




Abstract

Magnetic skyrmion is a topological soliton characterized by an integer topological charge,
which is realized in non-centrosymmetric magnetic systems. Since the first discovery in
chiral magnets, they have attracted considerable attention for future spintronic applica-
tions. As an isolated single object, they are stable due to the topological protection. In
addition, they can be nucleated, annihilated, and driven by external fields. This property
makes them an attractive candidate for future information carriers.

They also form a periodic structure with hexagonal rotational symmetry, known as
skyrmion crystals. Since the noncoplanar spin textures of skyrmions induces an emergent
gauge field on magnons, which are quanta of spin waves, they provide a rich platform for
topological magnonics. With the bulk-boundary correspondence as a guiding principle,
the nontrivial magnon band topology leads to topologically protected chiral edge states.
Crucially, the magnonic chiral edge states are robust against impurities due to the absence
of backscattering, thus promising for dissipationless spin transports. Furthermore, the
recently discovered higher-order topological phases in electronic systems open up a new
possibility of magnonic corner states, which could broaden functionalities of topological
magnonics.

In this thesis, we investigate the topological properties of magnon excitations in mag-
netic skyrmion crystals. The central idea of the thesis is to propose an external control
over the magnon band topology, which can be experimentally realized. The main result
of the thesis is divided into three research projects: (i) Magnetic-field driven topological
phase transition; (ii) Laser-driven skyrmion motion and topological phase transition; (iii)
Magnonic corner states protected by the magnonic quadrupole moment.

In (i), we study the magnetic field dependence of magnon band structures in skyrmion
crystals. We find that the magnonic topological phase transition occurs at the critical
magnetic field, which is associated with the band inversion between characteristic mag-
netic excitations of skyrmions. We also show that the chiral magnetic edge states can be
turned on and off by external magnetic fields.

In (ii), we discuss the classical spin dynamics of skyrmion crystals under circularly
polarized lasers with terahertz frequencies, focusing on a skyrmion-hosting multiferroic
material. We show that skyrmions carrying the in-plane electric polarization are driven
by circularly polarized laser, with its direction controlled by the chirality of laser. We
also demonstrate the laser driven topological phase transition arising from the effective
magnetic field induced by the laser, which is consistent with the Floquet theory applied
to magnons.

i



ii ABSTRACT

In (iii), we extend the magnonic topological phases to higher order topology by in-
troducing the magnonic quadrupole moment. We show that skyrmion crystals support
a nontrivial magnonic quadrupole moment, whose hallmark signature is the topologi-
cally protected magnonic corner states. We demonstrate that the magnonic corner states
emerge with edge-localized objects carrying fractional topological charges, which are sta-
bilized at low magnetic fields.
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Chapter 1

Introduction

In Chapter 1, three important topics of this thesis are reviewed, namely, topological
phases of matter, multipole moments and higher-order topological phases, and magnetic
skyrmions. In Section 1.1, we introduce the theoretical basis of topological phases of
matter and its formulation in magnonic systems, which are quanta of spin waves in
magnetic systems. We show that the topological band theory for magnons is almost the
same as electronic systems except for the difference arising from the bosonic nature of
magnons. In Section 1.2, we introduce higher-order topological phase that were originally
proposed in electronic systems. The relationship between multipole moments in classical
electromagnetism and higher-order topological phases is illustrated. In Section 1.3, we
provide a brief review of magnetic skyrmion, a topological solitonic particle realized in
magnetic systems. As an introduction for later chapters, the magnon band spectrum of
isolated skyrmions and a periodic array of magnetic skyrmions, called skyrmion crystals,
are explained in details. At the end of this chapter, the outline of the thesis is provided
in Section 1.4.

1.1 Topological phases of matter

Topological phases of matter has become a central concept in condensed matter physics
these days. It provides us a new classification scheme of Bloch wave functions based on
the feasibility of smooth deformations between each other. Surprisingly, it was found
that two insulating states with the same energy dispersion cannot always be smoothly
deformed to each other. This is due to geometric phases of wave functions acquired over a
noncontractible loop across the Brillouin zone, which forms a torus in reciprocal space [1].

One example of insulating phases is the vacuum, which is defined to be a “trivial”
phase. Over the last decade, enormous research efforts have been put into the search for
“nontrivial” phases that are not topologically equivalent to the vacuum. The concept
of band topology is far-reaching as it can be applied to any periodic systems including
quantum and classical systems, and fermions and bosons. In Section 1.1, we introduce
the topological band theory for magnonic systems based on Ref. [2].

1
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1.1.1 Brief history

One of the early examples of topologically nontrivial phases is the quantum Hall state
realized in a two-dimensional system under strong magnetic fields [3, 4]. When the Fermi
energy lies in the energy gap, the quantization of Landau levels leads to the integer
quantized Hall conductivity

σxy = Ne2/h, (1.1)

where N is the occupied number of Landau levels [5]. However, this naive picture could
not explain the remarkable precision of the integer quantum Hall effect under disorder.
The relationship between the Hall conductivity and the topological invariant was first
demonstrated in the TKNN formula [6]. They have shown that the integer coefficient of
Hall conductivity is equal to the Chern number of occupied bands, given by

N =
∑
m

1

2π

∫
d2k∇×Am, (1.2)

with Am = i 〈um|∇k|um〉 denoting the Berry connection of an occupied state |um〉 [1, 7].
Mathematically, this is a topological classification of mapping from the torus in reciprocal
space to the Hamiltonian H(k), which is characterized by integers [8, 9]. As long as the
band gap remains open, the topological invariant does not change, thus protecting the
quantization of the Hall conductivity against disorder.

An important consequence of the nontrivial topological invariant is the presence of
edge localized states. This is the manifestation of the bulk-boundary correspondence,
connecting the bulk topological invariants with gapless boundary states [10, 11]. A phys-
ically intuitive argument is that a band gap must close at boundaries between systems
with different topological invariants, resulting in gapless states localized at boundaries
[12–15]. In the integer quantum Hall state, it was shown that edge state carries the
integer quantized current [15]. Furthermore, they propagate in only one direction along
sample edges. The chiral propagation of edge states prohibits the backscattering, provid-
ing another mechanism for the robustness of the quantized Hall conductivity.

The quantum Hall state is a topological phase in time-reversal symmetry broken sys-
tems. It is also possible to realize a topological phase with the time-reversal symmetry.
A prominent example is Z2 topological insulators [16–18]. Here, the spin-orbit coupling
plays a crucial role to lift the degeneracy between spin-up and spin-down states without
breaking the time-reversal symmetry. This allows electrons with opposite spins to move
in opposite directions, first proposed as the mechanism for the intrinsic spin-Hall effect
[19–21]. In 2005, the first example of Z2 topological insulators was proposed by Kane
and Mele [22, 23]. They considered the effect of the spin-orbit interaction in graphene
and found a novel insulating phase hosting edge states of oppositely moving electrons
with opposite spins due to the spin-momentum locking [22]. This model is a spinful
counterpart of the Haldane model, which was the first realization of the Chern insulator
(quantum Hall state) without external magnetic fields [24]. The main difference from
the quantum Hall state is that edge states are not chiral but helical in Z2 topological
insulators as the time-reversal symmetry is conserved. Furthermore, edge states have a
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band crossing at time-reversal symmetric points, which cannot be lifted by time-reversal
symmetric perturbations. Therefore, helical edge states in Z2 topological insulators are
also robust against disorder as long as the time-reversal symmetry is conserved. The dis-
covery of topological insulators opens up a possibility of controlled and robust transports
on boundaries.

1.1.2 Magnonic Topological Phases

Magnons are quanta of spin waves that carries the magnetic dipole moment in magnetic
systems. Since magnons are charge neutral particles, they are free from heat dissipations
due to Ohmic losses. This property makes them potential candidates for next generation
logic devices. In the field of magnon spintronics, spin currents carried by magnons are
employed as information carriers [25]. For technological applications, it is important to
control the wavelength and resonance frequency of magnons. A traditional approach is
to design a magnonic crystal, consisting of a periodically arranged ferromagnetic ma-
terials [26]. A major challenge is that magnon dispersion relations are highly sensitive
to the geometry and magnetization of devices. Although it provides a possibility of re-
programmable devices, it is difficult to prepare a periodic pattern of magnetic systems
without any defect and anisotropy in a nanoscale device. In order to overcome this diffi-
culty, the concept of topological magnonics was proposed as an alternative route [2, 27].
Robustness of topologically protected edge states allows a better control of magnons and
spin currents regardless of sample geometries, thus offering a great potential for spintronic
applications [28].

Early examples of topological phases of magnons was the discovery of the magnon
thermal Hall effect [29–33]. Since magnons are collective excitations of localized spins
with no electric charge, external magnetic fields would not induce a Lorentz force. Hence,
it was an important problem to find a vector potential coupled to magnons that causes
its transverse motion. In earlier literatures, it was shown that the emergent gauge field
from a scalar spin chirality Si · Sj × Sk could result in a finite Berry curvature and
a similar expression to the TKNN formula was derived for thermal Hall conductivity
κxy [6, 29, 34]. The magnon thermal Hall effect was first reported in an insulating
collinear ferromagnet Lu2V2O7 [30], where a non-zero Dzyaloshinskii-Moriya interaction
in the pyrochlore lattice acts as a gauge field [35–37]. Furthermore, it was clarified that
contributions from chiral magnon edge currents are essential for the magnon thermal Hall
effect analogously to edge current contributions in the integer quantum Hall effect [15,
31, 32]. Finally, the first theoretical models of magnonic topological (Chern) insulators
were proposed in yttrium iron garnet and Lu2V2O7 [2, 27].

The correspondence between topological phases in electronic and magnonic systems
does not end here. Many efforts have been made in the search for topological phases
of magnons [38–48]. Magnonic analogues of topological semimetal phases, which is de-
scribed by the Dirac/Weyl Hamiltonian in the low energy limit [49–51], were also intro-
duced [52–60]. In particular, the discovery of two-dimensional honeycomb ferromagnets
in van der Waals materials provides experimentally available platforms to realize the
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magnonic counterpart of graphene layers [61–65]. The nontrivial topology of magnonic
systems is often induced by the Dzyaloshinskii-Moriya interaction originated from the
spin-orbit coupling [35, 36]. It is also possible to introduce geometric phases of magnons
under electric field due to the Aharonov-Casher effect [66]. Employing this effect, it was
shown that magnons form Lanudau levels under large electric field gradient, leading to
the magnonic quantum Hall effect [67, 68]. Since the time-reversal symmetry is broken in
magnetic systems, topological phases of magnons are usually characterized by the Chern
number and support chiral edge states. However, magnonic topological phases charac-
terized by the Z2 topological invariant can be realized under the pseudo-time-reversal
symmetry that guarantees the existence of bosonic Kramers pairs [69, 70]. In this case,
helical edge states are obtained with the magnon spin-momentum locking [71].

1.1.3 Magnon Hamiltonian for noncollinear spin structures

Magnons are described as quantum fluctuations about classical ground-state spin tex-
tures. For this purpose, we employ the Holstein-Primakoff (HP) transformation gen-
eralized for noncollinear spin textures [72, 73]. Let us consider a generic spin lattice
Hamiltonian:

H = 1
2

∑
〈r,r′〉

(−Jr,r′Sr · Sr′ +Dr,r′ · Sr × Sr′)− gµBBz

∑
r

Sr · ẑ , (1.3)

where Sr is a spin operator at site r on a square lattice with lattice constant a. The
nearest-neighbor coupling includes ferromagnetic exchange Jr,r′ = J > 0, and the
Dzyaloshinskii-Moriya interaction Dr,r′ . The third term corresponds to the Zeeman
energy under the external magnetic field Bzẑ, where g and µB denote the g-factor and
Bohr magneton, respectively. We should note that this is a minimal model for skymion-
hosting materials with the Dzyaloshinskii-Moriya interaction vector determined by the
crystalline symmetries.

Now, we perform the HP transformation to write Eq. (1.3) in terms of bosonic opera-
tors. As a first step, we need to define spin operators with respect to the local orthonormal
basis (e1

r, e
2
r,mr), where mr is a unit vector parallel to the ground-state spin texture

and e1
r×e2

r = mr. In this local basis, the spin operators read Sr = S1
re

1
r +S2

re
2
r +S3

rmr,
which are transformed as

S+
r = (2S − a†rar)

1
2ar,

S−r = a†r(2S − a†rar)
1
2 , (1.4)

S3
r = S − a†rar,

where S±r = S1
r ± iS2

r, and ar, a†r are the HP bosonic operators. Assuming S � 1, the
Hamiltonian is expanded as a series in 1/S. Here, we introduce a matrix for bilinear
terms in spin operators:

SarS
b
r′ =

S1
rS

1
r′ S2

rS
1
r′ S3

rS
1
r′

S1
rS

2
r′ S2

rS
2
r′ S3

rS
2
r′

S1
rS

3
r′ S2

rS
3
r′ S3

rS
3
r′


ab

, (1.5)
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for a, b = 1, 2, 3. Using Eq. (1.4), each bilinear term is expanded as

SarS
b
r′ = S2δa3δb3 + S3/2


0 0

ar′+a
†
r′√

2

0 0
i(−ar′+a

†
r′ )√

2
ar+a†r√

2

i(−ar+a†r)√
2

0


ab

+ S

 1
2
(a†ra

†
r′ + a†rar′) + c.c i

2
(a†ra

†
r′ + a†rar′) + c.c 0

− i
2
(−a†ra†r′ + a†rar′) + c.c 1

2
(−arar′ + a†rar′) + c.c 0

0 0 −a†rar − a†r′ar′


ab

+ O(S
1
2 ) + · · · . (1.6)

The constant term proportional to S2 corresponds to the total energy of classical ground
state, while the linear term with respect to bosonic operators vanishes as shown below.
Hence, the lowest order contribution in magnon operators are bilinear terms proportional
to S, which corresponds to a single-particle picture of magnons (linear spin wave approx-
imation). Throughout this thesis, we treat magnons up to bilinear terms by neglecting
higher order contributions. But, the effect of magnon-magnon interactions arising from
higher order contributions are discussed in Section 5.5.4.

Here, we show that the linear term with respect to magnon operators vanishes for the
classical ground-state spin textures. Considering a two spin system with H = −JSr ·Sr′ ,
the spin wave Hamiltonian up to the linear order term is obtained by HP transformation
as

HSW = −J
[
S2mr ·mr′ + S3/2{(e+

r ·mr′)a
†
r + c.c. + (mr · e+

r′)a
†
r′ + c.c.}+O(S)

]
, (1.7)

where e+
r = (e1

r + ie2
r)/
√

2 and mr represents a unit vector parallel to the classical
ground-state spin texture at site r. The first term, which is the zeroth order term in
magnon operators, gives the total energy of classical ground-state Ecl = −JS2mr ·mr′ .
The linear order term proportional to S

3
2 is then given as

H
(1)
SW =

1√
S

[ ∂Ecl

∂mr

· (e+
r′a
†
r′ + c.c.) +

∂Ecl

∂mr′
· (e+

r a
†
r + c.c.)

]
= 0. (1.8)

The last equality follows from the fact that ∂Ecl

∂mr
= ∂Ecl

∂mr′
= 0 for the classical ground

state. The equivalent identity holds for any bilinear terms of spin operators.
From Eq. (1.6), we notice that magnon-number nonconserving terms (arar′ , a

†
ra
†
r′)

are obtained from the in-plane component of Sr and Sr′ . As a result, magnon Hamil-
tonians for noncollinear spin structures take the form of Bogoliubov-de Gennes (BdG)
Hamiltonian, which is known for the mean-field description of superconductors [74].

We derive the BdG form of magnon Hamiltonian from Eq. (1.3). When the classical
ground-state spin texture is spatially periodic, crystal momentum k can be introduced.
Here, the position vector is partitioned into r = R+ri, with a lattice vector of magnetic
unit cells and a position vector inside a unit cell represented by R and ri, respectively.
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The Fourier transform is then performed by ak,i = 1/
√
N
∑

R e
−k·(R+ri)ar, where N is

the total number of spins in the magnetic unit cell. The magnon Hamiltonian is derived
as [75, 76]

HSW =
S

2

∑
k

ψ†kiHij(k)ψkj + E0 , (1.9)

with

Hij(k) =

(
Ωij(k) ∆ij(k)

∆∗ij(−k) Ω∗ij(−k)

)
, (1.10)

where ψki = (aki, a
†
−ki)

T and E0 = −1
2
NS2

∑
i Λi with i = 1, . . . , N . Each expression is

given by

Λi(k) =
∑
j

[Jij(k = 0)mi ·mj −Dij(k = 0) ·mi ×mj] + bJ ẑ ·mi,

Ωij(k) = δijΛi +
1

2
[−Jij(k)e+

i · e−j +Dij(k) · e+
i × e−j ], (1.11)

∆ij(k) =
1

2
[−Jij(k)e+

i · e+
j +Dij(k) · e+

i × e+
j ],

with Jij(k) =
∑

R JR+ri,rje
−ik·(R+ri−rj), Dij(k) =

∑
RDR+ri,rje

−ik·(R+ri−rj), b = gµBBz
JS

,
and e±r = e1

r ± ie2
r.

The magnon BdG Hamiltonian of Eq. (1.10) can be diagonalized by the Bogoliubov
transformation as usual, but we need to account for the bosonic commutation relations.
This is carried out by diagonalizing the spin wave Hamiltonian with a paraunitary matrix
Tk. By definition, a paraunitary matrix satisfies T †kΣTk = TkΣT †k = Σ with Σ defined as

Σ =

(
1N×N 0

0 −1N×N

)
, (1.12)

where 1N×N is the identity matrix of order N . The diagonalized spin wave Hamiltonian
is given by

HSW = S
∑
λ,k

Eλ(k)
(
α†kλαkλ + 1

2

)
+ E0 , (1.13)

where λ is the index for each magnon mode, Eλ(k) is the corresponding eigenvalue, and
(ak, a

†
−k)T = Tk(αk, α

†
−k)T . We use the numerical diagonalization method described in

Ref. [77] to obtain Tk and Eλ(k).
Since the BdG Hamiltonian has a particle-hole symmetry, “particle” and “hole” bands

can be defined in the magnon BdG Hamiltonian. Using the paraunitary matrix Tk, we
have [2]

H(k)Tk = ΣTk

(
Eλ(k) 0

0 −Eλ(−k)

)
. (1.14)

In this theis, we refer to the upper subblock as “particle” bands and the lower subblock
as “hole” bands. Although there is no physical “hole” bands in magnon spectrum, this
convention is convenient for discussions of topological magnon bands in Section 1.1.4.



1.1. TOPOLOGICAL PHASES OF MATTER 7

1.1.4 Berry curvature and Chern number

Analogously to the topological band theory of electrons, topological properties of magnon
bands are characterized by the Chern number in reciprocal space. The main difference
from electronic systems lies in the bosonic nature of magnons and paraunitary property
of Tk.

The Berry connection of j-th magnon band was defined in Ref. [2] as

Ajν(k) = tr[iVjΣT
†
kΣ∂kνTk] = tr[iVjT

−1
k ∂kνTk], (1.15)

where Vj is a 2N × 2N matrix whose matrix element is unity only at the j-th diagonal
element and zero otherwise. The second equality was obtained from the paraunitary
identity ΣT †kΣTk = Σ2 = 12N×2N . In addition, the imaginary part of the Berry connection
is given as

Im[Ajν(k)] = Re
(

tr[VjT
−1
k ∂kνTk]

)
=

1

2
tr
[
VjT

−1
k ∂kνTk + (VjT

−1
k ∂kνTk)†

]
=

1

2
tr[VjT

−1
k ∂kνTk + Σ∂kνT

−1
k TkΣVj] =

1

2
tr[Vj∂kν (T

−1
k Tk)]

= 0. (1.16)

Hence, the Berry connection is purely real. The Chern number is obtained by integrating
the Berry curvature Ωj(k) over the first Brillouin zone.

Cj =

∫
BZ

dk

2π
Ωj(k) =

∫
BZ

dk

2π

[
∂kxAjy(k)− ∂kyAjx(k)

]
=

∫
BZ

dk

2π
itr[Vj∂kxT

−1
k ∂kyTk − Vj∂kyT−1

k ∂kxTk]. (1.17)

Here, we should note that the Berry curvature takes the equivalent form to electronic
systems but adapted to the paraunitary nature of bosons. Denoting |tj(k)〉 and 〈tj(k)|
is the j-th Bloch wave function in Tk and T−1

k , respectively, it is rewritten as

Ωj(k) = iεµν

( ∂

∂kµ
〈tj(k)|

)( ∂

∂kν
|tj(k)〉

)
, (1.18)

where εµν is the antisymmetric operator.
Following arguments in Ref. [78], we show the quantization of the Chern number of

Eq. (1.17). Firstly, it vanishes if the Berry connection Ajν(k) is defined uniquely over the
entire Brillouin zone. This is understood from the fact that the torus has no boundary.
From the Stokes theorem,

∫
S
∇×A · dS =

∮
C
A · d` = 0 where C = ∂S is the boundary

of surface S. The uniquely defined Berry connection Ajν(k) over the whole Brillouin
zone implies that the phase of j-th wave function is fixed globally. For example, we
could choose [Tk]m,j to be real by multiplying [Tk]∗m,j/|[Tk]m,j| for some m = 1, . . . , 2N .
However, this is not possible if [Tk]m,j = 0 at some k. Hence, the Berry connection cannot
be defined uniquely when [Tk]m,j has a zero in the Brillouin zone for any m = 1, . . . , 2N .
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In this case, we need to choose different gauges for two subregions of the Brillouin zone so
that [Tk]m,j has no singular point in each region. At the boundary between these regions,
the j-th wave function is related by a unitary transformation

T
(2)
k Vj = T

(1)
k Vje

iθk , (1.19)

where the superscript indicates subregions. Similarly, the gauge transformation is given
by

Aj,(2) = Aj,(1) −∇kθk. (1.20)

Applying the Stokes theorem, the Chern number is obtained as

Cj =
1

2π

∮
C

dk · (Aj,(1) −Aj,(2)) =
1

2π

∮
C

dk · ∇kθk, (1.21)

with C denoting the boundary between two subregions. Since the integration over a
closed loop C accumulates a 2πn phase winding, the Chern number is guaranteed to be
integers.

The relationship between the Chern number and the number of chiral edge states is
known as the bulk-edge correspondence [10, 11]. It states that the difference between the
number of left-moving edge states and right-moving edge states inside the i-th band gap
is equal to the total Chern number below it:∑

j<i

Cj = NL −NR, (1.22)

where NL/R is the number of left/right-moving edge states inside the i-th band gap.
Since the bulk-edge correspondence does not depend on the fermionic/bosonic nature,
Eq. (1.22) also holds in magnonic systems [2].

We also note the sum rule of Chern number [2]:

N∑
n=1

Cn =
2N∑

n=N+1

Cn = 0. (1.23)

Here, the summation is taken over “particle” bands and “hole” bands, respectively (see
Eq. (1.14)). The proof for the sum rule is provided in Appendix A.1. The sum rule is
only well-defined if there is no gapless modes at zero energy such as Goldstone modes,
so that there is no band touching between “particle” and “hole” bands at E(k) = 0.
From the bulk-boundary correspondence, Eq. (1.23) implies that there is no chiral edge
states between “particle” and “hole” bands. Therefore, chiral magnonic edge modes can
only appear at a positive energy but not at zero energy. A simple explanation is that
there is no magnon states with negative energy, as it induces instability of the underlying
magnetic structure. Hence, the lowest possible energies of chiral edge states lies between
the first and second magnon bands, which are positive values.
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(a) (b)

Figure 1.1: Schematic picture of multipole moments. Charge distribution for (a)
dipole moment and (b) quadrupole moment. Adapted from [80].

1.2 Multipole moments and higher-order topological

phases

In Section 1.2, we extend the concept of topological phases of matter to higher orders [79–
81]. higher-order topological phases in d-dimensional systems are characterized by bound-
ary localized states in (d− n)-dimensional space with n > 1. For example, second order
topological insulators in two-dimensional systems host corner states instead of edge states.

In the seminal work by W. A. Benalcazar, et al. [79, 80], the first model of higher-order
topological insulators was proposed, which is characterized by higher multipole moments
such as quadrupole moment in 2D and octupole moment in 3D. In this section, we review
Ref. [80] to introduce the multipole moment in periodic systems, which is generalization
of the modern theory of polarization [82–86]. For interested readers, the modern theory
of polarization is reviewed in Appendix D. We also show that bulk multipole moments
generate lower order multipole moments on boundaries, leading to fractional boundary
signatures of higher-order topological phases. This is illustrated by the minimal model
realization of quadrupole topological insulator.

1.2.1 Multipole expansion in classical electromagnetism

Following Ref [80], we introduce multipole moments in the classical theory of electromag-
netism. Considering the electric potential generated by multipole moments under the
open boundary conditions, we derive the equality between the bulk multipole moment
and boundary localized multipole moments.

Let us consider a finite system with local electric charge density ρ(r). By dividing
the system into small volume elements, the multipole moment densities can be defined.
The electric potential at r is given by

φ(r) =
1

4πε

∑
R

∫
v(R)

dr′
ρ(r′ +R)

|r −R− r′| , (1.24)

where ε is the dielectric constant and R is the labeling for each volume element with
volume v(R). Assuming that v(R) is much smaller than the whole volume of system, we
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have |r′| � |r −R| given that r is outside and sufficiently away from the system. The
multipole expansion is then performed by expanding the electric potential in powers of
1/|r −R| [87]. The multipole moment densities up to quadrupole moments are given as

ρ(R) =
1

v(R)

∫
v(R)

dr′ ρ(r′ +R), (1.25)

pi(R) =
1

v(R)

∫
v(R)

dr′ ρ(r′ +R)r′i, (1.26)

qij(R) =
1

v(R)

∫
v(R)

dr′ ρ(r′ +R)r′ir
′
j, (1.27)

where pi and qij are the dipole and quadrupole moment, which are shown schematically
in Fig. 1.1(a) and (b). The electric potential is expanded in terms of multipole moment
densities:

φ(r) =
∞∑
`=0

φ`(r), (1.28)

where the expressions up to the second order are

φ0(r) =
1

4πε

∫
V

dR ρ(R)
1

|d| , (1.29)

φ1(r) =
1

4πε

∫
V

dR pi(R)
di
|d|3 , (1.30)

φ2(r) =
1

4πε

∫
V

dR qij(R)
3didj − |d|2δij

2|d|5 , (1.31)

with d = r−R and summation taken over repeated indices. Here, the position vector to
each volume element R is treated as a continuous variable, justified for a small volume
element v(R) compared to the system volume V .

We should note that the multipole moment is uniquely defined only if all of the lower
order moments vanish. For example, the dipole moment cannot be defined uniquely unless
a system is charge neutral. If there is a net charge Q, arbitrary shifts in the coordinate
axes by r′ = r + D would result in an additional dipole moment

p’ =
1

Vcell

∫
cell

dr′3 r′ρ(r′) = p +QD. (1.32)

So the dipole moment is uniquely defined irrespective of the reference frame only if Q = 0.
Similarly, the quadruple moment has a physical meaning only if Q = p = 0.

Now, we consider the electric potential in the presence of bulk quadrupole moment
with Q = p = 0. In Appendix A.2, the electric potential due to the quadrupole moment
φ2(r) is rewritten as [80]

φ2(r) =
1

4πε

∑
a,b

∫
Lab

dR
(1

2
n

(a)
i n

(b)
j qij

) 1

|d| −
1

4πε

∑
a

∫
Sa

dR2
(
n

(a)
i ∂jqij

) 1

|d|

+
1

4πε

∫
V

dR3
(1

2
∂i∂jqij

) 1

|d| . (1.33)
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Figure 1.2: Corner charge induced by higher multipole moments. In a two-
dimensional system with no overall charge and dipole moment, charge accumulation oc-
curs at corners due to (a) a pair of dipole moments localized on edges and (b) bulk
quadrupole moment. Adapted from [80].

This expression was derived by assuming a cubic geometry, where Sa represent a surface
of cube normal to a unit vector n̂(a) and Lab represent a hinge at the intersections of
surfaces Sa and Sb (see Fig. A.1).

From Eqs. (1.29) and (1.33), φ2(r) can be interpreted as contributions of boundary
localized lower multipole moments, which are given as

λa,bhinge =
1

2
n

(a)
i n

(b)
j qij,

σaface = −∂j(n(a)
i qij) = −∂j(paface,j), (1.34)

ρv =
1

2
∂i∂jqij,

with λa,bhinge denoting a charge density per unit length along the hinge where surfaces S(a)

and S(b) intersect, σaface denoting a bound charge induced by the dipole moment density

per unit area paface,j = n
(a)
i qij on the surface S(a) perpendicular to n̂(a), and ρv denoting

the volume charge density. Assuming the open boundary condition of a cubic system,
the symmetric property of qij leads to

|λhinge| = |pface,j| = |qij|. (1.35)

As shown in Eqs. (1.33) and (1.34), a quadrupole moment induces a charge on one-
dimensional boundaries and a dipole moment on two-dimensional boundaries. By pro-
jecting the cubic system to a two-dimensional system within the xy-plane, we get a
corner accumulated charge Qc and an edge localized dipole moment density ~p as shown
in Fig. 1.2(b). From Eq. (1.35), we have

|Qc| = |~p | = |qxy|. (1.36)

This is the key equation relating the bulk quadrupole moment to boundary signatures
of the corner charge and edge dipole moment. If electrons in crystals support a nonzero
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quadrupole moment, we expect the emergence of corner charge and edge dipole moment
when the boundary is introduced, leading to the idea of higher-order topological phases.

In contrast, it is also possible to have corner charges without bulk quadrupole mo-
ments. Assuming that there is no contributions from higher multipole moments in the
bulk of system, Fig. 1.2(a) shows that a corner charge is obtained by the summation of
convergent dipole moments from both edges meeting at the corner

Qc = p1 + p2. (1.37)

Here, edge dipole moments p1 and p2 are independent from bulk quadrupole moments.
They are simply resulted from the local charge density distribution. The difference from
Eq. (1.36) is that both edge dipole moments contributes to the corner charge in Eq. (1.37).

1.2.2 Wannier centers and bulk multipole moments

In the previous section, we have defined multipole moments based on a local charge
density. However, the definition of multipole moments needs to be modified in spatially
periodic systems. The important point is that the average position of electrons in crystals
are only defined up to modulo lattice constant as discussed in Appendix D.1. As a result,
bulk multipole moments in crystals have a multivalued property.

In this section, we introduce Wannier functions by following Ref. [86]. They are
defined as the Fourier transform of Bloch functions. Crucially, they are eigenstates of
position operators in the real space, so the physical meaning of bulk multipole moment in
crystals is clarified using the Wannier representation. For example, the bulk polarization
can be interpreted as the overall displacement of localized Wannier functions from the
center of unit cell. Here, we consider a single band representation of Wannier functions.
A multiband formulation of Wanneir functions is explained in Appendix D.2.

Let us consider a n-th band Bloch function |ψn,k(r)〉 in the periodic gauge

|ψn,k+ ~G(r)〉 = |ψn,k(r)〉 , (1.38)

where ~G is the reciprocal lattice vector. Assuming that it is smoothly defined over the
entire Brillouin zone, the Wannier function is written as

|wn,R〉 =
Vcell

(2π)3

∫
BZ

dk3 e−ik·R |ψn,k〉 , (1.39)

|ψn,k〉 =
∑
R

eik·R |wn,R〉 , (1.40)

where R is the lattice vector and Vcell is the unit cell volume. While Bloch functions
infinitely extend over periodic systems, Wannier functions are exponentially localized
within the single unit cell labeled by R.

There are several important properties of Wannier functions. Firstly, the Wannier
functions are equivalent by translation wn,R(r) = wn,0(r −R). Secondly, they form an
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orthonormal basis and span the same subspace of the Hilbert space as Bloch functions.
Thus, they provide a convenient basis for constructing the tight-binding Hamiltonian in
terms of local interactions.

Another important property is that they are eigenstates of position operators. Fur-
thermore, their eigenvalues are the Fourier transform of the Berry connection. In order
to derive this property, we apply the position operator to a Wannier function. Noting
that |ψn,k(r)〉 = eik·r |un,k〉, we obtain

(r −R) |wn,R〉 =
Vcell

(2π)3

∫
BZ

dk3 (r −R) eik·(r−R) |un,k〉

=
Vcell

(2π)3

∫
BZ

dk3 (−i∇ke
ik·(r−R)) |un,k〉

=
Vcell

(2π)3

∫
BZ

dk3 eik·(r−R)(i∇k |un,k〉), (1.41)

where we have used an integration by parts for the last equality. Multiplying another
Wannier function from left, we obtain

〈wn,0| (r −R) |wn,R〉 = 〈wn,0| r |wn,R〉

=
Vcell

(2π)3

∫
BZ

dk3 e−ik·R 〈un,k| i∇k |un,k〉

=
Vcell

(2π)3

∫
BZ

dk3 e−ik·RAn(k). (1.42)

The first equality follows from the orthogonality relation R 〈wn,0|wn,R〉 = Rδ0,R. Thus,
the expectation value of position operator for n-th band is given by the Fourier transform
of its Berry connection. In particular, the diagonal matrix element of position operator
is called the Wannier center and given by

rn = 〈wn,0| r |wn,0〉 =
Vcell

(2π)3

∫
BZ

dk3 An(k). (1.43)

The above expression is valid if the corresponding energy band is isolated from other
bands for the entire Brillouin zone. By generalizing the Berry connection to a multiband
structure, the expectation value of position operator for a group of occupied bands is
obtained in Eq. (D.37):

r̃ =
Vcell

(2π)3

∫
BZ

dk3 tr[A(k)], (1.44)

where Amn(k) = i 〈un,k|∇k|um,k〉 with m,n labeling occupied states. Here, we should
note that Eq. (1.44) holds even if there are degeneracies of the occupied states at some
points in the Brillouin zone.

Noting that the electric polarization is given by the integration of Berry connection
in the modern theory of polarization in Eq. (D.5), the electric polarization of periodic
systems is simply given frp, Eq. (1.44) as

Pi = −r̃i mod 1 (1.45)
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where we take the lattice constant a = 1 and e = 1 for simplicity. Here, we explicitly
indicate that the electric polarization is only defined up to modulo integers by the gauge
transformation.

Higher multipole moments can be defined in an analogous manner using the Wannier
representation. In a two-dimensional system, a bulk quadrupole moment can be parti-
tioned into two opposite dipole moments in each half of the unit cell split orthogonal to
the dipole moments (see Fig. 1.1(b)). Now, we denote the Wannier centers along the y

axis for the right/left half of unit cell as ỹ
+/−
x . Similarly, the Wannier centers along the

x axis for the top/bottom half of unit cell is x̃
+/−
y . Then, the bulk quadrupole moment

is written as [80]
qxy = (ỹ+

x x̃
+
y + ỹ−x x̃

−
y ) mod 1. (1.46)

This expression provides the topological invariant for reflection symmetric higher-order
topological phases with quantized ỹ

+/−
x and x̃

+/−
y .

1.2.3 Symmetry constraints on bulk quadrupole moment

In the presence of crystalline symmetries, bulk multipole moments become quantized.
Without formal arguments (see Ref. [80] for details), we consider the symmetry opera-
tion to quadrupole moments derived in Eq. (1.46). In a two-dimensional system with
square geometry, the symmetry operation is described by combinations of {Mx,My, C4}.
Since quadrupole moments are only invariant under the tetrahedral subgroup T (2) =
{1, C4Mx, C4My, C

2
4} [80], they change the sign by {Mx,My, C4}. The reflection symme-

try acts on the Wannier centers for each sector as follows.

ỹ+/−
x

Mx= ỹ+/−
x ,

ỹ+/−
x

My
= −ỹ+/−

x → ỹ+/−
x = 0,

1

2
mod 1. (1.47)

Assuming the lattice constant to be unity, the symmetry constraint implies that the
Wannier centers are quantized to be ỹ

+/−
x = 0, 1

2
mod 1. Similarly, we have

x̃+/−
y

Mx= −x̃+/−
y → x̃+/−

y = 0,
1

2
mod 1,

x̃+/−
y

My
= x̃+/−

y . (1.48)

From Eq. (1.46), quadrupole moments are also quantized in the presence of both Mx and
My.

qxy =

{
0, trivial
1
2
, nontrivial.

(1.49)

Crucially, the nontrivial quadrupole moment results in a fractional corner charge Qc as
expected from Eq. (1.36).

In contrast, the C4 rotational symmetry does not quantize the Wannier centers ỹ
+/−
x

and x̃
+/−
y but only quantize the bulk quadrupole moment. In this case, the bulk quadrupole
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(a) (b) (c) (d)

Figure 1.3: Schematic representation of the minimal model with quadrupole
moment and realization of fractional corner charge and corner states. (a)
Tight-binding model with four orbitals in a unit cell indicated by blue squares. Dashed
lines imply a negative sign due to the π flux through each plaquette. (b) Band structure
at γ/λ = 0.5. (c) Charge density at T = 0 K for λ = 1, γ = 10−3, and δ = 10−3. (d)
Energy spectrum under open boundary conditions as a function of γ at λ = 1 and δ = 0.
Red flat bands represent four degenerate, exponentially localized corner states. They are
obtained for |γ/λ| < 1. In (c) and (d), the half-filling condition is assumed. Adapted
from [80].

moment is protected by the topology of bulk bands with its index determined by the C4

eigenvalues [80]. Recently, it was shown that higher-order topological phases protected
by rotational symmetries Cn are generally characterized by the Zn Berry phase, which is
computed along a Cn symmetric path in the momentum space [88–90].

1.2.4 Minimal model for quadrupole topological insulator

In Section 1.2.1, we have shown that the quadrupole moment in a bulk of sample induces
the corner charge and edge dipole moment in classical theory of electromagnetism, which
describes the central idea of higher-order topological phases. In this section, we briefly
introduce a simple model that realize a quadrupole topological insulator proposed in
Ref. [79, 80]. Our purpose is to illustrate the parallel between classical electromagnetism
and higher-order topological phases with bulk quadrupole moments.

The minimal model Hamiltonian is defined in a two-dimensional square lattice. In
each unit cell, it contains four spinless orbitals with the following Bloch Hamiltonian
matrix

h(k) =


0 0 γ + λeikx γ + λeiky

0 0 −γ − λe−iky γ + λe−ikx

γ + λe−ikx −γ − λe−iky 0 0
γ + λeikx γ + λeiky 0 0

 , (1.50)

where γ is the hopping amplitudes inside a unit cell and λ is the hopping amplitudes
between nearest neighbors. The negative sign of hopping amplitudes along only one
direction is realized by inserting a π flux inside unit cells and spacings between each unit
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(a)

(b)

(c)

(d)

Figure 1.4: Experimental detection of corner states in quadrupole topological
insulators. (a), (b) Spectrum of phononic crystals made from a mechanical metamate-
rial for (a) trivial and (b) non-trivial phases. While the trivial phase supports only bulk
(blue) and edge (orange) states, corner states (green) are observed inside the band gap
in the topologically nontrivial phase. (c), (d) Unit cells in the bottom row undergoes
the topological phase transition from (c) nontrivial to (d) trivial phase, resulting in the
translation of corner states in the microwave circuit. Left: schematic lattice model with
dashed lines indicating the negative hopping. Middle: normalized absorption spectrum
showing bulk (blue) and in-gap corner modes (green) for corresponding rows of the array.
Right: measured spatial distribution of modes inside the band gap, indicated by shaded
region. (a) are (b) are adapted from [91], while (c) and (d) are adapted from [92].

cell as shown schematically in Fig. 1.3(a). The eigenvalue is obtained as

E(k) = ±
√
ε2x(kx) + ε2y(ky), (1.51)

where εi(ki) =
√
γ2 + 2γλ cos(ki) + λ2 for i = x, y. The band gap closes at |γ/λ| = 1.

Figure 1.3(b) shows the gapped band structure at γ/λ = 0.5.
This model has reflection symmetries, which are respectively defined as

M̂x = iσ1 ⊗ σ3,

M̂y = iσ1 ⊗ σ1, (1.52)

where σi is the Pauli matrices. The symmetry transformation of Hamiltonian satisfies
the following identities.

M̂xh(kx, ky)M̂
−1
x = h(−kx, ky),

M̂yh(kx, ky)M̂
−1
y = h(kx,−ky). (1.53)

Therefore, it has a quantized quadrupole moment (see Section 1.2.3). Also, it has time-
reversal, chiral, and charge-conjugation symmetries although they are not required for
protecting quadrupole moments.
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The bulk quadrupole moment takes the nontrivial value qxy = 1
2

for |γ/λ| < 1, while
the topological phase transition occurs at the band gap closing point |γ/λ| = 1 [80]. The
prominent signature of quadrupole topological insulator is the bulk-boundary correspon-
dence:

qxy = pedge
x,y = Qc =

1

2
mod 1, (1.54)

with the electric charge e = 1 and the lattice constant a = 1. Figure 1.3(c) and (d)
demonstrates the emergence of corner charge and topologically protected corner states
as a manifestation of bulk-boundary correspondence, obtained under the open boundary
conditions.

For experimental realization, a difficulty arises from engineering systems with a neg-
ative hopping amplitude. Although it is difficult to introduce the π flux in electronic
systems, they have successfully realized the quadrupole topological insulators in other
systems, where it is relatively easy to control hopping amplitudes and phase factors [91–
93]. Figure 1.4 shows the measurement of corner states in microwave circuits and phononic
crystals [91, 92]. We should note that the topological band theory equally applies to classi-
cal systems and bosonic excitations even though they do not carry electric charge. Hence,
corner states observed in these systems are indeed resulted from the bulk quadrupole mo-
ment.

1.3 Magnetic skyrmions

In Section 1.3, we review the theoretical and experimental background of magnetic
skyrmions [94–99]. Starting from the brief history, we introduce the topological property
of skyrmions, which results in their enhanced stability. The topological spin structure also
results in the emergent gauge field that plays an important role in the transport phenom-
ena. We also discuss the mechanism to realize skyrmions in magnetic systems. While
there are several stabilization mechanisms, we focus on magnetic skyrmions stabilized
by the competition between the Heisenberg exchange interaction and Dzyaloshinskii-
Moriya interaction, paying a special attention to chiral magnets. Furthermore, the
Dzyaloshinskii-Moriya interaction results in a unique boundary condition, known as edge
twists [100–103]. The twisted edge magnetization in a confined system enhances the sta-
bility of magnetic skyrmions and leads to a critical behavior of the spin textures along
edges [104, 105]. We end this section by reviewing the magnetic excitation of skyrmions
and topologically nontrivial magnon band structure in skyrmion crystals, including our
recent publication on bilayer skyrmions [106].

1.3.1 Brief history

Skyrmion was first derived as a topological soliton solution in a three-dimensional non-
linear sigma model by T. H. R. Skyrme [107, 108]. Since skyrmions are characterized
by an integer topological charge that cannot be changed continuously, he originally pro-
posed them as a model for baryons to account for their stability. Later, skyrmion was
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Figure 1.5: Schematic representation of topological solitons. (a)-(c) Soliton solu-
tions in (a) one-dimensional, (b) two-dimensional, and (c) three-dimensional systems. (a)
Chiral soliton is formed by rotation of vector fields perpendicular to a single q vector. (b)
Skyrmion is constructed from superposition of three helices, satisfying

∑
i qi = 0. The

in-plane components are determined by the type of chiral interactions. Here, we show a
Bloch type skyrmion in (b). (c) Hedgehog configuration consists of three helices with q
vectors orthogonal to each other. (b) and (c) are adapted from Ref. [97].

rediscovered as a low energy effective model of quantum chromodynamics in the classical
limit [109, 110], which describe strong interactions between quarks and gluons.

Depending on spatial dimensions, topological soliton solutions are now known as chi-
ral solitons (1D) [111], skyrmions (2D) and hedgehogs (3D) as shown in Fig. 1.5. Those
topological defects were also realized in a variety of condensed matter systems, includ-
ing superliquid helium-3 [112–114], quantum Hall ferromagnets [115–119], liquid crys-
tals [120–123], and Bose-Einstein condensates [124–128]. In particular, topological spin
structures in magnetic systems have become important in the field of spintronics for
fundamental research and device applications.

The first step towards magnetic skyrmions was made by Bogdanov and his collab-
orators, showing that chiral interactions stabilize skyrmions in magnetic systems [129–
131]. Importantly, magnetic systems without inversion symmetry generally support chi-
ral interactions called the Dzyaloshinskii-Moriya interaction HDM =

∑
i<j Dn̂ · Si × Sj,

which arises from the spin-orbit coupling (see Appendix A.3 for details). The unit vec-
tor n̂ is determined by crystalline symmetries with the sign of D indicating the chi-
rality [36, 132, 133]. Nowadays, skyrmions were reported in various magnetic systems
such as chiral magnets [134–141], multiferroic insulators [142, 143], polar magnetic semi-
conductors [144], magnetic multilayer systems [145–150], ultrathin ferromagnetic lay-
ers [151, 152], and acentric tetragonal Heusler compounds [153].

There are other mechanisms that stabilizes magnetic skyrmions. In a centrosymmetric
magetic systems without the Dzyaloshinskii-Moriya interaction, magnetic skyrmions are
realized in a thin film sample by the dipole-dipole interaction and easy-axis anisotropy [154–
158]. In addition, geometrically frustrated spin systems can support topological spin
structures [159–162]. The typical size of magnetic skyrmions depends on the stabiliza-
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Figure 1.6: Spin structures of magnetic skyrmions. Magnetic textures of skyrmions
characterized by vorticity m and helicity γ. The black arrow and color indicates the
in-plane components of magnetization, while the brightness represents the out-of-plane
components with denoting spin-down states in black and spin-up states in white. Adapted
from [94].

tion mechanism: 10 ∼ 100 nm in non-centrosymmetric magnets; 100 nm to 1 µm in
centrosymmetric magnets; ∼ 1 nm in frustrated magnetic systems [94].

1.3.2 Topological charge

The noncollinear spin structure of magnetic skyrmions is characterized by the topological
charge. It is defined as how many times a normalized vector field n(r) covers a unit
sphere [94]

Q =
1

4π

∫
dr n(r) ·

[∂n(r)

∂x
× ∂n(r)

∂y

]
. (1.55)

Imposing the periodic boundary conditions, this is a topological index for mapping from
a torus to a unit sphere. This is characterized by the homotopy group π2(S2) ∼= Z [9].
Hence, the topological charge Q is guaranteed to be integers.

Let us consider a topological charge of an isolated skyrmion in the ferromagnetic
background. Using the rotational symmetry of skyrmions, a normalized spin vector is
written as

n(r) = {cosφ(ψ) sin θ(r), sinφ(ψ) sin θ(r), cos θ(r)}, (1.56)

where r = {r cosψ, r sinψ} is defined in the polar coordinates. From the chain rule, the
derivative of f(r, ψ) with respect to Cartesian coordinates is given by

∂f

∂r
=

∂x

∂r

∂f

∂x
+
∂y

∂r

∂f

∂y
,

∂f

∂ψ
=

∂x

∂ψ

∂f

∂x
+
∂y

∂ψ

∂f

∂y
.
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Figure 1.7: Schematic representations of topological charge density and spheri-
cal triangle in a square lattice. (a) The topological charge density is determined by
spin vectors of four surrounding lattice points. (b) Spherical triangle on a unit sphere is
constructed from three spin vectors. The surface area is given by Eq. (1.59) from angles
A, B and C of triangle on the surface of sphere.

Then, we have

∂n

∂x
= cosψ

∂n

∂r
− sinψ

r

∂n

∂ψ
,

∂n

∂y
= sinψ

∂n

∂r
+

cosψ

r

∂n

∂ψ
.

Substituting them, the integration is evaluated as

Q =
1

4π

∫ ∞
0

dr

∫ 2π

0

dψ
∂φ

∂ψ

∂θ

∂r
sin θ(r)

=
1

4π
[− cos θ(r)]r=∞r=0 [φ]ψ=2π

ψ=0 . (1.57)

Assuming that an external field is applied along the z axis, a spin is pointing downwards
at the skyrmion center and upwards at infinity. Hence, we obtain Q = −m with m =
[φ]ψ=2π

ψ=0 /2π denoting the vorticity. With the helicity γ defined as a phase φ at ψ = 0,
magnetic skyrmions are classified as Fig. 1.6. Skyrmions with m = −1 are known as
antiskyrmions due to their opposite topological charge to conventional skyrmions. In
addition, skyrmions with γ = 0, π are called Néel type skyrmions/antiskyrmions, while
skyrmions with γ = ±π/2 are called Bloch type skyrmions/antiskyrmions.

In a discrete lattice system, the topological charge can be defined as a summation of
topological charge density at the center of each lattice point. It is given as [163]

Q =
∑
r

ρ(r), ρ(r) =
σS(s1, s2, s3) + σS(s1, s3, s4)

4π
, (1.58)
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(a) (b)

Figure 1.8: Magnetic skyrmion crystals are stabilized by thermal fluctuations
in a bulk sample. (a) Magnetic textures of skyrmion crystals forming a triangular
lattice. Along z axis, it is translationally invariant. (b) Magnetic phase diagram obtained
by the Ginzburg-Landau theory near the critical temperatures Tc, where the horizontal
axis represents temperature with t ∝ T − Tc. The gray region corresponds to the well-
defined skyrmion crystal phase (denoted as A-crystal) with modest thermal fluctuations,
while those above and to the right of the red dashed line do not support a stable phase
due to uncontrolled large fluctuations. The inset shows the energy difference between
skyrmion crystal phase and conical phase in the mean-field approximation with and
without corrections from thermal fluctuations. Skyrmion crystal is stable at intermediate
fields for ∆G < 0. Adapted from [134]. Reprinted with permission from AAAS.

where si is normalized spin vectors in a square lattice as depicted in Fig. 1.7(a) and
σS(s1, s2, s3) is the signed area of the spherical triangle consisting of three spin vectors.
The surface area of the spherical triangle in Fig. 1.7(b) is given by

S = A+B + C − π, (1.59)

where A,B, and C are angles of the spherical triangle, which are determined from angles
a, b, and c between three spin vectors. The sign σ for σS(s1, s2, s3) is defined by

σ = sign[s1 · (s2 × s3)]. (1.60)

Crucially, this definition guarantees the topological charge to be integer in the periodic
boundary condition. However, the integer quantization is violated in a finite sample with
open boundaries. Nevertheless, we can estimate the topological charge of skyrmions in
confined systems by summing over the topological charge density. In Section 5.3.2, we
use the topological charge density to characterize fractional topological charge of edge
localized skyrmions.

1.3.3 Mechanism to stabilize skyrmions in chiral magnets

In the work by Bogdanov and Hubert [130], the stability of vortex lattice phase under
applied magnetic fields along z-axis was studied in chiral magnets with T symmetry and
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Figure 1.9: Magnetic phase diagram obtained experimentally for a thin film
sample of Fe0.5Co0.5Si and theoretically for a two-dimensional model. Spin
textures (a)-(c) observed by Lorentz transmission electron microscopy and (e)-(g) ob-
tained by Monte Carlo simulation. (d) and (h) respectively show the magnetic phase
digram in the B-T plane obtained experimentally and theoretically. A magnetic phase
labeled by H, SkX, and FM stands for helical phase, skyrmion crystal phase, and ferro-
magnetic phase, respectively. For the theoretical result in (h), both magnetic fields and
temperatures are scaled by some constants Tc and Bc. Adapted from [136].

polar magnets with Cnv symmetry (see Section 2.1 for symmetry argument). Here, the
vortex lattice phase corresponds to a triangular lattice of skyrmion crystals, whose mag-
netic textures is shown in Fig. 1.8(a). They showed that conical phase is always more
stable than skyrmion crystal phase in chiral magnets, which is a magnetic helix charac-
terized by a single q vector parallel to applied magnetic fields B ‖ ẑ (see Appendix A.4
for the mean-field solution). In contrast, skyrmion crystal phase was shown to be ther-
modynamically stable in polar magnets, whose symmetry does not allow the formation
of conical phase along the z-axis. Intriguingly, magnetic skyrmions were first discovered
in chiral magnets [134–137], although they were predicted to be only metastable. There
are two reasons for the stability of skyrmion crystals in chiral magnets.

Firstly, it was shown that thermal fluctuations stabilize the skyrmion crystal phase
near the phase boundary between the paramagnet and conical phase in three-dimensional
systems [134, 164]. Using the Ginzburg-Landau theory, the mean-field solutions of con-
ical phase and skrymion crystal phase were derived in Ref. [134], which is explained in
Appendix A.4. An inset in Fig. 1.8(b) shows the energy difference between skyrmion
crystals and conical phase as a function of magnetic fields in the mean-field approxima-
tion, showing that the energy of skyrmion crystals is always larger than conical phase as
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predicted by Bogdanov [130]. In order to stabilize skyrmion crystals, we need to go be-
yond the mean-field approximation. For this purpose, the Gaussian thermal fluctuations
were considered in Ref. [134]. The minimal free energy with thermal fluctuations is given
by

G ≈ F [Mmf] +
1

2
log det

( δ2F
δMδM

)∣∣∣
Mmf

, (1.61)

where F is the free energy functional and Mmf is the mean-field solution for each phase.
Remarkably, the correction from thermal fluctuations results in a narrow region where
the skyrmion crystal has lower energy than conical phase. This is indicated by the gray
shaded region in Fig 1.8(b), explaining the experimental observation of skyrmion crystals
in bulk chiral magnets such as MnSi and Fe0.5Co0.5Si [134, 135, 137].

Secondly, conical phase is suppressed in two-dimensional systems, leading to the en-
hanced stability of skyrmion crystals in thin film samples [136, 164, 165]. Using Monte
Carlo simulated annealing [166], the magnetic phase diagram of chiral magnet was stud-
ied for two-dimensional systems [165]. The obtained magnetic phase diagram for small
anisotropies consists of helical phase, triangular skyrmion crystal phase, and ferromag-
netic phase at T = 0 and under various magnetic fields. Here, we should note that the
helical phase is characterized by a single wave vector q ⊥ ẑ, so it is different from the
conical phase solution with q ‖ ẑ. The prediction of the enhanced stability of skyrmion
crystals in a two-dimensional system was confirmed by studying a thin film sample of
Fe0.5Co0.5Si [136]. In this work, magnetic configurations of skyrmion crystals were di-
rectly observed in the real space for the first time using high resolution Lorentz transmis-
sion electron microscopy, as shown in Fig. 1.9(a)-(c). In Fig. 1.9(b), a triangular lattice
of skyrmion crystal was clearly observed. A crucial observation is that the skyrmion
crystal phase was stable down to low temperatures, implying that they are thermody-
namically stable in a thin film sample without thermal fluctuations. The theoretically
obtained magnetic phase diagram for finite temperatures is in good agreement with the
experimental result as shown in Fig. 1.9(d) and (h) .

1.3.4 Edge twist and edge instability

In this section, we comment on the stability of skyrmion crystals in thin film samples.
While the skyrmion crystal phase is thermodynamically stable in a two-dimensional sys-
tem, it is metastable and only stabilized by thermal fluctuations in a three-dimensional
system. Then a natural question arises to fill in the gap between two limiting cases:
How does the stability of skyrmion crystals depends on the thickness of a sample? This
is related to the unique boundary condition imposed by the Dzyaloshinskii-Moriya inter-
action, resulting in the twisted magnetization along edges [100–103]. The derivation of
edge twist is presented in Appendix A.7.1. The effect of twisted spin textures on surfaces
and edges of a thin film sample is discussed below.

Firstly, we consider twisted spin textures on surfaces to films. The surface twist
is localized to boundaries with its penetration length scaled by the zero-field helical
wavelength LD = 4πA/D with the exchange stiffness A and the Dzyaloshinskii-Moriya
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Figure 1.10: Enhanced stability of skyrmion crystals in thin film samples due
to the chiral surface twist. (A) The magnetic phase diagram of chiral magnets in a
thin film sample at T = 0. The dimensionless variables for the film thickness and applied
fields are denoted as ν = L/LD and h = H/HD (defined in Appendix A.7.1). Each
phase is separated by the first order transitions (solid lines). The inset shows the energy
density difference between the skyrmion crystal and conical phases along a dotted line
at H = 0.4HD for various film thickness. (B) Lorentz transmission electron microscopy
images of an FeGe wedge at T = 250 K with increasing the magnetic field: (a) 0.013 T,
(b) 0.0873 T, (c) 0.1073 T, (d) 0.2215 T, (e) 0.2355 T, (f) 0.3728 T. The thickness changes
from 120 nm (left) to 60 nm (right) in the direction parallel to a blue tetragon. The helical
and skyrmion crystal phases coexist in (c), while the first order phase transition between
the skyrmion crystal and conical phase is observed in (d) and (e). Adapted from [167].

interaction D [102]. If a film sample has a thickness much greater than LD, the surface
twist does not affect the bulk spin textures. In this case, the conical phase (q ‖ ẑ)
is stable, while the skyrmion crystal phase is metastable [134, 164]. In contrast, the
surface twist induces chiral modulations of helicoids (q ⊥ ẑ) and skyrmion crystals along
z axis if a thickness of sample is comparable to LD [169]. As a result, the energy of
skyrmion crystals and helicoids are drastically modified, making them thermodynamically
stable over a broad range of applied magnetic fields [167]. Figure 1.10(A) shows the
magnetic phase diagram of chiral magnets in a thin film sample at T = 0, illustrating
the enhanced stability of the helical and skyrmion crystal phases when a thickness of
sample becomes comparable to LD [167]. Furthermore, they experimentally confirmed
the thickness dependence by studying a wedge sample of FeGe. As shown in Fig 1.10(B),
the transition from a skyrmion lattice to a conical phase occurs at lower magnetic fields
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Figure 1.11: Experimental observation of chiral edge twists at different mag-
netic fields. (A) Schematic representation of magnetic structure in a nanostripe of chiral
magnets. The edge twist is perpendicular to the radial vector pointing outwards from
the center of a skyrmion. (B) Magnetic field dependence of edge spin textures in an FeGe
nanostripe at 240 K. (a)-(d) In-plane magnetization Mxy obtained by off-axis electron
holography. The applied magnetic field for each panel is (a) 0 mT, (b) 100 mT, (c) 200
mT, (d) 300 mT, respectively. (e)-(h) Enlarged spin textures near edges marked by a
white rectangular in (a)-(d). Adapted from [168].

in a thicker region of the wedge (left-hand side of the wedge).

The twisting also occurs along edges of two-dimensional systems. Figure 1.11(A)
shows the schematic representation of edge twists in a confined system. It should be
noted that the twisted angle is inverted at opposite edges. The chiral orientation of
edge twists results in the repulsive interaction with skyrmions near edges, which creates
a topological barrier to confine isolated skyrmions inside nanodots [101]. Furthermore,
it also prevents skyrmions from being pushed out of a nanostripe during the current
driven motion [170, 171]. Therefore, the edge twist also contributes to the stability of
skyrmions. Although the direct imaging of edge twists is challenging due to a necessary
spatial resolution, it was observed using high-resolution Lorentz transmission electron
microscopy and off-axis electron holography [104, 168]. Figure 1.11(B) shows the magnetic
field dependence of edge twists observed in an FeGe nanostripe [168]. They showed that
the penetration length of edge twists decreases with magnetic fields but twisted spin
textures persist even in the ferromagnetic phase at 300 mT, which is consistent with the
theory [100–103].

In addition, the chiral edge twist also acts as a source of topological charges of
skyrmions. Since the quantization of topological charge is guaranteed by mapping from a
torus to a unit sphere (see Section 1.3.2), the topological charge is no longer quantized in
confinement. Consequently, it becomes possible to continuously deform twisted magneti-
zations along edges to create skyrmions. This is known as the edge instability, where the
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Figure 1.12: Creation of edge-localized skyrmion chains due to the edge in-
stability in the numerical simulation and experiment. (A) Snapshots of spin
configurations near the edge at various times, obtained by the classical spin dynamics
simulations at κ = 0 and α = 0.4. As shown in the inset, the magnetic field protocol is to
start at h = 1.0 in (a), decrease it to h = 0.39 < hc = 0.4067 in (b) and (c), and increase
it back to h = 1.0 in (d)-(g). (B) The magnetic field dependence of spin textures near the
edge, observed in a 130 nm FeGe nanostripe at T = 100 K with high-resolution Lorentz
transmission electron microscopy (TEM). (a) TEM image of the FeGe nanostripe. (b)-(h)
In-plane components of magnetizations with increasing magnetic fields. The wave vector
~Q for the helical phase is indicated. The white dot lines in (b) and small black trian-
gles in (b)-(h) stand for the FeGe/PtCx interfaces. (i)-(k) Enlarged images of the white
squared region in (b), (c), and (e). •/× represents the upward/downward magnetization,
respectively. (l-n) The schematic representation of spin textures in (i)-(k). (A) is adapted
from [105], and (B) is adapted from [104].

bound states of magnons along twisted edges cause a local instability below the critical
magnetic field [105]. For interested readers, a review of edge instability is provided in
Appendix A.7.2.

One important consequence of the edge instability is nucleation of skyrmion chains
along the edge. This is demonstrated by the micromagnetic simulation in Fig. 1.12(A).
Starting from the ferromagnetic phase at large magnetic fields, the magnetic field is
lowered below the critical value hc for the edge stability in Fig. 1.12(A)(b) and (c), where
edge magnetizations become unstable to nucleate helical domains. The observed edge
localized half-moon skyrmions are characterized by a fractional topological charge. Since
they are energetically more favorable than the ferromagnetic phase, they penetrate into
the ferromagnetic background as time evolves. Finally, they turn into a chain of skyrmions
by increasing the magnetic field above the critical value again (Fig. 1.12(A)(d)-(g)). We
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should note that helical domains may be pushed out of edges or converted into skyrmions,
depending on their sizes.

The formation of edge-mediated skyrmion chains was experimentally observed in an
FeGe nanostripe as shown in Fig. 1.12(B) [104]. They showed that helical stripes directly
turn into skyrmion chains along the edge without intermediate nucleation of half-moon
skyrmions as the magnetic field is increased. Although it is consistent with the theoretical
prediction of edge instability, there is no experimental observation of skyrmions with a
fractional topological charge until now.

1.3.5 Emergent electromagnetism of skyrmions

In ferromagnetic metals, the coupling between noncoplanar spin structures and conduc-
tion electrons induces effective electromagnetic fields [172–174]. Assuming a long peri-
odicity of magnetic order, the emergent magnetic field Bs

z and electric field Es
i are given

by [94, 173, 175] (see Appendix A.8 for derivation)

Bs
z =

~c
2e
m · (∂xm× ∂ym),

Es
i =

~
2e
m · (∂im× ∂tm), (1.62)

where m is a unit vector parallel to the magnetization, c is the velocity of light, and
e > 0 is the elementary charge. Since the emergent magnetic field is proportional to
the topological charge density m · (∂xm× ∂ym), the total magnetic flux of skyrmions is
quantized to be −2πm~c/e with vorticity m [94]. As a result, conduction electrons expe-
rience the Lorenz force in the presence of magnetic skyrmions, leading to the topological
Hall effect [135, 176–183]. The topological Hall effect was experimentally measured in
MnSi as an additional contribution in the Hall resistivity in the presence of skyrmion
crystals [135, 183, 184]. Conversely, magnetic skyrmions can be driven by electric cur-
rents through the spin-transfer torque with some Hall angle, known as the skyrmion Hall
effect [145, 175, 185–187]. A review of topological Hall effect and skyrmion Hall effect is
provided in Appendix A.9.

1.3.6 Local magnetic excitation of skyrmions

Classical spin systems support collective excitations known as spin waves, which cor-
respond to the precession of magnetizations at some resonance frequency ω and crystal
momentum k. Spin waves are the classical limit of magnons, and they can be numerically
simulated in the classical spin dynamics described by the Landau-Lifshitz-Gilbert (LLG)
equation (see Appendix A.6). In this section, we review spin wave modes of magnetic
skyrmions arising from its particle nature and quantized topological charge [188, 191].
In particular, we discuss local spin wave excitations bounded to magnetic skyrmions at
k = 0. In Section 1.3.8, the full band spectrum of magnons for k 6= 0 in the skyrmion
crystal phase is discussed.



28 CHAPTER 1. INTRODUCTION

(A) (C) (D)

(B)

Figure 1.13: Experimental observation of CCW and breathing modes of
skyrmions in Cu2OSeO3. (A) Theoretically obtained resonance frequencies of CCW,
CW, and breathing modes plotted against magnetic fields, where SkX denotes the
skyrmion crystal phase. (B) Schematic representation of elementary excitations of
skyrmions. (C) Magnetic field dependence of (b) magnetic susceptibility, (c) peak fre-
quency of microwave absorption, and (d) intensity of each mode in (c), obtained at
57.5 K under ac magnetic magnetic field along the in-plane direction. The skyrmion
crystal phase was obtained between thick gray bars. (D) is the same as (C) but obtained
under ac magnetic magnetic field along the out-of-plane direction. (A) is adapted from
[188], and (B)-(D) are adapted from [189].

The low energy excitation of skyrmions has a gapless Goldstone mode, since the
translational invariance is broken by magnetic skyrmions. As discussed in Section 1.3.5,
topological spin structures of skyrmions induce an emergent magnetic field, which acts
as a gauge field for spin waves [29, 34]. It was pointed out that the emergent gauge field
results in the quadratic dispersion of Goldstone modes (ω ∼ k2) as well as a gapped
cyclotron mode of skyrmions [175, 192]. Soon after, three important low energy exci-
tations of magnetic skyrmions were theoretically predicted in the GHz frequencies by
M. Mochizuki [193], which were characterized by the following selection rules. With an
ac magnetic field applied along in-plane directions (HAC ⊥ HDC), two rotational modes
with opposite directions were excited using the numerical simulations of LLG equation,
termed as counterclockwise (CCW) mode and clockwise (CW) mode. The resonance
frequency of CCW mode was always found lower than CW mode in chiral magnets as
shown in Fig. 1.13(A). The third mode was excited under an ac magnetic field applied
along out-of-plane directions (HAC ‖ HDC) at resonance frequency between CCW and
CW modes. This mode is associated with deformation of skyrmions in the radial direc-
tion, hence called breathing mode. Figure 1.13(B) shows schematic representations of
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Figure 1.14: Magnetic field dependence and temporal profile of magnon modes
bounded to a single skyrmion. (a) Magnetic field dependence of magnon spectrum
in the presence of a single skyrmion, where κ2/Q2 represents the dimensionless magnetic
field strength. Light blue, blue, and green line respectively corresponds to breathing
mode (m = 0), elliptical mode (m = −2), and triangular mode (m = −3). (b) Snapshots
of skyrmion textures for each magnon mode plotted as a function of time with T denoting
the period of oscillation. Adapted from [190].

these spin wave modes.
Importantly, all of CCW, CW, and breathing modes are magnetically active, imply-

ing that they can be excited by spatially uniform ac magnetic fields. The experimental
study of spin wave modes of skyrmions was first reported for a bulk sample of Cu2OSeO3

in Ref. [189], as shown in Fig.1.13(C) and (D). From microwave absorption spectra for
GHz frequencies, resonance frequencies at various magnetic field were studied under in-
plane and out-of-plane ac magnetic fields. They found a unique resonance mode in the
skyrmion crystal phase for both in-plane and out-of-plane ac magnetic fields, identified
as CCW mode at 1 GHz (red circles in Fig.1.13(C)(c)) and breathing mode at 1.5 GHz
(black circles in Fig.1.13(D)(c)) [189]. In this experiment, it was not possible to resolve
CW mode from a reminiscent of magnetic excitations of the conical phase (blue circles
in Fig.1.13(C)(c)). Similar measurement was performed in other chiral magnets such as
MnSi (metal) and Fe0.8Co0.2Si (semiconductor), confirming the universal nature of these
spin wave modes in skyrmion-hosting materials [194]. In addition, Cu2OSeO3 is a multi-
ferroic insulator with strongly coupled electric and magnetic dipole moments [142, 143]
(see Section 2.2.2 for details). Hence, spin waves can be excited by an oscillating electric
field, known as electromagnons [195]. As an experimental signature of electromagnons,
the nonreciprocal directional dichroism was predicted and experimentally observed in
Cu2OSeO3, which is caused by the interference between oscillating magnetic and electric
dipole moments [191, 196–199].

So far, we have discussed magnetic excitations of skyrmion crystals. The magnetic
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excitation of isolated skyrmions has been also studied in the ferromagnetic background.
In the presence of skyrmions, the propagation of spin waves was shown to be deflected due
to the emergent magnetic field, giving rise to a topological magnon Hall effect [190, 200].
Skyrmions also act as a confining potential of spin waves, thus hosting several internal
excitation modes below the bulk continuum [106, 190, 201]. In addition to CCW and
breathing modes, the internal modes include deformations to m-th order polygons [201].
Figure 1.14(a) shows the magnon spectrum of single skyrmion at k = 0 as a function
of magnetic field, showing breathing mode (m = 0), elliptical (m = −2), and triangular
(m = −3) deformations [190]. Deformations of skyrmions associated with each magnon
mode is illustrated in Fig. 1.14(b). Although it is not shown in Fig. 1.14(a), CCW mode
lies just below the bulk continuum [106]. Figure 1.14(a) indicates that the energy of
elliptical mode becomes negative below the critical magnetic field, which leads to a local
instability of skyrmions against elliptical deformations known as bimerons [202].

1.3.7 Spin wave radiation from a topological charge dipole

In this section, we briefly discuss our recent work on magnetic excitations of a skyrmion-
antiskyrmion bilayer system. The main finding is that the interlayer interaction between a
skyrmion and an antiskyrmion results in a rotational mode characterized by a topological
charge dipole. The emitted spin wave also shows a dipole radiation pattern as shown in
Fig. 1.15. The content of this section was published in Ref. [106].

The important technological goal of magnon spintronics is to achieve a controlled
spin wave emission with nanoscale wavelength for device applications [25]. For example,
an array of spin torque nano-oscillators, which convert electric currents into spin waves
in a ferromagnetic layer, has been proposed as a directional spin wave emitter [203,
204]. More recently, a radial pattern of spin waves was observed in a stack of magnetic
vortices characterized by an integer winding number of in-plane magnetization [205–
207]. In Ref. [206], the radial spin wave pattern was resulted from gyrotropic motions of
antiferromagnetically coupled vortices.

Analogously to magentic vortices, a rotational spin wave mode of single magnetic
skyrmions could be used for a spin wave emitter. To achieve a better control, we consider
a bilayer system, where each layer hosts a skyrmion or an antiskyrmion with a different
topological charge and helicity (see Section 1.3.2 for definition). Each layer is described
by

Hi = 1
2

∑
〈r,r′〉

(−JSir · Sir′ +Dn̂r,r′ · Sir × Sir′)− gµBBz

∑
r

Sir · ẑ , (1.63)

where Sir represents a spin at r with r labeling a site defined on a two-dimensional
square lattice in i-th layer for i = 1, 2. The subscript 〈r, r′〉 denotes summation over
the nearest neighbors with lattice constant a. It contains the ferromagnetic exchange
interaction J > 0, Dzyaloshinskii-Moriya interaction with a unit vector n̂r,r′ , and Zeeman
term for coupling with external fields with g and µB denoting the g-factor and Bohr
magneton, respectively. By choosing a Dzyaloshinskii-Moriya vector n̂r,r′ for different
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Figure 1.15: Spin wave radiation from a skyrmion-antiskyrmion bilayer. Left:
spin textures for Bloch skyrmion and antiskyrmion characterized by opposite topological
charges. Right: spin wave patterns emitted by a Bloch skyrmion-antiskyrmion bilayer
under an in-plane ac magnetic field, showing a dipole radiation pattern. Adapted from
[106].

crystalline symmetries in each layer (see Section 2.1 for expressions), we can prepare
a bilayer system consisting of either a skyrmion-antiskyrmion, skyrmion-skyrmion, or
antiskyrmion-antiskyrmion pair placed on top of each other. The full Hamiltonian is
given by [106]

H = H1 +H2 +Hint +Hosc, (1.64)

with

Hint = −Jint

∑
r

S1
r · S2

r, (1.65)

Hosc = −
∑
r

gµBB0 cos(ωt)(S1
r,x + S2

r,x). (1.66)

The first term is the ferromagnetic interlayer coupling with 0 < Jint < J . The second
term denotes an applied in-plane ac magnetic field with frequency tuned at the resonance
frequency of the lower energy rotational mode, which corresponds to counterclockwise
(CCW) mode for skyrmions (see Section 1.3.6). For antiskyrmions, the magnon spectrum
is the same as skyrmions, except that the direction of rotational mode is inverted, implying
that clockwise (CW) mode has lower energy than CCW mode [106]. The resonance
frequency of CCW (CW) mode for (anti)skyrmions was found as ω = gµBBz/~ [106].

Now, we discuss our main result. We consider a bilayer system consisting of Bloch
skyrmion-antiskyrmion (type I) and Bloch skyrmion-Bloch skyrmion (type II). For the
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Figure 1.16: Relationship between spin wave patterns and trajectory of
skyrmion/antiskyrmion. Top : the dynamics of the collective coordinates Ri(t) de-
fined in Eq. (1.68) for each layer and the relative displacement defined as R0 = R1−R2

in units of lattice constant a. Blue lines denote the trajectory of R1(t) for layer 1, while
red lines denote the trajectory of R2(t) for layer 2. Bottom: snapshot of spin wave pat-
tern δm1

r,z(t) for layer 1. Type I and type II corresponds to a bilayer consisting of Bloch
skyrmion-antiskyrmion and Bloch skyrmion-Bloch skyrmion, respectively. The parameter
is taken at D/J = 1.0, gµBBz/JS = ~ω/JS = 0.6, Jint/J = 0.3, and gµBB0/JS = 0.1.
The Gilbert damping constant is fixed at α = 0.08. Adapted from [106].

results of all the possible combinations of skyrmions and antiskyrmions, we refer to
Ref. [106]. The spin wave emission from the bilayer systems was studied by numeri-
cal simulations of the Landau-Lifshitz-Gilbert (LLG) equation (Appendix A.6). Under
the in-plane ac magnetic fields, the skyrmion and antiskyrmion respectively undergoes
the CCW and CW mode. As a result, deviations from the ferromagnetic state propagate
outwards from the center of (anti)skyrmion. The emitted spin wave is characterized by

δmi
r,z(t) = mi

r,z(t)−mi
FM,z(t), (1.67)

where i = 1, 2 is the layer index, mi
r(t) is a unit vector parallel to the magnetization,

and mi
FM(t) is a spatially uniform magnetization obtained far away from (anti)skyrmions

where the spin wave contribution is negligible. Bottom panels of Fig. 1.16 show the
snapshots of δm1

r,z(t) for both types in layer 1, obtained at Jint/J = 0.3 and D/J = 1.0.
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Figure 1.17: Interlayer coupling dependence of far-field spin wave amplitude.
Far-field amplitude A as a function of interlayer coupling Jint for ρ = 55a, obtained for
type I and II. The inset shows that A decays exponentially with ρ, expected for a non-
zero Gilbert damping constant. The parameter is the same as Fig. 1.16 except for Jint.
Adapted from [106].

Importantly, the spin wave pattern for type I is not radial but instead directed towards
a diagonal axis. In contrast, the result for type II shows a radial pattern similar to the
spin wave emission of single skyrmions. It should be noted that spin wave pattern in
layer 2 is almost identical with layer 1, given by δm2

r,z(t) ≈ δm1
−r,z(t) for type I and

δm2
r,z(t) ≈ δm1

r,z(t) for type II.

To analyze the skyrmion dynamics in each layer, we introduce a center of mass of
skyrmions in terms of topological charge density (see Section 1.3.2):

Ri(t) =
1

Qi

∫
d2r r

[
mi

r(t) · {∂xmi
r(t)× ∂ymi

r(t)}
]
, (1.68)

where Qi is the total topological charge and i = 1, 2 is the layer index. Top panels of
Fig 1.16 show the trajectory of the collective coordinate Ri(t) over a single oscillation pe-
riod, which forms a closed path as the system is in a time-periodic steady state. From the
result for type I, we notice that the trajectories of skyrmions and antiskyrmions are an-
tisymmetric with opposite rotational directions. Furthermore, the relative displacement
between skyrmions and antiskyrmions oscillates along a straight diagonal line, which can
be interpreted as a dipole oscillation of topological charge. Therefore, the spin wave
pattern for type I is originated from the dipole radiation of topological charge. In con-
trast, the trajectory of type II is identical for both layers with no relative displacement,
implying the synchronized CCW mode of Bloch skyrmion in each layer.

We have also studied the parameter dependence of the far-field spin wave amplitude,
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defined as the [106]

A =
Ms

NJ

∑
r∈J

1

2
(max[δm1

r,z(t)]t∈[0,T ] −min[δm1
r,z(t)]t∈[0,T ]), (1.69)

with Ms = |Sr| and T = 2π/ω being the period of oscillation of the applied ac magnetic
field. Here, the angular dependence of spin waves is averaged out by taking summation
over the area J of an annulus centered around the skyrmion core, with inner (outer)
radius ρ (P = ρ + 5a), containing NJ sites. Figure 1.17 shows the interlayer coupling
dependence of the far-field spin wave amplitude A for type I and II at ρ = 55a. For type
I, it is linearly proportional to Jint, hence we can control the spin wave amplitude by
tuning Jint. In contrast, the spin wave amplitude is unaffected by the interlayer coupling
for type II. The difference arises from the formation of topological charge dipole in type
I, which is enhanced by large Jint.

So far, we have discussed the result for D/J = 1.0. In Ref. [106], we also discuss
the result for smaller D/J ratios and obtain the equivalent result. It should be noted
that D/J sets the length scale in spin lattice model. This is because the Dzyaloshinskii-
Moriya interaction is given as a first order spatial derivative in contrast to the exchange
interaction proportional to a second order spatial derivative in the continuum limit (see
Appendix A.5). Hence, we need to take into account a change in the length scale when
evaluating the far-field spin wave amplitude A at various D/J ratios.

As a concluding remark, we have shown that the skyrmion-antiskyrmion bilayer sys-
tem exhibits a strongly coupled rotational mode under in-plane ac magnetic fields, forming
a topological charge dipole. The radiated spin wave pattern is directed parallel to the
topological charge dipole, with its amplitude proportional to the ferromagnetic interlayer
couping. Therefore, we suggest a skyrmion-antiskyrmion bilayer system as an efficient
spin wave emitter. Bilayer skyrmion systems can be experimentally realized in a stack of
nanodiscs separated by a spacer [149], allowing skyrmions and antiskyrmions placed on
top of each other.

1.3.8 Topological magnon band structure in skyrmion crystals

In this section, we discuss the magnon band structure of skyrmion crystals for all k points
in the first Brillouin zone. Using the general form of spin wave Hamiltonian derived
in Section 1.1.3, the magnon spectrum for skyrmion crystals can be computed from a
numerically obtained magnetic unit cell. Once the magnon spectrum is obtained, we
could compute the Berry phase and Chern number for each magnon band to characterize
its topological property (see Section 1.1.4).

The magnon band structure of skyrmion crystals for the entire Brillouin zone was
first obtained by Roldán-Molina and his collaborators [208]. Using the above mentioned
approach, it was shown that the low energy magnon bands consist of nearly flat bands,
pointing out the presence of localized magnon modes. Later, they have shown that
the nontrivial topological band structures are realized in the skrymion crystals [209], as



1.3. MAGNETIC SKYRMIONS 35

Figure 1.18: Magnetic unit cell and magnon band structure of the skyrmion
crystal. (a) A hexagonal magnetic unit cell defined in a triangular lattice of skyrmion
crystals. The Dzyaloshinskii-Moriya interaction stabilizes Néel type skyrmions. (b)
Magnon band spectrum of the skyrmion crystal, computed from a hexagonal magnetic
unit cell. The inset shows the first Brillouin zone. The Chern number for each band is
indicated by an encircled number. Adapted from [209].

discussed below. The equivalent result was also obtained in the continuum limit using
the nonlinear sigma model [188, 210].

In the following, we review Ref. [209] to introduce the magnon band structure and its
topological property in the skyrmion crystals. In Ref. [209], a two-dimensional spin lattice
model was considered on triangular lattice with the Hamiltonian similar to Eq. (1.3),
where the Dzyaloshinskii-Moriya interaction was given as Eq. (2.5). In addition, they
have considered the easy-axis anisotropy that does not affect the magnon band topology.
In this model, Néel type skyrmions are stabilized by the competition between the exchange
interaction and Dzyaloshinskii-Moriya interaction. Under a finite out-of-plane magnetic
field, the classical gound-state spin texture forms triangular skyrmion crystals as shown
in Fig. 1.18(a). For the calculation of magnon band structure, the hexagonal magnetic
unit cell was used.

Figure 1.18(b) shows the magnon band spectrum of the skyrmion crystal along a
path connecting the high symmetry momenta within the first Brillouin zone. Above the
second bulk bands, topologically nontrivial band structures are obtained, indicated by
an encircled number on each band that denotes the Chern number. The origin of the
topological magnon band structure was explained by the emergent gauge field arising
from both the topological spin structure and Dzyaloshinskii-Moriya interaction [29, 30].

Since the sum of Chern numbers below the third band is +1, we expect a chiral
magnonic edge state connecting the third and fourth band from the bulk-edge corre-
spondence of Eq. (1.22). In order to compute the edge spectrum, the ground-state spin



36 CHAPTER 1. INTRODUCTION

Figure 1.19: Topologically protected chiral magnonic edge states in the
skyrmion crystals. Left: magnon band spectrum for a one-dimensional strip geom-
etry. Top right: classical ground-state spin texture in a strip geometry with a finite
width w, containing 11 skyrmions. Bottom right: probability density of chiral magnonic
edge states. Adapted from [209].

texture for a one-dimensional strip geometry was numerically obtained as shown in the
top right panel of Fig 1.19. While the spin structure near the sample edge is modified
due to the edge twist (see Section 1.3.4), a periodic structure of skyrmions was realized
inside the bulk of sample. The magnon spectrum for the one-dimensional system is shown
in the left panel of Fig 1.19. The bulk subbands corresponding to the lowest two bulk
bands are separated by global band gaps. In contrast, bulk subbands at higher energies
are connected by in-gap states arising from the bulk-edge correspondence. For example,
there is a single left- and right-moving state between the third and fourth bulk band gap,
localized at opposite edges as shown in the bottom right panel of Fig 1.19.

1.4 Outline of this thesis

In Chapter 1, we have covered a wide range of topics. The main ideas are summarized
as follows:

• The topological band theory for magnonic systems has been successfully formulated
analogously to electronic systems in the literature.

• Beyond topological phases characterized by Chern numbers, multipole moments
provide new topological invariants for higher-order topological phases.
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• Magnetic skyrmion crystal is an ideal platform for topological magnonics due to the
enhanced stability with the integer topological charge and the emergent gauge field
arising from noncoplanar spin structures and Dzyaloshinskii-Moriya interaction.

So far, there has been no study on the magnetic field dependence of topological proper-
ties of magnon bands in skyrmion crystals. Since the external control over topologically
protected boundary-localized states is crucial for applications, we have a following im-
portant problem: Is it possible to drive a topological phase transition in skyrmion crystals
by external fields? Motivated by this question, we discuss the following three research
projects in this thesis:

1. Magnetic-field driven topological phase transition for controlling chiral edge states.

2. Laser-driven topological phase transition with induced skyrmion motions.

3. Magnonic corner states arising from the magnonic quadrupole moment.

It should be noted that we focus on magnetic skyrmions stabilized by the competition
between the exchange interaction and Dzyaloshinskii-Moriya interaction in this thesis.

For the first project, we investigate the magnetic field dependence of magnon band
topology by tracking the change in Chern numbers with increasing magnetic fields. The
low energy magnon spectrum is characterized by counterclockwise (CCW) rotational
mode and breathing mode of skyrmions as well as flat bands arising from other magnon
bound states (see Section 1.3.6). The important finding is that the topological phase
transition can be driven by external magnetic fields, associated with the band inversion
between the CCW mode and breathing mode. Since these spin wave modes have been ex-
perimentally measured, it could be used as a first experimental observation of topological
phase transition in magnonic systems.

The second project stems from the result of the first project. Using the Floquet
theory for spin systems under terahertz lasers, we propose an ultrafast topological phase
transition under circularly polarized laser. Inspired by the skyrmion-hosting multiferroic
material, Cu2OSeO3 (see Section 2.2.2), the classical spin dynamics of skyrmions carrying
electric polarizations is investigated in the presence of time-dependent electromagnetic
fields from laser. The main results are the laser-controlled skyrmion motion due to the
magnetoelectric coupling and the laser-driven topological phase transition in Floquet
magnon bands.

The third project is related with the instability of twisted edge magnetization that
occurs below the critical magnetic field (see Section 1.3.4). Previously, the edge insta-
bility was proposed to explain the experimental observation of skyrmion chains along
the sample edge [104, 105]. In these work, a change in the classical ground-state spin
textures due to the edge instability was not considered. As will be shown later, it leads
to the formation of fractional (anti)skyrmions localized to edges of a sample below the
critical magnetic field. Furthermore, magnonic corner states emerge together with frac-
tional (anti)skyrmions. By extending the multipole moment to magnonic systems, we
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discover that the magnonic corner states corresponds to topologically protected states of
quadrupole topological insulators.

The structure of this thesis is as follows. In Chapter 2, we review the crystalline struc-
ture and magnetic properties of skyrmion-hosting materials. We also derive the form of
Dzyaloshinskii-Moriya interactions allowed for each crystalline symmetry. In Chapter 3,
we discuss the magnetic-field driven topological phase transition in skyrmion crystals, em-
ploying the formulation of Section 1.1. The content of Chapter 3 is published in Ref. [76].
In Chapter 4, we discuss the laser-driven skyrmion motion and magnonic topological
phase transition, employing the Floquet theory for classical spin systems formulated by
S. Higashikawa and his collaborators in Ref. [211]. The content of Chapter 4 is in prepa-
ration for the submission to academic journals (List of Publication 4). In Chapter 5, we
discuss the magnonic quadrupole topological insulator realized in antiskyrmion crystals,
employing the Wilson loop formalism adapted to magnonic systems (see Appendix E for
details). The content of Chapter 5 was published in Ref. [212].



Chapter 2

Materials hosting magnetic
skyrmions

In Chapter 2, we introduce various non-centrosymmetric magnetic systems, where the
competition between the ferromagnetic exchange interaction and Dzyaloshinskii-Moriya
interaction stabilizes magnetic skyrmions and antiskyrmions. We classify skyrmion-
hosting materials by thier crystalline symmetries: T symmetry for chiral cubic crystals;
C3v for rhombohedral crystals; D2d symmetry for tetragonal crystals. For each crys-
talline symmetry, the Dzyaloshinskii-Moriya interaction is derived using the symmetry
argument. Subsequently, we review the crystalline structure and magnetic properties of
several materials for each crystalline symmetry.

2.1 Point group symmetries relevant for skyrmions

Since the alignment of magnetic ions in a unit cell is often complicated, it is challenging to
construct an atomistic spin model taking account of all magnetic interactions. Instead,
we often employ the symmetry argument to derive the free energy functional in the
continuum limit as in Eq. (A.18), which could be used to construct a spin lattice model
by discretization. The symmetry argument is based on the point group symmetry of
materials, whose operations do not affect atoms inside the unit cell [213]. The symmetry
operation of point group includes rotations about an axis, reflections with respect to a
plane, inversion operation, and their combinations. It should be noted that the translation
operator is not included in the point group symmetry.

The Dzyaloshinskii-Moriya interactions is written as Lifshitz invariants in the contin-
uum limit (see Appendix A.5):

Lkij = mi∂kmj −mj∂kmi, (2.1)

where m is a normalized magnetization vector. Keeping only the Lifshitz invariants that
respect the symmetry operation of the point group, we can obtain the Dzyaloshinskii-
Moriya interaction vector for different materials. In Ref. [129], all the crystalline symme-

39
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C2  

C3 

T (23) C3v(3m) D2d(-42m)

S4 

Figure 2.1: Stereographic projection of point group symmetries that support
magnetic skyrmions. The symmetry operations are depicted schematically for T , C3v,
and D2d symmetries, projected to the xy-plane. Ellipses and triangles filled by black
respectively represent C2ẑ and C3ẑ rotations, while reflection planes are highlighted by
red shaded lines. Empty squares indicate an improper rotation S4ẑ that is equivalent to
a C4ẑ rotation followed by a reflection in the xy-plane.

tries that could host magnetic skyrmions are summarized with corresponding Dzyaloshinskii-
Moriya interaction vectors. Furthermore, Ref. [214] contains a complete table of Lifshitz
invariants for all 32 point groups. Among those listed in these references, we discuss
the point group symmetries of skyrmion-hosting materials, including chiral cubic crys-
tals with T symmetry, polar rhombohedral crystals with C3v symmetry, and acentric
tetragonal crystals with D2d symmetry. The stereographic representation of these point
group symmetries is shown in Fig. 2.1. In addition, we find that Ref. [215] is helpful for
visualizing symmetry operations.

Firstly, we consider T symmetry for a cubic lattice, which is invariant by symmetry
operations of {C2x̂, C2ŷ, C2ẑ, C3,[111]}. Here, Cnm̂ depicts the n-fold rotational symmetry
about the axis parallel to a unit vector m̂, where the cubic crystalline axes are taken
parallel to the x, y, z-axes. From C2 rotations, the Lifshitz invariant Lkij should be odd
for each axis, implying i 6= j 6= k. Taking into account of C3,[111] that permutes {x, y, z}
cyclically, the Lifshitz invariant allowed by T -symmetry is

Lxyz + Lyzx + Lzxy = (my∂xmz −mz∂xmy) + (mz∂ymx −mx∂ymz) + (mx∂zmy −my∂zmx)

= −m · (∇×m). (2.2)

By discretization, the Dzyaloshinskii-Moriya interaction is written in a cubic lattice as

HDM =
∑
r,r′

D(r − r′)
|r − r′| ·mr ×mr′ , (2.3)

where r = (x, y, z) represents the position vector for a lattice point in cubic systems,
and the sign of D is determined by the chirality of crystals (see Section 2.2.1). The bulk
Dzyaloshinskii-Moriya interaction is supported in chiral magnets that typically belong to
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space group P213, and it stabilizes Bloch skyrmions (Fig. 1.6 with m = 1 and γ = ±π/2).
Skyrmion-hosting materials of this type are B20 alloys such as MnSi [134, 135, 216–219],
Fe1−xCoxSi [136–139], and FeGe [140, 167, 220, 221], as well as multiferroic insulator
Cu2OSeO3 carrying the electric polarization induced by the magnetization [142, 143,
222, 223].

Secondly, we consider C3v symmetry for trigonal lattice systems. As shown in Fig. 2.1,
it is characterized by three reflection planes perpendicular to the xy-plane and C3ẑ ro-
tation. Hence, the symmetry operation does not affect the z-component of magneti-
zation. The reflection operation perpendicular to the xy-plane maps from (x, y, z) to
(x cos 2θ + y sin 2θ, x sin 2θ − y cos 2θ, z), where θ is an angle from the x-axis. It is then
straightforward to show that mz∂xmx + mz∂ymy and mx∂xmz + my∂ymz are invariant
with the reflection symmetry as well as C3ẑ symmetry. The Lifshitz invariant is then
given as

Lxzx − Lyyz = (mz∂xmx −mx∂xmz)− (my∂ymz −mz∂ymy)

= (ẑ ·m)(∇ ·m)− (m · ∇)(m · ẑ). (2.4)

By discretization, the Dzyaloshinskii-Moriya interaction is written as

HDM =
∑
r,r′

Dẑ × (r − r′)
|r − r′| ·mr ×mr′ . (2.5)

In this case, Néel skyrmions are stabilized (Fig. 1.6 with m = 1 and γ = 0, π). So far,
the polar semiconductor GaV4S8 is only the example for bulk C3v crystalline symmetric
systems, which is another example of multiferroic materials hosting skyrmions [144, 224].
Importantly, the Dzyaloshinskii-Moriya interaction perpendicular to (r − r′) is also ob-
tained at the surface/interface where the inversion symmetry is broken [145–152, 225].

The symmetry operations for D2d symmetry defined in tetragonal lattice systems are
{S4ẑ, C2x̂, C2ŷ, C2ẑ,M[110],M[−110]}, where Mm̂ is the reflection about a plane perpendic-
ular to unit vector m̂ and S4ẑ is a combined operation of C4ẑ and Mẑ (see Fig. 2.1).
Similarly to the chiral cubic case with T symmetry, the C2 rotations allow the Lifshitz
invariant Lkij with i 6= j 6= k. Furthermore, S4ẑ maps {x, y, z} to {−y, x,−z}. Hence,
the Lifshitz invariant takes an anisotropic form with inverted chirality in the orthogonal
directions:

Lxyz − Lyzx = (my∂xmz −mz∂xmy)− (mz∂ymx −mx∂ymz). (2.6)

In a square lattice, the Dzyaloshinskii-Moriya interaction is written as

HDM =
∑
r,r′

D(∓x̂δr−r′,±ax̂ ± ŷδr−r′,±aŷ) ·mr ×mr′ . (2.7)

This term stabilizes antiskyrmions with m = −1 and γ = ±π/2 in Fig. 1.6, which
was realized in a tetragonal Heusler material Mn1.4Pt0.4Pd0.1Sn [153]. The spin texture
of antiskyrmions can be interpreted as combinations of Néel skyrmions in [110]/[010]
directions and Bloch skyrmions in [100]/[010] directions, resulted from the anisotropic
Dzyaloshinskii-Moriya interaction.
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Figure 2.2: Crystal structure and magnetic phase diagram of MnSi. (a) The
crystal structure of MnSi that belongs to the space group P213. (b) Magnetic phase
diagram of MnSi, obtained from the topological Hall effect and the ac susceptibility
measurement in Ref. [226–228]. (b) is adapted from [135].

Material Lattice constant (nm) Wavelength (nm) D/J ratio
MnSi 0.45 18 0.16

Fe1−xCoxSi 0.45 37 0.076
FeGe 0.47 70 0.042

Cu2OSeO3 0.89 60 0.093
Co8Zn8Mn4 0.63 125 0.032

Table 2.1: Wavelength of the helical phase and the estimated relative strength
of the Dzyaloshinskii-Moriya interaction in chiral magnets. The lattice constant
for each material is extracted from Ref. [95, 137, 229, 230], while the wavelength of the
helical phase in a bulk sample is taken from Ref. [98].

2.2 Materials hosting Bloch skyrmions

2.2.1 B20 materials

B20 alloys refer to metals and semiconductors with the chiral cubic crystal structure
shown in Fig. 2.2(a) (space group P213), including MnSi, Fe1−xCoxSi, and FeGe. For
bulk crystals, the magnetic phase diagram consists of the helical phase, conical phase,
and the ferromagnetic phase at zero temperature. In addition to these single q states,
the skyrmion crystal phase characterized by the triple q vectors is stabilized by thermal
fluctuations. The experimentally obtained magnetic phase diagram for MnSi is shown in
Fig. 2.2(b), where the A-phase corresponds to the skyrmion crystal phase. The existence
of the A phase in MnSi was first reported in 1984 by neutron small angle scattering [231],
and remained elusive for more than 20 years.

Similar magnetic phase diagram was obtained for Fe1−xCoxSi [137]. While MnSi and
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Figure 2.3: Correlation between the chirality of crystals and magnetic
skyrmions in MnSi. (A) Crystal structure of (a) left-handed crystal and (b) right-
handed crystal of MnSi, projected from [111] direction. Magnetic textures of skyrmions
with opposite helicities characterized by (c) counterclockwise (CCW) and (d) clockwise
(CW) rotation of the in-plane magnetizations. The magnetic field is applied along the neg-
ative z-axis. (B) Transmission electron microscopy images for two domains of MnSi with
opposite chirality, where domain A is left-handed chiral and domain B is right-handed
chiral. (a),(e) Convergent-beam electron diffraction pattern (CBED). (b),(f) simulated
CBED pattern for left-handed/right-handed crystals. (c),(g) Observed skyrmion crystals
in each domain, where the central contrast implies the helicity of skyrmions as (c) CCW
and (g) CW. (d),(h) In-plane magnetization of skyrmion crystals. Adapted from [138].

Fe1−xCoxSi become paramagnetic above 30 K, the skyrmion crystal phase was obtained
near room temperature in FeGe [140]. Furthermore, skyrmions were observed in a thin
film sample of FeGe over a wide range of temperatures from 50 K to 300 K, which is
advantageous for device applications.

As discussed in Section 1.3.3 and Appendix A.4, the mean-field solution of the Ginzburg-
Landau free energy is the conical phase under applied magnetic field with its wavelength
LD = 2aπJ/|D|, where a is the lattice constant, J and D denotes the exchange cou-
pling and Dzyaloshinskii-Moriya interaction, respectively. Hence, the D/J ratio can be
estimated from the period of helical modulation in each material. For example, the wave-
length of helicoids in MnSi is roughly 18 nm. From the lattice constant a = 0.45 nm in
MnSi, we obtain D/J = 0.16. Using the extensive list of experimental results in Ref. [98],
we estimate the D/J ratio for B20 alloys, Cu2OSeO3 and Co8Zn8Mn4 as shown in Ta-
ble 2.1. We should note that Co-Zn-Mn alloys belong to the space group P4132/P4332
with slightly higher symmetry than B20 alloys but still characterized by the same chiral
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cubic point group symmetry [97, 232].
The chirality of helical modulation is determined by the sign of the Dzyaloshinskii-

Moriya interaction. Importantly, this is fixed by the chirality of underlying crystalline
structures. Figure 2.3 shows the experimental study of the correlation between the chi-
rality of crystal structure and skyrmions in MnSi [138]. While the chirality of crystals are
defined by positions of Mn atoms in a projected view from [111] directions, the helicity of
skyrmions is defined by the rotation of in-plane magnetization as shown in Fig 2.3(A). The
relationship between the chirality of crystal structure and helicity of skyrmions depends
on materials, as indicated by case I and case II. Combining convergent-beam electron
diffraction and Lorentz transmission electron microscopy, the crystal structure and in-
plane magnetizations skyrmion crystals were compared in two different domains of MnSi.
This is illustrated in Fig. 2.3(B), showing that MnSi corresponds to case I. Furthermore,
the correlation between crystal structure and chiral spin textures showed the reversal
from case I to case II as the composition of Mn1−xFexGe was varied from x = 0.3 to
x = 1.0 [233].

2.2.2 Multiferroic insulator Cu2OSeO3

In this section, we first introduce multiferroics in magnetic systems, followed by a detailed
account of skyrmion-hosting multiferroic insulator Cu2OSeO3 [142]. Multiferroic materi-
als were originially proposed by Schmid as materials with two or all three properties of
ferroelectricity, ferromagnetism, and ferroelasticity [234]. For the coexistence of electric
and magnetic dipole moments, the inversion symmetry and time-reversal symmetry must
be simultaneously broken. In such systems, the electric polarization could be induced by
applying magnetic fields, known as the magnetoelectric effect [235, 236]. Following the
theoretical prediction by Dzyaloshinskii [237], the linear magnetoelectric effect was first
observed in Cr2O3 [238, 239]. However, the linear magnetoelectric effect was too small for
applications. The breakthrough was made by the discovery of TbMnO3, where electric
polarization was induced with the magnetic order below the critical temperature at 27
K [240]. The fundamental difference is the spin-driven ferroelectricity in contrast with
the two independent order parameter for ferroelectricity and ferromagnetism in previously
found multiferroic materials.

The key insight for the spin-driven electric polarization was provided from the micro-
scopic point of view by H. Katsura and his collaborators [37]. As illustrated in Fig. 2.4(A),
they have shown that the electric polarization is induced by interactions between two
magnetic ions mediated by a ligand ion. The electric polarization was derived as

P ∝ (r − r′)× (Sr × Sr′), (2.8)

where Sr and Sr′ are localized spins of magnetic ions at r and r′. Eq. (2.8) implies that
rotations of spins parallel to the bond axis results in the electric polarization perpendicu-
lar to the spin rotation axis and bond axis. We should note that this type of helical order
is called cycloids and realized by the Dzyaloshinskii-Moriya interaction of Eq. (2.5). Con-
versely, the applied electric field induces the Dzyaloshinskii-Moriya interaction through
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(A) (B)

Figure 2.4: Electric polarization induced by the noncollinear spin structure. (A)
Schematic representation of the induced electric polarization from interactions between
two transition metal ions M1 and M2 with the oxygen atom O between them. Localized
spins of transition metal ions are represented by ~e1 and ~e2, which leads to the spin current
~js ∝ ~e1 × ~e2. The electric polarization is induced in the transverse direction, described
by P ∝ ~e12 × ~js with ~e12 denoting the unit vector connecting M1 and M2. (B)(a) The
total electric polarization P vanishes for a sinusoidal spin structure. (b) The macroscopic
electric polarization is induced by the cycloidal modulation with wave vector Q. Here,
P ∝ ê3×Q, with ê3 representing a unit vector along the spin rotation axis. (A) is adapted
from [37] and (B) is adapted from [243].

the magnetoelectric coupling of Eq. (2.8), given as D ∝ E × (r − r′) [37]. From the
spin current ĵs ∝ Sr × Sr′ , this is called the spin current mechanism, or equivalently
the inverse Dzyaloshinskii-Moriya mechanism [241]. Soon after, the magnetic phase of
TbMnO3 below 27 K, where it becomes ferroelectric, was indeed shown to be an incom-
mensurate cycloid as a result of frustrated exchange interactions [242]. The equivalent
result was obtained using the symmetry argument [243]. This is illustrated in Fig. 2.4(B).
We can see that the cycloidal order breaks inversion symmetry, resulting in the macro-
scopic electric polarization. In contrast, the sinusoidal modulation conserves inversion
symmetry with its axis indicated by a dotted line.

The above arguments do not take into account of displacement of constituent ions.
Considering ionic displacements, the exchange striction could also induce the electric
polarization [236, 244, 245]:

Hex = J(r, r′)Sr · Sr′ , (2.9)

where the coefficient of superexchange coupling J(r, r′) depends on the bond length
|r − r′| and the bond angle θ between magnetic ions and an anion. Usually, we assume
that the bond length and bond angle is fixed as the energy scale for lattice deformation
is much larger. However, we could interpret this term with the fixed scalar product
Sr · Sr′ modifying the bond length and angle. Consequently, the electric polarization



46 CHAPTER 2. MATERIALS HOSTING MAGNETIC SKYRMIONS

(a)

(b)

(c)

Figure 2.5: Crystal structure and magnetic phase diagram of Cu2OSeO3. (a)
Crystal structure of Cu2OSeO3, showing two inequivalent Cu2+ sites surrounded by oxy-
gen atoms. (b) Ferrimagnetic spin arrangement with (anti)ferromagnetic interactions
between (in)equivalent Cu2+ ions. Each Cu2+ ion has a S = 1

2
spin. (c) Magnetic phase

diagram for bulk and thin film samples of Cu2OSeO3, respectively shown in the top and
bottom panel. Right panel shows the enlarged view of phase diagram near the skyrmion
crystal phase of the bulk sample. Adapted from [142]. Reprinted with permission from
AAAS.

could be induced. Depending on the bond angle θ, the exchange striction mechanism
could become more significant than the spin current mechanism in the cycloid phase as
found in RMnO3 [246].

So far, we have discussed the electric polarization arising from interactions between ad-
jacent magnetic ions. Another mechanism is based on the modulation of d-p hybridization
between magnetic ions and ligand anions, caused by the parallel alignment of magnetic
moment with respect to the bond axis through the spin-orbit coupling [247–249]. This is
called the d-p hybridization mechanism, where the induced local electric polarization is
written as [236, 249]

pij ∝ (êij ·mi)
2êij, (2.10)

where êij is a unit vector pointing from a magnetic ion to an anion andmi is the magnetic
moment carried by the magnetic ion. If magnetic ions and anions are alternatively aligned
in a straight line, the macroscopic electric polarization is canceled out. We should note
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(A) (B)

(C)

Figure 2.6: Electric polarization induced in Cu2OSeO3. (A) Magnetic field depen-
dence of (a)/(d)/(g) magnetization, (b)/(e)/(h) ac magnetic susceptibility, and (c)/(f)/(i)
electric polarization under magnetic fields along [001]/ [110]/ [111] direction. Each mag-
netic phase is denoted as f (ferromagnetic), h (helical with single q domain), h’ (helical
with multiple q domains), and s (skyrmion crystal), with the skyrmion crystal phase
highlighted by blue. Dashed lines are the theoretical prediction from Eq. (2.11) for the
single-domain helical (conical) phase. (B) Directions of the induced electric polariza-
tion in Cu2OSeO3 under various magnetic fields. (C) Schematic representation of d-p
hybridization mechanism, inducing a local polarization pij longitudinal to the bond axis
between Cu and O ions. mi and êij represent the magnetic moment at Cu site and the
unit vector from Cu site to O site, respectively. Adapted from [143].

that this contribution is important in Cu2OSeO3 (see Fig. 2.6(C)), which is the first
example of multiferroic insulator hosting skyrmions [95, 142, 143, 191, 222, 223].

Figure 2.5(a) shows the crystal structure of Cu2OSeO3. Compared to B20 alloys, it
is more complicated as a unit cell contains 16 Cu2+ ions (S = 1

2
) with two inequiva-

lent positions characterized by different coordination of oxygen bonds. Still, the crystal
structure of Cu2OSeO3 also belongs to the same space group P213 as B20 alloys. Only
keeping Cu2+ ions in the unit cell, it forms a ferrimagnetic order as shown in Fig. 2.5(b).
Taking the average magnetic moment of each tetrahedron consisting of four Cu2+ ions,
we see that the same cubic chiral structure appears as in the crystal structure of MnSi
shown in Fig. 2.2(a). Hence, the magnetic phase diagram of Cu2OSeO3 is similar to B20
alloys. Figure 2.2(c) shows that the skyrmion crystal phase is stable near the paramag-
netic transition temperature for bulk samples, while its stability is strongly enhanced for
a thin film sample.

Since Cu2OSeO3 is insulating material, it is suitable for studying the dielectric proper-
ties in the presence of magnetic skyrmions [142, 222, 223]. In Ref. [143], the magnetoelec-
tric nature of Cu2OSeO3 was investigated in details. Figure 2.6(A) shows the magnetic
field dependence of electric polarization at 57 K under magnetic fields applied along
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Figure 2.7: Electric polarization in skyrmion crystal phase. Spatial distribution
of (a) magnetization, (b)-(d) local electric polarization vector p, and (e)-(g) local electric
charge ρ in skyrmion crystals under various magnetic fields. The out-of-plane direction is
taken parallel to magnetic fields with the horizontal axis fixed in [110] direction. Adapted
from [143].

[001], [110], and [111] axes. As indicated by no directional dependence of magnetization
and ac magnetic susceptibility, the magnetic phase diagram is the same for all magnetic
fields due to the cubic crystalline structure. In contrast, the electric polarization shows a
strong directional dependence, induced by magnetic fields parallel to [110] and [111] but
not along [001] direction. This is illustrated in Fig. 2.6(B). Furthermore, the anomalous
magnetic field dependence is observed in the electric polarization with a sudden increase
in the skyrmion crystal phase under H ‖ [110], [111]. Therefore, the electric polarization
arises from the spin arrangement in this material.

The experimentally obtained electric polarization under various magnetic fields was
explained by the d-p hybridization mechanism [143, 247–249]. As illustrated in Fig. 2.6(C),
it induces a longitudinal electric polarization for each Cu-O bond. Assuming the ferri-
magnetic spin arrangement, the total electric polarization for each tetrahedron made of
four Cu+2 ions was computed by summing over all Cu-O bonds. Denoting the average
magnetization of a tetrahedron at r asmr,abc = (mr,a,mr,b,mr,c), its polarization is given
as [143, 197]

Pr,abc(mr,abc) = (pr,a, pr,b, pr,c) = λ(mr,bmr,c,mr,cmr,a,mr,amr,b), (2.11)

with the subscript a, b, c implying that it is defined in the orthogonal basis of cubic crys-
talline axis. The coupling strength λ is extracted from the experimental result as λ =
5.64× 10−27 µCm [143]. The total electric polarization is defined as P = (1/NV )

∑
r Pr,

where N is the number of tetrahedra, V = 1.76 × 10−28 m3 is the volume of each tetra-
hedron, and the summation is taken over all tetrahedra.
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In order to study the directional dependence of electric polarization, we define another
orthogonal basis labeled by xyz-coordinates with z-axis parallel to applied magnetic
fields. In this basis, the magnetization profile of skyrmion crystal is obtained identically
regardless of the direction of magnetic fields as shown in Fig 2.7(a). Here, it is convenient
to take [110] direction as x-axis for all cases of z ‖ [001], z ‖ [110], and z ‖ [111]. Now, we
define the rotation matrix R̂abc,xyz for mapping from xyz-coordinates to abc-coordinates:

mr,abc = R̂abc,xyzmr,xyz, (2.12)

where mr,abc and mr,xyz is the average magnetization of a tetrahedron formed by Cu2+

ions defined in abc-coordinates and xyz-coordinates, respectively. The electric polariza-
tion in xyz-coordinates is written as

Pr,xyz(mr,xyz) = R̂−1
abc,xyzPr,abc(R̂abc,xyzmr,xyz). (2.13)

Using Eq. (2.13), the local electric polarization under z ‖ [001], z ‖ [110], and z ‖ [111]
are obtained as

Pr,xyz = λ
(
−mr,zmr,x,mr,ymr,z,

−m2
r,x +m2

r,y

2

)
for z ‖ [001], (2.14)

Pr,xyz = λ
(
−mr,xmr,y,

−m2
r,x +m2

r,z

2
,mr,ymr,z

)
for z ‖ [110],

Pr,xyz = λ
(
− mr,x(

√
2mr,y +mr,z)√

3
,
−m2

r,x +mr,y(mr,y −
√

2mr,z)√
6

,−m
2
r,x +m2

r,y − 2m2
r,z

2
√

3

)
for z ‖ [111].

Assuming mr = (0, 0, 1) for the ferromagnetic phase, we immediately find Pr,xyz = 0
for z ‖ [001], Pr,xyz = λ

2
ŷ for z ‖ [110] (ŷ ‖[001]), and Pr,xyz = λ√

3
ẑ for z ‖ [111],

with î representing a unit vector along xyz-axes. Hence, it successfully reproduces the
experimental result (see Fig. 2.6(B)).

Figure 2.7 shows the local electric polarization and local electric charge of skyrmion
crystals [143]. Here, the local electric charge is computed by ρ = ∇ · Pr,xyz. While the
direction of macroscopic polarizations is the same as the ferromagnetic phase, the internal
spatial profile also depends on the direction of applied magnetic fields, characterized by
quadrupole moment for H ‖ [001], in-plane electric dipole moment for H ‖ [110], and
out-of-plane electric dipole moment for H ‖ [111], respectively.

Since magnetic skyrmions can carry electric dipole moments in Cu2OSeO3, it provides
a route for energy efficient manipulation of skyrmions without electric currents. For
this purpuse, the electrical control of skyrmion dynamics and nonreciprocal directional
dichroism were studied extensively [191, 196–199, 223, 250, 251]. In Chapter 4, we discuss
the laser-controlled skyrmion dynamics in Cu2OSeO3 using its magnetoelectric nature.
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Figure 2.8: Crystal structure and magnetic phase diagram of GaV4S8. (a) Crys-
tal structure of GaV4S8 that belongs to the space group F43m (R3m) above (below)
the structural transition temperature Ts ∼ 44 K. The cubic crystal is elongated along
[111] direction to become rhombohedral below Ts. (b) Face centered cubic lattice of V4

clusters carrying S = 1
2
. The red vectors indicate the Dzyaloshinskii-Moriya vectors on

the triangular lattice within the (111) plane. (c) Magnetic phase diagram of bulk GaV4S8

under magnetic fields along [111] axis. PM, SkL, and FM respectively denotes paramag-
netic phase, skyrmion lattice phase, and ferromagnetic phase. (a) is adapted from [97]
and (b) is adapted from [144]. (c) is reprinted from Science Advances [224]. © The
Authors, some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC
4.0 license http://creativecommons.org/licenses/by-nc/4.0/.

2.3 Materials hosting Néel skyrmions

As discussed in Section 2.1, Néel skyrmions are realized in rhombohedral crystals with
C3v symmetry. So far, GaV4S8 is the only example for this case [97, 144]. Figure 2.8(a)
illustrates the crystal structure of GaV4S8 consisting of (V4S4)5+ cubane-type cluster
ions and (GaS4)5− tetrahedra cluster ions arranged in NaCl manner [253]. It undergoes
the structural transition from cubic to rhombohedral crystal at Ts ∼ 44 K, resulting in
the electric polarization along [111] axis. The ferromagnetic order appears at even lower
temperature with Tc ∼ 13 K. The magnetism is originated from V4 clusters with S = 1

2
,

forming a triangular lattice within the (111) plane as shown in Fig. 2.8(b). Similarly to
chiral magnets, the magnetic phase diagram consists of cycloidal phase, skyrmion crystal
phase, and ferromagnetic phase. Figure 2.8(c) shows the magnetic phase diagram of a
bulk sample of GaV4S8 [224], where the skyrmion crystal phase exist over a wide range of
temperatures and magnetic fields. This is in contrast to bulk chiral magnets stabilizing
skyrmions within a narrow region near the Curie temperature. The enhanced stability
of skyrmions in C3v symmetric systems is due to the absence of conical phase [130].
In addition to the electric polarization induced by the structural transition, the spin-
driven ferroelectricity was reported in this material arising from the exchange striction
mechanism [224].
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Figure 2.9: Néel skyrmions stabilized on single and bilayer ferromagnetic films.
(a) Dzyaloshinskii-Moriya interaction between S1 and S2 generated by RKKY interaction
with an atom having a large spin-orbit coupling. (b) Interfacial Dzyaloshinskii-Moriya in-
teraction between a ferromagnetic metal (gray) and a heavy metal with a large spin-orbit
coupling (blue). (c) Nanoskyrmion lattice in an Fe monolayer on Ir(111). a, Schematic
picture of spin configurations. b, Scanning tunneling microscopy (STM) image. c, Spin-
polarized STM image at T ∼ 11 K and B = 2 T applied normal to the surface. (d)
Skyrmion crystal phase on a PdFe bilayer, observed by spin-polarized STM at 8 K.
(a),(b) are adapted from [145], (c) is adapted from [152], and (d) is adapted from [252].
(d) is reprinted with permission from AAAS.

The interfacial Dzyaloshinskii-Moriya interaction could also stabilize Néel skyrmions
in ferromagnetic ultrathin films [151, 152] and multilayer systems [145–150]. The under-
lying mechanism is the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in the pres-
ence of the Rashba spin-orbit coupling on the interface/surface [225, 254], which describes
an indirect exchange interaction between two localized spins mediated by conduction
electrons [255–257]. This is illustrated in Fig. 2.9(a) and (b), showing the Dzyaloshinskii-
Moriya vector perpendicular to a triangle formed by two magnetic ions and a heavy metal
atom with a large spin-orbit coupling.

Figure 2.9(c) shows a square lattice of nanoscale skyrmion crystals on an Fe monolayer
prepared on the hexagonal Ir(111) surface [152]. The real space magnetic texture was
studied by spin-polarized scanning tunning microscopy (STM), showing the magnetiza-
tion parallel/antiparallel to a magnetic tip as bright/dark spots (Fig. 2.9(c)c). Compared
to skyrmion crystals found in chiral magnets, the size of magnetic unit cell is much smaller
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Figure 2.10: Engineering of magnetic skyrmions at room temperatures and zero
external magnetic field. (a) Schematic representation of an Fe/Ni/Cu/Ni/Cu(001)
multilayer, where the perpendicularly magnetized Ni layer in the middle introduces an
effective magnetic field on a Fe/Ni bilayer. (b) Left: trilayer system composed by a
ferromagnetic layer (gray) inserted between different heavy metals A (blue) and B (green),
which induce the interfacial Dzyaloshinskii-Moriya vector in the same direction. Right:
asymmetric multilayer system consisting of a stack of the A/FM/B trilayers. (a) is
adapted from [146] and (b) is adapted from [149].

in this system (∼1 nm× 1 nm). Using a two-dimensional spin lattice model guided by
the first-principles calculations, it was shown that the four-spin interaction is crucial to
realize a square lattice of topological spin structures as a magnetic ground state without
external magnetic fields. We note that the four-spin interaction is resulted from electron
hopping between four adjacent sites [258]. In addition, the Dzyaloshinskii-Moriya inter-
action is generated by the spin-orbit coupling of Ir atoms on the interface with Fe atoms,
which favors skyrmions over antiskyrmions.

In a PdFe bilayer system on the Ir(111) surface, more conventional Néel skyrmions
were reported as shown in Fig. 2.9(d) [252]. As the magnetic field was increased, the
helical phase, skyrmion crystal phase, and ferromagnetic phase were stabilized in turn at
8K, implying that it is dominated by the competition between the exchange interaction
and interfacial Dzyaloshinskii-Moriya interaction. Furthermore, it was demonstrated that
single skyrmions can be reversibly created and annihilated on the ferromagnetic phase
using the STM tip at 4.2 K. The mechanism for switching process was not due to the
local heating of a sample. Instead, the energy of injected electrons from the STM tip
was shown to determine the switching rate, which helped overcome the energy barrier for
nucleation of metastable skyrmions.

A great advantage of multilayer magnetic systems is that the interlayer interaction
could be engineered to enhance the stability of magnetic skyrmions at room temperature
and zero external magnetic field [99]. A zero-field magnetic skyrmion at room temperature



2.3. MATERIALS HOSTING NÉEL SKYRMIONS 53

Figure 2.11: Brief introduction of Heusler compounds (top), crystal and mag-
netic structure of Mn1.4Pt0.4Pd0.1Sn (bottom). (A) Periodic table of composite
elements for Heusler compounds (X2Y Z), highlighted by red for X atom, blue for Y
atom, and green for Z atom. (B),(C) Crystal structures of (B) Heusler compounds and
(C) inverse Heusler compounds. (D)a, crystal structure of Mn1.4Pt0.4Pd0.1Sn. b, ferri-
magnetic order at two inequivalent Mn sites. c, total ferromagnetic moment in the unit
cell. (A)-(C) are adapted from [262] and (D) is adapted from [153].

was first demonstrated in an FeNi bilayer at the top of Fe/Ni/Cu/Ni/Cu(001) [146].
The key idea is to insert a perpendicularly magnetized Ni underneath the FeNi bilayer
system, which introduces a virtual magnetic field as illustrated in Fig 2.10(a). Another
idea is to prepare a trilayer system made of a ferromagnetic layer sandwiched between
different heavy metal atoms as shown in Fig. 2.10(b). Since the sign of the interfacial
Dzyaloshinskii-Moriya interaction depends on heavy metal elements [259], it is possible to
realize additive Dzyaloshinskii-Moriya interactions from the bottom and top interfaces as
demonstrated in an Ir/Co/Pt trilayer [149]. Furthermore, stacking of trilayers improve the
thermal stability of skyrmions due to the increased magnetic volume. Up to now, a zero-
field magnetic skyrmion has been realized in various magnetic multilayer systems [98, 147,
150]. Furthermore, it was shown that the velocity of skyrmion motion in Pt/CoFeB/MgO
multilayer stacks can exceed 100 ms−1 by current densities of a few 1011 A/m2 [148], which
is important for applications in racetrack memory [260, 261].
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Figure 2.12: Real space observation of antiskyrmions in Mn1.4Pt0.4Pd0.1Sn. (a)
Spin textures for skyrmions and antiskyrmions with the simulated LTEM images, showing
Bloch skyrmions, antiskyrmions, and Néel skrymions from left. (b),(c) Under-focused
LTEM images of (b) a single antiskyrmion and (c) antiskyrmion lattices, both obtained
at 300 K and 0.29 T applied along [001] direction. (d) Magnetic phase diagram derived
from LTEM measurements. Each phase is represented as “H” for a helical phase, “skx”
for antiskymions, and “FP” for a field-polarized state. Adapted from [153].

2.4 Materials hosting antiskyrmions

Antiskyrmions are stabilized by the Dzyaloshinskii-Moriya interaction allowed by D2d

crystalline symmetry. The first experimental observation was reported in the Mn-Pt-Sn
inverse Heusler compound [153]. Heusler compounds refer to a large class of materials
with the composition of X2Y Z, where X and Y are transition metals and Z is a main
group element as shown in Fig. 2.11(A) [262]. They show a remarkably wide range of func-
tionalities such as thermoelectricity, half metallic ferromagnetism, topological insulators,
superconductivity, and multiferroics [263]. The crystal structure of Heusler compounds
is shown in Fig 2.11(B). Another configuration, called the inverse Heusler compounds,
is realized by exchanging the positions of X and Y atoms, as shown in Fig 2.11(C). In
addition to cubic Heusler compounds, the tetragonal distortion can occur due to the
Jahn-Teller distortion [263].



2.4. MATERIALS HOSTING ANTISKYRMIONS 55

Manganese-rich Heusler compounds attract much attention as a rare earth free mag-
net. They are often crystallized in the inverse Heusler structure with ferrimagnetic order,
where magnetic moments at two inequivalent Mn sites are antiferromagnetically cou-
pled [263]. The tetragonal Heusler compound Mn1.4Pt0.4Pd0.1Sn belongs to this class of
materials, whose crystalline structure is shown in Fig 2.11(D)a. The space group of this
material is I42m with D2d point group symmetry. The ferrimagnetic order of Mn site
results in a net out-of-plane magnetization as shown in Fig. 2.11(D)b,c. By taking the
average magnetization for each unit cell, we can treat it as a ferromagnetic system defined
in a square lattice. Furthermore, the Dzyaloshinskii-Moriya interaction arises from the
large spin orbit coupling of Pt atom, stabilizing antiskyrmions in this material.

In Ref. [153], Lorentz transmission electron microscopy (LTEM) was used for the real
space observation of antiskyrmions in Mn1.4Pt0.4Pd0.1Sn. The main advantage of LTEM is
that the in-plane magnetization of skyrmions and antiskyrmions can be distinguished due
to the additional phase acquired by electrons interacting with local magnetizations. This
is illustrated in Fig. 2.12(a) using micromagnetic simulations. While the LTEM image
of Bloch skyrmions appears to have a ring structure, the LTEM image of antiskyrmions
is characterized by a quadrupole-like feature with two bright spots and two dark spots.
In the case of Néel skyrmions, no feature is expected in the LTEM measurement. Fig-
ure 2.12(b) shows the LTEM image of a single object, observed in Mn1.4Pt0.4Pd0.1Sn at
300 K and under applied fields of 0.29 T in [001] axis. Remarkably, the LTEM image
exhibits a quadrupole-like feature in agreement with the simulation, confirming the pres-
ence of antiskyrmions. In addition, a triagular lattice structure of antiskyrmions was
observed under the same condition as shown in Fig. 2.12(c). Here, we should note that
there exist two half-moon shaped objects along the sample edge, shown at the top left
corner of Fig. 2.12(c). Although it is not possible to identify the topological properties
of these objects in this experiment, we will discuss the stability of such edge-localized
objects with fractional topological charges in Chapter 5.3.2. They play an important role
to realize magnonic corner states in antiskyrmion crystals.

Similarly to C3v symmetric systems stabilizing Néel skyrmions, the conical phase is not
stable in systems with D2d symmetry. Hence, the stability of antiskyrmions is expected
to be enhanced in comparison to bulk samples of chiral magnets. Figure 2.12(d) supports
this prediction, as the magnetic phase diagram of Mn1.4Pt0.4Pd0.1Sn shows a wide range of
temperatures and magnetic fields where antiskyrmions were observed. It should be noted
that the transition to a state with larger magnetization was reported at low temperatures
around 125 K, which could be resulted from a reorientation of the magnetic moments at
the Mn sublattices [153]. Below this transition temperature, it was found difficult to
nucleate antiskyrmions. The result shown in Fig. 2.12(d) at 100 K was thus obtained by
cooling antiskyrmion lattices formed at room temperatures.



56 CHAPTER 2. MATERIALS HOSTING MAGNETIC SKYRMIONS



Chapter 3

Field-driven topological phase
transition

As introduced in Section 1.3.8, ferromagnetic skyrmion crystals support topologically
nontrivial magnon bands [209]. It makes skyrmion crystals a promising platform for
magnon spintronics, where topologically protected magnonic chiral edge states can be
used for dissipationless spin transports [25, 188]. For device applications, it is highly
desirable to achieve an external control of these edge states by magnetic fields. Since
magnons depend on the classical ground-state spin textures, it is a nontrivial question
whether or not a magnetic field can drive a topological phase transition without destroying
the underling spin texture.

In Chapter 3, we show that the magnetic-field driven topological phase transition is
indeed possible in a thin film sample of skyrmion-hosting materials. Remarkably, the
topological phase transition of magnon bands in skyrmion crystals is associated with the
band inversion between the breathing and counterclockwise modes of skyrmions [193].
These low energy spin wave modes have been experimentally measured at various mag-
netic fields [30, 194, 198] (see Section 1.3.6). Hence, our prediction could be tested
experimentally. Our finding suggests that an external magnetic field could be used as a
knob to switch on and off magnonic chiral edge states. The content of this chapter was
published in Ref. [76].

3.1 Model

We consider a simple two-dimensional spin lattice model for Néel skyrmion crystals with
the following Hamiltonian:

H = 1
2

∑
〈r,r′〉

(−Jr,r′Sr · Sr′ +Dr,r′ · Sr × Sr′)− gµBBz

∑
r

Sr · ẑ , (3.1)

where Sr is a spin operator at site r on a triangular lattice with lattice constant a. The
nearest-neighbor coupling includes ferromagnetic exchange Jr,r′ = J > 0, and interfacial
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Figure 3.1: Classical ground-state spin configurations of Néel skyrmion crys-
tals. The crystal structure with hexagonal symmetry is obtained at D/J = 1.0 and
b = gµBBz

JS
= 0.8. The color of arrows indicates the out-of-plane component. A white

parallelogram is added to indicate a magnetic unit cell containing 9× 9 spins. Adapted
from [76].

Dzyaloshinskii-Moriya interaction Dr,r′ = Dẑ×(r−r′)/|r−r′|. The last term represents
the coupling to the external magnetic field, Bzẑ, where g and µB denote the g-factor and
Bohr magneton, respectively.

The classical-ground state spin textures are obtained by Monte Carlo simulated an-
nealing [166]. The energy is further minimized by solving the Landau-Lifshitz-Gilbert
equation at zero temperature. Since the wavelength of magnetic helices and the radius
of skyrmions is proportional to the D/J ratio (see Appendix A.4), it is computationally
demanding to use experimental parameters of D/J ∼ 0.1. To obtain skyrmion crystals
in a modest system size, we take D/J = 1.0 in the following calculations. In Section 3.4,
we discuss that our result can be rescaled for smaller values of D/J ratio. Figure 3.1
shows the obtained classical ground-state spin configurations of Néel skyrmion crystals,
indicating the magnetic unit cell with hexagonal rotational symmetry by a white paral-
lelogram.

The spin-wave Hamiltonian for Eq. (3.1) was obtained in Section 1.1.3. Here, a local
orthonormal basis is denoted as (e1

r, e
2
r,mr), where mr is a unit vector parallel to the

ground-state spin texture and e1
r × e2

r = mr. From Eq. (1.10), the Fourier transform of
the spin-wave Hamiltonian is given as

HSW =
S

2

∑
k

(a†ki, a−ki)

(
Ωij(k) ∆ij(k)

∆∗ij(−k) Ω∗ij(−k)

)
(aki, a

†
−ki)

T + E0 , (3.2)

where aki/a
†
ki denote the annihilation/creation operators for magnons with i = 1, . . . , N

for the magnetic unit cell containing N spins. The first term is the free magnon Hamilto-
nian with Ωij(k) = δijΛi+

1
2
[−Jij(k)e+

i ·e−j +Dij(k)·e+
i ×e−j ], ∆ij(k) = 1

2
[−Jij(k)e+

i ·e+
j +

Dij(k)·e+
i ×e+

j ], and Λi =
∑

j[Jij(k = 0)mi ·mj−Dij(k = 0)·mi×mj]+bJ ẑ ·mi, where

Jij(k) =
∑

R JR+ri,rje
−ik·(R+ri−rj), Dij(k) =

∑
RDR+ri,rje

−ik·(R+ri−rj), b = gµBBz/JS,
and e±r = e1

r ± ie2
r. The second term corresponds to the total classical energy E0 =
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Figure 3.2: Magnon band structures at different magnetic fields. (a)-(d) Bulk
spectrum of the ferromagnetic skyrmion crystals with increasing magnetic field b = gµBBz

JS
.

Nearly flat and dispersive bands are depicted in purple and grey, respectively. The
counterclockwise (A), breathing (B), and clockwise (C) modes are highlighted by blue,
red and green. (e) Distortions of skyrmions to m-th order polygons corresponding to
nearly flat bands from (a)-(d). Adapted from [76].

−1
2
S2
∑

i Λi. The magnon band structure is obtained numerically by the paraunitary
diagonalization [77].

3.2 Low energy magnon band structures

Now, we discuss the magnon band structures of ferromagnetic skyrmion crystals. In
Fig. 3.2(a), the low energy magnon spectrum at b = 0.5 is presented, which consists of
nearly flat bands (purple) and dispersive bands with characteristic local excitations at
Γ point (gray). Nearly flat bands in skyrmion crystals are originated from bound states
of isolated skyrmions, corresponding to distortions to m-th order polygons [190, 201]
(see Section 1.3.6). Almost completely flat bands indicate that magnons are strongly
localized near skyrmions. This is illustrated in Figure 3.2(e), showing distortions in
the skyrmion spin textures caused by the four lowest energy eigenmodes of flat bands.
They are labeled by the azimuthal number following Ref. [201], with m = 2 for elliptical
deformations, m = 3 for triangular deformations, and so on. As time evolves, deformed
skyrmions rotate in a clockwise manner with a phase difference θk from their neighbors.

For dispersive bands (gray bands in Fig. 3.2(a)), the lowest energy band is the Gold-
stone mode with a quadratic dispersion [175, 192]. It is resulted from breaking the trans-
lational symmetry in the presence of skyrmion crystals. Above the Goldstone mode, there
are three dispersive bands respectively hosting local magnetic excitations of skyrmions
at Γ point, labeled as (A) for counterclockwise mode, (B) for breathing mode, and (C)
for clockwise mode. These low energy spin wave modes are particularly important for
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Figure 3.3: Topological phase transition driven by external magnetic fields.
(a)-(c) Bulk spectrum of the ferromagnetic skyrmion crystals near the topological phase
transition obtained at (a) b = 0.8, (b) b = bc = 0.88, and (c) b = 0.95. The band
inversion occurs between the counterclockwise (A) and breathing modes (B), which is
respectively shown in blue and red. (d) Chern numbers of the lowest three bands, denoted
as {C1, C2, C3}, are computed with increasing magnetic fields. A sharp drop in C3 from
+1 to 0 at b = bc shows the topological phase transition in the third band. (e) Size of
the third band gap as a function of magnetic fields. It is linearly dependent on magnetic
fields and vanishes at b = bc. Adapted from [76].

experimental observations, since they are magnetically active and get excited by spatially
uniform AC magnetic fields as shown in Ref. [193].

3.3 Main result

3.3.1 Magnetic-field driven topological phase transition

In this section, we discuss our main finding of the magnonic topological phase transition
at the critical magnetic field. Figure 3.2(b)-(d) shows the magetic field dependence of
magnon bands. We find a strong magnetic field dependence in nearly flat bands, while
dispersive bands are less affected by magnetic fields. At b = 0.6, the nearly flat band for
m = 3 passes through the second dispersive band that host the counterclockwise mode.
During this process, there is a little overlapping between their eigenstates, resulting in no
signature of avoided band crossings at degenerate points between the flat and dispersive
bands. Furthermore, the Chern number of each band does not change after the flat band
pass through the dispersive band. In fact, the Chern numbers of flat bands are always
zero regardless of magnetic fields. They are topologically decoupled from other bulk
bands. We also notice that the band gap between (A) counterclockwise mode and (B)
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(a) (b)

0

0.09

Figure 3.4: Probability distribution of chiral magnonic edge states. (a) One-
dimensional magnetic unit cell of the ferromagnetic skyrmion crystal in the strip geometry
at b = 0.8. Only the magnetic textures near the top and bottom edges are presented. (b)
Probability density of magnon wave functions for the left-moving (red) and right-moving
(blue) edge states. They are degenerate states with kx = ∓0.45Gs with Gs denoting the
size of the one-dimensional Brillouin zone. Adapted from [76].

breathing mode becomes smaller at higher magnetic fields, which is consistent with the
experimental results [189, 194, 198] (see Fig. 1.13). As discussed below, these two modes
undergo the band inversion at the critical magnetic field bc, resulting in the topological
phase transition.

Figure 3.3(a)-(c) show the magnon spectrum near the band inversion between (A) the
counterclockwise mode and (B) breathing mode. The band gap between third and fourth
bands at Γ point is closed at the critical field bc = 0.88 and reopened for higher magnetic
fields as shown in Figure 3.3(e). The fundamental difference from the band touching
with flat bands is the strong hybridization between eigenstates. This is clear from the
interchanged spin wave excitations at Γ point. While the third (fourth) band hosts the
counterclockwise (breathing) mode before the band inversion, the inverted order is found
after the band gap closing as indicated by Fig. 3.3(c). To confirm the topological phase
transition, the change in the Chern number is calculated as a function of magnetic fields
near bc. Figure 3.3(d) shows the Chern number of the lowest three bands at various
magnetic fields. Crucially, the Chern number of the third band changes from C3 = +1
below bc to C3 = 0 above bc. We also confirm that the change in the Chern number of the
fourth band from C4 = +1 to C4 = +2. Hence, a transfer of the Chern number occurs
during the band touching at bc, which makes the third band topologically trivial. We
should also note that the lowest two bands are found to be always topologically trivial in
agreement with the literatures [188, 209].
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(f)

(e)

Figure 3.5: Robust chiral magnonic edge states in a strip geometry. (a)-(d)
Magnon edge spectra in a one-dimensional periodic system along the x axis with (a)
pristine system at b = 0.8, (b) disordered system at b = 0.8, (c) pristine system at
b = 0.95, and (d) disordered system at b = 0.95. Bulk subbands are shown in gray and
Gs is the size of Brillouin zone. In (a) and (b), topologically protected edge states within
the third band gap are highlighted by blue (red) for right (left) movers. In addition, there
exists topologically trivial edge states (purple) that vanish in disordered systems. Edge
states within higher energy gaps are shown in black. (e)-(f) Magnetic texture near the
sample edges for (e) a pristine system under a uniform magnetic field at b = 0.8 and (f)
disordered system under a magnetic field at b = 0.8 except for five rows of spins near the
edges where b = 3.0. Adapted from [76].

3.3.2 Switching of chiral magnonic edge states

From the bulk-edge correspondence of Eq. (1.22), the number of chiral magnonic edge
states inside a band gap is determined by the sum of Chern numbers below the band
gap. Since

∑3
n=1Cn = 1 below the critical magnetic field bc, there should be a single

chiral magnonic edge state inside the third band gap. Above bc, it should vanish as a
consequence of the topological phase transition. However, there is a subtle issue with the
bulk-boundary correspondence because we cannot always prepare an integer number of
magnetic unit cells within finite sized samples. In particular, the Dzyaloshinskii-Moriya
interaction imposes a twisted boundary condition, known as the edge twist [100–103] (see
Section 1.3.4). As a result, the magnetic unit cell of skyrmion crystals is distorted near
edges.

To account for modifications in spin textures near edges, Monte Carlo simulated
annealing is carried out for a strip geometry. Here, the system size should be sufficiently
large compared to the size of magnetic unit cell of skyrmion crystals. On this new
geometry, the skyrmion crystal is reconstructed well inside the sample but repelled from
edges as shown in Fig. 3.4(a). Using the obtained spin textures, one-dimensional magnon
bands are computed. Figure 3.5(a) shows the edge spectrum before the topological phase
transition (b < bc). As expected from the bulk-edge correspondence, we find edge localized
modes connecting the third and forth bulk subbands (gray). These edge states propagate
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in a chiral manner, supporting left movers on one edge (red) and right movers (blue) on
the other edge as shown in Fig 3.4(b). For further confirmation, Figure 3.5(c) shows that
these chiral magnonic edge states vanish above the critical magnetic field. We also find
topologically trivial edge states inside the third band gap (purple). Since they are not
resulted from the bulk topology, they are present in both below and above bc. They are
expected to be magnon bound states confined within the twisted edge magnetization (see
Appendix A.7.2).

The important property of topologically protected edge states is the robustness against
disorder. In order to demonstrate it, we introduce a special type of disorder by applying
a larger magnetic field near edges. This results in fully polarized spins near edges indi-
cated by Fig. 3.5(f), while some tilting along the edge is observed in a pristine sample
(Fig. 3.5(e)). The magnon spectrum for a disordered system is shown in Fig. 3.5(b) and
(d). Since the applied magnetic field is unchanged in the bulk, bulk subbands are not
affected by disorder. However, it strongly modifies the dispersion of edge localized modes,
removing topologically trivial edge states. In contrast, the topologically protected edge
states persist to stay inside the third band gap for b < bc, hence clearly distinguishing
themselves from trivial edge states.

3.4 Discussion and Conclusion

So far, we have not considered the effect of long-range dipolar interactions. They are
particularly important for magnonic crystals consisting of ferromagnetic domains, which
can be designed to realize topological magnon insulators [2]. For a thin sample considered
in this chapter, the dipolar interaction results in the demagnetization field and it could
enhance the stability of magnetic skyrmions [136]. Also, the dipolar interaction can be
approximated as an effective easy-plane anisotropy as discussed in Appendix A.3.3 [101,
130, 166]. In this approximation, the numerical simulation suggests that skyrmion crystals
persist up to higher magnetic fields due to the easy-plane anisotropy [264]. Hence, the
dipolar interaction could play an important role to stabilize magnetic skyrmions up to
the critical magnetic field predicted in the previous section. In addition, it was shown
that the magnon spectrum obtained by neglecting dipolar interactions is qualitatively in
agreement with experiments [194].

The ratio between the exchange coupling and Dzyaloshinskii-Moriya interaction is
fixed to be D/J = 1.0, although it is much smaller than unity in real materials. However,
our result can be rescaled to experimental parameters without any fundamental difference,
since the free energy functional in the continuum limit can be expressed independently
of the D/J ratio (see Appendix A.7.2). In the continuum limit, the physical length and
magnetic field is scaled proportional to D/J and (D/J)2. Assuming a more realistic
parameter of J = 1 meV, S = 1, D/J = 0.05, and a = 0.5 nm, the skyrmion size
and critical magnetic field is respectively estimated as 8a(J/D) = 80 nm and B′c =
(bcJS/gµB)(D/J)2 ≈ 20 mT.

In several skyrmion-hosting materials, the resonance frequencies of the counterclock-
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wise, breathing, and clockwise modes have been measured [189, 194, 198]. In agreement
with our work, the band gap between counterclockwise mode and breathing mode was
found to decrease with magnetic fields. Both theoretically and experimentally, the fer-
romagnetic skyrmion crystal phase was shown to be stable for broader parameters in a
thin film sample [136, 167]. Hence, we expect that the development in crystal growth
techniques could stabilize the skyrmion crystal phase at sufficiently high magnetic fields,
allowing observation of the magnonic topological phase transition. Indeed, the band
inversion predicted in this chapter has been experimentally observed in the metastable
skyrmion lattice of Cu2OSeO3 [265].

In addition to the the microwave absorption for magnetically active modes [189, 193],
the state-of-art ferromagnetic resonance techniques could be used to excite the bulk or
edge magnon modes [266, 267]. Within the energy window of the third bulk band gap,
we could selectively excite magnonic edge states. Their spatial profile and localization to
the edges could be probed by Brillouin light scattering spectroscopy [268].

As a concluding remark, we have predicted the band inversion between two magneti-
cally active modes in ferromagnetic skyrmion crystals, namely the counterclockwise and
breathing modes at higher magnetic fields. It results in the topological phase transition
between the third and fourth magnon bands, leading to the vanishing of chiral magnonic
edge states within the third band gap. Our results suggest a simple way to control the
robust magnonic spin currents along edges by external magnetic fields.



Chapter 4

Laser-driven skyrmions

As discussed in Chapter 3, the magnonic topological phase transition is predicted in
skyrmion crystals at the critical magnetic field [76]. In Chapter 4, we discuss a possible
route towards ultrafast control of magnon band topology in skyrmion crystals, focusing on
the multiferroic insulator Cu2OSeO3. We first introduce the Floquet theory and its exten-
sion to classical spin systems based on Ref. [211]. Combining the numerical simulation of
Landau-Lifshitz-Gilbert equation and the Floquet theory, we study the classical spin dy-
namics of skyrmion crystals under circularly polarized laser. Remarkably, we discover that
the magnetoelectric nature of Cu2OSeO3 results in a novel mechanism for the laser-driven
motion of skyrmions. Furthermore, we demonstrate the band inversion between coun-
terclockwise and breathing modes of skyrmions under circularly polarized laser, which
is associated with the magnonic topological phase transition (see Section 3.3.1). The
content of this chapter is in preparation for the submission to academic journals (List of
Publication 4).

4.1 Introduction

4.1.1 Ultrafast control of spins and Floquet magnons

In this section, we introduce important topics of this chapter, namely ultrafast control of
spins and Floquet magnons [269, 270]. Historically, ultrafast demagnetization was first
reported in a Ni film using a 60 femtosecond (fs =10−15 s) optical laser pulse [271]. This
experiment corresponds to the thermal process [269], where photons are absorbed by
electrons, resulting in elevated temperatures of electrons in a subpicosecond (ps = 10−12

s) time scale. In a next few picoseconds, the relaxation through electron-phonon and
electron-spin interactions increase the temperature of the lattice and spins, leading to
ultrafast demagnetization. The problem of thermal process is that the speed of control is
limited by internal interactions between electrons and spins. In contrast, the nonthermal
process does not involve the absorption of photons as the light is directly coupled with
spin degrees of freedom [269]. For example, ultrafast magnetization was demonstrated
by circularly polarized laser due to the inverse Faraday effect, showing the opposite sign
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of induced magnetizations for left- and right-handed circularly polarized lasers [272].
Furthermore, the direct coupling between magnetic component of terahertz (THz =1012

Hz) laser and spins was observed in antiferromagnetic NiO [273].

Recently, a novel method for nonthermal ultrafast magnetization was proposed based
on the Floquet theory [274, 275]. Using the Floquet theory, quantum spin systems under
time-periodic electromagnetic fields from lasers can be described by the effective time-
independent Hamiltonians (see Appendix B.1). In Ref. [274, 275], it was shown that
circularly-polarized lasers induces an effective magnetic field, which was predicted to be
sufficiently strong to control magnetization without static magnetic fields (see Eq. (4.7)).
Importantly, this is a general mechanism that is independent of magnetic systems as long
as the frequency of laser is much larger than the energy scale of internal interactions
between spins, based on the approximation called the high frequency expansion (see Ap-
pendix B.1.2). Applying the same approach to multiferroic systems, the ultrafast control
of Dzyaloshinskii-Moriya interaction was also proposed to induce a vector spin chirality
between two spins V12 = S1×S2 in one-dimensional spin chains [276]. While the Floquet
theory was initially developed for quantum spin systems, it was extended to classical spin
systems in Ref. [211].

The application of Floquet theory is not limited to ultrafast control of spins, but it
covers a wide range of topics as it provides a tool to engineer the effective Hamiltoni-
ans under time-periodic drives [277]. One prominent example is the topological phase
transition of graphene irradiated by circularly polarized laser [278]. In this seminal work,
the band structure obtained from the effective Floquet Hamiltonian, termed as Floquet
bands, were characterized by a nontrivial Chern number under the laser. Remarkably,
the anomalous Hall effect arising from the nontrivial Floquet bands in graphene was
experimentally observed [279]. The study of laser-irradiated graphene in Ref. [278] has
opened up a new research field of Floquet topological insulators [280].

The magnonic analogue of Floquet topological insulators has been also discussed [270,
281–284]. The standard recipe to construct Floquet magnons is to apply the Floquet
theory on magnon Hamiltonians, which are obtained as magnetic excitations of classical
ground-state spin textures in static spin Hamiltonians (see Section 1.1.3). A problem
of this approach is that the classical spin dynamics is neglected for the construction of
magnon Hamiltonians. In fact, we could think of two possible formulations of Floquet
magnons if the classical spin dynamics is taken into account: magnetic excitations of
time-averaged magnetic unit cells; magnetic excitations of time-periodic magnetic unit
cells. To establish a correct formulation, we need to understand the classical limit of
Floquet magnons.

Motivated by this problem, we investigate the Floquet magnon excitations from clas-
sical spin dynamics in this chapter. For this purpose, we employ the Floquet theory for
classical spin systems [211], which is introduced in Section 4.1.2.
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4.1.2 Floquet theory in classical spin systems

In this section, we briefly introduce the Floquet theory in classical spin systems, following
Ref. [211]. Our purpose is to provide necessary theoretical tools for later sections of this
chapter, where we discuss magnetic skyrmions under applications of circularly polarized
lasers. We should note that Appendix B provides a review of the Floquet theory and its
extension to classical systems [211, 285].

The main advantage of the Floquet theory for classical spin systems is that it includes
the effect of phenomenological Gilbert damping [286]. In the presence of damping, the
Floquet magnon is naturally defined as magnetic excitations from a non-equilibrium
steady state of classical spins, thus providing a physically intuitive definition, as discussed
in Section 4.3.2. In contrast, the previous study of Floquet magnons is based on Floquet
theory for quantum spin systems [270], which does not take into account of classical spin
dynamics. Consequently, the correspondence between Floquet magnons and classical spin
dynamics has not been clarified.

Another point is the coupling between magnons and electric fields. Many literatures on
Floquet magnons have discussed the coupling between electric fields and magnons arising
from the Aharonov-Casher effect [270, 281–284], which gives rise to a geometric phase
φA-C ∝ E0 with E0 denoting the applied electric fields analogously to the Aharonov-
Bohm effect for electrons [66, 287]. Although the topological phase transition can be
induced by the geometric phase φA-C, it requires a very large amplitude of electric field
E0 to obtain a nontrivial effect in the order of 1012 V/m [68, 283]. To overcome this
problem, we consider multiferroic insulators characterized by a strong coupling between
ferromagnetism and ferroelectricity [236]. Since the electric polarization is induced by
magnetic dipole moments in multiferroic insulators, the coupling with electric fields can
be studied with classical spin Hamiltonians.

Under the application of laser fields, the time-dependent spin Hamiltonian of a mul-
tiferroic insulator is generally written as

H(t) = H0 − gµB
∑
r

B(t) · Sr − E(t) ·Pr, (4.1)

where Sr is the classical spin vector at site r, Pr is the electric dipole moment induced
by the magnetic order, g and µB respectively denotes the g-factor and Bohr magneton,
and H0 is the static part of the spin Hamiltonian. The externally applied electromagnetic
field introduces the periodicity in time as E(T + t) = E(t) and B(T + t) = B(t).

The time-evolution of classical spin systems in Eq. (4.1) is described by the Landau-
Lifshitz-Gilbert (LLG) equation (see Appendix A.6). In addition to the numerical simula-
tion of the LLG equation, the Floquet theory provides a valuable insight on the behavior
of non-equilibrium steady states, employing the high frequency expansion introduced in
Appendix B.1. Here, we should note that a system under a time-periodic drive reaches
a non-equilibrium steady state in the presence of a sufficiently large Gilbert damping
coefficient. In such case, precessions of magnetizations around the classical ground-state
spin textures are expected to occur at the frequency of applied field ω = 2π/T . However,
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a system becomes unstable when the amplitude of driving fields is too large, resulting in
random magnetic configurations (thermal states). The Floquet theory is reliable only for
the former case where a system is in the steady state.

Using the Floquet theory, the time-evolution of classical spin systems is described by
Eq. (B.39) as

U(t2, t1) = egF (t2)e(t2−t1)LF e−gF (t1), (4.2)

where LF and igF (t) are respectively called the effective Fokker-Plank operator and kick
operator, defined in Eq. (B.40). While e(t2−t1)LF describes the long-time dynamics of spin
configurations, e−gF (t1) and egF (t2) describe precessions around the time-averaged spin
configurations. Crucially, for a driving frequency larger than the energy scale of Hamil-
tonian ~ω � H0, we can derive simple expressions of the LLG equations corresponding
to each unitary operator, as shown below (see Appendix B.1).

To discuss the slow dynamics of time-averaged spin configurations, it is sufficient to
solve the following effective LLG equation [211] (see Appendix B.3):

dmr

dt
= − γmr

1 + α2
× [HF,r + αmr ×HF,r], (4.3)

where mr is a unit vector parallel to the magnetization at site r, γ = gµB/~ is the gyro-
magnetic ratio, and α is the Gilbert damping constant. The static solution of Eq. (4.3)
corresponds to the time-averaged spin configuration of non-equilibrium steady state. The
effective microscopic field HF,r up to the first order in 1/ω is given as

HF = H
(0)
F +H

(1)
F = Heff

r,0 +
∑
m6=0

iγ[Heff
r,−m,H

eff
r,m]mag

2mω(1 + α2)
, (4.4)

with the microscopic field Heff
r (t) = −[1/(~γS)]∂H(t)/∂mr, and its Fourier transform

given as Heff
r,m = 1

T

∫ T
0
dtHeff

r (t)eimωt, and the commutation relation [ , ]mag defined in
Eq. (B.74). For example, the magnetic field from lasers is written as

B(t) = Bd(cos(ωt),− sin(ωt+ δ), 0), (4.5)

where Bd is the amplitude of magnetic fields and δ = 0, π/2, π corresponds to the right-
circularly, linearly, and left-circularly polarized light, respectively. The Fourier compo-
nent of microscopic field is obtained as

Heff
r,±1 = B±1 =

Bd

2
(1,∓i cos δ − sin δ, 0). (4.6)

Substituting Heff
r,±1, the effective magnetic field H

(1)
F in Eq. (4.4) is derived as [211]

H
(1)
F = BF ẑ =

γB2
d cos δ

2(1 + α2)ω
ẑ. (4.7)

Hence, the effective magnetic field is induced by circularly polarized lasers, with its
direction determined by the chirality of light. We should note that the equivalent results
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are obtained in quantum spin systems, although corrections from damping are missing in
the denominator [274–276].

For the short-time dynamics represented by egF (t), we need to solve the following LLG
equation from τ = 0 to 1/ω [211] (see Eqs.(B.56) and (B.58)):

dmr

dτ
= − γmr

1 + α2
×
[
H

(1)
mic,r(t) + αmr ×H(1)

mic,r(t)
]
, (4.8)

with

H
(1)
mic,r(t) = −i

∑
m 6=0

Heff
r,−me

imωt

m
. (4.9)

In the Euler method for ω � 1, the approximate solution is given as

mmic,r(t) = mr(t)− γmr

ω(1 + α2)
×
[
H

(1)
mic,r(t) + αmr ×H(1)

mic,r(t)
]
. (4.10)

As shown in Appendix C.2, the short-time dynamics of Eq. (4.8) describes the spin
precession mode under laser fields for non-equilibrium steady states.

As a summary, the full-time evolution of classical spin systems is obtained by eval-
uating U(t2, t1) in turn. Given the initial configuration of spin textures mr(t1), mr(t2)
is obtained by the following three steps. Firstly, we evaluate Eq. (4.8) from τ = 0 to

τ = 1/ω with substituting −H(1)
mic,r(t1) on the right-hand side. Secondly, we evaluate

Eq. (4.3) from t = t1 to t = t2. As a final step, we evaluate Eq. (4.8) from τ = 0 to

τ = 1/ω with substituting H
(1)
mic,r(t2) on the right-hand side.

4.2 Model

We consider a thin film sample of the multiferroic insulator Cu2OSeO3 that has a chiral
cubic crystal structure with space group P213 [143]. The spin lattice Hamiltonian defined
on a square lattice is given as

H0 =
1

2

∑
〈r,r′〉

(−Jr,r′Sr · Sr′ +Dr,r′ · Sr × Sr′)− gµBBz

∑
r

Sr · ẑ , (4.11)

where Sr = Smr is the total magnetization at site r with S = 1 [196, 197]. The nearest-
neighbour interactions are the ferromagnetic exchange coupling Jr,r′ > 0 and the DM
interaction Dr,r′ = D(r − r′)/|r − r′| from the point group symmetry of P213 (see
Section 2.1). It also contains the Zeeman term with g and µB denoting the g-factor and
Bohr magneton, respectively.

As discussed in Section 2.2.2, noncollinear spin textures of Cu2OSeO3 induce local
electric polarizations due to the d-p hybridization mechanism [143, 196, 197, 236, 249]:

Pr,abc = λ(mr,bmr,c,mr,cmr,a,mr,amr,b), (4.12)
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Figure 4.1: Electric polarization and induced distortions in skyrmion spin
textures under laser. Left: spin textures of magnetic metastable skyrmions in
the ferromagnetic background, obtained at D/J = 0.09 and gµBBzJ/D

2 = 0.9. (a)
Spatial distribution of electric polarization Pr, computed from Eq. (2.14). (b) In-
duced distortion of skyrmions under LCP (δ = π) by the magnetoelectric coupling
δSr = mr(Ed = 0.1) −mr(Ed = 0), obtained by the effective LLG equation derived
in Appendix C.1. The other parameters are fixed as gµBBd/D = 2.0, ~ω0/J = 10, and
α = 0.04. In (a) and (b), the results for B0 ‖ [001], B0 ‖ [110], and B0 ‖ [111] are shown
from left. The black arrows represent the in-plane components, while the out-of-plane
componets are represented by color.

where the coupling strength λ = 5.64× 10−27 µCm extracted from the experiment [143].
The subscript abc indicates that the coordinates are defined with respect to the crystal-
lographic axes. The macroscopic electric polarization is generated when the out-of-plane
vector of the skyrmion lattice is not parallel to [001] direction. Here, we mainly consider
the skyrmion crystal phase under the magnetic field B0 ‖ [110]. Taking the z-axis along
[110] and x-axis along [110], the electric polarization is given from Eq. (2.14) as

Pr = λ(−mr,xmr,y,
−m2

r,x +m2
r,z

2
,mr,ymr,z). (4.13)

In this rotated basis, the electric polarization is induced along the y-axis, while the total
electric vanishes for B0 ‖ [001] and the out-of-plane electric polarization is induced for
B0 ‖ [111] (see Section 2.2.2). The distribution of electric polarization in skyrmions for
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each case is shown in Fig. 4.1(a), characterized by the dipole moment for B0 ‖ [110] and
quadrupole moment for B0 ‖ [001]. For B0 ‖ [110] and B0 ‖ [111], the in-plane electric
polarization is canceled out.

The time-dependent electric and magnetic fields under laser is introduced as [276]

E(t) = Ed(sin(ω0t+ δ), cos(ω0t), 0), (4.14)

B(t) = Bd(cos(ω0t),− sin(ω0t+ δ), 0), (4.15)

with Bd = Ed/c and c is the speed of light. The polarization of light is determined
by δ, where δ = 0, π/2, π corresponds to the right-circularly polarized (RCP), linearly
polarized (LP), and left-circularly polarized (LCP) light, respectively. The ratio between
the coupling with the electric and magnetic fields is given by

λEd
gµBBd

=
cλ

gµB
= 0.092. (4.16)

However, the coupling strength λ in the THz regime might be different from the refer-
ence value obtained from the magnetoelectric effect at low frequencies [143]. Hence, we
introduce a dimensionless parameter defined as

Ed =
λEd
gµBBd

. (4.17)

The parameter Ed represents the strength of magnetoelectric coupling in the THz regime,
which is varied from Ed = 0.1 to Ed = 0.3 in this chapter.

From the time-periodic Hamiltonian of Eq. (4.1) with substituting Eqs. (4.11) and (4.13)
for H0 and Pr, respectively, the effective Floquet Hamiltonian is obtained from Eq. (C.13)
as

HF = H0 +
∑
r

gµBBF

[
− {1 + E2

d (−2m2
r,x +m2

r,y)}(ẑ ·mr) + Edmr,zmr,x

]
, (4.18)

with the effective magnetic field BF given in Eq. (4.7). Here, we ignore small contributions
proportional to the Gilbert damping constant. From Eq. (4.18), we notice that the first
order term proportional to ω−1 vanishes for the linearly polarized laser (δ = π/2). The

microscopic field for the kicked operator H
(1)
mic,r(t) is given in Eq. (C.14). The Floquet

Hamiltonian and kicked operators for B0 ‖ [001], [111] are also derived in Appendix C.1.

Additional terms in the effective Hamiltonian of Eq. (4.18), denoted as H
(1)
F = HF −

H0, imply a modification in the spin textures of skyrmions under laser. To understand its
effect, a metastable skyrmion with the ferromagnetic background is prepared for 150×150
spin systems at D/J = 0.09 using Monte Carlo simulated annealing under the static
external magnetic field of gµBBzJ/D

2 = 0.9 and the periodic boundary condition [166]
(Left panel of Fig. 4.1). We should note that the magnetic phase diagram of Eq. (4.11)
was obtained in the literatures [193, 288], where the skyrmion crystal phase was found
stable for 0.23 < gµBBzJ/D

2 < 0.78. The obtained configuration is then relaxed by
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Dimensionless Physical Unit

Time t̄ = ~t/J ≈ 0.66 ps
Distance x̄ = x/a 0.5 nm
Velocity v̄ = x̄/t̄ ≈ 7.6× 102 m/s

Magnetic field (static) B̄z = gµBBzJ/D
2 ≈ 0.07 T

Magnetic field (laser) B̄d = gµBBd/D ≈ 0.78 T
Frequency of spin waves ω̄ = ~ωJ/D2 ≈ 2.0 GHz

Frequency of laser ω̄0 = ~ω0/J ≈ 250 GHz

Table 4.1: Unit conversion table for S = 1, J = 1 meV, D/J = 0.09 and a = 0.5 nm.

the corresponding effective LLG equation to investigate changes in spin textures. The
parameters are taken at gµBBd/D = 2.0, ~ω0/J = 10, δ = π (LCP), and α = 0.04, giving
the effective magnetic field gµBBFJ/D

2 ≈ −0.4.
Since the magnetic component of circularly polarized laser only gives the effective

out-of-plane magnetic field, nontrivial effects should arise from electric components, in
particular from the cross term that is proportional to Ed. To see the effect of cross term,
we define the induced distortions in skyrmion spin textures δSr:

δSr = mr(Ed = 0.1)−mr(Ed = 0), (4.19)

where mr(Ed) depicts the magnetic configuration obtained by the effective LLG equation
with the coupling strength Ed.

The middle panel of Fig. 4.1(b) shows the spatial profile of δSr for B0 ‖ [110]. Cru-
cially, the dipole-like distortion is observed in δSr, exhibiting a similar feature to the
electric polarization. This is explained by the contribution of the cross term given as
Edmr,zmr,x. Since the x component of magnetization changes the sign across the cen-
ter of skyrmions, the cross term induces a dipole-like distortion. Equivalent results are
obtained for B0 ‖ [001], [111] in Fig. 4.1(b), showing a quadrupole feature and a ring
pattern centered at skyrmions, respectively. Therefore, the magnetoelectric coupling re-
sults in the imprinting of electric multipole moments on the time-averaged spin textures
of skyrmions under LCP. For the RCP, the induced distortion pattern is flipped with a
change in the sign of BF .

4.3 Main result

4.3.1 Laser-driven skyrmion motion

In this section, we discuss the non-equilibrium steady state of skyrmions under circularly
polarized laser. As shown in Section 4.2, the time-averaged spin textures of skyrmions
under circularly polarized laser are distorted due to the magnetoelectric coupling, result-
ing in the broken rotational symmetry of skyrmions. An important consequence is the
laser-driven skyrmion motion, as shown below.
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Figure 4.2: Laser-driven skyrmion motion under the left-circularly polarized
laser. (a)-(b) Displacement of the center of skyrmions (a) Rx and (b) Ry under LCP as
a function of time, defined in the text. The result for B0 ‖ [001], B0 ‖ [110], and B0 ‖
[111] is respectively depicted in magenta (solid), cyan (solid), and lime (dashed). The
parameters are taken as D/J = 0.09, Bz = gµBBzJ/D

2 = 0.9, Bd = gµBBd/DS = 2.0,
Ed = 0.1, δ = π, α = 0.04, and ω0 = ~ω0/J = 10.

Using the single skyrmion configuration of Fig. 4.1 with the periodic boundary condi-
tion, the time-dependent LLG equation corresponding to Eq. (4.1) is numerically solved to
compute the time-evolution for 50000 steps under LCP. The model parameters are defined
as J = 1 meV, D/J = 0.09, and the lattice constant a = 0.5 nm [191, 196, 197] (see Ta-
ble 2.1). In addition, the parameters for the LLG equation are fixed as B = gµBBzJ/D

2 =
0.9, Bd = gµBBd/D = 2.0, Ed = 0.1, δ = π, α = 0.04, and ω0 = ~ω0/J = 10. In Ta-
ble 4.1, we summarize the conversion between dimensionless parameters and physical
units. The skyrmion motion under LCP is tracked by computing the collective coor-
dinate of skyrmions, which is defined as Ri =

∫
dr2ρ(r)ri/Q for i = x, y with ρ(r)

and Q =
∫
dr2ρ(r) denoting the topological charge density and total topological charge,

respectively (see Section 1.3.2).

Figure 4.2 shows the change inRx andRy as a function of time after irradiation of LCP.
The result for B0 ‖ [001], B0 ‖ [110], and B0 ‖ [111] is depicted in magenta, cyan, and
lime, respectively. The crucial observation is that the skyrmion under B0 ‖ [110] exhibits
a translational motion along the negative y-axis as well as a small drift velocity along the
negative x-axis. As shown in Fig. 4.1, the electric polarization is along the positive y-axis
for B0 ‖ [110], so the driven motion is mostly directed antiparallel to the net electric
polarization. In contrast, the result for B0 ‖ [001], [111] show no net displacement with
almost the identical trajectories. This is consistent with the symmetry of time-averaged
skyrmion textures, where a directional distortion δSr is induced only for B0 ‖ [110] as
shown in Fig. 4.1(b).

To explain the numerical result of Fig. 4.2, we employ Thiele’s approach [289]. Our
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formulation follows Ref. [290], where the skyrmion motion under microwave fields was
discussed in the presence of in-plane static magnetic fields (see Section 4.4 for difference
from our work). The main idea is to separate the time-dependent magnetization mr(t)
into a slow part mr,s(t) and a fast part nr(t):

mr(t) = mr,s(t) + nr(t), (4.20)

where spin precession is represented by nr(t+ T ) = nr(t) with T = 2π/ω0 denoting the
period of driving field. The velocity of skyrmion v, which is assumed to be much slower
compared to ω, gives rise to the time-dependence of slow part as mr,s(t) = ms(r − vt).
As derived in Appendix A.10, the drift velocity v is given in terms of the net force exerted
on skyrmions for each period of oscillations as

vx =
4πQFy + αηFx
(4πQ)2 + α2η2

,

vy =
−4πQFx + αηFy
(4πQ)2 + α2η2

, (4.21)

where η ≈ 4π depends on the spatial profile of skyrmions defined in Eq. (A.86), and Q is
the total topological charge. The net force F is given from Eq. (A.88) as

Fi = −γ
∫
m̃r,s ·

[
∂im̃r,s ×

〈
mr ×Heff

r

〉
T

]
dxdy, (4.22)

with i = x, y, the microscopic field Heff
r (t) = −[1/(~γS)]∂H(t)/∂mr, and m̃r,s =

〈mr,s〉T , where the time-averaged quantity is denoted as 〈f〉T = 1
T

∫ T
0
dtf(t).

To obtain the net force F, the analytical expressions for mr,s(t) and nr(t) are needed.
Remarkably, the Floquet theory provides a simple analytical expression for nr(t), pro-
vided that a system is in a non-equilibrium steady state. In Appendix C.2, the expression
for nr(t) are obtained as

nr(t) ≈ f
(1)
mic(t)

ω0

= − γm̃r,s

ω0(1 + α2)
×
[
H

(1)
mic,r(t) + αm̃r,s ×H(1)

mic,r(t)
]
, (4.23)

where H
(1)
mic,r(t) is given in Appendix C.1. In the above expression, we only keep the

leading order term proportional to ω−1. Ignoring the drift velocity of skyrmions, the
time-dependent magnetization is written as

mr(t) = m̃r,s + nr(t). (4.24)

In this approximation, the non-equilibrium steady state solution is described by the spin
precession nr(t) around the time-averaged spin configuration m̃r,s with nr(t) ⊥ m̃r,s.

For the calculation of F, it is convenient to take the continuum limit. As the lowest
order approximation, we assume a rotationally symmetric configuration of skyrmions for
m̃r,s, given as

m(r) = {cosφ(ψ) sin θ(r), sinφ(ψ) sin θ(r), cos θ(r)}, (4.25)
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where m(r) is a continuous magnetization vector defined in the polar coordinates r =
{r cosψ, r sinψ}. This approximation does not account for distortions in the time-
averaged spin textures (see Section 4.2), which gives higher order contributions as dis-
cussed below. Taking the continuum limit of Eq. (4.1) (see Appendix A.5), the free energy
functional is written as

F =

∫
dr2

[
J

2
(∇m)2 − D

a
m · (∇×m)− gµB

a2
(B0 + B(t)) ·m− E(t) ·P

a2

]
, (4.26)

where a denotes the lattice constant. The microscopic field Heff(t) is derived as

Heff(t) = − δF
~γδm

=
a2J

2~γ
∇2m− aD

~γ
∇×m−B0 −B(t)−HME(t), (4.27)

whereHME(t) is the contribution from magnetoelectric coupling, which is given in Eq. (C.10).
Substituting m(r, t) = m(r) +n(r, t) and HME(t) into Eq. (4.22), the net driving force
acting on skyrmions for B0 ‖ [110] is obtained as

Fx = −γ
∫ ∞

0

rdr

∫ 2π

0

dψm · [∂xm× 〈m(t)×Heff(t)〉T ]

= −πγBFEdaα
16

∫ ∞
0

dr
[
r
dθ

dr
(25 cos θ + 7 cos 3θ) + 17 sin θ + 5 sin 3θ

]
,

Fy = −γ
∫ ∞

0

rdr

∫ 2π

0

dψm · [∂ym× 〈m(t)×Heff(t)〉T ]

=
πγBFEda

2

∫ ∞
0

dr
[
2r
dθ

dr
cos 2θ + sin 2θ

]
= 0, (4.28)

where r = r/a is the dimensionless variable (see Table 4.1). For angular integrals over
ψ, we have used φ = ψ− π/2 for Bloch skyrmions. The y-component of F vanishes from
the integration by parts. Therefore, the velocity of skyrmions for B0 ‖ [110] is derived
from Eq. (4.21) as

vx =
αηFx

(4πQ)2 + α2η2
≈ αηFx

(4πQ)2
= − αη

4πQ
v0BFEdαC,

vy =
−4πQFx

(4πQ)2 + α2η2
≈ − Fx

4πQ
= v0BFEdαC, (4.29)

with the characteristic velocity v0 = aγD2/gµBJ ≈ 6.16 m/s, the dimensionless effective
magnetic field BF = gµBBFJ/D

2 (see Table 4.1 and Eq. (4.7)), and the constant C is
defined as

C =
1

64Q

∫ ∞
0

dr
[
r
dθ

dr
(25 cos θ + 7 cos 3θ) + 17 sin θ + 5 sin 3θ

]
. (4.30)
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Figure 4.3: Parameter dependence of laser-driven skyrmion velocity. (a)-(c)
Skyrmion velocity as a function of (a) effective magnetic fields BF = gµBBFJ/D

2 at
various magnetoelectric couplings Ed, (b) phenomenological damping constants α, (c)
frequencies of applied laser fields ω0. The initial configuration is the same as Fig. 4.2.
The static magnetic field is fixed at Bz = 0.9 and other parameters are found in the
text. (d) Velocity of skyrmion crystals under RCP and LCP. The spin configuration of
skyrmion crystals is prepared at Bz = 0.4. The parameters for LLG simulation is the
same as (a) with Ed = 0.1. In all panels, solid and dashed lines indicate the result of LLG
simulation and the analytical result of Eq. (4.29).

Extracting θ(r) from the numerically obtained skyrmion configuration in Fig. 4.1, we
estimate C ≈ −2.25/Q.

Now, we compare the numerical result in Fig 4.2 and the expression of v in Eq. (4.29).
From Fig. 4.2, the velocity for B0 ‖ [110] is estimated as vx = −0.17 cm/s and vy = −3.52
cm/s. In comparison, we obtain vx = −0.088 cm/s and vy = −2.22 cm/s by substituting
Q = −1, η = 4π, BF = −0.4, α = 0.04, and Ed = 0.1. Hence, our analytical expression
is in good agreement with the numerical LLG simulation. Furthermore, the equivalent
calculation of v for B0 ‖ [001], [111] yields v = 0 for the leading order term proportional
to ω−1

0 . Therefore, Eq. (4.29) quantitatively explains the numerical result of Fig 4.2.
Furthermore, we investigate the parameter dependence of vy for B0 ‖ [110], as illus-

trated in Fig. 4.3(a)-(c). Using the same initial magnetic configuration as in Fig. 4.2,
the average velocity is estimated for 30000 steps under the left-circularly polarized laser.
Before calculations of the velocity, we wait for 20000 steps to make sure that the system
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reaches a steady state. We fix parameters as α = 0.04 for (a) and (c), ω0 = 10 for (a)
and (b), and Ed = 0.1 for (b) and (c), while other parameters are depicted in the inset of
each panel.

Each panel of Fig. 4.3 shows the dependence on (a) the effective magnetic field BF

by changing the amplitude of driving field Bd at various Ed, (b) the damping constant α,
and (c) the inverse of driving frequency ω−1

0 . Solid and dashed lines represent the time-
dependent LLG simulation and the analytical expression of v in Eq. (4.29). In Fig. 4.3(a),
the agreement with numerical simulation is remarkable for small |BF | for all Ed. As we
increase the effective field |BF |, we find deviations from Eq. (4.29) arising from quadratic
contributions in BF . We also find that vy is proportional to the magnetoelectric coupling
strength Ed, predicted by Eq. (4.29). Similarly, we find the linear dependence in α and
ω−1

0 in Fig. 4.3(b) and (c), although higher order contributions results in discrepancies
for a larger values of Bd. In our simulation, the maximum velocity was obtained as
vy = −15.9 cm/s at ω0 = 5 and Bd = 2.0, but an even larger velocity is possible by
tuning ω0, Bd, and α.

Lastly, we also demonstrate the laser-driven motion under RCP. Since the effective
magnetic field BF of RCP is positive, the total effective magnetic field becomes too
large for skyrmions to be metastable. Hence, we prepare another configuration at lower
static magnetic field of Bz = 0.4, where the skyrmion crystal is stable. Using the same
method as above, we compute the velocity of skyrmion crystals under RCP and LCP. The
parameters for the LLG simulations are Ed = 0.1, α = 0.04, and ω0 = 10 with various
Bd. Figure 4.3(d) shows that the sign of vy of skyrmion crystals is inverted between
RCP and LCP, as the sign of BF changes with RCP and LCP. Although Eq. (4.29) is
derived for a single skyrmion, it shows an excellent agreement with the numerical results
for skyrmion crystals for small |BF |. Interestingly, quadratic contributions in BF have
the same contribution in RCP and LCP, resulting in a suppression of vy for RCP and an
enhancement for LCP. We expect that they arise from the distortions in the time-averaged
spin configurations discussed in Section 4.2.

4.3.2 Laser-induced topological phase transition

In this section, we discuss the Floquet magnon band structure of skyrmion crystals under
laser. Our purpose is to establish the connection between classical spin dynamics and
Floquet magnons. For this purpose, we study the low energy spin wave modes under
circularly polarized laser, following Ref. [193]. We discover that the resonance frequen-
cies of low energy spin wave modes are modulated under the circularly polarized laser,
which is consistent with the Floquet formalism applied to magnons, as discussed below.
Throughout this section, we assume B0 ‖ [110] that supports a net in-plane electric
polarization. However, the effect of magnetoelectric coupling on Floquet magnon band
structures turns out to be not significant. Hence, we expect that our result also applies
to B0 ‖ [001], [111].

For the calculation of Floquet magnon band structures, we choose D/J = 1.0 to
reduce the computational time (see Section 3.1). Using the same argument as in Sec-



78 CHAPTER 4. LASER-DRIVEN SKYRMIONS

0 10 20
0.45

0.50

0 50 100 150 200

0.46

0.48

0.50

0.52

Transient Steady (Floquet) state

Time-dependent
LLG simulation 
1st order Floquet w.o.
kicked operator 

Time

A
ve

ra
ge

 M
z

(a)

M X' X M
0.0

0.2

0.4

0.6

0.8

1.0

M X' X M
0.0

0.2

0.4

0.6

0.8

1.0

M X' X M
0.0

0.2

0.4

0.6

0.8

1.0

0 1-1

0
.0
0
0
0
0

0
.0
0
8
0
8

0
.0
1
6
1
6

0
.0
2
4
2
4

0
.0
3
2
3
2

0
.0
4
0
4
0

0
.0
4
8
4
8

0
.0
5
6
5
7

0
.0
6
4
6
5

0
.0
7
2
7
3

(b)

Figure 4.4: Comparison between LLG and Floquet theory. (a) Classical ground-
state spin textures of skyrmion crystals at D/J = 1.0 and Bz = 0.4. The magnetic unit
cell is indicated by black dashed lines with the corresponding first Brillouin zone in a blue
square. (b) The average magnetization is plotted against time for the time-dependent
LLG equation of Eq. (4.1) (magenta solid) and the effective LLG equation of Eq. (4.3)
(cyan dashed), obtained at D/J = 1.0, Bz = 0.4, Bd = 1.0, Ed = 0.1, ω0 = 10.0, δ = 0
(RCP), and α = 0.04 for 30×30 spins (B0 ‖ [110]). The inset shows the result for a
shorter time scale.

tion 3.4, our result can be rescaled for experimental parameters of D/J = 0.09. Table 4.1
provides the ratio for conversion between dimensionless quantities used in this section and
experimental values with physical units. Taking D/J = 1.0, the classical ground-state
spin textures of skyrmion crystals are obtained by Monte Carlo simulated annealing at
Bz = 0.4 for 30×30 spin systems under the periodic boundary condition, which is shown
in Fig. 4.4(a).

The obtained spin texture is used for the initial configuration of the time-dependent
LLG simulation of Eq. (4.1) under RCP for 10000 steps. Figure 4.4(b) shows the time-
dependence of average magnetization under RCP with Bd = 1.0, Ed = 0.1, ω0 = 10.0, and
α = 0.04, which is depicted in the magenta solid line. Initially, we find a large oscillation
in the average magnetization, which corresponds to a transient regime. We should note
that the frequency of oscillation in this regime is much slower than the applied field,
as indicated by the inset of Fig. 4.4(b). Thus, the driving frequency is decoupled from
resonance frequencies of the system. After about 100 LLG steps, the system reaches a non-
equilibrium steady state, whose time-averaged spin texture corresponds to the classical
ground-state spin textures of the effective Floquet Hamiltonian defined in Eq. (4.18). This
is confirmed by solving the effective LLG equation of Eq. (4.3) with the same parameters,
depicted in cyan dashed line of Fig. 4.4(b). The result for the effective LLG equation
shows an excellent agreement with the time-dependent LLG equation. Only the difference
is that the time-dependent LLG equation contains the precession mode around the time-
averaged magnetization, which could be reproduced in the Floquet theory by evaluating
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Figure 4.5: Laser-driven magnonic topological phase transition under RCP.
(a) Imaginary parts of dynamical susceptibilities depicted in blue for Imχxx and red for
Imχzz, respectively. The parameters for the time-dependent LLG equation are the same
as in Fig 4.4(b). The resonance peaks for (A) the counterclockwise, (B) breathing, and
(C) clockwise modes are indicated. The inset shows the result near the driving frequency
ω0 = 10. (b) Resonance frequencies of the counterclockwise (blue) and breathing (red)
modes as a function of amplitudes of applied fields Bd at ω0 = 10. (c) Band gap between
the counterclockwise and breathing modes ∆ω as a function of frequencies of applied
fields ω0 and total effective magnetic fields BF +Bz. A dashed line indicates the critical
magnetic field B′c = 0.56 for ω0 = 10. Arrows in (b) correspond to the parameters
indicated by polygons with the same color in (c).

the kicked operator of Eq. (4.8).

Following Ref. [193], we introduce a pulse field Bpulse = 3Bd(x̂ + ẑ)δ(t − t0) with x̂
and ẑ respectively denoting the unit vector along x- and z-axis, and t0 = 3000. Here,
the relaxation time t0 is taken sufficiently long to ensure that the system reaches a
steady state. By applying the pulse field along both in-plane and out-of-plane directions,
we can excite the low energy local excitations of skyrmions, known as counterclockwise
(CCW), clockwise (CW), and breathing modes [193] (see Section 1.3.6). Since the driving
frequency of laser ω0 is much higher than resonance frequencies of these low energy
excitations, they can be detected analogously to static systems. Therefore, the Γ point
excitation of Floquet magnon bands in skyrmion crystals can be directly investigated in
the time-dependent LLG simulation.

To investigate resonance frequencies of CCW, CW, and breathing modes, the imagi-
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Figure 4.6: Topological phase transition in Floquet magnon bands. Floquet
magnon band spectra near the critical magnetic field B′c at ω0 = 10. From left, the
amplitude of applied fields is taken as Bd = 1.5, Bd = 1.8, and Bd = 2.1, corresponding
to the parameters indicated by arrows and polygons in Fig. 4.5(b) and (c). The CCW
and breathing modes at Γ points are highlighted by blue and red, respectively.

nary part of susceptibility is defined as [193, 197]

Imχij(ω) =
Mω,i

Bω,j

, (4.31)

with Mω,i and Bω,j denoting the Fourier transformation of the average magnetization
M (t) and B(t) = Bpulse + Blaser for i, j = x, y, z.

Figure 4.5(a) shows the Imχxx (blue) and Imχzz (red) with the same parameters as
Fig. 4.4. At low frequencies ω � ω0, we find the three resonance peaks for CCW, breath-
ing, and CW modes, which are labeled as A, B, and C in Fig. 4.5(a), respectively. As
pointed out in Ref. [193], the CCW and CW modes are excited in the in-plane direc-
tion, while the breathing mode is obtained in the out-of-plane direction. Hence, the low
energy excitations of Floquet magnons are successfully obtained by the time-dependent
LLG equation. In addition, an important property of Floquet states is that their eigenval-
ues, termed as quasienergy, is well-defined only modulo ~ω, related by εnm = εn + m~ω
for integer m (See Appendix B.1.1). Consistent with the Floquet theory, the periodic
structure of quasienergy of Floquet magnon excitations is indeed found near ω0 = 10 in
Imχzz at ω = ω0 + ωbr, where ωbr ≈ 0.8 denotes the resonance frequency of breathing
mode. This is illustrated in the inset of Fig. 4.5(a). We should note that a large peak
at ω0 = 10 for Imχzz corresponds to the laser fields. However, the signal from Imχxx is
too weak to observe clear resonance peaks, although there exists a very small peak below
and above ω0 = 10.

Next, we investigate the dependence of resonance frequencies ω on the driving am-
plitude Bd. As given in Eq. (4.7), the circularly polarized laser generates the effective
magnetic field, which is positive for RCP. Thus, the topological phase transition can be
induced by increasing Bd, analogously to the magnetic-field driven magnonic topological
phase transition discussed in Chapter 3 [76]. This is illustrated in Fig. 4.5(b), where
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the resonance frequencies of CCW (blue) and breathing (red) modes are plotted against
Bd. We clearly see that the resonance frequency of each mode depends linearly on Bd

with opposite signs, and it eventually results in the band inversion between CCW and
breathing mode. The critical value of the effective magnetic field at the band inversion
point is given as

B′c = BF +Bz ≈ 0.56. (4.32)

Remarkably, it is found to be almost equal to the critical magnetic field Bc = 0.58 for
skyrmion crystals under static external magnetic fields [76], which is related to the critical
magnetic field derived in Chapter 3 by a factor of 3/2 (see Appendix A.5.2).

We also study the dependence on driving frequency ω0. Since the contributions pro-
portional to ω−2 or even higher order terms become larger as ω0 → 1, the critical magnetic
field B′c should deviate from Bc with decreasing ω0. Figure 4.5(c) shows the band gap
between CCW and breathing mode denoted as ∆ω at various ω0 and BF +Bz. Intrigu-
ingly, the value of B′c is roughtly constant up to ω0 = 5, while it shows an increase at
ω0 = 4. For ω0 ≤ 3, we find that the system becomes unstable without reaching steady
states, thus the Floquet theory is no longer valid.

Finally, we comment on the calculation of the Floquet magnon band spectrum. As
implied from Fig. 4.5, the effective Floquet Hamiltonian given in Eq. (4.18) correctly de-
scribes the classical limit of spin wave modes under circularly polarized laser for ω0 ≥ 5.
Hence, the spin wave Hamiltonian for Floquet magnon bands can be constructed from
Eq. (4.18) using the standard method for static systems (see Section 1.1.3). In this formu-
lation, the Floquet magnon is defined as excitations from the time-averaged configuration.
In Appendix C.3, we derive additional terms in the spin wave Hamiltonian for B0 ‖ [110]
as well as for B0 ‖ [001], [111] arising from magnetoelectric couplings. However, their
contributions do not change the Floquet magnon band structures significantly. In com-
parison, the effective magnetic field BF defined in Eq. (4.7) has a dominant contribution.
Figure 4.6 shows the full band structures of Floquet magnon bands, corresponding to
the parameters indicated by arrows and polygons in Fig. 4.5(b) and (c). The obtained
Floquet magnon band structures are consistent with the result of LLG simulation in
Fig. (4.5), showing the band inversion near B′c ≈ 0.56.

4.4 Discussion and Conclusion

Firstly, we discuss the experimental parameters for this work. Our estimates for model
parameters are J = 1 meV, D/J = 0.09 and a = 0.5 nm based on the experimental
result of Cu2OSeO3 [95, 142, 196, 197] (see Table 2.1). While the D/J ratio is extracted
from the periodicity of helical phases, the estimate for exchange coupling J provides a
reasonable estimate for resonance frequencies for the CCW, CW and breathing modes
around 1 GHz that is consistent with the experiment [189]. Using this model parameter,
Table 4.1 provides estimates for the required frequency for laser to be greater than 1.25
THz for ω0 ≥ 5 with the maximum amplitude of 1.6 T for Bd ∼ 2.0. Hence, the current
THz laser technology provides a readily available equipment [291].
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Figure 4.7: Topological spin structure of skyrmions and their magnon band
topology are controlled by applying circularly polarized lasers. (a) Skyrmions
carrying the in-plane electric polarization undergoes the translational motion under the
circularly polarized laser. (b) The topological phase transition occurs in the Floquet
magnon bands of skyrmion crystals due to the effective magnetic field induced by the
circularly polarized laser.

Another issue for the experimental realization of Floquet states is heating. We note
that the direct absorption of photons is not possible for THz lasers as the energy of
photons for THz regime is much smaller than the bulk band gap of Cu2OSeO3, ∆g ≈ 2
eV [292]. Thus, the spontaneous heating of electrons should not occur. Nevertheless,
we cannot completely suppress the heating effect that could eventually lead to breaking
the long-range magnetic order, although our calculation predicts a stable non-equilibrium
steady state in the presence of phenomenological Gilbert damping. To avoid potential
heating effects, we suggest repeated applications of subpicosecond pulses of circularly
polarized laser, which was used for the experimental observation of anomalous Hall effect
of Floquet states in graphene [279].

In Section 4.3.1, we have demonstrated the laser-driven motion due to the in-plane
electric polarization carried by skyrmions in Cu2OSeO3. Here, we comment the difference
between our work and the previous works on skyrmions driven by microwave fields in
GHz frequencies [290, 293, 294]. In Ref. [290], the microwave-driven skyrmion motion
was first proposed by applying the in-plane magnetic fields, which breaks the rotational
symmetries of skyrmions. As a result of the broken rotational symmetry, it was shown
that skyrmions experience a net driving force defined in Eq. (4.22) when the low energy
spin wave modes such as CCW and breathing modes were excited by microwaves. Thus,
the velocity of skyrmions depends on the amplitude of in-plane magnetic field but not
on the amplitudes of microwaves. Also, it has a strong dependence on frequencies as
the translational motion is only induced at resonance frequencies of CCW, CW, and
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breathing modes. The maximum velocity obtained in Ref. [290] was 2.8 cm/s that is
comparable or slightly smaller than our result. In comparison, we have proposed a laser-
driven motion using THz lasers based on the Floquet theory. The velocity of skyrmions
can be easily controlled by frequnecies and amplitudes of applied laser fields, providing
a greater control of skyrmion motions.

As a concluding remark, we have predicted the laser-driven skyrmion motion in mul-
tiferroic insulator Cu2OSeO3 with its velocity described by a simple analytical expression
(Fig 4.7(a)). We found that the magnetoelectric coupling plays a fundamental role for this
phenomenon. Furthermore, we have established the connection between the classical spin
dynamics and Floquet magnon modes, demonstrating the topological phase transition of
Floquet magnon bands in skyrmion crystals under circularly polarized laser. From the
bulk-boundary correspondence discussed in Section 3.3.2, it allows the ultrafast switching
of magnonic chiral edge states (Fig. 4.7(b)). Our study suggests a novel approach for
ultrafast control of the real and reciprocal space topology in skyrmion-hosting materials.
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Chapter 5

Magnonic quadrupole topological
insulator

As introduced in Section 1.2, higher-order topological phases, which support corner states
in a two-dimensional system, are characterized by bulk multipole moments. Although
they were originally proposed in electronic systems, they have been experimentally re-
alized in bosonic systems such as phonons [91, 295–297] and photons [93, 298–300]. In
contrast, the magnonic analogue of higher-order topological insulators has not been un-
derstood well, with only a few theoretical predictions for their existence [301]. To establish
the higher topological phases of magnons, we need to define the bulk multipole moments
of magnonic wave functions.

In Chapter 5, we discuss the magnonic quadrupole topological insulators realized in
ferromagnetic skyrmion crystals. We first introduce the extention of multipole moments
to magnonic systems, where a subtle yet critical modification must be implemented to ac-
count for the bosonic nature. Employing the Wilson loop formalism adapted for magnonic
systems, we demonstrate the quantized magnonic quadrupole moment with its fractional
boundary signatures of edge polarizations and corner charges. The content of this chapter
was published in Ref. [212].

5.1 Multipole moments in magnonic systems

5.1.1 Difference from electronic systems

According to the modern theory of polarization [82–86], the electric polarization is given
by p = −r̃ up to modulo integers from Eq. (1.45), where r̃ is the expectation value of
position operator for occupied states and we take a = e = 1 for the elementary charge e
and the lattice constant a. The key idea is that the expectation value of position operator
can be only defined up to modulo integers for periodic systems.

The magnonic polarization can be defined analogously, although we need to make sev-
eral modifications as follows. Firstly, magnons do not carry electric charge, so we cannot
define the electric polarization induced by magnons. Instead, we focus on the expectation

85
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value of position operator for magnons. Then, we define the magnonic polarization as

p = r̃ mod 1, (5.1)

with the lattice constant a = 1. We note that Eq. (5.1) does not mean a physical dipole
moment but the displacement of magnonic wave functions from the center of unit cell
in the Wannier representation. In Section 1.2, we have discussed the analogy between
higher-order topological phases and classical electromagnetism that provides a physically
intuitive picture. Nevertheless, the higher-order topological phase is not originated from
the electric charge, but from the quadrupole moment arising from topologically nontrivial
Wannier spectra [79, 80], which is extended to magnonic systems in Section 5.1.3. We
also discuss the fractional boundary signatures in the presence of magnonic quadrupole
moment in Section 5.4.2, where the fractional corner “charge” is introduced.

Secondly, the magnon Hamiltonian takes the form of the Bogoliubov-de Gennes Hamil-
tonian. As a result, the full magnon spectrum contains redundant information in “par-
ticle” and “hole” magnon bands as shown in Eq. (1.14) [2]. In practice, only the energy
eigenstates corresponding to either “particle” or “hole” magnon bands are necessary to de-
fine magnonic multipole moments. Another point is that the occupied states of magnons
are not well-defined as they are bosonic excitations from the classical spin ground state
with a finite energy. Hence, we simply consider the bulk multipole moment carried by
some of the lowest energy magnon bands separated by a band gap.

Thirdly, we need to account for the paraunitary nature of Tk that diagonalize the
magnon Hamiltonian. In Section 1.1.4, we point out that the Berry connection for n-th
magnon band can be expressed as Anµ(k) = i 〈tn(k)|∂kµtn(k)〉 with |tn(k)〉 and 〈tn(k)| de-

noting n-th column of Tk and n-th row of T−1
k , respectively. Inspired by this observation,

we construct an orthogonal basis for magnon bands as follows. We define a Bloch wave
function of n-th magnon band as |unk〉 = Tkvn, where vn is a vector whose components
are given by vjn = δnj. Since Tk is a paraunitary matrix, the orthogonality relation of
magnonic wave functions is obtained by introducing the following inner product

〈umk |unk〉para ≡ ξvTmT
†
kΣTkvn = δmn , (5.2)

with ξ = ±1 for “particle”/”hole” bands and Σ is defined in Eq. (1.12). This is the
natural basis for defining the topological invariants in magnonic systems. For example,
the Berry connection of magnon bands is defined as

Amnx (k) = i 〈umk |∂kx|unk〉para = iξvTmT
†
kΣ∂kxTkvn , (5.3)

which is a generalization of the Berry connection for a single band [2]. The expression
for single band in Eq. (1.15) is derived as

An,x(k) = i 〈unk|∂ki |unk〉para = iξvTnT
†
kΣ∂kiTkvn

= tr[iξVnT
†
kΣ∂kiTk] = tr[iVnΣT †kΣ∂kiTk], (5.4)

where Vn is a diagonal matrix with only the n-th element to be +1 and zero elsewhere.
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5.1.2 Magnonic polarization

In this section, we introduce the magnonic polarization using the Wannier representation.
For applications to skyrmion crystals in later sections of this chapter, we focus on a two-
dimensional system and the lattice constant is taken to be unity. Similarly to electronic
systems, a Wannier function for an isolated magnon band is defined as

|wn,R〉 =
1

(2π)2

∫
BZ

dk2 e−ik·R |un,k〉 , (5.5)

|un,k〉 =
∑
R

eik·R |wn,R〉 , (5.6)

where R is the lattice vector and n is the index for magnon bands. Given that a n-
th Bloch wave function |un,k〉 is a smooth function with k, the corresponding Wannier
function |wn,R〉 is strongly localized inside a unit cell labeled by R. The same argument
as in Section 1.2.2 can be used to show that the Wannier function is an eigenvector of
the position operator for magnonic systems. The Wannier center for magnons is given as

νnx = 〈wn,0|x̂|wn,0〉para , (5.7)

νny = 〈wn,0|ŷ|wn,0〉para , (5.8)

where the subscript stands for the paraunitary inner product defined in Eq. (5.2). As-
suming that the entire magnon band structure consists of isolated bands, the magnonic
polarization for the lowest M bands is obtained as

px =
M∑
n=1

νnx , (5.9)

py =
M∑
n=1

νny . (5.10)

When a magnon band has degeneracies with other bands, its wave function cannot be
smoothly defined over the entire Brillouin zone. As a result, Wannier functions defined
in the above equation are no longer localized in the real space (see Appendix D.2). In
such cases, we need to use the Wilson loop formalism to calculate Wannier centers. As
explained in Appendices D.3 and D.4 for electronic systems, a Wilson loop is a unitary
matrix constructed by parallel transport of occupied states over a noncontractible loop
across the Brillouin zone. Crucially, eigenvalues of a Wilson loop are equal to Wannier
centers, which are eigenvalues of the position operator Poccx̂Pocc with Pocc denoting the
projection operator to occupied states.

Similarly, a Wilson loop in magnonic systems provides an efficient method to compute
the Wannier centers of magnon bands. To construct a Wilson loop in magnonic systems,
we simply need to replace the inner product between Bloch wave functions to the parau-
nitary inner product of Eq. (5.2). In Appendix E.1, we provide technical details on the
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calculation of a Wilson loop in magnonic systems. Using Wannier centers obtained from
the Wilson loop, the magnonic polarization for the lowest M magnon bands is given by

px =
1

2π

∫
dky

M∑
j=1

νjx(ky) mod 1, (5.11)

py =
1

2π

∫
dkx

M∑
j=1

νjy(kx) mod 1. (5.12)

We should note that Wannier centers along x/y-axis are obtained as a function of ky/kx
using a Wilson loop in a two-dimensional system.

In Section 1.2.3, we have introduced the symmetry constraints on electronic multipole
moments. The magnonic polarization can be also quantized by symmetries of magnetic
systems, which depend on crystal structures as well as spin textures of a magnetic unit
cell. The difference from electronic systems is that the time-reversal symmetry is broken in
magnetic systems. We consider the combination of spatial symmetries such as rotational
symmetries with the time-reversal symmetry, including C2xT for a twofold rotation about
the x axis together with time reversal, C2yT for a twofold rotation about the y axis
together with time reversal, and C2z for a twofold rotation about the z axis. We should
note that these symmetries are relevant for antiskyrmions as shown in Section 5.3.1. In
Appendix E.4, the constraints by these symmetries on Wannier centers are derived. From
Eqs. (E.28) and (E.29), we have

px
C2yT
= −px mod 1, (5.13)

py
C2xT= −py mod 1, (5.14)

which leads to the quantization of the magnonic polarization as px = 0, 1/2 and py =
0, 1/2.

Lastly, we comment on the topological phase characterized by a nontrivial magnonic
polarization pi = 1/2 for i = x, y. As discussed in Appendix D.4, the electric polarization
is related to the Berry phase, or equivalently the Zak phase by Zi = 2πPi [7]. When the
Zak phase is nontrivial with Zi = π for periodic systems, it is known that a bound state
is obtained under open boundary conditions along the edges orthogonal to i-axis. The
prominent example is the Su-Schrieffer-Hegger (SSH) model, describing a one-dimensional
chain with alternating hopping integrals [13, 14]. We could interpret this bulk-boundary
correspondence as a bound charge of magnitude p induced by an electric polarization
of magnitude p per unit length [80]. The same relationship between the polarization
and the Zak phase holds in magnonic systems from Eq. (E.8). Hence, the nontrivial
magnonic polarization also results in the bound state of magnons at the edges of a finite
system, which can be interpreted as the bound “charge” of magnons. This is illustrated
in Section 5.4.1 as the correspondence between the edge-localized magnonic polarization
and the emergence of magnonic corner states.
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Figure 5.1: Schematic representation of Wannier sector polarization. (a) Top:
Wannier spectrum νx plotted as a function of ky. Bottom: real space image of Wannier

functions inside unit cell, which are eigenstates of Px̂P . (b) Top: Wannier spectrum νν
±
x
y

of a nested Wilson loop plotted as a function of kx. They are eigenvalues of P±ŷP±, where
P± are defined in the text. Bottom: real space image of Wannier sector polarizations
with opposite signs in the right and left half of unit cell, denoted as pν

±
x
y .

5.1.3 Magnonic quadrupole moment

Similarly to the magnonic polarization, the magnonic quadrupole moment does not mean
a physical quadrupole moment, but only refers to the spatial arrangement of magnonic
Wannier functions that exhibit a quadrupole feature. In a system with a vanishing
magnonic polarization, a magnonic quadrupole moment can be defined as two opposite
magnonic polarizations analogously to Eq. (1.46) for electronic systems, which are in-
troduced as a Wannier sector polarization for magnonic systems in the following. The
definition of magnonic quadrupole moment is given at the end of this section in terms of
the Wannier sector polarization.

In Section 5.1.2, we argue that a quantized magnonic polarization characterizes a
topological phase of a gapped magnon spectrum. Noting that Wannier centers νx/y are
given as a function of ky/kx, it can be interpreted as a one-dimensional spectrum, termed
as Wannier spectra. The Wannier sector polarization is a magnonic polarization defined
for a gapped Wannier spectrum, characterizing its topological phase.

We briefly outline the calculation of the magnonic Wanner sector polarization along
y-axis for a magnetic system with C2xT and C2yT symmetries. Due to the symmetry
constraint of Eq. (E.28), the Wannier spectra along x-axis are given as νx = 0, 1/2 or a
pair of eigenvalues satisfying ν1

x(ky) = −ν2
x(−ky). The top panel of Fig. 5.1(a) shows a

schematic illustration of gapped magnonic Wannier spectra νx(ky) consisting of two flat
bands with opposite signs. From Eq. (5.11), the total magnonic polarization px vanishes
for this case. Since Wannier centers are expectation values of position operator Px̂P with
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P representing a projection operator to the magnon bands used in a Wilson loop, two
clouds of magnon density are distributed to the right-hand side and left-hand side of a
magnetic unit cell in the Wannier representation. This is shown in the bottom panel of
Fig. 5.1(a).

Given a gapped Wannier spectra, we then define a projection operator for positive and
negative Wannier sectors obtained above/below a gap at νx = 0, denoted as P±. In the
real space picture, it implies partitioning a group of magnon bands into those localized
within the right-hand side and left-hand side of the magnetic unit cell in the Wannier
representation. For each Wannier sector, we compute a so-called nested Wilson loop

along y-axis [79, 80], denoted as W̃ ν±x
y,k with a superscript ν±x indicating the corresponding

Wannier sector. The difference from a Wilson loop is that it is constructed from Wannier
functions of each sector instead of Bloch wave functions. We refer to Appendix E.2 for
technical details of the nested Wilson loop for magnonic systems. It should be noted that
the eigenvalue of the nested Wilson loop, denoted as νν

±
x
y , is obtained as a function of

kx as it corresponds Wannier centers along y-axis for each sector. The Wannier sector
polarization along y-axis for each sector is given by

pν
±
x
y =

1

2π

∫
dkx

Mw∑
p=1

νν
±
x ,p
y (kx) mod 1 , (5.15)

where Mw is the number of Wannier bands that belong to a positive or negative sector
of νx. Likewise, the Wannier sector polarization along x-axis is given by

pν
±
y
x =

1

2π

∫
dky

Mw∑
p=1

νν
±
y ,p
x (ky) mod 1 . (5.16)

The symmetry constraint on the Wannier sector polarization is equivalent to the
magnonic polarization. From Eqs. (E.30) and (E.31), we have

pν
±
y
x

C2yT
= −pν±yx mod 1, (5.17)

pν
±
x
y

C2xT= −pν±xy mod 1, (5.18)

where C2x/2y represents a two-fold rotation about x/y-axis and T is the time-reversal
symmetry. Hence, they are quantized to 0 or 1/2 in the presence of C2yT /C2xT symmetry.

The top panel of Fig. 5.1(b) shows a schematic Wannier spectrum νν
±
x
y of a nested

Wilson loop with quantized values under C2xT symmetry, indicating the Wannier spec-
trum for a positive (negative) Wannier sector in red (blue). From Eq. (5.15), the Wannier

sector polarization along y-axis are given as pν
±
x
y = ±1/2. In the real space, it implies that

two clouds of magnon density within the left-hand side and right-hand side of magnetic
unit cell carries the opposite magnonic polarization, as illustrated in the bottom panel of
Fig. 5.1(b). We should note that a nontrivial Wannier sector polarization in positive and
negative Wannier sectors, which cancels out each other, is a signature of the magnonic
quadrupole moment as discussed below.
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Figure 5.2: Schematic illustration of relationship between Wannier sector po-
larization and edge polarizations. (a) Wannier sector polarization pν

±
x
y = ±1/2 for

both top and bottom panels in (b) and (c). (b) Wannier sector polarization p
ν±y
x = ±1/2

in the top panel and p
ν±y
x = 0 in the bottom panel. (c) Edge polarization pedge

x = ±1/2
in the top panel and pedge

x = 0 in the bottom panel, obtained by opening the boundary
parallel to x-axis in (b). In all panels, we add pairs of parallel lines to indicate periodic
boundaries.

Analogously to magnonic polarizations, the magnonic Wannier sector polarization acts
as a topological invariant for gapped Wannier spectra under protecting symmetries such
as C2xT and C2yT . To understand the consequence of bulk-boundary correspondence,
we need to prepare a strip geometry. Treating it as a one-dimensional periodic system,
we can compute the Wannier spectra as explained in Appendix E.3. While the study of
Wannier spectra in strip geometry is shown in Section 5.4.1 for anitskyrmion crystals,
we briefly summarize important points below. We should note that Ref. [80] contains a
detailed account for electronic systems that is also relevant for magnonic systems.

When the magnonic Wannier sector polarization is quantized as pν
±
x
y = ±1/2, the

Wannier bands ν±x have nontrivial topology. In a strip geometry with boundaries periodic
in x-axis and open in y-axis, the obtained Wannier spectrum νx contains bulk subbands
as well as in-gap Wannier states with the quantized eigenvalues at νx = 0 or νx = ±1/2.
Remarkably, these Wannier states are localized to edges of the strip, corresponding to
Wannier edge states arising from the bulk-boundary correspondence. Furthermore, the

eigenvalue of Wannier edge states νx is determined by p
ν±y
x . With the nontrivial magnonic
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Wannier sector polarization p
ν±y
x = ±1/2, the eigenvalues of Wannier edge states are

quantized as ±1/2. Consequently, it supports edge-localized magnonic polarizations with
pedge
x = ±1/2, as defined in Eq. (E.22). This implies that edges of the strip is also

topologically nontrivial. By introducing open boundaries along x-axis to make the strip
into a fully finite system, the magnonic edge polarization induces a magnon bound state
at each corner. This is the origin of magnonic corner states. In contrast, the magnonic

Wannier sector polarization p
ν±y
x = 0 leads to vanishing eigenvalues of Wannier edge states

and pedge
x = 0. As a result, no magnonic corner state is obtained in the open boundary

condition. This is illustrated schematically in Fig. 5.2.

In summary, the magnonic corner states are realized only when both pν
±
x
y and p

ν±y
x are

quantized to be a nontrivial value. To diagnose this novel topological phase, we define a
magnonic quadrupole moment analogously to the bulk quadrupole moment of electronic
systems defined in Ref. [79, 80] as

qxy = pν
+
x
y pν

+
y
x + pν

−
x
y pν

−
y
x . (5.19)

From Eqs. (5.17) and (5.18), the magnonic quadrupole moment is quantized under C2xT
and C2yT as

qxy =

{
0, if trivial
1
2
, if nontrivial.

(5.20)

As demonstrated in Section 5.4 for antiskyrmion crystals, the bulk-boundary correspon-
dence for magnonic quadrupole topological insulators is described as

|qxy| = |pedge
x | = |pedge

y | = |Qc| =
1

2
mod 1. (5.21)

Although both pedge
x and pedge

y are nontrivial in magnonic quadrupole topological insula-
tors, there exists only a single magnonic corner state at each corner. This is of funda-
mental importance originating from the higher order topology, which cannot be realized
by a superposition of two magnonic analogue of SSH chains. In magnonic quadrupole
topological insulators, magnonic corner states emerge as a simultaneous end state of two
converging edges. This is analogous to the distinction between a corner charge induced by
a pair of edge polarizations and a bulk quadrupole moment in classical electromagnetism
(see Section 1.2.1).

Before ending this section, we note three necessary conditions for a well-defined
magnonic quadrupole moment in the lowest M magnon bands, which are equivalent
to electronic systems [80]. Firstly, we need more than one magnon band to construct
a quadrupole moment (M > 1), implying that the possible lowest energy of magnonic
corner states lies within the second bulk band gap. Secondly, the sum of Chern numbers
below the M -th band gap must be zero. This is because a non-zero Chern number results
in gapless Wannier spectra due to the Thouless charge pumping [302]. From Eq. (1.17),
we obtain

C =
M∑
i=1

Ci =
1

2π

∫
BZ

tr[∂kxAy(k)] =

∫ 2π

0

dkx

M∑
i=1

∂kxν
i
y(kx), (5.22)
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Figure 5.3: Classical ground state spin textures of antiskyrmion crystals. Mag-
netic textures obtained at D/J = 1.0, h = gµBBz/(JS) = 0.3, and T = 0 under the
periodic boundary conditions. The system size is 30× 30. The color code represents the
out-of-plane spin component, while the in-plane magnetization is represented by black
arrows.

where we take the gauge such that ∂kyAx(k) = 0 and Ci depicts the Chern number of i-th
band. Thirdly, the magnonic polarization for the lowest M magnon bands must vanish.

5.2 Model

In this chapter, we consider a following two-dimensional spin lattice Hamiltonian as
a minimal model for tetragonal Heusler compounds hosting antiskyrmions (see Sec-
tion 2.4) [153]:

H = 1
2

∑
〈r,r′〉

(−Jr,r′Sr · Sr′ +Dr,r′ · Sr × Sr′)− gµBBz

∑
r

Sr · ẑ , (5.23)

where Sr is a spin operator at site r on a square lattice with lattice constant a. The
nearest-neighbor coupling includes ferromagnetic exchange Jr,r′ = J(δr−r′,±ax̂+δr−r′,±aŷ)
with J > 0, and Dzyaloshinskii-Moriya interaction Dr,r′ = D(∓x̂δr−r′,±ax̂ ± ŷδr−r′,±aŷ)
consistent with D2d crystal symmetry as shown in Section 2.1. Throughout this chapter,
we take D/J = 1.0 unless stated otherwise. Our result can be rescaled for smaller D/J
ratios as discussed in Section 3.4. Compared to the cubic chiral magnets such as B20
alloys, the Dzyaloshinskii-Moriya interaction is anisotropic with opposite signs along x
and y axes. The last term represents the coupling to the external magnetic field, Bzẑ,
where g and µB denote the g-factor and Bohr magneton, respectively.

Depending on the external magnetic field, this model hosts three distinct magnetic
phases: helical phase; antiskyrmion crystal phase; ferromagnetic phase. Using the Monte



94 CHAPTER 5. MAGNONIC QUADRUPOLE TOPOLOGICAL INSULATOR

Carlo simulated annealing [166] and minimizing the energy further by solving the Landau-
Lifshitz-Gilbert equations, a triangular crystal of antiskyrmions is obtained for 0.27 ≤
gµBBz/(JS) ≤ 0.7 at D/J = 1.0. The magnetic configuration of antiskyrmion crystals
is shown in Fig. 5.3. The in-plane magnetization rotates in a counterclockwise manner
during a rotation around the core of antiskyrmions in a clockwise manner, implying the
opposite topological charge of antiskrymions compared to skyrmions.

Here, we comment a difference from Chapter 3 where the underlying spin lattice is
chosen to be a triangular lattice. In the continuum limit, it is obvious that the free energy
functional for triangular and square lattices become the same. Only the difference is that
the magnetic field is scaled by a factor of 2/3 in the square lattice compared to the trian-
gular lattice, because the number of the nearest neighbors is different (see Appendix A.5).
Similarly, Chern numbers of magnon bands are identical in both lattice systems. However,
the choice of lattice system becomes relevant for higher-order topological phases as they
are protected by crystalline symmetries such as rotations and reflections combined with
time-reversal symmetry. From the crystal structure of tetragonal Heusler compounds, we
choose a square spin lattice in this chapter.

5.3 Main result

5.3.1 Magnonic quadrupole moment in antiskyrmion crystals

In this section, we discuss the magnon band structure of antiskyrmion crystals and show
that they support a nontrivial magnonic quadrupole moment for the lowest four magnon
bands. The magnetic unit cell of antiskyrmion crystals that is commensurate with the
square lattice is shown in Fig. 5.4(a), which contains two antiskyrmions. There are three
important symmetries in this magnetic unit cell: C2z, twofold rotation about the z-
axis; C2xT , twofold rotation about the x-axis together with time reversal; C2yT , twofold
rotation about the y-axis together with time reversal. Each symmetry operation is defined
by the Cartesian axes with the origin taken at the center of the magnetic unit cell as
depicted in Fig. 5.4(a).

The spin wave Hamiltonian for Eq. (5.23) is obtained in Section 1.1.3 by substituting
the expression for the Dzyaloshinskii-Moriya interaction allowed by D2d symmetry. The
bottom panel of Fig. 5.4(a) shows the magnon spectrum at gµBBz/(JS) = 0.35. Since we
have chosen the enlarged magnetic unit cell with two antiskyrmions inside, the number of
bands is doubled compared to the triangular lattice discussed in Section 3.2. In addition,
there is a double degeneracy along boundaries of the first Brillouin zone, XM and MX ′.
The double degeneracy is in fact protected by C2x/2yT symmetries, which respectively
transforms the spin wave Hamiltonian Hk as

Ĉ2xKH(kx,ky)KĈ
†
2x = H(−kx,ky) ,

Ĉ2yKH(kx,ky)KĈ
†
2y = H(kx,−ky) , (5.24)
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Figure 5.4: Symmetries of the magnetic unit cell and Wannier spectra of anti-
skyrmion crystals. (a) Top: magnetic unit cell of the antiskyrmion crystals together
with the first Brillouin zone. The symmetry axes are defined from the center of mag-
netic unit cell, showing symmetry lines for C2x and C2y by black lines. Bottom: bulk
magnon band structures for the lowest ten bands. The fourth bulk band gap is indicated
by a yellow shaded region. (b) Wannier spectrum of the four lowest energy magnon
bands along x (top panel) and y (bottom panel) axis, respectively. Positive Wannier
sectors ν+

x/y is shown in red, while negative Wannier sectors ν−x/y are shown in blue. (c)

Wannier centers of the negative Wannier sectors ν−x/y along y/x axes. All panels are

obtained at h = gµBBz/(JS) = 0.35. The reciprocal lattice vector is represented by
Gx/y = 2π/(Lx/ya) with Lx/y denoting the size of magnetic unit cell along the x/y axis.
Adapted from [212].

where K is the complex conjugation operator and Ĉ2x/2y is the unitary operator for C2x/2y

symmetry.

Now, we consider the magnonic quadrupole moment in antiskyrmion crystals. As
discussed in Section 5.1.3, the quadrupole moment is quantized by the combined action
of C2xT and C2yT symmetries. Employing the nested Wilson loop calculation (see Ap-
pendix E.2), we show that the lowest four bulk magnon bands below the highlighted band
gap in Fig 5.4(a) carries the nontrivial magnonic quadrupole moment in the following.

In order for magnonic quadrupole moments to be well-defined, there are three impor-
tant requirements to be fulfilled (see Section 5.1.3): (1) the number of magnon bands
below the band gap is greater than one; (2) the total Chern number below the band
gap is zero so that it is insulating in both bulk and edge; (3) the magnonic polariza-
tion vanishes. The first condition is satisfied for the four lowest magnon bands. Also,
the Chern number of the four lowest magnon bands is always zero in the ferromagnetic
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skyrmion/antiskyrmion crystals as shown in Fig. 3.3(d). From Eqs. (5.11) and (5.12),
the magnonic polarization is given as

px =
1

2π

∫
dky

M∑
j=1

νjx(ky) mod 1 , (5.25)

py =
1

2π

∫
dkx

M∑
j=1

νjy(kx) mod 1 , (5.26)

where M = 4 is the number of bulk bands below the gap and νx/y is the Wannier
centers along x/y axis. Furthermore, C2x/2yT symmetries give a constraint to the Wannier
spectra as (see Appendix E.4)

νjx(ky)
C2yT
= −νjx(−ky) mod 1 , (5.27)

νjy(kx)
C2xT= −νjy(−kx) mod 1 , (5.28)

allowing either a flat band at νx(ky) = 0, 1
2

or a pair of eigenvalues ν1
x(ky) = −ν2

x(−ky).
Similar values are allowed for νy(kx). Figure 5.4(b) shows the Wannier spectra of the low-
est four magnon bands, consisting of pairs of eigenvalues with opposite signs. Therefore,
the magnonic polarization is canceled out, i.e., (px, py) = (0, 0).

With the three conditions satisfied, we compute the magnonic quadrupole moment
carried by the lowest four magnon bands. From the gapped Wannier spectra in Fig-
ure 5.4(b), we define two Wannier sectors below and above a gap at νx/y = 0. In the
real space, it corresponds to projection to the subspace of occupied states localized to
the positive (red) and negative (blue) directions in x/y axes from the center of magnetic
unit cell, which is denoted as ν+

x/y and ν−x/y, respectively. The nested Wilson loop is
constructed within these subspace to calculate polarization in the orthogonal directions
for each Wannier sector as explained in Appendix E.2. Figure 5.4(c) shows the Wannier
centers of Wannier sectors ν−x and ν−y . Similarly to Wannier centers of occupied states,
Wannier centers of a Wannier sector are also constrained by C2xT and C2yT as shown in
Eqs. (E.30) and (E.31). Within numerical errors, we obtain two flat bands quantized at 0

and −1
2

for both νν
−
x
y (kx) and ν

ν−y
x (ky). Since the C2z symmetry relates Wannier centers of

different Wannier sectors from Eqs. (E.32) and (E.33), the magnonic quadrupole moment
is obtained as

qxy = pν
−
x
y pν

−
y
x =

1

2
. (5.29)

with the Wannier sector polarization given as

pν
±
x
y =

1

2π

∫
dkx

2∑
p=1

νν
±
x ,p
y (kx) mod 1 =

1

2
, (5.30)

pν
±
y
x =

1

2π

∫
dky

2∑
p=1

νν
±
y ,p
x (ky) mod 1 =

1

2
. (5.31)
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Importantly, the magnonic quadrupole moment is always nontrivial for the lowest four
bulk bands in the range of magnetic fields where the antiskyrmion crystal is stable.
Furthermore, the nontrivial magnonic quadrupole moment remains intact for D/J <
1.0, because the equivalent band structure is obtained with energy scaled by (D/J)2

as expected from the continuum model (see Section 3.4). In the following sections, we
investigate the bulk-boundary correspondence in the magnonic quadrupole topological
insulators supported by antiskyrmion crystals.

5.3.2 Fractional antiskyrmions and Magnonic corner states

In this section, we study the classical ground-state spin textures in a finite system and
their magnon spectrum for the search of magnonic corner states arising from the nontrivial
magnonic quadrupole moment. In Section 1.3.4, we have introduced the local instabil-
ity of ferromagnetic phase against creation of helical domains, which was predicted to
occur at edges of thin film samples in chiral magnets due to the Dzyaloshinskii-Moriya
interaction [105]. A similar critical behavior occurs in D2d symmetric systems, as shown
below. Since antiskyrmion crystals are thermodynamically stable at the critical magnetic
field of the edge instability, the formation of helical domains leads to repulsive interac-
tions between them. As a result, they are confined to edges with a fractional topological
charge, termed as fractional antiskyrmions. We show that the formation of fractional
antiskyrmions is essential to realize magnonic corner states in the following.

Before discussing the ground state magnetic textures in confined systems, we evaluate
the critical magnetic fields for the edge instability in the spin lattice model of Eq. (5.23),
in order to compare with hc = gµBBzJ/(D

2S) = 0.4067 obtained in the continuum
limit [105] (see Appendix A.7.2). Solving the Landau-Lifshitz-Gilbert (LLG) equation
(see Appendix A.6), we compute the time evolution of 50× 50 spins in a strip geometry
periodic along x-axis and open along y-axis. The initial state is a field-polarized phase
prepared by Monte Carlo simulated annealing at h = 1.0. The critical magnetic field is
then estimated by lowering the magnetic field until we find a growth of helical domains
from small seeds of negative polarized spins near the edge. In Table 5.1, the numerical
results are summarized for different D/J ratios. Consistent with Ref. [105], the critical
value is found to be h ≈ 0.41 regardless of the strength of Dzyaloshinskii-Moriya inter-
action. Hence, we fix the ratio D/J = 1.0 without loss of generality in the following
sections.

D/J 1.0 0.9 0.7 0.5 0.3
hc 0.403 0.405 0.413 0.417 0.409

Table 5.1: The estimated values of the critical magnetic field for the edge
instability at various D/J ratios. This is estimated by the LLG simulation of one-
dimensional systems consisting of 50 × 50 spins with the periodic boundary condition
along x axis. Below the critical magnetic fields, a small seed of negatively polarized spins
along edges grows into helical domains. Adapted from [212].
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Figure 5.5: Fractional antiskyrmions stabilized below the critical magnetic
fields in a finite system. Three magnetic configurations are stabilized as a func-
tion of magnetic fields h = gµBBz/(JS) at D/J = 1.0. The boundaries between them
are determined by comparing the total energy of each configuration.

After confirming the edge instability for antiskyrmion systems, we proceed to inves-
tigate the classical ground state spin textures of finite-sized samples. A finite system of
30× 30 spins is relaxed to the classical ground state at T = 0 by Monte Carlo simulated
annealing and solving the Landau-Lifshitz-Gilbert equation. Near the critical magnetic
field for the edge instability hc, we have identified three different configurations as shown
in Fig. 5.5. Above hc, twisted magnetizations along edges are observed in configuration
C. As magnetic field is lowered below the critical value, fractional antiskyrmions are pro-
gressively stabilized along edges of a sample. Below h ≈ 0.35, fractional antiskyrmions
are obtained on all edges in configuration A. We should note that the total topological
charge of a finite sample is not quantized to be integers, and the topological charge of
fractional antiskyrmions is not necessarily equal to 1

2
like merons. Using Eq. (1.58), we

estimate the fractional topological charge of objects localized on the vertical edges as
Q ∼ 0.44 and on the horizontal edges as Q ∼ 0.47 in configuration A.

The magnon spectrum of finite samples is computed analogously to periodic systems.
Given a finite system with N total spins, a new local orthogonal basis is introduced as
(e1

r, e
2
r,mr), where mr is parallel to the ground-state spin texture and e1

r × e2
r = mr.

Employing the Holstein-Primakoff transformation [72], the spin operators with respect to

the new basis is given by S+
r = (2S−a†rar)

1
2ar, S−r = a†r(2S−a†rar)

1
2 , and S3

r = S−a†rar,
where S±r = S1

r ± iS2
r, and ar, a†r are the bosonic operators. The quadratic magnon
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Figure 5.6: Magnonic corner states in confined antiskyrmion crystals. (a)-(b)
Magnon excitations in (a) configuration A at h = 0.3 and (b) configuration C at h = 0.42,
respectively. Left: magnetic textures of the classical ground state. Middle: magnon
spectrum near the fourth bulk band gap (yellow squares). Right: probability density of
corner states, Γλ defined in Eq. (5.36). Bulk modes are represented by gray, while corner
states and trivial edge localized modes are highlighted by red and blue, respectively.
Adapted from [212].

Hamiltonian is then derived as

HSW =
S

2

∑
r,r′

ψ†rHr,r′ψr′ + E0 , (5.32)

where ψr = (ar, a
†
r)T , E0 = −1

2
S2
∑

r Λr and

Hr,r′ =

(
Ωr,r′ ∆r,r′

∆∗r,r′ Ω∗r,r′

)
. (5.33)

Each expression is a N × N matrix, and given by Ωr,r′ = δr,r′Λr + 1
2
[−Jr,r′e+

r · e−r′ +
Dr,r′ ·e+

r ×e−r′ ], ∆r,r′ = 1
2
[−Jr,r′e+

r ·e+
r′ +Dr,r′ ·e+

r ×e+
r′ ], and Λr =

∑
r′ [Jr,r′mr ·mr′ −

Dr,r′ ·mr ×mr′ ] + gµBBz
S
ẑ ·mr, with e±r = e1

r ± ie2
r.

Using a paraunitary matrix

Tr =

(
Ur V ∗r
Vr U∗r

)
, (5.34)
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Figure 5.7: Magnon spectrum as a function of applied magnetic fields. Magnetic
field dependence of magnon spectrum is plotted with the bottom colorbar indicating
the corresponding spin configuration in Fig. 5.5. Bulk modes are represented by gray,
while corner states and trivial edge localized modes are highlighted by red and blue,
respectively. Adapted from [212].

the spin wave Hamiltonian is diagonalized as

HSW = S
∑
λ

Eλ
(
α†λαλ + 1

2

)
+ E0 , (5.35)

where λ is the index for each magnon mode, Eλ is the corresponding eigenvalue, and
(ar, a

†
r)T = Tr(αλ, α

†
λ)
T . The spatial distribution of the λ-th magnon mode is character-

ized by

Γλ(r) = | 〈GS| arα†λ |GS〉 |2 = |Urλ|2 , (5.36)

where |GS〉 is the vacuum state of magnons, i.e., αλ |GS〉 = 0.
Figure 5.6(a) shows the magnon spectrum of configuration A, where we find four

degenerate states (red) inside the fourth bulk band gap. They correspond to corner
states, one for each corner of the sample as indicated by the probability density Γλ,
which originates from the nontrivial magnonic quadrupole moment of the lowest four
bands. There also exists trivial bound states localized to fractional antiskyrmions on top
and bottom edges (blue). On the other hand, for configuration C in Fig. 5.6(b), these four
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Figure 5.8: Magnonic corner states excited by an in-plane AC magnetic field.
Left: configuration A at h = 0.3. Right: amplitude of oscillations of spins under an
in-plane AC magnetic field at resonance with corner states, defined in Eq. (5.37). The
phenomenological damping constant is fixed at α = 0.04. Adapted from [212].

degenerate corner states are split into a pair of doubly degenerate states (red). They are
buried among bulk modes with nonzero overlaps. As a result, their probability density
is no longer exponentially localized to corners. Another point is that trivial edge modes
localized to the edge magnetization (blue) are obtained, as predicted in Ref. [105] (see
Appendix A.7.2).

In order to demonstrate the relationship between fractional antiskyrmions and magnonic
corner states, we plot the magnon spectrum as a function of the applied magnetic field
in Figure 5.7. When fractional antiskyrmions are stabilized below the critical magnetic
field hc, magnonic corner states emerge inside the fourth band gap. In this regime, the
energy of corner states is linearly proportional to the magnetic field. On the other hand,
the in-gap corner states are absorbed into bulk bands above hc.

We should emphasize that the absence of corner states above hc is not due to the
topological phase transition of bulk bands. Even though the magnonic quadrupole mo-
ment remains nontrivial, the bulk-boundary correspondence for higher-order topological
phases requires the protecting symmetries, namely C2xT and C2yT , to be preserved in
the presence of boundaries. Remarkably, the self-assembly of fractional antiskymions
restore the symmetries of magnetic unit cells even in a confined system. This is clearly
illustrated in configuration A of Fig. 5.5. In contrast, the arrangement of antiskyrmion
lattices is distorted inside the bulk of sample in configuration C, because antiskyrmions
are repelled from edges above the critical magnetic field. Therefore, magnonic corner
states are realized only in configuration A and B that conserve symmetries protecting the
magnonic quadrupole moment.

For experimental observations, the magnonic corner states can be excited by spatially
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uniform AC magnetic fields. This is illustrated by the Landau-Lifshitz-Gilbert simulation
(see Appendix A.6). To selectively excite a magnon mode, the frequency of the AC
magnetic field should be at resonance with the energy of the corresponding state. From
Fig. 5.7, the energies of the corner states are found to be approximately at E/(JS) ≈ h.
Taking the initial states as configuration A at h = 0.3, the in-plane magnetic fieldB‖(t) =
B0 cos(ωt)x̂ is applied with frequency ~ω/(JS) = 0.3 and amplitude gµBB0/(JS) = 0.01.
Naively speaking, the amplitude of spin precession is proportional to the magnon number
of corresponding eigenstates, which is defined as

|δmr| =
[

3∑
i=1

(maxt{mi
r(t)} −mint{mi

r(t)})2

]1/2

, (5.37)

with maxt and mint evaluated in the interval [t0, t0 + T ], i.e., over one period T of the
AC magnetic field after a long time t0 = 104, to ensure that the system has reached a
steady state. Figure 5.8 plots the amplitude of oscillations of spins |δmr| at each site,
clearly showing large oscillation amplitudes at the corners of the sample. We note that
an out-of-plane AC magnetic field can also excite the magnonic corner states.

5.4 Bulk-boundary correspondence

The hallmark signatures of a nontrivial quadrupole moment are fractional edge dipole
moments and fractional corner charges as shown for electronic systems in Section 1.2.4 [79,
80]. Analogously to classical electromagnetism, they are related by

|qxy| = |pedge
x | = |pedge

y | = |Qc| =
1

2
mod 1. (5.38)

In this section, we illustrate that fractional boundary signatures are also realized in the
magnonic quadrupole topological insulator.

5.4.1 Magnonic edge polarization

In this section, the magnonic edge polarization is calculated in a strip geometry with
open boundaries along one direction and periodic boundaries in the other direction, as
described in Appendix E.3. Similarly to the calculation of magnonic polarizations, we
construct the Wilson loop out of the lowest four bulk subbands along the periodic di-
rection. While the total magnonic polarization of the strip should be the same as the
magnonic polarization of the bulk sample, it is possible to have polarizations localized to
edges that cancel out each other.

Importantly, the magnonic edge polarization can be interpreted as a topological in-
variant for one-dimensional systems in a strip geometry, characterized by topologically
protected Wannier edge states as discussed in Section 5.1.3. In higher-order topological
phases, topologically protected boundary modes are often hindered by the broken symme-
tries near boundaries. Using the magnonic edge polarization, we compare the topological
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Figure 5.9: Magnonic edge polarization in a strip geometry. Wilson loop calcula-
tion of one-dimensional systems (a) below (h = 0.3) and (b) above (h = 0.41) the edge
instability. Column 1: classical ground state spin textures with the periodic boundary
condition along the x axis and the open boundary condition along the y axis (10 × 60
sites). It contains four magnetic unit cells in the confined direction with their positions
depicted on the vertical axis. Column 2: edge magnon spectrum with bands below the
fourth bulk band gap (yellow squares) indicated by magenta. Column 3: Wannier spec-
trum νx showing four bulk bands (gray) and edge localized Wannier states (red and blue),
where λ is the band index. Column 4: polarization px(Ry) with Ry labeling the position
of unit cells as shown in (a). px(Ry) is defined in Eq. (E.22). Adapted from [212].

properties of the strip sample above and below the critical magnetic field hc, and show
the topological phase transition caused by the edge instability. Our result is summarized
in Figure 5.9.

For the computation of edge polarizations, we prepare antiskyrmion crystals in a strip
geometry that is periodic only along the x axis. Choosing a system size to be compatible
with the size of the magnetic unit cell in the bulk, we obtain the magnetic unit cell of
the strip containing four of the bulk magnetic unit cells along the y axis. Only below the
critical magnetic field hc, fractional antiskyrmions are stabilized on the top and bottom
edges as shown in the leftmost panels of Fig 5.9(a). We should note that those along
vertical boundaries are connected across periodic boundaries, so they are not fractional
antiskyrmions. The Wilson loop is constructed from the group of bands corresponding
to the lowest four magnon bands (magenta) in the edge spectrum of Fig 5.9. Above hc,
additional in-gap states appear inside the fourth bulk band gap (yellow squares) that
correspond to trivial edge states.

The obtained Wannier spectra for both cases show four bulk bands (gray) with oppo-
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Figure 5.10: Corner states induced by magnonic edge polarization. (a)-(b)
Magnon spectrum of the finite samples obtained from Fig. 5.9 with the same parameters
but connecting boundaries along the y axis. Left: classical ground state spin textures.
Right: magnon spectrum showing corner states (red) and edge states (blue). Adapted
from [212].

site signs so that the bulk polarizations vanish. The important difference arises from the
two additional modes with quantized Wannier centers νx = ±1

2
(red and blue), which is

found only below hc. Remarkably, the corresponding hybrid Wannier functions for these
modes are localized at the core of fractional antiskyrmions along edges of the strip. Using
Eq. (E.22), we obtain the edge polarization below hc with opposite values at opposite
edges: −1

2
/1

2
at the top/bottom edge (red and blue). In contrast, the edge polarization

vanishes above the edge instability as fractional antiskyrmions that support Wannier edge
states are no longer stable. We also confirmed that py(Rx) shows a similar behavior above
and below the critical field.

In Figure 5.9, we have demonstrated that the topological phase transition in the strip
geometry occurs as fractional antiskyrmions become unstable above hc. For further con-
firmation, we show that a quantized magnonic edge polarization translates into magnonic
corner states by turning the strip geometry unit cell into a fully finite system with open
boundary conditions as depicted in Fig. 5.10(a). In contrast for h > hc, Figure 5.10(b)
shows trivial corner states that are twofold degenerate and merge with bulk bands at
higher magnetic fields.

The magnonic edge polarization is originated from the Wannier edge states with
quantized Wannier centers νx = ±1

2
. Since Wannier centers are eigenvalues of the position

operator (see Appendix D.3), they depend on the choice of the magnetic unit cell [303].
This is demonstrated in Fig. 5.11, showing the Wannier spectrum and polarization of a
strip magnetic unit cell shifted by half the lattice vector with respect to the one shown
in Fig. 5.10(a). In this new configuration, fractional antiskyrmions are located in the
center of edges. Hence, the Wannier centers of edge states are shifted from 1

2
to 0,

resulting in vanishing edge polarizations. This implies that it would not host magnonic
corner states if boundaries orthogonal to the x-axis were introduced in this configuration.
However, this choice of magnetic unit cell is energetically less favorable, so the quantized
edge polarization is expected in the thermodynamic limit, satisfying the bulk-boundary



5.4. BULK-BOUNDARY CORRESPONDENCE 105

0

1

2

3

0 8 16
0.50

0.25

0.00

0.25

0.50

0 1 2 3

0.50

0.25

0.00

0.25

0.50

Figure 5.11: Magnonic edge polarization defined in a different choice of mag-
netic unit cells. Left: magnetic unit cell in Fig. 5.9(a) is shifted by the half lattice
vector. Middle: Wannier spectrum νx showing four bulk bands (gray) and edge localized
Wannier states (red and blue) with quantized Wannier centers at zero. Right: polariza-
tion px(Ry) with Ry labeling the position of unit cells. Adapted from [212].

correspondence. We should note that a local configuration equivalent to Fig. 5.11 can be
realized due to finite size effects as shown in Section 5.5.1.

5.4.2 Fractional corner “charge”

Unlike electrons, magnons carry no electric charge. Nevertheless, the magnonic quadrupole
moment results in a fractional magnon density at corners of finite samples. Here, we intro-
duce the magnon corner “charge” analogously to the boundary charge in one-dimensional
electronic systems, which is defined as the difference between the charge near the bound-
ary and the background charge from the bulk states [13, 14, 304–308].

Let us consider a finite system that contains Nx×Ny magnetic unit cells. The magnon
density carried by the lowest M bulk magnon bands of the antiskyrmion crystal is given
by

ρ(r) =

Nx×Ny×M∑
n=1

〈unr |unr〉para , (5.39)

where 〈unr |unr〉para is the magnon density of the n-th magnonic wave function at site r on
this finite system. The dot product is evaluated with a paraunitary matrix as defined in
Eq. (5.2). The corresponding bulk-like magnon density is computed from an auxiliary
periodic system obtained by connecting the edges orthogonal to one of the axes of the
finite sample. It is defined as

ρi(r) =

Nx×Ny×M∑
n=1

〈unr,i|unr,i〉para
, (5.40)

where |unr,i〉 is the n-th magnonic wave function of the auxiliary system, evaluated at the
Γ point, with the periodic condition along x axis for i = 1 and y axis for i = 2.
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Figure 5.12: Fractional corner charge induced by the bulk quadrupole moment.
(a) Classical ground state magnetic texture of a 60 × 60 spin lattice at h = 0.3. As
indicated by vertical and horizontal axes, it contains Nx × Ny magnetic unit cells, with
(Nx, Ny) = (4, 6). (b) Magnon spectrum near the fourth bulk band gap indicated by a
yellow square, showing eigenstates that belong to the lowest four bulk bands in magenta.
The corner states are depicted by larger gray circles. (c) The value of the magnon charge
density φ(r) is indicated for each magnetic unit cell. Green dashed lines divide the sample
into four symmetry sectors whose net magnon charge is denoted by large bold numbers.
(d) The magnetic field dependence of Qc, obtained by relaxing the classical ground-state
configuration at h = 0.3 with increasing magnetic fields. Adapted from [212].

Based on the magnon density defined above, the fractional corner “charge” carried by
the lowest four bulk magnon bands of the antiskyrmion crystal in a finite system is given
by [309]

Qc =
∑

r∈one sector

φ(r) mod 1 , (5.41)

with φ(r) = ρ(r) − [ρ1(r) + ρ2(r)]. We should note that the corner “charge” includes
not only the magnon density of a unit cell at corners but also of all unit cells within a
symmetry sector related by C2xT and C2yT , which is indicated by green dashed lines in
Fig. 5.12(a). From the symmetry, we expect that Qc for each symmetry sector is equal to
each other. Hence, the fractional corner “charge” defined in Eq. (5.41) remains quantized
regardless of the correlation length of magnon wave functions as long as the symmetry is
conserved, as shown below.
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Figure 5.13: Magnonic corner states at select corners. (a) Top: classical ground
state spin textures of 45× 45 spins at h = 0.3. Bottom: magnon spectrum with only two
corner states (red) and trivial edge modes (blue). (b) and (c) Top: enlarged spin textures
of (b) the top left corner (green dashed lines) and (c) the bottom left corner (light blue
dotted lines) shown in (a). Bottom: probability density distribution of the corner state
at each corner. Adapted from [212].

Figure 5.12 illustrates the calculation of Qc of a 60×60 spin lattice with open boundary
conditions at h = 0.3, where (Nx, Ny) = (4, 6), and M = 4 as shown in Fig. 5.12(a).
The corresponding auxiliary, periodic system is prepared by the identification procedure
described above and then letting the magnetic texture relax using the LLG equation for
a long time t0 = 104. The magnon density ρ(r) for the finite system is calculated from
the eigenstates within the lowest four bulk bands (magenta) as shown in Fig. 5.12(b). As
shown in Figure 5.12(c), we find that the magnon charge density φ(r) is corner-localized
and Qc is quantized to 1

2
at each symmetry sector. Furthermore, Figure 5.12(d) shows

that Qc remains quantized below and suddenly increases above the edge instability critical
field, signaling a topological phase transition.

5.5 Discussion

5.5.1 Corner state engineering

In section 5.4.1, we have shown that two different choice of magnetic unit cells is pos-
sible, and the one that support magnonic corner states is the thermodynamically stable
configuration. Hence, we always expect four degenerate corner states to be obtained for a
sufficiently large system. Even if there is a mismatch between the magnetic unit cell and
sample size, antiskyrmion crystals can deform slightly to form the thermodynamically
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Figure 5.14: Magnonic corner states induced by a T -shaped hole. (a) Classical
ground state spin textures of a 45× 45 periodic system at h = 0.31. A T -shaped hole is
introduced at the center of a sample. (b) Magnon band structure of the first Brillouin
zone, showing almost doubly degenerate flat bands in red and bulk states in gray. (c)
Probability density distribution Γλ of the flat band at Γ point. (a) and (c) are adapted
from [212].

stable configuration, and support a magnonic corner state at each corner. On the other
hand, the finite size effect cannot be neglected for small samples. In such cases, there is
an additional criterion for the formation of magnonic corner states as discussed below.

Figure 5.13(a) shows the classical ground-state texture of a 45×45 spin lattice system
containing 4.5 magnetic unit cells along the vertical direction, and the spin configurations
at the top and bottom corners are different. This is indicated by enlarged spin textures
in Fig. 5.13(b) and (c). At the top corner in Fig. 5.13(b), fractional antiskyrmions are
close to each other across the corner compared to the bottom corner configuration in
Fig. 5.13(c). Although the configuration of Fig. 5.13(b) is energetically less favorable due
to the repulsion between fractional antiskyrmions, it is enforced by the mismatch between
the magnetic unit cell and system size. Furthermore, the configuration of Fig. 5.13(b)
corresponds to the magnetic unit cell with zero edge polarization (see Figure 5.11). As
a result, magnonic corner states are not supported by the top corners, resulting in only
two corner states in this sample. Therefore, the location of magnonic corner states could
be controlled by adjusting the size of the sample.

It is also possible to engineer the location of corner states by introducing artificial
holes within the bulk of the sample. In Figure 5.14, we show the classical ground state
spin textures in the presence of a T -shaped hole at h = 0.31 with the periodic boundary
condition. Taking the whole sample as a magnetic unit cell, we obtain the magnon
spectrum with two perfectly flat bands (red) inside the fourth bulk band gap as shown in
Fig. 5.14(b). A non-dispersive band structure generally implies local excitations. Indeed,
those two flat bands correspond to the magnonic corner states. Figure 5.14(c) shows the
probability density of the flat band magnon mode at Γ point defined in Eq. (5.36), which
is localized at the inner corners of the T -shaped hole. Therefore, topologically protected
magnonic corner states can be engineered at desired locations as long as the symmetries
are preserved in the presence of holes.
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Figure 5.15: Robust magnonic corner states in the presence of disorder.
Disorder-averaged magnon spectrum as a function of the disorder strength η at h = 0.3,
showing the corner states in red and edge localized states in blue. Adapted from [212].

5.5.2 Robustness of corner states

In this section, we investigate the robustness of magnonic corner states against weak
perturbations. In magnonic systems, adding a disorder in the spin wave Hamiltonian
is not sufficient as it may also affect the underlying spin textures. In order to account
for it, we compute the classical ground state spin textures for each disorder realization.
The spin wave Hamiltonian is constructed from each configuration with the perturbation
term, which is used to compute the magnon band structure. In this way, we evaluate the
robustness of corner states against disorder.

We consider random fluctuations in the z component of the external magnetic field
across the sample: δBz(r). Adding the random field δBz(r) on top of the uniform
magnetic field at h = 0.3, the stable configuration is obtained for a 30 × 30 system by
Monte Carlo simulated annealing. The disorder in magnetic fields adds a following term
to the spin wave Hamiltonian:

Hdis =
∑
r

gµBδBz(r)ẑ ·mra
†
rar . (5.42)

The random fluctuations are modeled as δBz(r) = Bzχrη, where χr is uniformly dis-
tributed in the interval [−1, 1] and η is a parameter for the disorder strength. In Fig-
ure 5.15, we plot the disorder-averaged magnon spectrum Ē at various disorder strength
η. For each value of η, we take a statistical average over 20 disorder realizations. While
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Figure 5.16: Magnonic corner states realized in Bloch and Néel skyrmion crys-
tals. Ferromagnetic (a) Bloch and (b) Néel skyrmions in a finite sample at h = 0.3.
Left: classical ground state spin textures with fractional skyrmions along edges. Mid-
dle: magnon spectrum shwoing corner states (red) and trivial edge states (blue). Right:
probability density Γred

λ of the corner states. Adapted from [212].

the fourfold degeneracy of corner states is broken by disorder, they remain inside the
band gap, isolated from bulk bands. Therefore, we conclude that the magnonic corner
states are robust against moderate disorder.

5.5.3 Bloch and Néel skyrmion crystals

So far, we have focused on the antiskyrmion crystals realized in tetragonal Heusler com-
pounds with D2d symmetry, where the magnonic bulk quadrupole moment is quantized
by C2xT and C2yT symmetries. It is straightforward to generalize our theory to conven-
tional skyrmions. For Bloch skyrmion crystals, the symmetries of magnetic unit cell is
the same as antiskyrmion crystals. Hence, they also support magnonic corner states be-
low the critical magnetic field of the edge instability, originating from the quantized bulk
quadrupole moment. Similarly, the symmetries of Néel skyrmion crystals are given by
MxT and MyT , which leads to the identical constrains on Wannier centers and bulk mul-
tipole moments as C2xT and C2yT symmetries. Figure 5.16 illustrates that the magnonic
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corner states are obtained in both Bloch and Néel ferromagnetic skyrmion crystals in the
presence of fractional skyrmions.

5.5.4 Magnon-magnon interaction

Throughout this chapter, we have studied the quadratic spin wave Hamiltonian, neglect-
ing magnon-magnon interactions arising from higher order contributions. Here, we discuss
its effect on the magnonic higher-order topological phase realized in antiskyrmion crys-
tals. Firstly, the magnonic corner states was observed using the Landau-Lifshitz-Gilbert
equation in Fig. 5.8. This implies that it is robust against all the nonlinear contributions
in the classical limit [41]. Furthermore, the perturbative expansion of magnon-magnon
interaction in skyrmion crystals was recently performed up to the third order terms in
magnon operators [310]. They have shown that the four lowest magnon bands do not
undergo spontaneous quasiparticle decay into lower energy states, which guarantees the
robustness of the magnonic quadrupole moment against magnon-magnon interactions.
Therefore, the magnonic corner states protected by the quadrupole moment should per-
sist even beyond the linear spin wave theory.

5.5.5 Dipolar interactions

Our model Hamiltonian consists of the short-range interactions between neighboring
spins. In practice, the long-range interaction exists in ferromagnetic systems due to
the dipolar fields (see Appendix A.3.3). In order to account for it, we consider a sim-
plified expression obtained in the two-dimensional limit, given as an effective easy-plane
anisotropy [101, 130, 188]. Adding the crystalline easy-axis anisotropy, it is written as

Hdip+MC = −
∑
r

KS2
r,z , (5.43)

with K = KMC − 1
2
µ0M

2
s , where KMC is the uniaxial crystalline anisotropy coefficient

and the second term is the effective anisotropy from the dipole-dipole interaction with
Ms and µ0 denoting the saturation magnetization and the permeability of free space,
respectively. Using this term to model the dipolar interactions, we discuss its effect on
the magnonic corner states.

The effect of anisotropy on the stability of skyrmions has been discussed in the litera-
tures [264, 311]. The easy-axis anisotropy (K > 0) favors the out-of-plane magnetizations,
while the easy-plane anisotropy (K < 0) favors the in-plane magnetizations. As a result,
the skyrmion crystal phase remains stable up to higher magnetic fields for the easy-plane
anisotropy. Similarly, the critical magnetic field for the edge instability becomes higher
for K < 0 as shown in Fig A.2 [105]. Therefore, negative anisotropy of a modest strength
could support magnonic corner states at higher magnetic fields. However, we find that a
strong negative anisotropy leads to the band inversion between the fourth and fifth bands
at K/J = −0.6 and h = 0.3, resulting in the topological phase transition. Therefore, the
magnonic corner states are expected to be robust against dipolar interaction although
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Figure 5.17: Schematic representation of magnonic corner states in anti-
skyrmion crystals. Adapted from [212].

there exists the critical values of the effective anisotropy for the topological phase tran-
sition for K < 0. We should note that the magnonic corner states may be found within
the bulk states for K < 0. Even in this case, the topologically protected corner states
are not overlapped with bulk states so that they can be brought into a bulk band gap by
applying a local magnetic field at the corners of the sample [309].

5.6 Conclusion

We have uncovered that magnetic antiskyrmion crystals can realize a magnonic quadrupole
topological insulator, whose hallmark signatures are robust magnonic corner states (Fig-
ure 5.17). The magnonic quadrupole moment is quantized by C2xT and C2yT symmetries
of the magnetic unit cell, whose value remains nontrivial for a broad range of parameters.
Tuning an applied magnetic field induces the self-assembly of fractional antiskyrmions
along the sample edges, which, remarkably, restore the protecting symmetries that al-
low the formation of magnonic corner states. Acentric tetragonal Heusler compounds,
where antiskyrmion crystals have already been observed, constitute a readily available
experimental platform to test our predictions. We should note that our theory also ap-
plies to ferromagnetic Bloch and Néel skyrmion crystals, with equivalent symmetries that
quantize the magnonic quadrupole moment.

For experimental observations, the magnonic corner states can be excited by spatially
uniform AC magnetic fields. The main challenge is a high spatial resolution to resolve
the corner localized modes. We suggest NV center magnetometry [312] or near-field
Brillouin light scattering technique [268] for such measurements. Ferromagnetic resonance
spectroscopy could be also used for measuring the energy of magnonic corner states. In
addition, the quantized magnon corner “charge” Qc can be used to characterize the
magnonic quadrupole moment similarly to Ref. [309]. Qc is defined in terms of magnon
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densities as given Eq. (5.41), so it can be estimated from the amplitude of spin precession
using the aforementioned techniques.

Another point is that the formation of fractional (anti)skyrmions is essential to ob-
tain topologically protected magnonic corner states. So far, there is no clear evidence
of their existence, although the edge twisting and edge-mediated skyrmion chains were
observed in Bloch skyrmions [104, 168]. In constrast, fractions of topologically trivial
magnetic bubbles have been observed along the sample edges in the acentric tetragonal
Heusler compound Mn1.4Pt0.9Pd0.1Sn [153] (see Fig. 2.12). Our numerical simulations
indicate that the presence of the (anti)skyrmion crystal is of paramount importance for
the stabilization of fractional (anti)skyrmions along the edges of the sample, and the
field-cooling protocol is necessary for that. We hope that fractional (anti)skyrmions will
be experimentally observed in near future.

Finally, we comment on possible applications of magnonic corner states. Recently, a
hybrid system between magnons and other bosonic excitation has been actively studied
for quantum computing and quantum information applications [313–315]. Since magnonic
corner states are exponentially localized at corners and isolated from bulk states in the
spectrum, they can be used as as a magnon cavity with a high Q factor [299] to enhance
magnon-photon interactions. Our study highlights a new form of topological excitation
in magnetic systems and its potential use in the design of future magnonic devices.
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Chapter 6

Summary and Outlook

In this thesis, we have studied the topological magnon excitations in magnetic skyrmion
crystals, where the noncollinear spin structure provides an attractive platform for topo-
logical magnonics. We have shown that an increase in the magnetic field triggers the topo-
logical phase transition of magnon bands. Furthermore, it is caused by the band inver-
sion between two magnetically active modes, namely the counterclockwise and breathing
modes. This implies that the predicted band inversion can be experimentally measured by
the microwave absorption, as demonstrated previously. Dictated by the bulk-boundary
correspondence, the chiral magnonic edge state exists inside the band gap between these
two modes below the critical magnetic field, but it vanishes above the critical field. Hence,
the chiral magnonic edge state can be controlled by external fields in skyrmion crystals.

We have further extended the discussion to non-equilibrium systems driven by THz
lasers, where Floquet magnons were defined as slow excitations from rapidly oscillating
non-equilibrium steady states. Using the LLG simulations, we have shown that an ef-
fective magnetic field induced by the circularly polarized laser also leads to the band
inversion analogously to static magnetic fields. Thus, it opens a possibility of ultrafast
laser-driven topological phase transition.

We have also extended the magnon band topology to higher-order topological in-
sulators characterized by the bulk multipole moments. Establishing the Wilson loop
formalism adapted for magnons, we have shown that antiskyrmion crystals as well as
conventional skyrmion crystals support the magnonic higher-order topological phase with
a nontrivial quadrupole moment. The hallmark signature is the magnonic corner state,
which requires the conservation of protecting symmetries in a finite sized sample. We
have pointed out that this condition is satisfied in the presence of fractional antiskyrmions
that are stabilized at low magnetic fields.

As a summary, we have shown that the various magnonic topological phases can
be induced and controlled by externally applied magnetic fields in magnetic skyrmion
crystals. Our study suggests the potential application of magnetic skyrmion crystals in
spintronic devices, supporting both magnonic corner states and chiral edge states.

For the future work, we would like to comment on the recent progress of collaboration
work with an experimental group in Germany. As predicted by our result, we have suc-
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cessfully observed fractional antiskyrmions and skyrmions in the Heusler material [316].
Since their presence restores the symmetries of magnetic unit cell, it is an important step
towards the realization of magnonic corner states. Intriguingly, this material is the only
known example where antiskyrmions and Bloch skyrmions coexist, although the crystal
symmetry favors the formation of antiskyrmions [153]. It was reported that antiskyrmions
are stable at room temperatures, while Bloch skyrmions become more favorable at low
temperatures [317]. They have even demonstrated a continuous transformation between
Bloch skyrmions and antiskyrmions [318]. To understand this behavior, the importance
of dipole-dipole interaction has been pointed out at low temperatures. Hence, our next
goal is to fully incorporate the long-range dipolar interactions in antiskyrmion crystals.
While we expect that our result holds at high temperatures where antiskyrmions were
observed, it is an interesting question whether a strong dipole-dipole interaction at low
temperatures leads to a novel magnonic topological phase.
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Appendix A

Theoretical and experimental
background

A.1 Sum rule of Chern number

The sum of Chern number over whole “particle” bands is zero as shown below [2].

N∑
n=1

Cn = 0. (A.1)

The condition for this sum rule is that energy eigenvalues satisfy En(k) > 0 for n =
1, . . . , N , implying that there is no gapless excitation such as Goldstone modes.

To prove Eq. (1.23), we interpolate from a 2N × 2N unit matrix to a magnon BdG
Hamiltonian H(k) of Eq. (1.10) with a parameter λ (0 ≤ λ ≤ 1).

H(k, λ) = (1− λ)12×2 + λH(k). (A.2)

From the assumption that all energy eigenvalues are positive, H(k) is paraunitarily equiv-
alent to a positive definite diagonal matrix:

T †kH(k)Tk =

(
Eλ(k) 0

0 Eλ(−k)

)
. (A.3)

Sylvester’s law of inertia states that H(k) can be transformed to a diagonal matrix with
all positive elements by a unitary matrix.

U †kH(k)Uk = Ek > 0. (A.4)

It is straightforward to see that this holds true for 0 ≤ λ ≤ 1 using the same unitary
matrix.

U †kH(k, λ)Uk = (1− λ)I2N×2N + λEk > 0. (A.5)

This guarantees that the magnon spectrum of H(k, λ) is always positive definite. Thus,
all “particle” bands have positive energies during the interpolation from λ = 1 to λ = 0,
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(a) (b)

Figure A.1: Schematic picture of boundary segmentation of a cubic system. (a)
Boundaries of a cuboid consists of two-dimensional squares Sa. The unit vector orthogonal
to the surface is denoted as n

(a)
i = ±δai with its sign determined by the orientation of

surfaces. (b) Boundaries of a square consists of one-dimensional lines Lab. Adapted from
[80].

which excludes possibility of band crossings with “hole” bands. The sum of the Chern
numbers over a group of bands does not change, unless some band in the group forms
a band touching with bands outside the group. Therefore, the Chern number does not
change during the interpolation, resulting in the sum rule of Eq. (1.23).

A.2 Multipole expansion in classical electromagnetism

Following Ref. [80], we decompose the electric potential due to the quadrupole moment
φ2(r) in Eq. (1.29) into boundary localized charges.

qij
3didj − |d|2δij

2|d|5 =
1

2
qij∂i∂j

1

|d|
=

1

2
∂i∂j

(
qij

1

|d|
)
− ∂i

[(
∂jqij

) 1

|d|
]

+
1

2
(∂i∂jqij)

1

|d| , (A.6)

where ∂i is a derivative with respect to i-th component of R. We have used qij = qji
for the last equality. By applying the divergence theorem, the integral in Eq. (1.29) is
rewritten as

φ2(r) =
1

4πε

∫
∂V

dR2
[1

2
ni∂j

(
qij

1

|d|
)
− ni

(
∂jqij

) 1

|d|
]

+
1

4πε

∫
V

dR3
[1

2
(∂i∂jqij)

1

|d|
]
, (A.7)

where ∂V is the surface of system and n̂ is a unit vector perpendicular to the surface.
Assuming the cubic geometry, we can simplify the integral further. The first term in the
above equation is simplified as

1

4πε

∫
∂V

dR2
[1

2
ni∂j

(
qij

1

|d|
)]

=
1

4πε

∑
a

∫
Sa

dR2
[1

2
n

(a)
i ∂j

(
qij

1

|d|
)]

=
1

4πε

∑
a,b

∫
Lab

dR
(1

2
n

(a)
i n

(b)
j qij

1

|d|
)
, (A.8)
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where n̂(a) is a unit vector normal to a surface Sa and Lab is the edge shared by two
surfaces Sa and Sb (see Fig. A.1(a) and (b)). The last equality is derived from the
application of the divergence theorem on a two-dimensional surface. The final expression
is derived as [80]

φ2(r) =
1

4πε

∑
a,b

∫
Lab

dR
(1

2
n

(a)
i n

(b)
j qij

) 1

|d| −
1

4πε

∑
a

∫
Sa

dR2
(
n

(a)
i ∂jqij

) 1

|d|

+
1

4πε

∫
V

dR3
(1

2
∂i∂jqij

) 1

|d| . (A.9)

A.3 Interactions between localized spins

Magnetism in materials is originated from magnetic dipole moments carried by localized
electronic states. They can interact among themselves through the Coulomb interaction
and a virtual hopping process. In the following, we review magnetic interactions as a
basis for theoretical models of classical spin systems.

A.3.1 Heisenberg exchange coupling

Let us consider a tight-binding model constructed from strongly localized electronic wave
functions, called Wannier functions. The tight-binding Hamiltonian is generally written
as [319]

H =
∑
ii′

∑
σ

a†iσtii′ai′σ +
∑
ii′jj′

∑
σσ′

Uii′jj′a
†
iσa
†
i′σ′aj′σ′ajσ, (A.10)

where aiσ/a
†
iσ is the annihilation/creation operator of electrons at i-th site with spin σ,

tii′ is the hopping matrix, and Uii′jj′ is the matrix element for the Coulomb interaction.
The matrix elements of Uii′jj′ are given by

Uii′jj′ =
1

2

∫
ddr

∫
ddr′ψ∗Ri

(r)ψRj
(r)V (r − r′)ψ∗Ri′

(r′)ψRj′
(r′), (A.11)

with V (r) and ψRi
(r) denoting the Coulomb interaction and Wannier function localized

in the atom labeled by Ri, respectively.
The Coulomb interaction matrix Uii′jj′ can be decomposed into two nearest neighbor

interaction terms. The first term is the direct interaction between electron densities at
different sites for Uii′ii′ ≡ Vii′ :∑

i 6=i′

∑
σσ′

Uii′ii′a
†
iσa
†
i′σ′ai′σ′aiσ =

∑
i 6=i′

Vii′n̂in̂i′ , (A.12)

with n̂i =
∑

σ a
†
iσaiσ representing the electron density at i-th site. This term describes the

electrostatic interaction between electrons, associated with global instabilities of charge
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distribution known as the charge density wave. The second term is the exchange interac-
tion of spins at different sites for Uijji ≡ Jij, which leads to the ferromagnetic interaction:∑

i 6=j

∑
σσ′

Uijjia
†
iσa
†
jσ′ajσ′aiσ = −2

∑
i 6=j

Jij

(
Ŝi · Ŝj +

1

4
n̂in̂j

)
, (A.13)

where the spin operator is defined as Ŝi = 1
2
a†iασαβaiβ with Pauli matrices σ. The equality

was obtained using the identity σαβ · σγδ = 2δαδδβγ − δαβδγδ.
The magnetic interaction in the form of −JSi ·Sj with J > 0 is called the Heisenberg

exchange coupling in magnetic systems, which favors the ferromagnetic order. As derived
above, it arises from the Coulomb interaction between electrons. The physically intuitive
picture is provided by the Pauli exclusion principle that prohibits occupation of the same
electronic state. This implies that a pair of electrons with a parallel spin are repelled
from each other, lowering their Coulomb interaction energy in comparison to a pair of
electrons with opposite spins.

A.3.2 Superexchange interaction

Magnetic ions hosting localized spins are often surrounded by non-magnetic ions, so the
direct exchange coupling in the previous section is not sufficient to describe magnetic
interactions. To account for this problem, P.W. Anderson considered virtual hopping
processes between distant magnetic ions through non-magnetic ions, called the superex-
change interaction [245, 320]. The key idea is to simplify the perturbation expansion
by choosing molecular orbitals as a basis set, which are constructed from overlapping of
d-orbital electrons in magnetic ions and p-orbitals in non-magnetic ions. His idea was
further developed by T. Moriya to include the spin-orbit coupling [36].

Here, we briefly outline the perturbation theory to derive superexchange interactions
based on Ref. [36]. Suppose that Wannier functions localized at magnetic ions are con-
structed from hybridized bonds with non-magnetic ions, denoted as Ψn↑(r − R) and
Ψn↓(r −R) with R and n respectively labeling the magnetic ion and the molecular or-
bital. Since the spin-orbit coupling is included, ↑ and ↓ indicate almost spin up and spin
down with some mixtures between them. Using this basis, a single particle Hamiltonian
is evaluated:

H1 =
∑
i

[ p2
i

2m
+ V (ri) +

~
2m2c2

Si · (∇ · V (ri)× pi)
]
, (A.14)

where the third term is the spin-orbit coupling. Taking Ψn↑(r−R) and Ψn↓(r−R) as un-
perturbed states, we can perform the perturbation expansion in this general setup. Up to
the first order expansion, only a non-zero contribution comes from two-body Hamiltonian
H12 =

∑
i<j

e2

rij
. This contribution is the direct exchange interaction discussed previously,

which vanishes for a pair of opposite spins. The second order perturbation corresponds
to a virtual hopping from n orbital at R to n′ orbital at R′ with/without spin flipping,
and returning to the original electronic state. This process induces magnetic interactions



A.3. INTERACTIONS BETWEEN LOCALIZED SPINS 123

between S(R) and S(R′). The general form was derived as [36]

E
(2)

R,R2 = JR,R′S(R) · S(R′) + D · [S(R)× S(R′)] + Si(R)ΓijR,R′Sj(R
′). (A.15)

The first term is the symmetric part of superexchange interaction. Unlike the direct
exchange interaction, the sign of this term depends on the details of systems such as
number of electrons in d-orbitals, which is known as the Goodenough-Kanamori rules [244,
321]. The second term is the antisymmetric part of superexchange interaction arising from
the spin-orbit coupling, first discussed by Dzyaloshinskii using symmetry arguments [132,
133]. This is now called the Dzyaloshinskii-Moriya interaction from the two important
contributers. The Dzyaloshinskii-Moriya interaction is crucial to realize noncollinear
magnetic textures, since it favors canting of spins. As summarized in Ref. [36], it is only
present in a system lacking the inversion symmetry with the Dzyaloshinskii-Moriya vector
D determined by the crystalline symmetry. The third term is the anisotropic exchange
interaction.

A.3.3 Other magnetic interactions

The magnetic ion itself may have single-ion anisotropy (also called magnetocrystalline
anisotropy) [322]. The simplest example is the uniaxial anisotropy −K(m · ẑ)2, where
the magnetization parallel/antiparallel to the z-axis is favored for easy-axis anisotropy
(K > 0) and the in-plane magnetization is favored for easy-plane anisotropy (K < 0).

Another interaction is the dipole-dipole interaction from the classical electromagnetic
theory of dipole moments [87, 166]. It is written as

Hdip =
µ0

4π

∑
i<j

[Si · Sj
r3
ij

− 3
(Si · rij)(Sj · rij)

r5
ij

]
, (A.16)

where µ0 is the vacuum permeability and rij is the vector pointing from site i to site j
with rij = |rij|. The microscopic magnetic fields felt by other magnetic dipole moments
(Hdemag = −∂Hdip/∂mi) is referred to as the demagnetization field, because it tends to
reduce the total magnetization of magnets. Although the long-range dipolar interaction
takes a complex form, it can be simplified in a two-dimensional limit to an effective
easy-plane anisotropy [101, 130, 166]:

Kdip,2D = −1

2
µ0M

2
s , (A.17)

where Ms is the saturation magnetization. Together with the ferromagnetic exchange
interaction, the in-plane vortex phase is stabilized by the effective easy-plane anisotropy.
This is also consistent with the result of Monte Carlo simulation, where the long-range
dipolar interaction was fully evaluated [323].
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A.4 Ginzburg-Landau theory

The spin Hamiltonian for chiral magnets such as MnSi was proposed in the continuum
limit as [324]

H =

∫
dr3
[J

2
(∇M )2 +DM · (∇×M)−B ·M +A1

∑
i

M4
i −

A2

2

∑
i

(∇iMi)
2
]
, (A.18)

where M is the magnetization and the lattice constant is taken to be unity. The first two
terms represent the exchange coupling J and the Dzyaloshinskii-Moriya interaction D,
while the third term is the Zeeman coupling under an applied magnetic field B. The last
two terms are magnetic anisotropies allowed by a cubic crystal symmetry, which are not
necessary to stabilize magnetic skyrmions. This model takes the most general form up
to the fourth order of magnetizations, which respects the crystalline symmetry of MnSi
(space group P213).

Employing this model, the Ginzburg-Landau free energy functional near the critical
temperature was written as [134]

F =

∫
dr3
[
r0M

2 + J(∇M )2 + 2DM · (∇×M) + UM4 −B ·M
]
, (A.19)

where U > 0 and r0 is a linear function of temperatures T . As discussed below, the
free energy functional is minimized by a magnetic helix with a wave vector |Q| = |D|/J .
In the following, we fix the Dzyaloshinskii-Moriya interaction D > 0 to choose a left-
handed chirality of helices. The functional can be simplified by rewriting it in terms
of dimensionless units, with the length, magnetization, and magnetic field rescaled as
r̃ = Qr, M̃ =

√
U/JQ2M , and B̃ =

√
U/(JQ2)3B, respectively. Finally, we obtain

F = γ

∫
dr̃3
[
(1 + t)M̃2 + (∇̃M̃)2 + 2M̃ · (∇̃ × M̃ ) + M̃4 − B̃M̃

]
, (A.20)

where t = r0/JQ
2 − 1 ∝ T − Tc and γ = J2Q/U . For notational simplicity, we drop the

tildes from now on.

The mean-field ground state of Eq. (A.20) is known to be the conical phase, a magnetic
spiral with out-of-plane components parallel to the applied magnetic field [325]. In order
to prove it, we first rewrite the free energy functional as

F = −γV (t2 +B2)

4

+ γ

∫
dr3
[(
M2 +

t

2

)2

+
(
M − B

2

)2

+ (∇M )2 + 2M · (∇×M )
]
, (A.21)

where V is the total volume. Now, we introduce the order parameter for a spiral phase
as Φ = M −Mf with the ferromagnetic component Mf =

∫
dr3M . Replacing the
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magnetization M and performing the Fourier transform by noting Φ =
∑

q 6=0mqe
−iq·r,

we have

F = −γV (t2 +B2)

4
+ γ

∫
dr3
[(
M2 +

t

2

)2

+
(
Mf −

B

2

)2]
+ V

∑
q 6=0

[
(q2 + 1)m−q ·mq + 2iq · (m−q ×mq)

]
. (A.22)

As shown below, all the terms in square brackets vanishes for the conical phase solution:

M(r) = mẑ +
a√
2

(ê+e
−iqz + ê−e

iqz), (A.23)

where ê± = (x̂ ± iŷ)/
√

2 with x̂/ŷ/ẑ denoting a unit vector along x/y/z-axis. After
substitution, it is straightforward to derive

m =
B

2
, a =

1

2

√
−2t−B2, q = 1. (A.24)

The minimized free energy is then given as

min[F ] = −γV (t2 +B2)

4
. (A.25)

We should note that the conical phase continuously transforms to the helical state at zero
magnetic field. For B >

√
−2t, it becomes fully polarized along the applied magnetic

field.
Importantly, there is another stable solution that is not a global minimum of the

free energy. This metastable mean-field solution is the skyrmion crystal phase. For the
skyrmion crystal phase, the fourth order term M4 is important. Expanding this term
with respect to the order parameter Φ, we have

M4 = M4
f + 4M2

fΦ ·Mf + 2Φ2M2
f + 4(Mf · Φ)2 + 4Φ2Φ ·Mf + Φ4. (A.26)

Up to the quadratic term with Φ, the energy is minimized by superposition of any helical
states. However, the cubic term results in a solution with triple helices. After the Fourier
transform, we obtain∫

dr3Φ2Φ ·Mf = V
∑

q1,q2,q3 6=0

(Mf ·mq1
)(mq2

·mq3
)δ(q1 + q2 + q3). (A.27)

From Eqs. (A.22-A.24), we know that |qi| = 1 for all helical states in the limit of t→ 0.
Hence, the cubic term stabilizes the coplanar magnetic order consisting of triple helices
with q1 + q2 + q3 = 0. The trial solution is thus written as

M (r) = Mf ẑ +
3∑
j=1

(mqje
−iqj ·r + c.c.), (A.28)
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where

mqj =
ψj
2

(â⊥ + ib̂qj), (A.29)

with ψj = |ψj|eiφj is a complex number. Here, we have used that all wave vectors qj lie
on the same plane, so we take an orthonormal vector to the plane â⊥ as the basis vector
for all helices, while b̂qj is defined on the plane satisfying â⊥ × b̂qj = qj. Using this trial
solution, the dot product between magnetization vectors of each helical states is given by

mqj ·mqj′
=
ψjψj′

4
(â⊥ + ib̂qj) · (â⊥ + ib̂qj′ ) =

3ψjψj′

8
, (A.30)

where we have used identities b̂qj · b̂qj′ = −1
2

and b̂qj · â⊥ = 0 for j 6= j′. Equation (A.27)
is then simplified as

3V ψ1ψ2ψ3

16

∑
j

Mf ·(â⊥+ ib̂qj)+c.c. =
9V |ψ1||ψ2||ψ3|

8
(Mf · â⊥) cos(φ1 +φ2 +φ3). (A.31)

Therefore, the energy of the cubic term is minimized with â⊥ ‖ Mf and cos(φ1 + φ2 +
φ3) = −1. It is also clear that the equality |ψ1| = |ψ2| = |ψ3| minimizes the energy for
normalized magnetization vectors M . The obtained solution indeed corresponds to the
skyrmion crystal phase as shown in Fig 1.8(a). We should note that Eq. (A.28) is an
approximate solution as higher order Fourier terms are not included.

A.5 Continuum limit of spin lattice model

In this section, we derive a free energy functional from a two-dimensional spin lattice
model defined on a square lattice and triangular lattice. Our purpose is to compare the
difference between square lattice and triangular lattice, although they become equivalent
in the continuum limit. In addition, we also illustrate that a spin lattice model contains
higher order spatial derivatives that are not included in the continuum limit.

For both square and triangular lattice systems, our Hamiltonian is written from
Eq. (1.3) as

H =
S2

2

∑
r

[
p∑
i=1

−J(mr ·mr+aα̂i +mr ·mr−aα̂i) +Di · (mr ×mr+aα̂i −mr ×mr−aα̂i)

]
−gµBBzS

∑
r

mr · ẑ, (A.32)

where mr is the unit vector parallel to the magnetic moment with magnitude S at site
r with lattice constant a. The unit vectors connecting the nearest neighbor sites are
depicted as α̂i with the number of inequivalent bonds p = 2(3) for the square (triangular)
lattice. The nearest-neighbor coupling includes the ferromagnetic exchange coupling J >
0 and the DM interaction Di = α̂i for chiral magnets from Eq. (2.3). The last term
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represents the coupling with the external magnetic field, where g and µB denotes the
g-factor and Bohr magneton, respectively.

In the continuum limit a� 1, we have

mr+aα̂i = m(r) + aαji
∂m(r)

∂xj
+

1

2
a2αjiα

k
i

∂2m(r)

∂xj∂xk
+ · · · , (A.33)

where only the lowest order spatial derivative is included in the continuum limit, αji is
the j-th component of the vector α̂i, and the magnetization vector mr becomes a vector
field m(r). In addition, the energy functional of a two-dimensional system is given by

F =

∫
dr2F (m(r)). (A.34)

Hence, we have to replace the summation with the integration as
∑

r →
∫
dr2

Ω
where Ω is

the area of a commensurate unit cell of the underlying lattice.

A.5.1 Square lattice

In the square lattice, we have α̂1 = x̂, α̂2 = ŷ. The exchange interaction is given as
follows.

−J
2

p=2∑
i=1

mr · (mr+aα̂i +mr−aα̂i) = −J
2

p=2∑
i=1

m ·
(

2m+ a2αjiα
k
i

∂2m

∂xj∂xk

)
= −J

2
[4− a2(∇m)2], (A.35)

where we have used m ·m = 1 and αjiα
k
i = δjk in the last line. In comparison, the

DM interaction has lower dimension in length, because the first order derivative does not
vanish for antisymmetric interactions. It is obtained as

1

2

p=2∑
i=1

Di ·mr × (mr+aα̂i −mr−aα̂i) =

p=2∑
i=1

Di ·m× aαji
∂m

∂xj
= a

p=2∑
i=1

Di ·m×
∂m

∂xi

= aD
(
x̂ ·m× ∂m

∂x
+ ŷ ·m× ∂m

∂y

)
. (A.36)

In the second equality, we have used αji = δji . Finally, the free energy functional is given
by

F =

∫
dr2

a2

[
S2

2
a2J(∇m)2 + S2aD

(
x̂ ·m× ∂m

∂x
+ ŷ ·m× ∂m

∂y

)
− gµBBSm · ẑ

]
=

∫
dr2

[J
2

(∇m)2 −Dm · (∇×m)− h(m · ẑ)

]
, (A.37)

where [J ,D, h] = [S2J, S
2D
a
, gµBBzS

a2 ] and Ω = a2 for the square lattice.
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A.5.2 Triangular lattice

In the triangular lattice, each site has three pairs of nearest neighbors connected by
α̂1 = (1, 0), α̂2 = (1/2,

√
3/2), and α̂3 = (1/2,−

√
3/2). Similarly to the case of the

square lattice, the exchange interaction and the DM interaction are written as

−J
2

p=3∑
i=1

mr · (mr+aα̂i +mr−aα̂i) = −J
2
m ·

(
6m+ a2(1 + 2× 1

4
)
∂2m

∂2x
+ 2× 3

4

∂2m

∂2y

)
= −J

2

[
6− 3

2
a2(∇m)2

]
, (A.38)

1

2

p=3∑
i=1

Di ·mr × (mr+aα̂i −mr−aα̂i) =

p=3∑
i=1

Di ·m× aαji
∂m

∂xj

= aD1 ·m×
∂m

∂x
+ aD2 ·m×

(
1

2

∂m

∂y
+

√
3

2

∂m

∂y

)

+ aD2 ·m×
(

1

2

∂m

∂y
−
√

3

2

∂m

∂y

)
.

=
3Da

2
(x̂ ·m× ∂m

∂x
+ ŷ ·m× ∂m

∂y
). (A.39)

In the triangular lattice, the unit area is given as Ω =
√

3/2a2. The energy functional is
then obtained as

F =

∫
dr2

[J
2

(∇m)−Dm · (∇×m)− h(m · ẑ)

]
, (A.40)

where [J ,D, h] = [
√

3S2J,
√

3S2D
a

, 2gµBBzS√
3a2 ].

Now, we divide Eq. (A.40) by
√

3 and rescale all constants [J ,D, h] so that J becomes
the same in Eqs. (A.37) and (A.40). We find that [J ,D, h] = [S2J, S

2D
a
, 2gµBBzS

3a2 ] for the
triangular lattice. This indicates that the magnetic field Bz is effectively rescaled by 3

2
in

the triangular lattice in comparison to the square lattice.

A.6 Classical spin dynamics

In this section, we introduce the Landau-Lifshitz-Gilbert (LLG) equation, which is the
equation of motion for classical spins with a phenomenological damping term, known as
the Gilbert damping [286]. To obtain the atomistic LLG equation, we substitute the spin
operators Sr in the spin lattice Hamiltonian by Smr, where mr is a unit vector. After
this substitution, the LLG equation describes the dynamics of classical spins as

dmr

dt
= − γmr

1 + α2
×
[
Heff

r + αmr ×Heff
r

]
, (A.41)
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where Heff
r = −[1/(~γS)]∂H/∂mr, γ = gµB/~ is the gyromagnetic ratio, and α is the

Gilbert damping constant. Throughout this thesis we use α = 0.04 unless otherwise
stated. We also fix the temperature at T = 0 K, so thermal fluctuations are not included
in Eq. (A.41). Time is measured in units of ~/(JS). Assuming the exchange coupling
J = 1 meV and S = 1, the time scale is in the order of 0.7 ps.

A.7 Derivation of edge twist and edge instability

A.7.1 Edge twist

Let us consider a one-dimensional ferromagnet with chiral modulations due to the Dzyaloshinskii-
Moriya interaction by reviewing Ref. [101]. Assuming a one-dimensional spin chain along
z axis under the magnetic field H applied along x axis, the classical ground state config-
uration of a helicoid is described by M/Ms = m = (cos θ, sin θ, 0) where Ms = |M | is
the saturation magnetization. Taking the lattice constant to be unity, the energy density
is given by

E =

∫ z2

z1

dz A
(dm
dz

)2

+Dẑ ·
(
m× dm

dz

)
− µ0HMs cos θ

=

∫ z2

z1

dz A
(dθ
dz

)2

−Ddθ
dz
− µ0HMs cos θ, (A.42)

where A is the exchange stiffness and D is the strength of the Dzyaloshinskii-Moriya
interaction. In an infinite system, it forms a periodic array of helicoids with the zero-field
helical wavelength LD = 4πA/D, known as the chiral soliton lattice [132, 133, 326]. As
the magnetic field is increased, the periodicity of helicoids continuously increases until the
critical magnetic field π2HD/16 with HD = D2/2Aµ0Ms where it becomes fully polarized.

The property of the helical phase is strongly modified when a free boundary condition
is introduced. Using the Variational principle, the change in the energy density at θ′(z) =
θ(z) + εα(z) is given by

δE = ε

∫ z2

z1

dz
[
2A

dα

dz

dθ

dz
−Ddα

dz
+ µ0HMsα sin θ

]
= ε

∫ z2

z1

dz α
[
− 2A

d2θ

dz2
+ µ0HMs sin θ

]
+
[
εα
(

2A
dθ

dz
−D

)]z2
z1
. (A.43)

For the last equality, we have used the integration by parts. The energy density is
minimized by θ(z) satisfying [100–102]

d2θ

dz2
=

µ0HMs sin θ

2A
for z1 < z < z2,

dθ

dz
=

D

2A
for z = z1 or z = z2. (A.44)
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From the analytical solution of θ(z), it was shown that the periodicity of helicoid cannot
change continuously in a confined system. Instead, the number of turns is quantized
and changes with the magnetic field as a first order transition. Another point is that the
second equation derived by the free boundary condition has an important implication that
spin textures are twisted near edges at D 6= 0. As a result, the in-plane magnetization of
thin film MnSi samples was not fully polarized even under the field greater than HD due to
the chiral modulation at boundaries [100]. Hence, the Dzyaloshinskii-Moriya interaction
leads to the unique boundary condition that plays an important role in both surfaces and
edges of thin film samples. It should be noted that this is a general property of magnetic
systems without the inversion symmetry. The angle of twist depends on the form of the
Dzyaloshinskii-Moriya interaction allowed by the symmetry of systems.

A.7.2 Edge instability

In this section, we review Ref. [105] to show the instability of twisted edge magnetizations
in the presence of the Dzyaloshinskii-Moriya interaction. The free energy functional of a
two-dimensional chiral magnet is given by

F =

∫
dr2
[ 3∑
i=1

A
(dm
dxi

)2

+D
(
x̂ ·m× dm

dx
+ ŷ ·m× dm

dy

)
−Km2

z−µ0HMsmz

]
, (A.45)

where m = M/Ms with Ms = |M | denoting the saturation magnetization, A is the
exchange stiffness, D is the strength of the Dzyaloshinskii-Moriya interaction, and K is
the magnetic anisotropy.

Using Eq. (A.45), we consider a semi-infinite system for y ≥ 0 and periodic along
x-axis in the ferromagnetic phase. In the presence of the Dzyaloshinskii-Moriya interac-
tion, the edge magnetization at y = 0 is twisted along x-axis. Assuming the translational
invariance in x-axis, the magnetization is described by m = (sin θ(y), 0, cos θ(y)). Here,
we introduce dimensionless variables using the zero-field helical wavelength LD = 4πA/D
and the zero-anisotropy critical field HD = D2/2Aµ0Ms [326]. The characteristic momen-
tum Q, magnetic field h, and anisotropy κ are defined as

Q =
2π

LD
=

D

2A
, h =

H

HD

=
µ0HMs

2AQ2
, κ =

K

AQ2
. (A.46)

Similarly, the unit of length, time, and energy are scaled as

x̃ = xQ, ỹ = yQ, t̃ =
t

γµ0HD

, ε̃ =
ε

~/γµ0HD

, (A.47)

where γ = gµB/~ is the gyromagnetic ratio.
Analogously to the derivation of Eq. (A.44), the equation of motions for θ(ỹ) is written

as

d2θ

dỹ2
= h sin θ +

κ

2
sin 2θ for ỹ > 0,

dθ

dỹ
= 1 for ỹ = 0. (A.48)
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In the limit of ỹ →∞, it is taken as θ(ỹ) = 0 and θ′(ỹ) = 0 so that the magnetization is
aligned with the applied field in bulk. In addition, the second equation implies θ′(ỹ) > 0
and −2π < θ(ỹ) ≤ 0. Multiplying θ′ to both sides, the first integral of Eq. (A.48) is
obtained as

θ′√
2h(1− cos θ) + κ(1− cos θ2)

= 1. (A.49)

The above differential equation is solved by separation of variables. The obtained expres-
sion is

1√
h+ κ

arctanh

√
(h+ κ)(cos θ + 1)

2h+ κ(cos θ + 1)
= ỹ − ỹ0, (A.50)

where ỹ0 is an integration constant. In order to derive the inverse function θ(ỹ), it is
rewritten as

tanh2
[√
h+ κ (ỹ − ỹ0)

]
=

(h+ κ)(cos θ + 1)

2h+ κ(cos θ + 1)
=

h+ κ
2h

cos θ+1
+ κ

=
1

1
h+κ

( h
cos2 θ

2

− h) + 1
=

1
h

h+κ
tan2 θ

2
+ 1

. (A.51)

Using tanh2 x = sinh2 x
1+sinh2 x

, the final expression is obtained as [105]

θ(ỹ) = −π + 2 arctan

[√
h

h+ κ
sinh(

√
h+ κ (ỹ − ỹ0))

]
. (A.52)

From the boundary condition θ′(0) = 1, the integration variable is given by

ỹ0 = − 1√
κ+ h

arccosh

[
h+ κ+

√
(h+ κ)2 − κ√
h

]
. (A.53)

The analytical solution in Eq. (A.52) is a monotonically increasing function with ỹ. At
the edge (y = 0), the magnetization is aligned to the negative x direction with an angle
from z-axis increasing for smaller magnetic fields and anisotropies.

The magnon excitation of the ferromagnetic phase has a quadratic dispersion with the
band gap ∆b = h+ κ. In addition, the edge twist introduces an effective local potential,
leading to magnonic states localized to edges. In order to study the magnonic bound
states arising from the edge twist, we consider fluctuations from the saddle-point solution
obtained in Eqs. (A.52) and (A.53). Following the standard procedure to construct an
effective Bogoliubov–de Gennes Hamiltonian (see Section 1.1.3), we define a local basis:

e1 = (0, 1, 0),

e2 = (− cos θ, 0, sin θ),

e3 = m = (sin θ, 0, cos θ). (A.54)
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Employing the Holstein-Primakoff transformation, the normalized magnetization field is
written as

m = e3

√
1− 2|ψ|2 + e+ψ + e−ψ

∗, (A.55)

where e± = (e1 ± ie2)/
√

2. The magnon wave functions are represented by ψ(x̃, ỹ, t̃ )
satisfying the translational invariance along x axis.

The spin wave Hamiltonian is constructed from the classical spin dynamics described
by the Landau–Lifshitz equation. Here, the effect of damping is not included since we
only need the precession around the classical spin ground state corresponding to magnon
modes. It is given by

dm

dt
= −γm×BF , (A.56)

where BF = − ∂F
∂M

. Using the dimensionless physical units defined in Eqs. (A.46) and
(A.47), we have

dm

dt̃
= ∇̃2m− 2∇̃ ×m+ hẑ + κmz ẑ, (A.57)

where ∇̃x/y = ∂x̃/ỹ is a differential operator with respect to dimensionless coordinates.
Substituting Eq. (A.55) and collecting only linear terms in ψ, it is written as

iτ z∂t̃Ψ = HΨ, (A.58)

where τ i is the Pauli matrices and Ψ = (ψ, ψ∗)T . In this spinor representation, the spin
up/down state correspond to vector elements of (∓ie1 + e2)/

√
2.

The Bogoliubov–de Gennes Hamiltonian is derived as [105]

H = H0 + V, (A.59)

with H0 and V = V (ỹ) denoting the bulk Hamiltonian and the edge potential due to the
edge twist, respectively. After taking the Fourier transform in the x direction, they are
given as

H0 = −∂2
ỹ + q̃2

x + ∆b,

V = τ0

[
− θ′2 + θ′ − κ sin2 θ

]
+ τz2q̃x sin θ + τx

[
− 1

2
θ′2 + θ′ +

κ

2
sin2 θ

]
, (A.60)

where q̃x = qx/Q, τ0 is the identity matrix, and ∆b = h+κ corresponds to the bulk band
gap of magnon spectrum. We have used the equality in Eq. (A.49) to obtain the above
expression.

The magnon spectrum can be obtained numerically by solving Eq. (A.58). The eigen-
function satisfies

HΦ = ε̃(q̃x)τzΦ (A.61)

with Φ = (φ1, φ2)T for normalized functions φ1 and φ2. The corresponding magnon
wavefunction is given by ψ(q̃x, ỹ, t̃) = φ1(q̃x, ỹ)eiε̃(q̃x)t̃ + φ∗2(q̃x, ỹ)e−iε̃(q̃x)t̃. Of particular
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(a) (b)

Figure A.2: Edge instability below critical magnetic fields due to magnonic
bound states at twisted edge magnetizations. (a) Magnon energy dispersion ε̃(q̃x) =
ε(q̃x)/εDM of edge localized states with the lowest energy, obtained at h =1, 0.65, 0.45,
0.33 and κ = 0. The gray shaded area implies the bulk magnon bands with the rescaled
bulk band gap (∆b/h = 1). (b) Stability of the field-polarized state (FP) near the
edge and in the bulk of samples. The black dashed line indicates the phase boundaries
between the FP state, the skyrmion crystal (SkX), and the chiral soliton lattice (CSL)
in the thermodynamic limit [311]. While the FP state is metastable in the white region,
it becomes unstable in the gray shaded region. The red line indicates the critical fields
for the local instability where the edge gap ∆e becomes zero. On the gray solid line at
h = −κ, the bulk energy gap closes, and the FP state becomes globally unstable. Below
the blue line where ∆e = ∆b, there exists exponentially localized edge states with the
energy ∆e ≤ ε̃e ≤ ∆b. Adapted from [105].

interest is bound states that are exponentially localized to edges. From Eq. (A.60), its
asymptotic behavior in the limit of ỹ →∞ is described by

Φ(ỹ) ∼
(
c1e
−ỹ
√

∆b+q̃2
x−ε̃(q̃x)

c2e
−ỹ
√

∆b+q̃2
x+ε̃(q̃x)

)
, (A.62)

with c1 and c2 being complex phases. Hence, edge localized magnon modes exist below the
bulk continuum. It turns out there are many solutions for bound states with a different
number of nodes in one-dimensional wave functions. In the following, we consider the
lowest energy mode that is most strongly localized near the edge.

Figure A.2(a) shows the magnon spectrum of edge localized states at different mag-
netic fields and zero anisotropy κ = 0. The edge spectrum of bound states are highly
anisotropic as it only allows positive values of q̃x. Furthermore, their group velocity
∂ε/∂qx is almost always positive for large magnetic fields, implying that there is a pre-
ferred direction of propagation in magnonic edge states. Therefore, it is a chiral mode,
although it is not a topologically protected edge state of Chern insulators. Instead of
bulk topology, the chirality of edge states arises from the chiral edge twist, so the edge
spectrum of the opposite edge is given by inverting the sign of q̃x. Interestingly, the edge



134 APPENDIX A. THEORETICAL AND EXPERIMENTAL BACKGROUND

spectrum is invariant with changing the sign of the Dzyaloshinskii-Moriya interaction in
spite of the inverted in-plane components of edge magnetization.

Another important point is that the minimum energy of edge spectrum ∆e becomes
smaller at lower magnetic fields. In Ref. [105], the critical value was obtained as hc =
0.4067 where the minimal value reaches zero energy at some momentum qx > 0. In
general, a negative energy of magnon spectrum implies the instability of underlying spin
textures due to the magnon condensation. Hence, the critical magnetic field sets a lower
bound for the metastable ferromagnetic phase. Below the critical field, it becomes locally
unstable against creation of helical domains from edges as discussed in Section 1.3.4.

The stability of the ferromagnetic phase in the parameter space of (κ, h) is summarized
in Fig. A.2(b). In two-dimensional systems, there exist three magnetic phases, known as
the ferromagnetic phase, skyrmion crystal, and helical phase. The black dashed lines are
the phase boundaries between them in the thermodynamic limit [311]. By adiabatically
reducing the magnetic field at low temperatures, the ferromagnetic phase can persist be-
yond the phase boundary as a metastable state, indicated by the white regime. However,
when the bulk/edge gap of magnon bands vanishes, it becomes unstable (gray regime).
For κ < −0.61, the bulk band gap ∆b vanishes at q̃x = 0 and h = −κ on the gray solid
line, resulting in a global instability. In contrast, the ferromagnetic phase becomes locally
unstable near edges for κ > −0.61 when the edge gap ∆e vanishes on the red solid line.

A.8 Derivation of emergent electromagnetic field

Following Ref. [95], we derive the expressions for effective electromagnetic fields due to
the noncoplanar spin structures. Let us consider a free electron model coupled to the
magnetization:

i~
∂Ψ

∂t
=
[ p2

2me

− gσ ·m(r, t)
]
Ψ, (A.63)

where me is the electron mass, p = −i~∇ is the momentum, σ is the Pauli matrices, g is
the coupling strength, and m = (sin θ cosφ, sin θ sinφ, cos θ) is the normalized magneti-
zation. Assuming g to be sufficiently large and m to be a smooth function in space and
time, the spin of conduction electrons is always parallel to m.

Now, we perform the gauge transformation to rotate the spin quantization axis of
conduction electrons alongm. By applying the rotation matrix to Ψ, a new wave function
is given by

Φ = U †(r, t)Ψ, (A.64)

with

U = exp
(
− iθ

2
σ · n

)
= cos

θ

2
σ0 − i sin

θ

2
(σ · n), (A.65)

where σ0 is the identity matrix. The rotation axis n is defined as

n =
ẑ ×m
|ẑ ×m| . (A.66)
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We should note that the unitary matrix U satisfies the following identities for some vector
field α.

U †(σ ·α)U =
{

cos
θ

2
σ0 + i sin

θ

2
(σ · n)

}
(σ ·α)

{
cos

θ

2
σ0 − i sin

θ

2
(σ · n)

}
= cos θ(σ ·α) + sin θ {σ · (α× n)}+ (1− cos θ)(α · n)(σ · n), (A.67)

where the second line is obtained from (σ · α)(σ · n) = α · n + iσ · (α × n). From
Eq. (A.67), the Schrödinger equation is rewritten as

i~
∂Φ

∂t
=
[(p + e

c
As)2

2me

− gσz − eV s
]
Φ, (A.68)

where e > 0 is the elementary charge. Here, the gauge transformation transforms the
coupling with the magnetization m to a vector potential As and V s, which are given
by [327]

As = −i~c
e
U †∇U =

~c
2e

{
∇θ(σ · n)− sin θ∇φσ · (n× ẑ) +∇φ(1− cos θ)σz

}
,

V s =
i~
e
U †∂tU = − ~

2e

{
∂tθ(σ · n)− sin θ∂tφσ · (n× ẑ) + ∂tφ(1− cos θ)σz

}
. (A.69)

In the limit of g → ∞, the ground state for the above equation has a fully polarized
spin along the magnetization m. Taking the vector potential and scalar potential as
perturbations, the unperturbed Hamiltonian for a spin-up state is described by

H =
(p + e

c
As)2

2me

− g − eV s, (A.70)

with As = ~c
2e
∇φ(1 − cos θ) and V s = − ~

2e
∂tφ(1 − cos θ). Finally, the effective magnetic

and electric fields are given by [173, 175]

Bs
z = ∂xA

s
y − ∂yAsx =

~c
2e
m · (∂xm× ∂ym), (A.71)

and

Es
i = −∂iV s − 1

c
∂tA

s
i =

~
2e
m · (∂im× ∂tm). (A.72)

We have considered a simple continuum model to derive the emergent electromagnetic
fields induced by noncoplanar magnetic textures. It should be noted that the equivalent
result was obtained in a tight-binding model with spins ferromagnetically coupled to
magnetization at each site by Hund’s rule coupling [172, 178]. In the strong coupling
limit, the hopping matrix of conduction electrons acquires an extra phase factor as the
spin quantization axis of electrons rotates along the magnetization. This is in fact a
geometrical phase that is equal to half the solid angle Ω subtended by three spins S1,
S2, and S3 for a closed loop connecting them. Furthermore, it is proportional to a scalar
spin chirality S1 · (S2 × S2) for small Ω.
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(a) (b) (c)

Figure A.3: Topological Hall effect observed in a bulk sample of MnSi. (a) Hall
resistivity for single crystal MnSi. The magnetic field was applied along [110] direction,
and the electric current was applied along [001] direction. (b) Hall resistivity near Tc
where the skyrmion crystal phase is stable. (c) Additional Hall resistivity ∆ρxy = ρTxy
due to the topological Hall effect. Adapted from [135].

A.9 Topological Hall effect and Skyrmion Hall effect

The emergent gauge field arising from the non-zero scalar spin chirality results in the Hall
motion of conduction electrons, known as the topological Hall effect. In the literatures,
two different mechanisms were discussed for the topological Hall effect [179, 181]. When
the periodicity of magnetic order is much longer than the underlying lattice structure,
the topological Hall effect is characterized by the real space topological spin structures.
Another possibility is that the topological Hall effect is associated with a nontrivial topo-
logical band structure in the reciprocal space, which could be realized by several inequiv-
alent loops in a unit cell with a finite scalar spin chirality [177, 178]. In the following,
we briefly review the experiments on the topological Hall effect due to the real space
topological structures of magnetic skyrmions.

The Hall resistivity is generally written as [94, 95]

ρxy = ρNxy + ρAxy + ρTxy = R0B + SAρ
2
xxM + PR0B

s
z , (A.73)

where ρNxy is the normal Hall effect proportional to the Hall coefficient R0 and ρAxy is
the anomalous Hall resistivity proportional to the magnetization M . Here, SA denotes
the coupling coefficient and P (0 < P < 1) is the spin polarization ratio of conduction
electrons. The contribution from the topological Hall effect is denoted as ρTxy, which is
proportional to the emergent magnetic field Bs

z . From Eq. (1.62), it is written as

Bs
z = Ψ0ρ(m), (A.74)

where Ψ0 = 2π~c/e is the magnetic flux quantum, and the topological charge density
ρ(m) is given by

ρ(m) =
1

4π
m · (∂xm× ∂ym). (A.75)

Without the topological Hall effect, the Hall resistivity can be fitted well as a function
of magnetic fields. Hence, we could estimate the contribution from the topological Hall
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(A) (B)

Figure A.4: Skyrmion Hall effect and the emergent electromagnetic induction.
(A) Schematic representation of topological Hall effect and skyrmion Hall effect. (B)
Hall resistivity ρxy as a function of temperatures in the skyrmion crystal phase with and
without applied d.c. current, measured in a single crystal of MnSi. (A) is adapted from
Ref. [94] and (B) is adapted from Ref. [328].

effect by deviations from fitted lines. This is illustrated in Fig. A.3, where an additional
contribution in the Hall resistivity was observed in MnSi near the critical temperature as
the skyrmion crystal phase was stabilized. Figure A.3(a) shows that the Hall resistivity is
linearly proportional to magnetic fields with a negative coefficient at room temperatures.
This is explained by the normal Hall effect. In contrast, ∆ρxy shown in Fig. A.3(c) has
a positive contribution, implying the negative topological charge of skyrmions. Further-
more, it was shown that the obtained value of ∆ρxy is in excellent agreement with the
estimated value of ρTxy.

As a counterpart to the topological Hall effect, spin-polarized electric current can
drag skyrmions by the spin-transfer torque [175]. We should note that the manipulation
of spins using spin-transfer torque has been studied extensively in ferromagnetic domain
walls [329–332], which promises to be important for device applications such as race track
memory [260, 261]. In fact, the current-induced reversal of magnetization is already
implemented in commercially available MRAM devices [333].

Skyrmions can be considered as circulating spin currents from their vortexlike spin
structure. When they are driven by spin-polarized electric currents, the imbalance of
spin currents is generated. As a result, a Magnus force is exerted on skyrmions to deflect
their motion from the direction parallel to electric currents, known as the skyrmion Hall
effect (Fig. A.4(a)). The skyrmion Hall effect was first demonstrated in MnSi by rota-
tions of neutron scattering diffraction patterns under the application of a temperature
gradient and electric current parallel to each other [185]. Remarkably, it was found that
the threshold current density for the skyrmion motion is five orders of magnitude smaller
than that of the domain wall motion. Employing the classical spin dyna mics described
by the Landau-Lifshitz-Gilbert-Slonczewski equation [329], this was partly explained by
the particle nature of skyrmions that allows them to overcome the pinning effect from
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(a) (b)

Figure A.5: Direct imaging of skyrmion Hall effect under application of current
pulses. Snapshots and trajectory of skyrmion motion captured after injection of current
pulses along the horizontal axis under (a) positive and (b) negative magnetic fields in
the out-of-plane direction. The direction of transverse motion changes the sign as the
topological charge of skyrmions is different in (a) (Q = −1) and (b) (Q = +1). Images
were obtained by a polar magneto-optical Kerr effect microscope in multilayer systems
consisting of Ta/CoFeB/TaOx. Adapted from [334].

impurities [170]. Together with the stability due to the topological protection, the con-
trolled motion by ultralow currents makes magnetic skyrmions attractive candidates for
future information carriers [335].

Since a skyrmion induces a quantized magnetic flux, a moving skyrmion generates an
emergent electric field following Faraday’s laws of induction [328].

Es = −vd ×Bs, (A.76)

where vd is the velocity of skyrmions and Bs is the emergent magnetic field. The effective
electromagnetic induction effect generates extra electric currents transverse to the electric
current, resulting in the suppression of the Hall resistivity ρxy. This is demonstrated in
Fig.A.4(b), showing a decrease in the Hall resistivity by applying a electric current above
the threshold values in the presence of skrymion crystals.

For further confirmation, the direct imaging of skyrmion motion is also possible. Em-
ploying in-situ Lorentz transmission electron microscopy, the skyrmion driven by electric
currents was observed in FeGe near room temperature [336]. Similar observations were
also reported in multilayer magnetic systems with the maximum speed exceeding 100
ms−1 [334, 337–339]. Figure A.5 shows snapshots of skyrmion motion under successive
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Figure A.6: Nucleation process of skyrmions from notches with an applied
electric current. (a)-(f) Snapshots of spin configurations in a strip geometry with
a rectangular notch, obtained by the Landau–Lifshitz–Gilbert simulation. The electric
currents is applied in the horizontal axis. Adapted from [170].

applications of current pulses along the horizontal axis, using a polar magneto-optical
Kerr effect microscope [334]. The trajectory of skyrmions indicates transverse motion
due to the skyrmion Hall effect, which changes the sign for skyrmions with different
topological charges.

The manipulation of magnetic textures with electric currents could be also used to
nucleate skyrmions. For example, skyrmions could be converted from a ferromagnetic
domain by pushing it into a wide nanowires [147, 340]. Another idea is to introduce
a notch along the edge of a sample. In the numerical simulation shown in Fig. A.6,
the continuous deformation of edge spin textures is observed under an electric current,
resulting in formation of skyrmions. It can be explained from the fact that the topological
charge is no longer quantized in a confined system, allowing a fractional topological
charge. In comparison, the energy cost to create skyrmions in a bulk of samples is much
higher, because many spins need to be simultaneously flipped. This process was also
demonstrated experimentally by spin-polarized scanning tunneling microscopy and local
heating of a sample [171, 252, 288, 341–343].
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A.10 Thiele’s approach for skyrmion motion

In this section, we introduce Thiele’s approach to describe the skyrmion motion under
microwave fields, following Ref. [290]. The main advantage of Thiele’s approach is that we
can obtain a simplified expression of driving forces exerted on single skyrmions, which can
be used to derive the velocity of skyrmions [289]. A classical spin system under microwave
fields can reach a time-periodic steady state in the presence of phenomenological damping
constants. The Landau-Lifshitz-Gilbert (LLG) equation describes such classical spin
dynamics (see Section A.6). In the following, we consider the LLG equation of isolated
magnetic skyrmions defined on a square lattice under ac fields as shown in Fig. 4.1, where
mr(t) denotes a unit vector parallel to the magnetization at site r.

Assuming that the velocity of skyrmion is much slower than the period of microwave
field ω, the normalized magnetization mr(t) can be separated into a slow part mr,s(t)
and a fast part nr(t):

mr(t) = mr,s(t) + nr(t), (A.77)

where nr(t+T ) = nr(t) with T = 2π/ω denoting the period of driving field. Substituting
mr(t) into the LLG equation of Eq. (A.41) and taking the average over a period T , we
obtain 〈

∂mr,s

∂t

〉
T

= −γ 〈mr ×Heff
r 〉T + α

〈
mr,s ×

∂mr,s

∂t

〉
T

, (A.78)

where α is the Gilbert damping constant, γ is the gyromagnetic ratio, 〈f〉T = 1
T

∫ T
0
f(t′)dt′,

and Heff
r = −[1/(~γS)]∂H/∂mr with H denoting the classical spin Hamiltonian. To de-

rive this expression, we have used 〈nr〉T = 〈∂tnr〉T = 0, 〈mr,s × ∂tnr〉T ≈ 0, and
〈nr × ∂tmr,s〉T ≈ 0 from the assumption that mr,s is almost constant over the pe-
riod T . Denoting the velocity of skyrmion as vs, the slow part can be written as
mr,s(t) = ms(r − vst). The time derivative of mr,s is then given by

∂tmr,s =
∂(r − vst)

∂t

mr,s

∂r
= −(vs · ∇r)mr,s. (A.79)

The time averaged expressions are approximately given as [290]

〈∂tmr,s〉T ≈ −(vs · ∇r)ms(r − vsT/2), (A.80)

〈mr,s〉T ≈ms(r − vsT/2). (A.81)

Hence, we obtain 〈
∂mr,s

∂t

〉
T

≈ −(vs · ∇r)m̃r,s, (A.82)

where m̃r,s = 〈mr,s〉T is the time-averaged magnetization. Similarly, we have〈
mr,s ×

∂mr,s

∂t

〉
T

≈ m̃r,s × (−vs · ∇r)m̃r,s. (A.83)
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Using the above expressions, Eq. (A.78) is rewritten as

(vs · ∇)m̃r,s = γ
〈
mr ×Heff

r

〉
T

+ αm̃r,s × (vs · ∇r)m̃r,s. (A.84)

In order to study the collective motion of skyrmions, we employ Thiele’s approach
and multiply both sides of Eq. (A.84) by

∫
m̃s · (∂rm̃s × ...)dxdy for i = x, y [289]. The

left-hand side of Eq. (A.84) is obtained as

(LHS) =

∫
m̃r,s · [∂im̃r,s × (vs · ∇r)m̃r,s]dxdy

=

∫
m̃r,s · [∂im̃r,s × (vs,x∂x + vs,y∂y)m̃r,s]dxdy

= −4πQ(ẑ × vs)i, (A.85)

where Q = 1/(4π)
∫
m̃s · [∂xm̃s × ∂ym̃s]dxdy is an integer topological charge carried

skyrmions as defined in Eq. (1.58). The second term on the right-hand side is given as

α

∫
m̃r,s · [∂im̃r,s × {m̃r,s × (vs · ∇r)m̃r,s}]dxdy

= α

∫
m̃r,s · [(∂im̃r,s · (vs · ∇r)m̃r,s)m̃r,s − (∂im̃r,s · m̃r,s)(vs · ∇r)m̃r,s]dxdy

= αvs,j

∫
(∂im̃s · ∂jm̃s)dxdy = αηδijvs,i, (A.86)

with η ≈ 4π for skyrmions. The last equality was obtained from ∂i(m̃r,s · m̃r,s) =
2∂im̃r,s · m̃r,s = 0. Finally, Eq. (A.84) is written in terms of the collective coordinate as

4πQ(ẑ × vs) + αηvs = F, (A.87)

where the net force exerted on the skyrmion is given by

Fi = −γ
∫
m̃r,s ·

[
∂im̃r,s ×

〈
mr ×Heff

r

〉
T

]
dxdy. (A.88)

Finally, the velocity of skyrmion is given by

vs,x =
4πQFy + αηFx
(4πQ)2 + α2η2

,

vs,y =
−4πQFx + αηFy
(4πQ)2 + α2η2

. (A.89)

Ignoring small contributions proportional to the Gilbert damping coefficient, it is written
as

(vs,x, vs,y) =
(Fy,−Fx)

4πQ
. (A.90)

Therefore, we can obtain the analytical expression for skyrmion velocity by computing
the total force F acting on skyrmions under microwave fields.
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Appendix B

Floquet theory for classical spin
systems

B.1 Introduction

B.1.1 Floquet Hamiltonian and kick operator

In this section, we introduce the theoretical basis of Floquet theory for quantum systems,
including the Floquet Hamiltonian and kick operator. We refer to Ref. [285] for the
content of this section. Let us consider a time-periodic Hamiltonian Ĥ(t + T ) = Ĥ(t)
with a period T . Analogously to the Bloch theorem for spatially periodic Hamiltonians,
the Floquet theorem guarantees the existence of Floquet states |ψn(t)〉 as a solution for
the time-dependent Schrödinger equation [344]:

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (B.1)

with
|ψn(t)〉 = |un(t)〉 e−iεnt/~, (B.2)

where εn and |un(t)〉 = |un(t+ T )〉 denotes the real quasienergy and Floquet mode,
respectively. The Floquet states are eigenstates of the time-evolution operator Û(t2, t1)
over one period:

Û(t0 + T, t0) |ψn(t0)〉 = |ψn(t0 + T )〉 = e−iεnT/~ |ψn(t0)〉 . (B.3)

We should note that the eigenvalue εn does not depend on t0. The time evolution of
Floquet states is described by |ψn(t)〉 = Û(t, t0) |ψn(t0)〉. Conversely, we can write the
time-evolution operator in terms of Floquet modes as

Û(t2, t1) =
∑
n

e−iεn(t1−t2) |un(t2)〉 〈un(t1)| . (B.4)

Similarly to energy spectra of static systems, we consider the quasienergy spectrum to
characterize time-periodic Hamiltonians. An important difference is that the quasienergy
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spectrum is well-defined only up to modulo integer multiples of ω = 2π/T , which gives
the identical phase factor e−iεnT/~ in Eq. (B.3). The quasienergy spectrum over the width
of ~ω is often called a Brillouin zone in the energy space. Given εn and |un(t)〉 as one
choice of quasienergy and Floquet mode, all the possible solutions are given as

εnm = εn +m~ω, (B.5)

with m denoting integers and the corresponding Floquet mode is

|unm(t)〉 = |un(t)〉 eimωt. (B.6)

Substituting |ψn(t)〉 = |un(t)〉 e−iεnt/~ = |unm(t)〉 e−iεnmt/~ to the time-dependent Schrödigner
equation of Eq. (B.1), we obtain

[Ĥ(t)− i~dt] |unm(t)〉 = εnm |unm(t)〉 . (B.7)

The above equation is an eigenvalue problem defined in the extended Floquet Hilbert
space F = H ⊗ LT , where H is the original Hilbert space of Ĥ and LT is the space of
T -periodic time-dependent functions [344]. In the extended Floquet Hilbert space, the
scalar product between two quantum states is defined as

〈u|v〉T =
1

T

∫ T

0

dt′ 〈u(t′)|v(t′)〉 . (B.8)

The quasienergy eigenvalue is also written as

Q̂ |unm(t)〉 = εnm |unm(t)〉 , (B.9)

with the quasienergy operator Q̂ = Ĥ(t)− i~dt.
A complete set of orthogonal basis of F is constructed by [285]

|αm(t)〉 = |α〉 eimωt, (B.10)

where α is a complete set of orthogonal basis for Ĥ and m is integers. Using this basis,
the matrix elements of Q̂ is obtained as

〈α′m′|Q̂|αm〉T =
1

T

∫ T

0

dt e−im
′ωt 〈α′|Ĥ(t)− i~dt|α〉 eimωt

= 〈α′|Ĥm−m′|α〉+ δm,m′δα,α′m~ω, (B.11)

where Ĥm is the Fourier transform of the Hamiltonian H(t), given as

Ĥm =
1

T

∫ T

0

dt eimωtĤ(t). (B.12)

With respect to the Fourier mode index m, each block is represented by Q̂m′m = Ĥm−m′+
δm′mm~ω acting in the Hilbert space Ĥ.



B.1. INTRODUCTION 145

To compute the quasienergy spectrum, we need to block diagonalize the quasienergy
operator Q̂ with respect to the Fourier mode indices m, as shown below. The block
diagonalized structure is represented as Q̂m = ĤF + m~ω, with ĤF = Ĥm=0 defined
below. Denoting a unitary operator ÛF (t) that block diagonalize Q̂, the quasienergy
operator is evaluated as

〈α′m′|Û †F Q̂ÛF |αm〉T = δm,m′ 〈α′|ĤF |α〉+ δm,m′δα,α′m~ω, (B.13)

with
ĤF = Û †F (t)Ĥ(t)ÛF (t)− i~Û †F (t)dtÛF (t). (B.14)

The time-independent Hamiltonian ĤF is termed as an effective Floquet Hamiltonian,
which can be diagonalized as

ĤF |ũn〉 = εn |ũn〉 = εn
∑
α

γnα |α〉 , (B.15)

with γnα = 〈ũn|α〉. We then obtain the Floquet modes and their quasienergies as

|unm(t)〉 = ÛF (t) |ũn〉 eimωt, (B.16)

εnm = εn +m~ω. (B.17)

Therefore, we can solve time-periodic Hamiltonians by constructing the unitary opera-
tor ÛF (t). Using ÛF (t), we can obtain the effective Floquet Hamiltonian ĤF and the
quasienergy spectrum εnm. We should note that the derivation of ÛF (t) is outlined in
Appendix B.1.2. Furthermore, the time-evolution operator of Eq. (B.4) can be expressed
in terms of ĤF and ÛF (t). Using the Floquet states |un0(t)〉 = ÛF (t) |ũn〉 as a basis, we
obtain [345]

Û(t2, t1) =
∑
n

e−iεn(t1−t2)ÛF (t2) |ũn〉 〈ũn| Û †F (t1)

= ÛF (t2)e−iĤF (t1−t2)Û †F (t1), (B.18)

where we have used ĤF =
∑

n εn |ũn〉 〈ũn| for the last equality. The unitary operator

ÛF (t) can be expressed as
ÛF (t) = exp

(
Ĝ(t)

)
, (B.19)

where Ĝ = −Ĝ† is an anti-hermitian operator. The hermitian operator iĜ is called the
kick operator as it describes the time-evolution of Floquet states [346]. We should note
that Ĝ(t+ T ) = Ĝ(t) to preserve the periodicity in time.

B.1.2 High frequency expansion

In this section, we briefly outline the approximation scheme to compute a unitary operator
ÛF (t) that block diagonalize the quasienergy operator Q̂ discussed in Appendix B.1.1.
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Figure B.1: Schematic illustration of quasienergy spectrum in the perturbation
theory. The quasienergy operator is partitioned into Q̂ = Q̂0+V̂D+V̂x, with Q̂0 denoting
an unperturbed part as defined in the text. Adapted from [285].

The main idea is to expand ÛF (t) perturbatively with 1/ω in the limit of the large
frequency ω = 2π/T , hence known as the high frequency expansion. For the details of
the calculation, we refer to Ref. [285].

Assuming that the frequency of driving is much larger than the energy scale of Hamil-
tonian ~ω � Ĥ(t), we can separate the quasienergy operator of Eq. (B.11) as [285]

Q̂ = Q̂0 + V̂D + V̂x, (B.20)

where each expression is given as

Q̂0 = −i~dt, (B.21)

V̂D = Ĥ0, (B.22)

V̂X(t) =
∑

∆m 6=0

e−i∆mωtĤ∆m. (B.23)

In the high frequency approximation, we take Q̂0 as an unperturbed part, where all
quasienergies are degenerate with ε

(0)
αm = 〈α′m′|Q̂0|αm〉T = m~ω. The time-periodic

Hamiltonian is taken as a perturbation V̂D + V̂x. While V̂D maps a system within the
same Fourier mode index m, V̂X corresponds to a perturbation between different Fourier
mode indices. The unperturbed quasienergy spectrum with perturbations from V̂D and
V̂X is illustrated in Fig. B.1. The advantage of this method is that we can obtain a general
expression of ÛF (t) independent of the orthogonal basis |αm〉.

To compute the unitary operator ÛF (t) that bloch diagonalize Q̂, we need to satisfy

Û †F Q̂ÛF = Û †F
[
Q̂0 + V̂D + V̂X

]
ÛF = Q̂0 + ŴD, (B.24)
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where ŴD is a bloch-diagonal operator. By solving Eq. (B.24) for each order of pertur-
bations, the perturbative expansion of ÛF (t) is given as

ÛF (t) = exp(Ĝ), (B.25)

Ĝ =
∞∑
ν=1

Gν , (B.26)

where the anti-unitary operator Ĝ is expanded in powers of 1/ω, whose expression was
obtained up to the second order in Ref. [285]. Depending on the desired accuracy of
calculations, we truncate the expansion up to higher orders to derive the approximate

expression for ÛF (t) ≈ exp
(∑ν′

ν=1 Ĝ
ν
)

. Here, we only present the result for the first

order term as it is sufficient for our calculations in Chapter 4. The expression for Ĝ(1) is
given as [285]

Ĝ(0)(t) = 0, (B.27)

Ĝ(1)(t) = −
∑
m6=0

eimωt

m~ω
Ĥ−m, (B.28)

with m denoting integers and Ĥm defined in Eq. (B.12).
Once a truncated series of ÛF (t) is obtained, the corresponding Floquet Hamiltonian

can be computed by

HF
α,α′ = 〈α′|ĤF |α〉 = 〈α′0|Û †F Q̂ÛF |α0〉T . (B.29)

The leading order terms were obtained as [285]

Ĥ
(0)
F = Ĥ0, (B.30)

Ĥ
(1)
F =

∑
m6=0

[Ĥ−m, Ĥm]

2m~ω
. (B.31)

We should note that the equivalent expressions for the effective Floquet Hamiltonian have
been derived with different means such as the Floquet Magnus expansion [345–347].

B.2 Floquet theory on classical systems

In Appendix B.1, we have reviewed the Floquet theory applied to Schrödinger equations
under time-periodic drives. In the following sections of Appendix B, we provide a brief
review of Ref. [211], where the Floquet theory was extended to classical systems described
by equations of motion (EOM). Our purpose is to derive expressions of effective Floquet
Hamiltonians and kick operators for classical spin systems under laser fields. This section
provides a general strategy for applications of the Floquet theory to classical EOMs,
followed by the application to classical spin systems in the next section.
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Figure B.2: Schematic illustration of Floquet theory applied to classical sys-
tems. Each procedure is explained in the text. Adapted from [211].

The problem for the application to classical EOMs is that they are generally nonlin-
ear equations. In addition, they may contain stochastic forces due to the thermal noise.
Hence, we cannot use the Floquet theory developed for a linear equation. To overcome
this problem, the main idea of Ref. [211] is to apply the high frequency expansion in the
corresponding master equations instead of EOMs. Since the master equation is a linear
equation describing the time evolution of probability density functions, we can apply
the established result of the Floquet theory. Once the effective time-independent master
equation is obtained by the Floquet expansion, we just need to derive the EOM corre-
sponding to the effective master equation. The whole process is illustrated in Fig. B.2.

Let us consider the following generic equation of motion.

dtφr,a(t) = fr,a[φ(t), t] +

NI∑
b=1

gr,ab[φ(t), t]hr,b(t), (B.32)

where φ(t) = [~φr1(t), ~φr2(t), . . . , ~φrN (t)] is a set of classical variables for N sites labeled by

r, each classical variable ~φr has NI internal degrees of freedom denoted by the subscript
a, fr,a[φ(t), t] and gr,ab[φ(t), t] respectively denotes a drift force and diffusion matrix, and
hr,a(t) is a Gaussian random variable that satisfies

〈ha(t)〉 = 0, 〈ha(t)hb(t′)〉 = 2Dδabδ(t− t′), (B.33)

with D and 〈 〉 denoting a diffusion constant and disorder average, respectively. We
assume the time-periodic drift force fa(t) = fa(t + T ) and the diffusion matrix gab(t) =
gab(t+ T ).

Using the Stratonovich convention, the Fokker-Plank equation is obtained as a master
equation of Eq. (B.32) [211] (Step 1 in Fig. B.2):

∂P (φ, t)

∂t
=

∂

∂φi
[Fi(φ, t)P (φ, t)] +

∂2

∂φiφj
[Dij(φ, t)P (φ, t)], (B.34)



B.2. FLOQUET THEORY ON CLASSICAL SYSTEMS 149

with P (φ′, t′) representing the probability density for finding φ = φ′ at t = t′ in the whole
parameter space of φ. Each expression is given as

Fi(φ, t) = −fi(φ, t)−Dgkl(φ, t)
∂gil(φ, t)

∂φk
, (B.35)

Dij(φ, t) = Dgik(φ, t)gkj(φ, t), (B.36)

where i denotes all degrees of freedom of φ including N sites and NI internal degree of
freedoms. We note that Fi(t + T ) = Fi(t) and Dij(φ, T + t) = Dij(φ, t) from the above
equations. We define a Fokker-Plank operator Lt(P ) as follows.

Lt(P ) = div[F(t)P ] + div2[D(t)P ], (B.37)

where div[FP ] ≡ ∂φi [FiP ] and div2[DP ] ≡ ∂φiφj [DijP ]. Using the Fokker-Plank operator
Lt(P ), we notice that the Fokker-Plank equation takes the same form as the Schrödinger
equation:

i∂tP = H(t)P, with H(t) = iLt(P ). (B.38)

Since the Fokker-plank operator is periodic in time with LT+t = Lt, we can apply the
Floquet theory to describe the time-evolution of the probability density function P (φ, t) =
U(t, 0)P (φ, t = 0) (Step 2 in Fig. B.2).

From Eq. (B.18), the time-evolution operator is given by

U(t2, t1) = egF (t2)e(t2−t1)LF e−gF (t1), (B.39)

where LF = −iHF is the effective Fokker-Plank operator obtained by the Floquet theory
and igF (t) is the kick operator satisfying gF (t+T ) = gF (t), which respectively represents a
stroboscopic dynamics that develops over a long time and an instantaneous time-evolution
at time t with small oscillations around the time-averaged solution. As discussed in
Appendix B.1.2, the expressions for LF and gF (t) can be obtained by the high frequency
expansion. From Eqs. (B.28) and (B.31), we have [211]

LF =
∞∑
m=0

L(m)
F , gF =

∞∑
m=0

g
(m)
F , (B.40)

with the effective Fokker-Plank operator given as

L(0)
F = −iH(0)

F = −iH0 = L0, (B.41)

L(1)
F = −iH(1)

F = −i
∑
m 6=0

[H−m, Hm]

2mω

= i
∑
m6=0

[L−m,Lm]

2mω
, (B.42)
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and the kick operator given as

g
(0)
F (t) = 0, (B.43)

g
(1)
F (t) = G(1)(t) = −

∑
m 6=0

H−me
imωt

mω

= −i
∑
m 6=0

L−meimωt
mω

, (B.44)

where Lm = 1
T

∫ T
0
dtLteimωt with the period T = 2π/ω. Here, the commutator between

the Fokker-Plank operators in Eq. (B.42) is interpreted as

[S1,S2](P ) ≡ S1[S2(P )]− S2[S1(P )]. (B.45)

If we are only interested in the long-time dynamics, we can ignore the kick operator and
the master equation is described by

∂tP = LFP ≈
m0∑
m=0

L(m)
F P, (B.46)

which is truncated at m0. As a final step, we need to derive the time-evolution of EOMs
that are consistent with Eq. (B.39) (Step 3 in Fig. B.2).

Firstly, we consider the EOM corresponding to the effective Fokker-Plank equation
of Eq. (B.46). The EOM corresponding to the kick operator is discussed afterwards.
Here, we only consider the simplest case where the diffusion term gr,ab in Eq. (B.32)
vanishes, which corresponds to the Landau-Lifshitz-Gilbert (LLG) equation at T = 0
K. Throughout this thesis, we do not discuss the finite temperature case, hence it is
sufficient. For a more general case with diffusion terms, we refer to Ref. [211].

Assuming Dij = 0, the Fokker-Plank operator is given by

Lt(P ) = −div[f(t)P ]. (B.47)

The Fourier mode of Fokker-Plank operator is then written as

Lm = −div(fmP ), (B.48)

fm =
1

T

∫ T

0

dt f(t)eimωt. (B.49)

The commutation relation of the Fokker-Plank operator is obtained as [211]

[Lm,Ln](P ) = div[fmdiv(fnP )]− div[fndiv(fmP )]

= −div[−[fm, fn]clP ], (B.50)

where ∇φ ≡ (∂/∂φ1 , ∂/∂φ2 , . . .) and the commutation relation is introduced as

[ ~A, ~B]cl,j = ( ~A · ∇φ)Bj − ( ~B · ∇φ)Aj = Ai
∂Bj

∂φi
−Bi

∂Aj
∂φi

, (B.51)
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where repeated indices imply the summation. The above commutation relation is known
as the Lie braket in mathematics. The important point in Eq. (B.50) is that the Fokker-
Plank operator is closed with respect to the commutator. Therefore, the effective Floquet
EOM for Eq. (B.46) is described by the renormalized drift force fF :

dtφ = fF (φ) =
ν′∑
ν=0

f
(ν)
F (φ), (B.52)

with ν ′ indicating the truncated expansion. Up to the first order expansion, the effective
drift force fF is obtained from Eq. (B.42) as [211]

f
(0)
F = f0, (B.53)

f
(1)
F = i

∑
m6=0

[f−m, fm]cl

2mω
. (B.54)

By solving Eq. (B.52), we can describe the long-time dynamics of classical systems under
the time-periodic drives.

Secondly, we consider the EOM corresponding to the kick operator, which describes
the short-time dynamics. Let us first consider the physical meaning of kick operators
gF (s) for s = t1, t2. Without diffusion terms, Eq. (B.44) is written as

g
(1)
F (s)[P ] = −i

∑
m6=0

L−meiωs[P ]

mω
= −div[f

(1)
mic(φ, s)P ]

ω
, (B.55)

where

f
(1)
mic(φ, s) = −i

∑
m 6=0

f−me
iωs

m
. (B.56)

From Eq. (B.55), we see that P (φ, τ) = exp(±gF (s))P0(φ) is formally a solution of the
following master equation at τ = 1

ω
:

∂P (φ, τ)

∂τ
= ∓div[f

(1)
mic(φ, s)P (φ, τ)],

P (φ, τ = 0) = P0(φ). (B.57)

Treating Lt,mic(P ) = −div[±f (1)
mic(φ, s)P ] as a Fokker-Plank operator for Eq. (B.57), the

physical meaning of exp(gF (s)) can be interpreted as applications of the drift force

±f (1)
mic(φ, s) from τ = 0 to τ = 1

ω
, with τ denoting an auxiliary time for computing

the kick operator. Assuming that the initial set of classical variables is denoted as φ0,
the corresponding equation of motion is obtained as [211]

∂φkick

∂τ
= ±f (1)

mic(φkick, s),

φkick(τ = 0) = φ0. (B.58)
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Thus, the kick operator maps from φ0 to the solution of the above equation, written as
φkick(τ = 1

ω
).

As a summary, the full time-evolution of equations of motions in the high frequency
expansion is described by the following procedures [211]. Starting from the initial con-
figuration φ(t1) = φ0, we evaluate the time evolution operator U(t2, t1) of Eq. (B.39) in
three steps.

1. Substitute −f (1)
mic(φ0, t1) to the right-hand side of Eq. (B.58) to solve the equation of

motion for the initial kick operator. In the Euler method for ω � 1, the approximate
solution is given as

φ1 = φ0 −
f

(1)
mic(φ0, t1)

ω
. (B.59)

2. Evaluate the effective Fokker-Plank operator for t2− t1 in Eq. (B.52). The obtained
solution is denoted as φ2.

3. Substitute f
(1)
mic(φ2, t2) to the right-hand side of Eq. (B.58) to solve the equation

of motion for the final kick operator. Using the Euler method for ω � 1, the
approximate solution is given as

φ(t2) = φ2 +
f

(1)
mic(φ2, t2)

ω
. (B.60)

B.3 Application to classical spin systems

In this section, we apply the general formalism introduced in Appendix B.1 to classical
spin systems. We refer to Ref. [211] for the content of this section. The equations
of motion for classical spin systems correspond to the Landau-Lifshitz-Gilbert (LLG)
equation introduced in Appendix A.6. Here, we only consider a case of T = 0 K, so there
is no diffusion term. From Eq. (A.41), the drift force of the LLG equation is given as

fr(t) = − γmr

1 + α2
×
[
Heff

r (t) + αmr ×Heff
r (t)

]
, (B.61)

where mr is a unit vector parallel to the magnetization at site r, the microscopic mag-
netic field is depicted as Heff

r (t) = −[1/(~γS)]∂H(t)/∂mr with H denoting the classical
spin Hamiltonian, and γ and α respectively denotes the gyromagnetic ratio and Gilbert
damping constant.

With the time-periodic Hamiltonian H(t+ T ) = H(t), the time-evolution of classical

spins can be described by the Floquet theory. It is straightforward to compute f
(1)
mic,r(t),

which is given from Eq. (B.56) as

f
(1)
mic,r(t) = − γmr

1 + α2
×
[
H

(1)
mic,r(t) + αmr ×H(1)

mic,r(t)
]
, (B.62)

with H
(1)
mic,r(t) given in Eq. (4.9). In contrast, we need to evaluate the commutation

relation of fr(t) for expressions of the effective drift force f
(1)
F,r in Eq. (B.54). In the
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following, we illustrate an efficient way to compute the commutation relation as discussed
in Ref. [211].

We define the following operators:

Lr,a = −εabcmr,b
∂

∂mr,c

, (B.63)

Kr,a = εabcLr,bmr,c, (B.64)

Nr,a = Lr,a + αKr,a, (B.65)

where εabc is the totally antisymmetric tensor of rank 3 and repeated indices imply the
summation. Noting that Lr is the angular momentum operator, we have the following
commutation relations:

[Lr,a, Lr′,b] = δr,r′εabcLr,c, (B.66)

[Kr,a, Kr′,b] = −δr,r′εabcKr,c, (B.67)

[Lr,a, Kr′,b] = δr,r′εabcLr,c, (B.68)

[Nr,a, Nr′,b] = δr,r′
(
εabcNr,c + α(Nr,amr,b −mr,aNr,b)

)
. (B.69)

Now, we consider the commutation between Fokker-Plank operators LA = −∑r[∂fr,A,a/∂mr,a]
and LB = −∑r[∂fr,B,b/∂mr,b], where

fr,γ =
1

T

∫ T

0

dtfr(t)eiγωt, (B.70)

with integer γ = A,B. Using the identity

∂

∂mr,a

(εabcmr,bH
eff
r,γ,c) = −εabcmr,a

∂

∂mb

Heff
r,γ,c = Lr ·Heff

r,γ, (B.71)

we can rewrite the Fokker-Plank operator as

Lγ =
∑
r

(
Lr ·

Heff
r,γ

1 + α2
+ αKr ·

Heff
r,γ

1 + α2

)
=

∑
r

Nr ·Hr,γ, (B.72)

where Hr,γ =
γHeff

r,γ

1+α2 . The commutation of the Fokker-Plank operator is then derived
as [211]

[LA,LB] = [
∑
r

Nr ·Hr,A,
∑
r′

Nr′ ·Hr′,B]

=
∑
r

Nr · [Hr,A,Hr,B]mag, (B.73)
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where

[Hr,A,Hr,B]mag = Hr,A ×Hr,B + αmr × (Hr,A ×Hr,B)

+
∑
r′

[
(Hr′,A ·Lr′)Hr,B − (Hr′,B ·Lr′)Hr,A

]
+

∑
r′

α
[
(mr′ ·Hr′,A ×Lr′)Hr,B − (mr′ ·Hr′,B ×Lr′)Hr,A

]
. (B.74)

Therefore, the effective drift force f
(1)
F,r is simply given from Eq. (B.54) as

f
(1)
F,r = − γmr

1 + α2
×
∑
m 6=0

iγ[Heff
r,−m,H

eff
r,m]mag

2mω(1 + α2)
. (B.75)

Finally, the effective drift force fF,r is obtained as

fF,r = fr,0 + f
(1)
F,r. (B.76)

The corresponding effective LLG equation is given in Eq. (4.3).



Appendix C

Floquet theory for laser-driven
skyrmions

C.1 Derivation of effective LLG equation and kicked

operator

In this section, we derive the effective Landau-Lifshitz-Gilbert (LLG) equation and kicked
operator of Cu2OSeO2 under electromagnetic fields of lasers, based on the Floquet for-
malism extended to classical spin systems [211] (see Appendix B). As discussed in Sec-
tion 2.2.2, the electric polarization of Cu2OSeO2 takes different expressions depending
on the direction of applied static magnetic fields B0. In the following, we compute H

(1)
F

and H
(1)
mic,r defined in Eqs. (4.4) and (4.9) for three cases with B0 ‖ [001], B0 ‖ [110],

and B0 ‖ [111], taking z-axis parallel to the applied magnetic field and x-axis along [110]

direction. The effective LLG equation is given by substituting H
(1)
F into Eq. (4.3). Sim-

ilarly, the LLG equation corresponding to the kicked operator is given by substituting
H

(1)
mic,r into Eq. (4.8). The full time-evolution of classical spin systems under laser is

then obtained by the combination of the kicked operator and effective LLG equation as
described in Section 4.1.2.

For the calculation of the commutation relations defined in Eq. (B.74), we ignore small
contributions proportional to the damping coefficient α. We have confirmed that it does
not affect the result qualitatively by comparing the numerical solution of LLG equation
and the time-evolution of spins computed by the Floquet theory, as shown in Fig. 4.4.
We should note that the Fourier components of electromagnetic fields are written from
Eqs. (4.14) and (4.15) as

E±1 =
Ed
2

(±i cos δ + sin δ, 1, 0), (C.1)

B±1 =
Bd

2
(1,∓i cos δ − sin δ, 0), (C.2)

where Em = 1
T

∫ T
0
dtE(t)eimωt and Bm = 1

T

∫ T
0
dtB(t)eimωt with T = 2π/ω.
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C.1.1 For B0 ‖ [001]

From Eq. (2.14), the electric polarization is given as

Pr = λ
(
−mr,zmr,x,mr,ymr,z,

−m2
r,x +m2

r,y

2

)
. (C.3)

The time-dependent microscopic magnetic field of Eq. (4.1) is then written as

Heff
r (t) = −∂[H(t)−H0]

gµB∂mr

= B(t) +
λ

gµB
(−Exmr,z, Eymr,z,−Exmr,x + Eymr,y), (C.4)

with E(t) = (Ex(t), Ey(t), 0) and H0 = 1
T

∫ T
0
dtH(t). The Fourier component of the

effective magnetic field is

Hr,±1 = B±1 +
λ

gµB
(−Ex,±1mr,z, Ey,±1mr,z,−Ex,±1mr,x + Ey,±1mr,y). (C.5)

From Eq. (4.4), the effective magnetic field up to the first order expansion is obtained as

H
(1)
F =

iγ[Hr,−1,Hr,+1]mag

(1 + α2)ω

= BF

{
− 2Edmr,y + 2E2

dmr,xmr,z,−2Edmr,x + 2E2
dmr,ymr,z,

1 + E2
d (m2

r,x +m2
r,y − 3m2

r,z)
}
. (C.6)

where BF =
γB2

d cos δ

2(1+α2)ω
. Noting H

(1)
F = −∂H(1)

F /(gµB∂mr), the first order term of the
effective Floquet Hamiltonian is derived as

H
(1)
F =

∑
r

[
− gµBB

(1)
F ·mr + 2gµBBFEdmr,xmr,y

]
,

B
(1)
F = BF

{
1 + E2

d (m2
r,x +m2

r,y −m2
r,z)
}
ẑ. (C.7)

From Eq.(4.9), the microscopic field for the kicked operator is given by

H
(1)
r,mic(t) = −i(Hr,−1e

iωt −Hr,+1e
−iωt)

= Bd

{
sin (ωt) + Edmr,z cos (ωt+ δ), cos (ωt+ δ) + Edmr,z sin (ωt),

Edmr,x cos (ωt+ δ) + Edmr,y sin (ωt)
}
. (C.8)

C.1.2 For B0 ‖ [110]

From Eq. (2.14), the electric polarization is given as

Pr = λ
(
−mr,xmr,y,

−m2
r,x +m2

r,z

2
,mr,ymr,z

)
. (C.9)
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The time-dependent microscopic magnetic field of Eq. (4.1) is then written as

Heff
r (t) = −∂[H(t)−H0]

gµB∂mr

= B(t) +
λ

gµB
(−Exmr,y − Eymr,x,−Exmr,x, Eymr,z), (C.10)

with E(t) = (Ex(t), Ey(t), 0) and H0 = 1
T

∫ T
0
dtH(t). The Fourier component of the

effective magnetic field is

Hr,±1 = B±1 +
λ

gµB
(−Ex,±1mr,y − Ey,±1mr,x,−Ex,±1mr,x, Ey,±1mr,z). (C.11)

From Eq. (4.4), the effective magnetic field up to the first order expansion is obtained as

H
(1)
F =

iγ[Hr,−1,Hr,+1]mag

(1 + α2)ω

= BF

{
− Edmr,z(1 + 4Edmr,x), 2E2

dmr,ymr,z, 1− Edmr,x + E2
d (−2m2

r,x +m2
r,y)
}
.

(C.12)

where BF =
γB2

d cos δ

2(1+α2)ω
. Noting H

(1)
F = −∂H(1)

F /(gµB∂mr), the first order term of the
effective Floquet Hamiltonian is derived as

H
(1)
F =

∑
r

[
− gµBB

(1)
F ·mr + gµBBFEdmr,zmr,x

]
,

B
(1)
F = BF

{
1 + E2

d (−2m2
r,x +m2

r,y)
}
ẑ. (C.13)

From Eq.(4.9), the microscopic field for the kicked operator is given by

H
(1)
r,mic(t) = −i(Hr,−1e

iωt −Hr,+1e
−iωt)

= Bd

{
(1− Edmr,x) sin (ωt) + Edmr,y cos (ωt+ δ), (1 + Edmr,x) cos (ωt+ δ),

Edmr,z sin (ωt)
}
. (C.14)

C.1.3 For B0 ‖ [111]

From Eq. (2.14), the electric polarization is given as

Pr = λ
(
−mr,x(

√
2mr,y +mr,z)√

3
,
−m2

r,x +mr,y(mr,y −
√

2mr,z)√
6

,−m
2
r,x +m2

r,y − 2m2
r,z

2
√

3

)
.

(C.15)
The time-dependent microscopic magnetic field of Eq. (4.1) is then written as

Heff
r (t) = −∂[H(t)−H0]

gµB∂mr

= B(t) +
λ

gµB
√

3

{
−
√

2(Exmr,y + Eymr,x)− (Exmr,z),

√
2(−Exmr,x + Eymr,y)− (Eymr,z),−Exmr,x − Eymr,y

}
, (C.16)
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with E(t) = (Ex(t), Ey(t), 0) and H0 = 1
T

∫ T
0
dtH(t). The Fourier component of the

effective magnetic field is

Hr,±1 = B±1 +
λ

gµB
√

3
(−
√

2(Ex,±1mr,y + Ey,±1mr,x)− (Ex,±1mr,z),

√
2(−Ex,±1mr,x + Ey,±1mr,y)− (Ey,±1mr,z),−Ex,±1mr,x − Ey,±1mr,y). (C.17)

From Eq. (4.4), the effective magnetic field up to the first order expansion is obtained as

H
(1)
F =

iγ[Hr,−1,Hr,+1]mag

(1 + α2)ω

= BF

{
2E2

dmr,x(
√

2mr,y −mr,z),
√

2E2
dm

2
r,x − E2

dmr,y(
√

2mr,y + 2mr,z),

1− E2
d (m2

r,x +m2
r,y −m2

r,z)
}
. (C.18)

where BF =
γB2

d cos δ

2(1+α2)ω
. Noting H

(1)
F = −∂H(1)

F /(gµB∂mr), the first order term of the
effective Floquet Hamiltonian is derived as

H
(1)
F =

∑
r

[
− gµBB

(1)
F ·mr

]
,

B
(1)
F = BF

[{
1 + E2

d

(
−m2

r,x −m2
r,y +

m2
r,z

3

)}
ẑ +
√

2E2
d (m2

r,x −
m2

r,y

3
)ŷ
]
. (C.19)

From Eq.(4.9), the microscopic field for the kicked operator is given by

H
(1)
r,mic(t) = −i(Hr,−1e

iωt −Hr,+1e
−iωt)

=
Bd√

6

{
(
√

6− 2Edmr,x) sin (ωt) + Ed(2mr,y +
√

2mr,z) cos (ωt+ δ),

(
√

6 + 2Edmr,x) cos (ωt+ δ) + Ed(2mr,y −
√

2mr,z) sin (ωt),
√

2Edmr,x cos (ωt+ δ)−
√

2Edmr,y sin (ωt)
}
. (C.20)

C.2 Spin precession mode using the Floquet theory

As shown in Eq. (4.20), the magnetization mr(t) can be partitioned into a fast part
nr(t + T ) = nr(t) and a slow part ms,r(t), where T = 2π/ω denotes the period of
electromagnetic fields from laser. In this section, we derive the analytical expression for
the spin precession mode nr(t) under laser fields.

The full time-evolution of spins is described by U(t2, t1) given in Eq. (B.39). As
discussed in Section 4.1.2, U(t2, t1) is evaluated by solving the three LLG equations in
turn. Assuming T → 0 and δt → 0, the Euler’s method yields a simple expression for
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the time-evolution of mr(t) from t1 to t1 + δt as follows:

δmr(t1) = mr(t1 + δt)−mr(t1) = nr(t1 + δt)− nr(t1) +ms,r(t1 + δt)−ms,r(t1)

=
f

(1)
mic,r(t1 + δt)− f (1)

mic,r(t1)

ω
+ fF,rδt+O(ω−2), (C.21)

where f
(1)
mic,r(t) and fF,r are defined in Eq. (B.62) and (B.76), respectively. Since the

system is in the non-equilibrium steady state, the effective LLG equation of Eq. (4.3)
should vanish on both sides. Hence, we have

ms,r(t1 + δt)−ms,r(t1) = fF δt = 0. (C.22)

Here, we should note that a change in spin textures due to the drift velocity of skyrmions
is neglected. Therefore, the spin precession mode is obtained as

nr(t) =
f

(1)
mic(t)

ω
+O(ω−2). (C.23)

C.3 Floquet magnon Hamiltonian

In this section, we illustrate how to derive the Floquet magnon Hamiltonian by performing
the Holstein-Primakoff (HP) transformation (see Section 1.1.3) on the effective Floquet

Hamiltonian H
(1)
F (see Appendix C.1). For the static part of Hamiltonians H0, the spin

wave Hamiltonian is given as Eq. (1.10).
It is convenient to perform the HP transformation on the following general expressions.

The cross term proportional to Ed is generally given as

KabSr,aSr,b = Kab

{
(Sαre

α
r ) · â

}{
(Sβre

β
r) · b̂

}
= Kab

∑
α,β

SαrS
β
rL

αa
r L

βb
r , (C.24)

with a, b = x, y, z denoting the Cartesian coordinates and α = 1, 2, 3 denoting the local
orthogonal basis defined in Section 1.1.3. Here, we define a tensor Lαar as

Lαar = eαr · â. (C.25)

Only keeping the bilinear terms with respect to the magnon operators, we obtain

Kab

∑
α,β

SαrS
β
rL

αa
r L

βb
r =

KabS

2

[{
L1a
r L

1b
r + i(L1a

r L
2b
r + L2a

r L
1b
r )− L2a

r L
2b
r

}
a†ra

†
r + c.c.

+
{
L1a
r L

1b
r + L2a

r L
2b
r − 2L3a

r L
3b
r

}
(a†rar + ara

†
r)
]
. (C.26)

Similarly, terms proportional to E2
d take the following form:

NabS
2
r,aSr,b = Nab

∑
α,β,γ

SαrS
β
rS

γ
rL

αa
r L

βa
r L

γb
r (C.27)
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Only keeping the bilinear terms with respect to the magnon operators again, we obtain

Nab

∑
α,β,γ

SαrL
αa
r SβrL

βa
r SγrL

γb
r =

NabS
2

2

[
(L113

aab + 2iL123
aab − L223

aab)a
†
ra
†
r + c.c.

+ (L113
aab + L223

aab − 3L333
aab)(a

†
rar + ara

†
r)
]
, (C.28)

where we denote

L113
aab = 2L1a

r L
3a
r L

1b
r + (L1a

r )2L3b
r ,

L223
aab = 2L2a

r L
3a
r L

2b
r + (L2a

r )2L3b
r ,

L333
aab = (L3a

r )2L3b
r ,

L123
aab = L1a

r L
2a
r L

3b
r + L3a

r L
1a
r L

2b
r + L2a

r L
3a
r L

1b
r . (C.29)

Using Eqs. (C.26) and (C.26), we can obtain the spin wave Hamiltonians for H
(1)
F .

For B0 ‖ [110], H
(1)
F is rewritten from Eq. (C.13) as

H
(1)
F =

∑
r

[
− gµBBFSr · ẑ +KzxSr,zSr,x +NxzS

2
r,xSr,z +NyzS

2
r,ySr,z

]
, (C.30)

with Kzx = gµBBFEd, Nxz = 2gµBBFE2
d , and Nyz = −gµBBFE2

d . Once the HP transfor-
mation is carried out, it is straightforward to obtain the Bogoliubov-de Gennes form of
Floquet magnon Hamiltonian as demonstrated in Section 1.1.3.



Appendix D

Modern theory of polarization

D.1 Introduction

In classical electromagnetism, the electric dipole moment of a pair of opposite charges
has a physically intuitive definition

p = Qr, (D.1)

where Q is the magnitude of electric charge carried by each particle and r is the dis-
placement vector from −Q to +Q. It seems reasonable to generalize a definition of the
macroscopic electric polarization for insulators as follows [86].

P =
1

Vcell

∫
cell

dr3 rρ(r), (D.2)

where Vcell is a unit cell volume and ρ(r) is the local (nuclear and electric) charge density.
However, it turns out that this is not a correct definition. The main problem is that the
integrand is not a cell-periodic function.

We can see this clearly in a simple picture of electric point charges, where the electric
polarization is given by

P =
e

Vcell

2∑
j=1

Zjrj, (D.3)

with Z1 = +1 and Z2 = −1. The position of each charge is depicted as r1 and r2.
Here, we are free to choose the origin such as {r1, r2} = {(0, 0, 0), (a

2
, 0, 0)} or {r1, r2} =

{(a
2
, 0, 0), (0, 0, 0)} with lattice constant a. Depending on the choice of origin, the electric

polarization becomes P = ± e
2A
x̂ with A being the area of unit cell projected to yz-plane.

Thus, the electric polarization differs by ∆P = e
A
x̂ as we shift the origin. More generally,

the origin of coordinates maybe shifted by any lattice vector R. This leads to a difference
in electric polarization

∆P =
eR

Vcell

. (D.4)

Therefore, the definition of bulk polarization needs to satisfy this multivalued property
but Eq. (D.2) does not.
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Historically, the first important step towards the modern theory of polarization was
made by Resta, who realized that only a change in the polarization is uniquely defined and
experimentally observable [82]. Soon after that, the expression for the electric polarization
was derived in terms of the Berry phase [82–86]

P =
−e

(2π)3

∫
BZ

tr[A(k)]dk, (D.5)

where A(k) = i 〈um,k|∇k|un,k〉 is the Berry connection of occupied bands [1, 7]. We
should note that the gauge transformation |ũm,k〉 = eiθk |um,k〉 leads to

P̃ =
−e

(2π)3

∫
BZ

tr[A(k)]dk +
e

(2π)3

∫
BZ

∇θkdk

=
−e

(2π)3

∫
BZ

tr[A(k)]dk +
eR

Vcell

. (D.6)

Here, we have used a general form of gauge transformation θk = βk + R · k with βk
periodic in k. We should also note that the integrand in Eq. (D.5) is cell-periodic as it
can be also written in terms of the Wannier center (see Section 1.2.2).

It should be note that an equivalent result was derived by Thouless before the modern
theory of polarization [302]. In this seminal work, he considered the quantized charge
transport by adiabatically changing a Hamiltonian over a closed loop in the parameter
space. For example, a simple example is to introduce a one-dimensional potential

V (x, t) = −V0 cos(2πx/a− λ), (D.7)

where λ is adiabatically changed from λ = 0 to λ = 2π.
For large potential V0, it is straightforward to see that this leads to a pumping of one

electron by one lattice vector. Remarkably, the quantized charge transport is expected
even if V0 is small as long as the adiabatic condition is satisfied. Noting that dPx

dt
= Jx,

the integral of the induced currents is given by∫ tf

ti

dt Jx(t) =

∫ tf

ti

dt
dPx
dλ

dλ

dt
= Px(λ = 2π)− Px(λ = 0)

= −e
∫ π

−π

dk

2π

∫ 2π

0

dλ tr
(
∂λAk(k, λ)− ∂kAλ(k, λ)

)
, (D.8)

where Ak/λ(k, λ) = 〈um,k|∂k/λ|un,k〉 for occupied states. The last equality is obtained by
Eq. (D.5) and the Stokes theorem. An important observation in Eq. (D.8) is that the
integral takes the form of the Chern number of a two-dimensional torus, so it is always
quantized to be integers. Furthermore, the topological nature of quantized charge pump-
ing is inherently related with chiral edge states in Quantum Hall states. In a finite system,
the quantized charge transport is realized by pumping states on the left (right) edge above
(below) the Fermi energy during one cycle [86]. If we replace the parameter space (k, λ)
by (kx, ky), this corresponds to chiral edge states. Thus, it demonstrates the fundamental
relationship between topological phases of matter and bulk electric polarization.
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D.2 Multiband formulation of Wannier functions

In Section 1.2.2, we have introduced Wannier functions as the Fourier transform of Bloch
functions that are smooth in the Brillouin zone. However, this is only possible for a
rare case where there is no band touching with other bands. Practically, we need to
construct Wannier functions from a group of bands that are isolated from other bands
but may have band touchings among themselves. The main issue is that degenerate
points in momentum space act as singularities in Fourier transforms, resulting in the loss
of localization property in real space.

A simple solution is to apply a unitary transformation so that a new representation
of Bloch functions |ψ̃n,k〉, not necessarily energy eigenstates, are smooth functions in the
Brillouin zone [86].

|ψ̃n,k〉 =
N∑
m=1

Umn(k) |ψn,k〉 , (D.9)

where Umn(k) is a N × N unitary matrix with N denoting the number of bands. If
this transformation is possible, we can construct well-localized Wannier functions from
|ψ̃n,k〉. It is obvious that there is no unique choice of Wannier functions. In fact, there are
infinitely many choices of a unitary matrix U ′mn(k) = Um`(k)V`n(k), given that V`n(k) is
smoothly defined in k space.

Now, the question is how to find |ψ̃n,k〉 that can smooth out Bloch functions. In order
to improve the smoothness of Bloch functions locally, we need to rotate a Bloch function
at k+ δk to be optimally aligned with itself at k. In a single band case, this implies that
〈un,k|un,k+δk〉 is real and positive. In a multiband case, the inner product between Bloch
functions Mmn(k,k + δk) = 〈um,k|un,k+δk〉 should be Hermitian and positive definite.
This is achieved by employing the singular value decomposition M(k,k + δk) = UDV †,
where U and V are unitary and D is a diagonal matrix with real and positive elements.
A new Bloch function is then given as |ũn,k+δk〉 = V U † |un,k+δk〉, and a new inner product
becomes M̃(k,k + δk) = UDU † that is Hermitian and positive definite. Usually, this
procedure works well to obtain smoothly defined Bloch functions over the entire Brillouin
zone.

While it is not possible to uniquely define Wannier functions, one of the special choices
is called the maximally localized Wannier functions. They are defined as a Wannier
function with a minimal quadratic spreading

∑N
n=1[〈wn,0|r2|wn,0〉 − |rn|2], where rn =

〈wn,0|r|wn,0〉 is a Wannier center. They are the standard choice of Wannier functions in
numerical packages following a general recipe of construction [348]. Also, they provide a
natural choice for defining the bulk multipole moments as discussed in the following.

D.3 Maximally localized Wannier functions

For a multiband case, Wannier functions related by unitary transformations are equally
valid as long as they are sufficiently localized. This implies that Wannier centers depend
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on the choice of Wannier functions. A natural question is then what relations hold
between Wannier centers and Berry phases. It is also related to the multiband formulation
of bulk polarization. For isolated single bands, there is a direct correspondence between
Wannier centers and Berry phases as shown below. From Eq. (1.43), the equality for a
one-dimensional system with lattice constant a is derived as

rn =
a

2π
φn, (D.10)

where rn and φn are the Wannier center and Berry phase, respectively.
The answer to the above question is that Berry phases correspond to Wannier centers

of maximally localized Wannier functions in one-dimensional systems [86]. To prove this,
we first show that one-dimensional maximally localized Wannier functions are eigenstates
of P occxP occ, where P occ is the projection operator to occupied states. The functional to
be minimized for maximally localized Wannier functions can be rewritten as [348]

Ω =
∑
n

[
〈wn,0|r2|wn,0〉 − |rn|2

]
= ΩI + Ω̃, (D.11)

where

ΩI =
∑
n

[
〈wn,0|r2|wn,0〉 −

∑
m,R

| 〈wm,R|r|wn,0〉 |2
]
,

Ω̃ =
∑
n

∑
(m,R)6=(n,0)

| 〈wm,R|r|wn,0〉 |2. (D.12)

It is clear that the second functional is positive definite. The first functional is simplified
by the projection operator P occ =

∑
n,R |wn,R〉 〈wn,R| and Q = 1− P occ:

ΩI =
∑
n

[
〈wn,0|r2|wn,0〉 −

∑
m,R

〈wn,0|r|wm,R〉 〈wm,R|r|wn,0〉
]

=
∑
n

∑
i=x,y,z

〈wn,0|riQri|wn,0〉 =
∑
i=x,y,z

trc[P
occriQri]

=
∑
i=x,y,z

trc[(P
occriQ)(P occriQ)†], (D.13)

where trc denotes the trace per unit cell. For the last equality, we have used (P occ)2 = P occ

and Q2 = Q. Thus, the first functional is also positive definite. More importantly, P occxQ
commutes with the translation operator Tx:

TxP
occx(1− P occ) = Tx

∑
R,n

∑
R′,m

|wn,R〉 〈wn,R|x
(

1− |wm,R′〉 〈wm,R′ |
)

=
∑
R,n

∑
R′,m

|wn,R+aêx〉 〈wn,R+aêx| (x+ a)
(

1− |wm,R′+aêx〉 〈wm,R′+aêx|
)
Tx

= P occx(1− P occ)Tx, (D.14)
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where the last equality is obtained by redefining R and R′. Since P occxQ has a well-
defined eigenvalue for Bloch functions, the first functional ΩI is gauge invariant and
independent from choice of Wannier functions. Therefore, the total spreading functional
Ω is minimized when Ω̃ = 0. This is satisfied if maximally localized Wannier functions
are eigenstates of P occxP occ so that 〈wm,R|x|wn,0〉 = xnδm,nδR,0. We should note that
P occxP occ, P occyP occ, and P occzP occ do not commute with each other so the optimal
choice is possible only in one-dimensional systems.

The remaining problem is the relationship between eigenvalues of P occxP occ, which
correspond to the Wannier centers of maximally localized Wannier functions, and Berry
phases. In the following section, we resolve this issue by constructing the Wilson loop
from P occxP occ.

D.4 Wilson loop formalism

In periodic systems, the position operator is ill-defined as it does not commute with the
translation operator. Instead, we could consider expectation values of another operator
ei

2π
L
x̂, which commutes with the translation operator. With this approach, the expectation

value of position operator was derived as [349]

〈x̂〉 =
L

2π
Im ln 〈ψ0|ei

2π
L
x̂|ψ0〉 , (D.15)

where L is the periodicity of one-dimensional systems and ψ0 is the ground state.
Using Eq. (D.15) and following Ref. [80], we solve the eigenvalue problem of P occxP occ.

In this section, we focus on a one-dimensional system that contains N unit cells with Norb

orbitals per unit cell. The periodicity is given as L = Na for lattice constant a. The
position operator is introduced in the second quantized form:

ei
2π
L
x̂ =

∑
R,α

c†R,α |0〉 e−i∆k(R+rα) 〈0| cR,α, (D.16)

where ∆k = 2π
L

and c†R,α/cR,α is the creation/annihilation operator of the orbital labeled
by α = 1, 2, .., Norb inside the unit cell labeled by R = 0, .., N − 1. The position of the
orbital with respect to the fixed origin is depicted as rα. We should note that the sign in
the exponential needs to be changed in this approach. The discrete Fourier transform is
defined as

cR,α =
1√
N

∑
k

e−ik(R+rα)ck,α,

ck,α =
1√
N

∑
R

eik(R+rα)cR,α, (D.17)

where k = m∆k for m = 0, . . . , N − 1. In order to represent the cell-periodic part of
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Bloch functions, they satisfy

cR+N,α = cR,α,

ck+G,α = eiGrαck,α, (D.18)

with G being a reciprocal lattice vector. After performing the Fourier transform, the
position operator is given by

x̂ =
∑
k,α

c†k+∆k,α
|0〉 〈0| ck,α. (D.19)

Now, we construct the projection operator. The second quantized Hamiltonian is
generally written as

H =
∑
k

c†k,αh
αβ(k)ck,β, (D.20)

which is diagonalized as

hαβ(k) =
∑
n

[un,k]
αεn,k[u

∗
n,k]

β, (D.21)

where [un,k]
α is the αth component of the eigenstate |un,k〉. The Hamiltonian is then

rewritten as
H =

∑
n,k

γ†n,kεn,kγn,k, (D.22)

with γn,k =
∑

α[u∗n,k]
αck,α representing energy eigenstates of the Bloch Hamiltonian. To

choose the periodic gauge γn,k+G = γn,k, we impose [un,k+G]α = [V (G)]αβ[un,k]
β where

[V −1(G)]αβ = e−iGrαδα,β. The projection operator for occupied states are then written as

pocc =
Nocc∑
n=1

∑
k

γ†n,k |0〉 〈0| γn,k. (D.23)

We now proceed to diagonalize the position operator projected into the subspace of
occupied bands. It is simplified as

poccei
2π
L
x̂pocc =

∑
n,k

∑
n′,k′

γ†n,k |0〉
(∑

q,α

〈0| γn,kc†q+∆q ,α
|0〉 〈0| cq,αγ†n′,k′ |0〉

)
〈0| γn′,k′

=
Nocc∑
m,n

∑
k

γ†m,k |0〉 〈um,k+∆k
|un,k〉 〈0| γn,k, (D.24)

with 〈um,k|un,q〉 =
∑

α[u∗m,k]
α[un,q]

α. It should be noted that the orthogonality relation
does not hold between Bloch functions at different k points. For the last equality, we
have used 〈0| γn,kc†q,α |0〉 = [u∗n,k]

αδk,q.
The overlapping matrix Mmn

k = 〈um,k+∆k
|un,k〉 is not unitary but becomes unitary in

the thermodynamic limit. Employing the singular value decomposition of Mk = UDV †



D.4. WILSON LOOP FORMALISM 167

with D being a positive diagonal matrix, the non-unitary part of Mk results in diagonal
elements in D that are less than 1. Hence, we replace the non-unitary overlapping matrix
Mk with a unitary matrixMk = UV †, which becomes exact in the thermodynamic limit.
To diagonalize the projected position operator, let us write the eigenvalue problem:

(poccei
2π
L
x̂pocc) |ψj〉 = Ej |ψj〉 . (D.25)

In the subspace of occupied states spanned by γn,k |0〉, the eigenstate |ψj〉 is represented
as {vk1 , . . . , vkN}j for j = 1, . . . , Nocc, where |vjki〉 is a vector spanned over occupied states
at ki = ∆k(i− 1) with i = 1, . . . , N . The matrix elements of Eq. (D.25) are then given as


0 0 ... 0 MkN

Mk1 0 ... 0 0
0 Mk2 ... 0 0
...

... ...
...

...
0 0 ... MkN−1

0




vk1

vk2

...

...
vkN



j

= Ej


vk1

vk2

...

...
vkN



j

. (D.26)

After repeated operations of poccei
2π
L
x̂pocc for N times, each component of |ψj〉 maps to

itself. The corresponding unitary operator for this closed loop is called the Wilson loop,
which is defined as

Wkf←ki =Mkf−∆k
Mkf−2∆k

. . .Mki+∆k
Mki , (D.27)

where the subscript ki/kf labels the starting/ending point of a loop. For each component
of |ψj〉, we obtain

Wk+ 2π
a
←k |vjk〉 = (Ej)N |vjk〉 ,

(D.28)

with the subscript k denoting the starting point of the Wilson loop. The eigenstate |vjk〉
depends on k but not for the eigenvalue (Ej)N . Since the Wilson loop is unitary, its
eigenvalue is a phase factor. In fact, it is equivalent to parallel transport of occupied
states, so the eigenvalues are equal to the Berry phases of occupied states:

(Ej)N = eiφ
j

. (D.29)

It is easy to check that Wilson loop is written in terms of the Berry connection in the
thermodynamic limit. Taking the limit of ∆k → 0, the overlapping matrix is expanded
as

Mmn
k = 〈um,k+∆k

|un,k〉 = 〈um,k|un,k〉+ ∆k 〈∂kum,k|un,k〉
= δmn −∆k 〈um,k|∂kun,k〉 , (D.30)
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where we have used ∂k 〈um,k|un,k〉 = 0. Noting that Amn(k) = i 〈um,k|∂kun,k〉 is the Berry
connection, the Wilson loop is expressed as

Wk+ 2π
a
←k = lim

N→∞

N∏
n=1

Mk+ 2π
a
−n∆k

= lim
N→∞

N∏
n=1

[
I + i∆kA(k +

2π

a
− n∆k)

]
= exp

[
i

∫ k+ 2π
a

k

A(k)dk
]
. (D.31)

From Eq. (D.29), there are N possible solutions for the eigenvalue of poccei
2π
L
x̂pocc.

Ej,R = exp
(
i
φj + 2πR

N

)
, (D.32)

for R = 0, . . . , N − 1. The eigenstates of poccei
2π
L
x̂pocc is then obtained as

|ψjR〉 =
1√
N

Nocc∑
n=1

∑
k

[vjk]
ne−ikRγ†n,k |0〉 . (D.33)

From Section D.3, we know that |ψjR〉 are maximally localized Wannier functions. As
discussed in Section 1.2.2, each eigenvalue of Eq. (D.32) represents the center of Wan-
nier function that is exponentially localized in each unit cell labeled by R. Hence, the
expectation value of poccei

2π
L
x̂pocc is also given as

〈ψj0|ei
2π
L
x̂|ψj0〉 = ei

2π
L
νj , (D.34)

with νj denoting the Wannier center. Finally, we derive the relation between the Wannier
center of maximally localized Wannier functions and Berry phases from Eqs. (D.32) and
(D.34).

νj =
a

2π
φj. (D.35)

Using Eq. (D.35), the expectation value of position operator in one-dimensional sys-
tems is given by

r̃ =
∑
j

νj =
a

2π

∫ k+ 2π
a

k

tr[A(k)]dk. (D.36)

For higher-dimensional systems, the expectation value of the position operator in the x-
axis is defined equivalently by treating Bloch wave functions as one-dimensional systems
with parameters (ky, kz) [79, 80]:

r̃x =
a2

(2π)2

∫
dkydkz

∑
j

νjx(ky, kz) =
a3

(2π)3

∫
BZ

dk3tr[Ax(k)], (D.37)

where νjx(ky, kz) is the eigenvalue of the Wilson loop Wx,k = W(kx+ 2π
a
,ky ,kz)←(kx,ky ,kz).

Hence, we obtain Eq. (1.44).



Appendix E

Calculation of magnonic multipole
moment

E.1 Wilson loop in magnonic systems

In this section, we introduce the Wilson loop formalism adapted for magnonic wave
functions. In parallel with the definition of Wilson loops in electronic systems discussed
in Appendix D.3, the Wilson loop in magnonic systems is defined as the parallel transport
of the lowest energy magnon eigenstates. Only the difference from electronic systems is
that we need to use the paraunitary inner product of Eq. (5.2) whenever the inner product
of magnonic wave functions are computed. Throughout Appendix E, we take the lattice
constant to be unity. The content of Appendix E was published in Ref. [212].

Using the orthogonal basis for magnon bands defined in Section 5.1.1, we introduce
the Wilson loop Wx,k of the lowest M magnon bands in two-dimensional systems as

Wx,(kx,ky) =M(kx+(Nk−1)∆k,ky)M(kx+(Nk−2)∆k,ky) . . .M(kx,ky) , (E.1)

where ∆k = 2π/Nk and M(kx,ky) is the unitary part of the overlapping matrix

[M(kx,ky)]
mn = 〈um(∆k+kx,ky)|un(kx,ky)〉para

, (E.2)

with the band index m,n = 1, . . . ,M and the subscript indicating the paraunitary inner
product of Eq. (5.2). We take the periodic gauge across the Brillouin zone, i.e. |unk+G〉 =
|unk〉 with G denoting a reciprocal lattice vector. The singular value decomposition is used
for extracting the unitary partM(kx,ky), which becomes exact in the thermodynamic limit.
Here, we should note that the paraunitary inner product is necessary to ensure that the
Wilson loop becomes unitary in the thermodynamic limit. The eigenvalue of a Wilson
loop is given as

Wx,k |νjx,k〉 = ei2πν
j
x(ky) |νjx,k〉 , (E.3)

where j = 1, . . . ,M and νjx(ky) are the Wannier centers. We should note that the eigen-
states |νjx,k〉 depend on both kx and ky although the Wannier centers νjx(ky) only depend
on ky.

169
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Treating ky as a parameter, one-dimensional Wannier functions along x-axis are given
as

|Ψj
Rx,ky
〉 =

1√
Nk

M∑
n=1

∑
kx

[νjx,k]ne−ikxRxTkvn , (E.4)

where [νjx,k]n is the nth element of |νjx,k〉 and the Wannier function |Ψj
Rx,ky
〉 is exponentially

localized along x-axis with a unit cell labeled by Rx ∈ {0, 1, 2, . . .}. Since the Wannier
functions in Eq. (E.4) are labeled by a real space index Rx and a momentum space index
ky, they are called hybrid Wannier functions. They form a complete orthogonal set, i.e.,

〈Ψj
Rx,ky
|Ψj′

R′x,k
′
y
〉
para

= δRx,R′xδky ,k′yδj,j′ . (E.5)

Since the Wannier center νjx(ky) is the expectation value of the position operator x̂ (see
Section 1.2.2), we have

νjx(ky) = 〈Ψj
0,ky
| x̂ |Ψj

0,ky
〉
para

mod 1 . (E.6)

In order to ensure that the Wannier centers obtained using Eq. (E.3) and Eq. (E.6) are
consistent, the origin for the eigenvalues of x̂ must coincide with the origin defined via
the Wilson loop, which corresponds to the site within the magnetic unit cell where it has
purely real elements for all eigenstates.

In electronic systems, the Wilson loop is written in terms of the Berry connection in
the thermodynamic limit (see Eq. (D.31)). The same relationship also holds in magnonic
systems. In the thermodynamic limit, we have

[Mk]mn = ξvTm(T †k + ∆k∂kxT
†
k)ΣTkvn

= δmn −∆kξv
T
mT
†
kΣ∂kxTkvn

= δmn + i∆kAmnx (k) , (E.7)

where Amnx (k) is the Berry connection for magnons given as Eq. (5.3). From Eq. (E.7),
the Wilson loop is derived in the thermodynamic limit as

Wx,k = lim
Nk→∞

Nk−1∏
`=0

[I + i∆kAx(kx + `∆k, ky)]

= exp

[
i

∫ 2π

0

Ax(k) dkx

]
. (E.8)

Analogously to Eq. (1.45), the magnonic polarization along the x-axis is given by the
summation of Wannier centers:

px =
1

Nk

∑
ky

M∑
j=1

νjx(ky) mod 1 . (E.9)
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Similarly, the total bulk polarization along the y-axis is given by

py =
1

Nk

∑
kx

M∑
j=1

νjy(kx) mod 1 . (E.10)

In the continuum limit, we obtain Eqs. (5.11) and (5.12).

E.2 Nested Wilson loop in magnonic systems

In this section, we introduce the nested Wilson loop for magnonic systems. Given a
gapped Wannier spectrum νx(ky) that contains M bands, we define a subspace of Wannier
bands as ν+

x ∈ [0, 1
2
) and ν−x ∈ [−1

2
, 0). To construct the nested Wilson loop, we need to

introduce a Wannier band basis:

|ωjx,k〉 =
M∑
n=1

[νjx,k]nTkvn , (E.11)

where j = 1, . . . ,MW with MW = M/2 is the number of bands that belong to the Wannier
sector ν±x and [νjx,k]n is the n-th matrix element of eigenstates of the Wilson loop defined

in Eq. (E.3). Similarly to the Wilson loop, the nested Wilson loop W̃ ν±x
y,k for magnonic

systems is defined as

[W̃ ν±x
y,k ]j,j

′
= 〈ωjx,(kx,ky+2π)|ωrx,(kx,ky+(Nk−1)∆k)〉para

× 〈ωrx,(kx,ky+(Nk−1)∆k)| . . . |ωtx,(kx,ky+∆k)〉para

× 〈ωtx,(kx,ky+∆k)|ωj
′

x,(kx,ky)〉para
, (E.12)

where the paraunitary matrix is inserted as defined in Eq. (5.2) to ensure the orthogonality
relations in the Wannier band basis. Diagonalizing the nested Wilson loop, we obtain

W̃ ν±x
y,k |νν

±
x ,p
y,k 〉 = ei2πν

ν±x ,p
y (kx) |νν±x ,py,k 〉 , (E.13)

where νν
±
x ,p
y is the Wannier center along the y axis evaluated in the Wannier sector ν±x and

p = 1, . . . ,MW . Alternatively, the eigenvalues of the nested Wilson loop can be written
as

νν
±
x ,p
y (kx) = 〈Φν±x ,p

0,kx
| ŷ |Φν±x ,p

0,kx
〉
para

mod 1 , (E.14)

with

|Φν±x ,p
Ry ,kx
〉 =

1√
Nk

∑
ky

MW∑
j=1

[νν
±
x ,p
y,k ]je−ikyRy |ωjx,(kx,ky)〉 , (E.15)
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where Ry ∈ {0, 1, 2, . . .} labels the unit cells along the y-axis and [νν
±
x ,p
y,k ]j is the j-th

element of |νν±x ,py,k 〉. The total Wannier sector polarization is

pν
±
x
y =

1

Nk

∑
kx

MW∑
p=1

νν
±
x ,p
y (kx) mod 1 , (E.16)

and similarly

pν
±
y
x =

1

Nk

∑
ky

MW∑
p=1

νν
±
y ,p
x (ky) mod 1 . (E.17)

In the continuum limit, we obtain Eqs. (5.15) and (5.16).

E.3 Edge polarization in strip geometry

In this section, we define the magnonic polarization in a strip geometry. For example, we
consider a system with boundaries that is periodic along x-axis and open along y-axis.
Treating it as a one-dimensional periodic system, the Wilson loop along x-axis is given
by

Wx,kx =Mkx+(Nk−1)∆k
Mkx+(Nk−2)∆k

. . .Mkx , (E.18)

where ∆k = 2π/Nk and

[Mkx ]
mn = 〈um∆k+kx|unkx〉para

, (E.19)

with m,n = 1, . . . ,M ′. Here, the number of magnon bands is typically given by M ′ =
M × Ny where Ny is the number of unit cells in the y-axis and M is the number of the
bulk magnon bands. After diagonalizing the Wilson loop, we have

Wx,kx |νjx,kx〉 = ei2πν
j
x |νjx,kx〉 , (E.20)

where j = 1, . . .M ′ and νjx are the Wannier centers. The hybrid Wannier functions along
the x-axis are then given by

|Ψj
Rx
〉 =

1√
Nk

M ′∑
n=1

∑
kx

[νjx,kx ]
ne−ikxRxTkxvn , (E.21)

where Rx ∈ {0, 1, 2, . . .} is the lattice vector labeling the unit cells along the x-axis and
[νjx,kx ]

n is the n-th element of |νjx,kx〉. The magnonic polarization within each unit cell is
given by

px(Ry) =
M ′∑
j=1

νjx ρ
j(Ry) , (E.22)

where ρj(Ry) is the probability density of the hybrid Wannier function within the unit
cell labeled by Ry ∈ {0, 1, . . . , Ny − 1}.
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E.4 Symmetry constraints

In this section, we discuss the symmetry constraint and quantization of a magnonic
quadrupole moment in the presence of C2xT , C2yT , and C2z, where C2i depicts the two-
fold rotation about i-axis for i = x, y, z and T is the time-reversal symmetry. Following
Ref. [80], we consider the symmetry operation C2yT on the Wilson loop. Two degenerate
states at k transformed by C2yT are related by the unitary sewing matrix

Bmn
C2yT ,k = 〈um(kx,−ky)| Ĉ2yK |un(kx,ky)〉para

= ξvTmT
†
(kx,−ky)Ĉ2yKΣT(kx,ky)vn , (E.23)

where K is the complex conjugation operator and Ĉ2y is the unitary operator represen-

tation of C2y. From Ĉ2yK |un(kx,ky)〉 = |um(kx,−ky)〉Bmn
C2yT ,k, we have

|un∗(kx,ky)〉 = Ĉ†2y |um(kx,−ky)〉Bmn
C2yT ,k . (E.24)

Taking the complex conjugate of both sides and noting that [Σ, Ĉ2y] = [Σ, K] = 0, the
symmetry transformation of a overlapping matrix M(kx,ky) is obtained as

Mmn
(kx,ky) = 〈um(kx+∆k,ky)|un(kx,ky)〉para

= [BT
C2yT ,(kx+∆k,ky) 〈u∗(kx+∆k,−ky)|Ĉ∗2yĈT

2y|u∗(kx,−ky)〉para
B∗C2yT ,(kx,ky)]

mn . (E.25)

Since BC2yT ,k is unitary, the symmetry transformation of the Wilson loop is given by

Wx,(kx,ky) = BT
C2yT ,(kx,ky)W

∗
x,(kx,−ky)B

∗
C2yT ,(kx,ky) . (E.26)

Given Wx,k |νjk〉 = ei2πν
j
x(ky) |νjk〉, we obtain

Wx,kB
T
C2yT ,k |ν

j
k〉 = BT

C2yT ,kW
∗
x,(kx,−ky) |νjk〉

= e−i2πν
j
x(−ky)BT

C2yT ,k |ν
j
k〉 . (E.27)

This implies that BT
C2yT ,k |ν

j
k〉 is also an eigenstate of the Wilson loop. The eigenvalues

of symmetry related eigenstates are given by

νjx(ky)
C2yT
= −νjx(−ky) mod 1 . (E.28)

Likewise, the Wannier center in the y axis is constrained by

νjy(kx)
C2xT= −νjy(−kx) mod 1 . (E.29)

From Eqs. (E.28) and (E.29), Wannier centers of C2xT and C2yT symmetric systems are
guaranteed to be νx/y = 0, 1

2
or a pair of eigenvalues satisfying ν1

x/y(ky/x) = −ν2
x/y(−ky/x).
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We should note that the same result is obtained by C2z symmetry [80] and by replac-
ing rotational symmetries C2x and C2y with reflection symmetries Mx and My, which
conserves spin textures of Néel skyrmions. The symmetry constraints also leads to the
quantization of px and py to be either 0 or 1

2
.

Similarly, the symmetry related eigenvalues of the nested Wilson loop are given as

ννy ,jx (ky)
C2yT
= −ννy ,jx (−ky) mod 1 , (E.30)

ννx,jy (kx)
C2xT= −ννx,jy (−kx) mod 1 . (E.31)

Hence, the Wannier sector polarization is quantized to be 0 or 1
2
. In addition, the C2z

symmetry relates the Wannier centers from different Wannier sectors via

ννy ,jx (ky)
C2z= −ν−νy ,jx (−ky) mod 1 , (E.32)

ννx,jy (kx)
C2z= −ν−νx,jy (−kx) mod 1 . (E.33)

From the above two equations, the Wannier sector polarizations of different Wannier
sectors are identified as

pνyx = −p−νyx mod 1 , (E.34)

pνxy = −p−νxy mod 1 . (E.35)

Finally, the bulk quadrupole moment of Eq. (5.19) is given by

qxy = pν
+
x
y pν

+
y
x + pν

−
x
y pν

−
y
x = 2pν

−
x
y pν

−
y
x

= 0 or
1

2
mod 1 . (E.36)
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Im, A. P. Petrović, P. Ho, K. H. Khoo, M. Tran, C. K. Gan, F. Ernult, and
C. Panagopoulos, Nat. Mater. 16, 898 (2017).

[151] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Ku-
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T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch,
Science 330, 1648 (2010).

[186] X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui,
Y. Onose, and Y. Tokura, Nat. Commun. 3, 988 (2012).

[187] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4, 1463 (2013).

[188] M. Garst, J. Waizner, and D. Grundler, J. Phys. D 50, 293002 (2017).

[189] Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 109,
037603 (2012).
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[280] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys Status Solidi Rapid Res
Lett 7, 101 (2013).

[281] S. A. Owerre, Ann Phys (N Y) 399, 93 (2018).

[282] S. A. Owerre, Sci. Rep. 8, 4431 (2018).

[283] K. Nakata, S. K. Kim, and S. Takayoshi, Phys. Rev. B 100, 014421 (2019).

[284] M. Elyasi, K. Sato, and G. E. W. Bauer, Phys. Rev. B 99, 134402 (2019).

[285] A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039 (2015).

[286] T. L. Gilbert, IEEE Transactions on Magnetics 40, 3443 (2004), conference Name:
IEEE Transactions on Magnetics.

[287] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

[288] H. Fujita and M. Sato, Phys. Rev. B 95, 054421 (2017).

[289] A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).

[290] W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, Phys. Rev. B 92, 020403
(2015).
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