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Abstract

It is a formidable problem to search stable crystal structures with only the information

of their compositions. Various methods to systematically and efficiently find the global

minimum of the potential energy have been researched and developed. We are developing

the structure prediction method to incorporate the experimental data into the theoretical

structure search based on data assimilation.

In this method, we define the penalty function as the “difference” between the reference

experimental data and the theoretical value for the crystal structure, and perform the

multi-objective optimization of the potential energy and the penalty function. In the

previous researches [1, 2], they introduce the “crystallinity”-type penalty function of the

powder X-ray diffraction (XRD). This penalty function uses only the diffraction angles

in the reference data, and works well even with unreliable experimental intensity ratio.

On the other hand, this is not suitable for the target structure with low symmetry or the

reference diffraction pattern with noise.

In this study, we adopt new “correlation-coefficient”-type penalty function that explic-

itly includes the diffraction peak intensities, and work on improving the success rate and

robustness of the structure search. In test calculations of the structure search for coesite,

the new penalty function significantly improves the search efficiency compared to the

crystallinity-type one. We verify the noise-robustness of this method by adding artificial

noise to the reference diffraction pattern. In test calculations for ε-Zn(OH)2, we con-

firm the effectiveness of the hybrid penalty function of XRD and the neutron diffraction

(ND), which can detect hydrogen positions. In a practical application to high-pressure

synthesized Al-Ca-H system, we discover new Al12Ca20H76 structure based on data as-

similation.
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Chapter 1

Introduction

1.1 Crystal structure determination problem

Crystal structure determination is one of the most fundamental problems in materials

science. This is an inverse problem for finding the atomic arrangement from its physical

properties. Given the crystal structure, we can theoretically predict physical properties

by first-principles calculations (cf. Section 2.2.1).

The powder diffraction is such a physical property that is generally measured in the

experiment for the crystal structure determination. The basic formula of the powder

diffraction is explained in Appendix A.1, and directly reflects the atomic arrangement.

The Rietveld method [3] is one of the crystal structure analysis methods, in which various

parameters are refined by fitting the powder diffraction pattern. This method requires

an appropriate structure model, and is not able to search for unknown structures. In the

Reverse Monte Carlo (RMC) method [4], we solve the inverse problem from the powder

diffraction pattern to the crystal structure in the Monte Carlo simulations. It is difficult

for this method to determine a complicated structure because there are many atomic

arrangements with similar powder diffraction patterns.

Due to experimental limitations such as noise, it is often not possible to determine the

structure by only the experiments. In such cases, the theoretical structure prediction is

useful. The stable structure corresponds to the global minimum of the potential energy,

and we minimize the potential energy by the structure optimization (see Section 2.4).

Since first-principles calculations of the potential energy require high computational costs,

it is impossible to explore the whole search space in practice. We search for locally

stable structures in the search space with limited cell parameters and compositions, and

theoretically propose the most stable and experimentally consistent one as the correct

structure. Structure prediction methods have been researched and developed in order

to find it systematically and efficiently. Some of them are designed to overcome the

energy barriers between global or local minima, such as Simulated Annealing (SA) [5],

basin-hopping [6], minima hopping [7] and metadynamics [8]. Moreover, some of them

are designed to generate new candidate structures, such as random sampling [9], genetic

algorithm [10] and Particle Swarm Optimization (PSO) [11].
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1.2 Purpose of the study

In the previous researches [1, 2] and this study, we are developing the structure predic-

tion method based on data assimilation. This method improves the search efficiency by

incorporating the experimental data into the theoretical structure search. The details of

this method is described in Chapter 2, and we explain the improvements of this method

made in this study below.

In this method, we define the penalty function D(R) as the “difference” between the

reference experimental data and the theoretical value for the crystal structure R, and

minimize the cost function F = E + αND instead of the potential energy E. Both E

and D are minimum at the target structure of the structure search, and D restricts the

search space to match the experimental data. We can improve the search efficiency by

performing the multi-objective optimization of E and D.

We implement the penalty functions of the powder diffraction. In the previous re-

searches [1, 2], they define the “crystallinity”-type penalty function that uses only the

diffraction angles without the intensity information in the reference diffraction pattern.

This penalty function works well even with unreliable experimental intensity ratio, but

not when the target structure has low symmetry without the extinction law, or when it

is difficult to determine peak positions due to noise.

In this study, by adopting the “correlation-coefficient”-type penalty function that ex-

plicitly includes the diffraction peak intensities, we are working on improving the success

rate and robustness of the structure search. This new penalty function is expected to

improve the search efficiency of our method by using more experimental information than

the crystallinity-type one. Instead, if the experimental and calculated diffraction patterns

are different due to experimental limitations such as noise, this new penalty function does

not become zero for the correct structure. We consider that the penalty function method

can support the optimization of the potential energy even if the correct structure does

not correspond to the global minimum of the penalty function.

1.3 Organization of the thesis

The organization of this thesis is as follows.

In Chapter 2, we explain the structure prediction method based on data assimilation de-

veloped in the previous researches [1,2] and this study. In general, the structure prediction

consists of the potential energy calculation for examining the stability of the structure, and

the structure optimization for minimizing the potential energy. In addition, our method

includes the penalty function calculation for examining the consistency of the structure

with the reference experimental data. We also explain the “fingerprint” [12] used for

judging success or failure of the structure search in test calculations for known structures.

In Chapter 3, we show the results of the structure search in this study. For comparison

with the crystallinity-type penalty function of the previous study [1], we perform test

calculations for coesite with the correlation-coefficient-type one. We also perform test

calculations for ε-Zn(OH)2 as the system containing hydrogen. As a practical application,
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we search for new hydride in Al-Ca-H system with actual experimental data, and discover

new Al12Ca20H76 structure based on data assimilation.

In Chapter 4, we summarize the outcomes in this study, and describe future improve-

ments of our structure prediction method. Through test calculations for known structures,

we confirm that the correlation-coefficient-type penalty function improves the success rate

and noise-robustness of the structure search. The hybrid penalty function of XRD and

ND is effective for the system containing hydrogen. It is considered that the application

range of our method can be expanded by assimilating other experimental data than the

powder diffraction. We expect that the data assimilation scheme can be incorporated

into existing structure prediction methods by replacing the potential energy with the cost

function.
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Chapter 2

Methods

The theoretical structure prediction is the multidimentional global optimization problem

of the potential energy. Due to the high computational costs of the potential energy and

the complexity of the multidimentional search space, we need methods to efficiently search

for stable structures. In the previous researches [1, 2] and this study, we are developing

the structure prediction method based on data assimilation.

First, Section 2.1 describes how to improve the search efficiency by assimilating the

experimental data in this method. Next, Sections 2.2, 2.3, and 2.4 explain the potential

energy, the penalty function and the structure optimization used in our simulations, re-

spectively. Section 2.5 is about “Fingerprint” [12] used in test calculations for judging

success or failure of structure search.

2.1 Structure prediction method based on data assimilation

In the structure prediction without the experimental data, the most stable or metastable

structures are searched by the potential energy optimization (see Section 2.4). Since it

is impossible to explore the whole search space in practice, a stable structure consis-

tent with experimental results is theoretically proposed as the correct one. If there are

many metastable structures, the structure found in the experiment cannot be uniquely

determined from only the potential energy.

Our central idea is to minimize the potential energy and reproduce the experimental

data at the same time. From the experimental point of view, such a joint optimization

approach is to optimize the atomic configuration that reproduces the experimental data

(Refs. [13,14]). On the other hand, in the theoretical structure prediction, this approach is

to support the potential energy optimization using the experimental data (Refs. [15–20]).

In the structure prediction method based on data assimilation [1], the search space itself

is restricted to match the experimental data during simulations. We can efficiently search

for theoretically stable and experimentally consistent structures by excluding structures

with low energy but inconsistent with the experiments from the search space.
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2.1.1 Assimilating experimental data

In this method, we define the difference between the experimental data and the calculated

value for the structure as the penalty function. The data need to reflect the atomic

arrangements and be computable at low cost. In this study, we use the powder diffraction

pattern as the experimental data. Instead of the potential energy, we minimize the cost

function F defined as follows,

F (R; Iref) = E(R) + αND[Iref , Icalc(R)], (2.1)

where R is the crystal structure, Iref is the reference experimental data, Icalc is the cal-

culated one, E is the potential energy, D is the penalty function, N is the number of

atoms, and α is the control parameter. That is, we solve the multi-objective optimization

problem for the potential energy and the penalty function.

Such a combined cost function was originally proposed in the previous study by Putz

et al. [15]. They use a simple model as the potential energy and search for a structure

that matches the powder X-ray diffraction pattern by optimizing the penalty function.

However, when there are many unstable structures that almost match the experimental

data, it is difficult to find the correct structure with this approach. In our approach, the

potential energy is calculated accurately, and the penalty function supports searching for

the target structure which is theoretically stable and experimentally consistent.
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Our method is explained with a schematic diagram as shown in Fig. 2.1. The correct

structure is ideally the global minimum of both the potential energy and the penalty

function. Since the local minima of them are different, the correct structure is more

emphasized in the cost function than in the potential energy. If the target material is

metastable or the experimental data is incomplete, the correct structure is not the common

global minimum of the potential energy and penalty function, but is most suitable as the

global minimum of the cost function. Therefore, by optimizing the cost function, we can

find the correct structure faster than by optimizing only the potential energy.

Fig. 2.1. Schematic diagram of the cost function. The horizontal axis represents the
crystal structure R, which is actually a multidimensional space, such as cell
parameters and atomic coordinates. The vertical axis represents the energy,
which is optimized in structure search. The black line represents the potential
energy E, and the red and yellow circles are its global minimum and local
minima, respectively. The blue arrow represents the penalty function αND
added to the potential energy, and the green dotted line represents the cost
function F .
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The control parameter α adjusts how strongly the search space is restricted by the

penalty function to match the experimental data. The role of the penalty function is to

fill the local minima of the potential energy. In general, for too large α, the structure

change is restricted by the penalty function, and the search efficiency deteriorates. In our

test calculations, we estimate the appropriate range of α by examining the magnitude of

the penalty function and structure change in short pre-simulations for different values of

α.

The advantage of the penalty function method is that it can be directly applied to

existing structure prediction methods by simply replacing the potential energy with the

cost function. In this study, we adopt Simulated Annealing using Molecular Dynamics

because of its simplicity of implementation (see Section 2.4.2). It is easy to extend this

method for multiple experimental data by adding penalty functions of them to the cost

function. In Section 3.2.3, we simultaneously optimize the penalty functions of the X-ray

and neutron diffraction patterns in Zn-O-H system.

This method can be interpreted by Bayes’ theorem for the conditional probability of

the crystal structure given the experimental data,

ρ(R|Iref) =
ρ(R)× ρ(Iref |R)

ρ(Iref)
. (2.2)

In the case of the optimization by Simulated Annealing, the probability of the crystal

structure follows the Boltzmann distribution,

ρ(R) ∝ exp{−βE(R)}, (2.3)

where β is the inverse temperature. On the other hand, the conditional probability of the

reference data given the crystal structure can be expressed as follows using the penalty

function,

ρ(Iref |R) ∝ exp{−βαND[Iref , Icalc(R)]}. (2.4)

Finally, it turns out that the optimization of the cost function corresponds to the condi-

tional structure search given the experimental data, as shown in the following equation,

ρ(R|Iref) ∝ exp{−βF (R; Iref)}. (2.5)
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2.1.2 Flowchart of the method

In this study, we perform the structure prediction based on data assimilation according

to the flowchart shown in Fig. 2.2.

Fig. 2.2. Flowchart of the structure prediction method based on data assimilation in our
simulations.

First, we set the appropriate simulation cell size to reproduce the experimental data

in the target system. If the composition and the number of atoms per cell cannot be

determined from experiments, it is necessary to perform simulations for each candidate

cell size.

After setting the cell size, we generate random structures as initial atomic coordinates

for each simulation. A structure with too small interatomic distance is inappropriate as

the initial arrangement because the potential energy calculation is difficult and the force

is too large. In our simulations, we limit the minimum interatomic distance of the initial

structure.

Then, we minimize the cost function by Simulated Annealing (SA) using Molecular

Dynamics (MD). When the structure converges to a local minimum on the cost function,

the MD simulation is finished. The details of those calculations are described in the

following Sections 2.2, 2.3, and 2.4.
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2.2 Potential energy calculation

The theoretical structure prediction is the optimization problem to search for the most

stable structure that minimizes the potential energy. In this section, we explain the

potential energy calculations used in our study.

2.2.1 Potential by first-principles calculation

For the theoretical prediction of unknown structures, it is necessary to calculate the poten-

tial energy only from atomic arrangements. Such calculation according to the established

laws of physics without using any empirical parameters is called “first-principles” or “ab

initio” calculation. In the case of the potential energy calculation, we perform the first-

principles electronic structure calculation according to the Schrödinger equation.

Density functional theory (DFT) [21] is one of the most popular approaches for the

first-principles calculation to solve the Schrödinger equation in many-body systems. Sim-

ply, the ground state of non-relativistic many-body systems is expressed as the following

Schrödinger equation in atomic units,

Ĥ |Φ〉 = (T̂ + Û + V̂ ) |Φ〉 = E0 |Φ〉 , (2.6)

where E0 is the potential energy of the ground state required for the structure search. T̂

is the term of the kinetic energy,

T̂ = −1

2

∑

i

∇2
i , (2.7)

where subscript i is the index of electrons. Û is the term of the electron-electron Coulomb

interaction,

Û =
1

2

∑

i !=j

1

|ri − rj |
, (2.8)

where r is the electronic coordinate. V̂ is the term of electron-nucleus Coulomb interac-

tion,

V̂ =
∑

i,I

ZI

|ri −RI |
, (2.9)

where subscript I is the index of nuclei, R is the nuclear coordinate, and Z is the nuclear

charge. In general, even with a supercomputer, it is almost impossible to solve such

equation straightforwardly because of huge degrees of freedom. In order to deal with

the many-body Schrödinger equation, it is necessary to reduce the number of degrees of

freedom.

Density functional theory overcomes this difficulty by expressing the Schrödinger equa-

tion in terms of the electronic density n, whose degrees of freedom are independent of

the number of electrons. According to the first Hohenberg-Kohn (H-K) theorem [22],

the external potential V̂ is a unique functional of the electronic density n. Furthermore,
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according to the second H-K theorem [22], the ground state density n0 minimizes the

ground state energy functional, that is,

E0[n] = 〈Φ0[n]| Ĥ |Φ0[n]〉 ≥ E0[n0] = E0. (2.10)

Therefore, we can obtain the ground state density n0 by searching for n which minimizes

E0[n].

The Kohn-Sham (K-S) theory [21] enables us to calculate the ground state based on

the H-K theorems. In the K-S theory, the fictitious non-interacting system is introduced,

(
−1

2
∇2 + Veff

)
|ψi〉 = εi |ψi〉 , (2.11)

where Veff is chosen to make the ground state density of the fictitious system equal to

that of the real system n0. By using such a fictitious system, the energy functional is

expressed as

E0[n] = Ts[n] +
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′| +

∫
drn(r)V (r) + EXC[n]. (2.12)

The first term on the right side represents the kinetic energy in the fictitious system,

Ts[n] =
∑

i

〈ψi|−
1

2
∇2 |ψi〉 . (2.13)

The second and third term represents the electron-electron and electron-nucleus Coulomb

interaction expressed in the terms of n, respectively. The fourth term EXC is called the

exchange correlation energy, and is an unknown functional that connects the real and

fictitious system.

According to the variational method with respect to n, the terms of the ground state

energy vanish, and Veff is expressed as

Veff(r) =

∫
dr′

n(r′)

|r − r′| + V (r) +
δEXC

δn(r)
. (2.14)

Finally, the ground state energy of the real system is expressed as follows in terms of n

using the computable ground state energies of the fictitious system,

E0[n] =
∑

i

εi −
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′| + EXC[n]−
∫

drn(r)
δEXC

δn(r)
. (2.15)

The exchange-correlation energy EXC is unknown, and approximated in several ways.

The local density approximation (LDA) [21] is the simplest and remarkably successful. In

LDA method, EXC is approximated by that of a homogeneous electron gas (HEG) with

the corresponding density n. For beyond LDA, the generalized gradient approximation

(GGA) [23] takes the density gradient into account.

In our simulations, we use Vienna Ab initio Simulation Package (VASP) [24, 25] to

calculate the potential energy based on DFT. VASP is a famous package for performing
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ab initio quantum mechanical molecular dynamics simulations using pseudopotentials

and a plane wave basis set. The pseudopotential is a method of incorporating inner-shell

electrons near nuclei into the potential in order to reduce the computational costs. The

plane wave basis set is a basis set of the wave function in DFT calculation.

We also use some code in PIMD [26, 27] to make the potential energy calculation in

VASP into a subroutine. PIMD is an open-source software for parallel molecular simula-

tions.

2.2.2 Empirical potential

There are various force fields based on appropriate models for target systems. Empirical

parameters in a model are adjusted to reproduce physical properties based on experiments

or first-principles calculations. From the viewpoint of structure search, it is important that

the global or local minima on empirical potentials correspond to actually stable structures.

Due to the high computational costs, it is difficult to perform first-principles simulations

in large systems. In this study, in order to test the structure prediction method based on

data assimilation, we perform the structure search for known structures, such as coesite in

Section 3.1 and ε-Zn(OH)2 in Section 3.2. In those calculations, we use model potentials

as the potential energy, which are much faster to be calculated than the DFT potential.

We use Tsuneyuki potential [28] and Tersoff potential [29] for coesite, and the reactive

force field (ReaxFF) potential [30] for ε-Zn(OH)2. Tsuneyuki potential is the interatomic

potential extracted from first-principles cluster calculations, and a simple model expressed

by the following formula,

Vij(rij) = V coulomb
ij (rij) + f0(bi + bj) exp

(
ai + aj − rij

bi + bj

)
− cicj

r6ij
, (2.16)

where subscripts i and j are the indices of atoms and r is the atomic distance. It consists

of Coulomb interaction with some corrections, Born-Mayer-type repulsion, and dispersive

interaction. This potential succeed in the structure simulations for polymorphs of SiO2

such as low-quartz, low-cristobalite, coesite, and stishovite. Both Tersoff and ReaxFF

potential are based on a bond order scheme as expressed by the following formula,

Vij(rij) = A exp(−λArij)− bijB exp(−λBrij), (2.17)

where bij is the bond order. In Tersoff potential, the bond order is taken to have the

following form,

bij =
(
1 + ζηij

)−δ
, (2.18)

ζij =
∑

k

g(θijk) exp (p(rij − rik))
q , (2.19)

g(θ) = 1 +
c2

d2
− c2

d2 + (h− cos θ)2
, (2.20)

where θijk is the bond angle between bonds ij and ik.

In the structure prediction, if there is a model potential that reproduces first-principles
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calculations well, we can reduce the computational cost and expand the search range.

The remarkable progress of machine learning makes it possible to optimize empirical

parameters in general-purpose models such as the neural network [31].

In our simulations, we use Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) [32, 33] to perform empirical potential calculations. LAMMPS is a famous

classical molecular dynamics code with a focus on materials modeling.

2.3 Introduction of the penalty function

In the structure prediction method based on data assimilation, we define the difference

between the experimental data and the calculated value as the penalty function. In this

study, we use the powder diffraction pattern as the experimental data, and implement

artificial forms of penalty functions.

2.3.1 Penalty function of the powder diffraction pattern

The powder diffraction is one of the most popular experimental methods for the crystal

structure analysis. We implement the calculations of the powder X-ray diffraction (XRD)

and neutron diffraction (ND) in our code (see Appendix A). Since X-rays are scattered

at the electrons of the atomic shell, it is difficult for XRD to detect the positions of light

atoms such as hydrogen. ND is theoretically almost the same as XRD except for being

scattered at the nucleus, and useful to detect the positions of light atoms.

As Eqs. A.1-A.4 show, the diffraction pattern directly reflects the atomic arrangement.

Since the diffraction pattern is easy to calculate and can be differentiated with respect to

the atomic coordinates (see A.4), it is suitable as the reference experimental data used

for data assimilation. The penalty function of the diffraction pattern restricts the search

space so as to reproduce the translational periodicity of the crystal structure. On the

other hand, the potential energy restricts the partial structure at a short distance. It is

expected that we can improve the search efficiency by optimizing the cost function that

combines them.

The penalty function needs to take the minimum value with the correct structure, and

not change significantly with respect to the small displacement of structures. As Eq. A.5

shows, the peak position does not depend on the atomic fractional coordinates, only on

the cell parameters. A penalty function that compares the intensities for each diffraction

angle does not work well if the peak positions shift due to changes in the cell parameters.

Therefore, it is difficult to optimize the cell parameters by the penalty function of the

diffraction pattern. In this study, we estimate the cell parameters from the experiment,

and fix them during the simulations. If the cell parameters cannot be uniquely determined

from the experiment, we perform the simulations in each candidate.

We can deal with the small shifts in the peak positions by increasing the peak width

in the calculated diffraction pattern (see Appendix A.2). If the peak width is too large

compared to that in the experiment, the penalty function changes small with respect to

the atomic displacement and the effect of emphasizing the correct structure becomes weak.

On the other hand, if the peak width is too small, overfitting will occur in an attempt
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to reproduce one peak in the experiment with multiple peaks. In order to improve the

search efficiency, it is desirable to set the same peak width as that in the experiment.

We can also deal with the polyphasic diffraction pattern by removing the range with

peaks other than these of the target material from the reference range of the diffraction

angle. It is inappropriate to consider the intensities in this range as zero because the

peaks of the target material may overlap. In Section 3.3, we perform the structure search

in Al-Ca-H system using the actual experimental data including peaks of pure Al.

2.3.2 Form of the penalty function

The form of the penalty function changes the properties of the structure prediction

method, such as the search efficiency and applicable systems. Since it is difficult to

directly compare the peak intensities between the experimental data and the calculated

value, we formulate the difference in the peak positions and the intensity ratio as the

penalty function. In the following, we explain two types of penalty functions implemented

in our code.

In the previous research [1], the “crystallinity”-type penalty function is defined as fol-

lows,

D(R) = 1−
∫
θ=θobs

Icalc(R)dθ
∫ θmax

θmin
Icalc(R)dθ

, (2.21)

where R is the crystal structure, Icalc is the calculated diffraction intensity, θ is the

diffraction angle, [θmin, θmax] is the reference angle range, and θobs is the peak position

observed in the reference experimental diffraction pattern Iref . This penalty function does

not depend on the experimental intensity information, and represents the coincidence ratio

of peak positions between experimental and calculated diffraction patterns. By minimizing

this penalty function, we can restrict the search space to satisfy the same extinction rule as

in the experiment. Due to experimental errors such as the effect of preferred orientation,

the peak intensity ratio in experiments deviates from the ideal calculated one. This penalty

function works well even with unreliable experimental intensity ratio. On the other hand,

it does not work well when the target structure has low symmetry without the extinction

law, or when it is difficult to determine peak positions due to noise.

In this study, we introduce a new penalty function of the correlation coefficient between

Icalc and Iref as follows,

D(R) = 1−
∫ θmax

θmin
(Icalc(R)− Icalc(R))(Iref − Iref)dθ√∫ θmax

θmin
(Icalc(R)− Icalc(R))2dθ

√∫ θmax

θmin
(Iref − Iref)2dθ

, (2.22)

where I is the average intensity among the reference angle range [θmin, θmax]. The

crystallinity-type penalty function emphasizes peaks not found in the experiment, whereas

this one emphasizes large peaks. This penalty function explicitly includes the experimen-

tal intensity information, and restricts the search space more to match the experimental

data. Therefore, it is expected that this penalty function can improve the search effi-

ciency more. Instead, due to the difference between experimental and calculated peak
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intensities, this penalty function does not become zero for the correct structure. Even if

the correct structure does not correspond to the global minimum of the penalty function,

the penalty function method can support the optimization of the potential energy. We

can find stable structures by performing the structure relaxation with only the potential

energy (see Section 2.4.1) after the optimization of the cost function.

In this study, we mainly perform the structure prediction based on data assimilation us-

ing the correlation-coefficient-type penalty function, and investigate how this new penalty

function improves the efficiency and robustness of structure search. In Section 3.1.1,

we compare the crystallinity-type and correlation-coefficient-type penalty functions by

test calculations for coesite. In Section 3.1.3, we examine the noise-robustness of the

correlation-coefficient-type one. We implement white Gaussian noise as the artificial noise

on the calculated diffraction pattern, and generate different noises for each simulation.

2.4 Structure optimization

In general, “structure optimization” is a simulation method that searches for the struc-

ture that minimizes some cost function. In order to theoretically determine the crystal

structure, we search for the structure that minimizes the potential energy. The ab initio

crystal structure prediction requires the first-principles calculations of the potential en-

ergy for each structure in the simulation. In that case, the potential energy calculation

accounts for most of the computational costs, and we need efficient optimization methods.

In this section, we explain the structure search method used in our study.
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2.4.1 Structure relaxation

“Structure relaxation” is one of the simplest optimization methods. In this method, we

calculate the force applied to each atom, and move atoms a little along its direction. This

is repeated until the force or the energy change in each step become sufficiently small. By

gradually displacing the structure in this way, we can finally find a locally stable structure

(see Fig. 2.3). The cell parameters can also be optimized by calculating the stress tensor

instead of the force.

Fig. 2.3. Schematic diagram of structure relaxation. The horizontal axis represents the
crystal structure R, and the vertical axis represents the energy. The black line
represents the potential energy, and the red and yellow circles are its global
minimum and local minima, respectively. The blue circles are the initial struc-
tures in the simulations, and structure relaxation allows us to find the nearest
globally or locally stable structure as shown by the orange arrows.

The locally stable structure means the local minimum on the cost function and includes

the metastable structure. As the number of atoms in the simulation increases, that is,

the number of parameters to be optimized increases, the number of local minima on

the cost function also increases. It is difficult to find the desired most stable structure

because the structure is trapped in the locally stable structure. In addition, the crystal

structure simulation requires the cell with translational symmetry, and the structure may

be trapped at the saddle point.

In both VASP [24, 25] and LAMMPS [32, 33] which we use to calculate the potential

energy (see Section 2.2), the structure relaxation is implemented in some algorithms, such

as the simplest gradient descent method and the more efficient conjugate gradient method.
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2.4.2 Simulated Annealing

In order to efficiently search for the most stable structure, the global optimization methods

are required. Simulated Annealing (SA) [5] is one of metaheuristic global optimization

algorithms. As the name implies, in SA, the barrier of the cost function is overcome

depending on the temperature, and the temperature is gradually lowered during the sim-

ulation. When the temperature is high, the state can move back and forth between the

barriers, but when the temperature decreases, the state shifts to the side with the higher

barrier, that is, with the lower energy (see Fig. 2.4). At the end of the simulation, the

temperature becomes zero, and the state move only in the direction in which the cost

function decreases. As in the case of structure relaxation, the state converges to some

local minimum.

Fig. 2.4. Schematic diagram of Simulated Annealing. The horizontal axis represents the
crystal structure R, and the vertical axis represents the energy. The black line
represents the potential energy, and the red and yellow circles are its global
minimum and local minima, respectively. As the temperature decreases during
the simulation, as indicated by the orrange and blue arrows, the state transi-
tion becomes one-way from the local minima to the global minimum at some
temperature.

It is known that we can always find the global minimum by cooling from a sufficiently

high temperature slowly enough [34]. However, in order to reduce the computational cost,

it is necessary to set the temperature and the step size to a finite value. The computational

cost and the success rate to find the global minimum are in the trade-off relationship.
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2.4.3 Molecular Dynamics

To apply Simulated Annealing to the structure optimization, we set the method of the

state transition, typically using classical Molecular Dynamics (MD) or Monte Carlo (MC).

In our study, we implement SA using MD.

The classical MD is a method of simulating atomic movements from the calculated

forces according to classical mechanics. In the classical MD simulation, we repeatedly

calculate the force applied to each atom and update the atomic velocity and position

based on it as follows,

pi ← pi + Fi∆t, (2.23)

ri ← ri +
pi

mi
∆t, (2.24)

where subscript i is the index of atoms, p is the atomic momentum, r is the atomic

position, m is the atomic mass, F is the force, and ∆t is the simulation timestep.

The temperature corresponds to the average kinetic energy of atoms, as shown in the

following formula,

T =
1

3
2NkB

N∑

i=1

p2
i

2mi
, (2.25)

where N is the number of atoms, and kB is Boltzmann constant. There are some methods

for controlling the temperature, such as the simplest velocity scaling method [35] and Nosé-

Hoover thermostat [36, 37] which gives the canonical distribution. In our simulations, we

use velocity scaling method for the structure optimization based on SA.

In the velocity scaling method, as the name implies, the temperature parameter is

controlled by scaling the atomic velocities as follows,

pi ← pi

√
Text

T
, (2.26)

where Text is the bath temperature. In SA, the bath temperature gradually decreases to

zero. At zero temperature, the atomic velocities become zero once from Eq. 2.26, and

the atomic positions are updated in the direction of the forces from Eq. 2.23 and 2.24.

Therefore, the velocity scaling method naturally leads to the structure relaxation using

the gradient descent method at the end of SA.

2.5 Judging success or failure using fingerprint

In this study, in order to test the structure prediction method based on data assimilation,

we perform the structure search for known structures, such as coesite in Section 3.1 and

ε-Zn(OH)2 in Section 3.2. In the test calculations, we can investigate the success rate of

structure search by checking whether the structure obtained in each simulation matches

the correct structure. Since the structure is invariant to translation and rotation, we

cannot directly compare the atomic coordinates.
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We use “fingerprint” [12] for judging success or failure of the structure search. Finger-

print function is a crystal structure descriptor expressed by the following formula,

FAB(l) =
NA∑

iA

lmin<lij<lmax∑

jB

V

4πNANB∆

δ(l − lij)

l2ij
− 1, (2.27)

where l is the interatomic distance, [lmin, lmax] is the reference range of l, A and B are the

atomic species, subscript i and j are the indices of atoms, N is the number of atoms, V is

the cell volume, and ∆ is the step width of l. The delta function is smoothed by Gaussian

smearing function (cf. Appendix A.2). Figure 2.5 illustrates the fingerprint for coesite.

Fig. 2.5. Fingerprint for coesite. Each line represents the fingerprint of the combination
of the atomic species A-B. The origin of the fingerprint is shifted by −1 to make
it easier to see. We set [lmin, lmax] = [0.05, 10] Å, ∆ = 0.02 Å, and the standard
deviation of Gaussian smearing function σ = 0.1 Å (see Eq. A.8).
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We evaluate the difference between crystal structures by the residual sum of squares

(RSS) of the fingerprints as follows,

RSS =

∫
(FAB(l;R)− FAB(l;R0))2dl∫
(FAB(l;R) + FAB(l;R0))2dl

, (2.28)

where R is the crystal structure in the simulation and R0 is the correct structure. The

denominator is for normalization. Figure 2.6 shows the RSS of the fingerprints and the

potential energy of obtained structures in a certain structure search simulation for coesite

in Section 3.1.1. Although the potential energy is not converged sufficiently at the end

of simulations, it can be seen that about 40% of obtained structures have almost the

same atomic arrangements as the correct structure by judging based on the RSS of the

fingerprints. In order to finally predict the correct structure, it is necessary to relax

obtained structure again with only the potential energy without the artificial penalty

function.

Fig. 2.6. Comparison between RSS of fingerprints and potential energy for coesite. The
structures obtained in certain simulations are arranged in ascending order of the
potential energy. The black line represents the potential energy with that of the
correct structure as the origin. Other lines are the RSS of the fingerprints.
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Chapter 3

Results and Discussion

We work on improving the structure prediction method based on data assimilation by ap-

plying it to various systems. Sections 3.1 and 3.2 explain test calculations of the structure

search for known structures, coesite and ε-Zn(OH)2, respectively. In test calculations for

SiO2 coesite, we investigate the improvements made by the new correlation-coefficient-

type penalty function compared to the crystallinity-type penalty function in the previous

study [1]. In test calculations for ε-Zn(OH)2, we examine the effectiveness of our struc-

ture prediction method for the system containing hydrogen which contributes little to the

XRD pattern.

Section 3.3 describes the results of the structure search for new hydride in Al-Ca-H

system. This new hydride is synthesized under high temperature and high pressure in

the experiment, and the composition ratio has not yet been determined. We discover new

Al12Ca20H76 structure by data assimilation and first-principles calculations. In addition,

we try the structure search with different compositions using the neural network potential.

3.1 Comparison of the correlation-coefficient-type and

crystallinity-type penalty functions

For comparison of the correlation-coefficient-type and crystallinity-type penalty functions,

we perform the structure prediction based on data assimilation for coesite. Coesite is

suitable for this comparison due to its large primitive cell and relatively low symmetry. In

these test calculations, we use model potentials as the potential energy in order to reduce

the computational costs.

The model potential for Si-O system is Tsuneyuki potential [28] in Sections 3.1.1 and

3.1.3, and Tersoff potential [29] in Section 3.1.2 (cf. Section 2.2.2). In Section 3.1.3, we

verify the noise-robustness of our structure prediction method by adding artificial noise

to the reference XRD pattern.
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3.1.1 Test calculations for coesite

As in the previous study using the crystallinity-type penalty function [1], we perform test

calculations of the structure prediction based on data assimilation using the correlation-

coefficient-type penalty function in Si-O system. We use Tunesyuki potential as the

potential energy, and set coesite in the primitive cell as the target material (see Fig.

3.1).

Fig. 3.1. Crystal structure of coesite. The blue and red spheres represent silicon and
oxygen atoms, respectively. The primitive cell contains 48 atoms. The crystal-
lographic data is shown in Appendix B.1.

We perform the structure relaxation from the reference structure of coesite [38] using

LAMMPS with Tsuneyuki potential, and set this relaxed structure as the correct one in

the structure search. In these test calculations, instead of the actual experimental data,

we use the calculated XRD pattern for the correct structure as the reference data in the

penalty functions (see Eqs. 2.21 and 2.22). Figure 3.2 shows the XRD pattern for coesite

used in these test calculations. If the correct structure is obtained in the end of structure

search simulations, the calculated XRD pattern Icalc is exactly the same as the reference

one Iref , and the penalty function ideally becomes zero.
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Fig. 3.2. Reference XRD pattern Iref and the calculated one Icalc for coesite in the test
structure search simulations. The wavelength λ is set to 1.54 Å, which corre-
sponds to CuKα-radiation. The diffraction peaks are smoothed with Lorentzian
smearing function, where the scale parameter γ is 0.1 degree in Eq. A.9. The
reference range of the diffraction angle [2θmin, 2θmax] in Eqs. 2.21 and 2.22 is
set to [20, 45] degrees.

Then, we perform the structure optimization by simulated annealing using molecular

dynamics to minimize the cost function (see Eq. 2.1). The initial temperature is set

to 10,000 K, the temperature step is −1 K/step, and the time step is 1 fs/step. The

cell parameters are fixed to those of the primitive cell for the correct structure, and the

initial structure of each simulation is randomly generated under the constraint that the

interatomic distances are 0.5 Å or more.

Figure 3.3 shows the results of the success rate to find the correct structure in our test

calculations. We investigate the success rate by the residual sum of squares (RSS) of the

fingerprints between the obtained and correct structure (see Section 2.5). We perform 100

simulations for each value of the control parameter α in Eq. 2.1. The larger α, the more the

penalty function restricts the search space to match the experimental data. If α is set to

zero and the structure optimization is performed using only the potential energy without

the experimental data, the correct structure cannot be found in this condition. When α is

set to 10 eV or more, the success rate is almost 100%. In the case of the crystallinity-type

penalty function, the success rate is about 5% under the same condition. Therefore, the
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search efficiency is significantly improved by using the penalty function that explicitly

includes the peak intensity of the reference XRD pattern.

Fig. 3.3. Success rate of the structure search for coesite using Tsuneyuki potential as the
potential energy and the correlation-coefficient-type penalty function of XRD.
The horizontal axis α is the control parameter in Eq. 2.1.

However, there is a problem that the success rate becomes almost 100% even if α is

very large such as 100 eV. In this case, due to the large forces from the penalty function,

the atoms reach the correct positions directly from the random initial structures without

the process of Simulated Annealing. It is considered that the cost function in this case

has almost no local minimum. One of the reasons is that Tsuneyuki potential is a simple

model. Another reason is that the penalty function is defined with the ideal reference data

Iref that exactly matches the calculated one Icalc for the correct structure. In Section 3.1.2,

we perform test calculations using Tersoff potential as the potential energy, which is more

complex than Tsuneyuki potential. In Section 3.1.3, we also perform test calculations

using the incomplete reference data with artificial noise.

3.1.2 Using Tersoff potential as the potential energy

In order to investigate the effects of different potential energy, we perform similar simu-

lations using Tersoff potential for SiO2, which is a more complex model than Tsuneyuki
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potential. As shown in Eq. 2.16, Tsuneyuki potential is an ionic two-body force field

depending only on the atomic distances. On the other hand, as shown in Eqs. 2.17-2.20,

Tersoff potential is a three-body force field depending on the bond angles. Other compu-

tational conditions for the structure optimization are the same as those in Section 3.1.1.

We use the correlation-coefficient-type penalty function with the ideal reference data.

Figure 3.4 shows the results of the success rate in our simulations using Tersoff potential.

We perform 100 simulations for each value of the control parameter α. The maximum

success rate is about 6%, which is very small compared to the case of Tsuneyuki poten-

tial (see Fig. 3.3). The reason why the search efficiency deteriorate is considered that

the number of local minima on the cost function increases due to the more complicated

potential energy. Especially for a very large α, the success rate drops to zero. From this

result, it can be seen that not only the metastable structures but also the locally stable

structures with relatively high energies affect the success rate of the structure prediction

based on data assimilation. The reason why the success rate drops with α around 15 eV

is considered that the results have large error due to the low success rate and the number

of local minima on the cost function changes depending on α.

Fig. 3.4. Success rate of the structure search for coesite using Tersoff potential as the
potential energy and the correlation-coefficient-type penalty function of XRD.
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Figure 3.5 shows the potential energy histograms for obtained structures at the end

of simulations, and Figure 3.6 shows the relationship between the potential energy and

the penalty function. Compared with the case where α = 0 eV, the distribution of the

potential energy is widened by adding the penalty function to the cost function. In

the multi-objective optimization of the potential energy and the penalty function, the

optimization of the potential energy itself sometimes deteriorates by additional forces

from the penalty function. Because obtained structures match the reference XRD pattern

well, we can improve the success rate to find the correct structure. If α is set too large,

the atoms hardly move due to the restriction by the penalty function, and the success

rate decreases. Since the role of the penalty function is to support the optimization of the

potential energy, it is necessary to select an appropriate value of α that maximizes the

success rate.

Fig. 3.5. Potential energy histogram of obtained structures in the structure search for
coesite using Tersoff potential as the potential energy and the correlation-
coefficient-type penalty function of XRD. The number of simulations for each α
is 100. The potential energy for the correct structure is about 19.96 eV/SiO2,
and the red lines represent structures judged to be correct.
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Fig. 3.6. Relationship between the potential energy and the penalty function of the ob-
tained structures in the structure search for coesite using Tersoff potential as the
potential energy and the correlation-coefficient-type penalty function of XRD.
The vertical axis represents D, which takes a value from 0 to 1 excluding the
coefficient αN in Eq. 2.1.

In order to find out the appropriate value of α in advance, we perform isothermal

simulations at 10,000 K, and measure the mean squared displacement (MSD) for each

atomic species and the penalty function. MSD is expressed by the following formula,

MSD =
1

N

N∑

i=1

|ri(t)− ri(t0)|2, (3.1)

where subscript i is the index of atoms, t is the simulation time, t0 is the start time, N is

the number of atoms, and r is the atomic positions. In the initial stage of the simulation

with a random structure as the initial structure, atoms move greatly in specific directions

along the forces. In order to investigate the diffusion of atoms, t0 must be set to a time

after the sudden decrease in the energy.
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Figure 3.7 shows the average MSD of Si and penalty function. We perform 10 short

simulations for each α and average them at each step. As α increases, the penalty function

is limited to be small, but at the same time, the diffusion range is narrowed. The diffusion

range can be expanded by increasing the temperature, but the number of steps required

for Simulated Annealing increases accordingly, and the computational cost also increases.

Therefore, it is necessary to select a value of α that balances the limitation of the penalty

function and the diffusion range of atoms. These pre-simulations do not give us α to

maximize the success rate, but we can find out the appropriate range of α, with which

the atoms move sufficiently and the penalty function is kept small enough. The diffusion

range needs to be large enough to allow the atomic positions to be exchanged with each

other. The average penalty function does not decrease any more for α above a certain

value. In this case, we can roughly estimate that the appropriate value of α is around 7

eV. This result is consistent with the success rate in Fig. 3.4.

Fig. 3.7. Average MSD of Si and penalty function in isothermal simulations at 10,000 K
using Tersoff potential as the potential energy and the correlation-coefficient-
type penalty function of XRD. The solid lines represent the average MSD of
Si on the right vertical axis for each α. The dotted lines represent the average
penalty function on the left vertical axis for each α. Diffusion is measured from
100th step, and the origin on the horizontal axis is also set to 100th step.
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3.1.3 XRD pattern with noise

In order to verify the noise-robustness of the structure prediction method based on data

assimilation, we implement white Gaussian noise as the artificial noise on the reference

XRD pattern. Compared to the crystallinity-type penalty function that uses the peak

positions, the noise-robustness is the advantage of the correlation-coefficient-type one

that uses the peak intensities as it is. Figure 3.8 shows the XRD pattern for coesite used

in these test calculations. The magnitude of the artificial noise is set to bury small peaks

other than two large peaks within the reference range of the diffraction angle. The peak

width of the calculated XRD pattern Icalc is desirable to match that of the reference one

Iref , but in this case we set it wider to prevent overfitting. Other computational conditions

for the structure optimization are the same as those in Section 3.1.1. We use Tsuneyuki

potential as the potential energy.

Fig. 3.8. Reference XRD pattern Iref with artificial noise and the calculated one Icalc
for coesite in the test structure search simulations. The diffraction peaks are
smoothed with Lorentzian smearing function, where the scale parameters γ are
0.2 and 0.4 degrees for Iref and Icalc, respectively. The white Gaussian noise
on Iref is randomly generated with the standard deviation σ = 2× 107 for each
simulation. The reference range of the diffraction angle [2θmin, 2θmax] is set to
[20, 45] degrees.
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Figure 3.9 shows the results of the success rate in our simulations using the reference

XRD pattern with artificial noise. We perform 100 simulations for each value of the control

parameter α. Compared with tha case with the ideal reference XRD pattern without noise,

the success rate is worse overall, but as high as 80% at the maximum. From this result,

even if there is a certain amount of noise on the reference data, we can improve the

search efficiency by the structure prediction method based on data assimilation with the

correlation-coefficient-type penalty function. If α is set too large, the success rate decrease

due to the penalty function with the incomplete reference data. It is necessary to select

an appropriate value of α that maximizes the success rate.

Fig. 3.9. Success rate of the structure search for coesite using Tsuneyuki potential as the
potential energy and the correlation-coefficient-type penalty function of XRD
with artificial noise. For comparison, the red line is the same as the success rate
using the ideal reference XRD pattern without noise in Fig. 3.3.
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In order to find out the appropriate value of α in advance, we perform isothermal

simulations at 10,000 K. Figure 3.10 shows the average MSD of Si and penalty function

for 10 short simulations for each α. Due to the noise on the reference XRD pattern and the

different peak width between the reference and the calculated one, the penalty function

does not become zero even with the correct structure. The overall trend is similar to Fig.

3.7, and we can roughly estimate that the appropriate value of α is around 7 eV. This

result is also consistent with the success rate in Fig. 3.9.

Fig. 3.10. Average MSD of Si and penalty function in isothermal simulations at 10,000
K using Tsuneyuki potential as the potential energy and the correlation-
coefficient-type penalty function of XRD with artificial noise. The solid lines
represent the average MSD of Si on the right vertical axis for each α. The
dotted lines represent the average penalty function on the left vertical axis for
each α. Diffusion is measured from 100th step, and the origin on the horizontal
axis is also set to 100th step.
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3.2 System containing hydrogen

Since hydrogen contributes little to the XRD pattern, the penalty function of XRD hardly

restricts hydrogen positions. In this section, we perform the structure prediction based on

data assimilation for ε-Zn(OH)2 in order to verify its effectiveness in the system containing

hydrogen. In these test calculations, we use the reactive force field (ReaxFF) [30] as the

potential energy (cf. Section 2.2.2). In order to stabilize the optimization of hydrogen,

we set the atomic mass of hydrogen to 12 u.

The heavier the atoms, the larger the contribution to the XRD pattern. There is a

problem that the diffusion range of the heavier atoms is narrowed due to the restriction

by the penalty function of XRD. In Section 3.2.2, we try to solve this problem by setting

the different bath temperatures for each atomic species.

We implement the calculation of the neutron diffraction (ND) which can detect the

positions of hydrogen in our code. In Section 3.2.3, we test the hybrid penalty function

of XRD and ND in Zn-O-H system.

3.2.1 Test calculations for ε-Zn(OH)2

We perform test calculations of the structure prediction based on data assimilation us-

ing the correlation-coefficient-type penalty function in Zn-O-H system. We use ReaxFF

potential as the potential energy, and set ε-Zn(OH)2 in the 2 × 1 × 1 supercell as the

target material (see Fig. 3.11). We take the supercell because the atoms directly reach

the correct structure in the simulations with the primitive cell due to the small number

of atoms, as in the case for coesite of Section 3.1.1.

Fig. 3.11. Crystal structure of ε-Zn(OH)2. The grey, red and pink spheres represent zinc,
oxygen and hydrogen atoms, respectively. The primitive cell contains 20 atoms.
The crystallographic data is shown in Appendix B.2.
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We perform structure relaxation from the reference structure of ε-Zn(OH)2 [39] using

LAMMPS with ReaxFF potential, and set this relaxed structure as the correct one in

the structure search. In these test calculations, instead of the actual experimental data,

we use the calculated XRD pattern for the correct structure as the reference data in the

penalty function. Figure 3.12 shows the XRD pattern for ε-Zn(OH)2 used in these test

calculations. This is the ideal case that the calculated XRD pattern Icalc for the correct

structure is equal to the reference one Iref .

Fig. 3.12. Reference XRD pattern Iref and the calculated one Icalc for ε-Zn(OH)2 in the
test structure search simulations. The wavelength λ is set to 1.54 Å, which
corresponds to CuKα-radiation. The diffraction peaks are smoothed with
Lorentzian smearing function, where the scale parameter γ is 0.1 degree in
Eq. A.9. The reference range of the diffraction angle [2θmin, 2θmax] in Eq. 2.22
is set to [10, 45] degrees.
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Before the structure search, we perform isothermal simulations in order to find out the

appropriate value of α, with which the atoms move sufficiently and the penalty function

is small enough. Figure 3.13 shows the average MSD of Zn and penalty function for 10

short simulations for each α. The temperature is set to 20,000 K to move Zn atoms

sufficiently for an appropriate α. Compared to the diffusion of Si in Figs. 3.7 and 3.10 for

coesite, the diffusion of Zn is very large with small α due to the high temperature, but

is greatly restricted by increasing α. Since Zn is heavier than Si and contributes more to

the XRD pattern, the penalty function more strongly restricts the positions of Zn. From

these pre-simulations, similar to the discussion in Fig. 3.7, we can roughly estimate that

the appropriate value of α is around 7 eV.

Fig. 3.13. Average MSD of Zn and penalty function in isothermal simulations at 20,000 K
using ReaxFF potential as the potential energy and the correlation-coefficient-
type penalty function of XRD. The solid lines represent the average MSD of
Zn on the right vertical axis for each. The dotted lines represent the average
penalty function on the left vertical axis for each. Diffusion is measured from
100th step, and the origin on the horizontal axis is also set to 100th step.
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Then, we perform the structure optimization by simulated annealing using molecular

dynamics. The initial temperature is set to 20,000 K, the temperature step is −2 K/step,

and the time step is 1 fs/step. The cell parameters are fixed to those of the 2 × 1 × 1

supercell, and the initial structure of each simulation is randomly generated under the

constraint that the interatomic distances are 0.5 Å or more.

Figure 3.14 shows the results of the success rate in our simulations. We perform 100

simulations for each value of α. The maximum success rate is about 4%, and it can be

seen that the structure prediction method based on data assimilation using the penalty

function of XRD works even in the system containing hydrogen. The appropriate value of

α is around 10 eV, which is consistent with the isothermal pre-simulations in Fig. 3.13.

Fig. 3.14. Success rate of the structure search for ε-Zn(OH)2 using ReaxFF potential as
the potential energy and the correlation-coefficient-type penalty function of
XRD.
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Figure 3.15 shows the average MSD of O in the same simulations as in Fig. 3.13. It can

be seen that the diffusion of O is less restricted by increasing α than that of Zn. Hydrogen

atoms are hardly affected by the penalty function, and the diffusion of H also does not

change much by increasing α. As a result, there is a large difference in the diffusion range

of Zn and O or H. It is expected that by increasing the temperature to move Zn atoms

sufficiently, O and H atoms move too much and the optimization efficiency deteriorates.

In Section 3.2.2, we try to solve this problem by setting the higher bath temperatures for

Zn atoms than that for O and H atoms.

Fig. 3.15. Average MSD of O in isothermal simulations at 20,000 K using ReaxFF poten-
tial as the potential energy and the correlation-coefficient-type penalty function
of XRD. These simulations are the same as in Fig. 3.13.
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3.2.2 Temperature control for each atomic species

The correlation-coefficient-type penalty function of XRD mainly restricts positions of the

heavier atoms that contribute more to XRD pattern. As can be seen in Fig. 3.13 and

3.15, if we set the temperature high enough to move heavier atoms, the lighter atoms

move too violently. To avoid this problem, we set different bath temperatures for each

atomic species in Simulated Annealing using Molecular Dynamics. That is, we control

Text in Eq. 2.26 for the velocity scaling method separately for each atomic species.

Figure 3.16 shows the average MSD of Zn and penalty function of XRD in 10 short

isothermal simulations for each α. Figure 3.17 shows the average MSD of O in the same

simulations. The temperature for Zn is set to 20,000 K and that for O and H is set to

4,000 K. In an appropriate range of α, for which the penalty function is kept small, each

atomic species has a similar diffusion range.

Fig. 3.16. Average MSD of Zn and penalty function in isothermal simulations at 20,000
K for Zn and 4,000 K for O and H using ReaxFF potential as the potential
energy and the correlation-coefficient-type penalty function of XRD. The solid
lines represent the average MSD of Zn on the right vertical axis for each α. The
dotted lines representthe average penalty function on the left vertical axis for
each α. Diffusion is measured from 100th step, and the origin on the horizontal
axis is also set to 100th step.
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Fig. 3.17. Average MSD of O in isothermal simulations at 20,000 K for Zn and 4,000 K for
O and H using ReaxFF potential as the potential energy and the correlation-
coefficient-type penalty function of XRD. These simulations are the same as in
Fig. 3.16.

Then, we perform the structure optimization by simulated annealing using molecular

dynamics with the temperature control for each atomic species. We set the initial tem-

perature for Zn to 20,000 K and that for O and H to 4,000 K, and gradually decrease

the temperature for all atoms to zero in 10,000 step. Figure 3.18 shows the results of

the success rate in our simulations. We perform 100 simulations for each value of α. By

controlling the temperature for each atomic species and adjusting each diffusion range to

the same extent, we can improve the search efficiency as a whole. The reason why the

success rate drops with α around 14 eV is considered that the number of local minima on

the cost function changes depending on α.
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Fig. 3.18. Success rate of the structure search for ε-Zn(OH)2 with the temperature control
for each atomic species, using ReaxFF potential as the potential energy and
the correlation-coefficient-type penalty function of XRD. For comparison, the
green line is the same as the success rate with the normal temperature control
in Fig. 3.14.

3.2.3 Penalty function of the neutron diffraction

In the X-ray diffraction, the atomic form factor of hydrogen is much smaller than that of

a heavy atom. In the neutron diffraction, it is relatively large and hydrogen atoms can

be detected. If we have the reference data of ND, we can define the penalty function of

ND as well as that of XRD. Furthermore, given both XRD and ND, we can introduce the

hybrid penalty function of XRD and ND as follows,

D =
1

2
(DXRD +DND), (3.2)

where DXRD is the penalty function of XRD and DND is that of ND. The ratio of DXRD to

DND is arbitrary, but we set it to 1:1 in our simulations. By minimizing the cost function

with this hybrid penalty function, we perform the multi-objective optimization for the

potential energy, XRD and ND. Figure 3.19 shows the ND pattern for ε-Zn(OH)2 used in

these test calculations. The XRD pattern used is the same as that showed in Fig. 3.12,
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and the reference range of the diffraction angle for ND corresponds to that for XRD.

Fig. 3.19. Reference ND pattern Iref and the calculated one Icalc for ε-Zn(OH)2 in the
test structure search simulations. The wavelength λ is set to 2.52 Å, which
corresponds to the neutron radiation. The diffraction peaks are smoothed
with Lorentzian smearing function, where the scale parameter γ is 0.1 degree
in Eq. A.9. The reference range of the diffraction angle [2θmin, 2θmax] in Eq.
2.22 is set to [16.4, 77.5] degrees.
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Figure 3.20 shows the average MSD of Zn and penalty function of XRD in 10 short

isothermal simulations for each α. Figure 3.21 shows the average MSD of O and penalty

function of ND in the same simulations. As in Section 3.2.2, the temperature for Zn is set

to 20,000 K and that for O and H is set to 4,000 K. Both the penalty functions of XRD

and ND can be sufficiently suppressed if α is set to around 8 eV.

Fig. 3.20. Average MSD of Zn and penalty function of XRD in isothermal simulations
at 20,000 K for Zn and 4,000 K for O and H using ReaxFF potential as the
potential energy and the correlation-coefficient-type penalty function of XRD.
The solid lines represent the average MSD, and the dotted lines representthe
average penalty function. Diffusion is measured from 100th step, and the origin
on the horizontal axis is also set to 100th step.
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Fig. 3.21. Average MSD of O and penalty function of ND in isothermal simulations at
20,000 K for Zn and 4,000 K for O and H using ReaxFF potential as the
potential energy and the correlation-coefficient-type penalty function of XRD.
The solid lines represent the average MSD, and the dotted lines representthe
the average penalty function. These simulations are the same as in Fig. 3.20.
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Then, we perform the structure optimization by simulated annealing using molecular

dynamics with the hybrid penalty function. As in Section 3.2.2, we set the initial tem-

perature for Zn to 20,000 K and that for O and H to 4,000 K, and gradually decrease the

temperature for all atoms to zero in 10,000 step. Figure 3.22 shows the results of the suc-

cess rate in our simulations. We perform 100 simulations for each value of α. The hybrid

penalty function of XRD and ND improves the search efficiency in the system containing

hydrogen. In the case of the hybrid penalty function, the dip in the success rate with α

around 14 eV disappears probably because the penalty function of XRD and that of ND

have different local minimum points.

Fig. 3.22. Success rate of the structure search for ε-Zn(OH)2 with the temperature control
for each atomic species, using ReaxFF potential as the potential energy and
the correlation-coefficient-type hybrid penalty function of XRD and ND. For
comparison, the green line is the same as the success rate with only the penalty
function of XRD in Fig. 3.18.
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3.3 New hydride in high-pressure synthesized Al-Ca-H system

As a practical application of the structure prediction based on data assimilation, we

perform the structure search in Al-Ca-H system with actual experimental data. This is a

collaborative research with Dr. Hiroyuki Saitoh (QST) and Prof. Shin-ichi Orimo (Tohoku

Univ., WPI-AIMR/IMR). They discover a new hydride in high-pressure synthesized Al-

Ca-H system, and propose us the structure prediction for it with their experimental data.

Section 3.3.1 shows experimental results for the new hydride in Al-Ca-H system, and

the cell parameter estimation based on them. Section 3.3.2 describes the discovery of new

Al12Ca20H76 structure based on data assimilation and first-principles calculations.

3.3.1 Experimental results and cell parameter estimation

The group of Dr. Saitoh and Prof. Orimo discovers a new hydride by hydrogenating Al-

Ca alloys under high temperature (670 ◦C or more) and high pressure (5 GPa or more).

This new hydride is a candidate hydrogen storage materials, and the composition ratio

has not yet been determined.

They hydrogenate Al-Ca alloys with different mixing ratios, and measure a yield of the

new hydride. Since the yield is the highest when AlCa and AlCa2 alloys are hydrogenated,

Al-Ca ratio of the new hydride is estimated to be 1:1 to 1:2. In addition, they heat the

target materials at a ordinary pressure, and measure weight changes due to hydrogen

release. As a result, the composition ratio of the new hydride is estimated to be AlCaH6

to AlCa2H12. This indicates that the new hydride may contain excess hydrogen with

respect to Al and Ca. The mass density of the new hydride is measured to be 1.92± 0.4

g/cm3. The error of it is large due to small samples and water absorption.
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Figure 3.23 shows the experimental XRD pattern for the target material, which is

obtained by hydrogenating AlCa2 alloy. Comparing this with the XRD pattern for known

materials in Al-Ca-H system, the target material is considered to be multiphase including

pure Al. No other known material has been found so far that corresponds to peaks in this

experimental XRD pattern.

Fig. 3.23. Experimental XRD pattern (CuKα radiation) for the new hydride AlCaxHy

measured in Orimo Lab. For comparison, the red dotted line represents the
calculated XRD pattern for pure Al.
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Based on the peak positions in the experiment, we estimate the cell parameters of

the new hydride. Assuming an orthorhombic system, the cell parameters are estimated

to be (a, b, c) = (12.81, 6.405, 6.815) Å, with which the possible peak positions match the

experimental XRD pattern well as shown in Fig. 3.24. We set a = 2b for higher symmetry.

In the orthorhombic system, cells smaller than this do not match the experiment.

Fig. 3.24. Possible diffraction angles for estimated cell parameters. The experimental
XRD pattern for the new hydride AlCaxHy is the same as that in Fig. 3.23.
At larger diffraction angles, the possible peak positions appear at short intervals
and not suitable for comparison.
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3.3.2 Discovery of a new structure by using data assimilation

We perform the structure prediction based on data assimilation for the new hydride

AlCaxHy in the estimated cell. It is necessary to search with all possible composition

ratios to the estimated cell volume and the measured mass density. Since even the primi-

tive cell contains about 50 atoms, the first-principles calculations for the potential energy

require enormous costs. As in Chapter 3.1 and 3.2, we first perform Simulated Annealing

using Molecular Dynamics to minimize the cost function with the potential energy based

on DFT and the correlation-coefficient-type penalty function of XRD. However, due to

insufficient number of trials, these structure searches cannot find a candidate structure.

Then, similar to the approach by Putz et al. [15], we search for structures that repro-

duces the experimental XRD pattern using a model potential as the potential energy.

Assuming that hydrogen atoms are ignorable for the XRD pattern, we set the simulation

cells with only Al and Ca atoms. We use the EAM potential for Al-Mg system [40] as the

potential energy for Al-Ca system. We also use the hybrid penalty function of XRD as

follows,

αD = α1Dcryst + α2Dcorr, (3.3)

where Dcryst is the crystallinity-type penalty function, Dcorr is the correlation-coefficient-

type one, and α is the control parameter. The correlation-coefficient-type one emphasizes

large peaks, while the crystallinity-type one focuses on disappeared peaks due to the

extinction law. We perform SA using MD with possible Al-Ca compositions in the 1×2×2
supercell, that is, (a, b, c) = (12.81, 12.81, 13.63) Å.

In these simulations, we find Al24Ca40 structure with relatively high symmetry as shown

in Fig. 3.25. Due to the translational symmetry in c-axis direction, the primitive cell of

this structure is the 1×2×1 supercell for the originally estimated cell parameters. Figure

3.26 shows the XRD pattern for this structure. Compared to the experimental XRD

pattern, although there are some differences in peak intensities, it satisfies the extinction

rule well. The differences may be due to the effect of preferred orientation.

Fig. 3.25. Crystal structure for Al24Ca40 discovered in our structure search. The left
figure is from a-axis direction, and the right figure is from c-axis direction. The
blue and green spheres represent aluminum and calcium atoms, respectively.
The cell parameters are (a, b, c) = (12.81, 12.81, 13.63) Å, and this structure
has translational symmetry in c-axis direction.
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Fig. 3.26. Calculated XRD pattern for the Al24Ca40 structure (yellow dotted line). The
wavelength λ is set to 1.54 Å, which corresponds to CuKα-radiation. The
diffraction peaks are smoothed with Lorentzian smearing function, where the
scale parameter γ is 0.1 degree in Eq. A.9. The red bands contain the peaks
corresponding to pure Al, and are excluded from the reference range of the
diffraction angle in the penalty function.

We arrange 76 hydrogen atoms in this Al12Ca20 structure so that the coordination num-

ber of Al is 6. The composition is set to AlH3×12+CaH2×20 for ease of comparison with

known structures, and the amount of hydrogen is less than that estimated in the experi-

ment. We perform the structure relaxation from this structure with fixed cell parameters

based on first-principles calculations, and obtain Al12Ca20H76 structure as shown in Fig.

3.27. In first-principles calculations based on DFT, pseudopotentials are PAW GGA, and

the k-point mesh is set to Γ-centered 2 × 2 × 4 grid. The positions of Al and Ca do not

change much from those in the Al24Ca40 structure. Figure 3.28 shows the XRD pattern

for this structure. Since hydrogen atoms hardly contributes to the XRD pattern, this is

almost the same as the XRD pattern for the Al24Ca40 structure in Fig. 3.26.
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Fig. 3.27. Crystal structure for Al12Ca20H76 after the structure relaxation. The left figure
is from a-axis direction, and the right figure is from c-axis direction. The
blue, green and pink spheres represent aluminum, calcium and hydrogen atoms,
respectively. The cell parameters are (a, b, c) = (12.81, 12.81, 6.815) Å. The
crystallographic data is shown in Appendix B.3.

Fig. 3.28. Calculated XRD pattern for the Al24Ca40H76 structure (yellow dotted line).
The wavelength λ is set to 1.54 Å, which corresponds to CuKα-radiation. The
diffraction peaks are smoothed with Lorentzian smearing function, where the
scale parameter γ is 0.1 degree in Eq. A.9. For comparison, the red dotted line
represents the calculated XRD pattern for pure Al.
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In order to compare the stability with known structures in Al-Ca-H system, we per-

form the structure relaxation for the Al12Ca20H76 structure in a variable cell with higher

accuracy. The k-point mesh is set to Γ-centered 4 × 4 × 8 grid. The cell parameters are

relaxed to (a, b, c) = (12.71, 12.73, 6.75) Å, and the cell volume decreases by about 3%.

This indicates that this structure may contain more hydrogen. In the composition ratio

of Al12Ca20H76, AlCaH5 (Pnnm)+CaH2 (Pnma) is the most stable in the combinations

of known structures. In our calculations, the new Al12Ca20H76 structure has about 2.6

meV/atom higher energy than this composite material. As a result, we discover the can-

didate Al12Ca20H76 structure that is almost as stable as known structures and somewhat

consistent with the experiment.

The reason why some peaks in the experiment are not reproduced may be that Al-

Ca ratio is wrong or the simulation cell is small. Since the computational costs of DFT

potential are too high, we have not yet searched for candidate structures with different

compositions in larger cells. It is a future task to expand the search range. One way is

to construct the Neural Network (NN) potential in Al-Ca-H system. By replacing DFT

potential with NN potential, the computational costs are significantly reduced.
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Chapter 4

Conclusion and Outlook

In this study, we introduce the new correlation-coefficient-type penalty function of the

diffraction pattern, and work on the improvement and application of the structure predic-

tion method based on data assimilation. The practicality of this method is remarkably im-

proved by the improvement of the success rate and noise-robustness, the pre-determination

of the control parameter α, and the temperature control for each atomic species. This

chapter describes the summary of outcomes and future improvements of our method.

4.1 Outcomes of the correlation-coefficient-type penalty function

In the test calculations for coesite, the correlation-coefficient-type penalty function signif-

icantly improves the search efficiency over the crystallinity-type one used in the previous

study [1]. Comparing the cases where Tsuneyuki potential and Tersoff potential are used

as the model potentials for Si-O system, the success rate with Tersoff potential is consider-

ably lower than that with Tsuneyuki potential. The complexity of the potential energy is

considered to be the cause of this. The search efficiency may be further deteriorated when

we use the potential energy obtained by first-principles calculations. By adding artificial

noise to the reference diffraction pattern, we confirm the noise-robustness of our method.

The correlation-coefficient-type penalty function works well even if we use the reference

data with noise as it is.

In the test calculations for ε-Zn(OH)2, although XRD pattern is nearly independent

of hydrogen positions, the penalty function of XRD is effective to some extent. The

penalty function restrict the positions of other atoms, and the potential energy determines

hydrogen positions associated with them. If we have the reference ND pattern detecting

hydrogen positions, the hybrid penalty function of XRD and ND is more effective. The

diffraction pattern cannot distinguish the atomic species corresponding to the peaks, and

we can improve the search efficiency by assimilating the reference data of different probes

at the same time.

Generally, in order to improve the search efficiency by our method, it is necessary to

set an appropriate value of the control parameter α in Eq. 2.1. The penalty function

restricts the search space to match the reference data, but narrows the diffusion range of

atoms. By performing isothermal pre-simulations with different α, we can estimate an

appropriate range of α such that the penalty function is kept low and the atoms move

sufficiently.
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The heavier the atoms, the greater the contributions to the XRD pattern and the

stronger the forces from the penalty function. For the system containing the atomic

species with significantly different weights from each other, if we set an appropriate α for

heavier atoms to move sufficiently, the diffusion range of lighter atoms becomes too large.

In such a case, we can improve the search efficiency by setting different bath temperatures

for each atomic species so that the diffusion ranges are about the same.

We performed the structure prediction for new hydride in high-pressure synthesized Al-

Ca-H system based on first-principles calculations and actual experimental XRD pattern.

We search for Al-Ca structures that match the experimental data based on data assimila-

tion using a model potential as the potential energy. Then, we add hydrogen atoms in a

obtained Al-Ca structure, and perform the structure relaxation based on first-principles

calculations. As a result, we discovered new Al12Ca20H76 structure that is almost as

stable as known structures and somewhat consistent with the experiment.

4.2 Expandability of the structure prediction method based on

data assimilation

In order to succeed in the structure search in large systems, it is necessary to combine our

structure prediction method with other approaches. The data assimilation scheme can be

incorporated into existing structure prediction methods by replacing the potential energy

with the cost function. One way is to use more advanced structure optimization methods

than SA using MD in order to improve the efficiency of the global optimization. Another

way is to construct the NN potential with the training data of DFT potential in order to

reduce the computational costs of the potential energy.

In our method, we search for the common minimum of the potential energy and the

penalty function. Unlike the conventional multi-objective optimization, Pareto optimal so-

lutions should be avoided. In the previous study [2], the Combined Optimization Method

(COM) is proposed for such multi-objective optimization.

In order to expand the applicable range of our method, it is possible to assimilate

other experimental data than XRD and ND. The reference data should reflect the atomic

arrangement for the structure prediction. The positron diffraction for surface analysis is

one such experimental data.

We also need an implementation to make our method used widely and conveniently.

One way is to incorporate the penalty function calculation into existing packages of the

potential energy calculation.
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Appendix A

Calculation of the powder diffraction

pattern

This appendix describes the calculation of the powder diffraction pattern used in the

penalty function.

A.1 Formulation of the powder diffraction pattern

We calculate the powder diffraction pattern according to the following formula,

J(θ, R) = |S(θ, R)|2L(θ)P (θ), (A.1)

where θ is the diffraction angle, R is the crystal structure, S is the structure factor, L

is the Lorentz factor, and P is the polarization factor. In order to bring the theoretical

value closer to the experimental one, it is necessary to multiply this formula by additional

factors, such as the absorption factor and the temperature (Debye-Waller) factor. Since

these factors are complicated to calculate during the simulation, we omit them in the

calculation of the penalty function. On the other hand, the Lorentz factor and the po-

larization factor are expressed by the simple following formulas that depend only on the

diffraction angle,

L(θ) =
1

sin2 θ cos θ
, (A.2)

P (θ) =
1 + cos2(2θ)

2
. (A.3)

The structure factor is the main part that depends on the atomic coordinates and is

expressed by the following formula,

S(θ, R) =
N∑

j=1

Fj(θ) exp(2πih · r̃j), (A.4)

where subscript j is the index of atoms, N is the number of atoms, r̃ is the atomic

fractional coordinate, h is the vector of the Miller index, and F is the atomic form factor.

From Bragg’s law, the diffraction angle corresponding to the Miller index h is as follows
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(see Fig. A.1),

θh = arcsin

(
λ

2dh

)
= arcsin

(
λ|Bh|
4π

)
, (A.5)

where λ is the wavelength, d is the inter-planar spacing, and B is the matrix consisting

of the reciprocal lattice vectors (b1, b2, b3).

Fig. A.1. Schematic diagram of Bragg’s law. The white circles are atoms arranged with
the inter-planar spacing d, and red arrows are rays with the wave length λ and
the diffraction angle θ. The path difference between the two rays is equal to
2d sin θ.

The atomic form factor depends on atomic species, and in the case of the X-ray diffrac-

tion, it is expressed by the following formula,

F (θ) =
4∑

i=1

ai exp

(
−bi

(
sin θ

λ

)2
)

+ c. (A.6)

We use the database [41] for the parameters (a, b, c), which depend on atomic species. A

similar equation holds in the case of the neutron diffraction, and we also use the database

[42]. In the X-ray diffraction, the atomic form factor of hydrogen is much smaller than

that of a heavy atom, whereas in the neutron diffraction, it is relatively large and hydrogen

atoms can be detected.
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A.2 Diffraction peak smearing

In the equation A.1, the diffraction peak is a delta function at a diffraction angle θ, but

in the experiment, it has a finite peak width. We implement two smearing functions,

Gaussian smearing and Lorentzian smearing. The powder diffraction pattern with the

finite peak width is expressed by the following formula,

I(θ) =
∑

h

J(θh)f(|θ − θh|), (A.7)

where f is the smearing function. In our calculations, in order to reduce the computational

costs, f is regarded as zero at large |θ − θh|. Gaussian and Lorentzian smearing function

are as follows,

fgaussian =
1√
2πσ

exp

(
− (θ − θh)2

2σ2

)
(A.8)

florentzian =
1

π

γ

(θ − θh)2 + γ2
(A.9)

where σ is the standard deviation, and γ is the scale parameter. σ in Gaussian smearing

and γ in Lorentzian smearing correspond to the peak width, respectively.

In the Rietveld analysis [3], a smearing function that combines Gaussian and Lorentzian

smearings is used to reproduce the experimental result. In the structure prediction method

based on data assimilation, it is not necessary to accurately refine the peak width, but in

order to improve the search efficiency, it is better to set the peak width close to that in

the experiment.

A.3 Range of the Miller indices

The Miller index is an arbitrary integer, but the range of it to be considered is limited by

the range of the diffraction angle. Assuming that the range of the diffraction angle is [θm,

θM], from Eq. A.5, the range of the Miller index h is as follows,

4π sin θm
λ

≤ |Bh| ≤ 4π sin θM
λ

. (A.10)

Let r be the right side of Eq. A.10, and consider the upper limit of the Miller index.

Then, Eq. A.10 can be interpreted that the grid point h is included in the curved surface

S′ (see Fig. A.2). S′ is obtained on a linear transformation of the sphere S with radius

r by the inverse matrix B−1 = 1
2πA

T. A is the matrix consisting of the lattice vectors

(a1, a2, a3). It is sufficient to find the maximum value of the (x, y, z)-coordinates on the

curved surface S′ .
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Fig. A.2. Schematic diagram for finding the upper limit of the Miller index. The left
and right figures are transferred to each other on linear transformations by
the reciprocal lattice vectors B and the lattice vector A, respectively. The
white circles are the grid points corresponding to the Miller indices h. The
curved surface S is the sphere with radius r, and S′ is obtained on a linear
transformation of the sphere S. The maximum value of the x-coordinate on S′

is the x-coordinate of the tangent point with the normal vector (1, 0, 0) on S′.
This point corresponds to the tangent point with the normal vector a1 on S.

The tangent plane at the point where the x-coordinate is maximum on S′ is orthogonal

to x-axis and contains (0, 1, 0) and (0, 0, 1) vectors. The plane obtained on a linear

transformation of this tangent plane by the matrix B is the tangent plane of S and

contains the reciprocal lattice vectors b2 and b3, that is, orthogonal to the lattice vector

a1 ‖ b2 × b3. Therefore, the tangent point on S is r
|a1|a1, and the tangent point on S′ is

r
|a1|B

−1a1. Finally, the upper limit of the x-coordinate is expressed as follows,

r

|a1|
(
B−1a1

)
x
=

r

2π|a1|
(
ATa1

)
x
=

r

2π
|a1|. (A.11)

Since the same applies to the lower limit of the x-coodinate and the limits of the y and

z-coordinates, the upper and lower limits of the Miller index h are as follows.

(
± r

2π
|a1|,±

r

2π
|a2|,±

r

2π
|a3|

)
. (A.12)
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A.4 Derivative with respect to atomic coordinates

In order to calculate the force applied to each atom from the penalty function, it is

necessary to differentiate the diffraction pattern with respect to the atomic coordinates.

From Appendix A.1, only the structure factor depends on the atomic coordinates. The

derivative of the structural factor with respect to the atomic coordinates can be calculated

as follows,

∂S

∂r
=

∂

∂r

N∑

j=1

Fj(θ) exp(2πih · r̃j) (A.13)

=
N∑

j=1

Fj(θ)
∂

∂rj
exp(2πih ·A−1rj) (A.14)

=
N∑

j=1

Fj(θ) exp(2πih · r̃j)× 2πi
∂

∂rj
(h · 1

2π
BTrj) (A.15)

=
N∑

j=1

Fj(θ) exp(2πih · r̃j)× iBh (A.16)

= iSBh. (A.17)

The stress tensor can be calculated by differentiating with respect to the cell parameters.

As Eq. A.5 shows, the diffraction angle θ depends on the cell parameters, so it is sufficient

to differentiate with respect to θ. However, as seen in Eq. A.7, the smearing function also

depend on θ, and its derivative is very large near the peak position. In order to optimize

the cell parameters by the structure prediction method based on data assimilation, it is

necessary to define a penalty function which is smooth for changes in the peak position.
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Appendix B

Crystallographic data in this study

This appendix shows the crystallographic data in this study.

B.1 Coesite

Table. B.1. The correct structure of the target material coesite used in Section 3.1 [38].

Lattice parameters Atomic coordinates
(Å, degree) (fractional)

a = 7.1367 Si (0.18197, 0.14169, 0.07227) O (0.26683, 0.14625, 0.32787)
b = 12.3695 Si (0.81803, 0.85831, 0.92773) O (0.73317, 0.85375, 0.67213)
c = 7.1190 Si (0.81803, 0.14169, 0.42773) O (0.73317, 0.14625, 0.17213)
α = 90.00 Si (0.18197, 0.85831, 0.57227) O (0.26683, 0.85375, 0.82787)
β = 119.57 Si (0.68197, 0.64169, 0.07227) O (0.76683, 0.64625, 0.32787)
γ = 90.00 Si (0.31803, 0.35831, 0.92773) O (0.23317, 0.35375, 0.67213)

Si (0.31803, 0.64169, 0.42773) O (0.23317, 0.64625, 0.17213)
Si (0.68197, 0.35831, 0.57227) O (0.76683, 0.35375, 0.82787)
Si (0.28394, 0.09194, 0.54066) O (0.28918, 0.03805, 0.02165)
Si (0.71606, 0.90806, 0.45934) O (0.71082, 0.96195, 0.97835)
Si (0.71606, 0.09194, 0.95934) O (0.71082, 0.03805, 0.47835)
Si (0.28394, 0.90806, 0.04066) O (0.28918, 0.96195, 0.52165)
Si (0.78394, 0.59194, 0.54066) O (0.78918, 0.53805, 0.02165)
Si (0.21606, 0.40806, 0.45934) O (0.21082, 0.46195, 0.97835)
Si (0.21606, 0.59194, 0.95934) O (0.21082, 0.53805, 0.47835)
Si (0.78394, 0.40806, 0.04066) O (0.78918, 0.46195, 0.52165)
O (0.07598, 0.12685, 0.55943) O (0.00000, 0.36631, 0.25000)
O (0.92402, 0.87315, 0.44057) O (0.00000, 0.63369, 0.75000)
O (0.92402, 0.12685, 0.94057) O (0.50000, 0.86631, 0.25000)
O (0.07598, 0.87315, 0.05943) O (0.50000, 0.13369, 0.75000)
O (0.57598, 0.62685, 0.55943) O (0.25000, 0.25000, 0.00000)
O (0.42402, 0.37315, 0.44057) O (0.75000, 0.75000, 0.00000)
O (0.42402, 0.62685, 0.94057) O (0.75000, 0.25000, 0.50000)
O (0.57598, 0.37315, 0.05943) O (0.25000, 0.75000, 0.50000)
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B.2 ε-Zn(OH)2

Table. B.2. The correct structure of the target material ε-Zn(OH)2 used in Section 3.2
[39].

Lattice parameters Atomic coordinates
(Å, degree) (fractional)

a = 4.87176 Zn (0.067570, 0.642226, 0.123390) H (0.757409, 0.324785, 0.841643)
b = 5.06348 Zn (0.432430, 0.357774, 0.623390) H (0.742591, 0.675215, 0.341643)
c = 8.75226 Zn (0.932430, 0.142226, 0.376610) O (0.120869, 0.111773, 0.577116)
α = 90.00 Zn (0.567570, 0.857774, 0.876610) O (0.379131, 0.888227, 0.077116)
β = 90.00 H (0.030919, 0.641940, 0.847283) O (0.879131, 0.611773, 0.922884)
γ = 90.00 H (0.469081, 0.358060, 0.347283) O (0.620869, 0.388227, 0.422884)

H (0.969081, 0.141940, 0.652717) O (0.188286, 0.316113, 0.228961)
H (0.530919, 0.858060, 0.152717) O (0.311714, 0.683887, 0.728961)
H (0.242591, 0.824785, 0.658357) O (0.811714, 0.816113, 0.271039)
H (0.257409, 0.175215, 0.158357) O (0.688286, 0.183887, 0.771039)

B.3 Al-Ca-H

Table. B.3. The new Al12Ca20H76 structure proposed in Section 3.3.

Lattice parameters Atomic coordinates
(Å, degree) (fractional)

a = 12.809756 Al (0.500011, 0.005163, 0.537170) H (0.393267, 0.766778, 0.863840)
b = 12.809756 Al (0.003018, 0.505047, 0.537047) H (0.429963, 0.705195, 0.535184)
c = 6.814734 Al (0.502574, 0.005254, 0.037029) H (0.247695, 0.602437, 0.873155)
α = 90.00 Al (0.331902, 0.335357, 0.224586) H (0.304244, 0.565146, 0.542758)
β = 90.00 Al (0.168770, 0.836904, 0.222126) H (0.104170, 0.894427, 0.710286)
γ = 90.00 Al (0.839311, 0.163375, 0.215090) H (0.199422, 0.934485, 0.043467)

Al (0.663408, 0.663518, 0.214548) H (0.275273, 0.889934, 0.362151)
Al (0.831443, 0.834761, 0.727048) H (0.251859, 0.746446, 0.129567)
Al (0.668759, 0.336545, 0.722520) H (0.090047, 0.932491, 0.312873)
Al (0.338640, 0.663467, 0.715482) H (0.110123, 0.736419, 0.369379)
Al (0.163486, 0.163750, 0.712352) H (0.389815, 0.232646, 0.368334)
Al (1.000437, 0.505635, 0.036693) H (0.302659, 0.434728, 0.048838)
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Ca (0.015420, -0.004752, 0.039557) H (0.415507, 0.426118, 0.316167)
Ca (0.484803, 0.491280, 0.040281) H (0.435968, 0.308499, 0.052714)
Ca (0.514707, 0.494307, 0.541170) H (0.227379, 0.389938, 0.366369)
Ca (0.982685, 0.989151, 0.537713) H (0.247598, 0.247117, 0.130386)
Ca (0.932544, 0.727437, 0.229506) H (0.073280, 0.208127, 0.533699)
Ca (0.432343, 0.773718, 0.220318) H (0.254947, 0.103135, 0.870501)
Ca (0.567838, 0.226603, 0.228757) H (0.258935, 0.253491, 0.650720)
Ca (0.067889, 0.273081, 0.217527) H (0.202937, 0.068335, 0.538267)
Ca (0.220985, 0.572058, 0.218955) H (0.107362, 0.264613, 0.864283)
Ca (0.279747, 0.072355, 0.214524) H (0.062637, 0.083103, 0.779928)
Ca (0.725710, 0.928484, 0.226622) H (0.755229, 0.603578, 0.372325)
Ca (0.776591, 0.427751, 0.223853) H (0.572095, 0.705949, 0.035581)
Ca (0.432544, 0.226399, 0.729145) H (0.758564, 0.753375, 0.150522)
Ca (0.933172, 0.272773, 0.720397) H (0.702528, 0.567688, 0.040467)
Ca (0.067933, 0.725746, 0.728927) H (0.607314, 0.765620, 0.364382)
Ca (0.567350, 0.772103, 0.721009) H (0.562899, 0.583327, 0.284326)
Ca (0.720780, 0.072674, 0.718421) H (0.801804, 0.933755, 0.550899)
Ca (0.779762, 0.572221, 0.715348) H (0.889878, 0.731794, 0.869815)
Ca (0.226267, 0.429268, 0.725852) H (0.916010, 0.924802, 0.817192)
Ca (0.275707, 0.928949, 0.723158) H (0.934911, 0.807369, 0.553836)
H (0.962768, 0.518215, 0.793265) H (0.727701, 0.890272, 0.868660)
H (0.041755, 0.496431, 0.293066) H (0.746668, 0.746553, 0.634524)
H (0.948064, 0.627964, 0.523266) H (0.699092, 0.434587, 0.544864)
H (0.055494, 0.385916, 0.584412) H (0.610534, 0.234624, 0.868264)
H (0.120078, 0.562359, 0.594489) H (0.774165, 0.390176, 0.863575)
H (0.880794, 0.451961, 0.513059) H (0.752661, 0.246713, 0.630062)
H (0.885366, 0.560309, 0.108509) H (0.587929, 0.429989, 0.813679)
H (0.122494, 0.454243, 1.004958) H (0.564135, 0.309860, 0.552110)
H (0.057008, 0.628784, 0.042721) H (0.883523, 0.112002, 0.676588)
H (0.947454, 0.383660, 0.055655) H (0.929624, 0.205285, 0.033478)
H (0.461099, 0.008106, 0.293226) H (0.893547, 0.268716, 0.361043)
H (0.541870, 0.005978, 0.793358) H (0.944753, 0.090128, 0.288546)
H (0.384702, 0.061043, 0.604221) H (0.742902, 0.250292, 0.147886)
H (0.622056, 0.953058, 0.508453) H (0.750116, 0.101437, 0.374681)
H (0.556149, 0.128408, 0.534006) H (0.605151, 0.394932, 0.211249)
H (0.446979, 0.884057, 0.568232) H (0.383282, 0.613126, 0.176826)
H (0.380434, 0.953085, 0.007598) H (0.618348, 0.613711, 0.671557)
H (0.619000, 0.061626, 0.101415) H (0.398676, 0.397375, 0.721478)
H (0.555263, 0.884589, 0.072071) H (0.899486, 0.899628, 0.226555)
H (0.446988, 0.128357, 0.031924) H (0.119240, 0.115050, 0.167075)
H (0.243024, 0.751148, 0.647358) H (0.804579, 0.064654, 0.043351)
H (0.442122, 0.587476, 0.788658) H (0.063647, 0.810769, 0.052614)


