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Abstract

In proton synchrotrons, the beam loss derived from the betatron resonances is one of key issues
for stable beam operation. Especially, for the high-intensity beams, the serious effects come from
both the sextupole-driven resonances and the space-charge-induced resonances. This dissertation
proposes methods to compensate these resonances. They are verified through the simulations and the
measurements performed in the main ring synchrotron (MR) of Japan Proton Accelerator Research
Complex, which is one of the world-highest beam-intensity proton synchrotrons.

We discussed the main source of the integer resonance in MR, and the effects of the resonance
on the beam core. We measured the turn-by-turn transverse beam sizes which grew due to the
space-charge-induced resonances. A clear difference of the emittance growth between the structure
resonance νx = 21 and the nonstructure resonance νx = 22 was observed in the measurements.
These results showed that the space charge effect was the main source for the resonance νx = 21.
The measured emittance growth strongly depended on the tune. It gave us the knowledge about the
relations between the resonances and the tune spread distribution. The results were well reproduced
by the tracking simulation including the space charge effects using a particle-in-cell algorithm.

We developed a novel method to compensate the sextupole-driven third-order structure resonance
νx − 2νy = −21. The new optics for the compensation makes use of the symmetry of the synchrotron
and optimizes the vertical phase advance in the arc section. The compensation was confirmed by
the aperture survey simulations and also demonstrated by the three kinds of measurements. The first
experiment was the horizontal and vertical coupling measurement derived from the resonance. The
coupling was observed only for the optics without the compensation. The second experiment was the
beam loss measurements. The beam loss around the resonance was clearly reduced using the optics
for the compensation. The third experiment was the Fourier analysis of the dipole oscillation in the
transverse planes. We observed the Fourier spectra derived from the resonances, and showed that
their peaks were clearly suppressed in the optics for the compensation. The three measurements were
consistent with the results of the space charge simulations.

It was revealed that each resonance driving term derived from the space charge effect can be
weakened by changing the vertical phase advance in the arc section. This method preserves the
original tune, and keeps the straight sections dispersion-free. Through the calculations of the on-
resonance conditions, the most influential space-charge-induced resonance to the beam loss was
specified as 8νy = 171 in the present neutrino user operation of MR. It was confirmed by the scan of
the vertical phase advance in the arc section. The resonance driving term of the resonance 8νy = 171
correlated the beam loss during the scan. The advantage of the new optics was also supported by the
experiments. The beam loss was reduced about 16% compared to the present optics in the injection
period of MR.
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Chapter 1

Introduction

Accelerators are used for various kinds of fields, such as elementary particle physics, nuclear physics,
material science, life science, medical science, and industrial applications. They have been developed
and specialized according to their purposes. Compared to the other types of accelerators (for example
the cyclotron), the synchrotron is often used in high-energy and large-scale facilities.

The designs and the optimizations of the synchrotrons have been studied for the stable beam operations.
The synchrotron was first proposed by Oliphant[1], and was realized owing to the discovery of the phase
stability by Veksler[2] and McMillan[3]. The first synchrotron was the electron synchrotron constructed
by McMillan, which employed the weak focusing as well as cyclotrons in those days. In the weak-
focusing synchrotrons, the oscillation amplitudes of the beams were so large that they limited the beam
energy. To overcome this problem, the strong-focusing scheme was invented by Christofilos[4], Courant,
Livingston, and Snyder[5]. As the strong-focusing proton synchrotron, CERN Proton Synchrotron (CPS)
was constructed at CERN in 1959, and Alternating Gradient Synchrotron (AGS) at Brookhaven National
Laboratory (BNL) in 1960. These two synchrotrons used the combined-function magnets. In 1953,
Kitagaki proposed separated-function design[6], which separated the bending and focusing magnets. It
was not only economical in a large synchrotron but also advantageous in terms of the beam tuning. The
first synchrotron employing the separated-function design was the Fermilab Main Ring.

Soon after the development of the strong focusing, accelerator physicists found the importance of
the effects of the imperfections of the magnets[7]. The imperfections of the magnets in the synchrotron
affect the beam periodically, leading to the beam instability known as the resonances. Resonances cause
the emittance growth and beam loss. The attempt to understand the resonances through the perturbation
theory was published by Schoch[8]. The theory about the resonances was consistently summarized by
Guignard[9] for example. Since it was found that strong resonances can be avoided by choosing the
proper tunes, the present issue is how to suppress the effects of higher-order resonances derived from
nonlinear fields.

In the intensity-frontier synchrotrons which are required by the statistical experiments, the self-
field Coulomb potentials of the beams make the discussions complicated. It is called the space charge
effect. Since the space charge force depends on the position of the particle, it causes the incoherent
tune shift[10, 11]. By the effects of nonlinear components of the space charge potential, it also induces
multiple resonances[12]. Since it is difficult to measure the tune spread distribution directly, developing
and sophisticating the simulations are necessary for understanding the present operation and for upgrading
the synchrotrons.

This dissertation mainly studies the main ring synchrotron (MR)[13] of Japan Proton Accelerator
Research Complex (J-PARC)[14], which is one of the world-highest intensity-frontier proton synchrotrons.
MR provides high-power proton beams for the neutrino experiments (FX operation) and for the hadron
experiments (SX operation). Table 1.1 shows the beam energies, pulse repetition frequencies, intensities,
and the powers of the major high-power proton synchrotrons in the world. The number of particles in
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one pulse is largest at the FX operation in J-PARC MR. To cope with the strong space charge effects due
to the world-highest intensity, MR (and RCS) use second harmonic RF cavities[15, 16] and suppress the
maximum line density. For higher beam power, MR plans to shorten the cycling time and upgrade the
hardware[17, 18].

Table 1.1: Beam energies, pulse repetition frequencies frep, pulse intensities, and beam powers of the
intensity-frontier proton accelerators[19, 20]

Ring Institute Energy [GeV/u] frep [Hz] Particle / pulse Power [kW]
MR (FX) J-PARC 30 0.403 2.66 × 1014 515
MR (SX) J-PARC 30 0.192 5.95 × 1013 55
RCS J-PARC 3 25 4.99 × 1013 600
MI FNAL 120 0.75 5.20 × 1013 750
SPS CERN 400 0.17 4.59 × 1013 500
SNS† ORNL 1.4 60 1.04 × 1014 1400
ISIS STFC 0.8 40 3.12 × 1013 160
CSNS IHEP 1.6 25 1.25 × 1013 80
PSR† LANL 0.8 20 3.12 × 1013 80
AGS BNL 24 0.5 5.20 × 1013 100

As the beam power increases, the requirement for the beam loss becomes severer, because the beam
loss causes the radioactivation of the accelerator components. The beam loss is 0.6% - 1% in the
present FX operation in J-PARC MR. They are caused by the effects of the higher-order resonances.
This dissertation studies the better beam tuning through the evaluations and the compensations of the
resonances due to both external and internal field effects. In this chapter, some basic theories about
the accelerator physics and introductions for J-PARC are described. In Chapter 2, the resonant sources
for the integer resonances are discussed through some results of measurements and simulations[21]. It
indicates the better optimization for the tune in terms of the space charge effects. In Chapter 3, a new
method for the compensation of the third-order structure resonance is proposed and is verified. Since
this new method only requires a sort of symmetry, it is also applicable to many other synchrotrons. In
Chapter 4, the method proposed in Chapter 3 is extended to the space charge effects. It shows that
the space-charge-induced resonance can be weakened by the method. It is worth investigating in the
synchrotron suffering from the space-charge-induced resonances.

1.1 Basics of Beam Dynamics in a Synchrotron

1.1.1 Transverse Dynamics of a Single Particle

The accelerator physics is an aspect of electromagnetism. Let us start from the Hamiltonian of a charged
particle in an electromagnetic field:

H = c
√

m2c2 + (P − eA) + eϕ. (1.1)

Here c is the speed of light, m is the mass of the charged particle, P is the canonical momentum, e is the
charge of the particle, A is the vector potential, and ϕ is the scalar potential.

†SNS and PSR are accumulator rings. The other ones are synchrotrons.
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Particle motions in a circular accelerator are usually understood as deviations from the reference orbit.
It is useful to discuss particle motions with the independent variable s, which is the path length along the
reference orbit. The coordinate system around the reference orbit is called the Frenet-Serret coordinate
system. In this coordinate system, the unit vectors are defined as follows:

ŝ(s) = r′
0(s), x̂(s) = −ρ(s)ŝ′(s), ŷ(s) = x̂ × ŝ. (1.2)

The prime ′ represents the differentiation with respect to s, r0 is the reference orbit, ρ is the radius of
curvature.

Using new units, Hamiltonian becomes

H = c

√
m2c2 + (px − eAx)2 +

(ps − eAs)2
(1 + x/ρ)2

+ (py − eAy)2 + eϕ, (1.3)

where

px = P · x̂, ps = (1 + x/ρ)P · ŝ, py = P · ŷ, (1.4)
Ax = A · x̂, As = (1 + x/ρ)A · ŝ, Ay = A · ŷ. (1.5)

To change the independent variable from the time t to the path length s, the new Hamiltonian H̄(≡ −ps)
is defined. The new Hamiltonian becomes

H̄ = −
(
1 +

x
ρ

) √
(H − eϕ)2

c2 − m2c2 − (px − eAx)2 − (py − eAy)2 − eAs (1.6)

with (x, px; y, py; t,−H) as the phase-space coordinates.
Assuming px, py ≪ |P | and neglecting higher-order terms, the transverse equation of motion of an

on-momentum particle becomes

u′′ + Ku(s)u = 0 (u = x, y), (1.7)

where

Kx(s) = 1/ρ2(s) + K1(s), Ky(s) = −K1(s), (1.8)

Kn(s) ≡
1

Bρ
dnB(s)

dsn
. (1.9)

Eq. (1.7) is known as Hill’s equation. The particle motion around the reference orbit is called betatron
motion. In circular accelerators, we can assume the periodic condition as

Ku(s) = Ku(s + C), (1.10)

where C is the circumference of the accelerator. Using Floquet theory, the simplest Hill’s equation (1.7)
can be solved as

u =
√

2Juβu(s) cos(ψu(s) + ξu), (1.11)

ψu(s) =
∫ s

s0

ds
βu(s)

, (1.12)

where Ju, ξu are constants, and s0 is the reference point. The constant ξu depends on s0. The number of
betatron oscillation in one revolution is called tune νu, defined as

νu ≡ 1
2π

∫ s+C

s

ds
βu(s)

. (1.13)

The function βu is called the betatron function. It is useful for discussing the linear betatron motion to
introduce

αu(s) ≡ −1
2
β′u(s), γu(s) ≡

1 + α2
u(s)

βu(s)
. (1.14)

The functions (αu, βu, γu) are called Twiss parameters.
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1.1.2 Transverse Dynamics of Multi Particles

The Hill’s equation (1.7) describes the motion of a single particle. In a real machine, a beam is made
of multi particles. The physical quantity of an individual particle can not be observed. The observable
values in experiments are the moments of them.

Hereinafter, a moment of a variable λ is written as

⟨λ⟩ ≡
∬

λ f (u,u′)dudu′, (1.15)

where f (u,u′) is a distribution function of particles with
∬

f (u,u′)dudu′ = 1. Using first and second
moments, the root mean square (rms) beam sizes in (u,u′) coordinates and the correlation can be defined
as

σ2
u = ⟨u2⟩ − ⟨u⟩2 , (1.16)

σ2
u′ = ⟨u′2⟩ − ⟨u′⟩2 , (1.17)

σuu′ = ⟨uu′⟩ − ⟨u⟩ ⟨u′⟩ . (1.18)

It is well known that the emittance defined as

εu ≡
√
σ2
uσ

2
u′ − σ2

uu′ (1.19)

is constant (dεu/ds = 0) in a linear optics if the beam is not accelerated. There are following relations
among the beam sizes, the emittance, and the Twiss parameters:

σu(s) =
√
εuβu(s), σu′(s) =

√
εuγu(s), σuu′(s) = −εuαu(s). (1.20)

The equation of the beam size, called the envelope equation, can be derived from Hill’s equation. Using
Ku in Eq. (1.7), the envelope equation can be written as follow:

σ′′
u + Ku(s)σu −

ε2
u

σ3
u

= 0. (1.21)

1.1.3 Introduction for Betatron Resonance

In some cases, it is helpful to discuss the particle motion in angle-action coordinates. The pseudo-
Hamiltonian H corresponding to the Hill’s equation (1.7) can be written as

H(u,u′; s) = 1
2

u′2 +
1
2

Ku(s)u2. (1.22)

Using a generating function

F1(u,ψu) = − u2

2βu
(tanψu −

β′u
2
), (1.23)

the conjugate variables (u,u′) are transformed to the new conjugate variables (ψu, Ju). The new conjugate
momentum Ju is called the action and is written as

Ju =
1

2βu
[u2 + (αuu + βuu′)2]. (1.24)

The new Hamiltonian H̄ becomes

H̄ = H +
∂F1

∂s
=

Ju
βu
. (1.25)
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Since the new Hamiltonian is independent from ψu, the action Ju is invariant (dJu/ds = 0).
To make it clear the periodicity of the accelerator, the orbiting angle θ = 2πs/C is introduced, where

C is the circumference. Changing the independent variable from s to θ, and using a generating function

F2(ψu, J̄u) =
(
ψu −

∫ s

s0

ds
βu
+ νuθ

)
J̄u, (1.26)

the new conjugate coordinates (ϕu, J̄u) are

ϕu = ψu −
∫ s

s0

ds
βu
+ νuθ, J̄u = Ju, (1.27)

and the new Hamiltonian Ĥ is

Ĥ =
C
2π

H̄ = νu J̄u . (1.28)

Hereinafter, J̄u is simplified to Ju, and the non-perturbative Hamiltonian H0 is defined as

H0 = νx0Jx + νy0Jy . (1.29)

Given that there is a small perturbative potential U(ϕx, ϕy, Jx, Jy; θ) and the Hamiltonian is

H = H0 +U(ϕx, ϕy, Jx, Jy; θ). (1.30)

To evaluate the nonlinear effect of U, we separate the linear term from U using Fourier transformation:

U(ϕx, ϕy, Jx, Jy; θ) = Ũ0,0(Jx, Jy; θ) +
∑

(mx ,my ),(0,0)
Ũmx ,my (Jx, Jy; θ)ei[mxϕx+myϕy ], (1.31)

Ũmx ,my (Jx, Jy; θ) = 1
(2π)2

∬
U(ϕx, ϕy, Jx, Jy; θ)e−i[mxϕx+myϕy ]dϕxdϕy . (1.32)

First, let us focus on the linear term and neglect the nonlinear potential Ũmx ,my ((mx,my) , (0,0)). The
equation of motion becomes

dϕu
dθ
=
∂(H0 + Ũ0,0)

∂Ju
= νu0 +

∂Ũ0,0

∂Ju
. (1.33)

The linear tune shift ∆νu is then,

∆νu(Jx, Jy) =
1

2π

∮
∂Ũ0,0(Jx, Jy; θ)

∂Ju
dθ. (1.34)

This shows that the tune shift can depend on the action of the particle. The nonlinear potential
Ũmx ,my ((mx,my) , (0,0)) can be expressed by Fourier expansion of θ:

Ũmx ,my (Jx, Jy; θ) =
∑
n

Ûmx ,my ,ne−inθ, (1.35)

Ûmx ,my ,n(Jx, Jy) ≡
1

2π

∮
Ũmx ,my (Jx, Jy; θ)einθdθ (1.36)

The term Ûmx ,my ,n causes the resonance mxνx + myνy = n. When the superperiod of the accelerator is
N ,

Ûmx ,my ,n =
1

2π

N−1∑
k=0

∫ θ0+2π/N

θ0

Ũmx ,my einθein
2πk
N dθ. (1.37)
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This means that for resonances with (n mod N = 0),

Ûmx ,my ,n =
N
2π

∫ θ0+2π/N

θ0

Ũmx ,my einθdθ ≡ NÛmx ,my ,n,1/N , (1.38)

while for resonances with (n mod N , 0),

Ûmx ,my ,n = 0. (1.39)

The resonance with (n mod N = 0) is called the structure resonance. In a real machine, there are some
magnet imperfections and they break the periodicity of the accelerator. Magnet imperfections enhance
resonances even if (n mod N , 0). The resonance with (n mod N , 0) is called the nonstructure
resonance.

Suppose that a particle with action (Jx, Jy) = (JxR, JyR) is on the resonance mxνx +myνy = n, that is

mx(νx0 + ∆νx(JxR, JyR)) + my(νy0 + ∆νy(JxR, JyR)) = n. (1.40)

The Hamiltonian can be approximated as

H ≃ H0 + Ũ0,0 + Vmx ,my ,n cos(mxϕx + myϕy − nθ + ξmx ,my ,n), (1.41)

where

Vmx ,my ,n = 2|Ûmx ,my ,n |, ξmx ,my ,n = arg Ûmx ,my ,n. (1.42)

If mx , 0, applying canonical transformation by using the generating function

F2(ϕx, ϕy, J1, J2) = (mxϕx + myϕy − nθ + ξmx ,my ,n)J1 + ϕy J2, (1.43)

the new canonical coordinates are

J1 =
1

mx
Jx, J2 = −

my

mx
Jx + Jy, (1.44)

ϕ1 = mxϕx + myϕy − nθ + ξmx ,my ,n, ϕ2 = ϕy, (1.45)

and the new Hamiltonian H̄ is

H̄ = (mxνx0 + myνy0 − n)J1 + νy0J2 + Ũ0,0(J1, J2; θ) + Vmx ,my ,n(J1, J2) cos ϕ1. (1.46)

Since ∂H̄/∂ϕ2 = 0, J2 is a constant, that is

mx Jy − my Jx = constant. (1.47)

Approximating Ũ0,0 as[22]

Ũ0,0(J1) ≃ Ũ0,0(J1R) +
∂Ũ0,0

∂J1

����
J1R

(J1 − J1R) +
1
2
∂2Ũ0,0

∂J2
1

�����
J1R

(J1 − J1R)2, (1.48)

J1R =
1

mx
JxR, (1.49)

and averaging out the linear potential as[22, 23]

Ū0,0(J1, J2) =
1

2π

∮
Ũ0,0(J1, J2; θ)dθ, (1.50)
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the Hamiltonian becomes

H̄ =
1
2
∂2Ū0,0

∂J2
1

�����
J1R

(J1 − J1R)2 + Vmx ,my ,n(J1) cos ϕ1 + constant (1.51)

≃ Λ
2
(J1 − J1R)2 + Vmx ,my ,n(J1R) cos ϕ1 + constant, (1.52)

where

Λ =
∂2Ū0,0

∂J2
1

�����
J1R

= m2
x

∂2Ū0,0

∂J2
x

+ 2mxmy
∂2Ū0,0

∂Jx∂Jy
+ m2

y

∂2Ū0,0

∂J2
y

�����
JxR ,JyR

. (1.53)

Therefore the resonance width is

∆J1 = 4

√
Vmx ,my ,n(J1R)

Λ
. (1.54)

1.1.4 Space Charge Effect

Since charged particles are bunched in narrow spaces, the electromagnetic fields made by beams have
significant effect on the beams, especially in high-intensity synchrotrons. This is called the space charge
effect. The space charge effect is often classified into the direct effect and the indirect effect. The former
is the Coulomb scattering between particles, and the latter is the effects derived from existence of the
walls of the vacuum chambers, such as the mirror charge effect. In this section we neglect the effect
through the wall, and we assume that the transverse distribution of the beam is a Gaussian. The space
charge potential of the Gaussian beam is[24]

U(x, y; s) = λr0

γ3
relβ

2
rel

∫ ∞

0
dq

exp(− x2

2σ2
x+q

− y2

2σ2
y+q

)√
2σ2

x + q
√

2σ2
y + q

, (1.55)

where λ is the line density of the beam, r0 is the classical radius of the particle, βrel, γrel are the Lorentz
factors, and σu is the rms beam size.

Changing the independent variable from s to θ and transforming the coordinates from (u,u′) to (ϕu, Ju)
by using

u =
√

2Juβu cos(ϕu + χu − νuθ), χu(s) =
∫ s

s0

ds
βu
, (1.56)

the space charge potential becomes (see Appendix A)

U(ϕx, ϕy, Jx, Jy; θ) = Ũ0,0 +
∑

(mx ,my ),(0,0)

∑
n

Ûmx ,my ,nei[mxϕx+myϕy−nθ]e−iδθ, (1.57)

Ũ0,0(Jx, Jy; θ) = C
2π

λr0

γ3
relβ

2
rel

∫ ∞

1
dζ

e−wx−wy I0(wx)I0(wy)√
ζ2 − ∆2

xy

, (1.58)

Ûmx ,my ,n(Jx, Jy) =
λr0

γ3
relβ

2
rel

(−1)(mx+my )/2

2π

∮
dseimx χx+imyχy

×
∫ ∞

1
dζ

e−wx−wy Imx/2(wx)Imy/2(wy)√
ζ2 − ∆2

xy

(mu = even), (1.59)
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where

δ = mxνx + myνy − n, (1.60)

∆xy = −∆yx =
σ2
x − σ2

y

σ2
x + σ

2
y

, (1.61)

wu = − Juβu
(σ2

x + σ
2
y )(ζ + ∆uv)

((u, v) = (x, y), (y, x)), (1.62)

and Iν(z) is the modified Bessel function. It shows that the space charge potential makes only even-order
resonances.

The linear space charge tune shift is

∆νu =
1

2π

∮
∂Ũ0,0

∂Ju
dθ (1.63)

= − λr0

γ3
relβ

2
rel

1
2π

∮
ds

βu

(σ2
x + σ

2
y )

∫ ∞

1
dζ

e−wx−wy [I0(wu) − I1(wu)]I0(wv)
(ζ + ∆uv)3/2(ζ + ∆vu)1/2

. (1.64)

To calculate the space charge potentials and their derivatives, the rms beam size σu(s) should be
solved. It can be obtained from the envelope equation with the space charge effect[25]:

σ′′
u + Kuσu −

εu

σ3
u

− λr0

β2
relγ

3
rel

1
σx + σy

= 0. (1.65)

This equation holds when the 4-dimensional beam distribution has the elliptical boundary. If the mo-
mentum spread δ = dP/P of the beam is not negligible, the beam size should be modified as

σ(s) =
√
σ2

transverse(s) + σ2
δη

2(s), (1.66)

where σδ is the rms momentum spread and η(s) is the dispersion function.

1.2 J-PARC

1.2.1 Composition of J-PARC

Figure 1.1: Overview of J-PARC[26]

Japan Proton Accelerator Research Complex (J-PARC)[14] is a facility targeting multi-purpose studies
using proton beams. Secondary or tertiary particles are made from proton beams, such as neutrons,
muons, kaons, neutrinos. The most remarkable specification of J-PARC is the intensity of the beam.
High-intensity secondary (or tertiary) beams enable large statistical experiments.

In J-PARC, particles are accelerated up to the relativistic beta βrel ∼ 1. To keep high acceleration
efficiency in each velocity, J-PARC uses three large accelerators.
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Figure 1.2: Relativistic beta of a proton as a function of the energy[27].

Linac

Linac is the most upstream accelerator in J-PARC, shown as the blue line in Fig. 1.1. Linac consists of IS
(Ion Source) and four accelerating structures: RFQ, DTL, SDTL, and ACS. The energy regions of each
accelerator are shown in Fig. 1.2. Linac generates H−s at the Ion Source, and accelerates them up to 400
MeV (βrel = 0.73).

RCS

The H− beams from Linac are injected to 3GeV Rapid Cycle Synchrotron (RCS)[28], shown as the orange
line in Fig. 1.1. At the injection, H−s are converted to protons by the thin carbon foils. RCS operates
with 25 Hz. Two beam bunches are accelerated to 3 GeV in one cycle, and extracted to MLF or MR.

MR

30GeV Main Ring Synchrotron (MR)[13] is a proton synchrotron shown as the pink line in Fig. 1.1. Two
proton bunches (called a batch) are injected four times at intervals of 40 msec (25 Hz) from RCS. After
injection, the beams are accelerated to 30 GeV, and are extracted to Neutrino Experimental Facility or
Hadron Experimental Hall.

Experimental Facilities

In Material and Life Science Experimental Facility (MLF), neutrons and muons are made by the nuclear
spallation reaction using proton beams injected from RCS. MLF provides Neutron beams and muon
beams to various kinds of users.

Neutrino beams are made in Neutrino Experimental Facility using the beams from MR. Neutrinos
are detected by the near detector and by the far detector: Super-Kamiokande[29].

Several kinds of hadron beams, such as kaons, pions, and anti-protons, are made in Hadron Ex-
perimental Hall by the beam from MR. They are used for nuclear experiments or elementary particle
experiments.

1.2.2 Status of MR

Figure 1.3 shows the schematic picture of the main ring synchrotron. The beams from the RCS pass the
transport line, called 3-50 BT, and are injected in MR. Eight bunches are injected in total within 0.13 sec,
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Figure 1.3: Design of J-PARC MR[13]

Figure 1.4: An example of the beam intensities measured by the DCCT (red) and the settings of the
kinetic energies for the magnets (blue) in FX (left) and in SX (right).

and then they are accelerated from 3 GeV to 30 GeV for 1.4 sec. There are two kinds of extraction modes
in MR. One is the fast extraction (FX). FX operation is used for the neutrino experiments[30, 31, 32].
After being accelerated to 30 GeV, all the beams are kicked out in one turn to the neutrino beam line. Then
the pion beams are made in collisions between the proton beams and a graphite target, and they decay to
muons and muon neutrinos. The other extraction mode is the slow extraction (SX). SX operation is used
for the hadron experiments. Since the hadron users require the smooth and uniform beams, the beams are
debunched for 0.5 sec after acceleration. Then they are slowly extracted to the Hadron Experimental Hall
for 2 sec. The examples of the beam intensities and the settings of the kinetic energies for the magnets
are shown in Fig. 1.4. The beam intensity is usually measured by the direct-current current transformers
(DCCT)[33, 34, 35, 36] in MR. The cycle time is 2.48 sec in FX and 5.2 sec in SX.

MR comprises three straight sections and three arc sections. Since the beams are injected and
extracted at the straight sections, the straight sections are usually called “the insertion sections”. The
length of the straight section is 116.1 m, and that of the arc section is 406.4 m. There are seven kinds
of quadrupole magnets in the straight sections, and four kinds of quadrupole magnets in the arc sections.
The same kinds of quadrupole magnets have the same structures, and their inputs are from the same
power supply. We call the group of the same kinds of magnets as a “family”. Since the arc section is
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Figure 1.5: The betatron functions (upper) and the dispersion functions (lower) for one superperiod used
in the neutrino user operation. The horizontal functions are shown as blue lines, and the vertical ones are
shown as red lines.

Table 1.2: The main parameters in MR[13]

Injection energy 3 GeV
Extraction energy 30 GeV
Circumference C 1567.5 m
Harmonic number 9
Number of bunches 8
Superperiod 3
RF frequency 1.67 - 1.72 MHz
Transition energy γT 31.7i
Physical aperture of the ring > 81π mm mrad
Physical aperture of the collimators ∼ 60π mm mrad
Capacity of the collimators 2 kW
Number of the bending magnets 96 (6 families)
Number of the quadrupole magnets (straight section) 45 (7 families)
Number of the quadrupole magnets (arc section) 171 (4 families)
Number of the sextupole magnets 72 (3 families)

much longer than the straight section, the optics parameters, especially the betatron tune, is sensitive to
the strength of the quadrupole magnets in the arc sections. The adjustment of the arc sections is also
important in terms of the dispersion. The quadrupole magnets in the arc sections are carefully adjusted
to make the straight sections dispersion-free. For these reasons, the tune is usually moved by using only
the quadrupole magnets in the straight sections if necessary.

The remarkable feature of the lattice of MR is that it employs imaginary transition energy. One arc
section is made of eight modules. One module is composed of three FODO cells, and the center of each
module is set as the missing-bend cell. The dispersion is set to be positive at the missing-bend cells, and
negative at the other arc cells, so that the momentum compaction factor is negative and the transition
energy is imaginary. The betatron function and the dispersion for the neutrino user operation is shown in
Fig. 1.5. The major parameters of MR are listed in Table 1.2.
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Figure 1.6: Beam loss distributions measured by the proportional counters. The left picture shows an
example of the time structure of the beam loss at each position in the neutrino operation. The horizontal
axis shows the address, which is the number allocated to the whole of the ring. The vertical axis shows the
time. The right picture shows an example of the accumulated beam loss for one shot at each position in
the neutrino user operation. The collimator section is colored red, and the other places are colored blue.
The gains of the proportional counters at the other places is 8 times as much as those at the collimator
section. In other words, if the plot is made with the same gain, the red bars will be 8 times taller.

What is indispensable for the optimization of the high-intensity proton accelerator is control of the
beam loss. The lost protons produce a large amount of secondary particles, resulting in the radioactivation
of the accelerator components. Serious radioactivation disturbs the maintainability of the accelerator.
Since it is impossible to realize the beam operation without any beam loss, the beam loss is localized to
some places. Usually, the collimators are installed for the localization of the beam loss. MR is originally
designed to secure the physical aperture of 81π mm mrad. The physical apertures of the collimators
are typically set about 60π mm mrad to localize the beam loss. Of course the collimators are solidly
shielded. It is essential to reduce the total amount of beam losses and to localize them at the collimator
sections. Figure 1.6 shows an example of the beam loss distribution measured by the proportional
counters[37, 38, 39]. The beam loss is well localized at the collimator section.

Table 1.3: Operation status in MR

FX SX
Current beam power 515 kW 55 kW
Design beam power 750 kW 100 kW
Future beam power 1300 kW 100 kW
Current beam intensity 2.66 × 1014 ppp 5.95 × 1013 ppp
Current cycle time 2.48 sec 5.2 sec
Operation Tune (νx, νy) (21.35, 21.43) (22.31, 20.79) (3 GeV)

Since we are searching for the new physics by accumulating the statistics of the neutrinos and the
hadrons, MR is requested to increase the beam power. Figure 1.7 shows the history of the beam power
in MR. The beam power has been increased by virtue of various kinds of upgrades[40, 41]. One of the
efforts which contributed to the beam loss reduction in FX operation was the change of the operation
tune[41]. The previous operation tune was (νx, νy) = (22.40, 20.75) in FX operation. However, the
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Figure 1.7: The history of the beam power in MR[18]. The high peaks represent the beam power for the
FX operation. The low peaks represent the beam power for the SX operation.

resonances, such as νx + νy = 43 and 2νy = 43, limited the beam intensity. The space charge simulation
showed the advantage of the tune (νx, νy) = (21.35, 21.43), and encouraged to move the tune[42, 43]. The
present operation tune (νx, νy) = (21.35, 21.43) has been applied since May 2016.

The maximum power achieved to 515 kW for the FX operation, and to 55 kW for the SX operation.
These powers correspond to 2.66 × 1014 protons per pulse (ppp) or 3.32 × 1013 protons per bunch (ppb)
for the FX operation, and to 5.95 × 1013 ppp or 7.44 × 1012 ppb for the SX operation. The operation
status of MR is listed in Table 1.3.

1.2.3 Future Plan and Issues in MR

Table 1.4: The parameters of the upgrade for the FX operation

Present Future
Beam power 515 kW 1.3 MW
Cycle time 2.48 sec ≤ 1.32 sec
Beam intensity 2.66 × 1014 ppp ∼ 3.3 × 1014 ppp
Capacity of the collimators 2 kW 3.5 kW

MR aims at 1.3-MW operation in the neutrino user operation, and at 100-kW operation in the hadron
user operation[17, 18]. To achieve the 1.3-MW operation, MR plans to shorten the repetition rate. MR
is going to upgrade the power supplies for the faster cycling time in JFY 2021. After the long shutdown
the cycling time will be 1.32 sec. Besides, further studies are ongoing to realize 1.16 sec. The faster the
cycling time becomes, the larger the beam loss will be. The capacity of the collimators is going to be
upgraded from 2 kW to 3.5 kW. MR also plans to increase the beam intensity about 30%. To keep the
present radiation dose in the ring, it is required to reduce the beam loss. The major parameters for the
upgrade are listed in Table 1.4.

From the left picture of Fig. 1.6, most of the beam losses occurred in the first 0.3 sec, which
corresponds to the beam energy below 6 GeV in FX operation. This was because the space charge effects
were strong at the low-energy region. The space charge affects the motions of the particles through
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Figure 1.8: The tune spread distribution at the beam injection by SCTR and the major resonances in the
neutrino user operation[21]. Each tune was calculated by the phase advance in one turn.

various mechanisms, causing the beam loss.
The operation tune in the neutrino user operation is set to (νx, νy) = (21.35,21.43). Actually, the

tunes of all particles are not the same. The tunes are shifted particle by particle and have a certain
distribution, which is called the tune spread. The tune spread is derived from the space charge effects
and the momentum spread. In MR, the main cause is the former. Some particles will be on resonances
due to the tune shifts. The particles will be lost if their actions exceed the physical aperture due to the
effects of the resonances. Since the tune spread distribution is large in the low-energy region, the beams
are affected by various kinds of the resonances, resulting in the beam loss. Therefore, it is essential to
comprehend the tune spread distribution and the strengths of the resonances.

The tune spread distribution is obtained by simulations including the space charge effects. In this
dissertation, simulations were performed by using SCTR (Space Charge TRacker)[42]. SCTR is a
tracking code using a particle-in-cell algorithm. The details of SCTR are written in Appendix B. Figure
1.8 shows the simulation result of the tune spread distribution by SCTR and the major resonances. The
tune spread distribution crosses various kinds of resonances.

The strongest resonances near the tune in FX operation are the integer resonances νx = 21 and
νy = 21. They are excited by many kinds of sources. We will describe in Chapter 2 that the main source
of them was specified as the space charge effect. There are three normal-sextupole-like resonances in
Fig. 1.8: νx − 2νy = −21, 3νx = 64, and νx + 2νy = 64. Since MR has three-fold symmetry, the
resonance νx − 2νy = −21 is the structure resonance. A new method to compensate it was developed
and verified in Chapter 3. The resonances 3νx = 64 and νx + 2νy = 64 are the third-order nonstructure
resonances. Though they are weak compared to the structure resonances νx − 2νy = −21, they have
significant effects on the beam because they are close to the operation tune. These two nonstructure
resonances are compensated by using the trim coils at the sextupole magnets. The details are written
in Appendix C. Apert from the drawn resonances in Fig. 1.8, there are a large number of higher-order
resonances. The higher-order resonances induced by the space charge effects are discussed in Chapter 4.
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Chapter 2

Space Charge Effect on Integer Resonances

2.1 Sources of Integer Resonances

Integer resonances are driven by several kinds of resonant sources. The imperfection of the magnet is
one of the sources. The magnet imperfection is an issue for all circular accelerators. In the accelerator
employing sextupole magnets, they can induce third-order resonances. The third-order resonances can
be classified into structure resonances and nonstructure resonances. Structure resonances are excited
even if there are no errors. They are much stronger than nonstructure resonances. In the high-intensity
accelerator, the resonances derived from the space charge effect are not negligible. They can be also
classified into structure resonances and nonstructure resonances.

Let us consider the resonances in J-PARC MR, which has a three-fold symmetric structure. The
operation tune is set to (νx, νy) = (21.35,21.43) in the present neutrino user operation. The nearest
integer resonance is νx = 21. The sextupole magnets can excite the resonance as 3νx = 63. This is
a structure resonance. The space charge also excites νx = 21. Though it causes many kinds of orders
of resonances, the main effects are the second- and fourth-order resonances. In other words, the space
charge excites the resonance as 2νx = 42 and 4νx = 84. These are also structure resonances.

The simple way for avoiding the effect of the space charge on the integer resonance is to change
the operation tune to (νx, νy) = (22.∗,22.∗). Up to fourth order, the space charge induces resonance at
νx = 22 as 2νx = 44 and 4νx = 88. They are nonstructure resonances. The space charge effect at νx = 22
is much weaker than at νx = 21. It is considered that the other resonant sources have almost the same
effects on νx = 21 and on νx = 22. In fact, the sextupole magnets excite νx = 22 as 3νx = 66, which is
also a structure resonance.

2.2 Specifying the Main Source of the Integer Resonance
in J-PARC MR

2.2.1 Motivations

Operating in the region (νx, νy) = (22.∗,22.∗) is better than in the region (νx, νy) = (21.∗,21.∗) in terms
of the space charge. However, it was not certain that it improves the beam operation, because the main
source of the integer resonance was not clear. If the effects of magnet imperfections or the effects of
sextupole magnets are much stronger than the space charge effects, the strength of the resonance νx = 21
will be almost the same as that of the resonance νx = 22. Conversely, if the significant difference between
the two resonances is observed, it means that the main source of the resonance νx = 21 is the space charge
effect.
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2.2.2 Methods

Transverse Emittance Growth

To reveal that the space charge effect is the main source of νx = 21 or not, we measured and simulated
the transverse emittance growth[21]. We set the tunes near the integer resonances, and compared the
turn-by-turn horizontal emittance growths. In addition to the resonances νx = 21 and νx = 22, the vertical
integer resonance νy = 21 was also investigated. For simplicity, we refer to the measurements focusing
νx = 21 as the NX21 experiment, νy = 21 as the NY21 experiment, and νx = 22 as the NX22 experiment.
Figure 2.1 shows the operation tunes and the images of the tune spread. For the NX21 experiment, some
operation tunes were chosen in the range of (νx, νy) = (21.25 - 21.08, 21.43). Similarly, for the NY21
experiment, the operation tunes were chosen in the range of (νx, νy) = (21.43, 21.21 - 21.07) and in the
range of (νx, νy) = (22.25 - 22.05, 22.43) for the NX22 experiment. Notable beam loss was not observed
in these experiments by the DCCT[33, 34, 35, 36].

21 22 22.521.5

21.5

22.5

21

22

NX21

NY21

NX22

νy

νx
Figure 2.1: The operation tunes set in the experiments (shown as stars)[21]. The yellow diamond shapes
show tune spread and the major resonance lines have been drawn. Several operation tunes were chosen
in the range of (νx, νy) = (21.25 - 21.08, 21.43) for the NX21 experiment, (21.43, 21.21 - 21.07) for
the NY21 experiment, and (22.25 - 22.05, 22.43) for the NX22 experiment. The space-charge-induced
structure resonances have been plotted as the solid lines, while other major resonances as the dotted lines.

The initial tune spread distribution has little dependency on the tune. Even if the tune is modified,
the shape of the tune spread distribution is almost kept. If the tune approaches the integer resonance,
the number of particles crossing this line will increase, and the emittance grows faster. By obtaining
the tune dependence of the emittance growth, the strengths of the resonances can be compared to each
other. It is expected that the horizontal emittance will grow in the NX21 experiment and the NX22
experiment, and the vertical emittance will grow in the NY21 experiment. If the emittance growth of the
NX21 experiment is larger than that of the NX22 experiment, it will show that the resonance νx = 21 is
stronger than νx = 22. It is the difference between the space-charge-induced structure and nonstructure
resonances.
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The conditions of the beam during these experiments are shown in Table 2.1. Since the beam
intensities in these experiments are relatively weak, the coherent tune shift caused by the indirect space
charge effect is negligible[44].

Table 2.1: Conditions of the measurements. The beam intensities were measured by the DCCTs. The
natural chromaticity is (ξx, ξy) = (−28,−29).

NX21 NY21 NX22
Intensity 5.3 × 1012 ppb 3.3 × 1012 ppb 3.3 × 1012 ppb
Tune (νx, νy) (21.*, 21.43) (21.43, 21.*) (22.*, 22.43)

Maximum tune shift
|∆νx,max | 0.35 0.30 0.30
|∆νy,max | 0.36 0.33 0.33

Chromaticity (ξx, ξy) (−7,−7)

The experiments were conducted using single bunch beams. We observed the developments of the
horizontal profiles in the first 100 turns after the injection. The turn-by-turn beam positions and sizes
were calculated by fitting the integrated signals. We use the fitting function as follows:

f (x) = A
(
1 − 1

n
(x − x0)2

w2

)n
+ C. (2.1)

This function is identical to a Gaussian for n → ∞ and to a parabola at n = 1. The half width at half
maximum (HWHM) was taken as the beam size. The tunes were obtained by a discrete Fourier transform
of 100 turns of the center positions x0. Therefore, the resolution of the tune is estimated within 0.01.

Though the injected beam is Gaussian, the beam tail grew and the beam profile became distorted
when the tune was close to the integer resonance. However it had little effects on our results because we
focused on the discussion about the beam core by defining the beam width as the HWHM. The cores of
the profiles were fitted with good precision by the fitting function given by Eq. (2.1).

Profile Monitor

In the measurements, the turn-by-turn horizontal beam sizes were obtained by the Multi-Ribbon Profile
Monitor (MRPM)[45, 46, 47]. In the main ring, a MRPM is situated at the beam injection position. It
is called Inj-MRPM. It can measure turn-by-turn beam profiles up to about 100 turns. It is located in
the dispersion-free area. Inj-MRPM is made of five layers, in order, solid graphite electrode, graphite
ribbons, solid titanium electrode, titanium ribbons, and solid graphite electrode. † In this study, 11
ribbons were used in total to measure the horizontal beam profiles. Inj-MRPM obtains beam profiles by
measuring the current of secondary electrons, which are emitted from its surface when the beam passes.
The signals of Inj-MRPM were integrated for each channel and each turn to reconstruct the turn-by-turn
beam profiles.

Since the beam hits Inj-MRPM many times, the beam size grows by the multiple scattering. The
scattering angles of the particles follow a Gaussian distribution[48]. As the transverse beam profile is
Gaussian at the beam injection in MR, the scattered beam profile is also Gaussian. By convolution
calculations, the scattered beam size σn after n turns becomes

σ2
n = σ

2
init + nσ2

scat, (2.2)

where σinit is the initial beam size and σscat represents the growth term in one turn due to the multiple
scattering. The effect of the multiple scattering does not depend on the tune. The scattering angle can be
estimated from the data in which the tune is far enough from the resonances.

†The order of five layers was changed after these experiments.
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The specification of Inj-MRPM is listed in Table 2.2.

Table 2.2: Inj-MRPM specifications[21]. The thickness of the electrodes is the same as the ribbons.

Horizontal Vertical
Material Graphite Titanium
Ribbon pitch 4.5 mm 2.5 mm
Ribbon width 3.0 mm 1.5 mm
Thickness 3 µm 1 µm

Other Contributions to the Emittance Growth

In addition to the multiple scattering, there are some systematic errors for the measurements.
One is the beam dilution occurring due to the beta mismatch at the injection. The beam size fluctuates

during the first several turns and its oscillation is damped due to the space charge effect. The amplitude
of the oscillation can depend on the tunes because the Twiss parameters at the injection depend on the
tunes. To suppress the oscillation, we adjusted the optics of the transport line at each tune.

Another contribution to the emittance growth is the effect of the sextupoles. Since both the resonances
νx = 21 and νx = 22 are the sextupole-driven structure resonances, the sextupole magnetic fields can
induce them. Evaluations of these effects are provided in section 2.3.

Other than the above-mentioned sextupole effect, the beam encounters unexpected quadrupole mag-
netic fields if there are offsets between the beam position and the center of the sextupole magnets.
Misalignments of the sextupole magnets and closed orbit errors produce DC offsets and can cause tune
shifts and strengthening of resonances. The dipole oscillation at the sextupole magnets produces AC
offsets. It causes the oscillation of the beam size with the frequency of the dipole oscillation. The
amplitude of the oscillation of the quadrupole magnetic field produced by the sextupole magnets depends
not only on the AC offset, but also on the DC offset. The oscillation of the quadrupole magnetic field is
larger when the DC offset is larger. In the experiments, the closed orbit was corrected at (νx, νy) = (21.35,
21.43) and (22.30, 22.40). The correction was not repeated during the tune scan. The closed orbit errors
were larger when the tune was closer to the integer resonance. The betatron oscillation amplitude at the
beam injection was corrected within 1 mm.

Simulation Approach

The basic optics was obtained by using the strategic accelerator design (SAD)[49] program. The tracking
simulations were performed using the space charge tracker (SCTR)[42] program. SCTR is a simulation
code including the space charge effect using a particle-in-cell algorithm. The detailed explanations for
SCTR are written in Appendix B. The number of macro particles in this simulation was 200,000. The
conditions of the simulations are the same as those of experiments. The details are listed in Table 2.3.
As error sources, the alignment errors and magnetic field gradient errors were considered[50].

The initial transverse emittance was determined by the data whose tunes were far from the integer
resonance. Figure 2.2 shows turn-by-turn beam sizes. The tunes were set to (νx, νy) = (21.25, 21.43). The
fluctuation of the beam size during the first 10 turns was caused by the beta mismatch at the injection.
It damped within 10 turns due to the dilution. In order to evaluate the emittance at the injection and
the scattering angle, the plots from turn 11 to turn 100 were fitted to a linear function Eq. (2.2). The
initial emittance was calculated using σinit of the function Eq. (2.2). Since Inj-MRPM is located in
a dispersion-free area, we calculated the emittances using ε = σ2

init/β. In this condition, the betatron
function at Inj-MRPM was 16.3 m, which was obtained by SAD. The initial phase-space beam distribution
was slightly modified from the matching condition to reproduce the effect of the residual beta mismatch
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Table 2.3: Initial conditions of the simulations.

NX21 NY21 NX22
Intensity 5.3 × 1012 ppb 3.3 × 1012 ppb 3.3 × 1012 ppb
Tune (νx, νy) (21.*, 21.43) (21.43, 21.*) (22.*, 22.43)
Transverse distribution Gaussian
Transverse emittance εx, εy 1.1π mm mrad 0.85π mm mrad 0.85π mm mrad
Longitudinal distribution Parabola
Longitudinal beam size 52 ± 1 m 46 ± 2 m 46 ± 2 m
Momentum spread ∆p/p 0.004
Chromaticity (ξx, ξy) (−7,−7)
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Figure 2.2: The turn-by-turn beam sizes[21]. The error bars show statistical errors. The red line represents
the linear fitting to the plots.

at the injection. The dipole errors at the beam injections were not applied in the simulations. The same
procedure was carried out for the NY21 and NX22 experiments.

The longitudinal beam profiles were measured by the wall current monitor (WCM)[51]. The initial
longitudinal distribution was parabolic. For the estimation of the longitudinal beam size, we define the
bunching factor Bf as the ratio of the average amplitude to the peak amplitude of the signals of the wall
current monitor. We set the bunching factor Bf ∼ 0.2. The momentum spreads were adjusted so that the
longitudinal beam profiles at the 100 turns of the simulations were the same as those in the experiments.

The multiple scattering at Inj-MRPM was also implemented in the simulations. Each particle is
scattered turn by turn with a random angle following a Gaussian distribution. We set the rms of the
scattering angles as θx,rms = 24 µrad. It was determined such that the simulation demonstrated the
emittance growth of the experiments shown in Fig. 2.2. The scattering angle can also be calculated
as[48]

θx,rms =
13.6 MeV
βrelcp

z
√

x
X0

[
1 + 0.038 log

(
xz2

X0β
2
rel

)]
, (2.3)

where βrelc, p, and z are the velocity, momentum, and charge number of the beam particle respectively, x
is the thickness of the target, and X0 is the radiation length of the target. Using this expression, the rms
of the scattering angle at each layer was calculated. The thicknesses of targets are given in Table 2.2 and
the radiation lengths are 42.70 g/cm2 (Graphite) and 16.17 g/cm2 (Titanium)[52]. The total scattering
angle, derived by square root of the sum of squares of each angle, was θx,rms = 20 µrad and is consistent
with the simulation results.
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2.2.3 Result

Figure 2.3: Turn-by-turn integrated signals of Inj-MRPM in the horizontal plane[21]. The figure on the
left shows the result under the condition of (νx, νy) = (21.24, 21.43), and the one on the right shows the
result under the condition of (νx, νy) = (21.10, 21.43). The horizontal axes represent the ribbon channels
and the vertical axes represent the turns. The pitch of the adjacent channels was 4.5 mm.

Figure 2.3 shows examples of the integrated signals of Inj-MRPM in the horizontal plane. The left
picture is the result at the tune (νx, νy) = (21.24, 21.43). In this condition, no clear dipole or quadrupole
oscillations were seen. The right picture is the result at the tune (νx, νy) = (21.10, 21.43). The emittance
grew rapidly in 100 turns. There was an oscillation with a period of 10 turns after about 40 turns. This
period corresponds to the frequency of the dipole oscillation at this tune. It is interpreted as the effect of
the beam orbit distortions.

20− 10− 0 10 20
0

10

position [mm]

signal [a.u.]

 = 3.37/N2χ

Figure 2.4: Example of integrated signals of Inj-MRPM[21]. The black points represent the integrated
signals of Inj-MRPM and the red line represents the fitting. This is the data at the turn 10 of the beam
and corresponds to the condition (νx, νy) = (21.08, 21.43).
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Figure 2.4 shows the integrated signals of the Inj-MRPM and a corresponding fitting to the data
points. When the tune was near the integer resonance, the profile was distorted from a Gaussian.
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Figure 2.5: Horizontal beam sizes in the NX21 experiment (left) and in the NX22 experiment (right)[21].
Experimental results are shown as circles and simulation results are shown as lines. The color difference
represents the difference in the horizontal tunes. The vertical tunes were fixed to νy = 21.43 in the NX21
experiment, and to νy = 22.43 in the NX22 experiment.

Figure 2.5 shows the turn-by-turn horizontal beam sizes in the NX21 experiment and the NX22
experiment respectively. In the NX21 experiment, the growth of the horizontal beam sizes strongly
depended on the horizontal tune. The emittance grew by a factor of 1.5 at νx = 21.24 in 100 turns, and
by a factor of 5 at νx = 21.10 in the experiments. In the NX22 experiment, the beam size grew almost
linearly with the turns. The dependency of the growth on the horizontal tune was small. The emittance
grew by a factor of 1.4 at νx = 22.24, and by a factor of 1.8 at νx = 22.05 in the NX22 experiment. The
main reason for the emittance growth in the NX22 experiment is the multiple scattering at Inj-MRPM.
Comparing the two experiments, the beam grew much slower in the NX22 experiment. Although the tune
spread was smaller by a factor of 0.86 in the NX22 experiment, it cannot explain the slow growth. The
measured difference between the NX21 experiment and the NX22 experiment was exactly the difference
between the structure resonance and the nonstructure resonance. It clearly shows that the space charge
effect is the main source for the resonance νx = 21.

Figure 2.6 shows the turn-by-turn horizontal beam sizes in the NY21 experiment. In the NY21
experiment, the growth ratios of the horizontal beam sizes did not depend on the vertical tune. The
emittance grew by a factor of 1.6 for all tunes in the experiments. Comparing the NX21 experiment to
the NY21 experiment, it is clear that νx = 21 affected only the horizontal profiles and νy = 21 affected
only the vertical profiles. The linear emittance growths are derived from the multiple scattering at the
Inj-MRPM.

The simulation results were in good agreement with the experimental results in all conditions. It
shows that these results were caused by the space charge effect. At the same time, the simulation code
(SCTR) was well benchmarked. Though the simulations contained the effects derived from imperfections
of the magnets in Fig. 2.5 and in Fig. 2.6, the results of the NX21 experiment can be reproduced only by
the effect of the space charge and the multiple scattering. This fact also reinforces that the main source
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Figure 2.6: Horizontal beam sizes in the NY21 experiment[21]. Experimental results are shown as circles
and simulation results are shown as lines. The color difference represents the difference in the vertical
tune. The horizontal tunes were fixed to νx = 21.43.

of the resonance νx = 21 is the space charge effect.
Let us move to the detailed explanations of the NX21 experiment. The various growths in the NX21

experiment reflected the tune spread distribution of the beam. In the case of νx = 21.24, the beam size
grew slowly and linearly. This is because the tune was far enough from the resonance νx = 21. The
source of growth was the multiple scattering. For the case of νx = 21.14, a fast growth was observed in
the first 15 turns. This is interpreted that the core of the tune spread distribution was crossing νx = 21 at
the injection, resulting in a rapid emittance growth. After a fast growth in first turn 15, the tune spread
was smaller owing to the emittance growth. The major part of the tune spread distribution shifted above
the resonance νx = 21, and the emittance growth became slow. The slow and linear growth after turn 15
is due to multiple scattering. In the case of νx = 21.08, the beam size did not grow for the first 30 turns.
This can be understood that the core of the tune spread was below νx = 21. At the beam injection, the
particles at the beam tail were on the resonances, still the particles at the beam core were out of its effect.
However, the core of the tune spread gradually moved close to the integer resonance line, because the
beam tail grew and the space-charge force was weakened. The core of the tune spread began crossing the
integer resonance after turn 30, causing beginning a rapid emittance growth. From these considerations,
the core of the tune spread distribution at the injection was thought to be around −0.14 from the operation
tune.

In some cases, a small systematic difference was observed between the results of the experiments
and simulations. One of the reasons is the systematic error in the background estimations of the signals
of Inj-MRPM. There were only 11 channels used for the measurements, and this made it difficult to
evaluate the signal background. The small beam sizes in the experiments can be explained by the
background overestimation. Not only the number of channels, but also wide pitches of ribbons affected
the measurements. When the beam size was small, only a few channels signaled. It could make systematic
errors larger. Another possible cause of the systematic differences is that the initial beam distribution
might have deviated from the Gaussian distribution. A real detailed distribution could be obtained if
there were more channels.

2.3 Evaluation of the Space Charge Effect

2.3.1 Incoherent Detuning and Resonance Width

So far, the strengths of the resonances were compared. There was a clear tune dependence of the beam
growth for the strong resonance. It is important to evaluate not only the strengths of resonances but also
the effect on the beam. In this section, we will discuss how the particle feels the resonance.
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We start the discussion by assuming the beam distribution is a Gaussian. The linear tune shift is a
function of the actions Jx, Jy . From Eq. (1.61, 1.62, 1.64), it can be written as

∆νu(Jx, Jy) = − λr0

γ3
relβ

2
rel

1
2π

∮
ds

βu

(σ2
x + σ

2
y )

∫ ∞

1
dζ

e−wx−wy [I0(wu) − I1(wu)]I0(wv)
(ζ + ∆uv)3/2(ζ + ∆vu)1/2

, (2.4)

where λ is the line density, r0 is the classical radius of the particle, γrel, βrel are the Lorentz factors, βu is
the betatron function, σu is the rms beam size,

∆xy = −∆yx =
σ2
x − σ2

y

σ2
x + σ

2
y

, (2.5)

wu = − Juβu
(σ2

x + σ
2
y )(ζ + ∆uv)

((u, v) = (x, y), (y, x)), (2.6)

and Iν(z) is the modified Bessel function. The condition that a particle is on the resonance can be written
as

mxνx(JxR, JyR) + myνy(JxR, JyR) = l, (2.7)

where

νu(Jx, Jy) = νu0 + ∆νu(Jx, Jy), (2.8)

νu0 is the bare tune, (JxR, JyR) is the pair of actions satisfying the resonance condition, and mx,my, l are
the integers. The resonance has effects on the particles whose action is around (JxR, JyR). Hereinafter, let
us consider the horizontal resonance, meaning my = 0. Defining the resonance width ∆Jx as the width
of the action region where the resonance affects, it can be written as from Eq. (1.53, 1.54, 1.59, A.22),

∆Jx = 4
√

Vk ,0(JxR)
Λ

, (2.9)
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and Vk ,0 is the potential of the k th resonance. The space charge excites multi-order resonances. Especially
the second- and fourth-order resonances are strong. Their potentials are from Eq. (1.59)

V2,0 = 2
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where ψx is the horizontal phase advance. Sextupole magnets induce the third-order resonance. Its
potential is [53]

V3,0 = 2

����� √2
24π

J3/2
x

∮
dsβ3/2

x K2ei3ψx

����� , (2.15)

where K2 is the strength of the sextupole magnetic field. Hereinafter, the resonance widths derived from
V2,0,V4,0,V3,0 are written ∆Jspch,2,∆Jspch,4,∆Jsext, individually.

To evaluate the resonant effect at NX21 experiment and at the NX22 experiment in the previous
section, we calculated the incoherent tune shifts and the resonance widths. In the calculations of the
potentials, we use the modified horizontal phase advance by the space charge effect. The results are
shown in Table 2.4.

Table 2.4: The action of the on-resonance particle 2JxR and the resonance widths 2∆J calculated
analytically.

Bare tune νx0 2JxR [µm] 2∆Jspch,2 [µm] 2∆Jspch,4 [µm] 2∆Jsext [µm]
21.08 9.3 16.3 11.6 6.0
21.14 4.2 4.4 4.4 2.7
21.24 1.4 2.9 1.4 1.0
22.05 12.2 0 0 6.9
22.14 3.0 0 0 1.5
22.24 0.7 0 0 0.4

2.3.2 Visualization of Resonances on the Poincaré Map

The actions of the on-resonance particles JxR and the resonance widths ∆J in the NX21, NX22 experi-
ments were also simulated by SCTR. In order to evaluate the effect of the space-charge-induced resonance
on particles, “frozen model" simulations were performed. The frozen model fixes all the space charge
potentials to the values at a certain turn. In this study, we fixed potentials at the first superperiod of the
first turn. Since the space charge forces are fixed, the beam feels the same multipole fields at every turn.
As a result, space-charge-induced resonances appear clearly. We excluded the effects of the multiple
scattering and magnet imperfections in order to make the discussion simpler.

We drew the Poincaré maps for the conditions of the NX21 experiment and the NX22 experiment.
If a particle is far enough from the resonance, it traces a round trajectory in the normalized phase-space
coordinates. Converting them into the action-angle coordinates, the action is constant. On the other hand,
if it is captured by some resonance, its trajectory will be an island. Generally, the nth-order resonance
makes n resonance islands.

Figure 2.7 shows the Poincaré maps with the condition of the bare tune νx0 = 21.24, 21.14, and
21.08 using the frozen model. The figures in the top row are drawn with the normalized phase-space
coordinates x − px , and those in the bottom row are drawn with the action-angle coordinates ψx − Jx .
The incoherent tunes of the particles drawn in Fig. 2.7 are shown in Fig. 2.8.

From the Poincaré maps of νx0 = 21.24, no clear resonance island was observed. This explains
the small emittance growth at νx0 = 21.24. From the Poincaré maps of νx0 = 21.14, the particles
whose actions were 2Jx ≲ 7 µm were affected by the resonance. From its shape, it is revealed that the
second-order resonance was the main source. From Fig. 2.8, it is confirmed that the incoherent tunes
of the particles on the resonance (shown by orange and red colors) are almost 21. Considering that the
emittance of the beam was set to 1.1π mm mrad, most of the particles were under the influence of the
space-charge-induced structure resonance.
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Figure 2.7: Poincaré maps obtained from SCTR simulations using the frozen model[21]. The left panel
corresponds to νx0 = 21.24, the center panel to νx0 = 21.14, and the right panel to νx0 = 21.08. The
top row shows the Poincaré maps of the normalized phase-space coordinates and the bottom row shows
those of the action-angle coordinates. The same colors represent the same action in all plots. The black
dotted lines in the bottom row figures show the on-resonance actions by the analytical calculations listed
at Table 2.4.
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Figure 2.8: Incoherent tunes in the NX21 experiment obtained by simulations[21]. The vertical axis
represents the bare tune and the horizontal axis represents the incoherent tune. Different actions have
been plotted with different colors. The color codes are the same as in Fig. 2.7.

The Poincaré maps corresponding to νx0 = 21.08 indicate not only the effect of a second-order
resonance but also that of a fourth-order resonance. Both the second- and fourth-order resonances are
due to the space charge effect. The particles whose actions were 2Jx ≲ 4 µm were out of the resonance.
As can be seen from Fig. 2.8, the incoherent tune of the orange particles (2Jx ∼ 4 µm) is about 0.08
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Figure 2.9: Poincaré maps obtained from SCTR simulations using the frozen model[21]. The left panel
corresponds to νx0 = 22.24, the center panel to νx0 = 22.14, and the right panel to νx0 = 22.05. The
top row shows the Poincaré maps of the normalized phase-space coordinates and the bottom row shows
those of the action-angle coordinates. The same colors represent the same action in all plots. The black
dotted lines in the bottom row figures show the on-resonance actions by the analytical calculations listed
at Table 2.4.
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Figure 2.10: Incoherent tunes in the NX22 experiment obtained by simulations[21]. The vertical axis
represents the bare tune and the horizontal axis represents the incoherent tune. Different actions have
been plotted with different colors. The colors are the same as in Fig. 2.9.

away from νx = 21, and that of the yellow particles (2Jx ∼ 2 µm) is about 0.15 away from νx = 21.
This indicates that the particles around the beam core were out of the range of the space-charge-induced
resonance and explains the stable beam size for the first 30 turns.

The actions of the on-resonance particles 2JxR by the analytical calculation listed in Table 2.4 have

26



also been plotted in Fig. 2.7 as black dotted lines. In all conditions, the analytical 2JxR lines are at the
center of the resonance islands obtained by the simulations. The analytical resonance widths indicate
that the space-charge-induced resonances are stronger than the sextupole-induced resonance in the NX21
experiment. It was also reflected in the simulations.

Figure 2.9 shows the Poincaré maps of νx0 = 22.24, 22.14, and 22.05 obtained by the frozen model
simulations. The incoherent tunes in these conditions are shown in Fig. 2.10. In the case of the Poincaré
maps of νx0 = 22.24, the beam was not affected by resonances. In fact, the incoherent tunes of the tracking
particle were far from 22, as can be seen from Fig. 2.10. In the Poincaré maps of νx0 = 22.14, resonance
islands were not observed clearly. Large third-order resonance islands could be seen for the case of
νx0 = 22.05. The incoherent tunes of the on-resonance particles were around νx = 22 as is observed from
Fig. 2.10. Since the space charge does not induce odd-order resonances, the integer resonance νx = 22
was excited by the sextupole magnetic fields.

The mechanism of the excitation of the integer resonance by the sextupole magnetic fields is com-
plicated. In J-PARC MR, the main sources of the sextupole magnetic fields are the sextupole magnets
and the high-order fields by the bending magnets. Both the sextupole magnets and the bending mag-
nets are located in the arc sections. One arc section is made of eight symmetric modules. Since the
horizontal phase advance of the one module is set to ∆ψmod,x = 0.75π rad, the resonance driving terms
G3,0,63,G3,0,66 are basically canceled (detailed explanations are described in Chapter 3). The resonances
νx = 21 and νx = 22 are not excited by the sextupole magnetic fields in the bare optics, if there are
no magnet imperfections. However, due to the space charge effects, the phase advance is shifted. The
cancelation is broken, and the resonances νx = 21 and νx = 22 are excited by the sextupole magnetic
fields even if there are no errors. This is the reason why the resonance widths were calculated with
the shifted phase advances in Table 2.4. If the bare phase advances are used, ∆Jsext will be zero in all
conditions. These calculations were supported by the simulation result at νx0 = 22.05, which clearly
indicated the existence of the sextupole-driven resonance.

The black dotted lines in Fig. 2.9 show 2JxR listed in Table 2.4. The analytical 2JxR line of νx0
= 22.05 is at the center of the resonance islands obtained by the simulations. The analytical resonance
width was also consistent with the resonance width shown by simulation.

In any tune at νx0 = 22.∗, second- or fourth-order resonance islands did not appear. This is consistent
with the fact that νx = 22 is a nonstructure resonance for the space charge. Strictly, considering higher-
order, νx = 22 is a sixth-order space-charge-driven structure resonance. However, Fig. 2.9 shows that
the sixth-order resonance is negligible in this intensity. The integer resonance νx = 22 is not excited by
the space charge effect unless there are optics errors.
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Chapter 3

Compensation of Third-Order Structure
Resonances

本章については、５年以内に雑誌等で刊行予定のため、非公開。
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Chapter 4

Compensation of the
Space-Charge-Induced Resonances

本章については、５年以内に雑誌等で刊行予定のため、非公開。
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Chapter 5

Conclusions

本章については、５年以内に雑誌等で刊行予定のため、非公開。
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Appendix A

Calculation of Space Charge Potential

The space charge potential of the two-dimensional Gaussian beam is[24]

U(x, y; s) = λr0

γ3
relβ

2
rel

∫ ∞

0
dq

exp(− x2

2σ2
x+q

− y2

2σ2
y+q

)√
2σ2

x + q
√

2σ2
y + q

, (A.1)

where λ is the line density, r0 is the classical radius of the particle, γrel, βrel are the Lorentz factors, and
σu is the rms beam size. Changing the coordinates from (u,u′) to (ψu, Ju) by using

u =
√

2Juβu cosψu, ψu =

∫
ds
βu

(A.2)

the space charge potential becomes

U(ψx,ψy, Jx, Jy; s) = λr0

γ3
relβ

2
rel

∫ ∞

0
dq

∏
u=x,y

exp[−wu(1 + cos 2ψu)]√
2σ2

u + q
, (A.3)

where

wu =
Juβu

2σ2
u + q

. (A.4)

Changing the independent variable from the path length s to the orbiting angle θ ≡ 2πs/C, where C is
the circumference, and the coordinates from (ψu, Ju) to (ϕu, J̄u) by using

ϕu = ψu − χu + νuθ, χu(s) =
∫ s

s0

ds
βu
, (A.5)

the space charge potential can be written as

U(ϕx, ϕy, Jx, Jy; θ) = C
2π

λr0

γ3
relβ

2
rel

∫ ∞

0
dq

∏
u=x,y

exp[−wu(1 + cos{2ϕu + 2χu − 2νuθ})]√
2σ2

u + q
. (A.6)

Writing the potential as Fourier series of ϕx, ϕy , it becomes

U(ϕx, ϕy, Jx, Jy; θ) =
∑

mx ,my

Ũmx ,my (Jx, Jy; θ)ei[mxϕx+myϕy ], (A.7)

Ũmx ,my (Jx, Jy; θ) = 1
(2π)2

∬
U(ϕx, ϕy, Jx, Jy; θ)e−i[mxϕx+myϕy ]dϕxdϕy . (A.8)
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Using

1
2π

∫ 2π

0
dϕ exp[−w(1 + cos(2ϕ + 2ξ)) − imϕ]

=
1

4π

∫ 4π

0
dφ exp[−w(1 + cos φ) − im(φ/2 − ξ)]

=
1

4π
e−w+imξ

[∫ 2π

0
dφe−w cosφ−imφ/2 +

∫ 2π

0
dφe−w cosφ−imφ/2−imπ

]
=

1
2π

e−w+imξ
∫ 2π

0
dφe−w cosφ−imφ/2 (m = even)

= −e−w+imξ (−1)m/2Im/2(w), (A.9)

where Iν(z) is modified Bessel function, Ũmx ,my becomes[23]

Ũmx ,my =
C
2π

λr0

γ3
relβ

2
rel

∫ ∞

0
dq

∏
u=x,y

e−wu eimu (χu−νuθ)(−1)mu/2Imu/2(wu)√
2σ2

u + q
(mu = even). (A.10)

This means that the space charge potential makes only even-order resonances. Normalizing q with

ζ =
q

σ2
x + σ

2
y

+ 1, ∆xy = −∆yx =
σ2
x − σ2

y

σ2
x + σ

2
y

, (A.11)

Ũmx ,my ,wu becomes

Ũmx ,my =
C
2π

λr0

γ3
relβ

2
rel
(−1)

mx+my
2 eimx (χx−νxθ)+imy (χy−νyθ)

∫ ∞

1
dζ

e−wx−wy Imx/2(wx)Imy/2(wy)√
ζ2 − ∆2

xy

, (A.12)

wu =
Juβu

(σ2
x + σ

2
y )(ζ + ∆uv)

((u, v) = (x, y), (y, x)). (A.13)

Since the linear potential Ũ0,0 is

Ũ0,0(Jx, Jy; θ) = C
2π

λr0

γ3
relβ

2
rel

∫ ∞

1
dζ

e−wx−wy I0(wx)I0(wy)√
ζ2 − ∆2

xy

, (A.14)

the modified phase due to the space charge effects is

ϕu =

∫ θ

0
(νu +

∂Ũ0,0

∂Ju
)dθ (A.15)

= νuθ −
λr0

γ3
relβ

2
rel

∫ s

0
ds

βu

(σ2
x + σ

2
y )

∫ ∞

1
dζ

e−wx−wy [I0(wu) − I1(wu)]I0(wv)
(ζ + ∆uv)3/2(ζ + ∆vu)1/2

, (A.16)

and the tune shift becomes

∆νu =
1

2π

∮
∂Ũ0,0

∂Ju
dθ (A.17)

= − λr0

γ3
relβ

2
rel

1
2π

∮
ds

βu

(σ2
x + σ

2
y )

∫ ∞

1
dζ

e−wx−wy [I0(wu) − I1(wu)]I0(wv)
(ζ + ∆uv)3/2(ζ + ∆vu)1/2

. (A.18)
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By introducing τ = 1/ζ , the tune shift can be written as a finite integral:

∆νu0 = − λr0

γ3
relβ

2
rel

1
2π

∮
ds

βu

(σ2
x + σ

2
y )

∫ 1

0
dτ

e−wx−wy [I0(wu) − I1(wu)]I0(wv)
(1 + ∆uvτ)3/2(1 + ∆vuτ)1/2

(A.19)

wu =
Juβuτ

(σ2
x + σ

2
y )(1 + ∆uvτ)

. (A.20)

The second derivatives of the linear potential are∮
∂2Ũ0,0

∂J2
u

dθ =
∂∆νu
∂Ju

(A.21)

=
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=
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1
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0
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. (A.24)

Expanding the nonlinear potential Ũmx ,my ((mx,my) , (0,0)) with Fourier series of θ,

Ũmx ,my (Jx, Jy; θ) =
∑
n

Ûmx ,my ,n(Jx, Jy)e−inθe−iδθ (δ = mxνx + myνy − n), (A.25)

Ûmx ,my ,n =
λr0

γ3
relβ

2
rel

(−1)(mx+my )/2

2π
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(A.26)

=
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37



　



Appendix B

Beam Tracking Code for Space Charge
Simulation

In this chapter, the detailed explanations of the implementations of the Space Charge Tracker (SCTR)[42]
is described.

SCTR employs the particle-in-cell algorithm to calculate the space charge potential. SCTR calculated
transverse and vertical space charge forces separately. First, the beam distribution is projected onto a
transverse mesh. The transverse space charge potentials are calculated to be satisfied with the two-
dimensional Poisson equation. Then, the longitudinal distribution is assigned to the mesh, and the local
line density is computed. Transverse and longitudinal kicks are calculated by the potential and the local
line densities.

Table B.1: Typical parameters of SCTR for J-PARC MR

Parameter Value
Particle number 200,000
Transverse mesh number 128 × 128
Transverse mesh size 0.752 − 1.02 mm2

Longitudinal mesh number 128
Longitudinal mesh size 1 m
Intervals of space charge objects 1 - 2 m

The typical parameters for the space charge calculations are listed in Table B.1. These parameters
can be easily changed in SCTR. The transverse beam emittance in MR is about 4.5π mm mrad for the
neutrino user operation. Since the beta function in MR is 5 − 40 m, the rms beam size is 4.7 − 14 mm.
It was verified that the space charge potential was distributed smoothly with the parameters in Table B.1.
The small mesh size is suitable for the weak-intensity beam, which has small beam size. On the other
hand, the mesh size must be large (or the number of mesh must be large) to an extent in discussing the
beam loss. The transverse mesh size 0.75 mm corresponds to 2πJ ∼ 58π mm mrad at maximum beta.
Considering that the typical parameters of the aperture of MR are 65π mm mrad (horizontal) and 63π
mm mrad (vertical), the mesh size is small. The typical longitudinal beam size in MR is 50 m, which is
large enough compared to the parameter in Table B.1.

To calculate the space charge potentials, the space charge objects are set in the ring. For the calculation
of MR, the typical number of the space charge potentials is about 1000, corresponding to 1.6 m intervals.

Basically, the space charge potential is recalculated at every turn. However, sometimes it is effective
to fix the space charge potential. We call this the “frozen model”. In the frozen model, beams experience
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the same space-charge-driven multipolar field effect at every turn. There are two merits for frozen medel
simulations. One reason is that it can reflect clear effects of the space-charge-induced resonances. The
other reason is that it can calculate faster than the basic mode.
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Figure B.1: The beam loss ratio as a function of the number of the macro particles. The simulation
conditions are the same with those listed in Table 4. The beam optics is the “new optics” proposed in
Chapter 3, 4. No errors were applied.

As written in Table B.1, the typical number of the macro particles used in the simulations is 200,000.
It is expected that the motion of the beam core can be satisfactorily reproduced with this number. In
fact, the turn-by-turn beam sizes were well reproduced in Chapter 2. However, in some ideal cases such
as there are no errors and only a few particles are lost, it is difficult to reproduce the exact number of
the lost particles. Figure B.1 shows the simulation results changing the number of the macro particles.
The used optics is the “new optics” proposed in Chapter 3, 4. No errors were applied in the simulations.
In this optics, the sextupole-driven resonance νx − 2νy = −21 is compensated (see Chapter 3), and the
space-charge-induced resonances are weakened up to eighth order (see Chapter 4). The initial cuts were
applied in transverse planes, since the beam was collimated in the transport line before injecting in MR.
Comparing the data of the same cutting conditions, the larger the number of the macro particles was, the
less the beam loss became. It shows that the beam was lost by the numerical errors. Moreover, in the real
machine, there is the ambiguity for the initial cut. Further investigations are required to obtain the exact
beam loss ratio.
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Appendix C

Compensation of the Third-Order
Nonstructure Resonances

Apert from structure resonances, nonstructure resonances are excited when there are unsymmetrical error
sources. Though they are relatively weak compared to the structure resonances, their effects can not be
neglected if they are near the setting tune.

21 21.1 21.2 21.3 21.4 21.5
xν

21

21.1

21.2

21.3

21.4

21.5y
ν

Figure C.1: Major resonances in J-PARC MR for the neutrino user operation. The black lines show the
integer resonances, the red lines show the second-order resonances, the blue line show the third-order
structure resonance, and the green lines show the third-order nonstructure resonances. The orange stars
show the tunes where the trim coils of the sextupole magnets were scanned.

In J-PARC MR, the third-order nonstructure resonances have significant effects on the beam. Figure
C.1 shows the major resonances for the neutrino user operation. The operation tune is (νx, νy) =
(21.35,21.43). Since most of the tunes of the particles are distributed below the operation tune in
both horizontal and vertical planes, the beam is affected by the third-order nonstructure resonances
3νx = 64, νx + 2νy = 64, shown as the green lines.

The driving term of the resonance is a vector quantity. Basically, one nonstructure resonance can be
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compensated by two auxiliary magnets. Suppose the driving term G3,0,64 of the resonance 3νx = 64 is
compensated by the two auxiliary sextupole magnets at s = sA, sB. The strength of the auxiliary sextupole
magnets should be set to meet the following condition:

√
2

24π
[β3/2

x,A
∆(K2L)Aei3ψx ,A + β

3/2
x,B∆(K2L)Bei3ψx ,B ] + G3,0,64 = 0. (C.1)

Here βu, j denotes the betatron function at s = sj , ∆(K2L)j denotes the strength of the auxiliary sextupole
magnet at s = sj , and ψu, j denotes the phase advance at s = sj . In MR, four trim coils are installed at the
sextupole magnets in total to compensate the two nonstructure resonances at the same time.
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Figure C.2: Beam survival with and without trim coils at the sextupole magnets. The black lines show the
beam survivals without using the trim coils, while the red lines show the results after the optimizations
of the trim coils. The left picture shows the results at the tune (νx, νy) = (21.35,21.43), while the right
picture shows the results at the tune (νx, νy) = (21.28,21.42). The beam intensities were measured by the
DCCT.

Each resonance driving term is obtained by setting the tune on each resonance. The two trim coils are
scanned to cancel the resonance driving term. The scan is performed by measuring the beam loss. When
the beam is on the resonance, a lot of particles are lost due to the resonance. The trim coils are optimized
to minimize the beam loss. Figure C.2 shows the examples of the scans, which were performed for the
new optics proposed in Chapter 3, 4. Since the tune was shifted down by the space charge effects, the
bare tune was not set exactly on the resonance. We searched for the setting tunes where the beam loss
by the nonstructure resonances were large. The tunes were set at (νx, νy) = (21.35,21.43), (21.28,21.42)
for the measurements of the driving terms of the resonances 3νx = 64, νx + 2νy = 64, respectively.
In both measurements, the beam survivals were recovered by applying the trim coils. The resonance
driving terms G3,0,64,G1,2,64 were calculated by referring to the currents of the trim coils used in these
optimizations.

In the present optics, the resonance driving terms were

G3,0,64 = 0.076e−0.70i, G1,2,64 = 0.153e0.89i, (C.2)

while in the new optics,

G3,0,64 = 0.093e−0.63i, G1,2,64 = 0.140e2.22i . (C.3)

If we very roughly assume that there was one strong source of the nonstructure resonances, the differences
of the absolute values show the differences of the betatron functions, and the differences of the phases
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terms show the differences of the phase advances. For both resonances, the absolute values of the driving
terms are not so different. They can be explained by the differences of the betatron functions. The
difference of the phase term in G3,0,64 was small, while that in G1,2,64 was large. This was explained by
the fact that the apparent difference between the present optics and the new optics was the vertical phase
advances.

To compensate the two resonances at the same time, the strength of the four auxiliary sextupole
magnets, which are located at s = sA, sB, sC, sD , should be set to meet the following conditions:

√
2

24π

∑
j=A,B,C ,D

[β3/2
x, j∆(K2L)jei3ψx , j ] + G3,0,64 = 0, (C.4)

√
2

8π

∑
j=A,B,C ,D

[β1/2
x, j βy, j∆(K2L)jei(ψx , j+2ψy , j )] + G1,2,64 = 0. (C.5)

These equations can be solved as

©«
∆(K2L)A
∆(K2L)B
∆(K2L)C
∆(K2L)D

ª®®®¬ = − 8π
√

2
(VA,VB,VC,VD)−1

©«
3Re[G3,0,64]
3Im[G3,0,64]
Re[G1,2,64]
Im[G1,2,64]

ª®®®¬ , (C.6)

Vj =

©«
β

3/2
x, j cos(3ψx, j)
β

3/2
x, j sin(3ψx, j)

β
1/2
x, j βy, j cos(ψx, j + 2ψy, j)
β

1/2
x, j βy, j sin(ψx, j + 2ψy, j)

ª®®®®®¬
. (C.7)

Of course, the matrix (VA,VB,VC,VD) should be regular.
After applying the calculated values, all trim coils are scanned and fine optimized in the experiment.

In many cases, the values obtained by the Eq. (C.6) are not the best. One reason is that in measuring the
resonance driving term G3,0,64, the beam is affected not only by 3νx = 64, but also by νx + 2νy = 64.
In short, there were some systematic errors in the driving term G3,0,64. Another possible reason is that
the calibrations of the trim coils might be not perfect. The systematic errors of the phase advances in the
calculations may also be the reason. Strictly, the resonance driving term obtained by changing the bare
tune and that by considering the detuning is different. If this is the main reason, fine tuning is inevitable,
because the incoherent detuning can not be measured. Further studies are required to understand the
phenomenon.

The present method uses the beam loss for the evaluation of the resonance driving terms, which
makes it difficult to specify the resonance. In principle, the resonance driving terms can be separately
evaluated by measuring the resonant spectra (see Section 3). The issue of this method is the noise. The
resonant spectra of the third-order nonstructure resonances are almost at the noise level. To realize this
method, improvement of the signal to noise ratio of the BPM is essential.
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Appendix D

Potentials of the Space-Charge-Induced
Structure Resonances

In this chapter, the potentials of the space-charge-induced structure resonances are listed. The most
influential resonance was 8νy = 171 at the tune (νx, νy) = (21.34,21.44). Comparing these figures with
the result of the beam loss (Fig. 4), it is clear the other resonances were not the main sources of the beam
loss. However, the influential resonance will be changed if the tune is moved. If you move the tune down
and to the right, you may have to care for the fourth-order resonance 2νx − 2νy = 0. If you move the
tune to the left, you may have to care for the sixth-order resonance 4νx − 2νy = 42. If you move the tune
up and to the right, the most influential tune may be changed to the resonance 2νx + 6νy = 171. The
proper vertical phase advance in the arc section ∆ψarc,y should be employed, considering which is the
most influential resonance.
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Figure D.1: Potentials of the resonance 2νx − 2νy = 0.
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Figure D.2: Potentials of the resonance 4νx − 2νy = 42.
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Figure D.3: Potentials of the resonance 4νx + 4νy = 171.
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Figure D.4: Potentials of the resonance 2νx + 6νy = 171.
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Figure D.5: Potentials of the resonance 4νx − 4νy = 0.
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Figure D.6: Potentials of the resonance 10νx = 213.
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Figure D.7: Potentials of the resonance 8νx + 2νy = 213.
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Figure D.8: Potentials of the resonance 6νx + 4νy = 213.
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Figure D.9: Potentials of the resonance 4νx + 6νy = 213.

47



5.2 5.4 5.6 5.8 60
0.02
0.04
0.06
0.08

0.1
0.12
0.14

 [a
.u

.]
2,

8,
21

3
V

 rad]π [2yarc,ψΔ

Figure D.10: Potentials of the resonance 2νx + 8νy = 213.
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Figure D.11: Potentials of the resonance 10νy = 213.
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Figure D.12: Potentials of the resonance 6νx − 4νy = 42.
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