P = {Vσ}, where σ denotes a permutation among {1, 2, 3},

Vid = I (4.92)

V(1,2) =

(
1 0

0 i

)
(4.93)

V(2,3) =
1√
2

(
ei
π
4 e−i

π
4

e−i
π
4 ei

π
4

)
(4.94)

V(3,1) =
1√
2

(
1 1

1 −1

)
(4.95)

V(1,2,3) =
1√
2

(
1 i

1 −i

)
(4.96)

V(3,2,1) =
1√
2

(
1 1

i −i

)
. (4.97)

The Choi operator J〈A〉RC of the quantum operation Ã transformed by the

basis randomization comb with the set of the Clifford operators RC is given by

J〈A〉RC =
1

24

3∑
k,l=0

∑
σi∈SP

∑
Vj∈RC/P

ckl|σ†iV
†
j σkVjσi〉〉〈〈σ

†
iV
†
j σlVjσi|. (4.98)

Since V †j σkVj and V †j σlVj are Pauli operators by definition of the Clifford oper-

ators, we obtain

J〈A〉RC =
1

6

3∑
i=0

∑
Vj∈RC/P

cii|V †j σiVj〉〉〈〈V
†
j σiVj|. (4.99)

By using the following equation for the Pauli operators Ui(= σi) with i =

0, 1, 2, 3,

|VσUiV †σ 〉〉〈〈VσUiV †σ | = |Uσ(i)〉〉〈〈Uσ(i)|, (4.100)

where we set σ(0) = 0, we obtain

J〈A〉RC = c00 · Jid +
c11 + c22 + c33

3
(JX + JY + JZ). (4.101)

With the depolarizing channel D̃, the Choi operator of the resulting operation

is also represented as

J〈A〉RC =

(
c00 −

c11 + c22 + c33

3

)
Jid +

4

3
(c11 + c22 + c33) JD. (4.102)
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Similar to the case of the basis randomization comb with SP , we consider the

quantum operation given by a time-independent Hamiltonian H, i.e., U = e−iHt,

and apply the basis randomization comb for each time interval δt = t/n. When

the basis randomization with RC is applied n times, the Choi operator of the

resulting operation is given by

c
(C)
0 Jid + c

(C)
1 JX + c

(C)
2 JY + c

(C)
3 JZ . (4.103)

with the coefficients

c
(C)
0 = 1 +

1

n
[(TrH)2 − d(TrH2)]

t2

d2

+
1

2n2
{[(TrH)2 − d(TrH2)]2 +

1

3
[(TrHX)2 + (TrHY )2 + (TrHY )2]2} t

4

d4

+O(
1

n3
) (4.104)

c
(C)
1 = c

(C)
2 = c

(C)
3 =

1

3n
[(TrHX)2 + (TrHY )2 + (TrHY )2]

t2

d2
+O(

1

n2
). (4.105)

The coefficient of Jid coincides with that for the case with SP up to the order

1/n. However, the basis randomization comb with RC performs worse than the

case with SP in the sense that the coefficient of Jid is smaller, when the terms

of O(1/n2) are considered. The basis randomization comb with RC transforms

any unitary operation generated by Hamiltonian dynamics to

ĩd+O(1/n), (4.106)

which is close to the identity operation with an error of O(1/n), and thus this

basis randomization comb is an approximate neutralization comb.

The most coherently controlled version of (a single element of) the basis

randomization comb CRRC is determined by an operator K0 similar to the case

of SP . The Kraus representation of the basis randomization comb with RC is

given by { 1√
24
Ui ⊗ U †i | Ui ∈ RC}. Since the dimension of the linear span of

L(C2⊗C2) is 16 while this set contains 24( > 16) elements, this set of operators

is over-complete. Thus, it is necessary to derive another Kraus representation

with a set of orthogonal Kraus operators for proceeding our analysis. The span

of the Kraus operators is invariant under the swap operation Uswap between the

first and the second Hilbert space, because any element is of the form K =∑
i αiUi ⊗ U †i with Ui ∈ RC , and UswapKUswap is also in the span. Thus, the

span is in the d(d+ 1)/2 = 10 dimensional symmetric subspace. By calculating

the spectral decomposition of the Choi operator corresponding to this Kraus

representation, we can check that the Kraus operators actually span the 10-

dimensional symmetric subspace. Specifically, the Kraus operators are given
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by

{K0 =
1

4
(I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z), K1, . . . , K9}, (4.107)

where {Ki} is a set of orthogonal operators in the symmetric subspace satisfying

TrK†iKi = 1/3 for i = 1, . . . , 9. Note that TrK†0K0 = 1. Thus, the off-diagonal

coherent term of the most coherent controlled comb is characterized by

K0 =
1

4
(I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z), (4.108)

which coincides to the case with the basis randomization with the Pauli opera-

tors2. This indicates that the maximum off-diagonal coherent term is the same

for controllization of the basis randomization comb with SP and RC for up to

O(1/n) approximation.

Since the basis randomization comb with RC does not behave better than

the one with SP for Hamiltonian dynamics with the terms of up to O(1/n), and

the coherent terms of both cases coincide, we conclude that using the Clifford

operators for randomization does not improve controllization of Hamiltonian

dynamics. Moreover, the analysis of the terms with O(1/n2) shows that the

performance of the basis randomization with RC as approximate neutralization

turns out to be worse than that of SP in general. That is, the difference of the

coefficients given by Eq. (4.74) and Eq. (4.104) satisfies

c
(P )
0 − c(C)

0 =
1

2n2
(d2

1 + d2
2 + d2

3) ≥ 0, (4.109)

where

d1 =
1

3
[2(TrHX)2 − (TrHY )2 − (TrHZ)2]

t2

d2
(4.110)

d2 =
1

3
[2(TrHY )2 − (TrHX)2 − (TrHZ)2]

t2

d2
(4.111)

d3 =
1

3
[2(TrHZ)2 − (TrHX)2 − (TrHY )2]

t2

d2
. (4.112)

This difference can be understood by rewriting Eq. (4.70) as

J〈A〉SP =

(
c00 −

c11 + c22 + c33

3

)
Jid +

4

3
(c11 + c22 + c33) JD

+
1

3
(2c11 − c22 − c33)JX +

1

3
(2c22 − c11 − c33)JY +

1

3
(2c33 − c11 − c22)JZ .

(4.113)

2Precisely, the global phase is not uniquely determined by maximizing the Hilbert-Schmidt

norm of the operator, and eiθK0 for any real parameter θ is also a candidate instead of K0.

We choose θ = 0 by requiring the most coherently controlled version of the identity operation

to be also the identity operation, i.e., I 7→ |0〉〈0| ⊗ I + |1〉〈1| ⊗ I.
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Compared to Eq. (4.102), there are extra terms of Pauli operations which con-

tributes to the coefficient of the identity operation, as the identity operation can

be obtained by applying the same Pauli operation twice. In conclusion, it is

enough to use SP for the task of controllization of Hamiltonian dynamics using

the most coherently controlled basis randomization comb.

4.5 Conclusion

We have defined a controlled quantum operation of a general deterministic quan-

tum operation based on two physical implementations and a set of axioms, which

coincide with each other. We then analyzed the coherence between the quan-

tum operations on different control qubit states, and gave a characterization of

the controlled quantum operations that maximize the coherence, which we call

the most coherently controlled quantum operation. This definition of controlled

quantum operation is extended to quantum combs, and we defined controlled

quantum combs and the most coherently controlled quantum combs.

We investigated a relationship between quantum switch and controlled quan-

tum operations with our definition. We also showed a relation between controlled

quantum operations and controlled quantum combs, by introducing the neutral-

ization combs. We presented a method to analyze controllization, and provided

a new algorithm for approximate controllization of divisible unitary operations

using the basis randomization combs. We also evaluated the performance of

the basis randomization combs employing the Pauli operators and the Clifford

operators, and showed that the randomization by the Pauli operators performs

better in this controllization algorithm.
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Chapter 5

Success-or-Draw Implementation

of Probabilistic Higher-order

Quantum Operations

Implementing higher-order quantum operations within quantum mechanics is

not straightforward and often impossible, especially in an exact and determinis-

tic manner. In order to implement higher-order quantum operations, two types

of relaxations are usually considered: approximate implementation and proba-

bilistic implementation. The approximate implementation of higher-order quan-

tum operations has an advantage, as such an implementation is always available

by utilizing quantum process tomography [40]. However, the figure of merit,

usually evaluated by the average fidelity F , for the method based on quantum

process tomography is expected to scale as 1−1/poly(N) given N uses of the in-

put operation. The probabilistic implementation, on the other hand, can achieve

a success probability converges to one exponentially, if it is possible to perform a

repeat-until-success strategy, namely, perform independent trials until succeed.

However, such a strategy requires the initial resource, the input quantum oper-

ations and the input quantum state, to be prepared for every trial. In quantum

mechanics, cloning of the unknown input state is forbidden by the no-cloning

theorem [7], and transformations usually disturb the input state [4, 62] regard-

less of success or failure. Thus, performing independent trials for probabilistic

higher-order quantum operations is not straightforward in general.

In this chapter, we propose a structure for probabilistic higher-order quan-

tum operations called “success-or-draw” (Fig. 5.1a). In a usual probabilistic

higher-order quantum operation, the input state is lost when it fails, because

an unknown quantum operation is applied to the state in general. We pro-

pose a probabilistic higher-order quantum operation which “keeps” the input
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a)

b)

Figure 5.1: Success-or-draw higher-order quantum operations have a structure

that the output state remains in the initial state when the higher-order quantum

operation fails. Since the initial state is not altered on failure, one can re-iterate

this higher-order quantum operation to obtain an exponentially decreasing fail-

ure probability. Fig. 5.1a represents the action of a success-or-draw higher-order

quantum operation: when it succeeds, the target operation f(Ũ) is applied; and

when it draws, the identity operation ĩd is applied. Fig. 5.1b illustrates a repeat-

until-success strategy which is allowed by the success-or-draw structure.

quantum state on failure, or we call it a draw as we are able to perform an-

other trial when it happens as shown in Fig. 5.1b. In Sec. 5.1, we provide a

mathematical formulation of the success-or-draw structure. In Sec. 5.2, we show

that the success-or-draw structure can be achieved for a large class of higher-

order quantum operations. In Sec. 5.3, we analyze unitary inversion with the

success-or-draw structure. We show that a better success probability is achiev-

able compared to the previously known value [13] for unitary inversion with two

uses of an input unitary operation, and that the success-or-draw structure is not

possible for unitary inversion with a single use of an input unitary operation.

5.1 The Success-or-Draw Structure

Consider a probabilistic higher-order quantum operation, especially a proba-

bilistic comb, transforming unitary operations {Ũ} into CPTP maps {f(Ũ)},
where f is a supermap of which output is guaranteed to be a CPTP map for

any input unitary operation. In usual settings of a probabilistic higher-order
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quantum operation, this problem is formulated by the constraints˜̃S(Ũ) = pUf(Ũ) (5.1)

S ≥ 0, F ≥ 0 (5.2)

S + F is a deterministic comb, (5.3)

where ˜̃S and ˜̃F are the probabilistic combs describing the action of the higher-

order quantum operation on success and failure, respectively, and S and F are

the corresponding Choi operators.

For the success-or-draw higher-order quantum operation, the action on fail-

ure is also determined, and extra constraints on ˜̃F are required. For the con-

venience of the following discussions, we also assume that the input unitary

operation Ũ is used K times. Since any unitary operation must be transformed

into the identity operation on failure to guarantee the draw property, the corre-

sponding constraints are given by˜̃S(Ũ
⊗K

) = pUf(Ũ) (5.4)˜̃N (Ũ
⊗K

) ∝ ĩd (5.5)

S ≥ 0, N ≥ 0 (5.6)

S +N is a deterministic comb, (5.7)

where ĩd denotes the identity operation, indicating that the input state does not

change on failure. Here we use ˜̃N instead of ˜̃F to denote that it corresponds to

draw instead of failure.

5.2 Universal Construction of Success-or-Draw

on Unitary Operations

Theorem 5.1 presents the realizability of success-or-draw higher-order quantum

operation. A pictorial interpretation of Theorem 5.1 is given by Fig. 5.2.

Theorem 5.1. Given a probabilistic comb transforming d-dimensional unitary

operations {Ũ} to CPTP maps {f(Ũ)} as ˜̃St : Ũ 7→ pUf(Ũ). Then there exist

ε > 0 and a set of probabilistic combs ˜̃S and ˜̃N summing up to a deterministic

comb, which actions are given by

˜̃S : Ũ
⊗d
7→ εpUf(Ũ) (5.8)˜̃N : Ũ

⊗d
7→ (1− εpU)ĩd. (5.9)
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⇓

Figure 5.2: A pictorial interpretation of Theorem 5.1. We consider the case when

there exists a probabilistic comb (upper) that transforms a unitary operation

Ũ into a CPTP map f(Ũ) for all d-dimensional unitary operations Ũ , and its

action is arbitrary on failure. Theorem 5.1 states that in this case, there exists

a d-slot probabilistic comb (lower) that performs the same action on success,

and performs the identity operation on failure/draw, which corresponds to the

preservation of the input state.

The details of the proof is given in Appendix C. In order to prove Theo-

rem 5.1, we first prove Lemma C.1 and Lemma C.2, which indicate that it is

enough to prove another theorem presented in the Applendix C, Theorem C.1.

Here we state the sketch of the proof.

Sketch of the proof. The proof is constructive. We present a construction of

S and N , the Choi operators of ˜̃S and ˜̃N , from St, the Choi operator of ˜̃St.
The requirements for the combs are given by Eqs. (5.4)-(5.7), which need to be

satisfied simultaneously.

Lemma C.1 provides a sufficient condition of the neutralization condition

Eq. (5.5). The neutralization condition Eq. (5.5) is difficult to utilize for many

reasons, for example, the probability for neutralization is not constant in general.

In Theorem 5.1, the probability of neutralization can depend on U . A direct

way to rewrite Eq. (5.5) is to add new variables {qU} that corresponds to the

probability depend on U and rewrite as˜̃N (Ũ
⊗K

) = qU · ĩd. (5.10)

Since the corresponding Choi operators are positive, and that for r.h.s. is a

rank-1 operator, this condition can be reduced to an inequality of the form˜̃N (Ũ
⊗K

) ≤ c · ĩd, (5.11)
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where c is a constant determined by the normalization conditions. This condition

is equivalent to the one given by Eq. (5.5), but it is still difficult to analyze

because it is necessary to consider all unitary operations. Note that in numerical

analysis, it is possible to use this condition directly as in Sec. 5.3. In Lemma C.1,

we provide a sufficient condition by considering a symmetric subspace, that is,

Ũ
⊗K

is invariant under permutations of each input unitary operations.

Lemma C.2 provides a characterization of the Choi operator of a probabilistic

comb transforming unitary operations to CPTP maps, which is the assumption

of Theorem 5.1. We consider a Hermitian basis which consists of an identity

operator and traceless operators, and show that the decomposition of the cor-

responding Choi operator consists of only certain terms. Using a basis with

an identity operator and traceless operators is convenient for considering the

causal condition given by Eqs. (2.23)-(2.25), because the traceless terms help in

determining which terms do not affect the causal condition.

By considering Lemma C.1 and Lemma C.2, it is enough to prove another

theorem, Theorem C.1, in order to prove Theorem 5.1. The proof of Theorem C.1

can be further divided into two parts: the first part presents a construction of

the Choi operators S and the partial trace of N given by NI0IO = TrO0N

from St; the second part is mainly separated into Lemma C.4, which presents a

construction of N from NI0IO.

In the first part of the proof, we first present a trivial set of Choi operators S

and F from St, where F is a Choi operator which does not necessarily satisfy the

neutralization condition Eq.(5.5) for N , but satisfies all the remaining conditions

given by Eqs. (5.4),(5.6),(5.7). Moreover, F also has a similar decomposition

given by Lemma C.2. We then present a construction of NI0IO from F , where

the neutralization condition is also satisfied in addition to the positivity Eq. (5.6)

and the causal conditions Eq. (5.7). The positivity of NI0IO is satisfied by taking

the operator to be a strictly positive full-rank operator, and the main difficulty is

to satisfy the causal condition and the neutralization condition simultaneously.

The decomposition given by Lemma C.2 is convenient for the causal condition

in the sense that it is possible to add certain traceless terms that do not affect

the causal condition, and we give a class of Choi operators that satisfies the

causal condition. Then, we show that among this class of Choi operators, it is

possible to cancel the terms that do not satisfy the neutralization condition by

using the properties of the symmetric subspace considered in Lemma C.1. Thus,

it is possible to satisfy the causal condition and the neutralization condition

simultaneously.

In the second part of the proof, we construct N from NI0IO. In this part, the

causal condition and the neutralization condition are easily satisfied because the
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Figure 5.3: The constructed success-or-draw comb in the proof of Theorem C.1

has an extra structure: it uses one copy of the unitary operation at first, and

then uses the remaining d− 1 copies of the unitary operation in parallel.

condition is similar to the first part. On the other hand, the positivity condition

becomes difficult. Unlike in the first part, since the target operation is the

identity channel of which Choi operator is rank-1, the Choi operator N cannot

be a full-rank operator, which is robust in positivity. To solve this problem, we

consider a subspace of the Hilbert space that N is on, and we show a construction

of N that lies in this subspace and is a strictly positive full-rank operator in the

subspace. Thus, the positivity of N can be satisfied. We remark that when the

indefinite causal order is considered, the construction of N from NI0IO can be

replaced by a simpler one by exploiting the symmetry as Remark C.1, and a

higher success probability can be achieved in general.

While we only require that S +N is a deterministic comb, that is, the input

operations are used in a sequential way, the construction shown in the proof of

Theorem C.1 (Eq. (C.36)) satisfies an extra condition

TrO0(S +N) = TrO2O3···OdO0(S +N)⊗ IO2O3···Od
dd−1

. (5.12)

This condition shows that the comb can be decomposed into two blocks as the

quantum circuit shown in Fig. 5.3: the first block uses only a single unitary

operation, while the second block uses the remaining d − 1 unitary operations

in parallel. Such a structure indicates that while the number of uses increases

with d, the depth of this comb is constant as two. Note that we can assume

this structure if we only consider non-zero success probability, and in general,

adding this assumption would decrease the success probability.
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Figure 5.4: The success-or-draw protocol for unitary inversion. When the uni-

tary operation can be used twice, the optimal success probability for success is

1/3, whereas that of the optimal success-or-resetting protocol is 1/4. In either

case, the output on failure is the identity operation, which means the initial

input state is preserved and it is possible to run the same protocol again with

extra uses of the input unitary operation.

5.3 Unitary Inversion with the Success-or-Draw

Structure

In this section, we analyze the probabilistic unitary inversion with the success-

or-draw structure of a higher-order quantum operation. We only consider the

two-dimensional case d = 2 in this section. The optimal success probability can

be obtained by the following SDP

max p (5.13)

s.t. TrIO[S(JUi
⊗K)T ] = pJU−1

i
(5.14)

TrIO[N(JUi
⊗K)T ] ≤ dKJid (5.15)

S ≥ 0, N ≥ 0 (5.16)

S +N is a deterministic comb, (5.17)

where {Ui} is a finite set of unitary operators that the corresponding Choi

operators forms a basis of the linear span of span{J⊗kU } (see Refs. [13, 14]).

Note that Lemma C.1 is not used because it is a sufficient condition and may

lower the success probability.

For K = 2, Theorem 5.1 indicates that the optimal success probability is

positive as p > 0. A numerical solution to this SDP shows that the optimal

success probability is p = 1/3. In Ref. [13] (Sec. 2.6.2), an explicit quantum

circuit with the success-or-draw structure is presented which success probability

is 1/4. One difference between the optimal success-or-draw protocol we numer-

ically obtained and the protocol presented in Ref. [13] is that the latter is not

only a success-or-draw protocol, but it has another feature: it can be regarded
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as a success-or-resetting protocol. The latter protocol uses a single copy of a

unitary operation to obtain its inverse, and when it fails, it results in a state

that is “resettable” to be the input state by another unitary operation. While

such a success-or-resetting protocol usually has a lower success probability, it

has an advantage as we can choose whether to continue the protocol by resetting

after we know if it succeeded.

For K = 1, we prove that the optimal success probability is p = 0, which

means it is not possible to have a success-or-draw structure. The proof is given

in Appendix D. This result gives an explicit example that a success-or-draw

structure is not available.

In Theorem 5.1, we show that it is possible to obtain a success-or-draw

protocol with K = d uses of the input unitary operation, and this results shows

that K = d − 1 uses is not enough for d = 2. We conjecture that it is not

possible to obtain a success-or-draw protocol with K = d− 1 uses of the input

unitary operation in Theorem 5.1 for general d. One reason for this conjecture

is that in the construction of the success-or-draw protocol in Theorem 5.1, the

totally antisymmetric state plays an important role, and such a state only exists

in a d qudit system.

5.4 Conclusion

We have introduced a new structure for probabilistic higher-order quantum op-

erations which we name success-or-draw structure. A probabilistic higher-order

quantum operation with the success-or-draw structure can amplify its success

probability by using multiple copies of the input quantum operation in a se-

quential manner, which scales exponentially to one in the number of uses. We

presented a mathematical formulation for the success-or-draw higher-order quan-

tum operation. We considered the case where the input quantum operation is

a unitary operation, and we proved that any probabilistic higher-order quan-

tum operation transforming unitary operations into CPTP maps is compatible

with the success-or-draw structure by adding the number of uses of the unitary

operation.

We then analyzed the problem of the two-dimensional unitary inversion.

When two uses of an input unitary operation are allowed, Theorem 5.1 guar-

antees the existence of a non-trivial solution to this problem, and we obtained

the optimal solution numerically using SDP. A success-or-draw protocol for this

problem was also presented previously in Ref. [13], and our numerical calcula-

tion shows that a higher success probability can be achieved if we only require
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the success-or-draw structure. We also proved that a success-or-draw strategy

does not exist with a single use of an input unitary operation.
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Chapter 6

Conclusion and Future Scope

In this thesis, we considered three topics on higher-order quantum operations:

the uniqueness on the definition of quantum switch; a framework for controlled

quantum operations and higher-order quantum operations and controllization;

and the success-or-draw structure for probabilistic higher-order quantum op-

erations. We provided new methods for the analysis of higher-order quantum

operations, which can be used as fundamental building blocks for further the-

oretical studies of higher-order quantum operations. We also contribute to the

experimental realization of higher-order quantum operations by proposing new

quantum algorithms for efficient implementations of certain higher-order quan-

tum operations.

In the first topic, we analyzed the uniqueness of the definition of quantum

switch, and provided a comprehensive background for the studies on quantum

switch. We proved that even if we only define the action of quantum switch on

only unitary operations, its action is also uniquely defined on general quantum

operations by setting the requirements of the single use and the positivity of the

corresponding Choi operator, which is necessary for its physical implementation.

Besides quantum switch, many higher-order quantum operations are only

defined for unitary operations such as unitary inversion. In Ref. [17], it is proven

that the action of two-dimensional unitary inversion is uniquely extended to

general quantum operations under the extra requirements of the single use and

the positivity of the corresponding Choi operator. However, it is not known if

there exist other higher-order quantum operations of which uniqueness of the

extension can be shown except for trivial cases. Quantum switch with more than

two input operations is such an example. In the proof for quantum switch with

two input operations, we reduced the problem of the uniqueness to a problem

of counting. A similar method may be possible even if a greater number of

input operations is considered, but the counting may become more difficult. It
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is not known whether there exist other methods for proving the uniqueness. A

general method for proving the uniqueness of a certain function is to consider the

difference between a candidate and the target function, and prove the difference

vanishes. However, this method does not work well in our case because when

the difference is considered, it is not obvious how the positivity condition of the

Choi operator can be used.

When multiple uses of an input operation are allowed, the action on uni-

tary operation cannot be uniquely determined for general quantum operations

in general. In particular, if a higher-order quantum operation can be imple-

mented with K uses of an input operation, then if more than K uses is allowed,

the uniqueness does not hold because it is always possible to discard a certain

number of input operations. Even though, if it is possible to restrict the form of

supermap using certain assumptions such as the positivity of the Choi operator,

the analysis of the performance of higher-order quantum operation becomes eas-

ier since it is enough to perform an optimization on a restricted set of supermap.

The positivity condition for the Choi operator of a supermap is always nec-

essary if we focus on the ones that are compatible with quantum mechanics.

We believe that the developments of methods for utilizing the positivity con-

dition leads to a better understanding and analysis of higher-order quantum

operations.

In the second topic, we proposed a consistent definition of the controlled ver-

sion of general quantum operations based on physical and axiomatic approaches,

and then extend the definition to the controlled version of higher-order quantum

operations. By utilizing the proposed definitions, we analyzed the problem of

controllization and proposed a new quantum algorithm for controllization which

requires no auxiliary system. The proposed quantum algorithm for controlliza-

tion utilizes a randomization based on the Pauli operations. We also evaluated

a similar algorithm based on the Clifford operations, and we show that the

randomization based on the Pauli operations performs better in our algorithm.

One difference between controllization and other higher-order quantum op-

erations like unitary inversion is that the target operation is not uniquely deter-

mined. That is, there is some freedom to define the phase factor of a controlled

unitary operation in controllization. Recently, the difficulty of controllization is

also analyzed by investigating the topological structure in the freedom of the

phase factor [63], and it is shown that exact controllization with multiple uses

of an input unitary operation is only possible in a similar method presented in

Sec. 4.4.1 under certain assumptions. Meanwhile, the quantum algorithm we

proposed in Sec. 4.4.2 implements controllization with an arbitrarily small error

if enough division of the input unitary operation is allowed. The phase factor is
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determined by the trace of the corresponding Hamiltonian, which is well-defined

only if an arbitrary division of the unitary operation is possible.

The new quantum algorithm we proposed in Sec. 4.4.2 shows that allow-

ing arbitrary division of the input unitary operation, equivalently considering

higher-order quantum operations based on Hamiltonian dynamics instead of

unitary operations, presents various advantages. Here, we utilized a structure

with repetition to capture the problem within the usual framework of higher-

order quantum operations. However, a more general kind of higher-order trans-

formations between Hamiltonian dynamics can be considered, and there is no

framework for analyzing this kind of higher-order transformations yet. A gen-

eral framework for higher-order transformations between Hamiltonian dynamics

provides more power for quantum information processing, and it is worth trying

to develop such a framework.

In the third topic, we proposed a new structure named success-or-draw

for probabilistic higher-order quantum operations, which allows a repeat-until-

success implementation of them. With the success-or-draw structure, a proba-

bilistic higher-order quantum operation can amplify its success probability expo-

nentially to one by increasing the number of uses of an input quantum operation.

We provided a mathematical formulation and we showed that a large class of

probabilistic higher-order quantum operations can incorporate such a structure.

In particular, any probabilistic higher-order quantum operation transforming

unitary operations into CPTP maps can obtain the success-or-draw structure

by adding the number of uses of the unitary operation.

We provided a recipe for constructing the success-or-draw higher-order quan-

tum operations in our proof, but the provided recipe is not efficient in general.

In particular, in order to satisfy the positivity condition of the Choi operator,

we constructed the Choi operator to be a full-rank operator on a certain sub-

space. In the unitary inversion, the Choi operator that achieves the optimal

success probability, which was obtained numerically, has a lower rank than the

one used in our construction. However, it is not obvious if there are other meth-

ods for satisfying the positivity condition. It is an open question if there exists

a better recipe for constructing a success-or-draw higher-order quantum opera-

tions and a universal bound on the change of the probability by requiring the

success-or-draw structure.

We hope that our results contribute to the developments of quantum informa-

tion processing utilizing higher-order quantum operations from both theoretical

and experimental aspects.
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Appendix A

Evaluation of the Summation in

the Proof of Theorem 3.1

We evaluate the summation
∑

J∈Ga⊗Gb ||TrinWJ t||1 for each a, b in the following.

Note that it is enough to consider only 6 cases that satisfy a ≤ b because of the

symmetry between the two systems. In the following, when we take summation

on J , it also indicates the summation on the corresponding variables in the form

|ijkl〉〈i′j′k′l′|.
(Case 1: G1 ⊗G1) In this case, the equality∑

J∈G1⊗G1

||TrinWJ t||1 =
∑

J∈G1⊗G1

||〈ijkl||W 〉〈W ||i′j′k′l′〉||1 (A.1)

=
∑

J∈G1⊗G1

(||δjkδj′k′ |il00〉〈i′l′00|||1 + ||δilδi′l′ |kj11〉〈k′j′11|||1

+ ||δjkδi′l′ |il00〉〈k′j′11|||1 + ||δilδj′k′|kj11〉〈i′l′00|||1), (A.2)

holds. Moreover, the summation over the 1st and 2nd terms or the 3rd and 4th

terms are equal because of the symmetry, and thus we only evaluate the 1st and

3rd terms here.

For the 1st term of Eq. (A.2), the equality∑
J∈G1⊗G1

||δjkδj′k′ |il00〉〈i′l′00|||1 =
∑

J∈G1⊗G1

δjkδj′k′ (A.3)

holds. In order to evaluate the summation, we consider the following two cases.

If j 6= j′, there are d(d − 1)(d − 2)(d − 3) + 5d(d − 1)(d − 2) + 2d(d − 1)

possible choices on (i, j, i′, j′) and for each choice of (i, j, i′, j′), there are only

(d− 2)(d− 3) + 5(d− 2) + 2 possible choices on (k, l, k′, l′) because k = j, k′ = j′

is necessary for non-vanishing kronecker delta. Similarly, if j = j′, there are

d(d − 1)(d − 2) possible choices on (i, j, i′, j′) and for each choice of (i, j, i′, j′),
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there are (d − 1)(d − 2) possible choices on (k, l, k′, l′). For the 3rd term of

Eq. (A.2), the equality∑
J∈G1⊗G1

||δjkδi′l′ |il00〉〈k′j′11|||1 =
∑

J∈G1⊗G1

δjkδi′l′ (A.4)

holds. Similarly, if j 6= i′, there are d(d− 1)(d− 2)(d− 3) + 5d(d− 1)(d− 2) +

d(d − 1) possible choices on (i, j, i′, j′) and for each choice of (i, j, i′, j′), there

are (d− 2)(d− 3) + 5(d− 2) + 1 possible choices on (k, l, k′, l′). If j = i′, there

are d(d− 1)(d− 2) + d(d− 1) possible choices on (i, j, i′, j′) and for each choice

of (i, j, i′, j′), there are (d− 1)(d− 2) + (d− 1) possible choices on (k, l, k′, l′).

In total, we obtain∑
J∈G1⊗G1

||TrinWJ t||1

= 2
∑

J∈G1⊗G1

δjkδj′k′ + 2
∑

J∈G1⊗G1

δjkδi′l′ (A.5)

= 2d(d− 1)(2d4 + 2d3 − 18d2 + 11d+ 8). (A.6)

(Case 2: G1 ⊗G2) In this case, the equality∑
J∈G1⊗G2

||TrinWJ t||1

=
∑
J∈G1

d−1∑
m=0

||
d−1∑
k=0

〈ijk, k +m||W 〉〈W ||i′j′k, k +m〉||1 (A.7)

=
∑
J∈G1

d−1∑
m=0

||
d−1∑
k=0

(δjkδj′k|i, k +m, 00〉〈i′, k +m, 00|+ δi,k+mδi′,k+m|kj11〉〈kj′11|

+ δjkδi′,k+m|i, k +m, 00〉〈kj′11|+ δi,k+mδj′k|kj11〉〈i′, k +m, 00|)||1 (A.8)

=
∑
J∈G1

∑
m,k

(δjkδj′k + δi,k+mδi′,k+m + δjkδi′,k+m + δi,k+mδj′k) (A.9)

holds. The summation over the 1st and 2nd terms or the 3rd and 4th terms are

equal, and thus we only evaluate the 1st and 3rd terms here.

The summation over the 1st term of Eq. (A.9) can be evaluated as d2(d −
1)(d− 2), because for each k,m = 0, . . . , d− 1, there are (d− 1)(d− 2) possible

choices on (i, j, i′, j′) due to j = j′ = k. The summation over the 3st term of

Eq. (A.9) can be evaluated as follows: for each k = 0, . . . , d− 1, if m = 0, there

are (d − 1)(d − 2) + (d − 1) possible choices on (i, j, i′, j′), and if m 6= 0, there

are (d− 2)(d− 3) + 5(d− 2) + 1 possible choices on (i, j, i′, j′).
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In total, we obtain∑
J∈G1⊗G2

||TrinWJ t||1

= 2{d2(d− 1)(d− 2) + d[(d− 1)(d− 2) + (d− 1)]

+ d(d− 1)[(d− 2)(d− 3) + 5(d− 2) + 1]} (A.10)

= 2d(d− 1)(2d2 − d− 4). (A.11)

(Case 3: G2 ⊗G2) In this case, the summation is evaluated as∑
J∈G2⊗G2

||TrinWJ t||1

=
d−1∑
n,m=0

d−1∑
i,k=0

(δi+n,kδi+n,k + δi,k+mδi,k+m + δi+n,kδi,k+m + δi,k+mδi+n,k) (A.12)

= 2
d−1∑
n,m=0

d−1∑
i,k=0

(δi+n,kδi+n,k + δi+n,kδi,k+m) (A.13)

= 2(d3 + d2) = 2d2(d+ 1). (A.14)

(Case 4: G1⊗G3) Here we consider G3 with only the elements of the form

|kl〉〈kk| − |ll〉〈lk|. The elements of the other form can be evaluated in the same

way since the two input systems are symmetric. We denote this group as G′3,

that is,

G′3 = {|kl〉〈kk| − |ll〉〈lk| | k 6= l} (A.15)

and the following equality holds∑
J∈G1⊗G3

||TrinWJ t||1 = 2
∑

J∈G1⊗G′3

||TrinWJ t||1. (A.16)

In this case, the summation can be evaluated as∑
J∈G1⊗G′3

||TrinWJ t||1 =
∑
J∈G1

∑
k 6=l

||〈ijkl||W 〉〈W ||i′j′kk〉 − 〈ijll||W 〉〈W ||i′j′lk〉||1

(A.17)

=
∑
J∈G1

∑
k 6=l

||(δjkδj′k|il00〉〈i′k00| − δjlδj′l|il00〉〈i′k00|)

+ (δilδi′k|kj11〉〈kj′11| − δilδi′k|lj11〉〈lj′11|)
+ (δjkδi′k|il00〉〈kj′11| − δjlδi′k|il00〉〈lj′11|)
+ (δilδj′k|kj11〉〈i′k00| − δilδj′l|lj11〉〈i′k00|)||1 (A.18)
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=
∑
J∈G1

∑
k 6=l

(||δjkδj′k|il00〉〈i′k00| − δjlδj′l|il00〉〈i′k00|||1

+ ||δilδi′k|kj11〉〈kj′11| − δilδi′k|lj11〉〈lj′11|||1
+ ||δjkδi′k|il00〉〈kj′11| − δjlδi′k|il00〉〈lj′11|||1
+ ||δilδj′k|kj11〉〈i′k00| − δilδj′l|lj11〉〈i′k00|||1) (A.19)

=
∑
J∈G1

∑
k 6=l

(δjkδj′k + δjlδj′l + 2δilδi′k + δjkδi′k + δjlδi′k + δilδj′k + δilδj′l) (A.20)

= 2
∑
J∈G1

∑
k 6=l

(δjkδj′k + δilδi′k + δjkδi′k + δjlδi′k), (A.21)

where the third equality holds because the states of control qubits are different,

the forth equality holds because k 6= l, and the last equality holds because

the summation over the 1st and 2nd, 4th and 7th, 5th and 6th terms are the

same respectively. For each (k, l), by counting the number of possible choices of

(i, j, i′, j′), we obtain∑
J∈G1⊗G′3

||TrinWJ t||1

= 2d(d− 1)
∑
J∈G1

(δjkδj′k + δilδi′k + δjkδi′k + δjlδi′k), (A.22)

= 2d(d− 1)× {[(d− 1)(d− 2)] + [(d− 2)(d− 3) + 5(d− 2) + 2]

+ [(d− 1)(d− 2) + (d− 1)] + [(d− 2)(d− 3) + 5(d− 2) + 1]} (A.23)

= 2d(d− 1)(4d2 − 5d− 2), (A.24)

and thus, we obtain∑
J∈G1⊗G3

||TrinWJ t||1 = 4d(d− 1)(4d2 − 5d− 2). (A.25)

(Case 5: G2⊗G3) As in the case 4, we consider G′3 instead, and using the

following equality: ∑
J∈G2⊗G3

||TrinWJ t||1 = 2
∑

J∈G2⊗G′3

||TrinWJ t||1. (A.26)

In this case, the summation can be evaluated as

∑
J∈G2⊗G′3

||TrinWJ t||1 =
∑
k 6=l

d−1∑
m=0

||
d−1∑
i=0

(〈i, i+m, kl||W 〉〈W ||i, i+m, kk〉

− 〈i, i+m, ll||W 〉〈W ||i, i+m, lk〉)||1 (A.27)
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=
∑
k 6=l

d−1∑
m=0

||
d−1∑
i=0

δi+m,kδi+m,k|il00〉〈ik00| − δi+m,lδi+m,l|il00〉〈ik00|||1

+ ||
∑
i

δilδik|k, i+m, 11〉〈k, i+m, 11| − δilδik|l, i+m, 11〉〈l, i+m, 11|||1

+ ||
∑
i

δi+m,kδik|il00〉〈k, i+m, 11| − δi+m,lδik|il00〉〈l, i+m, 11|||1

+ ||
∑
i

δilδi+m,k|k, i+m, 11〉〈ik00| − δilδi+m,l|l, i+m, 11〉〈ik00|||1 (A.28)

=
∑
k 6=l

d−1∑
m,i=0

(δi+m,kδi+m,k + δi+m,lδi+m,l + δilδik + δilδik

+ δi+m,kδik + δi+m,lδik + δilδi+m,k + δilδi+m,l) (A.29)

= d(d− 1)× [d+ d+ 0 + 0 + 1 + 1 + 1 + 1] (A.30)

= 2d(d− 1)(d+ 2). (A.31)

Here, the second equality holds because the states of control qubits are different,

the third equality holds because k 6= l, and the fourth equality holds by counting

the number of possible choices of (i, j, i′, j′) for each (k, l). In total, we obtain∑
J∈G2⊗G3

||TrinWJ t||1 = 4d(d− 1)(d+ 2). (A.32)

(Case 6: G3⊗G3) In this case, we divide the first G3 into two groups, i.e.,

G′3 and G′′3, where G′3 defined by Eq. (A.15) is the one used in cases 4 and 5,

and G′′3 is defined as the remaining of G3, that is,

G′′3 = {|ji〉〈ii| − |jj〉〈ij| | i 6= j}. (A.33)

Here we evaluate both G′3⊗G′3 and G′′3 ⊗G′3, and the result can be obtained by∑
J∈G3⊗G3

||TrinWJ t||1 = 2(
∑

J∈G′3⊗G′3

||TrinWJ t||1 +
∑

J∈G′′3⊗G′3

||TrinWJ t||1). (A.34)

We first consider the summation over G′3 ⊗G′3, which is evaluated as∑
J∈G′3⊗G′3

||TrinWJ t||1

=
∑
i 6=j

∑
k 6=l

||〈ijkl||W 〉〈W ||iikk〉 − 〈ijll||W 〉〈W ||iilk〉

− 〈jjkl||W 〉〈W ||jikk〉+ 〈jjll||W 〉〈W ||jilk〉||1 (A.35)
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=
∑

i 6=j,k 6=l

||(δjkδik − δjlδil)|il00〉〈ik00| − (δjkδik − δjlδil)|jl00〉〈jk00|)||1

+ ||(δilδik − δjlδjk)|kj11〉〈ki11| − (δilδik − δjlδjk)|lj11〉〈li11|)||1
+ ||(δjkδik|il00〉〈ki11| − δjlδik|il00〉〈li11| − δjkδjk|jl00〉〈ki11|+ δjlδjk|jl00〉〈li11|)||1
+ ||(δilδik|kj11〉〈ik00| − δilδil|lj11〉〈ik00| − δjlδik|kj11〉〈jk00|+ δjlδil|lj11〉〈jk00|||1

(A.36)

=
∑

i 6=j,k 6=l

3δjkδik + 3δjlδil + 3δilδik + 3δjlδjk + 2δjlδik + δjkδjk + δilδil (A.37)

=
∑

i 6=j,k 6=l

2δjlδik + δjkδjk + δilδil (A.38)

= 2d(d− 1) + 2d(d− 1)2 = 2d2(d− 1), (A.39)

where the second equality holds because the states of control qubits are different,

and the third equality holds because i 6= j and k 6= l. Similarly, the summation

over G′′3 ⊗G′3 can be evaluated as∑
J∈G′′3⊗G′3

||TrinWJ t||1

=
∑

i 6=j,k 6=l

||〈jikl||W 〉〈W ||iikk〉 − 〈jill||W 〉〈W ||iilk〉

− 〈jjkl||W 〉〈W ||ijkk〉+ 〈jjll||W 〉〈W ||ijlk〉||1 (A.40)

=
∑

i 6=j,k 6=l

||(δikδik − δilδil − δjkδjk + δjlδjl)|jl00〉〈ik00|)||1

+ ||(δjlδik|ki11〉〈ki11| − δjlδik|li11〉〈li11| − δjlδik|kj11〉〈kj11|+ δjlδik|lj11〉〈lj11|)||1
+ ||(δikδik|jl00〉〈ki11| − δilδik|jl00〉〈li11| − δjkδik|jl00〉〈kj11|+ δjlδik|jl00〉〈lj11|)||1
+ ||(δjlδik|ki11〉〈ik00| − δjlδil|li11〉〈ik00| − δjlδjk|kj11〉〈ik00|+ δjlδjl|lj11〉〈ik00|||1

(A.41)

=
∑

i 6=j,k 6=l

2δikδik + δilδil + δjkδjk + 2δjlδjl

+ 4δjlδik + δilδik + δjkδik + 2δjlδik + δjlδil + δjlδjk (A.42)

=
∑

i 6=j,k 6=l

4δjlδik + 2δikδik + 2δjlδjl + 2δjlδik + δilδil + δjkδjk (A.43)

= d(d− 1)[4 + 2(d− 1) + 2(d− 1) + 2 + (d− 1) + (d− 1)] (A.44)

= 6d2(d− 1) (A.45)

where the second equality holds because the states of control qubits are different.

For the third equality, the expansion can be done for all but the first term using

i 6= j and k 6= l. For the first term, there exists some patterns where more than
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one terms of kronecker deltas are non-zero, for example, δikδik and δjlδjl can be

non-zero simultaneously. However, since they have same sign, the expansion is

possible and the third equality holds.

In total, we obtain ∑
J∈G3⊗G3

||TrinWJ t||1 = 16d2(d− 1). (A.46)

Finally, we have evaluated all terms in Eq. (3.83), and we obtain

||W ||1 ≥ (2d3)2, (A.47)

which completes the prove of Theorem 3.1.
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Appendix B

The Kraus Representation for

Quantum Combs

For the completeness, we derive the conditions for an N -slot quantum comb S̃ :

L(H1⊗H2⊗· · ·⊗H2N)→ L(H0⊗H2N+1) in terms of the Kraus representation,

instead of the Choi representation. Let {Ki} be the Kraus operators of S̃, that

is,

S̃(J) =
∑
i

KiJK
†
i , (B.1)

with Ki ∈ L(H1 ⊗ · · · ⊗ H2N ,H0 ⊗ H2N+1). Since the positivity condition of

a quantum comb given by Eq. (4.40) is automatically satisfied, the remaining

condition to be derived is the causal condition given by Eq. (4.41).

We first consider the causal condition given by Eq. (4.41) for k = N , that is,

Tr2N+1S = (Tr2N,2N+1S)⊗ I2N

d2N

. (B.2)

In order to rewrite this condition, we first consider the following condition which

is equivalent to Eq. (B.2), that is, the equality

Tr0;2N−1(A0 ⊗B1;2N−1 ⊗ I2N)Tr2N+1S

= Tr0;2N−1(A0 ⊗B1;2N−1 ⊗ I2N)Tr2N,2N+1S ⊗
I2N

d2N

= c · I2N (B.3)

holds for any A0 ∈ L(H0) and B1;2N−1 ∈ L(H1 ⊗ · · · ⊗ H2N−1) and a complex

number depending on A0, B1;2N1 , where Tr0;2N−1 denotes the partial trace taken

over H0 ⊗H1 ⊗ · · · ⊗ H2N−1. By rewriting the Choi operator S in terms of the
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Figure B.1: (Above) An N -slot quantum comb S̃ which takes N quantum opera-

tions Ãk for k = 1, 2, · · · , N as input operation. (Below) The (N−1)-slot quan-

tum comb S̃
(1)

: L(H1⊗H2⊗· · ·⊗(H2N−2⊗H2N))→ L(H0⊗(H2N−1 ⊗H2N+1))

induced from the N -slot quantum comb S̃. The (N − k)-slot quantum comb

S̃
(k)

for k = 1, 2, · · · , N − 1 is defined by repeating this procedure.

Kraus operators {Ki}, we obtain an equivalent condition, that is, the equality

Tr0;2N−1(A0 ⊗B1;2N−1 ⊗ I2N)Tr2N+1S

=
∑
k,k′

|k〉〈k′|2N · Tr2N

[
|k〉〈k′|2NTr1;2N−1(B1;2N−1 ⊗ I2N)

∑
i

K†i (A0 ⊗ I2N+1)Ki

]
,

(B.4)

holds for any A0 ∈ L(H0) and B1;2N−1 ∈ L(H1 ⊗ · · · ⊗ H2N−1). Thus, we

obtain the condition in terms of the Kraus operators {Ki}, namely, for any

linear operators A0 ∈ L(H0) and B1;2N−1 ∈ L(H1 ⊗ · · · ⊗ H2N−1), the following

equality holds

Tr1;2N−1[(B1;2N−1 ⊗ I2N)
∑
i

K†i (A0 ⊗ I2N+1)Ki] = c · I2N , (B.5)

where c is a complex number given by the trace of the l.h.s. divided by d2N .

An N -slot quantum comb S̃ can be redefined as an (N -1)-slot quantum

comb denoted by S̃
(1)

: L(H1 ⊗ · · · ⊗ H2N−4 ⊗H′2N−2) → L(H0 ⊗H′2N−1) with

H′2N−2 = H2N−2 ⊗ H2N and H′2N−1 = H2N−1 ⊗ H2N+1, as shown in Fig. B.1.

The corresponding Kraus operators {K(1)
i } are given as

K
(1)
i = Ki|I2N−1〉〉2N−1,2N−1, (B.6)

where K
(1)
i can be understood as the operator Ki with its domain H2N−1 been

moved to the range. Recursively, we can define an (N -k)-slot quantum combs

S̃
(k)

, and its Kraus operators {K(k)
i } of S̃

(k)
are given as

K
(k)
i = Ki|I2N−2k+1〉〉 ⊗ |I2N−2k+3〉〉 ⊗ · · · ⊗ |I2N−1〉〉. (B.7)
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We also let S̃
(0)

= S̃ and K
(0)
i = Ki.

Then the condition Eq. (B.5) can be transformed to the condition for S̃
(k)

with k = 0, 1, . . . , N − 1, which correspond to the condition Eq. (4.41) with

N − k, as shown in the following. Note that Eq. (B.5) corresponds to the case

of k = 0. For all liner operators A0 and B1;2N−2k−1, there is a complex number

c such that

Tr1;2N−2k−1[(B1;2N−2k−1 ⊗ IH(k))
∑
i

K
(k)†
i (A0 ⊗ IK(k))K

(k)
i ] = c · IH(k) , (B.8)

withH(k) =
⊗k

l=0H2N−2l,K(k) =
⊗k

l=0H2N−2l+1. The remaining condition given

by Eq. (4.41) is the one for k = 0, and it is equivalent to

TrK(N)S = IH(N) , (B.9)

when all other conditions given by Eq. (4.41) are satisfied. Since this condition

is similar to the TP condition of a map from H(N) to K(N), it can be written

with 〈〈I0|K(N)
i as

∑
iK

(N)†
i |I0〉〉〈〈I0|S(N)

i = IH(N) , equivalently, we obtain

TrK(N)

∑
i

K†i (|I0〉〉〈〈I0|0,0 ⊗ I2N+1)Ki = IH(N) . (B.10)

As the positivity of the quantum comb Eq. (4.40) is automatically satisfied,

the condition for quantum comb in terms of the Kraus representation is given

by Eq. (B.8) with k = 0, 1, . . . , N − 1 and Eq. (B.10).
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Appendix C

The Proof of Theorem 5.1

We first clarify the notations. Let d := dIi = dOj for i, j ≥ 1, and d0 :=

dI0 = dO0 . For Lemma C.1, we define the following operators. Note that we

consider the case where K uses of an input unitary operation is allowed in

Lemma C.1. We first define the permutation operator P Iσ and POσ that permute

systems I = I1I2 · · · IK and O = O1O2 · · · OK according to the permutation

σ. The permutation of input operations is given by P IOσ := P Iσ ⊗ POσ , which

simultaneously permute the input system and the output system of a single

input operation according to the permutation σ. The symmetric subspace of

input operations ΠIOsym is given by

ΠIOsym :=
∑
σ

P IOσ =
∑
σ

P Iσ ⊗ POσ . (C.1)

For Lemma C.2, we define a set of Hermitian operators {gi}d
2−1
i=0 that forms

the operator basis for d-dimensional Hermitian operators, with g0 = Id, others

being traceless, and the orthogonality Trgigj = dδij holds [64]. For example,

the Pauli matrices for d = 2, and Gell-Mann matrices for d = 3 are these sets

of Hermitian operators. We also define the set for d0-dimensional Hermitian

operators as {hi}
d20−1
i=0 . In Lemma C.2, we rewrite the condition that a comb

transforms unitary operations to CPTP maps in terms of the Choi operator and

the Hermitian operator basis.

In order to prove Theorem 5.1, we first consider Lemma C.1 and Lemma C.2,

which shows that it is enough to prove another theorem given as Theorem C.1.

Lemma C.1. If TrIO(ΠIOsymNΠIOsym) ∝ Jid, then N neutralizes all unitary oper-

ations as ˜̃N (Ũ
⊗K

) ∝ ĩd.

Proof. Note that the if condition is equivalent to TrIO(ΠIOsymNΠIOsym) ≤ dKJid,

due to the normalization condition TrN ≤ dKd0.
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For any input channel JU , JU
⊗K ≤ dKI holds and A := dKI − JU⊗K ≥ 0.

Thus

Jid ≥ TrIO[(ΠIOsymNΠIOsym)/dK ] (C.2)

= TrIO[(ΠIOsymNΠIOsym)(A+ JU
⊗K)]/d2K (C.3)

= TrIO[(ΠIOsymNΠIOsym)A+ TrIO(ΠIOsymNΠIOsym)JU
⊗K ]/d2K . (C.4)

Since the l.h.s is a rank-1 operator, the operators in the r.h.s. are positive, and

JU
⊗K is in the symmetric subspace, namely, JU

⊗K = ΠIOsymJU
⊗KΠIOsym, we obtain

TrIO[N(JU
⊗K)T ] = TrIO[(ΠIOsymNΠIOsym)(JU

⊗K)T ∝ Jid, (C.5)

that is, ˜̃N (Ũ
⊗K

) ∝ ĩd.

Lemma C.2. If a one-slot probabilistic comb SI0I1O1O0
t transforms unitary op-

erations to CPTP maps, then SI0I1O1
t := TrO0S

I0I1O1O0
t has a decomposition

satisfying

SI0I1O1
t =

II0

d0

⊗ TrI0S
I0I1O1
t +

d20−1∑
i=1

d2−1∑
j=1

αijh
I0
i ⊗ [gI1j ⊗ IO1 ]

+

d20−1∑
i=1

d2−1∑
j=1

βijh
I0
i ⊗ [II1 ⊗ gO1

j ], (C.6)

where {αij} and {βij} are real coefficients.

Proof. The Choi operator SI0I1O1
t can always be decomposed as

SI0I1O1
t =

II0

d0

⊗ TrI0S
I0I1O1
t +

d20−1∑
i=1

d2−1∑
j=1

αijh
I0
i ⊗ [gI1j ⊗ IO1 ]

+

d20−1∑
i=1

d2−1∑
j=1

βijh
I0
i ⊗ [II1 ⊗ gO1

j ] +

d20−1∑
i=1

d2−1∑
j,k=1

γijkh
I0
i ⊗ [gI1j ⊗ g

O1
k ],

(C.7)

and it is enough to show that γijk = 0 for all i, j, k ≥ 1.

From the assumption, TrI1O1 [S
I0I1O1O0
t (JTU )I1O1 ] is proportional to the Choi

operator of a CPTP map, which satisfies

TrO0TrI1O1 [S
I0I1O1O0
t (JTU )I1O1 ] ∝ II0 (C.8)
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where I is the partial trace of the Choi operator of a CPTP map. Thus, SI0I1O1
t

satisfies

TrI1O1 [S
I0I1O1
t (JTU )I1O1 ] ∝ II0 . (C.9)

Moreover, for any operator O in the linear span of span{JU} := {O | O =∑
i ciJUi , ci ∈ C}, the condition

TrI1O1 [S
I0I1O1
t (OT )I1O1 ] ∝ II0 (C.10)

holds because of the linearity.

Next, we show that gj ⊗ gk ∈ span{JU} for all j, k ≥ 1 are in the linear span

of span{JU}. From Lemma C.3 shown below, the dimension of the linear span

is given by dim span{JU} = (d2− 1)2 + 1, and one basis for this span is given by

gj ⊗ gk with j, k ≥ 0. Note that g0 = Id. On the other hand, gi ⊗ I and I ⊗ gi
for i ≥ 1 are not in span{JU}, because of the TP property and the unitality of

unitary operations, respectively. Thus, the remaining d4−2(d2−1) = (d2−1)2+1

elements, especially gj ⊗ gk with j, k ≥ 1 and I ⊗ I, are in the linear span of

span{JU}.
Since gj ⊗ gk ∈ span{JU} for all j, k ≥ 1, by substituting SI0I1O1

t with the

decomposition Eq. (C.7), we obtain
∑

i γijkh
I0
i ∝ II0 for all j, k ≥ 1. Thus,

γijk = 0 is required for all i, j, k ≥ 1, which proves the Lemma.

Lemma C.3. The dimension of the linear span of span{JU} := {O | O =∑
i ciJUi , ci ∈ C} is (d2 − 1)2 + 1.

Proof. The vectorization of JU = |U〉〉〈〈U | = (U ⊗ I)|I〉〉〈〈I|(U † ⊗ I) is given by

(U † ⊗ I)T |I〉〉 ⊗ (U ⊗ I)|I〉〉 = |U∗〉〉 ⊗ |U〉〉, and the dimension of span{JU} is

equivalent to the dimension of span{|U∗〉〉 ⊗ |U〉〉} := {O | O =
∑

i ci|U∗〉〉 ⊗
|U〉〉, ci ∈ C}. In order to obtain the dimension, we consider the projector of

|U∗〉〉 ⊗ |U〉〉, and integrate over all unitary operations U as

Q =

∫
dU(|U∗〉〉〈〈U∗| ⊗ |U〉〉〈〈U |). (C.11)

Then the dimension is given by the rank of Q. Consider the substitution of

U → V U with arbitrary V and the invariance of the Haar measure, Q satisfies

Q =

∫
dU(V ∗ ⊗ I ⊗ V ⊗ I)(|U∗〉〉〈〈U∗| ⊗ |U〉〉〈〈U |)(V T ⊗ I ⊗ V † ⊗ I) (C.12)

= (V ∗ ⊗ I ⊗ V ⊗ I)Q(V T ⊗ I ⊗ V † ⊗ I). (C.13)
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For convenience, we denote the space that V and V ∗ acting on by A and the

remaining by B, then Q satisfies the commutation relation

[Q, (U∗ ⊗ U)A ⊗ IB] = 0 (C.14)

for all unitary operators U . The irreducible representation of (U∗ ⊗ U) is given

by

U∗ ⊗ U = U1 ⊕ U2, (C.15)

where the corresponding dimensions are given by d1 = d2 − 1 and d2 = 1 for

U1 and U2 respectively, and the projectors onto the corresponding subspaces are

P1 := I − φ+ and P2 := φ+. From Schur’s lemma, Q can be decomposed as

Q =
2∑

k=1

PA
k ⊗QB

k , (C.16)

and since PA
k are projectors, Q is evaluated as

Q =
2∑

k=1

PA
k

dk
⊗ TrA[(PA

k ⊗ IB)Q] (C.17)

=
2∑

k=1

PA
k

dk
⊗ TrA[(PA

k ⊗ IB)|Q′〉〉〈〈Q′|AB], (C.18)

where |Q′〉〉〈〈Q′|AB is an arbitrary maximally entangled state between A and B.

The second equality holds because of the partial trace on A. Let the maximally

entangled state |Q′〉〉AB be

|Q′〉〉AB =
2∑
l=1

dl−1∑
α=0

|l, α〉A ⊗ |l, α〉B (C.19)

where l = 1, 2 are the label for the irreducible representations and α for the

basis in Pl. Note that there is no multiplicity subspace in this case. Then

(PA
k ⊗ IB)|Q′〉〉AB =

dk−1∑
α=0

|k, α〉A ⊗ |k, α〉B, (C.20)

TrA[(PA
k ⊗ IB)|Q′〉〉〈〈Q′|AB] = PB

k , (C.21)

and thus Q can be written as

Q =
2∑

k=1

1

dk
PA
k ⊗ PB

k =
1

d2 − 1
PA

1 ⊗ PB
1 + PA

2 ⊗ PB
2 . (C.22)

The rank of Q is (d2−1)2+1, and thus the dimension of span{JU} is (d2−1)2+1.
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By considering Lemma C.1 and Lemma C.2, it is enough to prove the fol-

lowing Theorem C.1 in order to prove Theorem 5.1.

Theorem C.1. Given a one-slot probabilistic comb SI0I1O1O0
t with dim I1 =

dimO1 = d and dim I0 = dimO0 = d0. If SI0I1O1
t := TrO0S

I0I1O1O0
t has a

decomposition satisfying

SI0I1O1
t =

II0

d0

⊗ TrI0S
I0I1O1
t +

d20−1∑
i=1

d2−1∑
j=1

αijh
I0
i ⊗ [gI1j ⊗ IO1 ]

+

d20−1∑
i=1

d2−1∑
j=1

βijh
I0
i ⊗ [II1 ⊗ gO1

j ] (C.23)

with coefficients {αij} and {βij}, then there exists ε > 0 and a d-slot comb

C = S +N satisfying

TrIO[S(J⊗dU )T ] = εTrI1O1 [StJ
T
U ] (C.24)

TrIO(ΠIOsymNΠIOsym) ∝ Jid. (C.25)

The proof of Theorem C.1 consists two parts: the first part presents the

construction of NI0IO := TrO0N ; the second part presents the construction of

N from NI0IO by applying Lemma C.4 shown below.

Proof of Theorem C.1. Let the Choi operator S corresponds to success be

S := εSI0I1O1O0
t ⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d
. (C.26)

Then the condition S ≥ 0 and Eq. (C.24) is satisfied. The remaining conditions

can be classified into the positivity condition N ≥ 0, the causal condition that

C = S+N is a deterministic comb, and the neutralization condition Eq. (C.25).

We first show the idea to construct N satisfying the causal condition. One

candidate of the Choi operator corresponding to failure, i.e. a Choi operator

satisfies the causal condition that C = S + F is a deterministic comb, is given

by

F := F I0I1O1 ⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d
⊗ IO0

d
(C.27)
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where

F I0I1O1 :=
II0I1O1

d
− εSI0I1O1

t (C.28)

=
II0I1O1

d
− ε
{
II0

d0

⊗ TrI0S
I0I1O1
t +

d20−1∑
i=1

d2−1∑
j=1

αijh
I0
i ⊗ [gI1j ⊗ IO1 ]

+

d20−1∑
i=1

d2−1∑
j=1

βijh
I0
i ⊗ [II1 ⊗ gO1

j ]

}
. (C.29)

This F summed up with S satisfies the causal condition by construction, but

it does not satisfy the neutralization condition Eq. (C.25). Thus, it is enough

to construct N ≥ 0 that satisfies the following conditions

TrO0N −N (d) ⊗ IOd

d
= 0 (C.30)

TrIkN
(k) −N (k−1) ⊗ IOk−1

d
= 0 (3 ≤ k ≤ d) (C.31)

TrI2N
(2) −N (1) ⊗ IO1

d
= dd−1(F I0I1O1 − F I0I1 ⊗ IO1

d
) (C.32)

TrI1N
(1) − (TrN)

II0

d0

= 0 (C.33)

ΠIOsymNΠIOsym =
JI0O0
id

d0

⊗ TrI0O0 [Π
IO
symNΠIOsym], (C.34)

where N (d) := TrOdO0N and N (k−1) := TrOk−1IkN
(k) for k = 2, . . . , d.

We divide the proof into two parts, by introducing the operator NI0IO :=

TrO0N . In the first part of the proof, we show the existence of NI0IO, and the

neutralization condition Eq. (C.34) is replaced by

ΠIOsymN
I0IOΠIOsym =

II0

d0

⊗ TrI0 [Π
IO
symN

I0IOΠIOsym]. (C.35)

In the second part of the proof (Lemma C.4), we construct the desired N from

NI0IO. In both constructions, the following three conditions are considered: the

positivity, the causal condition, and the neutralization condition.
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(First part: construction of NI0IO) Let NI0IO be

NI0IO :=
1

d
II0I1O1 ⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d

− ε
{
II0

d0

⊗ TrI0S
I0I1O1
t ⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d

+
∑
i,j≥1

αijh
I0
i ⊗ [gI1j ⊗ IO1 ]⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d

+
∑
i,j≥1

(−αij)hI0i ⊗
II1O1

d
⊗ [gI2j ⊗ IO2 ]⊗ · · · ⊗ IIdOd

d

+
∑
i,j≥1

βijh
I0
i ⊗ [II1 ⊗ gO1

j ]⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d

+
∑

i,j≥1, ~k2

βija2, ~k2
hI0i ⊗ [gI1k2,1 ⊗ g

O1
j ]⊗ [gI2k2,2 ⊗

IO2

d
]⊗ II3O3

d
· · · ⊗ IIdOd

d

+ · · ·+

+
∑

i,j≥1, ~kd

βijad, ~kdh
I0
i ⊗ [gI1kd,1 ⊗ g

O1
j ]⊗ [gI2kd,2 ⊗

IO2

d
]⊗ · · · ⊗ [gIdkd,d ⊗

IOd

d
]

}
,

(C.36)

where the summation on ~km = (km,1, km,2, . . . , km,m) denotes the summation on

{ki,j = 0, . . . , d2− 1} for each term, and coefficients am, ~km are determined in the

following.

(Positivity) The positivity of NI0IO is trivial for small enough ε. That is,

since NI0IO is of the form NI0IO = I/dd + εN ′ where N ′ does not depend on ε,

there exists ε > 0 such that NI0IO is strictly positive.

(Causal condition) Here we show that the causal conditions Eqs. (C.30)-

(C.33) are satisfied. We first remark that the 1st, 2nd, 3rd and 5th lines sum

up to F , and we can write NI0IO as NI0IO = F + F ′s +
∑d

m=2 F
′
m where F ′s

corresponds to the 4th line, and F ′2, . . . , F
′
d correspond to the 6th to the last

line. Then it is enough to show that all F ′ ∈ {F ′i}i=s,2,3,...,d satisfies

TrO0F
′ − F ′(d) ⊗ IOd

d
= 0 (C.37)

TrIkF
′(k) − F ′(k−1) ⊗ IOk−1

d
= 0 (2 ≤ k ≤ d) (C.38)

TrI1F
′(1) − (TrF ′)

II0

d0

= 0, (C.39)

where F ′(d) := TrOdO0F
′ and F ′(k−1) := TrOk−1IkF

′(k) for k = 2, . . . , d.
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It is trivial that Eq. (C.37) is satisfied for all F ′. It is also trivial to see that

Eqs. (C.38),(C.39) are satisfied for F ′a. Thus, we consider Eqs. (C.38),(C.39) for

F ′2, . . . , F
′
d. We can see that the l.h.s. of these equations are always of the form

TrIk···(F
′ − TrOk−1

F ′ ⊗ IIk−1

d
), and F ′m satisfies these conditions when m < k

because F ′m already has the term IIk
d

. In order to satisfy these conditions for

m ≥ k, we assume that the coefficients am, ~km satisfy

am, ~km := am,km,1,km,2,...,km,m = 0 for km,m = 0, (C.40)

which is compatible with the following arguments on the neutralization condi-

tion. By choosing these coefficients, TrIk···F
′
m = 0 is satisfied and Eqs. (C.38),(C.39)

are also satisfied.

(Neutralization condition) Now we present a construction of coefficients am, ~km
such that Eq. (C.35) is satisfied. This condition is satisfied independently for

the 1st line, 2nd line, the sum of 3rd and 4th lines, and the sum of the rest. First

of all, it is trivial that the 1st line and the 2nd line satisfy the condition, as they

have II0 in the system I0. The sum of the 3rd and 4th lines vanishes on ΠIOsym,

i.e. satisfies the condition with the r.h.s. being 0, because ΠIOsymPσMPσΠIOsym =

ΠIOsymMΠIOsym holds for any permutation σ and an arbitrary operator M . For the

sum of 5th line and after, we see that for each i, j ≥ 1, it can be written as

βijh
I0
i ⊗ Cj with

Cj = [II1 ⊗ gO1
j ]⊗ II2O2

d
⊗ · · · ⊗ IIdOd

d

+
∑
~k2

a2, ~k2
[gI1k2,1 ⊗ g

O1
j ]⊗ [gI2k2,2 ⊗

IO2

d
]⊗ II3O3

d
· · · ⊗ IIdOd

d

+ · · ·+

+
∑
~kd

ad, ~kd [g
I1
kd,1
⊗ gO1

j ]⊗ [gI2kd,2 ⊗
IO2

d
]⊗ · · · ⊗ [gIdkd,d ⊗

IOd

d
] (C.41)

= [II1 ⊗ II2 ⊗ · · · ⊗ IId +
∑
~k2

a2, ~k2
gI1k2,1 ⊗ g

I2
k2,2
⊗ II3 ⊗ · · · ⊗ IId

+ · · ·+
∑
~kd

ad, ~kdg
I1
kd,1
⊗ gI2kd,2 ⊗ g

I3
kd,3
⊗ · · · ⊗ gIdkd,d ]

⊗ [gO1
j ⊗

IO2

d
⊗ · · · ⊗ IOd

d
]. (C.42)

In the following, we show that the neutralization condition is satisfied for each

i, j, by showing that Cj vanishes on ΠIOsym as ΠIOsymCjΠ
IO
sym = 0.

Here, we choose the coefficients {am, ~km} such that the first term is the d qudit

(unnormalized) totally antisymmetric state ddAd = dd|Ad〉〈Ad|. Such coefficients
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are available as follows. Note that we assumed Eq. (C.40) in the causal condition

part. Since gi1 ⊗ gi2 ⊗ · · · gid forms a basis, any operator including Ad can

be written as
∑

i1,i2,...,id
ai1,i2,...,idgi1 ⊗ gi2 ⊗ · · · ⊗ gid . However, the coefficients

{am, ~km} have the constraint given by Eq. (C.40) and cannot cover arbitrary

operators. Especially, it lacks the terms gi1⊗I⊗· · ·⊗I with i1 6= 0. The totally

antisymmetric state satisfies Tr2,...,dAd = I1, and the coefficients corresponding

to these terms that containing only one traceless operator gi1 are actually 0.

Thus, there exists a set of {am, ~km} satisfying Eq. (C.40) and that Eq. (C.42) can

be evaluated as

Cj = ddAId ⊗ [gO1
j ⊗

IO2

d
⊗ · · · ⊗ IOd

d
] =: dAId ⊗MO

j . (C.43)

Now we show that Cj vanishes on ΠIOsym. Consider that ΠIOsym =
∑

σ P
IO
σ =∑

σ P
I
σ ⊗ POσ and P Iσ |Ad〉 = sgn(σ)|Ad〉, ΠIOsym(AId ⊗MO

j )ΠIOsym can be evaluated

as

ΠIOsym(AId ⊗MO
j )ΠIOsym = AId ⊗ [

∑
σ

sgn(σ)POσ ]MO
j [
∑
σ′

sgn(σ′)POσ′ ] (C.44)

= AId ⊗ AOdMO
j A

O
d (C.45)

Also, the equation

TrAOdM
O
j A

O
d = 〈Ad|gO1

j ⊗ IO2 ⊗ · · · ⊗ IOd |Ad〉 (C.46)

= Tr gO1
j = 0 (C.47)

holds because gO1
j are traceless for j ≥ 1. Thus, we obtain AOdM

O
j A

O
d = 0 and

ΠIOsymCjΠ
IO
sym = 0 for j ≥ 1.

(Second part: construction of N from NI0IO) We apply Lemma C.4 shown

below. The operator ddNI0IO = I + εN ′ corresponds to MAB = I + εM ′,

dd+1N corresponds to MABC , and systems A,B,C correspond to I0, I ⊗ O,O0

respectively.

Lemma C.4. LetHA,HB,HC ' HA be Hilbert spaces with dimensions d0, dB, d0,

ΠB be a projector on L(HB), and JACid = d0φ
+ be the maximally entangled state

on HA ⊗ HC. Given an operator M ′ ∈ L(HA ⊗ HB), there exists ε > 0 such

that the following holds. If MAB = I + εM ′ satisfies

MAB ≥ 0 (C.48)

ΠBMABΠB =
IA

d0

⊗ TrAΠBMABΠB, (C.49)
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there exists an operator MABC ∈ L(HA ⊗HB ⊗HC) satisfying

MABC ≥ 0 (C.50)

TrCM
ABC = MAB (C.51)

ΠBMABCΠB =
1

d0

JACid ⊗ TrACΠBMABCΠB. (C.52)

Proof. Let {hi} with h0 = I be a Hermitian basis for HA and HC . Let MB
i :=

1
d0

TrAh
A
i M

AB, so that MAB =
∑

i h
A
i ⊗MB

i holds. Note that with this decom-

position, the condition Eq. (C.49) is given by ΠBMABΠB = IA⊗ΠBMB
0 ΠB and

ΠBMB
i ΠB = 0 for i 6= 0.

For simplicity of the proof, we give a construction of MABC first as

MABC := JACid ⊗ ΠBMB
0 ΠB +

1

d0

(IA ⊗ IC)⊗ ΠB
⊥M

B
0 ΠB

⊥

+
1

d0

∑
i≥1

hAi ⊗ ΠB
⊥M

B
i ΠB

⊥ ⊗ IC

+
1

d0

∑
k≥0

(hAk ⊗ IC +
∑

i≥0,j≥1

αijkh
A
i ⊗ hCj )⊗ ΠBMB

k ΠB
⊥

+
1

d0

∑
k≥0

(hAk ⊗ IC +
∑

i≥0,j≥1

α∗ijkh
A
i ⊗ hCj )⊗ ΠB

⊥M
B
k ΠB, (C.53)

where {αijk} are complex numbers determined in the following. It is easy to see

that the causal condition Eq. (C.51) and the neutralization condition Eq. (C.52)

are satisfied, and the remaining condition for MABC is the positivity.

In order to guarantee the positivity, we first consider the support given by

the projector

Πsup = (φ+)AC ⊗ ΠB + IAC ⊗ ΠB
⊥ (C.54)

with the projector φ+ = Jid/d0, then obtain parameters {αijk} so that MABC

is on this support, and finally show that MABC is positive with small enough

ε. The condition ΠsupM
ABCΠsup = MABC is satisfied if the following equality

holds

(φ+)AC(hAk ⊗ IC +
∑

i≥0,j≥1

αijkh
A
i ⊗ hCj )IAC = (hAk ⊗ IC +

∑
i≥0,j≥1

αijkh
A
i ⊗ hCj ),

(C.55)

or equivalently

φ+Ak = Ak (C.56)
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with Ak := hAk ⊗ IC +
∑

i≥0,j≥1 αijkh
A
i ⊗ hCj . Since {αijk} can be any complex

numbers, the restrictions for {Ak} are given by

Tr(hk′ ⊗ I)Ak = d2
0δkk′ (C.57)

for all k, k′. In order to satisfy φ+Ak = Ak, Ak should be decomposed as Ak =

|φ+〉〈ak|, where |ak〉 is an unnormalized vector. Let |ak〉 =
∑d0−1

m,n=0 a
(k)
mn|mn〉,

then the condition for a
(k)
mn is that

Tr(hk′ ⊗ I)Ak =

d0−1∑
m,n=0

(a(k)
mn)∗〈m|hk′ |n〉 = d2

0δkk′ , (C.58)

for k, k′ = 0, . . . , d2
0 − 1. Here, the d2

0 parameters amn can be chosen freely, and

there are d2
0 linear (and independent due to the orthogonality of hk′) constraints,

thus, there exists a feasible amn, Ak, and αijk. Therefore, ΠsupM
ABCΠsup =

MABC holds.

For MAB = I, a possible MABC is given by

MABC = JACid ⊗ ΠB +
1

d0

IAC ⊗ ΠB
⊥ =: MABC

0 . (C.59)

For MAB = I + εM ′, the corresponding MABC can be written as

MABC = MABC
0 + εM ′′, (C.60)

where M ′′ is an operator only depends on M ′, because the construction of MABC

given by Eq. (C.53) is linear in MAB. The non-zero minimum eigenvalue is given

by

min
|ψ〉∈Πsup

〈ψ|MABC |ψ〉 = min
|ψ〉∈Πsup

[〈ψ|MABC
0 |ψ〉+ ε〈ψ|M ′′|ψ〉], (C.61)

since ΠsupM
ABCΠsup = MABC is satisfied. The minimum eigenvalue on the

support Πsup is given by minimizing the |ψ〉 with vectors only on Πsup, in which

case the first term is strictly positive, especially larger than 1/d0. Thus, there

exists ε > 0 such that the minimum eigenvalue on Πsup is greater than 0, and

the positivity of MABC is guaranteed.

Remark C.1. In the second part for the proof of Theorem C.1 (mostly equiv-

alent to Lemma C.4), the condition Eq. (C.30) (Eq. (C.51)) is assumed which

corresponds to the causal condition that the corresponding Choi operator is a

sequential supemap or quantum comb. However, when the indefinite causal or-

der is allowed, this causal condition can be relaxed and the construction of N
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from NI0IO can be replaced as follows instead of Lemma C.4. The conditions for

an indefinite causal order supermap are that the corresponding Choi operator

is positive, and that when the input operations are CPTP maps, the output

operation is also a CPTP map. Here we consider a subset of such supermaps of

which Choi operators satisfy the following condition:

TrO0C =
∑
σ

pσC
I0IO
σ (C.62)

where pσ are probabilities summing up to 1, and CI0IOσ denotes a sequential

supermap where the order of input operations are permuted with respect to

the permutation σ. This is a strictly stronger condition than that of general

indefinite causal order supermaps, but many quantum supermaps satisfy this

condition such as quantum switch.

Let NI0IOσ := P IOσ (NI0IO)P IOσ be the probabilistic comb with the order of

input operations permuted by σ. We define N as

N := (
1

N !

∑
σ

NI0IOσ )⊗ IO0

d0

+
1

d0

∑
ij≥1

ηijh
I0
i ΠIOsym(

1

N !

∑
σ

NI0IOσ )ΠIOsym ⊗ h
O0
j

(C.63)

=
II0

d0

⊗ 1

N !

∑
σ

(TrI0Π
IO
symN

I0IOΠIOsym)⊗ IO0

d0

+
1

N !

∑
σ

Π⊥sym(NI0IO)Π⊥sym ⊗
IO0

d0

+
∑
ij≥1

ηij
hI0i
d0

⊗ 1

N !

∑
σ

(TrI0Π
IO
symN

I0IOΠIOsym)⊗
hO0
j

d0

(C.64)

=
1

d0

JI0O0
id ⊗ 1

N !

∑
σ

(TrI0Π
IO
symN

I0IOΠIOsym) +
1

N !

∑
σ

Π⊥sym(NI0IO)Π⊥sym ⊗
IO0

d0

(C.65)

where the coefficients ηij are determined by Jid = 1
d0
I ⊗ I + 1

d0

∑
ij≥1 ηijhi ⊗ hj.

In the first equality, we also use the fact that if an operator is permutation

invariant, it is block diagonal in ΠIOsym and Π⊥sym, that is, the off-diagonal terms

vanishes as

ΠIOsym(
1

N !

∑
σ

NI0IOσ )Π⊥sym = ΠIOsym(
1

N !

∑
σ

P IOσ (NI0IO)P IOσ )(I − ΠIOsym) (C.66)

= ΠIOsym
1

N !

∑
σ

(NI0IO)(P IOσ − ΠIOsym) (C.67)

= ΠIOsym(NI0IO)(ΠIOsym − ΠIOsym) = 0. (C.68)

By this construction, the positivity of N is preserved because both terms in

Eq. (C.63) are positive, and the neutralization condition ΠIOsymNΠIOsym = Jid/d0⊗
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TrI0O0Π
IO
symNΠIOsym is also satisfied. To see the causal condition can be satisfied,

we first note that

TrO0N =
1

N !

∑
σ

NI0IOσ (C.69)

holds. Since there exists an operator S such that TrO0(S + N) satisfies the

sequential condition (which is actually given by Eq. (C.26)), by defining SI0IOσ :=

P IOσ (TrO0S)P IOσ , CI0IOσ := SI0IOσ + NI0IOσ and pσ = 1/N !, we can see that the

causal condition Eq. (C.62) is satisfied.

114



Appendix D

Impossibility of Success-or-Draw

for Unitary Inversion with a

Single Input Operation

For the two-dimensional unitary inversion, we show that it is not possible to

have a success-or-draw structure if we have only a single use of the input unitary

operation. Especially, we show the only solution to the following SDP is p =

0. Note that we denote d = 2 in order to clarify that it corresponds to the

dimension.

max p (D.1)

s.t. TrI1O1 [SJU
T ] = pJU−1 (D.2)

TrI1O1 [NJU
T ] ≤ dJid (D.3)

S ≥ 0, N ≥ 0 (D.4)

TrO0(S +N) = TrO1O0(S +N)⊗ IO1

d
(D.5)

TrI1O1O0(S +N) = Tr(S +N)
II0

d
(D.6)

Proof. Assuming that {p, S,N} is a solution to this SDP, then for any U ,

{p, (UI1 ⊗UO0)S(UI1 ⊗UO0), UI1NUI1} is also a solution to this SDP, because

it satisfies all of the conditions. By defining S ′ =
∫
dU(UI1⊗UO0)S(UI1⊗UO0)

and N ′ =
∫
dUUI1NUI1 , we obtain {p, S ′, N ′} which is also a solution to this

SDP. Thus, without loss of generality, we can assume the following commutation

relation

[S, UI1 ⊗ UO0 ] = 0, (D.7)

[N,UI1 ] = 0. (D.8)
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From the second commutation relation Eq.(D.8) and Schur’s lemma, N can

be decomposed as

N = NI0O1O0 ⊗ II1

d
. (D.9)

Consider Eq. (D.3) with U = I, we obtain

dJid ≥ TrI1O1 [(N
I0O1O0 ⊗ II1

d
)Jid

T ] (D.10)

= TrO1 [N
I0O1O0 ], (D.11)

and NI0O1O0 can be decomposed as

NI0O1O0 = NO1 ⊗ JI0O0
id /d (D.12)

as follows. LetNI0O1O0 =
∑

i pi|n
I0O1O0
i 〉〈nI0O1O0

i |. Since Jid is rank-1, Eq. (D.11)

indicates that TrO1 |nI0O1O0
i 〉〈nI0O1O0

i | ∝ Jid holds for all i. Consider the Schmidt

decomposition |nI0O1O0
i 〉 =

∑
j αij|a

I0O0
j 〉 ⊗ |bO1

j 〉, then TrO1 |nI0O1O0
i 〉〈nI0O1O0

i | =∑
j |αij|2|a

I0O0
j 〉〈aI0O0

j | is proportional to the rank-1 operatorJid, which means the

only possible solution is that |nI0O1O0
i 〉 = |(φ+)I0O0〉 ⊗ |bO1

j 〉 where |φ+〉〈φ+| =

Jid/d is the maximally entangled state. Thus, NI0O1O0 can be decomposed as

Eq. (D.12).

On the other hand, we can show

S = pJI0O1
Y ⊗ JI1O0

Y (D.13)

as follows. Note that JY = dψ− = d|ψ−〉〈ψ−| where |ψ−〉 = (1/
√

2)(|01〉 − |10〉)
is a maximally entangled state also known as the singlet state. From Eq.(D.7)

and Schur’s lemma, S can be decomposed as S = SI0O1 ⊗ JI1O0
Y /d. Let SI0O1 =∑

i pi|s
I0O1
i 〉〈sI0O1

i | and consider Eq. (D.2). Since the r.h.s. of Eq. (D.2) is rank-1,

it is necessary for every i that

TrI1O1 [(|sI0O1
i 〉〈sI0O1

i | ⊗ JI1O0
Y

d
)Jid] ∝ Jid (D.14)

holds, where we choose U = I in Eq. (D.2). Consider the Schmidt decomposition

|sI0O1
i 〉 =

∑
j αij|aj〉I0⊗Y |bj〉O1 , where {|aj〉} and {|bj〉} are some basis and the

Pauli operator Y is added for convenience. Then Eq. (D.14) become∑
j

αij|aj〉I0 ⊗ |bj〉O0 ∝ |φ+〉I0O0 . (D.15)

and thus |sI0O1
i 〉〈sI0O1

i | is proportional to JY . The constant factor is obtained by

direct calculation, and Eq. (D.13) is proved.
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By using the causal conditions, we obtain

TrI1O0(S +N) = TrI1O1O0(S +N)⊗ IO1

d
= Tr(S +N)

II0 ⊗ IO1

d2
= II0 ⊗ IO1

(D.16)

and since S is given by Eq. (D.13), we obtain

NI0O1 = II0O1 − pdJI0O1
Y . (D.17)

On the other hand, Eq. (D.12) indicates NI0O1 = NO1 ⊗ II0/d, and the only

possible solution with Eq. (D.17) is p = 0.
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[50] P. A. Guérin, G. Rubino, and Č. Brukner, “Communication through

quantum-controlled noise,” Phys. Rev. A 99 (Jun, 2019) 062317,

arXiv:1812.06848 [quant-ph].

[51] J. Miyazaki, A. Soeda, and M. Murao, “Complex conjugation supermap of

unitary quantum maps and its universal implementation protocol,” Phys.

Rev. Research 1 (Aug, 2019) 013007, arXiv:1706.03481 [quant-ph].

[52] S. Ishizaka and T. Hiroshima, “Asymptotic Teleportation Scheme as a

Universal Programmable Quantum Processor,” Phys. Rev. Lett. 101 (Dec,

2008) 240501, arXiv:0807.4568 [quant-ph].

[53] S. Ishizaka and T. Hiroshima, “Quantum teleportation scheme by

selecting one of multiple output ports,” Phys. Rev. A 79 (Apr, 2009)

042306, arXiv:0901.2975 [quant-ph].

[54] G. Chiribella and H. Kristjánsson, “Quantum Shannon theory with

superpositions of trajectories,” Proceedings of the Royal Society of London

Series A 475 (May, 2019) 20180903, arXiv:1812.05292 [quant-ph].

122

http://dx.doi.org/https://doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/https://doi.org/10.1016/0034-4877(72)90011-0
http://www.jstor.org/stable/2032342
http://www.jstor.org/stable/2032342
http://dx.doi.org/10.1038/ncomms8913
http://dx.doi.org/10.1038/ncomms8913
http://arxiv.org/abs/1412.4006
http://dx.doi.org/10.1103/PhysRevResearch.2.033292
http://dx.doi.org/10.1103/PhysRevResearch.2.033292
http://arxiv.org/abs/1807.07383
http://dx.doi.org/10.1103/PhysRevLett.124.030502
http://dx.doi.org/10.1103/PhysRevLett.124.030502
http://arxiv.org/abs/1811.07526
http://dx.doi.org/10.22331/q-2020-09-24-333
http://arxiv.org/abs/1810.09826
http://dx.doi.org/10.1103/PhysRevA.99.062317
http://arxiv.org/abs/1812.06848
http://dx.doi.org/10.1103/PhysRevResearch.1.013007
http://dx.doi.org/10.1103/PhysRevResearch.1.013007
http://arxiv.org/abs/1706.03481
http://dx.doi.org/10.1103/PhysRevLett.101.240501
http://dx.doi.org/10.1103/PhysRevLett.101.240501
http://arxiv.org/abs/0807.4568
http://dx.doi.org/10.1103/PhysRevA.79.042306
http://dx.doi.org/10.1103/PhysRevA.79.042306
http://arxiv.org/abs/0901.2975
http://dx.doi.org/10.1098/rspa.2018.0903
http://dx.doi.org/10.1098/rspa.2018.0903
http://arxiv.org/abs/1812.05292


[55] X.-Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P.

Lanyon, and J. L. O’Brien, “Adding control to arbitrary unknown

quantum operations,” Nature Communications 2 (Aug, 2011) 413,

arXiv:1006.2670 [quant-ph].

[56] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to

compare real and ideal quantum processes,” Phys. Rev. A 71 (Jun, 2005)

062310, arXiv:quant-ph/0408063 [quant-ph].

[57] H. Kristjánsson, G. Chiribella, S. Salek, D. Ebler, and M. Wilson,

“Resource theories of communication,” New Journal of Physics 22 (Jul,

2020) 073014, arXiv:1910.08197 [quant-ph].

[58] H. Kristjánsson, W. Mao, and G. Chiribella, “Single-particle

communication through correlated noise,” arXiv:2004.06090

[quant-ph].

[59] A. Roy and A. J. Scott, “Unitary designs and codes,” Designs, Codes and

Cryptography 53 (Oct, 2009) 13–31, arXiv:0809.3813 [math.CO].

[60] C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate

unitary 2-designs and their application to fidelity estimation,” Phys. Rev.

A 80 (Jul, 2009) 012304, arXiv:quant-ph/0606161 [quant-ph].

[61] J. Tolar, “On Clifford groups in quantum computing,” in Journal of

Physics Conference Series, vol. 1071 of Journal of Physics Conference

Series, p. 012022. Aug, 2018. arXiv:1810.10259 [quant-ph].

[62] P. Busch, ““No Information Without Disturbance”: Quantum Limitations

of Measurement,” arXiv:0706.3526 [quant-ph].
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