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Abstract

In this doctoral dissertation, we study the feasibility of Kitaev quantum spin liquid
in two types of systems: ultracold molecular systems and high-spin systems.

We adopt pseudo-fermion functional renormalization group (PFFRG) as a nu-
merical method to address these studies. The method can handle systems with rel-
atively large system sizes, and the computational cost is independent of the range
of interactions. In addition, an extension to the general spin length S was proposed
in 2017, and this extended method can be used to calculate spin susceptibilities in
the model with arbitrary S without changing the computational cost from the case
of S = 1/2. These features are suitable for the two studies mentioned above.

Our main results for the two studies mentioned above are presented in chapter
4 and 5. In chapter 4, we discuss the feasibility of the Kitaev quantum spin liquid in
ultracold polar molecular systems trapped in the optical lattice. A microwave-based
realization of Kitaev-type interactions in this system was proposed in 2013 [S. R.
Manmana et al., Phys. Rev. B 87, 081106 (2013), A. V. Gorshkov, K. R. Hazzard, and
A. M. Rey, Mol. Phys. 111, 1908 (2013)]. Based on these proposals, we define dipolar
Kitaev model which has angle-dependent long-range spin interactions. We perform
PFFRG calculation to reveal the phase diagram of this model. The results show that
ferromagnetic (FM) order and zigzag antiferromagnetic (AFM) order are realized in
the FM and AFM dipolar Kitaev model, respectively, for all anisotropy parameters.
In order to investigate the reason why the quantum spin liquid state is not realized
in the dipolar Kitaev model, we investigate the ordering behavior while increasing
the range of the interaction from the nearest-neighbor case. As a result, the behavior
of the susceptibility shows that the Kitaev quantum spin liquid collapses quickly as
the range of the interaction increases. These results suggest that the Kitaev quantum
spin liquid is fragile against long-range interactions and cannot be realized in the
ultracold molecular systems at least based on the proposals above. This is the first
time that the feasibility of the Kitaev quantum spin liquid has been calculated on the
basis of the proposal mentioned above.

In chapter 5, we discuss the feasibility of the Kitaev quantum spin liquid in high-
spin candidate materials. We regard the Kitaev-Heisenberg model as a minimal
model of the candidate materials, and calculate the phase diagram of the spin-S
Kitaev-Heisenberg model. We perform calculation of the susceptibility of the model
with § =1/2-5/2 and S = 50 in all parameter region. The obtained phase diagrams
of the Kitaev- Heisenberg model for S = 1/2, S = 1, and S = 50 are in general
good agreement with the previous studies on the S = 1/2, S = 1, and classical
Kitaev-Heisenberg model by other numerical methods, respectively. From the re-
sults of these calculations, we have found that the upper limit of the spin length of
the candidate material allowed for the realization of Kitaev quantum spin liquid is
S = 3/2. The phase diagram calculation of the Kitaev-Heisenberg model with a sys-
tematic change of spin S, as we have done here, has not been performed before. Our
results provide a guideline for the recent intensive search for candidate materials of
S > 1/2 Kitaev quantum spin liquid.
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Chapter 1

Introduction

1.1 Quantum Spin Liquid

Magnetism has attracted people as well as physicists, like "lodestones”, ever since
the discovery of lodestones in ancient world. Magnetic materials have been used
in various tools and techniques. In spite of its long history from the discovery, the
origin of magnetism began to be clarified in early 20th century when quantum me-
chanics established. That is, magnetism is essentially a quantum mechanical phe-
nomenon. Since the microscopic origin of magnetic moments has been revealed to
be electron spins, we have been interested in what kind of magnetism they exhibit as
a result of their interactions in materials. In the study of magnetism, theoretical and
experimental researches have concerted, and they are still expanding its frontier.

In that long line of research, one of the topics that still have been studied inten-
sively is quantum spin liquid. Quantum spin liquid [1-9] is a nontrivial ground state
without symmetry breaking in which the transition to the magnetic ordered states
is precluded by sizable quantum fluctuations and strong frustration in the quan-
tum magnets. In quantum spin liquids, there are fractional excitations associated
with topological order, and intensive research has been carried out not only purely
scientifically, but also from the application side, because the robust topological quan-
tum computing against disturbance can be performed by manipulating them. How-
ever, its existence had not been rigorously proved since it was proposed in the early
1970s [10, 11]. In 1973, P. W. Anderson suggested the RVB (resonating valence bond)
states [10] and this state is one of the quantum spin liquid states. Since its proposal,
an enormous amount of studies have been conducted to prove the existence of the
quantum spin liquid ground states in materials with strong frustration. In general,
exact results are not obtained theoretically in the presence of frustration, especially
in 2 or 3 dimension. In numerical calculations, it is difficult to draw a clear conclu-
sion because the results vary depending on the method and calculation conditions,
as it is necessary to deal with small energy scales due to competing interactions.
Quantum Monte Carlo methods, which provide reliable results, often suffer from
the sign problem in the highly frustrated models. Even in experiments, to show the
realization of the spin liquid state, we have to show that no order exists, which is the
so-called "devil’s proof," and it is impossible to investigate all possibilities.

Over the past decade the study of quantum spin liquids has developed rapidly,
inspired by 2 revolutionary breakthroughs [12]. The first one is the proposal of the
Kitaev model in 2006 [13]. This model is exactly solvable and we can show that its
ground state is a quantum spin liquid. The other is a proposal in 2009 to realize
the Kitaev model in real materials [14]. The magnetic interaction proposed in Ki-
taev model is expected to be realized in the Mott insulators with strong spin-orbit
coupling, and many experiments have been carried out on iridium and ruthenium
compounds. From these two proposals, theoretical and experimental studies have
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collaborated to create a major boom in research related to Kitaev quantum spin lig-
uids. In addition, by measuring the thermal Hall coefficient in 2018, we obtained
evidence for the existence of Majorana fermions predicted by the Kitaev model in
one of the candidate materials x-RuCls [15, 16]. Kitaev quantum spin liquid is now
one of major topics in condensed matter physics [12, 17-23] !

1.2 Kitaev Quantum Spin Liquid

In this section, we briefly review 2 proposals mentioned in the previous section: the
Kitaev model [13] and the Jackeli-Khaliullin mechanism [14].

Kitaev Model

At first we introduce Kitaev model [13] 2. It is the quantum spin model with S = 1/2
on the honeycomb lattice. Its Hamiltonian is

H=- ) ) ];tszysjy
H=EY2 (i)
= —Jx L SiS{ Iy L SiS] —J: L SIS}, (1.1)
<i/j>z

(i)« {i)y

where S!' and ], (1 = x,y,z) denotes respectively operators of the y-component of
S = 1/2 quantum spin at site i and the coupling constant of the exchange interac-
tion on u-bonds (see Fig. 1.1). The summation Z(i,j)V runs over all pairs of sites on
p-bonds. This model is shown in Fig. 1.1. x, y, and z-bonds are colored blue, green
and red, respectively. In the Kitaev model, the quantum spins of different compo-
nents of each of the three types of bonds interact in the Ising-type interaction, which
results in the model being highly frustrated. The sites belonging to the 2 sublattices
of the honeycomb lattice are represented by black and white circles, respectively.
Hereafter, we use the unit of # = kg = a = 1 in this paper. f, kg, and a repre-
sent the reduced Planck constant, the Boltzmann constant, and the lattice constant
of the honeycomb lattice, respectively. In general, we cannot solve frustrated quan-
tum many-body systems in two or higher dimensions. However, the Kitaev model
can be solved exceptionally rigorously, because it has a macroscopic number of the
conserved quantities. We prove it below. The Hamiltonian in Eq. [13] is rewritten by
the Pauli matrices o' as

Jx vx Jz z 2
W=l Dot Doty Lo 12

=11l (1.3)

n the published version [24] of Ref. [17], the chapter on the Kitaev model has been deleted.

2The name "Kitaev model" may refer to the 1 dimensional spinless fermion model for topologi-
cal superconductivity [25] also called Kitaev chain and the model with macroscopically degenerate
topologically protected ground states for quantum computation [26] also called toric code model, in
addition to the model introduced here, depending on the context.
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FIGURE 1.1: Kitaev model. The x, y, and z-bonds are colored blue,
green and red, respectively. The black and write circles denote sites
belonging to the two sublattices of the honeycomb lattice.

FIGURE 1.2: A plaquette of the honeycomb lattice and a Z;, flux de-
fined on the plaquette.

where i denotes the label of the bond not included in the plaquette p among the
three bonds connected to the site i. Here p denotes plaquette index. We use the
relation of the Pauli matrices and we can rewrite the first line as the second line. As
a example, we focus on the plaquette p shown in Fig. 1.2. This plaquette is composed
of sites 1-6 and bonds connecting them. We define the flux on this plaquette as

W, = 0i0303 030303 050808 0 op oy
= 07030503 0L 0. (1.4)
These W, satisfy the relations:
(Wp)? =1, (1.5)
[H/ WP] = O, (16)
[(Wp, Wyl =0 (p # 1), (1.7)

for arbitrary plaquette p. Therefore, these fluxes are conserved quantities and Z,
fluxes which have the values W, = +1 or —1. The Hamiltonian and aribitrary W,
can be diagonalized simultaneously. We can divide Hilbert space into subspaces



4 Chapter 1. Introduction

specified by a set of Z, fluxes {W, }. We introduce the Majorana fermion * operators
to decompose the spin operators into flux degrees of freedom and others:

ol =ibl'c;, (1.8)

where i denote the imaginary unit /—1. b!" and c; are Majorana fermion operators
and these satisfy the anti-commutation relations

{Cl’, C]} = 251']', (19)
{b], b1} = 250, (1.10)
{ci, b7} =0. (1.11)

The Hamiltonian is rewritten using these operators as
H = i Z Juiuijcicy, (1.12)
(i)
with the operators defined on the bonds
U = ibj"‘fb;“f . (1.13)
Here (i,j) and p;; represents the pairs of the nearest-neighbor sites and the spin

component corresponding to the bond connecting (i, j). These bond operators u;;
also satisfy the relation

(uij)* =1, (1.14)
[(H,u;] =0, (1.15)
[uij, un] =0 (pij # pr)- (1.16)

Thereby, u;; = +1 and these are Z, gauge variables. The Z; fluxes defined in
Eq. (1.3) are rewritten by Eq. (1.8) as

Wy =[] wui. (1.17)
(ij)ep

The Z, fluxes are composed of the Z, gauge variables u;;. Thereby, bl Majorana
fermions constitute the Z, gauge field defined on the bond, on the other hand c;
represents itinerant Majorana fermions. Quantum spins are fractionalized into Z,
fluxes and itinerant Majorana fermions. If we fix the distribution of the gauge fields,
the Hamiltonian Eq. (1.12) becomes quadratic in Majorana operators c;.

Thus we need to find a flux configuration {W,} that minimizes energy to cal-
culate the ground state energy. According to the Lieb’s theorem [28], it is proved
that the expectation value of the Hamiltonian is minimized in flux-free condition
W, = +1 (for all p), if at least two of ]y, ], and ], are the same. In the original paper,
A. Kitaev performed numerical calculation to obtain the energy in various flux dis-
tribution and found that. The extra degrees of freedom of the enlarged Hilbert space

$Majorana fermions are discovered originally as real solutions of the Dirac equation by E. Majorana
in 1937 [27].
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Jy + Jy + J, = const.

B/ Ay

Iz

FIGURE 1.3: The ground state phase diagram in the plane Jx + J, +
J. = const. A phases (Ay, Ay, and A;) are gapped and B phase is
gapless.

by the introduction of the Majorana fermion operators correspond to Z, gauge de-
grees of freedom. Different {u;;} distributions are transformed by the gauge trans-
formations D; = b} biy b7c; which keep the Hamiltonian and the flux distributions in-
variant. The Hamiltonian and the gauge transformation operators are commutative
in physical sectors of the enlarged Hilbert space. Hence, we can use a convenient set
{u;j} for a given flux configuration {W, } when calculating the energy. Now we can
set u;; = +1 for all bonds and calculate ground state energy by diagonalization of
the quadratic Hamiltonian. The resulting ground state phase diagram is shown in
Fig. 1.3. We show the phase diagram in the plane with J; + ], + ], = const. There
are 4 phases Ay, Ay, Az, and B phases. Three A phases (Ay, Ay, and A;) are essen-
tially the same phase and in these phases Majorana fermions c; have excitation gap.
On the other hand, the itinerant Majorana fermions have continuous excitation spec-
trum in B phase. Note that in both phases spin excitations which flip Z, fluxes are
gapped. The spin-spin correlations in the ground state were explicitly calculated in
Ref. [29], and it was proved that the spin correlations are only between the nearest-
neighboring sites. In A phases, fractional excitations are Abelian anyons. In the limit
where one of |, ], or ], is large, the toric code model [26] is obtained as an effective
Hamiltonian by fourth-order perturbation. In B phase, if a gap opens in the excita-
tion spectrum of the fractional excitations, they become non-Abelian anyons. On of
the way to open gap is to apply the magnetic field. We consider the magnetic field
in (1,1, 1)-direction and perturbation

H' ==Y (heSF +hyS! +h.S5). (1.18)

1

The additional term obtained by the third-order perturbation opens gap in the exci-
tation spectrum of the Majorana fermions. As the result, the Chern number becomes
£1 in B phase although the Chern number is zero in A phases. Therefore, these
gapped Majorana fermions indicate thermal Hall effect and its quantized Hall coef-
ficient should be half the value of normal fermions. Measurements of the thermal
Hall coefficient were carried out in 2018 and this half coefficient was actually ob-
tained [15, 16]. This is direct evidence of Majorana fermions in Kitaev magnets.
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) O

Ir Ir

FIGURE 1.4: (a) IrOg octahedron constituting NaIrO3 or LizIrO3 and
(b) edge sharing two octahedra. Iridium ions and oxygen ions are
represented by light green circles and small light blue circles.

As we have discussed, the Kitaev model is exactly solvable, and its ground state
is a quantum spin liquid in which quantum spins are fractionalized into fluxes and
Majorana fermions. Numerical methods based on the Majorana fermion represen-
tation of the Kitaev model have been developed, and the physics of the Majorana
fermions in the Kitaev model has been clarified, especially in the last decade [12].

Jackeli-Khaliullin Mechamism

Next, we review the Jackeli-Khaliullin mechanism briefly [14]. In 2009, G. Jackeli
and G. Khaliullin consider an effective Hamiltonian for Mott-Hubbard systems with
large crystalline electric field (CEF) and strong spin-orbit coupling (SOC). They as-
sumed substances represented by the chemical formula A, BO3, where A denotes al-
kali and B is transition metal atoms such as Ir or Rh whose ion has a d°-configuration.
In particular, here we consider NaIrO3; and LixIrO3 4 which are Kitaev magnets as
mentioned in Chap. 5. Although Jackeli and Khaliullin considered strong corre-
lation limit, A. Shitade and his collaborators discussed weak correlation limit and
proposed the quantum spin Hall effects in Na,IrOs [32].

In these materials, the oxygen ions coordinate around the iridium ions to form
IrOg octahedra as shown in Fig. 1.4 (a). These octahedra share edges to form a hon-
eycomb structure as shown in Fig. 1.4 (b). Due to the cubic CEF (crystalline electric
field) caused by oxygen, the d-orbitals of Ir ions are split into ¢, and e, orbitals, and
the five d electrons constitute a low-spin state in which they occupy the 5, orbitals
because of large energy splitting. Due to SOC (spin-orbit coupling), the spin angular
momentum and the effective orbital angular momentum of the t2g orbital [ = —1
are coupled and it cause further level splitting into the states with jo¢ = 3/2 and
Jeff = 1/2, where joi denotes the effective total angular momentum. The schematic
diagram of these level splits are shown in Fig. 1.5. As shown in Fig. 1.5, four of the
five electrons in d-orbitals occupy all of the low energy jo = 3/2 states that are
quadruply degenerate, and the remaining one takes the j.¢ = 1/2 state. The pair of
two states with jos = 1/2 is a Kramers doublet and we can regard these states as
pseudo-spins.

The strong Coulomb interaction acting on these states results in a spin-orbit Mott
insulator and the effective Hamiltonian describes magnetic interactions between
jeff = 1/2 pseudo-spins. In the multi-orbital Hubbard model consisting of these

“More precisely, what we have in mind here is a-Li;IrO3 with a quasi-two-dimensional honeycomb
structure, whereas -LipIrO3 and y-LiyIrO3 have a three-dimensional hyper honeycomb [30] and stripy
honeycomb structure [31], respectively.
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g
A
Energy =
A
d5 K ~3eV
——————— Jet =1/2 U .
——— e} ey e =1/
L
% SOC  jor =3/2 | =400 meV
...... ! : N4

FIGURE 1.5: Relative energy levels and level splitting in NayIrO3 or

LipIrO3. The horizontal thick black lines represent energy levels. The

yellow circles and the red arrows denote electrons and its spins. The
magnitude of the interactions was based on the values in Ref. [19].

Interference between 2 d —p —d hopping processes

FIGURE 1.6: Schematic picuture representing two d-p-d hopping pro-

cesses. The arrangement of the ions is the same as in Fig. 1.4 (b). d -

and d,y-orbitals of Ir ions are colored in blue and red, respectively.

These two processes interfere and realize Kitaev-type magnetic inter-
action as a result.

orbitals, the Kitaev-type interaction is obtained by considering the limit of strong
Coulomb repulsion in Ir ions and deriving the effective model by incorporating the
electron hoppings between Ir ions as perturbations. Here, we consider the hop-
pings of electrons in Ir ions in two IrOg octahedra that share an edge as shown in
Fig. 1.4 (b) in the perturbation process. The important contributions are the hop-
ping processes between electrons in the d-orbitals of neighboring Ir ions through the
p-orbitals of oxygens at shared edges. As an example, consider the configuration
shown in Fig. 1.6. In the figure, d,.- and d,-orbitals are colored in blue and red,
respectively. In this case, there are two different hopping processes as shown in (a)
dyz-pz-dzx and (b) d x-p.-d,, of Fig. 1.6, and these interfere quantum mechanically.
As a result of this interference, the Heisenberg-type interaction, which is isotropic in
spin space, is cancelled out, and the Kitaev-type interaction is realized.

This is the essence of the Jackeli-Khaliullin mechanism. Transition metal com-
pounds in the 4d and 54 electron systems are thought to satisfy the conditions for
this mechanism to be realized. Inspired by this point of view, a number of candidate
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materials for the Kitaev model have been synthesized and their properties have been
investigated intensively by various measurements [18-23].

1.3 Aim of This Dissertation

The observation of evidence of Majorana fermionic excitations in candidate materi-
als, as predicted by Kitaev, does not mean the end of research on Kitaev quantum
spin liquids. Through the study on it, many unanswered questions have emerged
and connections with other fields have expanded. Kitaev himself aims to realize
fault-tolerant quantum computation by anyons, and has proposed the Kitaev model
as a model in which required anyons appear. This can be seen in the introduction of
the original paper Ref. [13] in which the Kitaev model was proposed, and in the pre-
decessor paper Ref. [26] in which the toric code was proposed. There is still a long
way to go to realize the application of non-Abelian anyons in the Kitaev matters to
fault-tolerant topological quantum computation.

As a stepping stone to such an application, it is first necessary to study (i) fur-
ther exploration and understanding of the candidate materials and (ii) proposal of
methods to control the Majorana fermions in Kitaev quantum spin liquid states. In
addition, these issues are not independent, but closely related. In this doctoral dis-
sertation, the research will focus on (i) above.

Due to the proposal of the Jackeli-Khaliullin mechanism, which was briefly re-
viewed in the previous section, many candidate materials have been proposed and
experiments have been performed. However, in real materials, there are magnetic
interactions that are not included in the Kitaev model, such as the Heisenberg inter-
action, which is isotropic in spin space, the spin-diagonal interaction, the spin-spin
interaction beyond the nearest neighbor, and so on, due to effects and processes not
considered in the above discussion, for example distortion of IrOg octahedra and
direct hoppings between d-orbitals in transition metals. Phase transitions to mag-
netic orders have been observed at low temperatures in almost all candidates except
H;Lilr,Og [33]. a-RuCls, a candidate material for which the thermal Hall effect was
measured, also undergoes zigzag antiferromagnetic ordering at low temperatures.
Therefore, the Hall coefficient was measured in the region where the ordering was
suppressed by applying magnetic field. In addition, impurities and lattice defects
inevitably appear in solids, and these induce spin-glass states.

Therefore, we investigate the feasibility of Kitaev spin liquids in ultracold atomic
systems. In these systems, the strength and type of interaction can be controlled by
irradiating a laser or other means, so that the desired interaction can be designed.
In addition, there are no impurities or lattice defects that inevitably appear in solid
materials. In particular, one of our goals is to elucidate whether Kitaev quantum
spin liquids can be realized by focusing on the proposed in Refs. [34, 35] of designing
Kitaev-type interactions in a cool polar molecular system in an optical lattice.

The other topic in this dissertation is related to the realization of quantum spin
liquids in high-spin Kitaev materials. The Kitaev model is originally a quantum spin
model with S = 1/2, but there has been a lot of research on the Kitaev model with
S > 1/2 in recent years [36—44]. In particular, there has been much interest in the
topological differences between the case where S is half odd integers and the case
where S is integers, but no exact solution has been obtained as in the case of S =
1/2. It has been rigorously shown that the Z, fluxes are conserved quantities even
in the general case of S [45]. However, numerical calculations of specific heat and
entropy indicate that there are contributions from degrees of freedom other than the
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Z, fluxes at low temperatures. It is considered that understanding these additional
fractionalized degrees of freedom is important to elucidate the physics of the S >
1/2 Kitaev quantum spin liquid. The mechanisms for higher-spin Kitaev model are
proposal and candidate materials for S = 1 Kitaev model [46] are proposed recently.
In addition, the candidate materials for S = 3/2 Kitaev model are also discussed
recently [47-50]. Experimental and theoretical studies on spin-S Kitaev materials
are important for both elucidating the physics of spin-S Kitaev quantum spin liquid
and exploring new spin liquid materials. In this dissertation, we consider the Kitaev-
Heisenberg model [51, 52] as a minimal model for Kitaev materials and calculate
phase diagram of spin-S Kitaev-Heisenberg model to estimate the upper bound of S
for realization of Kitaev quantum spin liquid in higher-spin candidate materials.

In order to achieve these goals, we need methods that can handle the dipole in-
teraction in ultracold polar molecular systems and the general spin length S. There-
fore, we use pseudo-fermion functional renormalization group (PFFRG) method as
our main numerical technique, which is an application of the functional renormal-
ization group for interacting fermion systems to quantum spin systems. PFFRG is
a new method developed in 2010 [53, 54], and its extension is still under active dis-
cussion. In this doctoral dissertation, we use this method to address the two topics
mentioned above.

1.4 Structure of This Dissertation

We illustrate the structure of the dissertation in order.

In Chap. 2, we describe the 1-particle irreducble (1PI) scheme functional renor-
malization group (FRG) for fermion many-body systems, which is the basis of the
PFFRG we use. First, we define the generating functionals of the Green’s functions
and the vertices, and then derive the exact flow equation. Finally, applications to
electron systems are discussed.

In Chap. 3, we explain the formulation of PFFRG we use. We derive the renor-
malization group flow equations assuming that we are dealing with Kitaev-type in-
teractions. First, we rewrite the spin Hamiltonians by introducing pseudo-fermions
and apply the fermionic functional renormalization group to it. Next, we derive a
formula to calculate the spin susceptibilities, which are observables, from the ver-
tices obtained by PFFRG. Finally, we review the extensions of PFFRG, including the
extension to general length of spin S.

In Chap. 4, we discuss the feasibility of the Kitaev quantum spin liquid in ultra-
cold polar molecular systems using PFFRG. First, we discuss the application of ultra-
cold polar molecular systems as a quantum simulator of the Heisenberg model,and
review previous studies using numerical methods including PFFRG. Then, we will
give a short description of previous studies that proposed the realization of Kitaev-
type interactions in ultracold polar molecular systems trapped in optical lattice, set
up the dipolar Kitaev model from the previous studies, and investigate the feasibil-
ity of Kitaev quantum spin liquid by PFFRG.

In Chap. 5, we discuss up to how long S it is possible to realize Kitaev quan-
tum spin liquid in high-spin candidate materials. We regard the Kitaev-Heisenberg
model as a minimal model of Kitaev materials and explain its properties, first. Then,
we review some earlier studies on it. Finally, we conduct spin-S PFFRG calculation
for spin-S Kitaev model and spin-S Kitaev-Heisenberg model.

In Chap. 6, we summarize the our main results described in Chap. 4 and Chap. 5.
Then we mention our future perspective.
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Chapter 2

The General Framework of the
Functional Renormalization Group

In this chapter, we present the general framework of the functional renormalization
group (FRG) approach. Then we review its implementation for spin systems in the
next chapter. In the first section, we review the problems of the conventional field
theoretical Wilsonian renormalization group (RG) methods and the key concept of
FRG. Subsequently, we outline the fermionic FRG scheme based on the generating
functionals along References [55, 56]. We introduce several generating functionals
and variables which parametrize RG flow. By considering derivative of the generat-
ing functionals about these variables, we derive exact RG equations for FRG. These
equations cannot be solved as they are. Therefore we expand the exact RG equation
and decompose it into coupled integro-differential equations. Finally we consider
an application to the simple correlated electron systems.

2.1 Functional Renormalization Group

The functional renormalization group (FRG or fRG) method is a refinement of the
conventional Wilsonian renormalization group (RG) method in the field theory [55-
66]. This is also called non-perturbative renormalization group (NPRG) or exact
renormalization group (ERG), depending on the context. Although FRG can be for-
mulated in either boson fields, fermion fields, or mixtures of the two, in this disserta-
tion we consider FRG in fermion systems in order to treat pseudo-fermion systems,
which will be introduced in the next chapter. Not only in the dissertation, but in gen-
eral, the problem of interacting Fermionic systems is very important in condensed
matter physics, since electrons play a leading role in solid state physics. In partic-
ular, strongly correlated fermion (electron) systems cannot be solved exactly, and
there are many unsolved problems including high-temperature superconductivity.
Solving these systems is still a central issue in condensed matter physics today. For
this reason, many computational methods for strongly correlated fermion systems
have been proposed. Since the perturbation theory is no longer justified when the
correlations between fermions are strong, calculations that are not rooted in the per-
turbation theory are necessary. In addition, various fluctuations exist in the systems
with strong correlations, and furthermore, they are interdependent. Therefore, it is
necessary to perform bias-free calculations that do not overestimate specific fluctua-
tions.

Here, we consider the conventional Wilsonian RG in fermionic field theory [67].
At first, we define the (grand) partition function by functional integral with respect
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MEITO0S C F
QUANTUM FIELD THEQE

FIGURE 2.1: Picture representing momentum space Wilsonian RG
procedure in fermionic field theory. kg denotes the Fermi momen-
tum and the circle drawn with a black line represents the Fermi sur-
face. Like eating a Baumkuchen by peeling it off one layer at a time,
we integrate and eliminate the fields contained in the width of JA.
This photo was taken by me placing a Baumkuchen on top of the
Fermi surface depicted on the cover of the textbook written by A. A.
Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski [68].

to fermionic fields {¢} and {} corresponding to the annihilation and creation op-
erators.

z— / DyDyp =S, (2.1)

where S[¢, ¢] is action of the system. The details about fermionic field theory are
discussed in the next section. We introduce energy cutoff scale A and divide the
fields into those with energies greater than the cutoff ("fast fields") ¢~ and those
with energies less ("slow fields") .. We can derive the low energy effective action
by integration over the fast fields. Next, we calculate how the effective action of the
system changes when the cutoff is lowered from A to A — JA. This procedure can
be written symbolically as !

A A—IOA _
zZ = / DYDY e W] ~ / Dy_Dy. e Bl 2.2)

We can think of this as a procedure of integrating out the fields in the width of /A, as
if we were eating a Baumkuchen by peeling it off one layer at a time. This is shown
in Fig. 2.1. As shown in the Fig. 2.1, we take the Fermi energy ¢f (= k%/2m) as the
origin of the energy, and calculating the low-energy effective action corresponds to
constructing an effective theory on the Fermi surface. In this process, by calculating
how the coupling constants of the interactions of the system g, (A) (m =1,2,---)

Precisely scale transformations are needed to keep the Gaussian measure of the functional integral
invariant.
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are transformed, we can obtain differential equations for them:

dgm(A) _ Ch, (2.3)
dA
These are RG equations.

As shown in Eq. (2.2), the conventional Wilsonian RG is non-perturbative in con-
cept, but when actually performing the calculation and finding the right-hand sides
of the RG equations, diagrammatic calculations are required, which make it per-
turbative. Also, it is impossible to consider all diagrams, so only certain diagrams
are taken into account. Therefore, the calculation is biased in favor of only certain
processes and fluctuations. Furthermore, since only a finite number of coupling con-
stants can be taken into account, we can consider only certain points, such as the van
Hove singularity, when the Fermi surface is not isotropic. This fact also leads to a
large bias.

FRG is a method that overcomes these shortcomings. As will be explained in the
following sections, FRG allows us to obtain exact renormalization group equations
by considering differential equations for the generating functional of the Green’s
functions or interacting vertices. By expanding the obtained exact renormalization
group equations for fermionic fields, we can derive the renormalization group equa-
tions of each order. This expansion is exact because it is Taylor expansions for Grass-
mann variables, and the resulting equations include the channels of each fluctuation
with equal footing. This enable us perform unbiased calculation. We also have ac-
cess to the interaction vertices at every point to add the cutoff to the Gaussian mea-
sure of the functional integral. Thus, the FRG is non-perturbative in both concept
and equations, and can be used even when the interactions are strong, at least in
principle. When we expand the exact renormalization group equation for the gen-
erating functional for a fermionic field, an infinite hierarchy of equations appears.
So we need to truncate it at a finite order, and this truncation makes the calculation
approximate. The idea of considering the renormalization group for the generating
functional was proposed in 1973 [69]. Later, the theory was refined, and Polchinski
scheme [70], Wick-ordered scheme [57, 58], 1PI (1-particle irreducible) scheme [71],
and other theories were proposed. In this dissertation, we use the 1PI scheme. This
was proposed by C. Wetterich in 1993 [71] and is the convenient and most com-
monly used scheme. Hence, in this chapter, we mainly present the 1PI FRG scheme.
Recently, a quantitative comparison of the results of the multi-loop FRG of the two-
dimensional Hubbard model with those of the determinat quantum Monte Carlo
method is also presented [72]. Research on improving the accuracy and extending
the range of application of FRG is still being actively conducted.

2.2 Several Basics of Field Theory and Notations

This section is devoted to a very short review of the path integral (functional in-
tegral) formalism to confirm the notation and to introduce linked cluster theorem.
The author referred mainly [73] and sometimes [74]. Here we use finite temperature
formalism.

Here we consider a system described by the action

S[w, 9] = Sol§, ¥] + Sine[9, 9], (24)
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where Sy is the non-interacting part and Syt is the interacting part of the action. ¥
and ¢ are Grassmann variables corresponding to annihilation and creation operators
of fermions, respectively. The action is a functional of these variables. In general, the
non-interacting parts of actions have the form

So[, 9] = —(9, Gy '), (2.5)

where G represents the one-particle (one-body) Green’s function” of the non-interacting
system and (- - - ,---) means an “inner product” i.e. the sum: (f,g) = Y, f(x)g(x)
where f and g are functions of x. Therefore,

(9, Gy 'y) = z¢ (x), (2.6)

where

(Go'lp)(x) = );Ga%x, X )p(x'). (2.7)

Here, x and x’ represent sets of the appropriate quantum numbers for single-
particle basis and imaginary-time /Matsubara frequency. The symbol ), represents
summations for discrete variables in x and integrals for continuous variables in x. In
addition, the sum includes appropriate prefactors such as inverse temperature 8 or
volume ) depend on the choice of x. We introduce the above rules for representa-
tion independent on arguments of field variables. If we consider an electron system
with translational invariance and spin-rotational invariance, one of the appropriate
choices of x is x = (iwy, k,m,a). Here, i, wy, k, m, and « are imaginary unit v/—1,
fermionic Matsubara frequency (2n + 1)tT (n € Z), momentum, band index, and
spin index (spin configuration), respectively. Here T' = 1/ represents temperature.
In this choice of x, the bare Green’s function is

Go(x,x') = Go(iwy, k,m, a; iw,, k' ,m',a")
= 505n,n’5k,k/(5m,m’5a,a/ Go (iwn/ k, m)
1
gkm

We sometimes use " ; " instead of ", " to separate sets of arguments as above. In this
dissertation, we adopt a non-unitary definition of Fourier transformation which is
introduced in Appendix A.

We focus on the interacting part next. Generally, two-body interaction has the
form

= By Ok k' O, O, Wi E (2.8)

_ 1 _ _
Sml 9l =7 ) V(¥ xzx,x0)P(x1) ()P (x2)p (x1). (29)
X1,X2,X7,X5
The factor 1/4 = 1/(2!)? is due to anti-symmetrization of interacting matrix ele-
ments [68, 73]. It is anti-symmetric function by exchanges x; = x, and x] = x. For
example, consider a system with the interacting part of the Hamiltonian as

Hing = / dlny [dir ¥ 9ir)ehr)Uapas(n —r)s(m)py(n). @10)

7,0

Here ¢, (r) and ¢} (r) are anihilation and creation operators of fermion at coordinate
r with spin index a. U is the matrix element of interaction and d is the dimension of

2Sometimes it is called the Green function. We call it the Green'’s function here and after [75].
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the system. Corresponding interacting part of the action is

1 (B B
Sint = 5/0 drl/o de/ddrl/ddrz Z

«,B,7,6
X P, (11, 11) P (T2, 12)Unpps (11 — 12)0(11 — ) s(T2, 12) ¢ (11, 71). - (211)

After anti-symmetrization, the interacting part is

1 B B B B ,
Sint = 1/0 dTl//O del/O dTl/O de/ddn//ddrz//ddrl/ddrg Z

Kqr,Ko1 K7 ,K2

X %ﬁ/ (T1', 1‘1/)%(2/ (Tz’z 7'2’)sz1/0¢2/,0¢10¢2 (T1f1’1', Tyt ,; 711, Tzf’z)lliaz (Tz, 1‘2)%1 (T1, 1‘1),
(2.12)

with

Vit ayao (TUT1, T2 TIFL, Tot2)
= Ual,az,,al@ (1‘1 — 1’2)5('['1 — T2)(S<1’1/ — 1"1)5(’[1/ — T1)§(1‘2/ — 1’2)5(1’2/ — Tz)
- uaz/le/,alrxz (”1 - 1’2)5(71 - TZ>5(1’1’ — 1’2)(5(1'1/ — Tz)(s(rz/ — 1’1)(5(1’2/ — Tl). (2.13)

The (grand) partition function is obtained by path integral (functional integral)
respect to the Grassmann variables ¢ and :

Z= / DYDY e S (2.14)

The integral measure Dy D sometimes contains some constant prefactors if exist.
We also define the non-interacting grand partition function Z; as the same manner:

Zy = / DyDy e~ P = Det {—Go‘l} : (2.15)

The free energy (to be precise, grand potential) is given by the natural logarithm of

partition function

F= —/13 InZ, (2.16)

and that without interacting part is also given by

Fo= —;mzo (: —éln [Det{ — Gol}] = —;Tr [1n{ — Go1}]>. (2.17)

Taking logarithm means to collect only connected Feynman diagrams i.e.
F—-Fo= —; Z(all connected diagrams). (2.18)

This fact is called the Linked cluster theorem [73, 74]. We can prove it easily by
replica technique introduced below.

Linked Cluster Theorem

Here we derive the theorem and introduce replica technique [73]. At first, we con-
sider n (€ IN) replicas of the system. Since they do not interact, the grand partition
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function is Z". Then we expand it as
= 1
_ ninZ
Z" = —1+nan+mZ::2ﬁ(nan)m. (2.19)

At last, we continue® 7 to R and take the limit after differentiation:

: d no__ 1: d ninzy __
7111£>r(1] an —%1{)1(1) p [e |]=InZ. (2.20)

To calculate Z", we introduce replica index p which runs from 1 to n. Expanding it
m-th order

Z\'_ 1 / [T D§ Dyt e Ehns( P 4215l 47)
z) ~ zZ) 4 yPye

o (gm w2 (221)
- EE S (Sl ]Sl )
m=0 o=l om=1 0

The average (- - - )o means [ DpDpe .../ [DyDype % = L [ DyDype - --,
average by non-interacting action Sp. We use Feynman rules and calculate sums of
diagrams. Each propagator carries a replica index p, and each connected part of di-
agrams must carry the same replica index. Therefore, the sum over the all replica
indices yield the factor n"< where n. is the number of the connected part of the di-
agram. Replica technique introduced above pick up only 7 linear term, and Feyn-
man diagrams proportional to n are those with only one connected part. Therefore,
replica technique means that we pick up only connected diagrams.

2.3 Generating Functionals

In this section, we introduce several kinds of generating functionals and some im-
portant functions such as the Green’s functions and the vertex functions.

Generating Functionals of the Green’s Functions

At first, we consider the source term added the action
Sty ¢l = Slp, v = (7.9) = (%), (222)
with Grassmann variables 77, 7 and a functional defined by it
Wi, n] = / DHDy e~ SEA+E9)+(F) (2.23)
Defining the disconnected m-body (2m-point, m-particle) Green’s functions as

Goa (X ¥t 0 = = () - P P(xp) - P()ae,  (224)

3This analytic continuation have very sensitive problem related to Carlson’s theorem. Here we do
not concern mathematically rigorous discussion, and we use replica technique only for formulation.
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with (-+-)4. = [DyYDyp e - -, we can see that W[7, 77] is a generating functional
of the disconnected Green’s functions:

S"WIig, 1]
017 (x1) - - - 617 (xm ) Om (x7,) - - - 017 (x7)

G (x1, - Xy, o 2y = (—1)"

1,77=0
(2.25)
Disconnected Green’s functions contain not only connected parts but also discon-
nected parts. To obtain m-body (2m-particle or m-particle) Green’s functions, we
divide (2.25) by the partition function Z.

1 &"WIi, ]
G(Zm) x;"'zxm;x//"'lx;n = (-1 e - 7 ,
( 1 1 ) ( ) Z(Si](?ﬁ)577(xm)(577<x;n)5;7(x/1)

1,77=0
(2.26)

The m-body (2m-point or m-particle) Green’s functions obtained above are defined
as

G (a1, xixy, o xp) = =) - plen)P(xy) - P(a))),  (227)

with (---) = £ [DyDy e S ... These Green’s functions have partial diagrams
which do not necessarily connect ALL external legs although they do not have par-
tial diagrams which are not connected to ANY external legs and cancelled by Z in
the denominators.

Although we always use Green’s functions introduced above, it is convenient to
define connected Green’s functions for systematic calculation. The connected m-body
(2m-point or m-particle) Green’s functions are defined as

GP™ (x1, - s X5, x) = —(W(x1) - ()P (X)) - P(x]))e,  (2.28)

where the subscript "c" means connected parts of diagrams. Here, "connected" means
that the diagrams are connected to all external legs. By definition,

Gl» =g®, (2.29)
but
G2 £ G for m > 2. (2.30)

Hereafter, we write G instead of Géz) = G for simplicity. The generating functional
of the connected Green’s functions is given by

Glir,ml = —InWly, 1]
— In / DDy e STHHTAP+@), (2.31)

and it is understood by replica technique. Connected m-body (2m-point or m-particle)
Green’s functions are obtained by functional derivative

62" G, 1]
57(01) om0 (xi) - 07 () |, o
(2.32)
This is why G[7, 7] is called generating functional of connected Green's functions or
merely generating functional.

GE (x1, XX, xXp) = (=1)"
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If there are no interactions, Gaussian integral for Grassmann variables * is exactly
carried out and obtain the identity

/ DDy e~ SWAI+Y) () — / DPDy ePCo ' ¥)l4)+(1)
= Zpe~ W00, (2.35)
where Zy = [ DDy ePSo'¥) = Det(—G; ). Therefore,
Gl nl = —In 2o+ (7, Gon). (2.36)

In general case with interaction, expanding G[7, 7| as a power series of the source
fields, connected Green'’s functions are given by the coefficients of the series:

G, = =In 2+ (7,6n) + 775 Y G (1, 03 1, )7 (1) (x2) () () + - - -
' X] XZ
x1 xz
(2.37)
=—InZ
Z ;L G (x1, - X x,-+ X )T(31) - T ()17 () - - ().
mzl xm
x’l Xy

(2.38)

Here we define the Taylor expansion of functions of Grassmann variables [74] as

_yv 1y rf L
f(gl""’C">_m;oﬁil,..§l:1 pror o MR (2.39)

where f is an analytic function of Grassmann variables {3, - -+ , &, }. We derive the
above relation between G 7, ] and Gézm) based on this definition of Taylor expansion
formula. The m-th order terms of the Taylor expansion of the generating functional
with respect to {1} are obtained by above definition,

2 1 o"G i1, 1]

/ . .. /
v T on(xp,) - - - on(xf) ;7:0’7(351) 1(Xn), (2.40)
17 m

then performing expansion with respect to {77}, we obtain

1 5"Gly, _ _
x},;x;n (12 37 (1) - -5n<xmg)([s77<@;1> TR |y ) TG TCon) ()
e (2.41)
4Gaussian integral for Grassmann variables [73, 74] is
/ [Tdpdyie S A A LT L P = [det A] X T (A i, (2.33)

and

det A = / TTdpdy;e i, (2.34)
i
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Now we consider to rearrange

n(xh) ()7 (Xm) - - -7 (x1) (242)
to
70xr) - 7wy (2,) - - - 17(x7) (243)
in the manner below:
n(xp) - 17( /)n(xm)---ﬁ(xl)
= (=1 Y (x)n(x7) - - (20,7 (Xm) -+ 7 (x2)
=( 12" (=) 277 ()77 (x2) 5 (x7) - - - 17 (23,) 77 (o) - - - 77 (x3)
= c—1>2”11@m O3 (x1) - o) () - (), (2.44)
where
(_1)Ei111’1(2m7k) _ (_1)2m(2m71)7%~2m(2m71)
— (_1)2m(2m71)7m(2m71)
= (=) = (—1)” (2.45)
Therefore,

1 &*" G, 1] ) _
Wx];xm 577 (x1) - 07 (xm )01 () - 011 (%)) Wzoﬂ(xl)-. 7 (X377 (Xm) - - - 7 (x1)
1 m "G, ) )
= ot 2, Y ) Ceon ) 09 g TETO

Y G, 2)T() T () (). (2.46)

/ /
X100 X

Generating Functional of the Vertex Functions

We introduce another generating functional by Legendre transformation. To define
Legendre transformation of the generating functional we introduce conjugate fields

{$} and {9} by
Px) = (P(x))7y

1 — S+
W[M/ PP () e
5
)
= 55 1n/D¢D¢e o
oG 1, 1]

on(x) ’

(2.47)
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and
¥(x) = @( X))y
_ / 11[, #Jw x)e =S+19)+ ()

- jin / DYDy e SHIN)+@)

59 [ﬁ 17]
TR (2.48)

where (- - - )7 , represents the average with source term W [ DDy e~ SEAFIE+@m) ...

Hereafter we write @ and ¢ as ¥ and ¢, respectively, for simplicity as the general
manner of FRG [55] although the bare Grassmann fields and their averages under
source fields are confusing because of the same notation [73].

Now we introduce the generating functional of the vertex functions by Legendre
transformation:

Ty, ¢ = G, m]+ (7, 9) + (P, 7). (2.49)

This I'[, ¢] is called effective action or effective potential and it obeys the relations
which are sometimes called the reciprocity relations

5TE;€’I;¢] _— (2.50)
and _
HE;fl;‘/’] —1. (2.51)
These relations are easily checked by
o T[]
5p(x) '7 B -
~ DT + TR ¢ s (90 + 3 ()|
— [y o) s ST SO, )~ ) S
[ 9 SIE) . 60 by(x) _ou() 60 . o 80 dy(¥)
~ L ey 5960 * 5707 409~ 39t 770y 00 ~ 5 G |
=17(x), (2.52)
and
T
s VY
_ 0G oq(x) _8G on(x) | o(x) / N 0n(X)
= X ey 500e] * o 9] e ) 00— G
_ { G 517 X)) 09 onlx) X)) 0G sy 99 517(96’)]
— Lom(x Vo) T onG) dp(x) o) o7(¥) ' on(x") oyp(x)
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Here we use the relations Eq. (2.47), (2.48), and (2.49). Here, d(x,x") represents
generalized delta function which is Kronecker delta for discrete variables and Dirac
delta function for continuous variables. Then we define vertex functions to check
that I'[¢, ¢] is the generating functional of vertices. The m-body (2m-point or m-
particle) one-particle irreducible (1PI) vertex functions I'@m) are defined as coeffi-
cients of the effective (renormalized) action:

e —1)" / T A T A
Sl 9] = T e T T e ) B ) g

+ const. (2.54)

1PImeans that the diagrams cannot be disconnected by removing any single internal
propagators.

We can regard the effective action I'[(p, ] as the "effective action" of the system literally
as we prove later. Therefore, by definition of the vertices, we obtain the m-body 1PI
vertices by functional derivative of the effective action:

) P (om) 69 an) Ly )

2 / /. —
I'( m)(xlr"' ,xm,xll...’xm) —

Note that the terms "irreducible" and "reducible" refer different properties depend-
ing on the context. In condensed matter physics, "irreducible"(or proper) self-energy
always refers 1PI self-energy, while "irreducible" vertices often refer two-particle ir-
reducible (2PI) vertices. For instance, irreducible vertices obtained by dynamical
mean-field theory (DMFT) are 2PI vertices[76]. Hence we must solve Bethe-Salpeter
equation in order to obtain full ("reducible") vertices. To construct Bethe-Salpeter
equation, we decompose full vertices into the integral equations of the Green’s func-
tions and the 2PI vertices from DMFT. There are three possible ways to decompose
the full vertices: particle-particle channel, direct particle-hole channel, and crossed
particle-hole channel; the results should be the same no matter which channel de-
composition we use, if calculated 2PI vertices are exact. Of course, in the most case,
calculated 2PI vertices are not exact, and the full vertices obtained from these 2PI
vertices depend on its decomposition channel. Therefore, we have to choose chan-
nel appropriate to fluctuation we focus on. The full ("reducible") vertices above are
1PI but not 2PI vertices and correspond to 1PI vertices here we discuss. FRG also
can be constructed by 2PI scheme [64]. The effective action in 2PI scheme is strongly
related to Luttinger-Ward functional [77-79].

All connected Green'’s functions are constructed from tree diagrams of equal or
lower order 1PI vertex functions[56, 73]. For example, 2-particle connected Green’s
function is represented as

G xix, ) = Y Glan, v4) Gl va) T (4, ¥y, 2) Gy, ¥1) Gy, ),
ViY2Y1Y5
(2.56)
and 3-particle connected Green’s function is also represented as GC(6) = GT®)G? +
GTWGrWes,
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Dyson Equation

Now we derive the relation between the generating functional of the Green’s func-
tional G and the generating functional of the vertices I' what can be regarded as a
generalized Dyson equation.
At first, we consider the functional derivatives of a general fuctional f[77,#] using

the chain rule:

Sfln, 1]

op(x1)

-T

X2

R

[ of  o7(x) of 5’7(962)]

1077 (x2) 09p(x1) — O17(x2) Op(x1)

[ of S S ]
L 017(x2) 6 (x1)09p(x2) O (x2) dyp(x1)P(x2)
Lo 2ro of T ]
L 077 (x2) 09 (x2)op(x1)  0n7(x2) 69 (x2)p(x1) ]

[ of 5j(x2) of (517(3(2)]

L7 (x2) 6p(x1) — O(x2) 8p(x1)

[ of ST of 52T ]

L 07(x2) 09 (x1)d9p(x2)  017(x2) 6p(x1)P(x2)
Lo 2 of T ]

L 77(x2) 6p(x2)0p(x1) O (x2) 6p(x2)p(x1) |

It £177, 1) = ¥ (x3)[77, 7] in Eq. (2.57),

o (x3)

oip(x1)

) A R M Y s ]

o L07(x2) 6 (x2)dp(x1)  0n(x2) 6(x2)01p(x1)

Z-_ 3G 5T n 3G 5T

o L 07(x2)67(x3) 09 (x2)09(x1) — O17(x2)077(x3) 6p(x2)dyp(x1)
v & Pro &g ) }
o L071(x3)077 (x2) 6p(x2)d9p(x1) 677 (x3)0m (x2) 69p(x2)dp(x1)
Z_— 582G 52T n 5%G 5T

o L on(x3)0n(x2) 6p(x2)0y(x1) 677 (x3)077 (x2) 64 (x2)dPp(x1)

(2.57)

(2.58)

|
|

(2.59)
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In the same  manner as above:
if f[77,1] = ¥(x3) in Eq. (2.57),

0— S%(xs)
5p(x1

_y [ 2T oh(w) o }

LT (x2) 69 (x2)dp(x1)  on(x2) 6(x2)p(x1)

_y [ 56 2ro &g R }

S Lom(x2)om (x3) 0p(x2)09p(x1)  017(x2)0(x3) S9p(x2) (1)

_ Z [ 352G 5T n 532G 5T }

T 101(x3)01(x2) 6 (x2)p(x1) O (x3)d77(x2) Op(x2)d(x1) |

if £[7, 1] = P(x2) in Eq. (2.58),

(x3

P(x1

~—

(2.60)

>,
<

5(3(3, xl) =

>y
~—

(
Sp(x 5¢(x3) 5T
;[577 ) 0 (x2 51P (x1)  0n(x2) 5¢(x2)5¢(x1)}
Z[ 5%G 5T 4 532G 5T ]
oL 0n(x3)d7(x2) 6p(x2)p(x1) O (x3)01(x2) 6 (x2)d9(x1) |
2.61)

if f[17,1] = ¥(x3) in Eq. (2.58),

o= oblx
oP(xq
_y[e) @0 e e }
Lo (x2) 9 (x2)p(x1)  On(x2) 69(x2)08p(x1)
_y [ %9 Pro &g 52T ]
S LT (x3)071(x2) 6p(x2)69(x1) 677 (x50 (x2) 69p(x2)69(x1)
_ Z __ 5%G 5T n 532G 5T }
oL 01(x3)dn(x2) 6p(x2)op(x1) 677 (x3)077 (x2) 6 (x2)d9(x1) |

~—

~—

(2.62)

These equations can be represented in matrix form

52g B (52g _ 521“ _ 521—;
o1 (x3)01(x2) o1 (x3)07(x2) oP(x2)op(x1)  Sp(x2)0p(x1) 1 0
- = 0(x3,x1) (0 1>,
v \ 532G 532G 2T T

on(x3)on(xa)  0n(xs)or(xs) 0p(x2)op(x1)  Sp(x2)d9p(x1)

(2.63)
more simply, we write symbolically
{ =G} {8 Ty} = 1. (2.64)
Therefore,
{860} = (T, y)} (2.65)

We will use this relation later.
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Then, we derive the standard Dyson equation from the above relation (2.65). We
set p = ¢ = 0 (Itimplies 7 = 5 = 0. It is explained later.), and obtain a relation
between the Green'’s function and the 1-particle vertex function,

ZG(xl,XZ)r(z)(Xz,Xy,) = 15(X1,X3). (266)

X2

Here, we define the matrices

G(x,x') = —0*G[ij, ] = —

(<1p(x)¢(x/)> <¢(x)¢(X’)>)
= (2.67)
—(@(x)p(x)) —(Px)p(x))
and _ T _ T
_ p(xNop(x) TP )oR(x)
I (x,x) = 6T[, ] = (2.68)
or =y=0

5T
op(x)oy(x)  oy(x)op(x)
We use the bold font to represent matrices in particle-hole (Nambu) space here, not
vectors.
From Eq. (2.66),
r® =g (2.69)

If there are no U(1) symmetry breaking,

@y xy - 0T Ry
r'“(x,x) = 59 oo =G (x,x). (2.70)

We define the self-energy from 1-particle vertex function:

—z=1@_1® 2.71)
=1@ —G;! (2.72)
=G '-G,}, (2.73)

and then, Dyson equation is obtained:

G(x1,x2) = Go(x1, x2) + Y, Go(x1,x3)E(x3,%4)G(xy, x2). (2.74)

X3,X4

Here, I"(()Z) represents the 1-particle vertex function of the non-interacting system.
In single-band system with translation invariance and spin-rotation invariance, x =
(k, o) is one of appropriate choices of quantum numbers and

G (k) = Go(k) + Go(k)Z(K)G(k), (2.75)

with a shorthand notation k = (iwy, k). This is the well-known form of the Dyson
equation.
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Another Generating Functional: Effective Interaction

We introduce one more useful generating functional called effective interaction [55,
571]:

Vi1l = — ln[zlo [ DDy e S-S iwl | (2.76)
Performing the substitution
x=Goy and x = Gl7, (2.77)
with G{ (x,x") = Go(x/, x), we obtain
VX, x] = G[7, 1] +1In Z0 — (7, Gory)- (2.78)

Since the last two terms cancel the non-interacting part of G[77, 7], functional deriva-
tives of the effective interaction V[, x| generate connected Green'’s functions with
bare propagators amputated from external legs. Therefore,

Smtl, 9] =0 = V[x.x]=0. (2.79)

We expressed V by not only integration but also derivative:

o VITAl — ZL / DDy oS4 -Sun FT4-+
0

= ie—&m[%,éﬁ] /’DEIDEL’ e@’Galw)e(ﬁ’¢+X)+(I7'E+X)

2

17.1=0

e Zie_sint[é.’]’&ﬁ] /D@Dl[) e(EfG(Tll/’)e(ﬁrlp)—(%ﬂ)e(ﬁ%)*‘(’?%)
0

17,1=0

_ Zie—simwvl / DFDy e (PG )T +HB1) (1) +(1.7)
0

7.1=0
— e Sintl0y.07] o (1,Gon) o (1.2) +(11.2)

741=0
— efsint [(517 rdﬁ] e (&C'GO(SX) e(ﬁr)() + (W’X)

=0
— D6y e~ Sint [X/X]I (2.80)
where we define the functional Laplacian as
Ac, = (65, Goby) = Y —— )L. (2.81)
Cx o (5 ox(x')

2.4 Derivation of Exact Flow Equations

In this section we derive the exact flow equations of the FRG. It is a paramount
equation of this dissertation. As mentioned before, considering flow equations of
the generating functionals makes it possible to obtain exact flow equations in FRG.
At first, we introduce flow parameters which play as a cutoff for mode elimination
of Wilsonian renormalization procedure. Then we derive the exact flow equations
by differential with respect to the flow parameter. Finally, we obtain the exact flow
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equations for each vertex function by expansion of the exact flow equation of the
effective action.

Flow Parameters

Recalling the general functional integral form of the partition function:
Z= / DYDY e SolPtl-Smlp]
_ / DGDy P Co'¥)eSnldv]
= Zo<e781m[¢r¢]>0, (2.82)

we can see that the inverse of the bare Green’s function G, ' plays the role of the
measure of the functional integral. Here we define (- - - )¢ as the average in non-
interacting systems ie. (---)o = [DyDy e W4 .../ [DyDy e SP¥]. For
standard Wilsonian renormalization group procedure, we introduce momentum or
energy cutoff A and divide field variables into slow (< A) and fast (> A) parts:
Y = P + -, then perform successive mode elimination by integration with re-
spect to fast modes 9. In FRG, we also introduce cutoff A. However, we attach the
cutoff not to field variables but to integral measure:

Gy — [Gp] =", (2.83)
where Q = G; ! (also Q" = (G§')~1) and,
G& = 6°Gy. (2.84)

Here 6 is called a cutoff function. In general, the cut off functions are required to
satisfy the condition

0 for A=Ay,
AN{ o uv (2.85)

G() for A = AIR-

There are some choices for the cutoff function. For example, we consider the bare
Green’s function of the single-band system which has translation and spin rotation
invariance. We choose a label of the 1-particle states as x = (iwy, k, o), the bare
Green’s function has the form

Go(iwn, k, g, iwn/,k/, 0'/) = 5050’0/5n’n/5(k — k,) Go(iwn,k)

— B,y b (K — k) —

A (2.86)

Therefore, there is the infrared (IR) singularity at Fermi surface iw, — w(+i0) = 0
and ¢x = 0 which is corresponding to the non-interacting Fermi surface. The flow
parameter is introduced as the cutoff to avoid this singularity as

0% (k)

Gé\(lwn,k) — lwn — gk/

(2.87)
where 62 (k) is a function that vanishes for |¢;| < A and approaches to unity for
|Zk| > A. In the beginning of the flow we set the ultraviolet (UV) cutoff Ayy =
W, where W is the band width (sometimes W = o e.g. for electron gas). During



2.4. Derivation of Exact Flow Equations 27

renormalization flow we gradually reduce A to IR limit Ajz. Here, Al = 0 and it
corresponds non-interacting Fermi surface. This is called momentum cutoff scheme.
One of the simplest and often used form for the cutoff function is

0" (k) = O(|gk| — A), (2.88)

where O is a step function (Heaviside function).

In momentum cutoff scheme sometimes we can perform Matsubara frequency sum-
mation analytically. However, it has some drawbacks: firstly if deformation of the
Fermi surface due to self-energy occurs, non-interacting Fermi surface is no longer a
good goals of the flow; secondly if the system has no translation invariance, fourier
transformation to momentum representation is ill-defined; in addition, the processes
with small momentum transfer are suppressed in the flow calculation. We can also
use another choice called frequency cutoff scheme:

HA(wn)

Gé‘(iwn,k) - m.
n

(2.89)

It is useful in the case that the system lacks translation invariance. In frequency cut-
off scheme, Ayr = o0 and Ajg = 0. For example, sharp frequency cutoff 6 (w,) =
O(Jwn| — A). In addition, mixing momentum and frequency cutoff

GA(w/w,% +Ci)

iwy, — Ck

G (iwn, k) = , (2.90)

is also used. This scheme is useful for mathematical literatures because in this
scheme momentum and Matsubara frequency treated equally and it is convenient
for power counting.

More smooth functions are often used for numerics while sharp cutoff functions are
useful for analytical calculation. It is required to apply appropriate cutoff scheme
and form of cutoff functions depending on the properties of the systems, phenom-
ena, and calculation methods. The important fact is that the details of the A-dependency
of Gé\ do not matter to derive the exact flow equation, as shown later.

We denote S as the bare action with Gj' instead of Gy, and the generating functional
G” is defined by S* as

GMi, ) = — InWA, 7] = —In / DYDy e~ S PH+E0+F), (2.91)
with
WA, ] = / DYDy e~ S PH+T0+F), (2.92)
The effective action with the flow parameter is defined in the same manner before:
P, p) = G0 ™+ (7 ) + ™), (293)

with the conjugate fields
P=—, .9
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and gh
o
Y= o (2.95)
Here ¢ and ¢ do not depend on A. Moreover, the source fields 77 and 7 are A-
dependent in the Legendre transformation above although they do not depend on
A in the definition of G* (2.93).

More precisely, the Legendre transformation is written as

T2, 9] = G P, 9 0™ [, 1] + TP ) v) + (@, 79, ). (2.96)

And it means “if the values of ¢ and ¥ are given, find the values 77 and # which
satisfy the relation
6G i, m] - _ 6G" [, 1]

_ _ 2.97
and define them as 7 [, )] and [, ¢]. Then, we define the values of T"*[¢, ] by
substituting the values of 7 and 7 for the right-hand side G [, 7] + (7%, ¥) +
(,7").”

Therefore, 77 and 7 are A-dependent in the definition of I'*. This is important to
derive the exact flow equation of T*[1f, 1]. The reciprocity relations are

sTA sTA
N A 2.98

At the first of the renormalization flow A = Ayy, I'* corresponds to the regularized
bare action of the system ItV = SAuv. Then high energy contributions to the action
is renormalized in TA along the renormalization flow. Atlast, I A reaches the genuine
effective action TA® = T describing physical phenomena at low energy scale.

The vertex functions are obtained by

A (g ST, Y]
T R TE AT P R eoy) St

and the Dyson equation is

—ZA —_ rA(Z) . [G(/)\]—l

6N ah (2.100)
In addition, we introduce the inverse bare propagator
QM x,x") =[Gy (x,x")] 7, (2.101)
for a simple form of the flow equation.
Finally, we expand the effective potential:
PG ] = 3 AP,y (2102)

m=0
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In the same manner of expansion Eq. (2.37), we perform Taylor expansion of the
functionals of Grassmann variables and obtain

— =)™ / ! i i
ACTAG 4] = ((mﬁ Y T@MAGL i, ) B - B () - (1),

7 Xm
/

Xi,- X
(2.103)
for m > 1. Then, we calculate
AN = TA]p, 0]. (2.104)
We consider the Legendre transformation again:
T, 9] =G ™+ (% ) + (@), (2.105)

We set p = ¢ = 0, and remember the meaning of the Legendre transformation. We
find values of 7" and #”* satisfying

5

=) =0

A (2.106)
o7 —(p) =0.

The expectation values of single field variable are zero if source fields do not exist
7 = 17 = 0. Remembering G*[0,0] = — In Z%,

AN =TA[0,0] = —In 22 (2.107)
Therefore,
[, ]
= —InZ" — (y, T@"p) - Y. TWA ], xx, %) () () (x)(x1) + - - -
=—nz"—(4,[G" yp) +% Yo TN, s xe, x) ()P () P (x2) (1) + - - -

= —In2Z* — (y, {[GL] ' — =M }y)
Y, TWAR, xh 20, ) () P(xh)p(x2)p(x1) +--- . (2.108)

Y
X1,X2,X1,X;

_|_

| =

This has the form corresponding to action. At initial condition (A = Ayy), TAw=Q,
[GAW]T = [GRWY]~1 = QAw, TWAW = V, and T@MAW = 0 (m > 3, m € N). Vis
the anti-symmetrized 2-particle interaction of the model.

Here, let us prove

T2, ] — SM, ] + const. (A — Apy). (2.109)
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The proof is below:

e T — eXP<_gA (7,1 = (7, 9) — (W))

_ / DDy e S BH+00)+ @)~ (19~ @) (2.110)
Here, we introduce variable translation:
=P+,
Y=+ (2.111)

Then,
/ DYDY oS [P+ p+9]
— / Dy Dy oSO -SP W)~ Sue [+ P91 o (P.QP)+(B.QMY)

_ oSO / DFDp e~ BT -SulFHi 4] oF.QD)+[FQ )
_\/_/
— 0 (A*)AU\/)

Zoxe VA - e~ Sintl@dl+const (A5 Ay)

— e~ S WA=Sm ] 4 const. (A — Auy). (2.112)
There are other options for flow parameters and we introduce temperature flow
scheme and interaction flow scheme in appendix B.
Direct Derivation

At first, we derive the flow equation of the generating functional G*[7, 7] directly by
A-derivative [55, 65]. We can obtain simple form of A-derivative by using functional
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derivative.
Y N S N AN ) B e )
G, = —e JAc
= _eQAW% / DDy P[0 9) = Sel 91+ (1.9)+(P1)
eI 71.1] / DGDY (3, [G] Lyp)e S WAI+@4)+ ()
_ ) B
_ _egA[m< oGl ) / DFDp e~ B+ +P1)
5 .. 5 At
o9 [1.11] A1—1 Y ) =G 7]
<517 (Go] 517>e
RAZ ( oL Y ) =G ]

eI 1] < 0N (= )5QA[’7"7])e—g/‘[17,ﬂ]

o
) Gl 1] (59"[11,17] 529G 1\ -anm
A YiA/ on 2 U )} G" )
[ ZQ S0 () T )
59N 1] o002, Ay oy 8GN, 7]
< oYy >+§Q ) Son
3G m,1] a9, 1] A 926" [m,1]
( TR > (Q 5101 ) —
This is an exact flow equation. We use the dot symbol “ - ” by representing A-

derivative hereafter. As shown before, the generating functional is expanded in the
series of source field whose coefficients are connected many-body Green’s functions.
Therefore we can obtain an infinite hierarchy of functional differential equations for
connected many-body Green’s functions. However, the isolated propagators can
lead to technical problems within scheme described here [80]. In addition, the flow
equation for Green’s functions contains one-particle reducible term, which require
more care [55].

Another choice is the exact flow equation of the effective action, which generates 1PI
vertex functions. Now we consider A-derivative of I'*[¢, ¢] using Eq. (2.96):

d = dph\ | (dpt
AT = —AQA[ﬁA,nA] + (gb, d’k) + <d’i\ ,q;). (2.114)
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Unlike the above derivation of the flow equation of G*[77, 7], the arguments 77"* and
7" of the generating functional are A-dependent. As in the same manner above,

d _
ag/\ [’7Ar ’7A]

_ 0N —an
e dAe

=0 [y {5,000 + (Tp) + (3.5 ) Jors Bt
A

_ egAmA,nA}{ <<(1£:, 5175A> . <_51‘75A C;WAA) }egAm]
N do/l\ Gt " 7% A fixed

_ <‘3’Z\,—5QA([521'17A]> + (MAZ;\'UA]I dd’f). (2.115)

Here, we remember the relation Eq. (2.94) and Eq. (2.95), we obtain

— | =5, — (Y, =——|. 2.116
7y fixed < dA ll]> <l/) dA ( :

Substituting it into dT[y, ] /dA, we obtain

d A d A
A Tt = g

d A o d oAA A
dT\r Wz’#]—djg i7", 1%

7 A -fixed
AN A AN A 20A[7A A
_ (59 % 0"] 509G ]>+Tr<Q‘A5 G0 1"
o1 o7 o anh

). (2.117)

Rewriting the right-hand-side by ¢ and ¢ (we omit “~” for simplicity),
d CArr 1 AA ASGA TN n?
AT Pl =~ 0+ A

. (H.ON Ar oy 0GR R
=—-Q ¢)+§7Q (x/x)(sﬁA(x/)(gnA(x>

_ _@.C L (VWA s Al V%) i Y WA o U A%, i WO
- (lp/QAlP)—*—z}g{QA( ’ )5ﬁA(x’)517A(x)+QA( s )5ﬁA(X)(517A ( )}

= —($, Q%)+ %Tr(QAaf’-gA 7%, 1)
= —(9, Q") - %Tr{QA(ﬁFA [w, p]) 1. (2.118)

Here

A% 0
Q* = ( 0 _(QA)T). (2.119)
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and

QM (x, )] = QA (X, x). (2.120)
This equation Eq. (2.118) is the exact flow equation of the effective action. Sometimes
it is also called Wetterich equation [71]. This Wetterich equation is a primal equation
in FRG.

Effective Average Action

Here, we introduce another version of the Wetterich equation. We define one more
generating functional of vertex functions

TR, 9] = T g, 9] + (9, R™p), (2.121)

whose analog for bosonic fields is called effective average action [60, 71]. R” is called
a regulator function defined

A=pr—qQ, (2.122)
and its derivative is
. d d .
A _ A _ A _OA
RN = RN = (M- Q) = QM (2.123)

When we consider flow equation of I'{, the additional term (i, Ry) cancel the first
term of the Wetterich equation Eq. (2.118). Moreover, the second derivative of I'{ [, 1]
is

CTRg gl STyl 6 < RA(x o >
)y~ eyt agtp 2 \PORT )
_ OO gy, o
R I @124
Using this relation, the flow equation is rewritten as
SR 9] = — TR GTRP, ] + RY) Y, @.125)

where R? = diag(R”, —(R™)T). This is fermionic counterpart of the original form
of the Wetterich equation [71] °.
At the initial condition A = Ayy,

TRW [, ] = T2V [, ] + (, RNVep)
= SAuv [V, ¥] + (¥, RAUng) + const.
QYY) + Sine[W, ] + (Y, RV ¢p) + const.
¥) — (¥, (QMY — Q)¥) + Sint[P, ] + (¥, RAWV ) + const.

¥, ] — (¢, RAVY) + (P, RAUV) + const.
P, ] + const. (2.126)

—(¥,
-(®.Q
=S|
S|

As shown above, the effective average action I'} interpolates smoothly between the
(unregularized) bare action & and the final effective action I', while the effective

5 Interestingly, in the paper proposing the Wetterich equation, "FRG" is written as the country name
in the column of the affiliation to which Wetterich belongs. Here, "FRG" is an abbreviation of Federal
Republic of Germany in English and does not mean a functional renormalization group.
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action I'* interpolates between the regularized bare action S* and the final effective
action I'. One may think that we should always use the effective average action I’ﬁ.
However, the effective action T'* is also useful because the inverse of the second
functional derivative of I'* is the exactly Green'’s function G* without addition of
RA.

Derivation by the Effective Interaction

In addition, we derive the exact flow equation of the effective interaction V and we
show another derivation of the flow equation of G using it.
With a cutoff A, the effective interaction is represented as

A
eV = e G oS, (2.127)

At the initial condition or the highest energy scale A = Ayy, the bare Green’s func-
tion is zero due to regularization: G(I)\ W = 0. Thus VAW = Si+. From this fact, we
can know that the effective interaction V* smoothly interpolates between the inter-
action part of the bare action Sin: and the final effective interaction V.

The relation between V” and V is obtained as

s A_n+AcA An _pA

eV =elhe St — ¢ G Ghe it —e Gl (2.128)
with the soft mode bare propagator defined as
GO - G() - GO . (2129)

Now, we derive the exact flow equation of the effective interaction. In the same
manner as Eq. (2.113), we can obtain

d A o VA d 7vA
an” Xl = et gre
— _eV/\ % [e G(/)\ e—Sim]
:—GVAAGAei A
_ o |:’A N9 VA}
= —e Gy (x,x')——e
L 5200 & )

o E gl et )

x,x!

SYA SYA . S2pA
=Y |+==_G — — G, ¥ ) ————— ]
Z{ (0 00 ) 5y ~ 0 ) g
SVN o SVA L g2PA ]
—— + Gy (x,x)—— +GH'(x, ) —————~
2{ ox () 0 ) 3G T 0 ) )
N AN % A O2VA
_ (57( Gl 5X>—Tr<G0 52(52()' (2.130)

This is Polchinski equation [70] which is the exact flow equation for the effective
interaction. Using the relation between V[x, x| and G[77, %] Eq. (2.78) and x = G,
X = G'7, we also obtain the flow equation for G*[77, 7] Eq. (2.113).
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2.5 Hierarchy of the Flow Equation

While the exact flow equation Eq. (2.118) can be solved directly only for a few sys-
tems, we are usually interested in a few number of 1PI vertex functions in practice.
Therefore, we perform the Taylor expansion of the flow equation in powers of the
fields to obtain the hierarchy of the equations. Note that the Taylor expansions with
respect to fermion variables are exact thanks to the nilpotent property of Grassmann
variables. Hence expanded flow equations are yet "exact".

We introduced the expansion of I'* [, ] before. Hence, the left-hand side (LHS) of
Eq. (2.118)

[ee]

(LHS) = ST 9] = 1 S AP G y) (2.131)

m=0

To expand the right-hand side (RHS) of Eq. (2.118) systematically, we introduce the
matrix

UM, ¢) = T [, 9| - STy, ]
P=y=
=[G = 8T g, ]
- _ i 52A(2m)A[¢/ lP]
m=2
= —(2AWA L 52 A©ON L 52 ABIA 4y, (2.132)

Using this matrix and expanding as geometric series®,

-1
(T2, y]) ! = ([GA]* A w])

{671 (1- vt ) }

(1-G Uy, y))'G"
(1+GAUN + GAUAGAUA + -+ )GA. (2.135)

6Here we use the formula for inverse matrix:
(AB)"1 =B71A7l, (2.133)

which is proved as
(AB) 'AB=B'A"1AB=B"'B=1. (2.134)
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Substituting this into the Wetterich equation Eq. (2.118),

TN = i gyl

= —(, Q") - ETr <QA<1 +GAUA + GAUAGAUN - - )GA>
= —(p, Q") - Tr(Q*G*) - %Tr <GAQA(GAUA + GMUAGAUN +

= _(¢, QAlP) — Tr(QAGA) _ 1'1"1- <GAQAGA(UA 4 UAGAUA 4. ))

2
. . 1
= — (g, Q") — Tr(Q*G™) + 2Tr(SA(UA +UAGAUM + - )).

(2.136)

Here we define the single-scale propagator
SN = diag(s?, —[S*]T) = ~-GAQAGA, (2.137)

with

sh = —GAQAGM (2.138)

It is called the single-scale propagator because it has the factor 96" (iko, k). It is ob-
tained by the derivative with fixing self-energy as below. From the Dyson’s equation

[GM ™ =[G)]t -4, (2.139)

we can obtain the single-scale propagator ’

d A d A\—1
— — (G %)
dA TA:fixed dA TA:fixed
d
= (@ -z
dA TA:fixed
—_ —(QA o ZA>71QA<QA . ZA)fl
— —GAQAGA
=Sh, (2.143)
“Here we use the derivative of inverse matrix. From
A7) A(x) =1, (2.140)
dA=1(x) 1, dA(x)
P A(x) + A7 (x) e 0. (2.141)
Thus,
-1
dA™(x) _ _ 4-1dAL) 4 (2.142)

dx dx

)
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Finally, we compare the same order term in LHS and RHS and obtain the infinite
hierarchy of the flow equation:

% AOA — _Tr(OAGH), (2.144)
T\A(z) —(, Q™) — 1T1.~(sA52,4(4>A), (2.145)
diAA@)A = ; r(SA 82 AN 4+ %Tr(sAJZA“)AGA(SZA(‘*)A), (2.146)
%A“)A ;Tr(SA(SZA Ay 4 %Tr(sA(szA(@AGA(SZA(‘*)A)

+ %Tr(SA(SZA DAGASZAON - %Tr(SA52.,4(4)/\GASZA(4)AGA52A(4)A),
(2.147)

From zero-th order equation Eq. (2.144), we obtain the flow equation for the free
energy (grand potential):

d 1 .
T BTr(QAGA)
=3 ZQA (x', x)G™(x,x"). (2.148)

Then, we calculate the flow equation for 1-particle vertex Eq. (2.145).

(LHS) = A( A, y) = ZF P(x)y(x)

xx’

_ _diA Z{QA(X’,X) ~EA0) P90

x,x’

— (9, Q™) Z—ZA (', x)p(x)p(x),  (2.149)

xx’
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and
(RHS) = —(,Q"y) — %Tr(sA52A<4>A)
= —(9, Q%) — %Tr(SAEcSA(‘*)A[@, 9] — (SM)TSTAGA)
= —(9, Q") - % Z(SA(y, y)8,8, AN — SA (Y, y)6,5, A% A)

vy
. 1 _ _
~@ QM) -5 L (SA@, y)8y 8y AN + SA(y’,y)éyéyfA(‘”A)
vy
—(p, Q™) ZSA Y, y")0,8,ADA

—(p, Q%) Z Y S8,y )8y 8, TWA (], x; x1, x2) (6] ) (x5 (x2) (x1)

!
yy Xl Xz
X1,%)

—(p, Q%) ESA vy

( X TN, 5, 590

x,x!

+ Y TOAY, s x,y) () p(x)

x,x!

+ L TN sy, R (g (x)

x,x’

— Y Ty xly)w(x’)lP(X))- (2.150)

x,x!

Here, from the definition of I'¥) and the anti-commutation relation of Grassmann
variable derivative,

TOA Y, 3y, x) = TN,y x,y), 2.151)
TWAY, X x,y) = T,y %, y), (2.152)
1"(4)A(xl, y/; v, x) _ —F(4)A(x’, y/; X, y) (2153)
Using these relations,
(RHS) = —(9,Q"y) + L) SNy y TOME, 5, y) () (x). (2.154)
vy xx

Therefore, we obtain the flow equation for the self-energy

%ZA (x/, %) ZSA v,y )TN,y x,y). (2.155)

In the next step, we calculate the quartic term,

d 1 '\, /
(LHS) = d—AA(“) X;Z dAF4>A(x1,xZ,xl,Xz)llf(xl)lP(Xz)lP(X2)¢’(xl), (2.156)
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and

(RHS)
= —%Tr(SA52A(6)A) + %Tr[SAdzA(4)AGA52A(4)A]

= —Tr(Sh65.A©M)

[ SA 0 SOAWN AN /GA 0 SEADA 35 A@A
T2 r[( 0 —(SA)T> <(55A(4)A (5(5A<4)A> < 0 —(GA)T> (5(5 ABA 55 ABA

= —Tr(5%56.A0)%)
+ %Tr[SAgéA(‘l)AGAg(SA“)A + (M) T8 AW (GM)Tos AN
— Tr[SA66ANAGAE6ANN - (M T55 ABAGAFADA
= —Tr(5%56.A0)%)
+ Tr[Sh 36 AWAGAGs AN
— Tr[SA00ABAGASADA 1 (SMT55 ADAGAGEAMA),

(2.157)

Performing functional derivative in the same manner as equation for the self-energy

above,

d

d—AT(4)A(x£, Xh; %1, X2)

= — Y GMy1, v4)S™ (2, vh) | TWA (x, xh; y1, y2) TWA (11, s x1, x2)
Y1,Y2
YiYa

— {F“”A(xi,y’z; 21, y1) TN (W, x5y, x2) + T (], v 31, y2) TN (yh, x5 1, x2)

+ {F(4)A(x’2,y’2;xl,yl)r(‘*)“(yi,x’l;yz, x2) + TWA(xh, s 20, 12 ) T2 (yh, x5 91, x2)

=Y SMy, y ) TOA (xf, x5, vs 21, 22, y). (2.158)
vy

The first, second, and third line of Eq. (2.158) is particle-particle (PP) channel term,

direct particle-hole (direct PH) channel term, and exchange (crossed) particle-hole
(exchange PH) channel term, respectively.

Finally, using the relation

}
|

)

|

VAN A _ T A L _ 1T @ A T _T1T@®ANrr .
T (xh, xh; x3,x4) = —TWA(x, xh; x4, x3) = —TWA (2, 645 x3, x4) = TN (), 45 x4, x3),

(2.159)
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FIGURE 2.2: Diagrammatic representation of the hierarchy of the flow

equations. The thick lines denote Green’s functions and the slashed

thick lines represent the single-scale propagators. The flow equation

of 2m-particle vertex contains a tadpole diagram consisting of 2(m +

1)-particle vertex. Therefore the hierarchy of equations does not close
within finite order.

we can rewrite Eq. (2.158), as

d
af(‘*)/‘(xi, xh; X1, %)

1

== Y LAy vh) | 5T (00, 21, y2) DO (91, v 21, 32)
Y1,Y2
Vi

— TWA (R, v x1, y1) TN (W), x5 12, 72)
+ T (2, yhs 21, y1 ) THA (yh, x5 2, x2)

— Y SNy ) TOM g, x5, s 2, %2, y), (2.160)
vy’
with

LMy1, v 92, v5) = G™(y1, v1)S™ (v, vh) + S™ (y1, 1) G (v2, ) (2.161)

These hierarchy of the flow equations does not close at any finite orders because the
flow equation for T?")2 has the tadpole-like diagram with T?"+2)A_ The schematic
figure of these hierarchy of flow equations are shown in Figure 2.2. The full prop-
agators are represented by thick lines and the single-scale propagators are shown
by thick slashed lines. Therefore, in numerical calculation we need truncation of
the infinite hierarchy. One of the natural truncation schemes is, so called, level-mj
truncation. In this truncation scheme, we neglect all flows for T@MA for m > my.
The level-m truncation contains all perturbative contributions up to m-th order in
the bare interaction. In level-1 truncation scheme, for instance, we only consider
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the flow for self-energy (& free energy), and replace I** to T¥Auv in the tadpole-
like diagram. This truncation is extremely simple, however it is useful and good
sometimes in calculation of the quantum transport phenomena [55]. More generally
used scheme is level-2 truncation in which the RG flows for ™A (1 > 3) are ne-
glected and T'® in the tadpole-like diagram in the flow for T4)A is replaced to its
bare value, i.e. zero, in most cases. We will adopt another truncation scheme called
Katanin truncation [81] later. In addition, level-2 truncation FRG is also called as
one-loop FRG because the diagrams contain one internal fermion loop in momen-
tum space [56].

The level-2 truncation FRG framework is closely related to parquet equations.
Parquet framework [82-87] is an exact and self-consistent framework for the 2-particle
vertex and the self-energy. In the framework we decompose the 1PI vertex (full ver-

(4) (4)

tex) as T® = R+ ’yl(;g + Yy + Tep, Where R is the fully irreducible vertex and

’)/£4) (r = PH, PH, PP) represent the reducible (2PI) vertices of each channel (here
PH, PH, and PP mean direct particle-hole, crossed particle-hole, and particle-particle
channels, respectively). We suppress their arguments here for ease of reading. These
reducible (2PI) vertices are reducible (2PI) only in their own channels, i.e. they are
2-particle irreducible for other channels. Thus we define irreducible vertices in each

channelas I, = R+ } 4, ’)fﬁfl). These reducible (2P]) vertices are obtained by solving
self-consistent Bethe-Salpeter equations in each channel. The Bethe-Salpeter equa-
tions are represented schematically as the second line in Fig. 2.2 without d/d A in the
left-hand side and the T(®)* term in the right-hand side. In addition, the single-scale
propagator and two 2-particle vertices in the right-hand side are replaced by the full
propagator G, I,, and T'*), respectively. Obtained vertices are used to calculate the
self-energy in Schwinger-Dyson equation and calculated self-energy is fed back to
the Bethe-Salpeter equations through G. This self-consistent procedure is the par-
quet formalism. In practice, we replace the fully irreducible vertex R with the bare
2-particle vertex T'*)A®R, This is called parquet approximation or first-order parquet
equation. The level-2 truncation FRG has the same diagrams as we can see in Fig. 2.2.
The multi-loop FRG extension is based on this fact [85-87]. The multi-loop contribu-
tions are implemented through the parquet diagrams. In 2020, using that multi-loop
extension, a quantitative comparison between the numerical results of multi-loop
FRG and the deterministic quantum Monte Carlo method for the Hubbard model
on the square lattice was performed [72]. Moreover, it is discussed that the parquet
approximation with the bare propagators and one-loop FRG are equivalent through
the problem of the X-ray absorption in metals recently [88].

2.6 Example: Single-Band Spin-Rotation and Translation In-
variant Systems

At the end of this chapter, we introduce FRG flow equations of fermions in single-
band spin-rotation and translation invariant systems [55, 59] as an example. It is
also the purpose of this section to show concrete forms of the regularized Green’s
functions and the single-scale propagators.

Full and Single-Scale Propagators

At first, we consider the regularized bare propagator G Here, x = (iwp, k, «) and

G\ (iwn, k, a; i, k', 0') = BBy, 10 0 0a wr GE (ion, k), (2.162)
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with A
Gt (icwn, k) = 6" (wn, k) Go(icwn, k) = 91<w€k>
— Gk

Here 62 (wn, k)isa general cutoff function. We can obtain the form of the regularized
full propagator G* with the self-energy = by Dyson equation:

(2.163)

[GA (iwy, k)] 7! =[G (iwn, k)] 7Y — Z2 (1w, k)
= [9A(iwn, k)]’1 [Go (iwy, k)]’1 — ZA(iwn, k)

= 0" (iwy, k)] 7! ([Go(iwn,k)]l — 9A(iwn,k)ZA(iwn,k)>. (2.164)
Therefore,

o G iwy, k) = 02 (iwy, k) ([Go(iwn, k)]t — 02 (iwy, k)X (iwy, k)) B

_ 02 (iwy, k)
I —Ck — oA (iwn, k)ZA(iwn, k) : (2.165)

In the next step, we derive the single-scale propagator S* from its definition
SA (iwy, k) = — G (iwn, k) Q™ (iwy, k) G (iwy, k). (2.166)
The regularized inverse bare propagator and its derivative are

Q" (iwn, k) =[G (iwn, k)]~ = [0%(iwn, k)] [Go(iwn, k)] 1 = (0™ (iwn, k)]~ icwn — ],
(2.167)
and

O (iwy, k) = dC}\QA(lwn,k):—<8A9A(iwn,k))[GA(iwn,k)] 2[icw, — &]. (2.168)

Therefore, the single-scale propagator is

SA(iwn,k) = —GA(iwn,k)QA(iwn,k)GA(iwn,k)

0™ (i, k)

2
= iy — & — 08 (1o, K)ZA (i, k)} <8A9A(iwn, k)) (02 (iwn, k)] 2 [iw, — &]

(iwn - ék)a/\gl\(iwnr k)

= . 2.169
[l — G — 07wy, K)ZA (i, k)2 (2:169)

Now we specify the cutoff function as a sharp step function of frequency ®
0™ (wn, k) = 6™ (wy) = O(|wa| — A). (2.170)

The single-scale propagator is ill-defined with this choice due to the coexistence of
delta peak in the numerator

AN (wy) = 9aO(Jwn| — A) = =6(wn| — A), (2.171)

8Later we consider zero temperature limit and Matsubara frequency become a continuous variable
strictly in the limit.
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and a discontinuity in its denominator, while this sharp cutoff function is convenient
for analytical calculation. One of the prescriptions is to choose the sharp regularized
step function ©¢(x) as a cutoff function. Suppose that ®,(x) has limit (¢ > 0)

Oc(x) <% O(x), (2.172)
and satisfies
3:0c(x) = bc(x) = 5(x). (2.173)

Thanks to properties above, the sharp regularized step function satisfies the relation

5e(2) f(x,0c(x)) <% 6(x) /0 " du £(0,u), (2.174)

for any continuous functions f. This relation does not depend on the detailed shape
of ©¢(x). This is sometimes called as Morris lemma [80]. Using this lemma, the
single-scale propagator is obtained as

(iwn — Ck)Onde (|wn| — A)
[iwn —Ck — ®e(iwn)ZA (iwnr k)]z

M (iw, k) = —

1
— G — uxA(iwn, k)2

e—0

1
— —(iwy — &k)O(|wn| — A)/O du liwy,

= —[ZM(iwn, k)] (iwn — k)8 (|wn| — A)< 1 : )

iwy — G — 20 (iwn, k) wy — Gk

_ 6(Jwn| = A)
TR Gaon k)’ (2.175)

There is no longer the coexistence of delta peak and discontinuity.

Spin Independent Flow Equation

For derivation of flow equations, we have to parametrize the vertex functions as
well as propagators. In general, if the system has full spin-rotational symmetry, the
vertex functions can be written as [56, 65]

2m)A\ (=t <~ L~ ~
NN G R YIS ST TURRRIE A

= Z Sgn(P) V(er)A(jg’ T ,f’,ﬂ;fp(l), o /jp(m))(s ’ T 50{4,,,04’ . (2176)

X1Xp(1) P(m)
Pe6y,

Here, &, is the symmetric group and P represents its elements. & denotes the set
of appropriate quantum numbers and frequency(time) without spin projection: x =
(%,a). For the choice of labels in this section, ¥ = (iwy, k). y(@m) ig m-particle (2m-
point) spin-independent vertex function.

Specifying m =1,

= |QM#; %) — ZMF; %) | Oun, (2.177)
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and m = 2 [59] 7,

DA =t ) ool ~ _ HA =l s
r® (X107, Xpah; By, o) = 14 (%), %; xl,xz)éa a15a; t — 174 )(xl,xz, %o, xl)éa/ a25a; a

(2.178)

Substituting these relations into 1st and 2nd order flow equations Eq. (2.155) and
Eq. (2.160) (assuming T'(®) = 0 with level-2 truncation in mind) and performing
summations over spin variables, we can obtain spin-independent flow equations.
Form =1

—IMNE R = LS ) VINEL e %) - 2vIONEL 7R )], (2179)

and, the flow equation of ')A is decomposed into a part proportional to O], Oty
and a part proportional to 6y 4,04 4,- These parts are equivalent and from former
part we can obtain

d

av(@/\(xl, x2/ X1, xz)

=— Y L0, 7592, 1) [v<4>A(f&,fé;gl,yzW“)A(y*a,yé; %1, %2)
y1 y2

~

Y12
+ {—2V(4)A(fi,?§; &1, 1) VWA (7, %5 72, %2)
+ VN (#, 7 %1, 1) VN (), 755 %, 52)
+ VO E, 701, 1) VI3, B9, fz)}
+ VIO (&, 71, 1) VIO (77, 71 %, yﬁ] . (2180)

The first and the last lines of RHS are PP channel and exchange (crossed) PH channel
contributions, respectively. The second to forth lines, enclosed in parentheses, are
the contributions of the direct PH channel. At last, we parametrize Green’s functions
and vertices as

SM(x, %) = SM(K) x BQS(K — K'), (2.181)
G (%,%') = GM(K) x BQS(K — K'), (2.182)
>AMx, &) = 22 (K) x BQS(K — K'), (2.183)
VIO F, 75 %1, %) = VMK, K, Ky) x BOS(K, + Ky — Ky — Ky).  (2.184)

Here we use simplified notation for generalized 4-component momemta K = (iwy, k)
and 6(K — K') = 4, 46(k — k’). These delta functions come from Fourier transfor-
mation (see Appendix A), and reflect energy and momentum conservation laws.
Substituting these parametrization into spin-independent flow equations Eq. (2.180)
and Eq. (2.180), we obtain

72A / dP[ A(K, P, P) — 2VWA(K, P,K) | SM(P), (2.185)

9We can also decompose 2-particle vertex into spin-singlet part and spin-triplet part instead of
decomposition in the main text [89].
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and
d
T VMK K Ka) = TEb (K K, K)o+ Tehya (K3 Kb, K)o+ T e (K, K3, K1),
(2.186)
with
T (Ki, Kb, Ky) /dP VWA, KL, P)YVWOA(P, K, — P, Ky )LA(P,Ks — P),
(2.187)
Tema (K1, Ky, K1) /dP { MK, P Ky ) VWA (P + Ky, Kb, P)
+ VWA, P, K ) VBN (P, P+ K, P)
+ VWAKL, P, P+ K) VAP + K, K), P) }LA(P, P+Ky),
(2.188)
and
Tetrer (K1, K3, Kp) = /dP VWA, P — Ky, PYVWA(P, KL, K ) LA(P, P — K,,).
(2.189)
We defined Mandelstam-like variables
Ks = K|+ Kj = Ky + Ky,
Kt _Kl —Kl —KZ—Kz,
K, =K, —K, = Ky — Kb, (2.190)

and K, Ky, and K, are transfer energy /momentum of PP channel, direct PH channel,
and exchange (crossed) PH channel, respectively. In addition,

LMK, K') = GMK)SM(K') + SMK)GM (K'). (2.191)

2.7 Summary of This Chapter

In this chapter, we have reviewed the general framework of 1PI scheme FRG for in-
teracting fermion systems. First, we defined the generating functionals of the many-
particle Green’s functions and vertices. Then, in order to consider the Wilsonian
renormalization group, the infrared cutoff was introduced as the flow parameter,
and the exact renormalization group equation was obtained by performing the flow
parameter derivative on the functional.

Then, in order to consider the Wilsonian renormalization group, we introduced
the infrared cutoff as the flow parameter, and differentiated the generating function-
als with respect to it to derive the exact renormalization group equation. By Taylor
expansion of both sides of the equation for Grassmann field, we derive the flow
equations for the vertices of each order, which we have to solve in practice.

Finally, as a typical example, we presented an application to single-band systems
with spin-rotational and translational symmetries. The Hubbard model, which is a
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typical model of strongly correlated electron systems, is included in this example.
This provides the basis for the PFFRG that we use in this doctoral dissertation.
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Chapter 3

Pseudo-Fermion Functional
Renormalization Group

In this chapter, we explain pseudo-fermion functional renormalization group (PE-
FRG or pf-FRG) approach [53, 54, 90], used to obtain most results in this disserta-
tion, which is a calculation method for unraveling frustrated quantum magnetism.
At first, we give a brief overview of FRG for quantum spin systems. In section 2 and
subsequent sections, we review pseudo-fermion representation of quantum spins
and the formulation of FRG for pseudo-fermions. Some of our definitions of func-
tions and ways to explain may be little different from Johannes Reuther’s original
formulation in Ref [91]. However the resultant flow equations are the same. Al-
though there have been several studies applying PFFRG to models with Kitaev-type
interactions, there is no literature describing the PFFRG flow equations for the case
with these interactions explicitly. In this dissertation, we will perform calculations
for models with Kitaev-type interactions, so we will derive explicit flow equations
for these models in this chapter.

3.1 FRG for Spin Systems

Since the FRG can be applied if the generating functionals can be defined, it can also
be applied in systems described classical fields. Studies on the analysis of classical
spins using FRGs formulated in multicomponent classical fields have been contin-
ued mainly in the context of statistical mechanics [56, 60, 64, 66]. In a similar context,
quantum XY spin systems have been studied as hard-core boson model and quan-
tum O(2) model [92-94].

Although FRG for quantum spin systems have not been established in the con-
text of condensed matter physics, the pseudo-fermion functional renormalization
group (PFFRG) method was proposed in 2010 by J. Reuther and P. Wolfle !, and has
been applied to many systems [53, 54, 90, 91]. As we will discuss in detail in the fol-
lowing section, we applies FRG to fermion systems by rewriting the quantum spins
as auxiliary fermions (Abrikosov fermions [98]) in PFFRG. This allows us to discuss
the competition between different ordered states and between ordered and quan-
tum spin liquid states in quantum spin systems without bias, at least in principle,
because the different interaction channels in the fermion systems are treated with
equal footings in FRG, as discussed in Chap. 2. PFFRG is a relatively new method
for quantum spin systems and its extensions are still being intensively studied. We
briefly review these developments in Sec. 3.7.

IThey were originally working on the diagrammatic study of quantum spin systems using
Abrikosov fermions [53, 54, 95-97].
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Although not dealt with in this paper, another FRG for spin systems called spin
functional renormalization group (SFRG) ? has recently been proposed and is begin-
ning to be used [101-104]. In SFRG, we consider the renormalization group equa-
tions for the generating functionals of the Green’s functions of the spin operators.
Although the Wick decomposition of the spin Green’s function is complicated, the
systematic treatment can be achieved by functional differentiation. In SFRG, unlike
the FRG introduced so far, we introduce the flow parameter A as a deformation pa-
rameter of the interaction term in the Hamiltonian. There is no interaction At the
initial condition (A = 0), and as A increases, the interaction is incorporated. Finally,
the results for the original Hamiltonian are recovered at the end of the flow (A = 1).
The SFRG also has the advantage that it can be applied directly to spin systems with
arbitrary spin length S.

Furthermore, in the end of 2020/the beginning of 2021°, a new FRG for quantum
spin systems emerged in arXiv server: pseudo-Majorana functional renormalization
group (PMFRG) [105]. In this FRG, quantum spins are rewritten by SO(3) Majorana
operators and Majorana fermion FRG are performed at both zero and finite tem-
perature. The results are good agreement with that from exact diagonalization and
high-temperature series expansion. Despite its accuracy, PMFRG has the problem
that the flow diverges around T = 0. In order to reduce that divergence, multi-loop
expansion implementation is to be required.

While we are looking forward to the future development of SFRG and PMFRG
as well as PFFRG, now we return to PFFRG and explain the detailed formulation of
it that we use in this dissertation in the following section.

3.2 Auxiliary Fermion Representation

The difficulty of systematic calculations based on spin Green’s function is due to the
fact that the commutators of spin operators are not numbers but operators:

[SF, 8] =1) eMAsh, (3.1)
A

where €*! is a Levi-Civita symbol. Here, y, v, and A are indices of spin compo-
nents (x, y, z). Especially, Wick theorem of spin operators is more complicated than
that of bosons and fermions [106]. Therefore, bosonization or fermionization is de-
sired for systematic field theoretical calculation. A general way for bosonization is
Schwinger-Wigner representation [107]:

1
st=33 blol b, (3.2)

a,n’

with bosonic creation and annihilation operators bl and b, (x,&’ =1 or |)which
satisfy
[ba, b1/ = O - (3.3)

This representation is applicable to spins with arbitrary S and holds the spin commu-
tation relation Eq. (3.1). However the Hilbert space is enlarged by this representation
and it contains unphysical subspace. Hence it is required to restrict Hilbert space to

2PFFRG was also sometimes referred to as spin-FRG for a while after it was proposed [99, 100].
3The paper was submitted on December 29th in 2020, and it emerged on the arXiv web page on
January 1st in 2021.
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physical subspace satisfying
biby + bjb, = 28. (3.4)

This condition is derived from the relation

bib, + btb bty + btb
§% = (S%)2 + (8¥) + (§7)2 = < () : ! ¢> [( T Tz ! i) +1}, (3.5)

and the identity for the quantum spin
§?2 =5(S+1). (3.6)

Boson operators in Eq. (3.2) can be replaced by fermion operators £ and f, only
when S =1/2:

1
st=3 Y fhol fu (3.7)
o,
and

{fur fili} = Gup- (3.8)

A fermionic counterpart of the relationship Eq. (3.5) is

2 _ 3 st te2 3t t

§° = Zl(foT_fuci) :1(foT +f1f1)- (3.9)
We use the fact that fermion occupation number is 1 or 0: (f] f,)?> = f!f, and the

fermion commutation relation Eq. (3.8). Therefore we have to restrict the Hilbert
space to its subspace satisfying half-filling condition

fAAr+fif =1 (3.10)

In most cases we deal with problems with S = 1/2 and since the fermions are eas-
ier to handle in numerical calculations based on field theory, PFFRG adopts this
fermionization sometimes called Abrikosov fermion representation [98]. Fermionic
Green’s function based on it has been used for Feynman-diagrammatic studies of
quantum spin systems [95-97]. This fermionization is also used for RVB mean-field
theory of the quantum spin liquid where f, and f represent the spinon degrees of
freedom; sometimes called "parton construction" [1, 5, 6] .

Hamiltonians of the S = 1/2 quantum spin systems treated in this dissertation in
general have the form

1
H = 5 22]}]%"55‘5;, (3.11)
ij WY
where i and j are site indices.

For example, in the case of the nearest-neighbor antiferromagnetic (AFM) Heisen-
berg model (J > 0)

) (3.12)

W s _ Jo*"  iand j are nearest-neighbors
]ij = ]11 .
0 otherwise

4"Parton” is firstly introduced by Richard P. Feynman to interpret high-energy hadron colli-
sions [108].
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and in the case of the ferromagnetic (FM) Kitaev model (], Jy, J. > 0)

—Jx6#* 6" bond between i and j is x-bond
—J,6"61" bond between i and j is y-bond

Ji = Jet = o : (3.13)
/ / —J.6"26""  bond between i and j is z-bond
0 otherwise
In PFFRG, we represent quantum spins on each site like Eq. (3.7):
1
S =5 ) fiwuufu (3.14)

o,

Fermionic creators and annihilators satisfy the commutation relation as Eq. (3.8)

{fioc/ _fi.tp(/} = 5i,i’5a,a’~ (315)

Due to the fermionization of spins Eq. (3.14), the Hilbert space is enlarged. Each site
has four fermionic states:

0, i )i [T (3.16)

The first empty state |0); and the last doubly-occupied state |1]); are unphysical
(S = 0) and it is required to restrict states to those corresponding to the original spin
states |1); and ||);, which satisfy the local half-filling constraint

Q=1 with Qi =f{f; +ff, (ateachsite). (3.17)

Writing the Hamiltonian Eq. (3.11) by the pseudo-fermions Eq. (3.14), we obtain a
fermionic Hamiltonian which we directly treat by FRG:

iny
1 Jij
H=253 Y )~ OuaThpfufip fipfia (3.18)
ij wp KV
04/,‘8/

For projection to physical sector of the pseudo-fermion Hilbert space fulfilling the
condition Eq. (3.17), we adopt grand canonical ensemble and introduce chemical
potential

H—oH—pn) Qi (3.19)
i
In one of the exact projection schemes, we set the chemical potential
n=-—A, (3.20)

and perform the limitation A — co after differential of the grand partition function
with respect to the fugacity in order to obtain the exact projected partition func-
tion. This scheme was used for Kondo effect and mixed-valence problem [109, 110].
Unfortunately, this projection is not applicable for lattice model considered in this
dissertation and it can be performed only in models like Kondo model and Ander-
son impurity exactly [91]. Another exact projection scheme proposed by Popov and
Fedotov is realized by setting imaginary-valued chemical potential [111]

U= —?. (3.21)
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In this scheme, the expectation value of an arbitrary physical quantity O calculated
with the original spin Hamiltonian (O) is equal to that calculated with the chemical
potential Eq. (3.21) (O)ppy due to cancellation between unphysical contribution of
the Q; = 0 (empty) sector and that of the Q; = 2 (doubly-occupied) sector. Note
that for unphysical operators i.e. operators ill-defined by the original spin operators
the expectation values of them are meaningless and (O) # (O)ppy even if calcu-
lated. With imaginary-valued chemical potentials the grand canonical Hamiltonian
is no longer hermitian and requires more computation costs than average projection
scheme introduced below although it is applicable for the lattice model considered
here [112, 113]. In order to calculate more simply, we adopt an average projection
scheme where the local half-filling condition Eq. (3.17) is replaced by the average
condition

Q) =1. (3.22)

Due to the particle-hole symmetry (particle-hole gauge redundancy more precisely)
, this average constraint can be implemented by

=0, (3.23)

In ordinal PFFRG calculation, we consider the absolute zero limit for a simpler cal-
culation (we will mention finite temperature calculation later). At first glance, ex-
act projection proposed by Popov and Fedotov (u = —inT/2) and average projec-
tion (1 = 0) appear to be equivalent in the T — 0 limit, but the average under
u = —intT/2 and the limit T — 0 do not necessarily commute. Nevertheless both
projections are expected to be identical at T = 0 here. It is because pseudo-fermion
number fluctuations are not allowed energetically at T = 0 [54, 91].

3.3 Parametrization of Functions

For implementation of FRG for quantum spin systems, we have to parametrize prop-
agators and vertices for the quantum numbers carried by pseudo-fermions con-
structing spins and have to introduce some methodological modifications to FRG
schemes shown in previous chapter. In ordinal FRG for fermion systems, especially
electron systems, described in the previous section, we parametrize functions in mo-
mentum space except some cases, for instance, for transport phenomena [114-116]
and for inhomogeneous systems [117]. It is the same for bosonic systems [56]. In
PFFRG for the spin Hamiltonian Eq. (3.11), we adopt real space representation i.e.
pseudo-fermions carry site indices in addition to spin indices. Therefore we take the
set of quantum numbers that specify one-particle states and frequency (or time) x as
x = (w,i,a): w, i, and a are Matsubara frequency, site index, and spin index, respec-
tively. Corresponding it, the summation is replaced as Y, = Y, ¥, | ‘%—‘7;’. Remember
that we write Matsubara frequency as w hereafter because of its simplicity and con-
tinuity of the Matsubara frequency due to zero temperature limit % Yo — [ 521—‘7;’.
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Parametrization of Propagators and Self-Energy

Due to absence of a kinetic term in pseudo-fermion Hamiltonian Eq. (3.18), pseudo-
fermions are strictly localized and its bare Green’s function has the form

Go(x,x') = Go(iw, i, ;i 7', &) = Goig(w) X B6(w — w')6; 184 o

= GQ(C(J) X ‘B(S((,U — w’)&i,i/éa,a/, (324)
with )
Golw) = . (3.25)

Hereafter we adopt the average projection scheme y = 0 and T — 0 limit. In ad-
dition, we assume that all lattice sites are equivalent and omit the site indices of
propagators hereafter. This is trivial for the bare propagator and it is applicable to
all models in this dissertation. This locality of the Green’s function is also under-
stood by the local U(1) gauge redundancy [118, 119]. We can parametrize the full
propagator and pseudo-fermion self energy as the bare propagator:

G(x,x') = G(iw,i,w;iw’,i,0") = Giy(w) x B6(w — W')8; 116y u

= G(w) x Bé(w — w")b; 10y, (3.26)
and
L(x,x') = E(w) x BS(w — w')8; 116y - (3.27)
Combining them, we can write
1

G = —. 3.28

@) = 2w (3.28)
Thanks to the particle-hole symmetry, a spectral function of the pseudo-fermions is
even function A(e) = A(—e) for real variable e. From the Lehmann representation
of the Green’s function,

Glw) = /_o:o dsicA;(f)s
®  Ale) X (—iw —¢
:/wdg()wz&82 )

= —iw /oo de Ale) /Oo de Ale)e

w? + €2 oo W? g2

[, Ale)
= —iw [ de 5 (329)

Therefore, we can conclude that the Green’s function is odd function of the Matsub-
ara frequency and a pure imaginary function:

G(—w) = —G(w), (3.30)
G(w) €iR. (3.31)

The self-energy should have the same symmetry due to Dyson equation:

Y(—w) = —X(w), (3.32)
>(w) €iR. (3.33)
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From these properties, we define a real-valued self-energy
Y(w) = —iy(w). (3.34)

It corresponds to damping constant of the pseudo-fermions. From the above discus-
sion, the pseudo-fermion Green’s function with damping constant - has the form

1

G(w) = R EEm— (3.35)

Note that the damping constant involves a sign function of the Matsubara frequency
in the denominator. The retarded Green’s function GX is
1

Gie) = =5 ” (3.36)

with real frequency variable e. And in real-time representation,

GR(t) = (ai(t)e—f/ T (3.37)

with the pseudo-fermion lifetime 7 = 1/+.
For FRG flow equation, we introduce IR cutoff A. In ordinary PFFRG calculation
we adopt sharp frequency cutoff scheme i.e. we choose

02 (w) = O(jw| — A) (3.38)

as a cutoff function. With this function, the regularized bare propagator is

O(|w| = A)
A _
Go (w) = R (3.39)
and it satisfies
0 A=Ayy =
GMw) = uv = (3.40)
Go(w) A= AIR =0.

In the same manner as in section 2.6, the full propagator is

OJw| = A)
Al —
W) = e = A) A (@)
_ 0(w|—A)
iw— XM w)
O(jw|—A)
= 7 41
iw +iyMw) (3.41)
In addition, the single-scale propagator can be parametrized as
S™(x,x") = S™(w) x Bo(w — wW')8; 16, (3.42)
and has the properties as
SM—w) = =M w), (3.43)

SMw) € iR, (3.44)
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due to those of the Green’s function. We can obtain a simple formula for the single-
scale propagator by Morris lemma [80] in the same way as section 2.6,

§8(w) = =G (w)QM (W) G (w)
S(lwl=A)

iw — A (w)

__S(wl=A)
= i) (3.45)

Parametrization of Vertices

We also have to parametrize vertices, especially 2-particle vertex function. By strict
locality of all propagators, the site indices of incoming legs of vertices and corre-
sponding indices of outgoing legs have to be identical. This is also understood by
the local U(1) gauge redundancy [118, 119]. Therefore we can parametrize site in-
dices dependence of the 2-particle vertex as

T (x], xh; x1,x2) Ffl\lz(w{(xi,wéo/z;wlal,wzaz)éigliléi&iz

rzAz2 (Cdélxlz, wi’xll; Wik, w2“2)5121151’ in* (346)
We omit the suffix (4) for parametrized 2-particle (4-point) vertex. Because it is
simpler to write and we do not treat r(2m) (m > 3) hereafter.

Applying it to the flow equations of the self-energy Eq. (2.155) and 2-particle vertex
Eq. (2.160), then we perform the summation of site indices and extract only the terms

proportional to 6; ; d; ;, not to 6 ;6 ;, for the equation of I'*, we obtain

d .
a(—mw) X 278(w] — 1)y

_ 2n ZSA [Zrn] W', wiad; wiag, w'a’)
14

— T (wiaf, 'a;wia,0')|, (347
and
d A ! /
dA —~Liiy (wya7, wyta; Wi, WrK3)
dan d(U4 A
_ — - = L ,
2 27 2 LM (ws @)

3,04

A I [ A .
X [Filiz (wiar, wyny; wans, wang)Ti (Wans, waky; w10y, Wadz)

i1in

A e
Z Fll] Wiy, Wyl wiag, (1)3063)rji2 (w3az, Wykh; wWaty, Wrky)

+FA

/ . A !0 .
i (Wia], wyny; wloq,w3oc3)1f , (wzaz, W303; Walky, WD)
+T

N (s, wind; wiag, wans )Ty (wsns, whah; wany, wany)

r ol A ro! .
+TA (wang, wray; wray, wans )T (W], waas; wany, waaz) |, (3.48)

i1ip
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d direct PH
daA ')'6')_ - - AL

PP RPA vertex corrections crossed PH

FIGURE 3.1: Diagrams representing PFFRG flow equations Eq. (3.47)

and Eq. (3.48). The gray circle and the grey square correspond the

self-energy ¥ = —iy”* and the 2-particle vertex I'*, respectively. In

the diagram for the self-energy, the slashed line denotes the single-

scale propagator S*. The pair of slashed lines represents L (', w")
defined in Eq. (3.49).

with
LM w3, wy) = G (w3)S™M (wy) + S™ (w3) G (wy). (3.49)

In order to simplify the first term in the RHS of Eq. (3.47) (PP term), We use the fact
that the integrand is symmetrical with respect to w3 and wy, and the relation

A Wi ! _TA /! /1.
[i, (wia), waag; wiay, wag) = T (wpay, wiay; wa, wiay). (3.50)
This relation is derived from the identity
A / /. _TA / /.
r (x1/x2/ xl/xZ) =T (XZI X1, X2, X1), (351)

that we can prove by the functional differentiation of the effective action. Applying
Eq. (3.46) to the above identity and comparing the terms proportional to d; ; dy ;,
in both sides, we can prove the relation Eq. (3.50). Diagrammatic representations of
Eq. (3.47) and Eq. (3.48) are shown in Figure 3.1. The fist and last terms in the RHS of
Eq. (3.48) are PP and PH ladder, respectively. The second term contains an internal
summation over all sites and it corresponds to a RPA (random phase approximation)
bubble term. This internal summation is also in the first term in the RHS of Eq. (3.47).
Remaining the third and forth terms of Eq. (3.48) are vertex correction terms.

In the RPA term, the summation with respect to the site index of the fermion
bubble (j) runs over entire lattice and induce spin correlations. Therefore this term
induces magnetic orders, i. e., it contains the leading term in 1/S-expansion. In the
limit S — oo, this is equivalent to the spin mean-field theory of classical spins [54,
91, 95, 120]. On the other hand, PP and PH ladder terms contain the leading con-
tribution of 1/N expansion for SU(N) quantum spin systems [54, 91, 120]. In the
N — oo limit, these contributions are identical to RVB mean-field theory [121, 122].
These contributions involve quantum fluctuations and induce short-range dimer-
ization and its superposition. Hence their effects compete with long-range magnetic
ordering tendencies stabilized by the RPA term and stabilize VBC (valence bond
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crystal) states, RVB states, or spin liquid states. The vertex correction terms com-
bine these contributions. Note that the above descriptions of terms are based on the
discussions in which we only consider equation with a single channel contribution
with neglecting other terms. In PFFRG with all terms, we consider the contributions
of each term unbiasedly and those of the diagrams corresponding combinations of
those contributions.

In the next step, we perform more detailed parametrization of the vertex function.
We can parametrize the vertex for the general spin Hamiltonian Eq. (3.18) or Eq. (3.18)
including off-diagonal spin interactions as

v

A Pl MVA / /
[, (wia), waag; wing, waaz) ZFZ i (stu) 1,a1‘7a’2,zxz X 276 (wy + wy — wy — wy).
K

(3.52)

The number of independent frequencies is three and one of four frequencies is re-
stricted by energy conservation law. We can confirm this fact by the Fourier trans-
formation, see Appendix 3.7. We define independent Mandelstam-like frequency
variables s, t, and u from frequency arguments as

s = w) + wh = w1+ wy, (3.53)
t = (,Ui — W] = Wy — wé, (354)
U= w)—wy = wy — Wh. (3.55)

These variables have properties similar to Mandelstam variables [123]. s, t, and u
are transfer frequencies of PP, direct PH, and exchange (crossed) PH channel, re-
spectively. Equations (3.53), (3.54), and (3.55) can be rewritten as

wj = %(s +t+u), (3.56)
wh = %(s —t—u), (3.57)
w = %(s —t+u), (3.58)
wy = %(s+t—u). (3.59)

In Eq. (3.52), we introduce 4-valued variables ﬂ, 7 =0, 1, 2, 3. Recall that we in-
troduced p, v = x, y, z before. Here, ¢! = ¢*, 02 = 0¥, 0® = 0%, and ¢¥ = Tp4,: it
2-dimensional represents an identity matrix and (7 o 50/1 -
Fully parametrized 2-particle vertices in Eq. (3.52) obey the following symmetry re-
lations [119]:

i R if i E() =1

temeff LT ee
i (st u) = Th" (=, u), (3.61)
A (s, tu) = EE@TI N (s, —tu), (3.62)
T (s b u) = E(E@IT (5,8, —u), (3.63)
PN (s, tu) = &I (u, t,5), (3.64)
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where

—1 otherwise

é’(ﬂ)z{ﬂ =0 (3.65)

In this dissertation, we only consider diagonal spin interactions. Therefore, it is
sufficient to consider a simpler parametrization

A i !
rzm(wlalrwzlxzzwl“l,wzﬂéz)

{Zrlll s, t,u) M +TdA(s t )0t 410 M} X 2716 (W] + wh — w1 — wy).
1

111p
(3.66)
Corresponding the symmetry relations (3.60)-(3.64),
Fﬁfz\(s, tu), FdA(s tu) €R, (3.67)
A
1112 (s, tu) = F;‘zll (—s,t,u), (3.68)
A A
Lo (s tu) =150 (s, —t,u), (3.69)
u,A\ u,A\
L (s tu) =T (s,t, —u), (3.70)
A A
l"lll2 (s,t,u) =137 (ut,s), (3.71)
d,
1112 (s, tu) = —Fllfz\(u, t,s). (3.72)
For Kitaev interaction,
oA oL TVA £ T2A, (3.73)
for XXZ interaction,
oA = A £ 158, (3.74)
and for Heisenberg interaction,
v = vA =124, (3.75)

as examples. From the above symmetry relations, all [** are real.

The second term in Eq. (3.66) is a pseudo-fermion density-density interaction term.
Contribution from this term is generated through the RG flow and T%* becomes
finite although a density-density interaction term is absent in the pseudo-fermion
Hamiltonian Eq. (3.18). This T%* corresponds ' in parametrized vertices for gen-
eral spin interaction Eq. (3.52). Furthermore spin-density interaction terms like [*0A
and I'%* become finite if the Hamiltonian has non-diagonal spin interactions.

Initial Condition

Now we parametrized all functions in the flow equations. Finally, we refer to the
initial condition. We rewrite the general pseudo-fermion Hamiltonian Eq. (3.18) as

;w

Z112 o ;4
2 Z E < o 1x2 042511,1151’2 in aé,zx 041 a251’2 11(513 12) ZZ(XZfZZ‘XZflexl

1112“1062#1/
it iy 04 0t

(3.76)
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The corresponding pseudo-fermion action is

S, 9] = So[¢, ¢] + Sinel9p, ¥, (3.77)
with
_ dw!
Solp, ] = 2607;(;6;1 Z Z P (@1) [ — 01| iy (1) X 270 1,0 00 (@) — @i ),
v (3.78)
and

_ 1 [ dw) dw) dw; dw, Ly lz/ 7
Sint[lplll]] = Zl 27T 2 27 277 Z Z Z 12( aj,m zxz azfsz’l 11512 12 Ua/z Ua’ zxz(slz 11511 iz)
i1y a0 BV
zi 12 &1, “2
X 1101 o (wl)wzz (wz)lplzﬂéz (WZ)%M (wl) X 27[5(601 + wZ w1 — a)z).

(3.79)

Therefore, the initial conditions for the self-energy and vertices in Eq. (3.52) of the
PFFRG flow equations are

YA (w) =0, (3.80)
I

T (s, 1) = = (3.81)

I (s, t,u) = T (5,8, 1) =0, (3.82)

T80 (s ¢ 1) = 0. (3.83)

iz

It is obvious that the self-energy and pseudo-fermion spin-density and density-
density interaction terms are zero in the initial pseudo-fermion action. If there is
only diagonal interactions, the initial conditions for the functions parametrized in
Eq. (3.66) are flow equations are

7 (w) =0, (3.84)
]V.“

Tl (s, 1) = o (3.85)

T2 (5t u) = 0. (3.86)

i1ip

Although the vertex functions have no frequency dependence at the beginning of
the RG flow, the frequency dependence of vertices is generated along the flow.

3.4 Explicit Flow Equations

We apply the parametrization introduced in the previous section Eq. (3.66) to the
flow equations Eq. (3.47) and Eq. (3.48). Then we perform summations with respect
to spin indices and frequency integration in order to derive the flow equations for
fully parametrized vertices. Here we show the obtained flow equations explicitly.



3.4. Explicit Flow Equations 59

In the self-energy flow Eq. (3.47), the integration with respect to (Matsubara) fre-
quency w' can be done analytically thanks to sharp frequency cutoff:

=i ) a[] (3.87)

Wi W W)
An explicit form of flow equation for self-energy (pseudo-fermion damping) is

d , 1 1

A (@) = 2n/\+'y[ 2Z{FdAw+A0w A) — Fi'jA(w—A,O,w+A)}

+Z{Tﬁf (w+ A, w— A,0) — rgﬁ@—/\,wﬂ\,o)}
+ T8N w + A, w = A,0) —riﬁ(w—/\,wA,O)].
(3.88)

For isotropic (Jx = ], = J.) Kitaev(-Heisenberg) model
A N 1z
=T =T, (3.89)
due to simultaneous lattice and spin 37t /2 rotation. Hence we can simplify Eq. (3.88)
as
i7A(w) ! # 22 T w+ A, 0,0 —A) =T w = A,0,w + A)
dA 27 A+ A nj n

nhn

+3{FZA(¢U+A w—A,0) — Tfl'fl‘(w—A,w+A,0)}

+TMNw+ A w = A0) TP Mw — A w+ A, 0)]
(3.90)

Each term in RHS of the vertex flow Eq. (3.48) has two frequency integrals. We can
carry out one of two frequency integrations analytically on account of these delta
functions. Therefore, only one frequency integral is left in each explicit flow equa-
tions for vertices. Explicit formulae of flow equations for oA, TN, T%A and T9A
are shown below:

d d
affﬂ[z(s tu) = /oo ZC; {LA(CU &'+ 8)Ta (s, t,u; ")

A (A t)7;,Hd(s, tu;w')

+ LMW', w +u)7}Hcr(s,t,u;w’) , (3.91)
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with
Tl (s, tu; ') = —l"fl’l.[z\(s,—wz W', Wi+ "l 1112(5 wy + ', wy + W)
—F?l’f;(s,—wZ W', wi + T i (s wy + W', wy + ')
+ l"fl’f;(s, —wy — ', Wi + W' 12\(5 wy + ', wy + W)
+ T8 (s, —wh — &, ) + W T (s, w2 + @ wi + @), (3.92)

ﬁﬁfd(s,t,u;w') ZZFZA(w{—I—w/,t,aJl—cu')l“]ZlA(w2+wt —wh + ')
j

+ TN () + @ty — W TEN W + W, —wh + o t)
Flzfz\(w{—kw’,t,wl—w’)l"lyz’fz\(cuz+cu —wh + ', t)
l"fll‘:(w{ + 't wy — w’)l"fz’f;(wz + o, —wh+ ', t)
—l"lzl/:(w{th/,t,wl— ’)Fi‘z\(wz—%w —wh + W', t)
+l"fll/1‘(wi+w’,w1—w’,t)l"fl’f:(w2+w’t —wh + ')
+ lyl’ll(wl—i—w’,wl w’ t)l"lzfz\(cu2+cu’,t,—w§+w’)
Ffﬂ?(aﬁ + o, w0 — t)l“zl/;(wz + 't —wh + W)
—FdA(wH—w’,wl—w’,t)l"fl’f:(w + o t,—wh+ W), (3.93)

7}H Cr(s tu;w') =— Ff‘lfz\(wé —w,—w — w’,u)Fiyl’l./Z\(wQ — ', Wl + W' u)
_ lyll/;(wé — ', —wy — w/,u)ri’fz\(wQ W', wi + W', u)
- Fiﬁ(wé — ', —wy — w’,u)l"i’fz\(wz — W, w+ ' u)
- il’;(wé -, —w — w',u)l"fl’f:(wz W', W+ u), (3.94)
and
LMo, ") = GMwW)SM (") + SP (') G (w"). (3.95)

Here we show only I'** flow equation. In the case of I'** and I'¥**, we can obtain
their flow equations by cyclic permutation of spin component suffixesx — y — z —
x on both sides of the above explicit formulae.

The explicit formula of the flow equation for T4 is

d d
dAFiI/Z\(s,t,u) = /oo 2‘; [LA(w W'+ 8)Tos™ (s, t, u; ')

+ LMW, W' + t)ﬁHd(s,t,u;w’)

+ LMo, ' + u)7I)H w(s )], (3.96)
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with

Tosh (s, t,u; ") =T (s, —wh — @, ) + W T (s, w0y + @', w1 + @)

HTV (s, —wh — @, @) + @IV (s, wr + ', wi + )

z,\ z,\
—I—sz(s,—wz W', Wi +w )Flllz
d,A
I—'1112

(s,wp + ', wy + ')
(s, —wh — w', W} + W TV (s, wy + W', w1 + &),  (3.97)

i

7}%%(5, tu;w) ZZFdA wy + W't wy — w’)l“}ii’zA(wz +w',t, —wh 4+ &)

—Tiﬁ(wl + 't wy — W TN Wy + &, —wh + W )
TN + @'t w1 — 0T (@ + @, —wh + @', t)
_r:ill/z\(wl + ot w — T (wr + o, —wh + @, t)
— TN (@) + @ w1 — T (w2 + @', =) + @ 1)
Fj‘lfl\(wl—i—w,wl ' OT ld (ws + ' t, —w) + ')
_Fzylfl\(wl +o,wy — @, O (wy + Wt —wh + @)
— I w4+ W - )Fﬁ,A(werw’,t,—wngw’)
— TN + W wy — ) (wz—i—w’,t,—wé—l—w’), (3.98)

i

Mwy — W, + W u)
(w2 — ' Wy + W', u)

Fflfz\(wz — W, Wi+, u). (3.99)
We have to solve the differential equation for v Eq. (3.88) and the integlo-differential
equations for oA TYA 128 and T9A simultaneously.

Taking Heisenberg limit (SU(2) limit) Eq. (3.75), the above equations coincide
with equations for Heisenberg spin systems shown in Ref. [54]. In addition, in the
case of XXZ limit Eq. (3.74), the above explicit equations reproduce the PFFRG equa-
tions for XXZ models in Ref. [100].

3.5 Correlation Functions

Even if we finish to solve the flow equations Eq. (3.47) and Eq. (3.48), we cannot
get the information of original spin systems directly from vertices. Consequently,
we should calculate observables of the original systems from the obtained vertices.
One of the most important observables is spin susceptibility (spin-spin correlation
function), and we can calculate it via Kubo formula as

xij (iv) = / " dr (TS (1)51(0)), (3.100)
0
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where vs as suffixes of x and S; are spin component suffixes but other nus represent
bosonic Matsubara frequency. Note that we consider T — 0 limit here, so Matsub-
ara frequency is continuous. This is why the upper limit of the integral is infinity
(B = 1/T — o0). If the spin susceptibility diverges, the system undergoes phase
transition to magnetic phase with ordering vectors corresponding with wave vectors
at which susceptibility diverges. Therefore we can investigate ordering tendency of
the system by calculation of the susceptibility and it is a central information we can
obtain from PFFRG. To calculate the spin susceptibility from PFFRG, we have to rep-
resent it in pseudo-fermion language. We introduced fermionic FRG scheme based
on fermion path-integral in the previous chapter. Hence we derive the path-integral
representation of the spin susceptibility in the pseudo-fermion field theory and then
rewrite it using vertices obtained PFFRG calculation.

Although we do not embark on, recently another way to utilize vertices calcu-
lated by PFFRG was proposed by Hering et al. By replacing the interaction and
Green’s function in the self-consistent equation in the pseudo-fermion mean-field
theory of the quantum spin liquid with those calculated by PFFRG, we can obtain
the spinon band dispersion that incorporates the effect beyond the mean-field the-
ory [124].

Path-Integral Representation of the Spin Susceptibility

Consider a general pseudo-fermion action S[i, ¢]. As defined in the previous chap-
ter, the (grand) partition function is obtained by

Z= / DDy e S, (3.101)

and free energy (thermodynamic potential) is given by

Fe-lmz (3.102)

p

Here we do not take the zero temperature limit explicitly for consistency with the
formulae in the previous section. In addition, because formulae shown here hold at
arbitrary temperature.

Now we introduce a spin-conjugate field h as

Z[h] = / DYDY e SHHI- (1), (3.103)
and ,
Flh) = —5In Z[H] (3.104)

Z[h] and F[h] are partition function and free energy of the system with source field
h, respectively. The above S represents the pseudo-fermion spins. This source field
h corresponds "magnetic field": in the electron systems Zeeman term is

Hzeeman = —8HB ZSI - H;, (3.105)

where g, ug, S;, and H; are electron g-factor, Bohr magneton, electron spin on the
site i, and magnetic field at the site i, respectively. Note that the minus sign is from
negative electric charge of the electrons. We consider the field derivative of the free
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energy

SFIH s Z[h]
Py = o)
1 6Z[H]

= S5 (3.106)

52 F[h] 821n Z[h]

‘_’géhu(x)éhv(xf)“ Sht(x)ohY (x')

1 ld 1 6Z[h] 1 6Z[H]
B Z[h] 6h#(x)ohY (x')  Z[h] 6h*(x) Z[h] 6h¥(x') (3.107)

From this, we can define spin susceptibility by functional derivative [74]:
v B 52 F[h]

X ) = =B o (o)

B 5%1n Z[H]
Skt (x)ShY(x') he0

1 52 Z[h] 1 0Zh] 1 6Z[h]
Z[h] oht (x)ohv(x') |,,_, Z[h] 6h*(x) Z[h] hv(x') |,_,
= (S#(x)S"(x")) — (S"(x))(S"(x)). (3.108)

We only consider the states which have no magnetization i.e. (S*) = 0, and that
x = (7,1) represents imaginary time and site index, so

Xii (t,12) = (8] (11)S] (m2))- (3.109)

h=0

This is a path-integral derivation of the pseudo-fermion spin susceptibility.

Rewrite of the Susceptibility by Vertices

For further discussion we have to represent the susceptibility by the Grassmann vari-
ables corresponding to the creation and annihilation operators of pseudo-fermions
explicitly. Substituting the Grassmann variable counterpart of Eq. (3.14)

1
Sf‘ =5 Efl’;‘, fm N SH Zwm/ ,’alpm(r), (3.110)
o x

the susceptibility Eq. (3.109) can be expressed by the pseudo-fermion 2-particle Green’s
function:

Xl (r,m) = (S'(1)S! ()
1
1 Z <1’P1(x Tl ¢za](71)1/1]a (Tz) a azl/]]txz(TZ»
nq,0
A
! v
T4 2 <lpm1(Tl)l'b]"‘2(T2)¢]a (T2)lrbm (T1)>0'5 a0l 0
aq,02
@0
1
= —1 Z G( )(TlZle/ TZ](XQ, TlZ(X-l,TZJ(XZ) j: 0410.0/ 0 (3111)

06},0(/2
&q,0y
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We can decompose the 2-particle Green’s function by the relation

GW (x1, %2}, x4) = —G(x1,%,)G (22, ) + G(x1, x4) G (x2, 2}) + G (1, %05}, %),

(3.112)

and the 2-particle connected Green’s function is obtained from the 2-particle ver-

tex function by the relation Eq. (2.56). As a result, we can write 2-particle Green’s
function only by 1-particle Green’s function and 2-particle 1PI vertex function

GW (x1,x0; x4, x5) = —G(x1,x})G(x2, x5) + G(x1, x5)G(x2, X))
+ Y G(x1, ¥1)G(x2, o) T (1, v v1, ¥2) G (v2, 5) G (y1, 7).
Yi,y2
Y1
(3.113)
Therefore,

4 . . . i i
yelt )(leal,*rz]zxz, Ting, T2jay)

= G(’L’liﬂcl, TlilX/l)G(szle, szﬂ(lz) — G(T1i0q, sz()éé)G(szth, T]i(Xi)

— Z Z/ dT3dT3:dT4dTi G(Tlioél,T3i1ﬁ1)G(T2jDé2,T4i2ﬁ2)
B1,B2 i iz
BLB) /i

x TW (131 B1, Taia Bo; Thit B, T4inBh) G (i1 B, Tuie) ) G (Tiih Bh, Tajuc))

= G(Tl,Tl)G(Tz, TZ)(Soclo/l(Sazoc’Z - G(Tl,Tz)G(Tz, Tl)éijéalalzéwzaa

— Z Z/ d3dtdrdT; G(T, 1) G (T2, T4)TW (311 B1, TaiaBo; T By, ThisBh)
B2 11 12

.31 ﬁ2 i1
X G(Té, Tl)G(TLi, 72)51115]1251 1512]5041/315042/325%«55%0(’2
= G(Tl,Tl)G<T2, T2)5¢x11x (szl,‘/2 - G(Tl,Tz)G(Tz, Tl)éijéalalzéazaq

B
—/ dudhdndy G(T1,T3)G(T2,74)1“(4)(73i041,r4ja2;Téilxi,T4ja’2)G(T3’,,Tl)G(Ti,Tz).

0
(3.114)
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We used Eq. (3.29) above. Substituting this into susceptibility formula and summing
over spin indices, we obtain

nv
Xij (T1,T2)
_ 7
S Z GW (tyiny, Tajay; Tiia, Tajahy ) a,alcra/az
041,062
o0
1
= EG(TllTl)G(TZI Tz) aza (501101’ 50420‘2 o IX10-1X/0¢2
lr 2
IJ(],DCZ

Ty U,fl @1 Oy, =tr[0]tr[0¥]=0 (traceless)

1
- *G(Tll TZ)G(TZ/ Tl) Z 504104’5 ,ll

4 apaf a a UD&’ Loy (Sif
061,062
o0
Loy (752,11(70'{1“2 =tr(cto?)=tr[c0H iy 5 _, etvAor|=20H
4 : T R B
— = Z / di3dtdndt, G(T, )G (1o, T)TW (Tsiay, Tajay; Tin), T4jacb)
061,042
ol ,0h
/ M v
X G(T3,T1)G(T4,T2)O'a Ty
1
= —EG(Tl,Tz) (T2, T1)0"" 5
1
-1 Z/ didtdndty G(n, i3)G(wn, 1) G(t, 1)G(t, &)
D{] 112
0(1,062
4 "
x TW (m3iay, Tyjog; Thia, Thjab)or Tata Ua/az (3.115)

We formulate PFFRG in Matsubara frequency representation and calculate vertices
in Matsubara frequency space. Hence we need transform the susceptibility to Fre-
quency space. Fourier expansion of the Green’s functions and the vertex function
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give

Xii (11, 72)

11 : . T,
— —1w T Hwr T ,—1w; o HlwsTp / / Vg
= _EE Z e e 1 2 G((U],C(JZ)G((IJl,wZ)(SV (51]
)
11 p / / —iwy T Hw) T3 ,— W T Hw) Ty [, —iws T Hws Ty ,—iws Ty +Hiw) T
i) dT3dT3dT4dT4 Z e Wi 1B 12T 2 Ta e lWsT 3T e iWs Ty Hwy &
4 :B 0 wW1,W2,W3,W4,Ws,We
w],wh,wh,wy,w,we

x @ lWsB WU HOSTHYUT G ()1 (! ) G (wy, wh) G (w3, wh) G (ws, wh)

4 . . . . . ’/[
X ’X;;z T4 (wsiny, wejay; wgza’l,wg]a'z)aa/lala;’éaz
aiia’z
11 - ' i(w!
= 5 b e e TR w) G (w) )0
'B w, W)
11 —i(wr— —i(wy—
_Eﬁ Z (w1 —w3)T1 o —i(w2 W4)T2G(w1)G(w2)G(wg)G(w4)
(3}
4 . . . . .
X lxgo;z r( )((,()11“1, wZ]“Z/ (U3ZOCI1,CU4]0(/2)0-550610—:/2“2' (3116)
a0

Remember the parametrization of the Green’s function with respect to Matsubara
frequency Eq. (3.29). Then we conduct the Fourier transformation of the suscepti-
bility and parametrize the spin susceptibility with respect to Matsubara frequency
arguments:

X (i, iv') = xi (i) x o (v +1'), (3.117)

B .
- /O dndn VR (1, 7). (3.118)
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Performing the integration of the second line, we obtain Matsubara frequency rep-
resentation of the susceptibility

B .
/o dndn eW(TfTZ))cZV(TLTz)

— 1 Z /ﬁ drdo e l(w1—w )7 o—i(w —w1 V)T G(w1)G(wh)dM s
2p% =, Jo !

=p26 (w1 —w)—v)s(v+v')

1y / d1d Ty e @1 @)= (@@t G001 ) G (w2) G (w3) G (ws)
413 w1,Wy
w3,Wy N
=pB26(w1 —w3—v)6(ws—wr+")
x Y T4 (wyiag, wyjay; wainy, wajoy)or, y U{MZ
el
1
=5 Y G(w)G(w +v)s(v+ )65
w
~ Y G(w)G(w +1)G(w)G(w — V)
418 w,w’
x Y TW(w + viay, w'jag; winl, ' —v'jak) 5 T (3.119)

lX},tX/z
Xq,0y

Remember that T'4) (w + viey, ' jag; wia], w' —V'jah) « Bé(w +v+w' —w — ' +
V') = Bé(v+ 1) from the parametrization Eq. (3.52) or Eq. (3.66), we can find that
both term of Eq. (3.119) are proportional to (v + v') as well as RHS of Eq. (3.117).
Thereby, we can write

)(l] iv) Z G(w)G(w +v)oM 6
Z G(w)G(w +v)G(w")G(w' +v)
w,w'
X Z IS (w 4 viay, w'jag; wind, w' + vjah) 5 1(7;’,2“2. (3.120)
i
Here we use the relation v/ = —v and define I'® 4)/B5(v +v). Now the suscep-

tibility is no longer dependent on v'. Finally, we use Eq (3.46) and take T — 0 limit.
Then we can conclude

X (v :_7/ dw G(w)G(w + 1),

16712/ dwdw’ G(w)G(w +v)G(w')G(w" +v)

X Z{ ij(w +vay, w'a; wal, W' +vay)
061 le
0

T / / / !/
—Ti(w'ay, w+vag; way, w + 1/0(2)(51']}(7}2 (7“/2“2

(3.121)
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v o
XZ_] = — i 0" jyof — ot jyo” —|— i, ot j, o

FIGURE 3.2: Diagram representing Eq. (3.121). Oriented black thick

lines and gray squares correspond the Green’s functions G and the

vertices fij, respectively. The black dots express the Pauli matrices o.
Each connected thick line has one site index i or j.

We show a diagrammatic representation of Eq. (3.121) in Fig. (3.2).

Explicit Formula of the Susceptibility

Moreover, we show more explicit formula of the spin susceptibility for diagonal spin
interactions and rewrite its integration to reduce calculation costs. Now we consider
the cutoff A again although we have ignored it from the beginning of this section.
The parametrization Eq. (3.66) for T is

A IV I d, A
i, (whag, wiay; wing, waaz) Erm s,t,u) 1/“10065/“2 + 157 (5,8, 1)041 0,0 -

(3.122)

Substituting the above parametrization for diagonal interactions, which we treated
in this dissertation, into Eq. (3.121) and performing the summations over spin in-
dices, we can obtain the explicit formula x"¥ = x"#é*’, with

A
X (i)

1 [ee]
_ _E/ dw G (w)GMw + v)6;

87r2/ dwdaw’ GMw)GMw +1)GM ()G @' +v)

X [Zrﬁ;”\(w +o + 11,0 — )
+ {—FZ’A(w—I—w +v,w—w,v)+ ZF”A w+w +v,w—d,v)
vFEH
— FS.’A(w +w +v,0 -, v) }517} . (3.123)
Taking Heisenberg limit Eq. (3.75), this equation corresponds to that for the Heisen-
berg model in Ref. [91]. Moreover the XXZ limit Eq. (3.74) of this formula is identical

to the susceptibility of the XXZ models in Ref. [100].
For isotropic Kitaev (-Heisenberg) case, we can use the relation Eq. (3.89) and the



3.5. Correlation Functions 69

above formula can be simplified as

A
Xy (i)
Lo A A
= —H/_mde (w)GMw +v)d;

1

— 8?/ dwdw’ G*(w)G™(w +v)GM (") GM W' +v)

X {fo}’A(w +o' +v,v,w— )

+ {Fﬁ’A(erw’ +v,w—w,v)— Ffi'A(erw' +v,w —w’,v)}élj].
(3.124)

Note that all terms except I';; in the above equation are local (x J;j). Only I';; term
describes spacial dependence of the susceptibility.

The spin susceptibility is the main result of PFFRG. Especially, we can eluci-
date the full spacial structure of the static (elastic) component (iv = 0) directly.
Later we perform Fourier transformation of the susceptibility x;j(iv) — x(k,iv)
in order to clarify its momentum dependence. The phase transition to magnetic
ordered phases can be detected by the divergence of the static susceptibility. On
the other hand, we cannot obtain the dynamical (inelastic) components because our
formulation is based on imaginary-time (Matsubara frequency) formulation. We
have to conduct analytic continuation to obtain inelastic components of the sus-
ceptibility from iv # 0 components. Note that the "static" susceptibility means
x(k) = x(k,iv = 0) = xR(k,w = 0), where w is a real frequency and the suffix R
represents retarded correlation function, although the "static" structure factor stands
for S(k) = [ dw S(k,w). Former means "time-averaged" and latter "static" is
identical to "equal-time" (e.g. equal-time correlation function).

Furthermore, we use the explicit form of the regularized Green’s function shown
in Eq. (3.41) to make susceptibility formula simpler. If we only consider the static
component,

AN .
X" (v =0)

1 [ 1 2
AT LJJWA(W)] &

“g f, do ] @ L} + iA<w)r [w’ + ;LAW)]Z

X [4FZ’A(w +,0,w— ')

2 A
+ {—I’ii (w+w,w—a,0)-T (w—w,w+w',0)

+ Y Mo+, w—o,0)+ Y TN w - o', w+a',0)
v#Eu v#Ep

d,A d,A
I w+ o, w—w',0) =T (w—w’,w+w’,0)}5i]-].
(3.125)

Here we use the fact that 7 (w) is an odd function of w and the symmetry Eq. (3.71).
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In addition, we rewrite the integration symmetric about w and «’ into the anti-
symmetric one. This reduces numerical cost for integration.

Susceptibility in the Momentum Space

Finally, we obtain the susceptibility in momentum space by Fourier transformation.

In ordinary Fourier transformation for itinerant fermion systems on periodic
lattices, the coordinates of underlying Bravais lattices and the position in the unit
cells are considered separately. We consider all lattice sites identical in PFFRG. The
fourier transformation of the susceptibility calculated by PFFRG is

XA (k,iv) Ze (ri=rj) WA(U/)
A
Nsub Yo Y ekl Xf;v (iv), (3.126)
icu.c. j

where N, Ny, and ) ;.. is the number of all lattice sites, the number of sub lattices,
and the summation over sites in an arbitrary unit cell in contrast to the summation
over all sites X/ respectively. For monoatomic cells N, = 1 in which the entire lat-
tice corresponds to the underlying Bravais lattice, the susceptibility is periodic with
respect to the first Brillouin zone. For polyatomic cells Ny, > 2, the susceptibility is
no longer periodic with respect to the first Brillouin zone, but to the Ng,-th Brillouin
zone often called extended Brillouin zone. The structure of the susceptibility within
the first Brillouin zone reflects spin patterns on underlying Bravais lattice and that
within the extended Brillouin zone reflects spin structures in the unit cell.

Here we parametrize the susceptibility in momentum space like in frequency space:
x(k, K';iv) = x(k,iv) x Né(k + k). The prefactor 1/N in the first line of the above
equation is from this parametrization.

We trace the static susceptibility (k) = x*'"*(k,iv = 0), along the RG flow
and we can regard the divergence of it as signals of the onset magnetic long-range
order. The momenta at which the susceptibility diverges are characterized spin pat-
terns of the magnetic orders. The ordering scale, also called critical cutoff, A. at
which the susceptibility diverges can be interpreted as critical temperature. As we
prove later, there is approximate relationship T ~ TA. Note that the divergence
of the susceptibility often appears as a breakdown of the susceptibility due to the
discrete frequency mesh in numerical calculations (we now consider T — 0 limit
and Matsubara frequency is continuous). In contrast, signals of non-magnetic states
appear as smooth continuous susceptibility flows without significant changes to the
end of flows. We show these behaviors of the susceptibility in Fig. 3.3 schematically.

3.6 Truncation Schemes for PFFRG

We have introduced PFFRG scheme based on level-2 truncation flow. For investi-
gation of order competition in electron systems, level-2 truncation or static level-
2 truncation are often used [55, 65] and it has achieved some success. However,
for spin systems those are not enough because frustration effect and quantum fluc-
tuation are not sufficiently taken into account. They shorten the pseudo-fermion
lifetime and affect the flow through the self-energy. We must therefore incorporate
self-energy feedback into the flows beyond the level-2 truncation. A prescription
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I\ P4 ~777" magnetic order
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XA(kmax)

FIGURE 3.3: Schematic figure showing typical behaviors of the spin
susceptibility. kmax means the point in the momentum space at which
the susceptibility has the maximum value. The red dashed line and
green dashed dotted line indicate the phase transition to magnetic or-
dering phases. The small black arrows indicate the breakdown points
of the flow and those signal the onset of the magnetic orders. The
blue continuous line shows no breakdown. It means that there are no
magnetic order.

for this is known as Katanin truncation [81], which is used in ordinary PFFRG. In
this section, we review static approximation and level-2 truncation for our PFFRG
equations first. Then we introduce Katanin truncation.

Static PFFRG

Static approximation is the simplest approximation we can come up with first. In
this approximation we ignore the frequency dependence of the vertices:

™w) = 7%, (3.127)
A A

Ti (s, t,u) — Ti, (3.128)

Ii (s, tu) — T (3.129)

As a result, from Eq. (3.88) we can obtain the equation

d aA_

d.a_y 1
57 =0 (3.130)

We remember that at the beginning of the flow 7tV = 0 in Eq. (3.84). Hence

YA =0 forall A. (3.131)
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This is consistent to the fact v (w) is an odd function of w. Then
/ dow' LMo, ') = 2/ dw’ G (w')SM (w)

o (% g @ = A) (1| - A)

o C(]/ (U/
) / — A 1
o[ aw N [,
—00 w 0
1
=2 Z _
iAzwlz
2
=5 (3.132)

Here we use Morris lemma Eq. (2.174) to transform into the third line. Using this
relation to Eq. (3.96), we can also conclude that the density vertex I'""* is zero at any
A. From Eq. (3.96), a frequency independent flow equation is

d _4qa 2 dAFdA  dA A | dA
Al = Zr A =Tt (Y T+ TeM . (3.133)
I

i1j jia i1ip iriy i

Due to the initial condition in Eq. (3.86), the right-hand side of the above equation
is zero. Therefore no finite contribution to I'""* is generated along the flow. Conse-
quently,

Y =0 forall A. (3.134)

111p

Finally, we substitute the above results in Eq. (3.91) and derive the simplified equa-
tion

d

A AN
A it = ZFZAFZA ATV 4 TN (O + TV —T70) | (3.135)

ny o jn i1ia ~ i1ip g \" 11 i1iy nn

We only show the equation for F . and counterparts for l"x A and l"y i, can be ob-
tained by cyclic permutation x o _1/ — z — x. We have to solve only these equa-
tions.

In addition, we simplify the formula of the susceptibility Eq. (3.125) as

V/A VA A
Xi = 5a i 5aas 2T+ (-0 LT (3.136)

G

As we mentioned above, quantum fluctuation and frustration are incorporated
through the frequency dependence of the vertices. Thereby the static approximation
is almost equivalent to the classical approximation. The resulting phase diagrams
also suggests it [125]. Recall that the RPA term corresponding to the first term in the
right-hand side of Eq. (3.135) causes the ordering tendency and is a dominant term
in static approximation. On the other hand, particle-partile and particle-hole ladder
terms corresponding to the second term in the right-hand side of Eq. (3.135) contain
the leading term of 1/N expansion and these terms contribute only small fluctu-
ation effect in static approximation. The vertex correction terms corresponding to
the third terms in the right-hand side of Eq. (3.135) connect these bubble and ladder
diagrammatic contributions. Furthermore, we later introduce PFFRG extension for
general spin length S, and only RPA terms in vertex flow equations and non-local
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terms in the susceptibility remain for classical spin limit S — co. An approximation
leaving only RPA term in Eq. (3.135) and non-local term in Eq. (3.136) corresponds
to the mean-field approximation with the classical spin approximation:

d A 2 Az A
(:17/\1711‘2 T A2 erlf r;iz ’ (3.137)
j
and
uuh 1 1 uA
Xij = 27(A5ij - A2 (3.138)

Level-2 Truncation

In level-2 truncation, we solve Eq. (3.88), Eq. (3.91), and Eq. (3.96) simultaneously
with the single-scale propagator shown in Eq. (3.45).

Thanks to the delta function in the single-scale propagator S*(w) (see Eq. (3.45)), We
can perform the integration in Eq. (3.91) and Eq. (3.96) analytically. For example, PP
channel terms of Eq. (3.91) and Eq. (3.96) have the form

o) d / _
/ % LMW', @' +8) T (s, t,u; 0"). (3.139)

Substituting the explicit formula of L in Eq. (3.95), the above integration is per-
formed as

Top(s,t, ;")

© dw' [6(|'|—A) O(Jw +s|—A)
/—oo 27 [w’ + M W) W 4 s+ YW +5)
S(|w' +s|—A) O] —A)
w’+s—|—'yA(w’+s) w/+,YA(w/)
e ';A(A) [A(F—Di—(L/:——i:ny(A/—\k)s) {7}‘1\3(5, g A) + T (s, tu; —A — s)}
O(|A—s|—A)
A—s+yMA—5s)

T (s, ww’)]

{7},’1\3(5, t,u; —A) + ’7}‘1\)(5, t,u; A —s) H )
(3.140)

We think about the contribution of the step functions ©(|A +s| — A) and O(]A —
s| — A). These are non-zero (i.e. 1) if

s>0
O(|A+s|—A)=1:if , 3.141
(1A+s| =) 1{S<_2A (6.141)
and
) s <0
O(A—s|—A)=1:if . (3.142)
s > 2A

Owing to the frequency symmetries Eq. (3.68), (3.69), and (3.70), it is sufficient to
consider positive frequencies s,f,u > 0. Hence, ©(|]A + s| — A) is always 1, and
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FIGURE 3.4: Flows of the static Néel (left) and collinear (right) suscep-

tibilities of [;-J, Heisenberg model calculated by level-2 truncation.

Reprinted with permission from Ref. [54] © 2010 by the American
Physical Society.

O(|A —s| — A) can be replaced by ©(s — 2A). Therefore,

0 d / _
/ @ LMW, '+ 8)Th (s, t, ;")

—oo 27T
_ 1 1 A ‘ . o
- A+’)’A(A) |:A+S+,),A(A+S){%P(Sltlu/A)"i_’]}P(s,t,u, A S)}
O(s —2A) A o . N
+A—S—|—')/A(A_S) {%P(S’t/u/ A)+7I)P(S/t/u/A S) .

(3.143)

In direct PH terms and crossed PH terms, we can execute integrals analytically in the
same manner. After these procedures, the integro-differential equations Eq. (3.91)
and Eq. (3.96) no longer contain integrals and we can reduce the computation costs
for integration.

Here we mention the result for J;-J, Heisenberg model on the square lattice [54].
The J;1-J, Heisenberg model is described the Hamiltonian (J;, J» > 0)

H=N1)Y Si-Si+h ) S-S (3.144)
(i) (i)

where }; » denotes a summation over all nearest-neighbor site pairs i, j and }_; i)
represents a summation over all next nearest-neighbor sites 7, j. Since both terms
are antiferromagnetic, this model has strong frustration. We take J; as an energy
scale and define ¢ = J>/]; here. The susceptibility calculated by level-2 PFFRG is
shown in Fig. 3.4 from Ref. [54]. The left panel shows the flow of the susceptibility at
k = (71, 1) and the right exhibits that at k = (77,0). These wave vectors correspond
Néel antiferromagnetic (AFM) and collinear AFM orders respectively.

From Fig. 3.4, we may conclude that the ground state is in Néel antiferromagnetic
phaseif 0 < ¢ < 0.55 and collinear antiferromagnetic phase if 0.6 < ¢. However, cal-
culations in studies by other methods suggest there is non-magnetic phase between
the two phases [126-131]. Some papers conclude that this additional non-magnetic
phase is quantum spin liquid state. In level-2 truncation in PFFRG, the effects of
quantum fluctuation and frustration are not included sufficiently in order to detect
non-magnetic phases. Level-2 truncation PFFRG overestimates ordering tendency.
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Katanin Truncation

The level-2 truncation is the most commonly used approximation in the FRG of itin-
erant electron systems [55, 65]. As mention before this truncation is not sufficient to
PFFRG,unfortunately. The pseudo-fermion lifetime is shortened by quantum fluc-
tuation and frustration. Since this effect appears in the frequency dependence of the
self-energy, feedback of the self-energy must be incorporated into the flow equation
beyond the level-2 truncation. An efficient way to improve the flow was proposed
by A. A. Katanin originally in context of the improvement of the fulfillment of Word
identities in FRG for itinerant elecrons [81]. Improved flow violates Ward identi-
ties only by the terms with overlapping loops of fourth order in the 2-particle ver-
tices although unimproved level-2 truncated flow satisfies only in the third order. In
Katanin truncation scheme, we include 2-loop contributions partially in flow equa-
tions. Here we consider Hamiltonians only with 2-particle terms i.e. quadratic for
the operators. In the pseudo-fermion language it means we only consider 2-particle
interaction ~ Pyipy. Therefore there is no bare 3-particle term and 3-particle ver-
tex T(®A is generated by m < 3 contributions 7* and T¥)*. We generate a part
of 3-particle contributions by replacement of the single-scale propagator S*(w). In
Eq. (2.143) we defined the single-scale propagator by A-derivative of the Green’s
function while fixing the self-energy. In Katanin truncation we replace the single-
scale propagators in A flow with full A-derivative of the Green’s function:

26t =2
= L@z
_ _(QA . ZA)AQA(QA . ZA)A + (QA . ZA)fle(QA . ZA)A
— _GAOAGH £ GrEAGH
= 8" + GAEAGA. (3.145)

Siat = Gy~ -z

In PFFRG, we have to replace

5 (@) = Sfalw) = G w)

d
= $Mw) + [GA(w)]z(—i)a'yA(w), (3.146)
in the flow for 2-particle vertices. We show the result of this replacement diagramat-
ically in Fig. 3.5.

This procedure generates a part of T'®* tadpole contributions to T¥)* flow (see
Fig. 3.5). We can rewrite L («w’, w") defined in Eq. (3.95) as

Lat(@', ") = GH (") S (") + Sigar(@') G (w)

= GMw') [CS\GA<(UN):| + [CS\GA(w’)] G (w)
-4 (G ()G (™). (3.147)

dA
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FIGURE 3.5: Diagrammatic representation of the replacement in

Eq. (3.146) for Katanin truncation and 2-loop contribution generated

from it. The single-scale propagators in the equation for I'* are re-

placed by dI'*/dA. This replacement generates a part of the 3-
particle vertex contributions.

This form is useful for formulation. We can also rewrite it as another useful form for
calculation,

Ligap(w', ")

= GMw") SR (w") + SRt (') G (w)

= GA {5 + (6N D) w0 |

{88 + [6M@ () e )
— LA((,U/, w//)
+ GA(w’){—iCS\fyA(w”)} GM ") + [GA(w’)]2{—idci\v‘\(w’)}GA(w”).

(3.148)

The first term in the above equation is the same as L* (w’, w”) in Eq. (3.95) in level-2
truncation. Hence in numerical calculation, we can perform frequency integration
analytically for the first term and the result corresponds to level-2 truncation flow
equations, and for the second term we substitute the right-hand side in the self-
energy flow Eq. (3.88) and execute integration numerically.

Note that we replace the single-scale propagators only in the flow of T}, In other
words we do not change the self-energy flow equation.

If we apply an approximation in which we only leave RPA terms in flow equa-
tions for 2-particle vertices, Katanin truncation leads dressed RPA approximation [56,
61, 65, 91].

For example, we show the susceptibilities of J1-J, Heisenberg model calculated
by Katanin truncation in Ref. [54] in Fig. 3.6. Each panel shows the flow of Néel and
collinear AFM susceptibilities at ¢ = 0.2 (left), ¢ = 0.55 (center), and g = 0.8 (right).
Although at ¢ = 0.2 and ¢ = 0.8, Néel and collinear spin susceptibilities diverge,
respectively, as calculated in level-2 truncation scheme shown in Fig. 3.4, at ¢ = 0.55
spin susceptibilities do not diverge and stay finite without significant changes even
in A — Ajr = 0. This means there is no magnetic long-range order.
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FIGURE 3.6: Flow of the Néel and collinear susceptibilities at § =

0.2 (left), g = 0.55 (center), and g = 0.8 (right). The wave vectors

k = (7, ) and k = (71,0) are correspond to Néel and collinear AFM

order, respectively. Reprinted with permission from Ref. [54] © 2010
by the American Physical Society.

Comparison with Other Methods

Now we present a brief comparison of the results of PFFRG and other numerical
methods. First of all, we show the temperature dependence of the uniform sus-
ceptibilities obtained by PFFRG and high-temperature series expansion (HTSE) in
Fig. 3.7. Figure (a) and (b) show uniform susceptibility of the Heisenberg model
on the hyperkagome lattice with ferromagnetic (FM) and antiferromagnetic (AFM)
exchanges, respectively. In both figures, pf-FRG, high-T series, and dlog Pade repre-
sent pseudo-fermion functional renormalization group (PFFRG), 16th-order high-
temperature series expansion, and high-order differential Dlog Padé approxima-
tions to the high-temperature series, respectively. Temperature dependence of the
PFFRG susceptibilities are calculated by the relation Eq. (3.150) in the next section.
The inset of Fig. 3.7 (b) shows the comparison in a wide temperature range. All
lines overlap and no differences can be seen. We can conclude that in the high tem-
perature region, PFFRG is in good agreement with the results of HTSE from these
comparisons.

Second, we show a comparison of the susceptibilities obtained with PFFRG and
exact diagonalization (ED) in Fig. 3.8. Figure (a) and (b) show the temperature de-
pendence of the susceptibilities of a AFM Heisenberg dimer and a J;-J, Heisenberg
hexamer with J; = 1 and ], = 0.5, respectively. We can see that the susceptibility of
PFFRG is quantitatively different from that in ED at low temperature.

Moreover, we calculate susceptibility of the Kitaev model by PFFRG and com-
pare the result with the uniform susceptibility from quantum Monte Carlo + continuous-
time quantum Monte Carlo (QMC+CTQMC) calculation in Ref. [133]. The results is
shown in Fig. 3.9. We use the same calculation condition in Sec. 5.6 and consider
isotropic (Jx = J, = J. = ]) FM Kitaev model with the energy unit J. A-dependence
of the results from PFFRG is rescaled by the relation between A and T in Eq. (3.150).
The data from QMC+CTQMC in Ref. [133] are extracted by WebPlotDigitizer [134].
As we can see in the figure, T = 0 PFFRG (1-loop + Katanin truncation) cannot
describe the decrease of the susceptibility in low temperature.

From comparisons above, we can conclude that the susceptibilities calculated by
PFFRG (1-loop + Katanin truncation) are consistent with other methods at high tem-
peratures, but have a quantitative (sometimes qualitative) discrepancy at low tem-
perature. For further comparison, next, we show a comparison of the phase bound-
aries obtained by PFFRG and quantum Monte Carlo (QMC) in Fig. 3.10. This figure
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FIGURE 3.7: Temperature dependence of the uniform susceptibilities
calculated by PFFRG and HTSE of the Heisenberg model with (a) FM
and (b) AFM couplings on the hyperkagome lattice. pf-FRG, high-T
series, and dlog Pade mean pseudo-fermion functional renormaliza-
tion group (PFFRG), 16th-order high-temperature series expansion,
and high-order differential Dlog Padé approximations to the high-
temperature series, respectively. The inset shows the comparison in a
wide temperature range. Reprinted with permission from Ref. [132]
© 2016 by the American Physical Society.
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FIGURE 3.8: Temperature dependence of the susceptibilities calcu-
lated by PFFRG and ED of a (a) AFM Heisenberg dimer and a (b)
J1-J2 Heisenberg hexamer with J; = 1 and J, = 0.5. In figure (a),
pf-fRG and pm-fRG represent pseudo-fermion functional renormal-
ization group (PFFRG) and pseudo-Majorana functional renormaliza-
tion group, respectively. In figure (b), the same legend as in figure (a)
is applied (There are only ED and pf-fRG plots). These figures are
from Ref. [105].
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FIGURE 3.9: A comparison of temperature dependence of the uni-

form susceptibilities of the isotropic FM Kitaev model obtained by

PFFRG and QMC+CTQMC. QMC+CTQMC data is from Ref. [133]
and we extract data from the article by WebPlotDigitizer [134].

shows a A-A phase diagram of the antiferromagnetic XXZ model on the square lat-
tice. Hamiltonian of the AFM XXZ model is given as

H=]) (SIS + sl.ys]V +ASESE). (3.149)
(irj)

FRG, RPAQO, RPA+, and QMC in the figure represent PFFRG, PFFRG with only RPA
diagrams without the self-energy, PFFRG with only RPA diagrams with the self-
energy, and quantum Monte Carlo, respectively. It can be seen that PFFRG overesti-
mates the phase boundary at finite A (or temperature). In addition, the XXZ model
defined in Eq. (3.149) acquires full SU(2) symmetry and becomes the Heisenberg
model at A = 1. Therefore finite temperature phase transitions are prohibited, as
claimed by Mermin-Wagner theorem. The phase boundaries obtained by QMC re-
flect this properties. As we can see in Fig. 3.10, solutions by PFFRG (with 1-loop +
Katanin truncation) violate Mermin-Wagner theorem near A = 1.

However, the T, (Ac) obtained by PFFRG is in good agreement with the results
of QMC. In order to support that, we present another example. We show in Tab. 3.1 a
comparison of the Néel temperatures of the [;-J3 AFM Heisenberg model on the sim-
ple cubic lattice obtained by PFFRG and QMC from the previous study in Ref. [135].
J1 and J3 are the nearest-neighbor and third-nearest-neighbor AFM Heisenberg ex-
changes, respectively. For PFFRG results, the relation Eq. (3.150) is used to obtain
Tc from A.. We can see that Néel temperatures from PFFRG and QMC are in good
agreement with the results. The calculation results by PFFRG can generally repro-
duce the relative differences in A. due to the differences in parameters. This feature
is proven numerically also for other models. Furthermore, it is known that the solu-
tion calculated PFFRG well reproduce the ground state phase boundaries between
magnetic ordered phases and between ordered phase and magnetically disordered
phase e.g. VBC, nematic, and spin liquid phases (e.g. in Ref. [136], see also the
comparison in the Chap. 5).
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FIGURE 3.10: A-A phase diagram of the AFM XXZ model on the
square lattice obtained PFFRG and QMC. FRG, RPAO, RPA+, and
OMC in the figure represent PFFRG, PFFRG with only RPA diagrams
without the self-energy, PFFRG with only RPA diagrams with the self-
energy, and quantum Monte Carlo, respectively. Reprinted with per-
mission from Ref. [99] © 2012 by the American Physical Society.

TABLE 3.1: Néel temperature T¢ of the J1-J3 AFM Heisenberg model

on the simple cubic lattice obtained by PFFRG and QMC. Reprinted

with permission from Ref. [135] © 2016 by the American Physical So-
ciety.

J3/ 1 0 0.20 0.40 0.60 0.80

PFFRG 1.05(55) 143(7) 1.67(8) 1.9409)  2.36(10)
QMC  0.946(1) 1.371(1) 1.7675(10) 2.143(1) 2.5039(5)
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3.7 Futher Extensions

We have introduced PFFRG scheme for Hamiltonian with S = 1/2 and only di-
agonal spin interactions. Our PFFRG is formulated at zero temperature (but using
Matsubara frequency representation) and zero magnetic field. We adopt 1-loop +
Katanin truncation scheme and therefore we cannot calculate expectation value of
the product of three or more spin operators directly. In this section, we mention fur-
ther extensions of PFFRG. The following two subsections for finite temperature and
spin-S systems are relevant to this dissertation, and in particular the extension to the
spin-S systems is used to study the spin-S Kitaev-Heisenberg model in chapter 5.
The remaining parts of this section is devoted to mention other extensions beyond
scheme we delivered through this chapter.

Finite Temperature

PFFRG is formulated in Matsubara frequency representation but we take the limit
T — 0. Therefore PFFRG calculation is executed at zero temperature and entropic
effect is not included. PFFRG was extended to finite temperature in J. Reuther’s
doctoral dissertation [91]. In T # 0 we cannot use average projection y = 0 and we
must use 4 = —ZL. This projection breaks time-reversal symmetry and hermitian
property of the pseudo-fermion Hamiltonian. Because of this the computational
costs increase enormously. However, qualitative behavior of the susceptibility is not
changed. This is the reason why finite temperature PFFRG has not been used after
Reuther’s dissertation.

As we mentioned before, there is an approximate relation between

T ~ EA, (3.150)
in our PFFRG scheme. This relation is mentioned in Ref. [135]. In this paper the
factor 7t/2 is obtained by the comparison between PFFRG with only RPA terms and
conventional mean-field theory in spin language (this is argued in the note in the
reference list). In appendix C, we develop this argument further and prove that the
factor is valid not only in mean-field theory but also in the leading order of high-
temperature expansion. In addition, in Ref. [118, 137] PFFRG for SU(N) Heisenberg
model is formulated (as mentioned later) and Eq. (3.150) is also proved in N — oo
limit.

Spin-S Systems

The pseudo-fermion representation of spin Eq. (3.14) can be applied only to S = 1/2
spins. For spins with S > 1/2 it is suggested to introduce multi-flavor fermions
with 25 + 1 flavors [138]. In this Hilbert space single-occupancy condition and half-
filling condition is not the same for S > 1/2, unfortunately. Therefore we cannot use
average projection y = 0. A simpler and more convenient for PFFRG extension is
proposed by M. Baez and ]. Reuther [139]. In this extension, we put 25 spins with
S = 1/2 on each site and construct spins with S by superposition of those like

Si=) Six (3.151)
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where « is flavor index. In this formulation, we consider extended Hilbert space and
require the projection to the subspace satisfying highest weight condition |S;| = S.
To represent spins by fermions we introduce pseudo-fermion operators like Eq. (3.14),

Z Z il fiare (3.152)

with M = 2S. Those fermion operators satisfy the anti-commutation relation like
Eq. (3.15)

{fiaxr frare } = OiirOarOrr. (3.153)
There are two constraints: (i) maximal spin length condition |S;| = S and (ii) single-
occupancy condition Q;c = 1. Though both constraints can be implemented by

imaginary-value chemical potential [140], we adopt more simpler projection. The
latter is easily implemented y = 0 as the same manner as S = 1/2 PFFRG. For
fulfillment of the former constraint we introduce a level repulsion term later. We
consider PFFRG for fermions with flavor indices fj,, and l e

As can seen in Eq. (3.152) and Eq. (3.153), the flavor indices behave like site indices.
Thereby we can conclude that it is sufficient that §;;; — J;/;0,/ for all parametrization
and we can obtain the almost same flow equations for S = 1/2 Eq. (3.88), Eq. (3.91),
and Eq. (3.96). Then we assume that the vertices do not depend on flavor indices
like their initial conditions:

A A

Livissere, = Tigip s (3.154)
d,A d,A

Fil in,K1K2 - ri]iz : (3.155)

The remaining internal summations over flavor indices can be performed easily

M
Yy = M. (3.156)

As a result, there is no flavor index in the entire flow, while the term contains site
summation in Eq. (3.88) and the RPA term in Eq. (3.91) and Eq. (3.96) obtain addi-
tional prefactor M. In classical limit S — oo, M also becomes infinite because M = 25
and the flow equations diverge. Therefore it is required to rescale the vertices. For
system with M we rescale

I - = M. (3.157)

Finally we obtain the explicit flow equations corresponding to Eq. (3.88), Eq. (3.91),
and Eq. (3.96) as,

d , 1 1

AT (@) = zmw[ ZZ{FdAaH—AOw A) — fgf].A(w—A,o,w+A)}

i nhn

+— Z{r”Aw+Aw A,0) — T w — Aw+AO)}

d,A =dA
+M{Fl111 (w+A,w—A,0) — I (w—A,w—I—A,O)H,
(3.158)
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d =z, o dw’ A , ’ =7 A o
anlip )= [ o LY@, @' +s)Tpp (s, 1, u;0)

+ LMW', w —I—t)THd(stuw)

+ LMW, w —I—u)THcr(s tu;w')|, (3.159)
with

1112

1 _
Tosl (s, ;') = M{ I"XA(s,—w§—w/,w{-l—w/)l"l.yl’fz\(s,wz-l—w’,wl-l—w/)

Fzylzlz\( —wy — w',wi + "I A(S Wy + @', w1 + ')
Fflg(sr—wz—wrwl+w)rii[z\(s’w2+w’wl+w)

+ T2 (s, —why — ' w1+w)F11£(s wy + ', w1+w)}

111
(3.160)
22,A L AN FRA =2, A
Totra(s, t,u;w') —ZZFflj (w1 + @'t wr — T3 (w2 + &' t, —wy + ')
j
1
M{Fflfz\(w{ + o't w — )l"ffz\(wz + W', —wh+ o, t)
—I—Fffz(wﬁ—w t,wy — w')IY (w2+w’,—w§+w’,t)
—F‘Z{;(w + ' t,w — T lzlz(wz—i—w’,—wé—i—w',t)
—Fflf;(w1+w t,wy — ')I‘ifz\(wZ—i—w’, —wh + W', t)
Fflfl\(wl + ', wy — )T’Zg(w + o', t, —wh + W)
Flyﬂ?(w{—i—w’,wl )FZA(w + 't —w) + ')
I“fll/l\(w1 + ', w — )I’Zzlf\(w + 't —wh + ')
— TN + o', w )FZA(w + ', t, a/+a/)} (3.161)
nn 1 F1 2 2 7 .

1 -
7;)HCI'(S’ t/ u; w/) = M{ - rx’A(wé - w/’ _wl w u)ri/ll ( 2 w,/ wi + w// u)

— I (wh — ', —wy — w’,u)fi’i/z\(wz —w,wi+ ', u)
—Mwh — W, —wy — o, u)fi’é‘(wz — ', wi+ W' u)

z,\

T (wh — ') —wr — & )T

(wr — ', Wy + ', u) },
(3.162)
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and
%fi'lf(s, tiu) = /:: c;c;)[’ [LA(w’, W'+ 8) Tk (s, t, u; ")
+ LM, W' + t)7}Hd(s, tu; ')
+ LMW, W' + u)7}H (s )], (3.163)
with

= 1
7}%A(stua)) M{Fj‘lé\( wé—w’,w{—l—w’)FZfZ\(S wy + ', wy + W)

rz,lz ( wé - w/’ wi Tw )r]z%zz (5 wy + (/J/ w1 + w/)
+rzzlz/:(5/_wé - w’,édi +w )FZA(S Wy + W LWy +wl)

+ T8 (s, —wh) — w', W 4+ W T2 (s, wy + W', wy +w’)},

1112 i1ip
(3.164)
7}’%{;(5/ t,u;w') ZZZfi}A(wi + 't w — w')fﬁ.’z‘\(wz Wt —wh+ W)
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1
+M{ TN W) + W'ty wy — O (wy + W —wh + W, )
—Fié\(wl—kw t, w1 — /)Fzyz'z (wy + ', —wh + ', t)
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- rié\(wi + ', wy — )FdA(w + ' t, —wh + w’)}, (3.165)
/ 1 =X, N / x,A
Tetier(s,t, 150" = w1~ Tk (w2 — @' —wr = ST (wr — W' wh + @' u)
=1, N
=Ty (wr = ', —wr = L )T (w2 — &y @ + @)
- ff{f;(wé — ', —w -, u)ff{g(wz -, W+ u)
_rizlz\( p— W, —wy — )rdA(wz—w Wi+, u)}

(3.166)

For the formula of the susceptibility Eq. (3.123), we adopt the above treatment in
the same manner as the flow equations. In the rescale of the susceptibility, we pay
attention to the relationship xI' being dimensionless. Therefore we rescale x so as
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not to break this relationship:
xT = X MT = 4T (3.167)
M
The susceptibility is rescaled as x — x = x/M. The explicit formula is
_HpA
X ()
L[ A A
=~ /_OO dw G*(w)G™(w +v)dj;

1

— @/ dwdw’ GMw)GM(w +v)GM ') GMw' +v)

X {2T§;’A(w + o' +v,v,w—w)

1 - _
+ M{—FZ’A(w+w/+v,w —w',v)+ Z F;;’A(cujtw’ +v,w—w,v)
v#EU

_ fgf‘\(w + o' +v,w— ) }(Sij] ) (3.168)

In the classical limit S — oo, only the terms containing site summations in the flow
equations and the non-local term in the susceptibility remain finite and it is consis-
tent to the approximation introduced to static PFFRG.
If A = Ar = 0, these flow equations correspond to Luttinger-Tisza method [141,
142]. This equivalence is proved in Ref. [139, 143].

For example, we consider antiferromagnetic (AFM) Heisenberg model with gen-
eral S on honeycomb lattice [139]. The Hamiltonian is

H=]) S-S, (3.169)
(i)

where }_; s denotes a summation over all nearest-neighbor site pairs i, j. We rewrite
this Hamiltonian using Eq. (3.151) and Eq. (3.152),

M M M 2
H=TY), <Z Si,K) : ( ) S]-,K/> + AZ(Z si,K) . (3.170)
K'=1 i k=1

(i) Me=1

The additional last term is level repulsion term with A < 0 and it projects systems
onto |S;| = S sector.

The calculated static susceptibilities are shown in Fig. 3.11 from the paper written
by Baez and Reuhter [139]. Fig. 3.11 (a) show the static susceptibility of S = 3/2
system at the momentum at which (k) has the maximum value with some values
of A. Fig. 3.11 (b) is the counterpart of S = 1/2 system. In both figures, the energy
unit is /1. One may think that the level repulsion term does not affect to S = 1/2
systems although in Fig. 3.11 (b) the susceptibility varies slightly for different values
of A. This is true for the original spins. However in pseudo-fermion representation,
pseudo-fermions interact via density-density channel as well as spin-spin channel,
and the susceptibility difference is generated from pseudo-fermion interactions. In
other words, the difference of the value A corresponds to the difference of the initial
value of the vertices in pseudo-fermion language although in S = 1/2 spin repre-
sentation the level repulsion term is merely constant energy shift. Each inset shows
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FIGURE 3.11: (a) S = 3/2 and (b) S = 1/2 PFFRG susceptibility
of AFM Heisenberg model on the honeycomb lattice with various A.
Energy unit is the Heisenberg interaction J;. Insets show re-calculated
susceptibilities with energy unit 1/J? + A2. Reprinted with permis-
sion from Ref. [139] © 2017 by the American Physical Society.

the susceptibilities re-calculated by rescaling the energy unit J; — /J7 + A2. As

we can see in the inset, the calculated susceptibility curves for all A correspond to
the curve for A = 0. Hence we can conclude that even without the additional level
repulsion term, a projection to the largest-S subspace is made naturally to maximize
the energy gain of the magnetic interaction. Additional calculations confirm this
conclusion [139].

Other Extensions

At last, we mention other extensions briefly.

¢ Off-diagonal spin interaction

In this dissertation we treat only diagonal spin interactions. Therefore we can-
not apply our PFFRG to systems with non-diagonal spin interactions like T’
terms in extended Kitaev-Heisenberg model and Dzyaloshinskii-Moriya inter-
action directly. The Dzyaloshinskii-Moriya interaction was partially included
in PFFRG by M. Hering and J. Reuther in 2017 [144, 145]. Then in 2019, F. L.
Buessen and his collaborators extended PFFRG to treat general non-diagonal
interactions [119].

Dynamical susceptibility

In PFFRG study, the dynamical susceptibility is calculated in probably only
one literature [146]. PFFRG is formulated in Matsubara frequency representa-
tion and it can calculate )(ijv’A(iv) directly. Thus we have to perform analytic
continuation numerically to obtain retarded susceptibility. In Ref. [146], it was
done by Padé approximation, but there are inevitable artificial discontinuities.
Therefore the authors of that paper assumed the formula of the dynamical sus-
ceptibility and performed fitting to obtain it.

Cluster PFFRG

We consider an infinite system and assume that all sites are identical in our
formulation. In 2014, J. Reuther and R. Thomale studied the bilayer Heisenberg
model by extending PFFRG to cluster systems [146]. This cluster PFFRG uses
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small spin clusters as the staring point of the flow. Another extension was
proposed by D. Roscher and his collaborators in 2019 [147].

* Magnetic field and magnetization

We do not consider magnetic field in PFFRG introduced in this chapter (see
our general Hamiltonian Eq. (3.11)). In addition, we cannot calculate mag-
netization and susceptibility in ordered phase because we formulate FRG in
phases with no symmetry breaking. PFFRG in magnetic field and ordered
phase was conducted only in J. Reuther’s dissertation [91]. In this case, we
have to add magnetization terms proportional to the Pauli matrices to the self-
energy, which is proportional to an identity matrix in spin space. Besides, the
numerical costs increase greatly due to broken time-reversal symmetry. It is
said that the computational complexity is 2048 times that of ordinary PFFRG
for Heisenberg interaction [119].

e SU(N) Heisenberg model
PFFRG for SU(N) Heisenberg spin systems are extended by F. L. Buessen and
D. Roscher and their collaborators in real space [137] and in momentum space [148]
in 2018. We can implement the real space extension by replacement of pref-
actors in flow equations as the same manner of spin-S extension we present
above.

¢ VBC and nematic order

We calculate only 1-particle and 2-particle vertices in 1-loop FRG even if we
use Katanin truncation to include 2-loop correction partially. In general, m-
particle Green’s function can be obtained from tree diagrams composed of
Green’s functions and vertices of m-th order or less. Because this, we can-
not calculate the susceptibility of the ordered state where the order operator
is given by the product of two or more spins, directly. However, prescriptions
for calculating those order, valence-bond crystal (VBC) order and nematic or-
der for example, have been presented since the proposal of PFFRG [54]. In
this prescription, we add a spin quadratic perturbation term corresponding
to order which we investigate. For example, we consider the plaquette order
in J1-J» Heisenberg model on the square lattice described by the Hamiltonian
Eq. (3.144). The perturbation term is

Hp=06Y [(=1)"S; i, - Siy+1i, + (=1)"Si i, - Si,iy+1] (3.171)

L/dy

where i, and i, are site indices along the x-axis and y-axis, respectively. We
set the perturbative energy ¢ is much smaller than J; and J,. The expectation
value (Y ; [(=1)*Si,i, - Sio+14, + (=1)¥Si, i, - Si,i,+1]) is the order parameter
of the plaquette order. We define the susceptibility as

A JICh = CP

Xp = 5 AN AN (3.172)
P ct+cy
with the equal-time correlation function
Cit = (Sii, - Siy+1i,)ps (3.173)

C3 = (Sii+1i, - Siy+2i,)pr (3.174)
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where the expectation (- - - ), means expectation value under the Hamiltonian
H + Hp. We calculate RG flow with the Hamiltonian H + #H,, and trace the
susceptibility of the plaquette order Eq. (3.172) along the flow. If this suscep-
tibility diverges we conclude that there is onset of the plaquette order. This
method have been used to investigate various orders [54, 135, 149-153].

¢ Multi-loop PFFRG

In 2018, PFFRG was extended to include 2-loop contributions by M. Riick and
T. Reuther [154]. Then, multi-loop extension is done by J. Thoenniss and his
collaborators [155] and D. Kiese and his collaborators [156] simultaneously in
2020. Recently, multi-loop FRG for itinerant electron systems showed results
which quantitatively coincide with the results by parquet approximation and
deterministic quantum Monte Carlo [72]. It is expected that the accuracy of
PFFRG also will be improved by multi-loop extension.

3.8 Summary of This Chapter

This chapter have been devoted to a detailed review to the PFFRG we used. First, we
introduced the auxiliary fermionic representation of quantum spins, and discussed
the projection from the enlarged Hilbert space to its physical subspace. Second,
we parametrized the Green’s functions and the vertices. Unlike the examples in
Sec. 2.6, in PFFRG we use real-space representation. Based on this parametrization,
we derive the explicit PFFRG flow equations for the models with the Kitaev-type
interactions which are treated in this dissertation.

Then, We have also introduced Katanin truncation in order to incorporate the
effects of frustration and quantum fluctuations into the flow equations. The static
limit was also discussed. The main result calculated by PFFRG is the spin suscepti-
bility. We define the spin susceptibility in a path integral representation and derive
its formula using the Green functions and the vertices obtained by PFFRG.

Finally, a short review of each of the PFFRG extensions was given. In particular,
the extensions for the finite temperature case and for the general spin-S case were
explained in detail. These extensions are used in studies in the dissertation.
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Chapter 4

Dipolar Kitaev Systems

In this chapter, we discuss the realization of Kitaev quantum spin liquids in systems
of molecular gases pinned in optical lattices rather than in solids. We can design
various interactions in the polar molecular systems due to its high controllability.
First, we confirm that these systems can be used as quantum simulators for the
Heisenberg model. This model has a long-range interaction which has roots in the
dipolar-dipolar interaction between polar molecules. Therefore it is required to use
numerical methods for large-size calculation. We then introduce previous studies by
PFFRG. Next, we mention the implementation of Kitaev type interaction using mi-
crowave dressing proposed in 2013 [34, 35]. And then, we define the dipolar Kitaev
model based on these proposals and reveal the ground state phase diagram of the
model using PFFRG. The main part of this chapter will be submitted as Ref. [157].

4.1 Ultracold Polar Molecules as Quantum Simulators

Ultracold polar molecular systems are one of the "hot" themes in condensed matter
physics [158-161]. Experimental study on the control of ultracold polar molecules
has made great progress since 2000s [162-181]. Various bialkali molecules have been
created by Feshbach resonance: KRb [162], Cs; [163], Rb, [164], LiCs [165, 166],
RbCs [174, 175], NaK [176, 179, 180] , NaRb [177], and NaLi [178]. Even in the
last few years, new molecules have been produced intensively. Since 2006, before
the production of these molecules, the research using these polar molecules as quan-
tum simulators, by manipulating their interactions, has been carried out [34, 35,
182-191]. The idea of a quantum simulator is to simulate one quantum system us-
ing another controllable quantum system. The basic idea originated from Richard
P. Feynman [192]. As another application of polar molecules, their application to
quantum computation is also expected and being intensively studied [193-199].

This chapter focuses in particular on the application of ultracold polar molecu-
lar systems trapped in optical lattices as quantum simulators of the spin systems.
Here we introduce a model called "dipolar Heisenberg (XXZ) model" which is ultra-
cold polar molecular realization of the quantum Heisenberg (XXZ) model and we
mention calculation for it by PFFRG. Then we refer to the realization of Kitaev-type
interaction in those systems and our calculation for "dipolar Kitaev model", which
is the implementation of the Kitaev model in polar molecular system, to clarify fea-
sibility of the Kitaev quantum spin liquid. Before we discuss the feasibility of it, we
examine the size dependence of PFFRG results and check how large system size we
should take. After that, we discuss the realization of the quantum spin liquid by
calculating the spin susceptibilities with changing the parameters.
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4.2 Dipolar Heisenberg Model

We consider an ultracold polar molecular (KRb or LiCs, for example) system con-
fined to a two dimensional plane and each molecule is pinned in a deep optical
lattice. [34, 35, 185, 191] In order to simulate spin systems, here the optical lattice is
deep enough to localize each molecule in each site although generally we can con-
sider Hubbard [182, 187] and ¢-] [185, 186, 200] -type models to allow molecules to
hop. The non-interacting Hamiltonian describing each molecule is

Ho = B,N — Ed°. (4.1)

Each molecule can be treated by a rigid motor with angular momentum N, dipole
moment d, and rotational constant B,. The symbol E in Eq. (4.1) represents DC
electric field along z-axis. We assume the system extends in the xy-plane with the z-
axis oriented perpendicular to it. In E = 0, we can take the simultaneous eigenstates
of the square of the total angular momentum N? and the z-component of the angular
momentum N* with each eigenvalue N(N + 1) and M, respectively, as eigenstates
of the Hamiltonian Eq. (4.1). We denote these eigenstates as |[N, M). If we turn on
E, the eigenstates [N, M)r—q adiabatically connect [N, M) (. There is dipole-dipole
interaction between molecules and its Hamiltonian is written as
1%
Haa =5 ZHij/ (4.2)
L]

with A .
Hy — di-d; — 3(111'3' #ij)(d; - rij)‘ 43)
rij

Here, ;; is the vector connecting the site i and the site j, and 7;; is its norm denoting
the distance between sites i and j. In addition, #;; is normalized vector #;; = r;;/7;;.
This H;j can be expanded with the spherical harmonics as

V6 2

Hij = ——% 22(—1)’”C3m(9ﬁ/<Pz‘j)T31(dz‘,dj)/ (44)
ij m=—
where
4
I
C (83, 9ij) = mylm(eijrﬁbij)- (4.5)

The components of r;; in the spherical coordinates are denoted as (rz-]-, 0ij, 4)1-]-) and
Yim (Gij, qbi]') is spherical harmonics with polar angle 6;; and azimuthal angle ¢;;. T2 is
an operator defined as

T,(d;, dj) = dz-id]-i, (4.6)
) dg)dji +d;df
Til (dl’ d]) = \/E 7 (4.7)
dfd; +d;-df +2d%d°
T3 (d;, dj) = — ! ! (4.8)

NG ,
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with ladder operators

df =v—-1 (4.9)
49 = 4. (4.10)

Therefore, the operator T2 (d;, d;) changes M of the two molecules on the sites i and
j by m. According to Ref. [34], for r ~ 0.4 um, d?>/r® ~ 1 (100) kHz in KRb (LiCs)
molecules, and B, ~ 1 GHz from Ref. [185]. We have to select two rotational states
and regard them as "spin" degrees of freeedom, for example 1) = |1,0) and |{|) =
|0,0), to derive a spin Hamiltonian (with S = 1/2). Finally, it is required to project
Hilbert space to the subspace spanned by {|1), |])} and it is justified by sufficient
large E. According to Ref. [185], this condition is achievable for 40K Rb, and for
7Li'®Cs required E is even lower. We define the spin operator S; = (5,57, 5%) as
the usual spin operator with S = 1/2. In this case, the terms in the Hamiltonian
Eq. (4.4) not conserving S7 are strongly off-resonant. Hence we can drop these terms
and only C3 term contributes. As a result, we obtain

V6 o [Am 5 2 2 {1 — L a- 060
Hi]':_T?}'(_l) Vs m(E’;cos 91-]-—1)-\@{2<5i+5]- +5; 5;)4‘51‘51}

Yoo (6ij.9i) T3 (d;,d;)
= (1 —3cos? 0:;)S;i - S;. (411)

Here, our lattice expands in xy-plane and 6;; = 7t/2. Therefore,

18-
EZ r3

i,j ij

Hett = (4.12)

This is a dipolar antiferromagnetic Heisenberg Hamiltonian.

4.3 Numrical Study for Quantum Dipolar Spin Systems

In 2017, H. Zou, E. Zhao, and V. Liu defined the dipolar XXZ ( # 1) and Heisenberg
(7 = 1) model on the square lattice as

211 —3(p;- d
#)(5;‘5}‘ +5/S] +157S5), (4.13)

1

with the exchange anisotropy 77, and performed tensor renormalization group (TRG)
calculation as well as spin wave and Schwinger boson mean-field calculation [201].
Here, they considered the case DC electric field points in the general direction called
"dipole tilting angle" (6, ¢) and introduced the vector d = (cos ¢ sin 8, sin ¢ sin 8, cos 6).
d controls spatial anisotropy of interaction. They calculated phase diagram mainly
for n = 1 (dipolar Heisenberg model) by changing 6 and ¢ as parameters, and found
4 phases; Néel AFM, stripe, spiral, and quantum paramagnetism. As well, Y. N. Yao
and his collaborators perform density matrix renormalization (DMRG) calculation
for the Hamiltonian Eq. (4.13) on the Kagome and triangular lattice and they found
quantum spin liquid behavior near # = 1 and 6 = 0 in 2018 [191]. However, in both
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TRG and DMRG, calculation is limited to small system size due to (quasi-) long-
range property of the dipole interaction '. We have to truncate interaction for unit
cell size L and the bond dimension D [201] and small cluster size and small bond di-
mension are insufficient to describe spiral orders in which the ordering wave vector
locates incommensurate points. Indeed, Zou and his collaborators could not per-
form TRG calculation beyond ¢ ~ 20° due to that. Later, E. Zhao who is one of the
authors of the above paper Ref. [201], conducted studies to clarify the ground state
phase diagrams of the dipolar Heisenberg model on the square lattice [202] and the
triangular lattice [125] by PFFRG together with A. Keles, in order to overcome this
limitation. By PFFRG, they calculated the spin susceptibility in all range of 6 and
¢ (the range of ¢ was reduced by lattice symmerty) and elucidated that there are
competing orders Néel AFM, stripe, and spiral order and spin liquid phase near the
boundary between Néel AFM and stripe/spiral orders on the square lattice, and in
the triangular lattice there is no 120° AFM order phase and there is quantum para-
magnetic phase instead of that phase. As shown by them, PFFRG is good numerical
method for quantum dipolar spin systems because we can treat large size systems
in 2 or 3 dimension to consider (quasi-) long-range interaction and describe incom-
memsulate magnetic orders. There is no difference in computational costs between
to treat a system with nearest-neighbor interaction and to treat a systems with long-
range interaction, for PFFRG if the system sizes are the same. For these reasons, in
this chapter we choose PFFRG as a numerical method to investigate quantum dipo-
lar spin systems.

4.4 Realization of Kitaev-type Interactions

For the realization of the quantum spin systems in the ultracold polar molecular sys-
tems described above, we can only obtain limited variety of interactions. In 2013, it
was proposed that we can control each coefficient C2,, in Eq. (4.4) independently by
making linear combinations of molecular rotation states by microwave radiation [34,
35]. In addition, a general spin-S Hamiltonian can also be realized by selecting 2S + 1
disjoint sets of [N, M) for each molecule and coupling them within each set by mi-
crowave fields. Therefore, we can obtain a large variety of spin Hamiltonians by mi-
crowave dressing. As an example, S = 1/2 Kitaev-like bond-dependent Ising-type
interaction is realized by controling the coefficients C2,, and coupling 25 rotational
states [34, 35]: the states |1) and |/) are made by linear coupling of 12 and 13 states

{12,-1), |2,0), 2,2), |3,-1), [3,1), |3,2),
3,3), 14,—4), |4,-3), |4,—1), |4,1), |4,3)}, (4.15)

and

{10,0), |1,-1), [1,0), [1,1), |2,-2), |2,1), |3,-3),

13,=2), |3,0), [4,-2), |4,0), |4,2), |4,4) }, (4.16)
In 2-dimensional systems, the dipole interaction ~ 1/13 is quasi-long-range, strictly speaking:
R 1
. 2, 1
ngl:o ; der 3 (4.14)

converge, where 4 is a lattice constant as a natural short-range (ultraviolet) cutoff.
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respectively. The coefficients and more detailed procedures are written in Ref. [35].
In the next chapter we define "dipolar Kitaev model" based on the proposal in this
paper. The realization of Kitaev model in polar molecular systems was also sug-
gested in 2006 [183]. This realization is perturbative although the implementation
in Ref. [35] is based on dipole-dipole interaction directly. Thereby, the latter im-
plementation has stronger interaction and easier to access experimentally. Note
that the interactions are still long-range in the implementation of spin-spin interac-
tions described in this chapter because these interactions have roots in the dipole-
dipole interaction between polar molecules. The dipole Kitaev model is not ex-
ception (see Eq. (4.17) in the next section) as well as the dipolar Heisenberg (XXZ)
model Eq. (4.13). Consequently it has long-range interaction in addition to nearest-
neighbor Kitaev-type interaction. It is not clear whether Kitaev quantum spin liquid
is stabilized or not in the model with long-range interaction because spin-spin cor-
relations beyond nearest-neighbors strictly vanish in the original Kitaev model [13,
29]. In Ref. [35], authors remark on this point:

While in some cases long-range corrections are weak enough to ensure the sur-
vival of the desired phases, it is an open question whether this holds for the
present example.

There is no studies on the phase diagram of the proposed model and it has not been
clarified whether quantum spin liquid is realized until now. The goal in this chapter
is to unravel whether Kitaev quantum spin liquid realizes in dipolar model and
polar molecules can be used as a quantum simulator of the Kitaev model, by PFFRG
calculation. If so, we also have to clarify the difference with the quantum spin liquid
state in the original Kitaev model. If not, it is also our aim to clarify what happens
in the dipolar model and to suggest modified implementation for the realization of
Kitaev quantum spin liquid in ultracold polar molecular systems.

4.5 Dipolar Kitaev Model

In this section, we define the dipolar Kitaev model based on the works in Ref. [34, 35]
as a model for a S = 1/2 quantum simulator realized in ultracold polar molecular
systems trapped in deep hexagonal optical lattice:

11#i
7’[ = E ZHl]’
L]
1 4
Hjj = _3r3{]x[1 — 2cos<2®ij — 3>]Sl’-‘5;‘

ij

2
+ Jy[1 —2cos <2<1>ij — ;)]Slys]y

+ J:[1 —2cos (2c1>ij)]s$s;}. (4.17)

We modify two points from a suggested Hamiltonian in Ref. [35]. First, we consider
the case Jx # J, # J. though J, = J, = ], in Ref. [35]. It can be considered that
anisotropic [; # J, # J. is easily implemented thanks to the controllability of the
polar molecular systems. Second, we relabel the bond directions (x,v,z) for con-
venience in numerical calculations. Here, r;; is the vector connecting from site i to
site j and r;; = |r;j| is its norm, as defined in Sec. 4.2. We set the lattice constant
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FIGURE 4.1: Schematic figure showing the definition of 7;; and ®;; in
the dipolar Kitaev model Eq. (4.17)

as unity. Here we define the lattice constant as a length of a bond, not as a length
of the primitive vectors of underlying Bravais lattice. The angle ®;; is defined as
the angle of r;; measured from the x-axis. These definitions are shown in Fig. 4.1.
Another representation of ®;; is the argument of the complex number 7;;, + ir;j,
i.e. Arg(rijx +1irij,) in the complex x + iy plane where 7;;, and 7;j, are the x- and
y-component of the vector r;; (see Fig. 4.1). The summation ), ; runs over all sites
with the constraint i # j. This model has the angle-dependent Ising-type interaction
which is dipolar generalization of the original Kitaev model. Let us focus on the site
labeled i in Fig. 4.1 and consider the interaction between nearest-neighbors sites. At
first, we consider the nearest-neighbor site connected with the site i by a blue bond.
In this case, r;j = 1 and ®;; = —2% and

4

1—2cos <2c1>ij - 3”) —3, (4.18)

21
1—2cos| 2®;; — 3 )= 0, (4.19)
1 —2cos (2®;j) = 0. (4.20)
Hence the two-site interaction Hamiltonian in Eq. (4.17) is Hjj = — JSF S}‘ . In the
same manner, the interactions between the site i and the nearest-neighbor site con-
nected by a green (®;; = —7) and red (®;; = 7) bond are H;; = —]ySin]y and
Hjj = — IZSfS]?, respectively. Therefore, the interactions between nearest-neighbor

sites are consistent with the original Kitaev model [13]. Then we consider the in-
teraction between the next-nearest-neighbors. As an example, we focus on the site
labeled as j in Fig. 4.1. The distance between two sites is r;; = /3 and the angle is
(Di]‘ = % Thus,

1—2cos <2c1>l-j - 4;) =2, (4.21)
1—2cos (2% - 2;) =1, (4.22)

1—2cos (2@;) =2, (4.23)
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and the interaction is

1
Hl']' = —79\/§

The magnitude of the interaction reduces by 1/(1/3)% = 1/(3/3) ~ 1/5 relative to
the nearest-neighbor interaction. As shown in Eq. (4.24), interactions of each spin
component change its signs and magnitudes depending on positions of interacting
sites beyond nearest-neighbor. For this reason, the model appears to be highly frus-
trated.

[2]xSSf — IS} + 2157 S5). (4.24)

4.6 Size Dependence and Finite Size Scaling

Hereafter, we perform PFFRG calculation to obtain the spin susceptibility. We con-
sider the case |, = J, # J; in Eq. (4.17) and introduce the anisotropy parameter a
0<a<3/2) as

Jx =]y = £]a,
J: = +](3 - 2a), (4.25)

where the upper sign is for ferromagnetic (FM) case, the lower one is for antifer-
romagnetic (AFM) case. We take | as the energy unit (] = 1). In PFFRG calcula-
tion, we used 64 positive frequencies with logarithmic mesh between wpin ~ 1074
and wmax = 250, and 212 A-points with A;1;/A; = 0.95 and Ayy = 500. We
benchmarked our PFFRG codes by reproduction of previous studies about mod-
els with Heisenberg-type interaction on square [54] and honeycomb [139] lattice
and Kitaev-Heisenberg model on honeycomb lattice [136]. Our codes are designed
for openMP+MPI hybrid parallelization and the calculations were performed in
Oakbridge-CX in the Information Technology Center, The University of Tokyo, Oakforest-
PACS in Center for Computational Sciences, University of Tsukuba and in the In-
formation Technology Center, The University of Tokyo, and MASAMUNE-IMR in
Center for Computational Materials Science, Institute for Materials Research, To-
hoku University, and sekirei (system B) in the Supercomputer Center, the Institute
for Solid State Physics, the University of Tokyo.

For numerical simulation of models with long-range interaction, there is a well-
established method called "Ewald sum" [203, 204]. Indeed, Monte Carlo studies of
classical Heisenberg dipolar lattice systems ? on the square, triangular, honeycomb,
and Kagome lattices was performed by this trick [205]. However, this trick cannot be
implemented in PFFRG formulated in the real space directly °. Thus, at first, we con-
duct calculation while changing the cluster size L to examine the convergence. We
consider FM case and set the anisotropy parameter at isotropic point « = 1 because
we can reduce calculation costs largely for lattice symmetry. We show calculated
static spin susceptibility for various system sizes in Fig. 4.2. For the case & = 1 the
system has the symmetry related simultaneous lattice and spin 377/2 rotation (along
az-axis for lattice and (1, 1, 1)-direction for spin). It is sufficient to calculate x** for

2Note that this model »
1E[Si-S;  _(Si-1ij)(S;-1ij)
H=3) |5 3% 5 '
ij ij ij

(4.26)

is different from the dipolar Heisenberg model described in Eq. (4.13) introduced before in this chapter
for the realization of the quantum Heisenberg model in ultracold polar molecules.
31n the papers for dipolar Heisenberg model [125, 202], authors do not mention this point
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FIGURE 4.2: Calculated static spin susceptibilities (z-component)
with different L. (a) A =0to 1, and (b) A = 0.175 to 0.6.

FIGURE 4.3: Schematic figure showing the definition of the cluster

with L (L = 2, 4, and 6). If we regard site locating center of the figure

and labeled ij as the reference site, the cluster with L = 2,4, and 6 are

sets of sites surrounded by dotted line, dashed line, and thick line,
respectively.

this reason. x** and x¥¥ are obtained by 37/2 and —37/2 rotation of x** in the
momentum space, respectively. The argument knax is the wave vector at which the
susceptibility has maximum value. The behavior of susceptibility shown in Fig. 4.2
indicate that the system undergoes phase transition to magnetic order (see Fig. 3.3)
and its ordering wave vector corresponds to kmax. As we show later, kmax = (0,0)
and it corresponds FM order. L denotes the distance from the site at the center of
the cluster to the farthest site. This distance is defined by the length of the shortest
path on the lattice connecting the two sites. Thereby it characterizes system size of
the cluster. The clusters with different Ls (L = 2, 4, and 6) are shown in Fig. 4.3,
for example. N denotes the number of sites in each cluster. As we mention in the
footnote in Sec. 4.3, the dipolar interaction ~ r=3is convergent (more precisely ab-
solutely convergent) in two dimensional systems. Thus, as L increases the suscepti-
bility converges, but slowly. To confirm this behavior we show an enlarged section
of A = 0.175 to 0.6 in Fig. 4.2 (b).

To obtain ordering scale (critical cutoff) A. of the L — oo system, we estimated it



4.6. Size Dependence and Finite Size Scaling 97

,,,,,,,,,

P e

(a)

TEEEE
L L L [}
=N =W
BT
S3=333
I
LLLLL
00 00 00 B ©
oo
TEEEE
L UL L A [}
W= WN
BR3RR

IR

,,,,,

0.35 — (b)
i e | It .

i 0.15 t f
0.25 [~ <u

XM Kinays v=0)LET

0.05

02 B e —

0.15 N 0 0.004 0.008 0.012 0.016
0.21 0.212 0.214 0.216 0.218 0.22 1/N

FIGURE 4.4: (a) x**"/L* " vs. A for L = 16, 24, 32 and various

values of 7 for finite size scaling. (b) Ordering scale A. vs. inverse of

cluster sites 1/N. The red circles with error bars indicate calculated

breakdown scales and the blue triangle shows its estimated value by

finite size scaling with 7 = 0.75. The error bars reflect the spacing of
the A-mesh.

by finite-size scaling. If x* satisfies a scaling relation we know well for the suscepti-
bility at finite temperature,

A — A

ﬁ:f v
1271 x Ac

) ) (4.27)

where x and f, are susceptibility calculated by PFFRG in size-L cluster and scaling
function of susceptibility, respectively. 7 and v are critical exponents. As we can see
in the above relation, if A = A, Xf/ L2 has the same value for any L. We used
the data of L = 16, 24, 32, and plotted x?*/L*~" for A while changing the value of 7.
When all the data crossed at one point, that point was determined as the estimated
value of A.. The result of the finite size scaling and obtained A are shown in Fig. 4.4.
From finite size scaling as shown in Fig. 4.4 (a), we obtain an estimated ordering
scale A. ~ 0.215 and the exponent 7 ~ 0.75. Here, some uncertainty remains at
the intersections because we use a coarse A-mesh to reduce computation costs. We
plot obtained values of A, for 1/N in Fig. 4.4 (b). The red circles with error bars
represent A obtained from the flow of the susceptibility shown in Fig. 4.2 and the
blue triangle indicates A. ~ 0.215 obtained by finite size scaling shown in Fig. 4.4
(a). The critical exponent 17 ~ 0.75 obtained by finite size scaling is large. Our model
Eq. (4.17) has Z¢ symmetry in spin space at & = 1. It is known that the exponent
is the same with its value of the Ising model 17 = 0.25 from studies on 6-state clock
model [206-208] *. We can consider that this difference in the critical exponent is
caused by the difference between A and T. It is not strange that finite temperature
calculation and zero temperature calculation with cutoff A yield different exponents,
although both act as infrared cutoffs and they satisfy the relation Eq. (3.150) in high
energy/high temperature region. There was no significant change when the finite-
size scaling was redone by replacing the definition of L with L = +/N. From Fig. 4.2

4More precisely, there are intermediate BKT (Berezinskii-Kosterlitz-Thouless) phase [209-211] be-
tween ordered and disordered phases in 6-state clock model and classical Kitaev-Heisenberg model.
The exponent # varies form 1/4 (at the boundary between disordered and BKT phases) to 1/9 (at the
boundary between BKT and ordered phases).
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FIGURE 4.5: Calculated static spin susceptibilities (z-component) of
(a) the nearest-neighbor AFM Heisenberg model and (b) the Kitaev
model with different L.

and Fig. 4.4, we can conclude that L > 10 — 12 is sufficient to examine whether
the system is ordered or not, and that A. deviates only the order of 0.01] from the
estimate obtained by finite size scaling. We set L = 20 for further calculation.

In addition, we show the size dependence of the susceptibility for the nearest-
neighbor AFM Heisenberg model on honeycomb lattice and the original Kitaev model
in Fig. 4.5, for comparison. The susceptibility of the AFM Heisenberg model (Fig. 4.5
(a)) converges when L > 8 and indicates the phase transition (to Néel order). Note
that spins have full SU(2) symmetry in the Heisenberg model and do not order ac-
tually due to Mermin-Wagner theorem [212]. It is an artifact of PFFRG which over-
estimates ordering tendency [99]. On the other side, The susceptibility of the Kitaev
model (Fig. 4.5 (b)) seems to converge even if L = 2. This reflects the fact that
there are only the nearest-neighbor spin correlations in Kitaev quantum spin liquid
state [13, 29]. Comparing the size dependence shown in Fig. 4.2 and Fig. 4.5, we can
see that the convergence in the dipolar Kitaev model is very slow.

4.7 Susceptibilities for Various Anisotropy Parameters

In the next step, we calculated the spin susceptibility of the model while changing
the anisotropy parameter a and the sign of interaction. In the isotropic case & = 1,
only the 1/6 region of the system should be dealt with due to the symmetry, so that
the calculation cost can be reduced. However, three times the area in the isotropic
case must be calculated if @ # 1. Therefore we set L = 20 to reduce computational
costs. In this case, we have to solve about 1.65 x 10® coupled integro-differential
equations.

At first, we consider FM case i.e. upper signin Eq. (4.25). Calculated A-dependence
of the static susceptibilities for some « is shown in Fig. 4.6. If & # 1, x™ and x¥¥ are
related by symmetry and we can get one from the other by reversing the sign of
ky, while x** and x** are not related. Therefore we calculated x** and x**. At the
isotropic point &« = 1, these two components have the same values as shown in
Fig. 4.6 (f). If 0 < a < 1, x*** have larger values than x*** (Fig. 4.6 (a)-(e)) because
the interaction between z-components of spins is dominant. On the other hand,
x5 is larger than x# for 1 < a < 3/2. We can see that the system undergoes a
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phase transition to magnetic ordered phase for all x. We show the momentum de-
pendence of the susceptibilities at each critical cutoff A. in Fig. 4.7. In each plot, the
inner hexagon and the outer hexagon represent the first and the extended (second)
Brillouin zone, respectively. The relationship between the magnetic order and the
peak position of the susceptibility is summarized in Fig. 5.14 in the next chapter. We
conclude that the ground state of the system is in FM ordered phase for all «.

Next we calculate the homogeneous susceptibility x”* obtained as

xMk=0,iv=0) =Y x"*(k=0,iv=0), (4.28)
M

and calculate Curie-Weiss scale Acw by fitting of its inverse. The Curie-Weiss scale
is defined [136] as

1

A — (i —
X (k—O,lv—O)aA_ACW,

(4.29)
and it is a counterpart of the Curie-Weiss temperature. We show the Curie-Weiss
fitting for some &, ordering scale and Curie-Weiss scale vs. « in Fig. 4.8. At large
A the susceptibility obeys Curie-Weiss law (Fig. 4.8 (a)), while it deviates from the
Curie-Weiss fitting due to quantum effects in low energy region (Fig. 4.8 (b)). We can
see that the magnitude relationship between A. and Acw is reversed near isotropic
point &« = 1in Fig. 4.8 (c). This means that near « = 1 the frustration becomes strong.
For further understanding the change in the intensity of frustration, we calculated
frustration parameter f obtained as

[ Acw]|
f= A (4.30)
in Fig. 4.8 (d). This is a phenomenological parameter originally defined by A. P.
Ramirez in 1994 [213]. The same definition as Ref. [136] is adopted here for f. The
system has strong frustration if f > 5 —10. Now f has its maximum at « = 1. All
three components of the quantum spin interact with the same intensity for isotropic
case, so we can see that f is maximum. However, the maximum f is only about
1.4. We can assume that there is no point of strong frustration, even in the case of
Jx # J; # ]z, and therefore the quantum spin liquid state is unlikely to be realized,
because f is too small at any «. The system is considered to be FM ordered for all ],
Jy, and J; in FM case.
Now let us move on to the AFM case in which we use lower signs in Eq. (4.25).
As the above FM case, we calculated the static spin susceptibilities and plot its A-
dependence in Fig. 4.9, and its momentum dependence at the critical cutoff A, in
Fig. 410. Even in AFM case, the spin and lattice symmetries are same with those
in FM case. Thus we can obtain )(W'A(k, iv) from X’”"A(k, iv) by ky <> —ky. As we
can see these figures, the zigzag AFM order is realized and the spin liquid state does
not appear in all x. The corresponding peak position in extended Brillouin zone and
a schematic spin pattern of the zigzag order is shown in Fig. 5.14 and Fig. 5.2 in the
next chapter, respectively. Also as in FM case, we performed Curie-Weiss fitting and
estimate the Curie-Weiss scale Acw through it. Then we calculated the frustration
parameter f and show these results in Fig. 4.11. the general trend is the same with
FM case altough the Curie-Weiss scale is slightly smaller. Therefore, we can conclude
that the ground state is zigzag AFM order for all Jy, J,, and ], in AFM case.
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4.8 Collapse of the Kitaev Quantum Spin Liquid

The ground state is FM/zigzag AFM order in dipolar Kitaev model whose inter-
actions are long-ranged, though that in the original Kitaev model with only the
nearest-neighbor exchange interactions is quantum spin liquid. Recall that the nearest-
neighbor interactions in the dipolar Kitaev model are the same as those in the Kitaev
model. So how are these two models connected with each other? What causes the
breakdown of the quantum spin liquid state? To find the answers to these questions,
we introduce the range of interaction Lin: as an additional parameter and consider
the dipolar Kitaev model with Lint,

1 <
H= H;;,
2 4 K
] 4n
H;; = ~33 [1—2cos( 2d; 3 |SiS;
4
27T\ oy oy
+[1 —2cos | 2®;; — 3 |S;'S;
+[1—2cos (2@0]5?5?}, (4.31)

. 1<||r;jllp<Li
where the summation ), ; Irijlo <L

and j with constraint 1 < ||#j|lp < Lint. The norm ||7;||p is defined as the shortest

means the summation over all sites for each of i



4.8. Collapse of the Kitaev Quantum Spin Liquid 103

(@) a=0.1 (b) a=0.2
0 XZZ ——— 45 XZZ
. A o
T | 7w i
= 40 < 25
: I : \
& 30 £ 20 \
<: 20 ‘ l <; 15 \
‘ \ 10
" i ° L\
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
A A
(c)a=0.4 (d) 0=0.6
100 XZZ T 80 XZZ
50 XXX ..... PN 70 . Xxx
s o 60 ~
z 60 1 50 '
;«? é 40 ‘
<5 40 <§/ 30 k
x 2 ) \
‘\ 10
0 Siaeas 0
0 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
A A
(e) a=0.8 (f) a=1.0
0 zz 8 7z
60 fxx _____ P 7 ;éxx
6
g % g N
.Z;( 40 .Z;< . X
F o S ol
<; \ < A
20 2 LY
ol |\ N AN
0 Nw""“"“-—o—.-._._‘
0 0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
A
A
(9) 0=1.2
2z zz
12 PR x X e 1 ﬁxx _____ —
g " E?‘- S
.z% 8 “%ﬁ;; _%(
©
F '0& X
2 bb
0 "h""-o»...‘.‘g"%g veons
0 0.2 0.4 0.6 0.8 1 04 06 08 ’
A A

FIGURE 4.9: Calculated static spin susceptibilities x?** and x*¥* vs.
A for some velues of « in the AFM case. The results for « = 0.1, 0.2,
04,0.6,0.8,1.0, 1.2, and 1.4 are shown in (a)-(h), in order.



104 Chapter 4. Dipolar Kitaev Systems

(a) a=0.1 (b) a=0.2

0.35
03
0.25
0.2
0.15

0.05

05

0.45

04

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
1.2 4 6 6
1 5 5
0.8 2 4 4
06 =0 3 3
04

2 2 2

0.2 1 1
0 4 0 0

4 12 4
;

2 08 2

20 06 »p

04

N 02 2

4 0 4

4 2 0 2 4
Ky
XZZ’AC (k,iv =0) X”’AC(kz, iv=0) XZZ’AC (k,iv =0) X”’A“ (k,iv =0)

FIGURE 4.10: Momentum dependence of the static susceptibilities

XN and x*A at the ordering scale A = A.. We consider AFM

case. The results for « = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 are

shown in (a)-(h), in order. For each «, left panel and right panel show
X7 (k,iv = 0) and x**"<(k,iv = 0), respectively.



4.8. Collapse of the Kitaev Quantum Spin Liquid 105

2
@ =5 ©) 7
- 15 Bﬁe%M
8 7 o ¥
T // C”’ 0o
= 6 o 2 1
£, . <
<:< o <£< 0.5
T, ° ‘,/ a=8,21 o - s i a:g,l
=0. ° e =0.
/, =06 O = T as06
0 - =08 o a=0.8
a=1.0 ° 05 a=1.0
05 0 05 1 15 2 25 3 35 4 45 5 " 02 0 0.2 0.4 0.6 0.8
A A
1.2
(c) 05 ordering scale A, —e— ()
\\ Curie-Weiss scale IACW(f ,,,,,,,,,,, 1
y /N
so 0.8
'z 06 /!
< 0.3 SO /
0
e 0.4 o
0.2 "
\/ 02 F
0.1 ket L 0
0 02 04 06 0.8 1 12 14 0O 02 04 06 08 1 12 1.4
o o

FIGURE 4.11: A-dependence of inverse of uniform static spin sus-
ceptibility 1/x*(k = 0,iv = 0) with Curie-Weiss fitting for some
values in (a) A € [—0.5,5] and (b) A € [—0.25,0.8]. (c) The ordering
scale (critical cutoff) A. and the absolute value of Curie-Weiss scale
Acw, and (d) frustration parameter f vs. anisotropy parameter a. All
panels show the results for AFM dipolar Kitaev model.

bond connection between sites i and j on the honeycomb lattice. If either sites i or j
is the reference site ij at the center of the cluster, then L;,; matches the definition of L
(See Fig. 4.3). If Lint = 1, this Hamiltonian becomes the Kitaev model Eq. (1.1), and
it corresponds to the dipolar Kitaev model Eq. (4.17) if Lint = L. Here we consider
FM isotropic case and we define |, = J, = |, = ]. We conducted PFFRG calculation
while changing Liy: from 1 to L, and show the static susceptibility x*** at the kmax
in Fig. 4.12. We take L = 20 cluster for Liny > 2 though L = 10 for L because
there is no significant size dependence in the exact Kitaev model case (see Fig. 4.5
(b)). In Fig. 4.12, we only display the susceptibility for A > A, for the model with
Lint > 6 for clarity. It is difficult to conclude from Fig. 4.12 at which Lin¢ the system
becomes ordered. Thus, we adopt the size dependence of the on-site susceptibility
)(ZTZ’A(iV = 0) as a clearer criterion for ordering. Recently, it was pointed out that if
the system is ordered, the on-site susceptibility appears to be size-dependent, other-
wise it is not [214]. We calculate the on-site susceptibility for different Lint as shown
in Fig. 4.13. We can see size dependence of the on-site susceptibility of the system
with Liny = 3 or Liny = 4. Hence we can conclude that the system undergoes phase
transition to magnetic order for Lin; = 3 or 4. Further, by fitting we obtained the
Curie-Weiss scale and the frustration parameter shown in Fig. 4.14. The plots are
connected by lines in the figure for eye guide though Liy is a discrete parameter.
The system is not ordering for Lin; < 2 and there is no A, in Fig. 4.14 (a), although
Curie-Weiss fitting can be performed whether the system is ordered or not. From
around Liys = 5, both A and Acw begin to asymptotically approach the value of
Lint = L. This behavior can be seen also in the Liy-dependence of the frustration
parameter in Fig. 4.14 (b). In the region Lin; < 2, which is grayed out in the figure, f
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is ill-defined because A. does not exist. This region corresponds to f = co because
the ordering is hindered by strong frustration. In the next step, we investigate the
momentum dependence and the spatial dependence of the susceptibilities for each
Lint shown in Fig. 4.15. In the figures for each parameter, the left panel exhibits the
momentum dependence in the extended Brillouin zone, on the other hand the right
panel shows the susceptibility in the real space viewed horizontally from the y < 0
direction. For Lin: < 2, the susceptibilities have no breakdown points, therefore we
plot the susceptibilities at A = Ajr. On the other hand, for Lins > 3, we show sus-
ceptibilities at A = A.. At Lins = 1, the Hamiltonian Eq. (4.31) is strictly identical
to the Kitaev model, and )(Z.Z’AIR has finite values only if j = i or the case j is the
nearest-neighbor of i connected by z-bond, strictly. Thereby the momentum depen-
dence of x**** (k) has a cosine-curve shape in the k,-direction and the susceptibility
X?* % (k) has the maximum on the line ky = 0 (see Fig. 4.15 (a)). As Lint increases
from 1, the figure shows that the region with the maximum susceptibility shrinks
rapidly. We can see that the regions eventually shrink at k = 0 point, resulting in the
peak of the FM order.

These results indicate that the Kitaev spin liquid state collapses with increas-
ing Lint. From this, we may consider that the long-range interactions breaks Kitaev
quantum spin liquid states. More precisely, there are two-type differences between
the dipolar Kitaev model and the Kitaev model:

¢ The dipolar Kitaev model has (quasi-) long-range interaction.

* In the dipolar Kitaev model, generally complex (5757, S! S? , 5;S;-mixed) in-
teractions between spins at sites farther apart than the nearest neighbor are
observed.

If for the latter reason the spin liquid is destabilized, then designing another in-
teraction by microwave irradiation may realize it. However, according to previous
studies of the K;-K; model (Kitaev model + the next-nearest-neighbor Kitaev interac-
tions) [215], the Kitaev spin liquid is fragile to the next-nearest-neighbor interaction,
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even if it is a Kitaev-type interaction. If we set
(4.32)

in K;-K; model (K; = 1) as the dipolar Kitaev model, this parameter is in ordered
phase. In the case of the dipolar Kitaev model, it is not yet ordered at Lin; = 2, but
it is also ordered at Lins = 3 (see Fig. 4.12). Therefore, in the dipolar Kitaev model,
we conclude that the Kitaev spin liquid is not realized due to the long-range nature
of the interaction. This is quite different from the dipolar Heisenberg model. In the
dipolar Heisenberg model, the long-range interaction strengthen frustration of the
system and the spin liquid states appear as a result [125, 201, 202]. On the other
hand, the long-range interaction weaken the frustration and the system is ordered
for all anisotropy parameters.

Because the long-range nature of the interaction destroys the Kitaev spin liquid,
it is difficult to design another interaction by microwave, as long as it is rooted in the
dipole interaction, to realize the Kitaev quantum spin liquid. Since the Kitaev spin
liquid is more robust to the next nearest neighbor Heisenberg interaction than to the
next nearest neighbor Kitaev type interaction [215], if possible, the Kitaev quantum
spin liquid may be realized by designing an interaction such that the long-range
interaction is closer to the Heisenberg interaction.

4.9 Summary of This Chapter

In this chapter, we discussed the feasibility of the Kitaev quantum spin liquid in
ultracold polar molecular systems trapped in the optical lattice, based on the real-
ization of Kitaev-type interactions proposed in previous studies [34, 35]. First, we
introduced the dipolar Heisenberg/XXZ model and its realization in these systems.
Then we briefly reviewed the proposals for the realization of Kitaev-type interac-
tions by laser-induced linear coupling of rotational levels in the molecules.

Based on these proposals, we defined the dipolar Kitaev model. The interactions
that appear in this model are derived from dipole interactions between molecules,
and have long-range nature. The interactions between the nearest-neighboring sites
are consistent with the Kitaev-type interaction, but those between sites farther than
the next-nearest-neighbor are more complicated.

We have applied PFFRG to this model to investigate the ground state at each
anisotropy parameter. The results show that FM order and zigzag AFM order are
realized in the FM and AFM dipolar Kitaev model, respectively, for all anisotropy
parameters. Next, we investigated the ordering behavior while increasing the range
of the interaction from the nearest-neighbor case. As a result, the behavior of the
susceptibility shows that the Kitaev quantum spin liquid state quickly collapses and
the system undergoes magnetic ordering as the range of the interaction increases.

From these results, we conclude that the Kitaev quantum spin liquid is very frag-
ile against long-range interactions in the proposals. This is difficult to realize Kitaev
quantum spin liquid with dipolar-Kitaev interaction and long-range Kitaev interac-
tion. It is necessary to propose another realization of the Kitaev quantum spin liquid
in dipole systems.

After the proposal of Kitaev-type interaction in ultracold polar molecular sys-
tems by microwave irradiation in 2013, the calculation based on this proposal has
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not been performed, and whether Kitaev quantum spin liquid state is actually re-
alized has remained an open question. We addressed this issue with PFFRG and
elucidated the above results for the first time.
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Chapter 5

Spin-S Kitaev-Heisenberg Model

In this chapter, we now discuss the realization of the Kitaev quantum spin liquid
state in solids. In particular, we focus on the Kitaev quantum spin liquid with higher-
spin. Recently, the higher-spin Kitaev model has attracted much theoretical attention
in terms of conserved quantities and excitations. In addition, the realization of Ki-
taev interaction in materials with S = 1 and S = 3/2 spins has been proposed
recently. In general, if the spin length S is large, quantum fluctuation is suppressed
and magnetic orders is stabilized. Therefore, we would like to evaluate how long
S is allowed in candidate materials to realize spin liquid state. Although there are
various effects and interactions in real materials, we focus on, in this chapter, the
Kitaev-Heisenberg model, which is a minimal model for the candidate compounds.
We discuss the above evaluation based on the spin-S PFFRG calculation. The main
part of this chapter will be submitted as Ref. [216].

5.1 High-spin Kitaev Model

The Kitaev model is a model for S = 1/2 spins originally, and exact solutions for
S > 1/2 have not been obtained so far. In S = 1/2 Kitaev model, the original spin
degrees of freedom fractionalize into Majorana fermion and Z,-flux. It is proved that
the Z,-flux is also a local conserved quantity and the spin-spin correlation is limited
in the nearest-neighbor for arbitrary flux distribution [45]. However, other fraction-
alized degrees of freedom are still unknown. It is clarified that even if S > 1/2 the
entropy is released in halves as the temperature decreased and the specific heat has
a double-peak behavior as that in S = 1/2 numerical studies [36-38] This fact means
that in low temperature other degrees of freedom contribute to the specific heat in
addition to Z,-flux. Low-energy excitations and magnetic responses are intensively
studied, especially for S = 1 systems, recently [36, 39-44].

In the toric code limit (J; > ], ), there is clear difference between integer spin
and half-odd integer spin [217]. The effective model in this limit corresponds to the
toric code model [26] if S is half-odd integer, although if S is integer the ground state
is topologically trivial. The toric code model is well-understood and what we are
really interested in is the isotropic case ], = ], = ], for non-Abelian anyons.

In addition, the mechanisms for higher-spin Kitaev model are proposal recently.
Materials with chemical formula A3Ni; XOg (A =Li, Na and X =Bi, Sb) are candi-
date materials for S = 1 Kitaev model [46]. The candidate materials for S = 3/2
Kitaev model are Crlz, CrBrs, CrSiTes, and CrGeTez [47-50]. Experimental and the-
oretical studies on high-spin Kitaev materials are important not only for material
science but also for understanding of high-spin Kitaev quantum spin liquid.

Generally speaking, non-Kitaev interactions cause magnetic ordering and quan-
tum fluctuations in the ordered phases are suppressed for high-spin systems. This



112 Chapter 5. Spin-S Kitaev-Heisenberg Model

means in higher-spin systems the quantum spin liquid is hard to be stabilised. There-
fore, it is important to estimate the upper bound of S for realization of quantum spin
liquid in these materials. In this chapter we focus on this estimation by PFFRG and
we treat the Kitaev-Heisenberg model, introduced in the next section, as a minimal
model for the candidate materials.

5.2 Kitaev-Heisenberg Model (S = 1/2)

In the candidate materials, the Kitaev-type interaction is considered to be realized
owing to the Jackeli-Khaliullin mechanism [14]. There are, however, other magnetic
interactions due to various effects: direct overlap between d-orbitals, deformation of
octahedrons, and so on. A minimal model for the candidate materials is the Kitaev-
Heisenberg model (J-K model)

H=K) ) SiSi+]) SiS; (5.1)
RO (i)

on the honeycomb lattice. K and | are the coupling constants of Kitaev interaction
(weset [ = |, = J; = K) and isotropic Heisenberg interaction. The summation Yoi,)
runs over all nearest-neighbor pairs of sites, and the summation }; ;, runs over all
pairs of sites on u-bond (see Fig. 1.1). This model was suggested as a minimal model
for iridium oxides A;IrO3; (A=Na, Li) originally [51]. In Jackeli-Khaliullin mecha-
nism described in Chap. 1, FM Kitaev interaction (K < 0) is obtained via quantum
interference between 2 Ir-O-Ir exchange paths. In addition, AFM Heisenberg inter-
action (J > 0) can be finite by direct d-d overlap and onsite Coulomb repulsion in
oxigen p-orbitals. Therefore, these interactions are often parametrized as

= -2,

J=(1-ua), (5.2)

by « € [0,1]. At a = 0 the Hamiltonian Eq. (5.1) becomes the AFM Heisenberg
model, at « = 1 the model is the isotropic FM Kitaev model on the other hand.
Based on this parametrizeation, several numerical studies clarified that the spin lig-
uid state is stable in the range ~ (0.8,1] [51, 136, 218, 219]. In addition to spin
liquid phase, there is two magnetic ordered phase: Néel and stripy AFM, and their
boundary locate « ~ 0.4. Even so, experimental results suggest zigzag AFM ordered
ground state in NayIrO3 [220-224], and incommensurate spiral ordered ground state
in LipIrO3 [224-226]. To describe the property of NayIrOs, two types of extensions
of Kitaev-Heisenberg model were proposed ': (i) inclusion of Heisenberg interac-
tion beyond the nearest-neighbors [229], (ii) considering full parameter region of
Eq. (5.1) [52]. In this chapter we concentrate on the latter extension 2. There are 4
patterns in the latter extension: (K < 0, ] > 0) described in Eq. (5.2), (K > 0, ] > 0),
(K>0,] <0),and (K < 0, ] < 0). These signs of couplings are explained by
inclusion of t¢-e; hopping process [52]. Although the incommensurate spiral order
in LipIrO3 cannot be explained, the homogeneous susceptibility obtained from this
Kitaev-Heisenberg model fits very well with the experimental magnetic susceptibil-
ity for both NayIrOs and LixIrO3z. Hence we treat the Kitaev-Heisenberg model as a
minimal model for candidate materials in this chapter.

IModel obtained by the first principle calculations are in Ref. [227, 228].
2For LiyIrO3, the extension including the next-nearest FM Heisenberg and AFM Kitaev interactions
were proposed to explain the incommensurate order [120].
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In addition, the Kitaev-Heisenberg model on other lattices, especially triangular
lattice, are also intensively studied and their phase diagrams contain rich physics [230—
237] although not covered in this chapter.

Before showing our calculation for S > 1/2 Kitaev-Heisenberg model, we devote
the rest of this section and the next 2 successive sections to review results of previous
studieson S = 1/2, 1, and co (classical) Kitaev-Heisenberg models.

Phase diagram by ED

J. Chaloupka, G. Jackeli, and G. Khaliullin proposed the original Kitaev-Heisenberg
model (K < 0, ] > 0) in 2010 [51] and the full parameter Kitaev-Heisenberg model
in 2013 [52]. They calculated the phase diagrams of those models by exact diagonal-
ization (ED) in the same papers. Here we review their resulting phase diagram in
Ref. [52]. They introduced the energy scale A and parametrized couplings as

A= +/K2 +]2,
K = Asin g,
J = Acos ¢. (5.3)

The Hamiltonian Eq. (5.1) is rewritten as
H=A)Y ) Zsin(pSf‘S?+cosq)Si-Sj : (5.4)
#(if)u

The range of introduced angle ¢ is [0,277), and there are 4 obvious points at which
the Hamiltonian becomes exactly solvable models:

¢ ¢ = 0: AFM Heisenberg model
* ¢ = 7 : FM Heisenberg model

e p= % : AFM Kitaev model

* 9= 37” : FM Kitaev model.

The ground states of AFM and FM Heisenberg model are Néel AFM and FM state 3
respectively, and the ground state of both the AFM and FM Kitaev models is quan-
tum spin liquid. In addition, there are 2 more special points:

* ¢ = %” : "hidden" AFM Heisenberg model
e @ = ZZ: "hidden" FM Heisenberg model.

At these points, we can obtain pure AFM/FM Heisenberg model by 4-lattice trans-
formation introduced in Ref. [238]. In this transformation, we divide the system into
4 sublattices 1-4 and consider the sublattice-dependent spin rotation:

1. ;=S

2. 8 = (S5, S/, -5%)
3. S8 =(-S%8/,-5%)
4. §; = (-8, -5/,8%),
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FIGURE 5.1: Sublattices for 4-sublattice transformation. Sites in each

sublattice represented by circles, squarse, triangles, and pentagons.

Two sites on the diagonal of the honeycomb lattice belong to the same
sublattice and each sublattice is a large honeycomb lattice.

simultaneously. These 4 sublattices are shown in Fig. 5.1 Then we obtain

A - A
H=+7) Y 8-S (5.5)
3 <l,]);¢

at ¢ = %T (+) and %T (—). The Hamiltonian can be exactly solved in both cases, and
the ground states are Néel AFM at ¢ = 37 and FM state at ¢ = 774 in rotated spin
language. Then we re-rotate spins to the original ones and can obtain the ground
states of the original spin representation: zigzag AFM at ¢ = 3% and stripy AFM
at ¢ = 7. The schematic spin patterns of these obtained ordered ground states are
shown in Fig. 5.2.

Let us move on to the numerical results of 24-site ED calculation in Ref. [52]. The
resulting phase diagram is shown in Fig. 5.3. The ground state energy Egs and its
second derivative with respect to ¢ are shown. The phase boundaries are decided
by the peak positions in the second derivative. There are 2 spin liquid states near the
AFM Kitaev point ¢ = Z and the FM Kitaev point ¢ = 3 (we distinguish the spin
liquid realized in the AFM case from that realized in the FM case), and 4 magnetic
ordered states mentioned in discussion above. We can see that the FM Kitaev spin
liquid is more stable than AFM one although at the exact Kitaev point (] = 0 i.e.
K = =£1) the ground states with K = +1 and K = —1 are connected by unitary
transformation and have same Ecs [13]. The regions of AFM and FM Kitaev spin
liquid are about [0.497t, 0.517t] and [1.47t, 1.5871], respectively. These differences are
due to the nature of the surrounding ordered states [52]. Néel and zigzag ("hidden"
Néel AFM) orders near ¢ = 7 are highly quantum, on the other hand FM and stripy
AFM ("hidden" FM) orders near ¢ = 3 are rather classical which are less favorable
than the Kitaev quantum liquid state energetically.

PFFRG results for the original Kitaev-Heisenberg model

In this section, we refer one more studies on the S = 1/2 Kitaev-Heisenberg model.
The PFFRG calculation on the original (i.e. K < 0 and | > 0) Kitaev-Heisenberg
model (in 112-site cluster) was performed in Ref. [136]. The result is shown in
Fig. 5.4. While the title of the paper is "Finite-temperature phase diagram of the

3Note that the honeycomb lattice is bipartite and the ground state of the AFM Heisenberg model
on it is Néel AFM state.
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Néel AFM

stripy AFM

FIGURE 5.2: Schematic figures of the spin patterns of ordered states

in Kitaev-Heisenberg model on the honeycomb lattice. 2 sublattices

are represented by black and white circles. Spins in the direction of

the quantization axis (which is set to the left in the figure) are shown
in blue, and spins in the opposite direction are shown in red.

Néel quHid zigzagI FM Iilquid | stripyI Néel

-6 | | 5 1500

FIGURE 5.3: Ground state phase diagram of the Kitaev-Heisenberg

model obtained by 24-site ED calculation with the ground state en-

ergy Egs and its second derivative with respect the parameter ¢.

The phases labeled "liquid" are Kitaev quantum spin liquid phase.

Reprinted with permission from Ref. [52] © 2013 by the American
Physical Society.
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Inset shows A dependence of the spin susceptibility, )(ZZ’A(kmax, v =

0) in our definition, at &« = 0, 0.5, and 1. The black arrows in the inset

indicate ordering scales. Reprinted with permission from Ref. [136] ©
2011 by the American Physical Society.

Heisenberg-Kitaev model", they used the same PFFRG that is introduced in this
dissertation. The flow parameter A is regarded as the temperature T by the rela-
tion Eq. (3.150). By this relation, the finite temperature phase diagram can be dis-
cussed by considering A roughly as temperature. The definition of « is the same
with Eq. 5.2. Note that &« = 0 and « = 1 is identical with ¢ = 0 and ¢ = 3% in
Eq. (5.4), respectively. The "hidden" FM point at ¢ = Z* corresponds with & = 0.5
The phase diagram at A = 0 is consistent to that obtained by ED [51], DMRG [218],
and ¢ = 0to ¢ = 3% in Fig. 5.3. Inset shows the flow of the static spin susceptibility
XZZ'A(kalpha, iv = 0) with the wave vector kmax at which the susceptibility has the
maximum value, at « = 0, 0.5, 1. At the point « = 1, the Hamiltonian is identical
with FM Kitaev model and the susceptibility does not diverge up to A = A, while
at « = 0 and 0.5, the susceptibility occurs breakdown and it indicates the onset of
the phase transition to Néel and stripy AFM ordered phase, respectively. The black
arrows in the inset of Fig. 5.4 indicate the ordering scales A. which is regarded as
the transition temperature T.. Actually, the model recovers the complete SU(2) sym-
metry at « = 0 and 0.5 and it should not show a phase transition to ordered phases
at finite temperatures according to Mermin-Wagner theorem [212]. If we regard the
cutoff A as the temperature T, the flows of the susceptibility in the inset contrary to
Mermin-Wagner theorem. It is an artifact of PFFRG pointed out in Ref. [99], in which
the comparison between the phase diagrams of the XXZ model on the square lat-
tice obtained by the quantum Monte Carlo and PFFRG are performed. These flows
(o = 0 and 1) coincide with the susceptibility flows in Fig. 4.5 except for constants
resulting from different calculation conditions. In addition, note that the boundary
between the stripy AFM and the Kitaev spin liquid phases is somewhat ambiguous
in Fig. 5.4. This is because it is difficult to judge whether the susceptibilities obtained
by PFFRG diverge or not near the phase boundary.
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FIGURE 5.5: Ground state phase diagram of the S = 1 Kitaev-

Heisenberg model by DMRG (iDMRG) calculation. The parameter «

coincides with ¢ in Eq. (5.4). Reprinted with permission from Ref. [40]
© 2020 by the American Physical Society.

5.3 S =1 Kitaev-Heisenberg Model

Recently, X-Y Dong and D. N. Sheng calculated the ground state phase diagram of
S = 1 Kitaev-Heisenberg model by DMRG (infinite DMRG) on an infinite cylin-
der with circumference 4 unit cells [40]. Their resulting phase diagram is shown in
Fig. 5.5. Here, E on the left axis represents energy, and S on the blue axis on the right
represents entanglement entropy by cutting the cylinder along a ring *. « is identi-
cal with ¢ in Eq. (5.4). There are 4 ordered phases and 2 quantum liquid phases as
S = 1/2 case. The types of magnetic orders are the same and only the boundaries
between them are shifted. The AFM and FM Kitaev quantum spin liquid regions
are [0.4947, 0.5067] and [1.4857t, 1.514 7|, respectively. The spin liquid phase is nar-
rower than that at S = 1/2 °. The entanglement entropy shows a clear difference
between the ordered and quantum spin liquid phases. It can also be seen that entan-
glement entropy is smaller in the "classical" FM and stripy AFM phases than in the
AFM and zigzag AFM phases.

5.4 Classical (S = o0) Kitaev-Heisenberg Model

Finally we review the finite temperature phase diagram of the classical Kitaev-Heisenberg
model in Ref. [207, 208]. In 2013, the same year that the Kitaev-Heisenberg model
was proposed, C. Price and N. B. Perkins published the Monte Carlo study on the
classical Kitaev-Heisenberg model and the obtained finite temperature phase dia-
gram is shown in Fig. 5.6. The definition of ¢ is the same as that in Eq. (5.4) and "N",
"Z", "F", and "S" represent Néel AFM, zigzag AFM, FM, and stripy AFM ordered
phase, respectively. These 4 magnetic orders in the figure are identical with S = 1/2
and S = 1 cases. However, the spin liquid phases near ¢ = Z and 2f annihilated.
At these Kitaev points, the classical energies of 4 ordered states mentioned above

“Entanglement entropy S is confusing with the lengh of spin S. However, the entanglement entropy
does not appear in subsequent sections.

5According to the previous section, the AFM and FM Kitaev spin liquid regions are respectively
[0.497t, 0.5117t] and [1.47t, 1.587] at S = 1/2.
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Heisenberg model calculated by Monte Carlo simulation. "N", "Z",
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Reprinted with permission from Ref. [208] © 2013 by the American
Physical Society.

degenerate and spectrum of spin excitations has zero modes [45, 239]. Therefore the
order-by-disorder mechanism does not work at these points and no transition to the
ordered phase occurs. In addition to these points, there are 4 more special points in
the phase diagram as we discussed before: AFM and FM Heisenberg points ¢ = 0
and 7, and "hidden" AFM and FM Heisenberg points ¢ = 3 and Z, respectively.
At these points the Hamiltonian acquires a perfect SU(2) symmetry and magnetic
ordering does not occur at finite temperature according to the Mermin-Wagner theo-
rem. The transitions between zigzag AFM and FM phases and stripy AFM and Néel
AFM phases are first-order phase transitions and these boundaries are indicated by
vertical lines. The shaded blue areas in the figure represent the intermediate phase.
This phase is the critical phase and the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [209-211] occurs at its finite temperature boundaries [207]. This critical phase
is identical with the critical phase in 6-state clock model and its critical exponent 7
is 1/4 at upper phase boundary ant 1/9 at lower boundary [206]. In the Fig. 5.6,
the upper phase boundary is defined at the location where the critical exponent
reaches 1/4, and lower one is determined by Binder parameter crossing.

So far, we have explained the nature of the Kitaev-Heisenberg model and re-
viewed several previous studies on its phase diagram. One of our aims in this
chapter is to examine the connection between these quantum and classical phase
diagrams of the Kitaev-Heisenberg model. Our calculation results are shown in the
next section.

5.5 Spin-S Kitaev Model in PFFRG

Before moving on to the results of the phase diagram of the spin-S Kitaev-Heisenberg
model, we present the results for the high-spin Kitaev model by the PFFRG. We ap-
ply the spin-S extension described in Sec. 3.7 to the flow equations for the Kitaev-
type interaction. Of particular interest to us is the difference between the half-odd
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FIGURE 5.7: (a) Flow of the static susceptibility )(ZZ'A(kmaX =0,iv =
0) and (b) the Matsubara frequency dependence of the pseudo-
fermion damping (~self-energy) of spin-S Kitaev model.

and integer spins. We extend our PFFRG calculation to spin-S Kitaev model as de-
scribed in Sec. 3.7 for the Heisenberg model. We introduce flavor index «, ¥’ and put
2§ spins on each site for spin-S model. The Hamiltonian is

25 25
H=—|K } ( 155;> (Z 5;‘,{,>. (5.6)
x'=1

(i) =

Here we set K < 0 and ] = 0 in Eq. (5.1) to consider (isotropic) FM Kitaev model.
Using |K| as a unit of energy, we performed PFFRG calculations with varying S. In
PFFRG calculation, we used 64 positive frequencies with logarithmic mesh between
Wmin =~ 107* and wmayx = 250, and the internal frequency integration was carried out
with a mesh more than twice as dense. We use the cluster with L = 12 (235 sites).
In addition we take 212 A-points with the ratio A;11/A; = 0.95 and Ayy = 500.
We benchmarked our spin-S PFFRG codes by reproduction of previous studies on
the spin-S Heisenberg model on the honeycomb lattice [139]. Our codes are de-
signed for openMP+MPI hybrid parallelization and the calculations were performed
in Reedbush and Oakbridge-CX in the Information Technology Center, The Univer-
sity of Tokyo, Oakforest-PACS in Center for Computational Sciences, University of
Tsukuba and in the Information Technology Center, The University of Tokyo, and
sekirei (system B) in the Supercomputer Center, the Institute for Solid State Physics,
the University of Tokyo.

The flows of the susceptibilities for various S are shown in Fig. 5.7 (a). The sus-
ceptibilities after breakdown show non-physical oscillations at low A, so they are
not displayed below appropriate A(< A.) for readability. The susceptibilities show
anomalous behavior. They show breakdown behavior at low A for S is more than
3/2 or 2. Especially, that of S = 50 system indicates strong divergence. These be-
haviors coincide with those in magnetic ordered phases. Even if S = oo, there is
no ordering at the Kitaev points as we mentioned in the previous section through
the review of the earlier studies on the classical Kitaev-Heisenberg model. There-
fore, the spin susceptibility should not diverge actually and we can consider that
this breakdown behavior is an artifact of spin-S PFFRG extension. So do the sus-
ceptibilities obtained by spin-S PFFRG show ordering phenomena for artifacts? If
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xXZMk,iv = 0) at A = Ag ~ 0in (a)-(c), and at A = A, in (d)-

(k). (a)-(k) show the results of spin-S Kitaev model with S = 1/2-5,

and S = 50, respectively. The inner and outer hexagons represent the
first and second Brillouin zone.

so, the susceptibilities should have peak at the wave vectors corresponding to the
ordering vectors. We show the momentum dependence of the susceptibilities for
various S in Fig. 5.8. We plot the susceptibilities x> (k,iv = 0) at A = Ajg ~ 0 for
S =1/2-3/2systems and at A = A for S > 2 because there are the clear breakdown
scales A, in the flow for S > 2 systems. As the same manner with the figures shown
in the previous chapter, we show the first and second (extended) Brillouin zones by
inner and outer hexagons, respectively. As shown in the figure, the susceptibilities
have cosine-shape for all S, and this fact means the spin-spin correlation is finite
only between spins on nearest-neighboring sites. This is the very character of the
Kitaev quantum spin liquid. Indeed, this nearest-neighbor correlation for general
S can be proved exactly [45]. The previous studies on other spin liquid states by
spin-S PFFRG [139, 240] show transitions from spin liquids to the ordered phases as
S increases. In addition, the ordered states for large-S are predicted by other meth-
ods, Luttinger-Tisza method and Monte Carlo simulation, for example. Hence this
artifact does not appear. However, for the Kitaev model which does not indicate or-
dering even with S = oo, the spin-S extension of PFFRG causes artificial breakdowns
for large S. In spin-S extension of PFFRG explained in Sec. 3.7, the difference of spin

25
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QO = N W Hp O



5.6. Kitaev-Heisenberg Model with General Spin Length S 121

length results only in the prefactors in the flow equations and all terms in the vertex
flow equations except the RPA terms are weakened by the prefactor % in spin-S sys-
tems. In the limit S — oo, only the RPA terms remain in the flow equations. These
RPA terms induce ordering tendency and the breakdown of the flow. The cause of
this artifact is that the effect of this RPA term cannot be suppressed by other terms
for large S. This discussion reveals an important fact. We can speculate that this arti-
fact indicates that the quantum fluctuations are weak in Kitaev quantum spin liquid
with S > 2, and the system is easily ordered by other magnetic interactions.

In the next step, we examine whether there is a difference between the case where
S is a half-odd integer and the case where S is an integer. In Fig. 5.7 (b) we show
the frequency dependence of the pseudo-fermion damping (~ the self-energy) at
A = AR for some S. As S increases, it only shows the behavior of converging
without depending on the even and odd of 25. For more detailed examination, we
discuss the S dependence of the vertices. We fix A = Ajr and only consider ver-

tices IZ and I'! between two nearest-neighbor sites connected by z-bond Ff(;fz\m (s,t,u)

and F%’é\ R(s,t,u). Here iy represents the reference site (see Fig. 4.3) and i, repre-

sent the site connected to iy by z-bond. To plot the frequency dependence, we fix

one of the three frequencies s, t, and u. Due to the symmetry between s and u in

Eq. (3.71) and Eq. (3.72), we fix # = wnin and consider only s and t. We show
rZAR

TZMR (5,81 = Winin) 52172 — Ff(;‘;:IR(S, b = wmin)|s=1, I (s,t, 10 = Wmin)[s=1/2 —

1oz
TR (s, b1 = Wmin)|s=3/2, Tre ™ (5,6, = wWmin)|s=1/2 — T72R(s, 6,4 = Wmin)|s=2,

Z()iz
and TSR (s, £, 1 = Wmin)|s=1/2 — TR (5, £, 4 = Wmin)|s=3,2 in Fig. 5.9 (a), (b), (o),
and (d), respectively. In our PFFRG we use the logalithmic meshes for frequen-
cies. Therefore we plot vertices with respect to the integers n; and n; which specify
the frequencies as s = w(ns) and t = w(n;), where w(-) is our frequency mesh.

d,A d,A d,A
We also show I“Z.Oiz R(s,t,u = Wmin)|s=1/2 — rioiz R(s,t, 4 = Wmin)|s=1, rioiz R(s, t,u =

Wrin)|s=1/2 — F%’Zi\“‘ (s,t, U = Wmin)|s=3/2, r%’é\m (5,8, U = Wmin)|s=1/2 — F%’Z-IZ\IR (s,t,u=
Wmin) |s=2, and Fi’fz\m(s, t, U = Wmin)|s=1/2 — l"f[l)’lf”{ (s,t, = Wmin)|s=5/2 in Fig. 5.10
(@), (b), (c), and (d), respectively. From these figures, we cannot find the difference
between half-odd integers and integers of S. Similar results are obtained for the ver-
tex functions at other frequency points and for the anisotropic Kitaev model, which
is close to the toric code limit. As we mentioned in the spin-S extension of PFFRG,
the difference of spin length results only in the prefactors in the flow equations.
Thereby, it is expected that the topological difference between the Kitaev model with
half-odd integer and integer spins is not reflected to the flow in this extension.

From the calculations in this section, we can conclude that (i) while the spin-spin
correlation is finite only between nearest-neighbor spins, PFFRG with simple spin-S
expansion leads to artificial breakdowns of the susceptibility flow for large S, and
(ii) this method cannot describe topological difference between half-odd integer and
integer spin Kitaev model. Thus this spin-S PFFRG is not suitable for investigating
topological properties of the spin-S Kitaev model. However, we believe it is useful
for studying order competitions. In the next section, we discuss the phase diagrams
of spin-S Kitaev-Heisenberg model obtained PFFRG.

5.6 Kitaev-Heisenberg Model with General Spin Length S

In this section, we discuss the results obtained by PFFRG calculation for spin-S
Kitaev-Heisenberg model, and we elucidate how large S is allowed in order to real-
ize the Kitaev quantum spin liquid in materials.
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between S = 1/2and S =1,S =1/2and S = 3/2,S = 1/2 and
S=2,and S =1/2and S = 5/2 systems, respectively.
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Here we treat the Hamiltonian Eq. (5.4) and introduce a dimensionless parameter
¢ €1]0,1)as

¢

¢ = 7 (5.7)
We set A as a unit of energy. For spin-S calculation we introduce the flavor indices
in the Kitaev term as in Eq. (5.6) and in the Heisenberg term as in Eq. (3.170). We
calculate the susceptibility in the case S =1/2,1,3/2,2,5/2,and 50. S = 50 is con-
sidered to be large enough to compare with the classical spin result [240]. We solve
about 1.45 x 107 coupled integro-differential equations simultaneously for each ¢
and S. We used 64 positive frequencies with logarithmic mesh between wmin ~ 104
and wmax = 250, and the internal frequency integration was carried out with a mesh
more than twice as dense. We use the cluster with L = 10 (166 sites). This is smaller
than in the previous section to calculate with many parameter values. In addition
we take 250 A-points with the ratio Aj11/A; = 0.96 and Ayy = 500. Here we
use a slightly finer mesh than in the previous section for more precise values of A..
Our calculations were performed in Reedbush and Oakbridge-CX in the Information
Technology Center, The University of Tokyo, Oakforest-PACS in Center for Compu-
tational Sciences, University of Tsukuba and in the Information Technology Center,
The University of Tokyo, and sekirei (system B) in the Supercomputer Center, the
Institute for Solid State Physics, the University of Tokyo.

At first of the results, we show the behavior of the susceptibility flow for each
S at some selected ¢ values separately in Fig. 5.11 ((a) ¢ = 0.1, (b) 0.24, (c) 0.25,
(d) 0.26, (e) 0.35, and (f) 0.55) and Fig. 5.12 ((a) ¢ = 0.7, (b) 0.74, (c) 0.75, (d) 0.76,
(e) 0.85, and (f) 0.95) for the convenience of the page. For the sake of visibility, the
susceptibilities after divergence are truncated with appropriate small A. The mo-
mentum dependences of the susceptibilities at each ¢ are shown in Fig. 5.13. We
discuss the behavior of the susceptibility x*** (kmax, iv = 0) in Fig. 5.11 and Fig. 5.12
from ¢ = 0.1 shown in Fig. 5.11 (a). The susceptibilities for all S show obvious di-
vergence or breakdown and this indicates phase transition to the Néel AFM order
(see Fig. 5.13 (a) ). At¢ = 0.24 and ¢ = 0.26 shown in Fig. 5.11 (b) and (d), respec-
tively, the susceptibilities for S = 1/2 and S = 1 do not indicate phase transitions
though those for S > 3/2 show breakdown. This means that at { = 0.24 and 0.26
the Kitaev-Heisenberg model with S = 1/2 and S = 1 in the spin liquid state near
AFM Kitaev point ¢ = 0.25. At exact AFM Kitaev point ¢ = 0.25 in Fig. 5.11 (c),
the susceptibilities for S = 1/2-3/2 do not show the breakdown while others do.
Of course this is an artifact mentioned in the previous section. Actually all suscep-
tibilities should not show the breakdown. At ¢ = 0.35 and 0.55 all susceptibility
flows indicate phase transition shown in Fig. 5.11 (e) and (f), and these correspond
to the phase transition to the zigzag and FM orders, respectively. At ¢ = 0.7, all
susceptibilities except S = 1/2 show clear divergence in Fig. 5.12 (a). S = 1/2 and
S = 1 susceptibilities at { = 0.74 show smooth flows although those of S > 3/2 do
not show. At ¢ = 0.75 (Fig. 5.12 (c)) and 0.76 (Fig. 5.12 (d)), the flows for S = 1/2-
3/2 do not diverge and others show obvious breakdown. Finally, all flows shown
in Fig. 5.12 (e) and (f) indicate clearly phase transitions to magnetic orders: stripy
(¢ = 0.85) and Néel (¢ = 0.95) AFM order (see Fig. 5.13 (m) and (p)).

Next we discuss the momentum dependence of the susceptibilities shown in
Fig. 5.13. The peak positions corresponding to each magnetic order are shown in
Fig. 5.14. The positions of peaks are represented by filled red circles and the relative
intensities of the peaks in each order are represented by the size of circles. We show
that of S = 1/2 systems here because those of S > 1 are similar to that of S = 1/2.
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We show the susceptibilities at A = A. in Fig. 5.13 (a), (e)-(h), (m)-(p), and those at
A = A in Fig. 5.13 (b)-(d), (i)-() in Fig. 5.13, according to Fig. 5.11 and Fig. 5.12.
Let us see from ¢ = 0.1in Fig. 5.13 (a). The peaks on each corner of the extended Bril-
louin zone clearly indicate Néel AFM order. Similarly the momentum dependence
at ¢ = 0.95 shown in Fig. 5.13 (p) shows Néel AFM order.

In addition, the momentum dependence at ¢ = 0.35 in Fig. 5.13 (e), ¢ = 0.55 in
Fig. 5.13 (h), and ¢ = 0.85 in Fig. 5.13 (m) indicate clear zigzag AFM, FM, and stripy
AFM orders, respectively. Because these points are located deeply in each ordered
phase. ¢ = 0.25 (Fig. 5.13 (c)) and ¢ = 0.75 (Fig. 5.13 (k)) are AFM and FM Kitaev
points and the susceptibilities have cosine-shape momentum dependences. At { =
0.24 and ¢ = 0.26, we can see the intermediate momentum dependence between
Néel ordered state and AFM Kitaev spin liquid state and AFM spin liquid state and
zigzag AFM state, respectively. At ¢ = 0.7, strong FM peak shown in { = 0.55
tend to broaden into a cosine form in FM Kitaev spin liquid state. At ¢ = 0.74 and
¢ = 0.76 near FM Kitaev point, we can see the intermediate momentum dependence
between FM ordered state and FM Kitaev spin liquid state and FM spin liquid state
and stripy AFM state, respectively. In addition, the phase boundaries between the
zigzag AFM and FM phases, and stripy and Néel AFM phases are located between
¢ =044and ¢ = 0.45,and ¢ = 0.91 and ¢ = 0.92, respectively. We can see that the
peak positions are switched at these boundaries.

Here we show the full A-¢ diagrams for each S in Fig. 5.15. We show the finite A
phase boundaries of the Néel AFM, zigzag AFM, FM, and stripy AFM by the black,
green, blue, and pink lines. Points at which flows do not show breakdown are in-
dicated the filled red circles at A = 0. These regions denote Kitaev quantum spin
liquid phases and "QSL" in the figure is an acronym for quantum spin liquid. For
S > 2, there is no points at which the susceptibilities have smooth flows. Actually,
there is no magnetic order at ¢ = 0.25 and 0.75 even in S = oco. Thus we indicate
breakdown scales at these points by the red open circles for S > 2. The phase bound-
aries between ordered phases in Figs. 5.15 (a), (b), and (f) are in good agreement with
those of previous studies shown in Figs. 5.3, 5.5, and 5.6, respectively. In the phase
diagram for S = 1/2 and S = 1, it is found that the region of the spin liquid state is
wider than the previous studies (see Figs. 5.3, 5.5). This is because, in addition to the
difference in the system size, it is more difficult to distinguish the spin liquid state
from the ordered states near the phase boundaries in the PFFRG than in methods of
the previous studies. We referred to the behavior of flow shown in Ref. [240] and its
supplemental material for the decision of breakdown. If it is still difficult to make a
judgment in the phase boundaries, we calculate a dimensionless quantity f defined
as©

2

2
f— (g) > [XZZ'AJ“dA(kmaX, v =0) ~ Ak v =0)| ,  (58)
A

in the supplemental material of Ref. [125] and determined that the flow breaks down
if f > 0.5. This evaluation criterion is a value determined from the fitting of figures
in the supplemental material of Ref. [125] using WebPlotDigitizer [134] and empir-
ical rules when applied to other systems. Note that here x and T mean § and T in
Eq. (3.167), respectively, for the spins with S > 1/2. Thus, they are rescaled us-
ing M = 2S. f is small when there is no breakdown in the flow, and takes a large
value when there is breakdown in the flow because the susceptibility vibrates after
breakdown. In addition, in our calculation shown in Fig. 5.15 (f), the susceptibility

6Be careful not to confuse them with the frustration parameter in the previous chapter.
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Néel AFM zigzag AFM
stripy AFM FM

FIGURE 5.14: The positions of the susceptibility peaks in the momen-

tum space corresponding to each magnetic order. The inner and outer

hexagons denote the first and the second (extended) Brillouin zones.

Filled red circles represent the positions of peaks and the relative in-

tensities of the peaks in each ordered phase are represented by the
size of circles.

shows breakdown behavior at six special points ¢ = 0, 0.25, 0.375, 0.5, 0.75, and
0.875 due to two artifacts: the artifacts appearing in the calculation of the spin-S Ki-
taev model and the artifacts that violate the Mermin-Wagner theorem introduced in
the explanation of Fig. 5.4. However, for the position of the phase boundaries and
the shape of the phases, Fig. 5.15 (f) is in good agreement with Fig. 5.6. The range
of ¢ =075 (¢ = 37”) to¢ = 1 (¢ = 0) in Fig. 5.15 (a) is roughly consistent with the
phase diagram of the previous study by PFFRG shown in Fig. 5.4. However, there
is a difference near the boundary between the Néel AFM and stripy AFM phases.
It is considered that this is because A-mesh (and frequency mesh, possibly) which
we use is more sparse. We can see that the quantum spin liquid state survives in
S = 3/2. This is in contrast to other systems where spin liquids survive only up to
S=1/20r S = 1[139, 240]. It can be attributed to the exactly solvable nature and
strong frustration of the Kitaev model.

To show the relationship between the spin length S and the spin liquid state in
detail, the S-¢ phase diagram obtained from the above results is shown in Fig. 5.16.
The region where the spin liquid state was predicted by PFFRG is shaded in light
red. "QSL" in the figure denotes quantum spin liquid. In the case of S = 1/2 [52]
and S = 1 [40], the phase boundary between the spin liquid state and the other
orders expected in the previous work is shown by black dashed lines. In addition,
the region shaded in dark red is obtained by scaling the region shaded in light red to
match the region of the S = 1/2 spin liquid state obtained in the earlier study [52].
In this region, the quantum spin liquid state can be expected from both previous
research and our calculation. We can conclude that the quantum spin liquid state
survives up to S = 3/2 at least for K < 0. Recently, the realization of AFM Kitaev
spin liquid is proposed for S = 3/2 two-dimensional candidate materials CrSiTez



130 Chapter 5. Spin-S Kitaev-Heisenberg Model
(a) S=1/2 . (b) S=1
! "Néel AFM —— "Néel AFM —»—
zigzag AFM —— zigzag AFM ——~—
FM —=— 0.8 . FM —a— |
08 stripy AFM —=— ] : stripy AFM —+—
QSL —e— QSL —e—
0.6 0.6
<
0.4 0.4 XW&
- A e L WY
0.2 s : 1 v W
;WL M ! L |
0 N ™ Fs 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
E 13
(c) S=3/2 (d) S=2
! "Néel AFM —x— ! "Néel AFM —*—
zigzag AFM —~— zigzag AFM —~—
FM —=— FM —=—
0.8 stripy AFM —=— 08 stripy AFM —=—
QSL —e— QSL —o—
0.6 0.6
<
KKy JHRK
N f\L f N JX
0.2 g £ 0.2 Lo -
; |
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
13 3
(e) S=5/2 (f) S=50
! "Néel AFM —x— "Néel AFM —x—
zigzag AFM —— zigzag AFM ——
08 oy AEM 0.8 o FM e ]
: stripy AFM —=— : stripy AFM —=—
QSL —e— QSL —o—
0.6 0.6
<
ERRK SRR K B ek |
0.4 px “ 0.4 px \&% ‘\‘
xib/'“'\ w\i@xz e - HA“AXX
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
13 13

FIGURE 5.15: (a)-(f) A-¢C phase diagrams of the S = 1/2-5/2 and
S = 50 Kitaev-Heisenberg model, respectively. QSL means quantum
spin liquid.



5.6. Kitaev-Heisenberg Model with General Spin Length S 131

Néel AFM stripy AFM -
zigzag AFM -~ QsL -
FM =

L T T T T T T T
50 **********VVVVVYV_.....—.....‘A:AAAAW*Q

5/2 FEK K K XK K XK X K XKWvy v vy v ywellll HEEEEHNEBRBENEBEML A 4 4 4 A0N00K X

2****x**xmwwvvvw—---------mAAAnmxe

w

B/2 Fx %% % % % % kowomSreryy v v v vvwEE EEE E N E E B B EEEewAl A A 4 SAMKK X

1 *xxxxxxxieemﬂuwwvvvﬁw-nnnnni-—‘lor.-AAAAAmxa

o . AAMAAA
r O YY VWYYV VY VWY | |

0 0.2 0.4 0.6 0.8 1

FIGURE 5.16: S-¢ phase diagram of the spin-S Kitaev-Heisenberg
model. The region where the spin liquid state was predicted by our
PFFRG calculation is shaded in light red. In the region enclosed by
the dashed line, the spin liquid state was predicted by previous stud-
ieson the S = 1/2 and S = 1 Kitaev-Heisenberg model. The region
shaded in dark red is obtained by scaling the region shaded in light
red to match the region of the S = 1/2 spin liquid state obtained in
the previous study.



132 Chapter 5. Spin-S Kitaev-Heisenberg Model

and CrGeTe; under epitaxial strain by ED with parameters obtained by the first-
principle calculation [49]. These candidate material includes the off-diagonal spin
interactions and anisotropy. These off-diagonal terms does not stabilize the spin
liquid states, but rather destabilizes it [241]. Therefore, the Kitaev quantum spin
liquid near ¢ = 0.25 is also expected to survive to S = 3/2 in a narrow range.

5.7 Summary of This Chapter

In this chapter, we have investigated the realization of Kitaev quantum spin lig-
uids in candidate materials with general spin length. We have regarded the Kitaev-
Heisenberg model as the minimal model of the Kitaev materials, and calculated
phase diagram of the spin-S Kitaev-Heisenberg model by using spin-S extension
of PFFRG.

At first, we calculated the susceptibility flow of the spin-S Kitaev model. As a
result of our calculation, breakdown behaviors appeared in the flows of the suscep-
tibility of S > 2 cases, which seemed to suggest phase transition to magnetic order.
However, it is known that in the Kitaev model with general S, the spin correlations
exist strictly only between the nearest-neighboring sites and the system does not un-
dergo ordering. In fact, the spatial structure of the susceptibility we have calculated
is also finite only between the nearest-neighboring sites. Therefore, we can conclude
that this breakdown-like behavior is an artifact of spin-S PFFRG. We can speculate
that this artifact indicates that the quantum fluctuations are weak in Kitaev quan-
tum spin liquid with S > 2, and the system is easily ordered by other magnetic
interactions. This can be understood from the fact that the spin-S PFFRG reduces
the magnitude of the quantum fluctuation terms in the flow equations by a factor of
1/2S.

In addition, there is no difference in the results of the spin-S PFFRG calculation
when S is half-odd-integer and when S is integer. Since the extension of PFFRG
to general spin length introduced in Sec. 3.7 produces only monotonic changes in
the prefactors of each term in the flow equations, we can conclude that this simple
extension does not reflect the differences in topology between half-odd-integer spins
and integer spins.

Next, we calculated the phase diagram of the spin-S Kitaev-Heisenberg model
with § = 1/2 -5/2 and S = 50. The obtained phase diagrams of the Kitaev-
Heisenberg model for S = 1/2 and S = 1 are in general good agreement with
the previous studies by other numerical methods. The phase diagram for S = 50
is in good agreement with the previous study on the classical Kitaev-Heisenberg
model by Monte Carlo simulation, except for six special points: four of the six spe-
cial points are points where the system recovers continuous symmetry, and the other
two are points where the system becomes the Kitaev model. As a result of system-
atic calculations with different S, for S < 3/2, both the AFM and FM Kitaev spin
liquid regions have a finite extent. For S > 2, no region showing Kitaev spin liquid
state was found. Therefore, we believe that S = 3/2 gives an upper bound on the
spins possessed by the candidate materials in which Kitaev quantum spin liquid is
realized.

The phase diagram calculation of the Kitaev-Heisenberg model with a system-
atic change of spin S, as we have done here, has not been performed before. This is
the first study of the application of spin-S PFFRG to the Kitaev-Heisenberg model.
Moreover, the PFFRG calculations for the Kitaev-Heisenberg model with S = 1/2
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have been performed for all parameter regions in this dissertation, whereas the pre-
vious study on the Kitaev-Heisenberg model by PFFRG elucidated the phase dia-
gram for the region ¢ = 37” (¢ = 0.75) to ¢ = 27 (¢ = 1). The results we have
obtained here provide a guideline for the recent intensive search for candidate ma-
terials of S > 1/2 Kitaev quantum spin liquid.
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Chapter 6

Summary and Perspective

In this doctoral dissertation, we have mainly focused on two studies related to the
feasibility of Kitaev quantum spin liquids. In one, we discussed its feasibility in ul-
tracold polar molecular systems trapped in the optical lattice, based on the realiza-
tion of Kitaev-type interactions proposed in previous studies [34, 35]. In the other,
we have investigated the realization of Kitaev quantum spin liquids in candidate
materials with general spin length.

We used PFFRG (pseudo-fermion functional renormalization group) as a numer-
ical method to tackle these problems. PFFRG has the advantage of being able to
handle relatively large quantum systems even if the system has long-range interac-
tions. Even if the interactions are long-range in nature, the computational cost is
not different at all from the case with only nearest-neighbor interactions. In addi-
tion, a simple extension to large-S can be implemented using the extension method
proposed in 2017 [139], and this results in only the difference of prefactors in the
flow equation. Thus, the computational cost is the same as for S = 1/2 PFFRG. The
PFFRG we used and its extensions are summarized in Chap. 3.

In Chap. 4, we have introduced the dipolar Kitaev model as a realization of
Kitaev-type interaction by microwave irradiation in ultracold polar molecular sys-
tems. This model has a (quasi-) long-range spin interaction because it originates
from the dipole interactions between polar molecules. The Kitaev-type interaction
is observed between the nearest-neighboring sites, but between sites farther apart
than the nearest-neighboring sites, the interaction is complicated with $*S* SYSY,
and 5*S* mixing depending on the angle between interacting sites. We calculate the
susceptibility using PFFRG with the sign and anisotropy of the spin interaction as
parameters, and find that the ferromagnetic order is observed for all anisotropy pa-
rameters in the case of ferromagnetic interaction, and the zigzag antiferromagnetic
order is observed for all anisotropy parameters in the case of antiferromagnetic in-
teraction.

Furthermore, in order to investigate the reason why the quantum spin liquid
state is not realized in the dipolar Kitaev model, we introduced an artificial range
of interactions and investigated the susceptibility when approaching the dipolar Ki-
taev model with long-range interactions from the Kitaev model with only nearest-
neighbor interactions. The frustration weakens as the range of interactions is ex-
tended, and the spin liquid state realized in the Kitaev model is quickly destroyed.
This is in contrast to the dipolar Heisenberg model, which obtains frustration stronger
than the nearest-neighbor Heisenberg model due to its long-range nature, and hosts
quantum spin liquids.

Considering also the previous study suggesting that the Kitaev quantum spin
liquid is fragile against the next-nearest-neighbor Kitaev interaction, it can be con-
cluded that the dipolar Kitaev model does not realize the quantum spin liquid due to
its long-range nature of the interaction. Therefore, it is necessary to propose another
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realization of the Kitaev quantum spin liquid for ultracold polar molecular systems.
After the proposal of Kitaev-type interaction in ultracold polar molecular systems by
microwave irradiation in 2013, the calculation based on this proposal has not been
performed, and whether Kitaev quantum spin liquid state is actually realized has
remained an open question. We addressed this issue with PFFRG and elucidated
the above results for the first time.

In Chap. 5, we have performed PFFRG calculations for the spin-S Kitaev model
and the spin-S Kitaev-Heisenberg model using an extension of the PFFRG method
to large-S. First, we calculated the susceptibility of the original Kitaev model while
varying the spin length S. As a result, breakdown-like behaviors of the susceptibility
appear for about S > 2 systems. It has been proved that the Z, fluxes are conserved
quantities in the Kitaev model with general S, and this means that only the spin
correlations between nearest-neighboring sites are finite. It has been also found that
the classical Kitaev model corresponding to S = oo case does not undergo magnetic
ordering and there is no order-by-disorder phenomena. Indeed, also in our calcula-
tion the susceptibilities for general S are finite only between the nearest-neighboring
sites though they indicate breakdown behavior. For these reasons, this behavior is
considered to be an artifact of our method. However, we believe that this artifact
indicates an important trend. The large-S effect weakens the magnitude of the terms
in the flow equations that cause quantum fluctuations by a factor of 1/25, without
changing the strength of the RPA terms that cause ordering. We can speculate that
this artifact indicates that the quantum fluctuations are weak in Kitaev quantum spin
liquid with S > 2, and the system is easily ordered by other magnetic interactions.

Next, we investigated whether the self-energy and interaction vertices in spin-S
PFFRG show any difference between half-odd integer spins and integer spins. The
results showed that these differences did not appear. In extension of PFFRG for
large-S, the difference in S appears only in the monotonic change of the prefactors of
each term in the flow equations. Therefore, it is considered that our calculation does
not incorporate the topological structure due to the difference in S.

Finally, we have calculated the phase diagram of the spin-S Kitaev-Heisenberg
model for S = 1/2 —-5/2 and S = 50 spins. The obtained phase diagrams for
S = 1/2and S = 1 cases are in good agreement with previous studies using
other methods, except that the regions where the spin liquid state is realized are
widely evaluated. This is due to the fact that it is difficult to determine whether
the susceptibility flows indicate breakdown or not near boundaries between mag-
netic ordered phase and quantum paramagnetic phase. In addition, the phase dia-
gram of the Kitaev-Heisenberg model for S = 50 spins is in general agreement with
the phase diagram of the classical Kitaev-Heisenberg model obtained by the Monte
Carlo method, except for a few special points. From the results of these calculations,
we have found that the upper limit of the spin length of the candidate material al-
lowed for the realization of Kitaev quantum spin liquid is 5=3/2. Of course, there
are spin non-diagonal interactions in the candidate materials that are not included
in the Kitaev-Heisengerg model, but they generally destabilize the quantum spin
liquid state.

The phase diagram calculation of the Kitaev-Heisenberg model with a systematic
change of spin S, as we have done here, has not been performed before. PFFRG and
its large-S extension have enabled us to do such calculations. Moreover, the PFFRG
calculations for the Kitaev-Heisenberg model with S = 1/2 have been performed for
all parameter regions in this dissertation, whereas the Kitaev term is ferromagnetic
and the Heisenberg term is antiferromagnetic in the previous study on this model
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using PFFRG. The results we have obtained here provide a guideline for the recent
intensive search for candidate materials of S > 1/2 Kitaev quantum spin liquid.

We close the dissertation with a few perspectives. We concluded that it is diffi-
cult to realize Kitaev quantum spin liquid with dipole interaction in ultracold polar
molecular systems in Chap. 4. One possible solution is to design the long-range
part of the interaction to be Heisenberg-like, since the Kitaev quantum spin liquid
is robust against Heisenberg interactions between next-nearest-neighbor sites. Pro-
posals for the realization of Kitaev-type interactions in cooled atomic systems by
other mechanisms have been made, and the feasibility of quantum spin liquids in
these models should also be investigated in detail. Due to their high controllabil-
ity, implementations of the high-spin Kitaev model in these systems have also been
proposed.

Related to the contents of Chap. 5, our next interest is in effects such as non-
diagonal spin interactions and single-ion anisotropy. These effects are important in
real materials. The large-S PFFRG used here can also incorporate these effects. As an
example, even in the effective models obtained using ab initio calculation for CrSiTes
and CrGeTes, which have been proposed as S = 3/2 Kitaev materials, these terms
are present in a non-negligible magnitude [49]. PFFRG has also been used to study
frustrated quantum magnets in three dimensions [118, 135] because of its ability to
calculate systems with large system sizes, and we are also considering calculations
for three-dimensional Kitaev materials.

We also hope to see the development of the PFFRG method used in this disser-
tation itself. PFFRG is a relatively new method, proposed in 2010, and its extensions
are still being actively studied. Just recently, two groups have simultaneously pro-
posed a multi-loop extension of PFFRG. In the context of itinerant electron systems, a
quantitative comparison of the results of the multi-loop FRG of the two-dimensional
Hubbard model with those of the determinat quantum Monte Carlo method is also
presented [72]. The multi-loop extension is expected to improve the accuracy of the
PFFRG calculations. Finally, as mentioned at the end of Chap. 3, PFFRG in magnetic
fields and at finite temperatures is rarely performed due to the enormous computa-
tional cost. We hope to solve this problem by improving the performance of com-
puters and proposing prescriptions. In particular, the calculation of Kitaev quantum
spin liquid in magnetic field is very important for the discussion of non-Abelian
anyons and spin current generation.
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Appendix A

Fourier Transformation

For systematic counting of prefactors, we define Fourier transformation as a non-
unitary transformation in this dissertation. Here we only consider frequency depen-
dence of functions for simplicity (other arguments of the functions are not written
explicitly) and present the definition of the Fourier transformation use in this disser-
tation.

The Green’s function is defined as

G(r, ™) = = (p(0)yp(7)). (A1)

We usually define the Fourier expansion of field variables as

E e Ty (wy), (A.2)
— Z e TP (T). (A.3)

For systematic formulation of FRG, we define those as

¥(T) =2 Ze*“"" ¥(wn), (A.4)
P(r) = 5 Zei“’”i(f)- (A.5)

In the context of the field theory, this definition is often used. We define Fourier
expansion in momentum space in similar way (but the signs of exponents are oppo-
site). In this definition, one summation corresponds one prefactor. This fact enables
us to construct FRG equations systematically for arbitrary sets of 1-particle state la-
bels and frequencies.

Green’s function in frequency space is obtained as

G(r, ) = ~ ()
¥ ettt (gl pleon) |

:Bzwy,w/

Z —1wnr+iwn/r/G(wn, wn’)- (A.6)

wnw/
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Fourier transformation is performed as

/dr/dr’ G(t, 7' )elwnTiwn™ (A7)
/dT/dT Z elWnT— iw,, T G(wn,wn) i, T—icw,, '
Z U dr ell@wn—wn) ] U d7r’ e_i(‘*’""_“’"’)fl] G(wn, wy)
g L [potem—an)] [Botem — )| 6 an)

= G(wm,wm/). (A.8)

If homogeneous (translational invariant)!, i.e
G(t,7)=G(t -7, (A.9)
we can obtain the relation between G(wy,, w,/) and G(w;,):
G(wy, wy) /dT/dT’ Ty T G (T — 1)
/dT”/dT’ fon(THT) S T G (1)
(oo o)
= Bo(wn — W) G(wn). (A.10)

We can regard this relation as the result of energy conservation.

In Matsubara frequency representation, this condition is always satisfied because we consider ther-
mal equilibrium states.
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Appendix B

Other Flow Parameters

Here we review temperature flow and interaction flow schemes although we adopt
cutoff flow scheme of FRG in the main text of this dissertation. These two ap-
proaches have their own advantages and disadvantages which are different from
cutoff flow scheme.

B.1 Temperature Flow

We can choose temperature as a flow parameter of FRG [242]. Local symmetries
are not broken in temperature flow. Therefore, the corresponding Ward identities
satisfaction is improved at least in the exact flow'.

In general, bare action is written like

Slp, ¢l =-T Z E(iwmx/)Q(iwn}x//x>l/)(iwn/x)
n,x,x’
TS
+— Y Y Viiww, X, iw, x5 iwn,, X1, i0m, x2)
X1,X2,X],X5 1q,12,1] 11

X E(iwnir xi)@(iwnél Xé)l[)(iwnz, XZ)lP(iwﬂll xl)

X 0(wn, + wy, — Wy — wnfz). (B.1)

Here, x is set of the appropriate quantum numbers for single-particle basis, and
the summations include appropriate prefactors except temperature. Now we repre-
sent temperature explicitly.

We want to shift all temperature dependence of the bare action to the quadratic term
i.e. Gaussian integral measure Q.
Rescaling field variables as

§ =T, (B2)
IP/ — T3/4lpr (B.3)

In general, conserving approximation which satisfies macroscopic conservation lows, does not
necessarily satisfy the Ward identities derived from microscopic conservation lows.
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we obtain
S/T[ﬁl, l/]l] (: S[@, 1,[’])
T2 Y ' (iwn, x')Q(itwn, ', )9 (i, x)

x,x',n

1 . . . .
+ 1 Z Z V(lwn’llxillwn’zl x/2; 1Wy, , X1, 1Wy,, X2)
X1,X2,X],X5 11,102,111y
X P (1w, )P (1w, %5) P (iwny, %2) 9 (iwn,, x1).
(B.4)

In this scheme, explicit temperature factor is pushed onto the 1-body term of the
action as a flow parameter. Defining a new (inverse) bare propagator as

QT (iwn, ¥, x) = T"V2Q(iwy, ¥/, x), (B.5)
we can write the action as

ST, ¢ = — ) P (iwy, X ) QT (iwy, X', )¢/ (iwn, x)

x,x'n

+ 1 Z Z V(iwnll, xi,iwnlz, Xh; iwy,, X1,iWn,, X2)
X1,X2,X7,X5 11,112,151y
— /. —/ /. . .
Xy (lwn/ll Xi)l[J (lwn'zl X/Z)I/J/ (1wn2, x2)¢/(1‘ﬂnlr x1).
(B.6)
Prime “’ ” means the function defined by the new fields ¢’ and ¥, and the suffix T
means the function with a flow parameter T. Now temperature dependence of all
functions in the bare action is shifted to the new measure Q'’. In the representation
using new field (¢, ¢'), we omit prefactors T with frequency summations.

Before discussion about general m-body propagators and vertices, let us check
that temperature T satisfies general properties for flow parameters. For simplicity,
we consider single-band systems with translational and spin-rotational symmetry.
Due to Fourier transformation we can obtain

B T1/2
QT (wn )) ™ = Gif (i, K) = {5 = T2 Goliwn, ) (B.7)
— Gk
Flow parameters A have to satisfy the condition
cA _ 0‘ A = Ayy .initial Cor‘u?ition (B.8)
singular A = Ajr final condition.

At ¢ = 0and n = 0, the Green’s function is

L e T
Gl (inT, k) = = . B.9
o (inT, k) iwo inT  im T2 (B.9)

This propagator satisfy the condition Eq. (B.8) with initial parameter Tyy = +oco.
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Note that the final condition is satisfied only in fermion systems because the small-
est absolute value of fermionic Matsubara frequency2 is tT. In other word, T'/? is
regularization function like frequency cutoff function 87 (wy,).

Now, let us derive the relations between conventional propagators and temper-
ature rescaled propagators. For this purpose, we derive the relations between non-
rescaled generating functionals and rescaled generating functionals in the tempera-
ture flow. We have to note that

SIp.y] = ST v, (B.10)
therefore,
W, y] = / DDy e SPAI+4) @)
= /DWDEU’ o ST W+ T34y ) +T (g )
= [ DDy e STEXI L)
=W, (B11)
where
7 =T, (B.12)
=T (B.13)

From this relation, the generating functional of connected Green’s functions satisfies

Gl7,m) = —mWlg,y = —In W7, 7'l = G [7, 7). (B.14)

2Note that the smallest absolute value of bosonic Matsubara frequency is zero.
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Thus,

T Y G (a1

Why s Wiy

W A,
=T Y () )P - P))e
Wiy WOnyy
wnll" ’wnin
- 5" G, 4]
W»zy;wnm o1 (x1) -+ - 017 (xm )01 (x7,) - -~ 0 (x7) |, g
nl o,
I D——_ "G,y
oy, TOME T O (1) - O Com )y () - 0 (34 ) |y g
nl’ 4 ni,,
— T(m—z)/z (_1)m 52mg/T[ﬁ/’17/]
Wiy s Wiy 5ﬁ,(x1) e 5ﬁ/(xm)577/(x;n) tee 57]’(.7(1) 71/:7:0
(Un/ --,wn;”
= T2 Y () () B () - B ()
o i
- L T -
Wiy, Wy
wnll s ’wn;”

This is the relationship between the conventional Green’s functions and the Green’s
functions in new field representation regularized temperature factor [243].
Setm =1,

G? = 771/2G/AT, (B.16)

This is consistent with Eq. (B.7). Now let us consider the generating functional of 1PI
vertex functionals in the temperature flow. As the same manner above, performing
Legendre transformation

F/T[E/r l/J,] — Q'T[ﬁ', 17/] + (ﬁ// llj/) + (@l, 17,)
= G, ] + (T34, T %y) + (T4, T4y
=Ty, yl, (B.17)

we can conclude

T, ] =T"[¢ ¢ (B.18)
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From the definition of the vertex functions by Taylor expansion,
Mgyl =-mzZ+ 3 170 3 T, gy y
m=1 Wiy Wy A,—/R,—/
Cdnll,"' ,U.)n/m m pileces m pieces
—_—InZ+ i T2m—1 2 F(Zm)ﬁ//._‘ /@’1’0/,‘_‘ ,¢/XT_3m/2
m=1 Wy ™ Wiy : :
wna s ,(,()”;n m pieces m pieces
=—InZ+ i Z T(mfz)/zr(Zm)w/’...’¢/¢’,...,¢’
=1 Wy, Wy, _ _
wni,“' ,(,L)”;" m pieces m pieces
:_1ng+z Z F’(ZM)TE/,---,@’1/)’,---,1/)’. (B.19)
m=1Wny, " Wny N X
wna,"' ,(Un;n m pieces m pieces
Therefore,
I-'(Zm) — T*(M*Z)/Zr/(Zm)T. (BZO)
Set m = 1, this relation is consistent with Dyson equation:
rog® =1 - rrATEAT @712 11260 =T@OGR =1. (B.21)
From the relation
r® = [cP]1—%, (B.22)
we can obtain the relation for self-energy:
r@ — [Géz)]‘l _y _y Tl2p@T _ [T‘l/ZG(’)(Z)T]‘l _y
=TGP~
_ Tl/z[Gé(Z)T]A — TV2[T1/2y)
=12 -T2 T (B.23)
Thus
and
Y =TT, (B.25)
From these relations, we can write full propagator:
[G'OT) (i, k) = T (iwy, k)
= [Ge?") (i, k) — =7 (icon, k)
=T "2 (iw, — &) — 7 (iwn, k)
=T 2w, — & — TV (iwy, k) |,
{
T1/2
G'AT (iw,, k) = (B.26)

iy — & — TV22/T (i, k)
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At last, we derive the single-scale propagator:
d T (5 _ d
ﬁ (lwn, k) = diT

1 . _
=~y iwn =) + TV

1 ) )
= ZTT/Z(_M}” + & + 2iwy)

. iUJn +€k
o278/

T/ (iwn — Ck)

thus

ST (iwy, k) = —G'D7T (iw,, k) (;FQ’T(iwn, k)> G (iw,, k)

Tl /2 iwn + gk

siwy
T

(B.27)

T1/2

1 T2 (iwy, + &)

2 liwy — &k — TV22/ (iwy, k) |2

B.2 Interaction Flow

Ciwy — & — TV22T (jwy, k) 2T3/2 iw, — & — T2 (iwy, k)

(B.28)

In this section we review interaction flow scheme which is a FRG scheme choosing

magnitude of interaction as a flow parameter [244].

In general, bare action is written like

_ 1 —
S ==Y (G p+ L Y Vipyy.

Here, we do not write arguments of field operator for simplicity.
We introduce uniform scaling factor of the Grassmann variables:

=11,
l)b/ — /\—1/24]‘

This factor A acts as a flow parameter in the interaction flow.
As a result, the full action is transformed as

— 1 e
A 7y —1 1, . = 2 e N
St ==Y PAT Gl Y + T YAV Yy
_ B 1 o
= LG + LAV Y
Here, we define the bare propagator in the interaction flow as
Gy = AGo.
Note that interaction is transformed as

V — A%V,

(B.29)

(B.30)
(B.31)

(B.32)

(B.33)

(B.34)
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In the interaction flow scheme, we set A = 0 initially and calculate toward A = 1. At
the initial condition A = 0, interaction is not taken into account. At the end of flow
A =1, on the other hand, GQ is corresponds Gy and the interaction fully contributes
to action.

In the same manner as the case of temperature flow, we can derive the relation be-
tween non-rescaled functions and scaled functions in the interaction flow:

G@m) = y\~mG@EmA (B.35)
r@m — pmp@mA (B.36)
The full and single-scale propagators are given as
A
iw” - gk - AZA(in, k) ’

iwn - gk
liko — &k — AXA (iwy, k)]*

GMiwp, k) = (B.37)

S (iwn, k) = (B.38)

Interaction flow has great advantage. If we neglect self-energy correction, the
propagators has the same form at each step in the flow and each one-loop integral
needs to be done only once. This property reduce computational costs. However,
this A cannot regularize infrared divergence of the propagators. Nevertheless, if
problems are suitable to this scheme, we can obtain results similar to cutoff scheme
with less computation.
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Appendix C

Approximate Relation T ~ A

Here we prove that the relation T ~ 7 A is valid not only in mean-field theory but
also in the leading order of high-temperature expansion.
We consider the mean-field theory of Heisenberg model under external field H.
The Hamiltonian is
H=1Y JjSi-Sj—) H-S. (C.1)
(i) i

To perform mean-field approximation, we define the mean-field on the site i

HY = - "J;(S)) + H, (C.2)
j

and the effective Hamiltonian on the site i
HME = _HMF. s, (C.3)

Now we can calculate the magnetization on the site i as
s HY s L gMF MF
Yo—_gme T Yo—_gmertim 5.8 <H S

= = . S

! C4
Tr[e—H?AF/T] 251:75 e%H,MFm T > (C4)

M; = [(S)| =

with HMF = |HMF|. Here, Bs(x) is the Brillouin function and it has the asymptotic

forms (25°+2541)(841)
S+1.. _ (28°4+25+1)(S+1) .3
Bg(x) ~ { 35 * st ¢ (x=2 00 (C.5)
1 (x = +00)
Considering ferromagnetic case (M; = M) !, the mean-field is homogeneous
(site-independent) and we can write it as
HMF _ HIMF = — Z],]M + H (C.6)
]
=—J(0)M + H. (C.7)
Here, we define the Fourier transformation of the magnetic interaction as
J(k) =Y ek limrily, (C.8)
j

Ut is for simplisity.
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Therefore, FM magnetization is given by the self-consistent equation

S(1-JOM) <)

M:S-B5< .

Now we consider high temperature regime where the argument of the Brillouin
function Bg is sufficiently small. We adopt the asymptotic behavior of the Brillouin
function and iterative expansion to the 2nd order of T~!

M=s.2"-.2"_3

S+1 SH S+1 SMJ(0) (252+25+1)(S+1)<S(H—](0)>3

3 T 3 T ' 9053 T
_S(S+1) S(S+1)J(0) ~

T H-— 37 M+ 0O(T™3)
_S(S+1) [S(S+1)]2(0) _

T H-— o7 H+0O(T™®). (C.10)

The first term gives Curie’s law. The second term is correction term from high tem-
perature expansion. Defining homogeneous FM susceptibility by M = xH, the ex-
plicit form of the susceptibility in high temperature regime is given by

S(S+1) _ [S(S+1)PJ(0)

AT 972 (C.11)

In order to clarify the relation between temperature T and RG cutoff scale A,
we consider high energy regime in PFFRG. To compare mean-field theory, we adopt
static approximation and consider only RPA term in direct particle-hole channel.
The reduced flow equations are shown in Egs. (3.137) and (3.138). Here we consider
the Heisenberg-type interaction which is isotropic in spin space, so we define F?]’-A as
(see Eq. (3.75))

A XA YA oz A
1"?]. —Ff;. —Fi]. —Ff].. (C.12)

We rewrite Egs. (3.137) and (3.138) by F?;A:

d sA s, A
dA ~ A2 Z F , (C.13)
and , ,
A A
Xij = 5%~ ety (C.14)

respectively. Here we omit the spin component indices of the susceptibility because
X = x* = x¥¥ = x*. Defining Fourier transformation of the spin vertex by

rs,A(k) — Ze‘ik'(’f‘r/’)r?;/‘, (C.15)

the homogeneous susceptibility (k = 0) is given by

A 1 B 1
2nA 2A2

X s2(0). (C.16)
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In high energy regime, we can assume that l"f]fA does not change a lot from initial
condition i.e. bare interaction

1 .
F?;A ~ FZ’.AUV = 1]l-]- (if A > Jij). (C17)

Therefore, we can obtain an approximate form of the susceptibility in high energy
regime

1 1
A s —
X an ~ aad O (C.18)
Now we compare it with mean-field result eq. (C.11) with S = 1/2
3 1 9 1
*=1 57 16 o2/
1 1
= 7w J(0). (C.19)
Surprisingly, above 2 equation have the same form if we set
T="A. (C.20)

2

We obtain the scaling factor connecting T and A. Of course, this relation is valid
only in high temperature/high energy region. Therefore we represent T ~ ZA in
this dissertation.
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